National Library of Energy BETA

Sample records for nuclear weapons complex

  1. Nuclear Weapons Complex reconfiguration study

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Shortly after assuming duties as Secretary of Energy, I reviewed the Nuclear Weapons Complex Modernization Report'' submitted to the Congress in January 1989 as required by the National Defense Authorization Act of 1988 and 1989. My review showed that several of the report's assumptions needed to be re-evaluated. During this eighteen-month review, dramatic world changes forced further reassessments of the future Nuclear Weapons Complex. These changes are reflected in the new report. The new report presents a plan to achieve a reconfigured complex, called Complex-21. Complex-21 would be smaller, less diverse, and less expensive to operated than the Complex of today. Complex-21 would be able to safely and reliability support nuclear deterrent stockpile objectives set forth by the President and funded by the Congress. It would be consistent with realities of the emerging international security environment and flexible enough to accommodate the likely range of deterrent contingencies. In addition, Complex-21 would be constructed and operated to comply with all applicable federal, state, and local laws, regulations, and orders. Achieving Complex-21 will require significant resources. This report provides and organized approach toward selecting the most appropriate configuration for Complex-21, satisfying environmental requirements, and minimizing costs. The alternative -- to continue to use piecemeal fixes to run an antiquated complex -- will be more expensive and provide a less reliable Nuclear Weapons Complex. As a consequence, implementation of the Complex-21 plan is considered necessary to ensure continued viability of our nuclear deterrent.

  2. Management of the Department of Energy Nuclear Weapons Complex

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-06-08

    The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Supersedes DOE O 5600.1.

  3. DOE's Nuclear Weapons Complex: Challenges to Safety, Security...

    Broader source: Energy.gov (indexed) [DOE]

    Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY...

  4. Environmental Restoration Strategic Plan. Remediating the nuclear weapons complex

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    With the end of the cold war, the US has a reduced need for nuclear weapons production. In response, the Department of Energy has redirected resources from weapons production to weapons dismantlement and environmental remediation. To this end, in November 1989, the US Department of Energy (DOE) established the Office of Environmental Restoration and Waste Management (renamed the Office of Environmental Management in 1994). It was created to bring under a central authority the management of radioactive and hazardous wastes at DOE sites and inactive or shut down facilities. The Environmental Restoration Program, a major component of DOE`s Environmental Management Program, is responsible for the remediation and management of contaminated environmental media (e.g., soil, groundwater, sediments) and the decommissioning of facilities and structures at 130 sites in over 30 states and territories.

  5. Quality by design in the nuclear weapons complex

    SciTech Connect (OSTI)

    Ikle, D.N.

    1988-04-01

    Modern statistical quality control has evolved beyond the point at which control charts and sampling plans are sufficient to maintain a competitive position. The work of Genichi Taguchi in the early 1970's has inspired a renewed interest in the application of statistical methods of experimental design at the beginning of the manufacturing cycle. While there has been considerable debate over the merits of some of Taguchi's statistical methods, there is increasing agreement that his emphasis on cost and variance reduction is sound. The key point is that manufacturing processes can be optimized in development before they get to production by identifying a region in the process parameter space in which the variance of the process is minimized. Therefore, for performance characteristics having a convex loss function, total product cost is minimized without substantially increasing the cost of production. Numerous examples of the use of this approach in the United States and elsewhere are available in the literature. At the Rocky Flats Plant, where there are severe constraints on the resources available for development, a systematic development strategy has been developed to make efficient use of those resources to statistically characterize critical production processes before they are introduced into production. This strategy includes the sequential application of fractional factorial and response surface designs to model the features of critical processes as functions of both process parameters and production conditions. This strategy forms the basis for a comprehensive quality improvement program that emphasizes prevention of defects throughout the product cycle. It is currently being implemented on weapons programs in development at Rocky Flats and is in the process of being applied at other production facilities in the DOE weapons complex. 63 refs.

  6. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Broader source: Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  7. Nuclear weapons modernizations

    SciTech Connect (OSTI)

    Kristensen, Hans M. [Federation of American Scientists, Washington, DC (United States)

    2014-05-09

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  8. Reconversion of nuclear weapons

    E-Print Network [OSTI]

    Kapitza, Sergei P

    1993-01-01

    The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

  9. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect (OSTI)

    Garaizar, X

    2010-01-06

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  10. Identification of nuclear weapons

    DOE Patents [OSTI]

    Mihalczo, J.T.; King, W.T.

    1987-04-10

    A method and apparatus for non-invasively indentifying different types of nuclear weapons is disclosed. A neutron generator is placed against the weapon to generate a stream of neutrons causing fissioning within the weapon. A first detects the generation of the neutrons and produces a signal indicative thereof. A second particle detector located on the opposite side of the weapon detects the fission particles and produces signals indicative thereof. The signals are converted into a detected pattern and a computer compares the detected pattern with known patterns of weapons and indicates which known weapon has a substantially similar pattern. Either a time distribution pattern or noise analysis pattern, or both, is used. Gamma-neutron discrimination and a third particle detector for fission particles adjacent the second particle detector are preferably used. The neutrons are generated by either a decay neutron source or a pulled neutron particle accelerator.

  11. Virtual nuclear weapons

    SciTech Connect (OSTI)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  12. Nuclear weapon detection categorization analysis

    SciTech Connect (OSTI)

    NONE

    1997-12-01

    This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

  13. NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gordon Assesses Security Of the Nuclear Weapons Complex | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  14. Nuclear Weapons Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressureNavy TurnsNuclear Weapons Journal

  15. Sandia's Nuclear Weapons Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque AlbuquerqueCybernetics:DefenseNuclear Weapons Mission Ensuring

  16. Debunking Six Big Myths about Nuclear Weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Debunking Six Big Myths about Nuclear Weapons National Security Science Latest Issue:December 2014 All Issues submit Debunking six big myths about nuclear weapons Are nuclear...

  17. The gas centrifuge and nuclear weapons proliferation

    SciTech Connect (OSTI)

    Wood, Houston G.; Glaser, Alexander; Kemp, R. Scott

    2014-05-09

    Uranium enrichment by centrifugation is the basis for the quick and efficient production of nuclear fuel-or nuclear weapons.

  18. Neutrino Counter Nuclear Weapon

    E-Print Network [OSTI]

    Tang, Alfred

    2008-01-01

    Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

  19. Neutrino Counter Nuclear Weapon

    E-Print Network [OSTI]

    Alfred Tang

    2013-06-25

    Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

  20. Deproliferation Dynamics : : Why States Give Up Nuclear Weapons Programs

    E-Print Network [OSTI]

    Mehta, Rupal Naresh

    2014-01-01

    M. 1996. Atomic Bombast: Nuclear Weapon Decision Making in2007. “The Spread of Nuclear Weapons and InternationalDeterrent Value of Nuclear Weapons. ” Journal of Conflict

  1. Uncrackable code for nuclear weapons

    SciTech Connect (OSTI)

    Hart, Mark

    2014-11-20

    Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's (LLNL) Defense Technologies Division, has developed a new approach for ensuring nuclear weapons and their components can't fall prey to unauthorized use. The beauty of his approach: Let the weapon protect itself. "Using the random process of nuclear radioactive decay is the gold standard of random number generators," said Mark Hart. "You’d have a better chance of winning both Mega Millions and Powerball on the same day than getting control of IUC-protected components."

  2. Control of Nuclear Weapon Data

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The directive establishes the policy, process and procedures for control of nuclear weapon data to ensure that dissemination of the information is restricted to individuals with appropriate clearances, approved authorization and valid need-to-know in keeping with the Atomic Energy Act (as amended) stipulation of ensuring common defense and security. Supersedes DOE O 5610.2.

  3. Nuclear Weapons Latency 

    E-Print Network [OSTI]

    Sweeney, David J

    2014-07-25

    in certain cases. However, use of MAUA for adversary modeling also significantly increased the number of assumptions necessary. A Latency investigation of South Korean nuclear fuel cycle facility development, a current nonproliferation policy concern...

  4. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-05

    The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  5. The US nuclear weapon infrastructure and a stable global nuclear weapon regime

    SciTech Connect (OSTI)

    Immele, John D; Wagner, Richard L

    2009-01-01

    US nuclear weapons capabilities -- extant force structure and nuclear weapons infrastructure as well as declared policy -- influence other nations' nuclear weapons postures, at least to some extent. This influence can be desirable or undesirable, and is, of course, a mixture of both. How strong the influence is, and its nature, are complicated, controversial, and -- in our view -- not well understood but often overstated. Divergent views about this influence and how it might shape the future global nuclear weapons regime seem to us to be the most serious impediment to reaching a national consensus on US weapons policy, force structure and supporting infrastructure. We believe that a paradigm shift to capability-based deterrence and dissuasion is not only consistent with the realities of the world and how it has changed, but also a desirable way for nuclear weapon postures and infrastructures to evolve. The US and other nuclear states could not get to zero nor even reduce nuclear arms and the nuclear profile much further without learning to manage latent capability. This paper has defined three principles for designing NW infrastructure both at the 'next plateau' and 'near zero.' The US can be a leader in reducing weapons and infrastructure and in creating an international regime in which capability gradually substitutes for weapons in being and is transparent. The current 'strategy' of not having policy or a Congressionally-approved plan for transforming the weapons complex is not leadership. If we can conform the US infrastructure to the next plateau and architect it in such a way that it is aligned with further arms reductions, it will have these benefits: The extant stockpile can be reduced in size, while the smaller stockpile still deters attack on the US and Allies. The capabilities of the infrastructure will dissuade emergence of new challenges/threats; if they emerge, nevertheless, the US will be able to deal with them in time. We will begin to transform the way other major powers view their nuclear capability. Finally, and though of less cosmic importance, it will save money in the long run.

  6. EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    218: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...

  7. Toward a nuclear weapons free world?

    SciTech Connect (OSTI)

    Maaranen, S.A.

    1996-09-01

    Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures and dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.

  8. What do we do with Nuclear Weapons Now?

    E-Print Network [OSTI]

    May, Michael M

    2005-01-01

    1990 What Do We Do with Nuclear Weapons Now? by Michael M.for the Future of U.S. Nuclear Weapons Policy MICHAEL M. MAYan electoral majority in nuclear weapons states. Unlike

  9. Philippine Bases and U.S. Nuclear Weapons Policy

    E-Print Network [OSTI]

    Schirmer, Daniel Boone

    1983-01-01

    BASES AN-fJ U.S. NUCLEAR WEAPONS POLICY In 1947, when Unitedcould bring as many nuclear weapons as It wanted onto theinclude opposition to U.S. nuclear weapons and bases In the

  10. Policy Paper 15: Peace, Stability, and Nuclear Weapons

    E-Print Network [OSTI]

    Waltz, Kenneth N.

    1995-01-01

    Much About North Korean Nuclear Weapons,” unpublished paper,the South and use nuclear weapons in doing so. How concernedout how to use nuclear weapons except for deterrence. Is a

  11. Iraq's secret nuclear weapons program

    SciTech Connect (OSTI)

    Davis, J.C. (Lawrence Livermore National Lab., CA (United States)); Kay, D.A. (Uranium Institute, London (United Kingdom))

    1992-07-01

    UN inspectors discovered an electromagnetic isotope separation factory that put Iraq just 18-30 months away from having enough material for a bomb. They also found European centrifuge technology and plans for an implosion device. The inspections of Iraq mandated by the United Nations as a cease-fire condition at the end of the Gulf War in February 1991 have revealed a clandestine nuclear materials production and weapons design program of unexpected size and sophistication. The total value of that program, in terms of equipment and personnel deployed between 1981 and 1991, may be on the order of $5-10 billion. The program employed an estimated 7000 scientist and 20,000 workers. 6 refs., 4 figs.

  12. Laboratory's role in Cold War nuclear weapons testing program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons...

  13. National Day of Remembrance HSS Honors Former Nuclear Weapons...

    Office of Environmental Management (EM)

    National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers October 28, 2013 -...

  14. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Energy Savers [EERE]

    Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

  15. Linking Legacies: Connecting the Cold War Nuclear Weapons Production...

    Office of Environmental Management (EM)

    Linking Legacies: Connecting the Cold War Nuclear Weapons Production Processes to Their Environmental Consequences Linking Legacies: Connecting the Cold War Nuclear Weapons...

  16. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Supersedes DOE O 452.1D.

  17. Nuclear Weapon Surety Interface with the Department of Defense

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-05-14

    This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the Department of Defense. Supersedes DOE O 452.6.

  18. The history of nuclear weapon safety devices

    SciTech Connect (OSTI)

    Plummer, D.W.; Greenwood, W.H.

    1998-06-01

    The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

  19. China’s Nuclear Weapons Program and the Chinese Research, Development, and Acquisition System

    E-Print Network [OSTI]

    CHASE, Michael S.; LIEGGI, Stephanie; ERICKSON, Andrew S.; LAFFERTY, Brian

    2014-01-01

    January 2014 China’s Nuclear Weapons Program and the Chineseand processes within the nuclear weapons program may beare possible. Studying the nuclear weapons program is thus

  20. Security and Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-17

    This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

  1. New details on nuclear weapons program bared

    SciTech Connect (OSTI)

    Hileman, B.

    1994-07-11

    In a continuing effort to be more candid about Department of Energy nuclear weapons programs, Energy Secretary Hazel R. O'Leary recently declassified a substantial amount of information. On June 27, she revealed details about total US weapons-grade uranium production, testing of a bomb made of reactor-grade plutonium, radiation experiments conducted on humans since the 1920s, and underground and atmospheric nuclear weapons tests. O'Leary explains the new revelations by saying thousands of people in meetings across the country this year have told her that openness in government is very important. DOE is responding today in a manner that both satisfies the strong public interest and respects critical national security requirements.

  2. Seventy Years of Computing in the Nuclear Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seventy Years of Computing in the Nuclear Weapons Program Seventy Years of Computing in the Nuclear Weapons Program WHEN: Jan 13, 2015 7:30 PM - 8:00 PM WHERE: Fuller Lodge Central...

  3. The monitoring and verification of nuclear weapons

    SciTech Connect (OSTI)

    Garwin, Richard L., E-mail: RLG2@us.ibm.com [IBM Fellow Emeritus, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2014-05-09

    This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

  4. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program...

    Office of Environmental Management (EM)

    This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and...

  5. GeoffBrumfiel,Washington Nuclear watchdogs and former weapons

    E-Print Network [OSTI]

    GeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weapons to optimize designs for low-yield nuclear weapons,he says.A 1995 Livermore panel on which he sat warned

  6. Just war and nuclear weapons : just war theory and its application to the Korean nuclear weapons issue in Korean Christianity 

    E-Print Network [OSTI]

    Son, Changwan

    2009-01-01

    This thesis is primarily an application of the Christian tradition of Just War to the problems arising from the basing of US nuclear weapons in South Korea and the development of nuclear weapons by the regime in the ...

  7. Clinton Extends Moratorium on Nuclear Weapons Testing | National...

    National Nuclear Security Administration (NNSA)

    Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  8. Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program...

    National Nuclear Security Administration (NNSA)

    C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  9. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  10. The IAEA: Neutralizing Iraq's nuclear weapons potential

    SciTech Connect (OSTI)

    Zifferero, M.

    1993-04-01

    With support from UNSCOM and staff members from several countries, the IAEA has succeeded in identifying and destroying most of Iraq's nuclear weapons potential. IAEA activities in Iraq have also established a sound basis for long-term monitoring of Iraq. This will involve several procedures and techniques, including the periodic monitoring of Iraq's main bodies of water and unannounced visits of resident inspectors to plants, factories, and research centers.

  11. Nuclear Weapon Surety Interface with the Department of Defense

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-10-19

    The Order prescribes how the Department of Energy participates with the Department of Defense (DoD) to ensure the surety (safety, security and control) of military nuclear weapon systems deployed around the world. The Order establishes National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the DoD. Cancels DOE O 5610.13. Canceled by DOE O 452.6A.

  12. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-01-22

    This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A. Canceled by DOE O 452.4C.

  13. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-19

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  14. A thousand suns : political motivations for nuclear weapons testing

    E-Print Network [OSTI]

    Raas, Whitney

    2006-01-01

    Nuclear weapon testing is the final step in the nuclear development process, an announcement of ability and strength. The consequences of a nuclear test are far from easy to bear, however: economic sanctions can be crippling ...

  15. EGS 01-01: Nuclear Weapon Program Enforcement Issues

    Office of Environmental Management (EM)

    OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for...

  16. Nuclear energy in a nuclear weapon free world

    SciTech Connect (OSTI)

    Pilat, Joseph

    2009-01-01

    The prospect of a nuclear renaissance has revived a decades old debate over the proliferation and terrorism risks of the use of nuclear power. This debate in the last few years has taken on an added dimension with renewed attention to disarmament. Increasingly, concerns that proliferation risks may reduce the prospects for realizing the vision of a nuclear-weapon-free world are being voiced.

  17. IMPROVISED NUCLEAR DEVICE An Improvised Nuclear Device (IND) is a type of nuclear weapon.

    E-Print Network [OSTI]

    IMPROVISED NUCLEAR DEVICE An Improvised Nuclear Device (IND) is a type of nuclear weapon. When of an Improvised Nuclear Device? An IND would cause great destruction, death, and injury and have a wide area

  18. Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects

    E-Print Network [OSTI]

    Gsponer, A

    2005-01-01

    The paper begins with a general introduction and update to Fourth Generation Nuclear Weapons (FGNW), and then addresses some particularly important military aspects on which there has been only limited public discussion so far. These aspects concern the unique military characteristics of FGNWs which make them radically different from both nuclear weapons based on previous-generation nuclear-explosives and from conventional weapons based on chemical-explosives: yields in the 1 to 100 tons range, greatly enhanced coupling to targets, possibility to drive powerful shaped charged jets and forged fragments, enhanced prompt radiation effects, reduced collateral damage and residual radioactivity, etc.

  19. An assessment of North Korea's nuclear weapons capabilities

    E-Print Network [OSTI]

    Sivels, Ciara (Ciara Brooke)

    2013-01-01

    In February of 2013, North Korea conducted its third nuclear weapons test. Speculations are that this test was conducted to further develop a warhead small enough to fit on an intercontinental ballistic missile. This test ...

  20. The role of nuclear weapons in the year 2000

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This publication presents the proceedings for the workshop, The Role of Nuclear Weapons in the Year 2000, held on October 22--24, 1990. The workshop participants considered the changing nature of deterrence and of our strategic relationship with the Soviet Union, the impact of nuclear proliferation on regional conflicts, and ways that the nuclear forces might be restructured to reflect new political circumstances.

  1. The Effects of Nuclear Weapons (Technical Report) | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND MISCELLANEOUSMATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; EVALUATION; NATIONAL SECURITY; NUCLEAR WEAPONS; US DOD; WEAPONS Word Cloud More Like This Full Text preview...

  2. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY...

    Energy Savers [EERE]

    Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY...

  3. Managing nuclear weapons in a changing world: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    The Center for Security and Technology Studies was established at the Lawrence Livermore National Laboratory to support long-range technical studies on issues of importance to US national security. An important goal of the Center is to bring together Laboratory staff and the broader outside community through a program of technical studies, visitors, symposia, seminars, workshops, and publications. With this in mind, the Center and LLNL`s Defense Systems Program sponsored a conference on Managing Nuclear Weapons in a Changing World held on November 17--18,1992. The first day of the meeting focused on nuclear weapons issues in the major geographical areas of the world. On the second day, the conference participants discussed what could be done to manage, control, and account for nuclear weapons in this changing world. Each of the talks and the concluding panel discussion are being indexed as separate documents.

  4. Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2

    E-Print Network [OSTI]

    Deutch, John

    1 Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2] The end of the Cold of terrorism and the risks of nuclear proliferation, call for a reassessment of the role of nuclear weapons the goal of the complete elimination of nuclear weapons as a practical means of mobilizing more resolute

  5. The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    E-Print Network [OSTI]

    Britton, Julie

    2010-01-01

    and Rocky Flats Nuclear Weapons Plant. Rad Res 1989;120:19-Evidence at the Hanford Nuclear Weapons Facility MASTERAT T H E HANFORD NUCLEAR WEAPONS FACILITY JULIE BRITTON

  6. An analysis of technical and policy drivers in Current U.S. nuclear weapons force structure

    E-Print Network [OSTI]

    Baker, Amanda, S. B. Massachusetts Institute of Technology

    2008-01-01

    U.S. nuclear weapons force structure accounts for the number and types of strategic and nonstrategic weapon systems in various locations that comprise the nuclear arsenal. While exact numbers, locations, and detailed designs ...

  7. The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    E-Print Network [OSTI]

    Britton, Julie

    2010-01-01

    National Laboratory, and Rocky Flats Nuclear Weapons Plant.Laboratory (ORNL), and Rocky Flats Nuclear Weapons Plant (ORNL through 1977, and Rocky Flats through 1979. The SMRs

  8. Physical protection technologies for the reconfigured weapons complex

    SciTech Connect (OSTI)

    Jaeger, C.D.

    1994-08-01

    Sandia National Laboratories was a memtier of the Weapons Complex Reconfiguration (WCR) Safeguards and Security (S&S) team providing assistance to the Department of Energy`s (DOE) Office of Weapons Complex Reconfigaration. New and improved S&S concepts, approaches and technologies were needed to support both new and upgraded facilities. Physical protection technologies used in these facilities were to use proven state-of-the-art systems in such areas as image processing, alarm communications and display, entry control, contraband detection, intrusion detection and video assessment, access delay, automation and robotics, and various insider protection systems. Factors considered in the selection of these technologies were protection against the design basis threat, reducing S&S life-cycle costs, automation of S&S functions to minimize operational costs, access to critical assets and exposure of people to hazardous environments, increasing the amount of delay to an outsider adversary and having reliable and maintainable systems. This paper will discuss the S&S issues, requirements, technology opportunities and needs. Physical protection technologies and systems considered in the design effort of the Weapons Complex Reconfiguration facilities will be reviewed.

  9. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-01-17

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

  10. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-06

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

  11. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B. Canceled by DOE O 452.1D

  12. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Canceled by DOE O 452.1D Admin Chg 1.

  13. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

  14. From the lab to the battlefield? Nanotechnology and fourth generation nuclear weapons

    E-Print Network [OSTI]

    Gsponer, A

    2002-01-01

    The paper addresses some major implications of microelectromechanical systems (MEMS) engineering and nanotechnology for the improvement of existing types of nuclear weapons, and the development of more robust versions of these weapons, as well as for the development of fourth generations nuclear weapons in which nanotechnology will play an essential role.

  15. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A| National Nuclear

  16. Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?

    SciTech Connect (OSTI)

    Saunders, Emily C. [Los Alamos National Laboratory; Rowberry, Ariana N. [Los Alamos National Laboratory; Fearey, Bryan L. [Los Alamos National Laboratory

    2012-07-12

    In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA in verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?

  17. Y-12 National Security Complex | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    Y-12 National Security Complex (Y-12) serves as the nation's only source of enriched uranium nuclear weapons components and provides enriched uranium for the U.S. Navy. Y-12 is a...

  18. EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environemental impact of a proposal to continue operation of the Pantex Plant and associated storage of nuclear weapon components. Alternatives considered include: ...

  19. Abdus Salam: A Reappraisal. Part II Salam's Part in the Pakistani Nuclear Weapon Programme

    E-Print Network [OSTI]

    Dombey, Norman

    2011-01-01

    Salam's biographies claim that he was opposed to Pakistan's nuclear weapon programme. This is somewhat strange given that he was the senior Science Advisor to the Pakistan government for at least some of the period between 1972 when the programme was initiated and 1998 when a successful nuclear weapon test was carried out. I look at the evidence for his participation in the programme.

  20. Abdus Salam: A Reappraisal. Part II Salam's Part in the Pakistani Nuclear Weapon Programme

    E-Print Network [OSTI]

    Norman Dombey

    2011-12-10

    Salam's biographies claim that he was opposed to Pakistan's nuclear weapon programme. This is somewhat strange given that he was the senior Science Advisor to the Pakistan government for at least some of the period between 1972 when the programme was initiated and 1998 when a successful nuclear weapon test was carried out. I look at the evidence for his participation in the programme.

  1. Linking legacies: Connecting the Cold War nuclear weapons production processes to their environmental consequences

    SciTech Connect (OSTI)

    1997-01-01

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In support of this effort, the National Defense Authorization Act for Fiscal Year 1995 directed the Department of Energy (DOE) to describe the waste streams generated during each step in the production of nuclear weapons. Accordingly, this report responds to this mandate, and it is the Department`s first comprehensive analysis of the sources of waste and contamination generated by the production of nuclear weapons. The report also contains information on the missions and functions of nuclear weapons facilities, on the inventories of waste and materials remaining at these facilities, as well as on the extent and characteristics of contamination in and around these facilities. This analysis unites specific environmental impacts of nuclear weapons production with particular production processes. The Department used historical records to connect nuclear weapons production processes with emerging data on waste and contamination. In this way, two of the Department`s legacies--nuclear weapons manufacturing and environmental management--have become systematically linked. The goal of this report is to provide Congress, DOE program managers, non-governmental analysts, and the public with an explicit picture of the environmental results of each step in the nuclear weapons production and disposition cycle.

  2. A quantitative assessment of nuclear weapons proliferation risk utilizing probabilistic methods

    E-Print Network [OSTI]

    Sentell, Dennis Shannon, 1971-

    2002-01-01

    A comparative quantitative assessment is made of the nuclear weapons proliferation risk between various nuclear reactor/fuel cycle concepts using a probabilistic method. The work presented details quantified proliferation ...

  3. Assurance and assessment techniques for nuclear weapon related software

    SciTech Connect (OSTI)

    Blackledge, M.A.

    1993-07-01

    Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

  4. Assurance and assessment techniques for nuclear weapon related software

    SciTech Connect (OSTI)

    Blackledge, M.A.

    1993-12-31

    Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

  5. Assurance and assessment techniques for nuclear weapon related software

    SciTech Connect (OSTI)

    Blackledge, M.A.

    1993-01-01

    Sandia National Laboratories has the qualification evaluation responsibility for the design of certain components intended for use in nuclear weapons. Specific techniques in assurance and assessment have been developed to provide the quality evidence that the software has been properly qualified for use. Qualification Evaluation is a process for assessing the suitability of either a process used to develop or manufacture the product, or the product itself. The qualification process uses a team approach to evaluating a product or process, chaired by a Quality Assurance professional, with other members representing the design organization, the systems organization, and the production agency. Suitable for use implies that adequate and appropriate definition and documentation has been produced and formally released, adequate verification and validation activities have taken place to ensure proper operation, and the software product meets all requirements, explicitly or otherwise.

  6. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-28

    The order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1E to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts, deliberate unauthorized use, and denial of authorized use. Supersedes DOE O 452.4B, dated 1-22-10.

  7. Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReporteeo | National NuclearaCSGF MagazineNuclearChernobyl|Security

  8. Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010MesoscopyStaffEfficiencyIndustry BringEijc p .

  9. Applying Agile MethodstoWeapon/Weapon-Related Software

    SciTech Connect (OSTI)

    Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

    2007-05-02

    This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

  10. NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  11. COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014, 4:00pm to 5:30pm Colloquia MGB Auditorium COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber Warfare and Terrorism Dr. Bruce G. Blair Princeton...

  12. Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons

    SciTech Connect (OSTI)

    Hickman, R.G.; Meier, C.A.

    1983-01-01

    The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.

  13. A system for the detection of concealed nuclear weapons and fissile material aboard cargo cotainerships

    E-Print Network [OSTI]

    Gallagher, Shawn P., S.M. Massachusetts Institute of Technology

    2005-01-01

    A new approach to the detection of concealed nuclear weapons and fissile material aboard cargo containerships is proposed. The ship-based approach removes the constraints of current thinking by addressing the threat of ...

  14. Iraqi nuclear weapons development program. Final report, October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    This is an abstract of the final report focusing on the collection, collation, analysis, and recording of information pertaining to Iraqi nuclear weapons development and on the long term monitoring of Iraq.

  15. A {open_quotes}New{close_quotes} regime for nuclear weapons and materials

    SciTech Connect (OSTI)

    Sutcliffe, W.G.

    1994-02-15

    In this paper, I discuss the principal ideas that I covered in my presentation on December 8, 1993, at the Future of Foreign Nuclear Materials Symposium held by the Naval Postgraduate School in Monterey, California. I was asked to discuss issues related to military inventories of plutonium, and I took this opportunity to describe a possible declaratory regime that could encompass military as well as civilian inventories of plutonium. The {open_quote}new{close_quotes} in the title does not imply that the regime discussed here is an original idea. Rather, the regime will be {open_quotes}new,{close_quotes} when it is adopted. The regime proposed here and in other works is one in which all stocks of nuclear weapons and materials are declared. Originally, declarations were proposed as a traditional arms control measure. Here, declarations are proposed to support the prevention of misuse of nuclear weapons and materials, including support for the nonproliferation regime. In the following, I discuss: (1) Worldwide inventories of nuclear weapons and materials, including the fact that military plutonium must be viewed as part of that worldwide inventory. (2) Life cycles of nuclear weapons and materials, including the various stages from the creation of nuclear materials for weapons through deployment and retirement of weapons to the final disposition of the materials. (3) Mechanisms for making declarations. (4) Risks and benefits to be derived from declarations. (5) Possibilities for supporting evidence or verification.

  16. Stopping the emergence of nuclear weapon states in the Third World: An examination of the Iraq weapons inspection program. Study project

    SciTech Connect (OSTI)

    Block, D.A.

    1993-01-31

    The end of the Gulf War and the implementation of United Nation (UN) resolutions uncovered an Iraqi multi-billion dollar nuclear weapons program. Iraq's ability to pursue this clandestine program for more than a decade, despite periodic inspections, suggest that the myriad of treaties and agreements designed to curb proliferation may be inadequate. Clearly more must be done to deter and counter the spread of these deadly weapon. The UN weapons inspections in Iraq provide insight into possible solutions to the proliferation of nuclear weapons technology in the developing world. This study examines the policy and operational aspects associated with an intrusive United Nations inspection program. In its final analysis, this paper suggests that an effective challenge inspection program is a necessary element in countering the spread of weapons of mass destruction. Further, it suggests that the UN, as the only internationally accepted enforcement organization, be fully engaged in nonproliferation issues and support the challenge inspection program.

  17. Since leading America's successful effort to develop nuclear weapons in World War II, the U.S. Department of Energy's

    E-Print Network [OSTI]

    the risk of terrorists or rogue nations acquiring nuclear weapons, the National Labs are spearheading warheads to commercial-grade fuel for nuclear power plants as part of a program that successfully destroyedSince leading America's successful effort to develop nuclear weapons in World War II, the U

  18. LANSCE Weapons Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 LANSCE Weapons Physics Fortune 500 companies and weapons designers alike rely on our internationally recognized nuclear physics and materials science expertise as well as our...

  19. The origin of Iraq's nuclear weapons program: Technical reality and Western hypocrisy

    E-Print Network [OSTI]

    Erkman, S; Hurni, J P; Klement, S; Erkman, Suren; Gsponer, Andre; Hurni, Jean-Pierre; Klement, Stephan

    2005-01-01

    This report is based on a series of papers written between 1980 and 2005 on the origin of Iraq's nuclear weapons program, which was known to one of the authors in the late 1970s already, as well as to a number of other physicists, who independently tried without success to inform their governments and the public. It is concluded that at no point did the Western governments effectively try to stop Iraq's nuclear weapons program, which suggests that its existence was useful as a foreign policy tool, as is confirmed by its use as a major justification to wage two wars on Iraq.

  20. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  1. DRAFT - DOE O 452.2C, Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  2. Some thoughts on the nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Krikorian N.H.; Hawkins, H.T.

    1996-05-01

    This paper discusses factors controlling the dissemination of nuclear technologies and especially fissile materials.

  3. The B61-based "Robust Nuclear Earth Penetrator:" Clever retrofit or headway towards fourth-generation nuclear weapons?

    E-Print Network [OSTI]

    Gsponer, A

    2005-01-01

    It is scientifically and technically possible to build an earth penetrating device that could bury a B61-7 warhead 30 meters into concrete, or 150 meters into earth, before detonating it. The device (based on knowledge and technology that is available since 50 years) would however by large and cumbersome. Better penetrator materials, components able to withstand larger stresses, higher impact velocities, and/or high-explosive driven penetration aids, can only marginally improve the device. It is conclude that the robust nuclear earth penetrator (RNEP) program may be as much motivated by the development of new technology directly applicable to next generation nuclear weapons, and by the political necessity to periodically reasses the role and utility of nuclear weapons, then by the perceived military need of a weapon able to destroy deeply buried targets.

  4. Philippine Bases and U.S. Nuclear Weapons Policy

    E-Print Network [OSTI]

    Schirmer, Daniel Boone

    1983-01-01

    questions for both Philippine and U.S. citiiens. AfterOF NUCLEAR WAR IN THE PHILIPPINES by Jorge Emmanuel (With ane ES S INTRODUCTION: PHILIPPINE BASES AN-fJ U.S. NUCLEAR

  5. Office of Weapons Material Protection | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  6. Towards a mutually reinforcing future : opportunities to integrate nuclear weapons stewardship and arms control objectives.

    SciTech Connect (OSTI)

    Sanders, Lani Miyoshi; DeLand, Sharon Marie; Pregenzer, Arian Leigh

    2010-07-01

    2010 NPR and President Obama's 2009 Prague Speech highlighted two key objectives with an inherent underlying tension: (1) Moving towards a world free of nuclear weapons; and (2) Sustaining a safe, secure, and effective nuclear arsenal. Objective 1 depends, inter alia, upon reductions in stockpiles at home and abroad and maintaining stability. Objective 2 depends upon needed investments in modernization and life extension. Objectives being pursued predominantly in parallel by largely separate communities.

  7. Deproliferation Dynamics : : Why States Give Up Nuclear Weapons Programs

    E-Print Network [OSTI]

    Mehta, Rupal Naresh

    2014-01-01

    prefers to stop the expansion of the nuclear club. 11 At thenuclear assistance, US military and economic assistance allowed for the expansion

  8. Report to Congress on stockpile reliability, weapon remanufacture, and the role of nuclear testing

    SciTech Connect (OSTI)

    Miller, G.H.; Brown, P.S.; Alonso, C.T.

    1987-10-01

    This report analyzes two issues: (1) ''whether past warhead reliability problems demonstrate that nuclear explosive testing is needed to identify or to correct stockpile reliability,'' or (2) ''whether a program of stockpile inspection, nonnuclear testing, and remanufacture would be sufficient to deal with stockpile reliability problems.'' Chapter 1 examines the reasons for nuclear testing. Although the thrust of the request from Congressman Aspin et al., has to do with the need for nuclear testing as it relates to stockpile reliability and remanufacture, there are other very important reasons for nuclear testing. Since there has been increasing interest in the US Congress for more restrictive nuclear test limits, we have addressed the overall need for nuclear testing and the potential impact of further nuclear test limitations. Chapter 1 also summarizes the major conclusions of a recent study conducted by the Scientific and Academic Advisory Committee (SAAC) for the President of the University of California; the SAAC report is entitled, ''Nuclear Weapon Tests: The Role of the University of California-Department of Energy Laboratories.'' Chapter 2 presents a brief history of stockpile problems that involved post-deployment nuclear testing for their resolution. Chapter 3 addresses the problems involved in remanufacturing nuclear weapons, and Chapter 4 discusses measures that should be taken to prepare for possible future restrictive test limits.

  9. The Y-12 National Security Complex 4-1 4. The Y-12 National Security Complex

    E-Print Network [OSTI]

    Pennycook, Steve

    a safe and reliable US nuclear weapons deterrent. The complex also retrieves and stores nuclear materials/enhanced surveillance of the nation's nuclear weapon stockpile; · safe and secure storage of nuclear materials" is NNSA's vision for a smaller, safer, more secure, and less expensive nuclear weapons complex

  10. The Y-12 National Security Complex 4-1 4. The Y-12 National Security Complex

    E-Print Network [OSTI]

    Pennycook, Steve

    a safe and reliable US nuclear weapons deterrent. The complex also retrieves and stores nuclear materials/enhanced surveillance of the nation's nuclear weapons stockpile; · safe and secure storage of nuclear materials secure, and less expensive nuclear weapons complex that leverages the scientific and technical

  11. The Y-12 National Security Complex 4-1 4. The Y-12 National Security Complex

    E-Print Network [OSTI]

    Pennycook, Steve

    a safe and reliable U.S. nuclear weapons deterrent. The Complex also retrieves and stores nuclear of the nation's nuclear weapon stockpile; · safe and secure storage of nuclear materials; · dismantlement secure, and less expensive nuclear weapons complex that leverages the scientific and technical

  12. Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors

    SciTech Connect (OSTI)

    Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod; Whitney, Paul D.

    2010-04-16

    A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferation risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratory’s (PNNL) BN state proliferation model and how it could be employed as an analytical tool.

  13. Approaches to integrating nuclear weapons stockpile management and arms control objectives.

    SciTech Connect (OSTI)

    Sanders, Lani Miyoshi; DeLand, Sharon Marie; Pregenzer, Arian Leigh

    2010-06-01

    Historically, U.S. arms control policy and the U.S. nuclear weapons enterprise have been reactive to each other, rather than interdependent and mutually reinforcing. One element of the divergence has been the long timescale necessary to plan and create substantive changes in the infrastructure vs. the inherent unpredictability of arms control outcomes. We explore several examples that illustrate this tension, some of the costs and implications associated with this reactive paradigm, and illustrate that, while the nuclear weapons enterprise has long considered the implications of arms control in sizing capacity of its missions, it has not substantively considered arms control in construction requirement for capabilities and products. Since previous arms control agreements have limited numbers and types of deployed systems, with delivery systems as the object of verification, this disconnect has not been forefront. However, as future agreements unfold, the warhead itself may become the treaty limited item and the object of verification. Such a scenario might offer both the need and the opportunity to integrate nuclear weapons and arms control requirements in unprecedented ways. This paper seeks to inspire new thinking on how such integration could be fostered and the extent to which it can facilitate significant reduction in nuclear stockpiles.

  14. Literature survey of blast and fire effects of nuclear weapons on urban areas

    SciTech Connect (OSTI)

    Reitter, T.A.; McCallen, D.B.; Kang, S.W.

    1982-06-01

    The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given.

  15. Sandia National Laboratories: National Security Missions: Nuclear Weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployee &andHomelandPrograms Nuclear

  16. Sandia starts silicon wafer production for three nuclear weapon programs |

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal ofNational Nuclear Security Administration signs MOU with

  17. Y-12 employees receive awards recognizing excellence in nuclear weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named Mineralogical Society ofSiteComplex help

  18. Advancing Methods for Determining the Source of HEU Used in Terrorist Nuclear Weapon 

    E-Print Network [OSTI]

    LaFleur, Adrienne; Charlton, William

    2007-09-17

    stream_source_info 2007 LaFleur Thesis.pdf.txt stream_content_type text/plain stream_size 58569 Content-Encoding UTF-8 stream_name 2007 LaFleur Thesis.pdf.txt Content-Type text/plain; charset=UTF-8... RESEARCH SCHOLAR A Senior Scholars Thesis by ADRIENNE MARIE LAFLEUR iii ABSTRACT Advancing Methods for Determining the Source of HEU Used in Terrorist Nuclear Weapon (April 2007) Adrienne M. LaFleur Department of Nuclear Engineering Texas A...

  19. Nuclear Safety Design Principles & the Concept of Independence: Insights from Nuclear Weapon Safety for Other High-Consequence Applications.

    SciTech Connect (OSTI)

    Brewer, Jeffrey D.

    2014-05-01

    Insights developed within the U.S. nuclear weapon system safety community may benefit system safety design, assessment, and management activities in other high consequence domains. The approach of assured nuclear weapon safety has been developed that uses the Nuclear Safety Design Principles (NSDPs) of incompatibility, isolation, and inoperability to design safety features, organized into subsystems such that each subsystem contributes to safe system responses in independent and predictable ways given a wide range of environmental contexts. The central aim of the approach is to provide a robust technical basis for asserting that a system can meet quantitative safety requirements in the widest context of possible adverse or accident environments, while using the most concise arrangement of safety design features and the fewest number of specific adverse or accident environment assumptions. Rigor in understanding and applying the concept of independence is crucial for the success of the approach. This paper provides a basic description of the assured nuclear weapon safety approach, in a manner that illustrates potential application to other domains. There is also a strong emphasis on describing the process for developing a defensible technical basis for the independence assertions between integrated safety subsystems.

  20. North Korea's nuclear weapons program:verification priorities and new challenges.

    SciTech Connect (OSTI)

    Moon, Duk-ho

    2003-12-01

    A comprehensive settlement of the North Korean nuclear issue may involve military, economic, political, and diplomatic components, many of which will require verification to ensure reciprocal implementation. This paper sets out potential verification methodologies that might address a wide range of objectives. The inspection requirements set by the International Atomic Energy Agency form the foundation, first as defined at the time of the Agreed Framework in 1994, and now as modified by the events since revelation of the North Korean uranium enrichment program in October 2002. In addition, refreezing the reprocessing facility and 5 MWe reactor, taking possession of possible weapons components and destroying weaponization capabilities add many new verification tasks. The paper also considers several measures for the short-term freezing of the North's nuclear weapon program during the process of negotiations, should that process be protracted. New inspection technologies and monitoring tools are applicable to North Korean facilities and may offer improved approaches over those envisioned just a few years ago. These are noted, and potential bilateral and regional verification regimes are examined.

  1. Opportunities for Russian Nuclear Weapons Institute developing computer-aided design programs for pharmaceutical drug discovery. Final report

    SciTech Connect (OSTI)

    1996-09-23

    The goal of this study is to determine whether physicists at the Russian Nuclear Weapons Institute can profitably service the need for computer aided drug design (CADD) programs. The Russian physicists` primary competitive advantage is their ability to write particularly efficient code able to work with limited computing power; a history of working with very large, complex modeling systems; an extensive knowledge of physics and mathematics, and price competitiveness. Their primary competitive disadvantage is their lack of biology, and cultural and geographic issues. The first phase of the study focused on defining the competitive landscape, primarily through interviews with and literature searches on the key providers of CADD software. The second phase focused on users of CADD technology to determine deficiencies in the current product offerings, to understand what product they most desired, and to define the potential demand for such a product.

  2. Progress toward mutual reciprocal inspections of fissile materials from dismantled nuclear weapons

    SciTech Connect (OSTI)

    Johnson, M.W. [Los Alamos National Lab., NM (United States); Gosnell, T.B. [Lawrence Livermore National Lab., CA (United States)

    1995-08-01

    In March 1994, the United States and the Russian Federation announced their intention to conduct mutual reciprocal inspections (MRI) to confirm inventories of fissile materials from dismantled nuclear weapons. Subsequent interactions between the two countries have established the basis for an MRI regime, covering instrumentation, candidate sites for MRI, and protection of information deemed sensitive by the countries. This paper discusses progress made toward MRI, stressing measurement technologies and observables, as well as prospects for MRI implementation. An analysis is presented of observables that might be exploited to provide assurance that the material being measured could have come from a dismantled weapon rather than other sources. Instrumentation to exploit these observables will also be discussed, as will joint US/Russian efforts to demonstrate such instrumentation. Progress toward a so-called ``program of cooperation`` between the two countries in protecting each other`s sensitive information will be reviewed. All of these steps are essential components of an eventual comprehensive regime for controlling fissile materials from weapons.

  3. nuclear weapons

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afedkcp8/%2A en0/%2A8/%2A en

  4. Nuclear Weapons in Regional Contexts: The Cases of Argentina and Brazil

    E-Print Network [OSTI]

    Junior, Olival Freire; Moreira, Ildeu C; Barros, Fernando de Souza

    2015-01-01

    South America is a region which is free from nuclear weapons. However, this was not an inevitable development from the relationships among its countries. Indeed, regional rivalries between Brazil and Argentina, with military implications for both countries, lasted a long time. After WWII these countries took part in the race to obtain nuclear technologies and nuclear ambitions were part of the game. In the mid 1980s, the end of military dictatorships and the successful establishing of democratic institutions put an end to the race. Thus regional and national interests in addition to the establishment of democracies in Latin America have been responsible for the building of trust between the two countries. Meaningful international initiatives are once again needed in the framework of worldwide cooperation. This cooperation is better developed when democratic regimes are in place.

  5. Dynamics of nuclear envelope and nuclear pore complex formation

    E-Print Network [OSTI]

    Anderson, Daniel J.

    2008-01-01

    Limited expression of nuclear pore membrane glycoprotein 210suggests cell-type specific nuclear pores in metazoans. Expand Dultz, E. (2008). Nuclear pore complex assembly through

  6. Cooperative measures to support the Indo-Pak Agreement Reducing Risk from Accidents Relating to Nuclear Weapons.

    SciTech Connect (OSTI)

    Mishra, Sitakanta; Ahmed, Mansoor

    2014-04-01

    In 2012, India and Pakistan reaffirmed the Agreement on Reducing the Risk from Accidents Relating to Nuclear Weapons. Despite a history of mutual animosity and persistent conflict between the two countries, this agreement derives strength from a few successful nuclear confidence building measures that have stood the test of time. It also rests on the hope that the region would be spared a nuclear holocaust from an accidental nuclear weapon detonation that might be misconstrued as a deliberate use of a weapon by the other side. This study brings together two emerging strategic analysts from South Asia to explore measures to support the Agreement and further develop cooperation around this critical issue. This study briefly dwells upon the strategic landscape of nuclear South Asia with the respective nuclear force management structures, doctrines, and postures of India and Pakistan. It outlines the measures in place for the physical protection and safety of nuclear warheads, nuclear materials, and command and control mechanisms in the two countries, and it goes on to identify the prominent, emerging challenges posed by the introduction of new weapon technologies and modernization of the respective strategic forces. This is followed by an analysis of the agreement itself leading up to a proposed framework for cooperative measures that might enhance the spirit and implementation of the agreement.

  7. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect (OSTI)

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  8. Technology diffusion of a different nature: Applications of nuclear safeguards technology to the chemical weapons verification regime

    SciTech Connect (OSTI)

    Kadner, S.P. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Reisman, A. [Brookhaven National Lab., Upton, NY (United States); Turpen, E. [Aquila Technologies Group, Inc., Cambridge, MA (United States)

    1996-10-01

    The following discussion focuses on the issue of arms control implementation from the standpoint of technology and technical assistance. Not only are the procedures and techniques for safeguarding nuclear materials undergoing substantial changes, but the implementation of the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC) will give rise to technical difficulties unprecedented in the implementation of arms control verification. Although these regimes present new challenges, an analysis of the similarities between the nuclear and chemical weapons non-proliferation verification regimes illustrates the overlap in technological solutions. Just as cost-effective and efficient technologies can solve the problems faced by the nuclear safeguards community, these same technologies offer solutions for the CWC safeguards regime. With this in mind, experts at the Organization for the Prohibition of Chemical Weapons (OPCW), who are responsible for verification implementation, need to devise a CWC verification protocol that considers the technology already available. The functional similarity of IAEA and the OPCW, in conjunction with the technical necessities of both verification regimes, should receive attention with respect to the establishment of a technical assistance program. Lastly, the advanced status of the nuclear and chemical regime vis-a-vis the biological non-proliferation regime can inform our approach to implementation of confidence building measures for biological weapons.

  9. Gordon Assesses Security At Nuclear Weapons Complex News.....

    National Nuclear Security Administration (NNSA)

    impacts of heightened security levels. In response to the Sept. 11 terrorist attacks in New York and Washington, D.C., Gordon immediately ordered all NNSA sites and facilities to...

  10. Gordon Assesses Security At Nuclear Weapons Complex News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorgeAtl anta, Georgia, March 19-23,

  11. NNSA Administrator Gordon Assesses Security Of the Nuclear Weapons Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy Moving Basic NERSCKey StaffNEWT NEWT NEWT2,NNMCAB|

  12. Policy Paper 37: Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation

    E-Print Network [OSTI]

    Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

    1998-01-01

    the accumulation of stockpiles of plutonium. Japan, based ons increasing stockpile of separated plutonium. Korea, theplutonium in deployed weapons, in weapons marked for dismantling, in scrap at the nuclear weapons production complexes, and in stockpiles

  13. Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography

    SciTech Connect (OSTI)

    Schultz, V. ); Schultz, S.C. ); Robison, W.L. )

    1991-05-01

    A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. This document is the bibliography.

  14. Development of a Bayesian Network to monitor the probability of nuclear proliferation

    E-Print Network [OSTI]

    Holcombe, Robert (Robert Joseph)

    2008-01-01

    Nuclear Proliferation is a complex problem that has plagued national security strategists since the advent of the first nuclear weapons. As the cost to produce nuclear weapons has continued to decline and the availability ...

  15. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    SciTech Connect (OSTI)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  16. ITER: The International Thermonuclear Experimental Reactor and the nuclear weapons proliferation implications of thermonuclear-fusion energy

    E-Print Network [OSTI]

    Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

    2004-01-01

    This paper contains two parts: (I) A list of "points" highlighting the strategic-political and military-technical reasons and implications of the very probable siting of ITER (the International Thermonuclear Experimental Reactor) in Japan, which should be confirmed sometimes in early 2004. (II) A technical analysis of the nuclear weapons proliferation implications of inertial- and magnetic-confinement fusion systems substantiating the technical points highlighted in the first part, and showing that while full access to the physics of thermonuclear weapons is the main implication of ICF, full access to large-scale tritium technology is the main proliferation impact of MCF. The conclusion of the paper is that siting ITER in a country such as Japan, which already has a large separated-plutonium stockpile, and an ambitious laser-driven ICF program (comparable in size and quality to those of the United States or France) will considerably increase its latent (or virtual) nuclear weapons proliferation status, and fo...

  17. American perspectives on security : energy, environment, nuclear weapons, and terrorism : 2010.

    SciTech Connect (OSTI)

    Herron, Kerry Gale; Jenkins-Smith, Hank C.; Silva, Carol L.

    2011-03-01

    We report findings from an Internet survey and a subset of questions administered by telephone among the American public in mid-2010 on US energy and environmental security. Key areas of investigation include public perceptions shaping the context for debate about a comprehensive national energy policy, and what levels of importance are assigned to various prospective energy technologies. Additionally, we investigate how public views on global climate change are evolving, how the public assesses the risks and benefits of nuclear energy, preferences for managing used nuclear fuel, and public trust in sources of scientific and technical information. We also report findings from a national Internet survey and a subset of questions administered by telephone in mid-2010 on public views of the relevance of US nuclear weapons today, support for strategic arms control, and assessments of the potential for nuclear abolition. Additionally, we analyze evolving public views of the threat of terrorism, assessments of progress in the struggle against terrorism, and tolerance for intrusive antiterror policies. Where possible, findings from each survey are compared with previous surveys in this series for analyses of trends.

  18. A Passive Tamper Indicating Enclosure For Use Within A Nuclear Weapons Monitoring Regime

    SciTech Connect (OSTI)

    White, Helen; Tanner, Jennifer E.; Allen, Keir; Benz, Jacob M.; McOmish, Sarah; Simmons, Kevin L.

    2012-10-01

    AWE and PNNL are engaged in a technical collaboration investigating techniques to enhance continuity of knowledge over Treaty Accountable Items, with emphasis on a verified nuclear weapons dismantlement process. Tamper Indicating Enclosures (TIE) will likely be deployed as part of a chain of custody regime to indicate an unauthorised attempt to access a Treaty Accountable Item, or secure authenticated monitoring equipment. In 2011, the collaboration presented a paper at the INMM annual conference held in Palm Desert, CA titled “Passive Tamper Indicating Enclosures Incorporating Embedded Optical Fibre”, which discussed the concept of integrating optical fibres into TIEs for use as a passive tamper indicating mechanism. This paper provides an update on the Fibre Optic based TIE and introduces a second passive TIE concept based on the use of Poly(Methyl MethAcrylate) (PMMA). Concepts relating to deployment, tamper indication, and unique identification will be discussed.

  19. The meteorological monitoring audit, preventative maintenance and quality assurance programs at a former nuclear weapons facility

    SciTech Connect (OSTI)

    Maxwell, D.R.

    1995-12-31

    The purposes of the meteorological monitoring audit, preventative maintenance, and quality assurance programs at the Rocky Flats Environmental Technology Site (Site), are to (1) support Emergency Preparedness (EP) programs at the Site in assessing the transport, dispersion, and deposition of effluents actually or potentially released into the atmosphere by Site operations; and (2) provide information for onsite and offsite projects concerned with the design of environmental monitoring networks for impact assessments, environmental surveillance activities, and remediation activities. The risk from the Site includes chemical and radioactive emissions historically related to nuclear weapons component production activities that are currently associated with storage of large quantities of radionuclides (plutonium) and radioactive waste forms. The meteorological monitoring program provides information for site-specific weather forecasting, which supports Site operations, employee safety, and Emergency Preparedness operations.

  20. Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility

    SciTech Connect (OSTI)

    Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

    2010-01-11

    To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

  1. Physical and Mathematical Description of Nuclear Weapons Identification System (NWIS) Signatures

    SciTech Connect (OSTI)

    Mattingly, J.K.; Mihalczo, J.T.; Mullens, J.A.; Valentine, T.E.

    1997-09-26

    This report describes all time and frequency analysis parameters measured with the new Nuclear Weapons Identification System (NWIS) processor with three input channels: (1) the 252Cf source ionization chamber (2) a detection channel; and (3) a second detection channel for active measurements. An intuitive and physical description of the various functions is given as well as a brief mathematical description and a brief description of how the data are acquired. If the fill five channel capability is used, the number of functions increases in number but not in type. The parameters provided by this new NWIS processor can be divided into two general classes: time analysis signatures including multiplicities and frequency analysis signatures. Data from measurements with an 18.75 kg highly enriched uranium (93.2 wt 0/0, 235U) metai casting for storage are presented to illustrate the various time and frequency analysis parameters.

  2. Dose reduction through robotics and automation of nuclear weapons dismantlement and storage procedures at the Department of Energy's Pantex Plant 

    E-Print Network [OSTI]

    Thompson, David Andrew

    1996-01-01

    With the end of the Cold War and subsequent break up of the Soviet Union, the number of weapons in the nuclear stockpile now greatly exceeds any foreseeable future need (Quirck et al., 1993). To compensate for this excess, an estimated 20...

  3. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect (OSTI)

    Janeen Denise Robertson

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  4. Electromagnetic Signature Technique as a Promising Tool to Verify Nuclear Weapons Storage and Dismantlement under a Nuclear Arms Control Regime

    SciTech Connect (OSTI)

    Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.; Ramuhalli, Pradeep

    2012-08-01

    The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without the use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.

  5. FACT SHEET SandiaNational LaboratoriesThe U.S. NUclear

    E-Print Network [OSTI]

    Napp, Nils

    FACT SHEET SandiaNational LaboratoriesThe U.S. NUclear WeapoNS complex Sandia National Laboratories (SNL) is responsible for the non-nuclear compo- nents and systems integration of U.S. nuclear weapons. Often called the engineer- ing laboratory of the U.S. nuclear weapons complex, it grew out of Z Division

  6. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    SciTech Connect (OSTI)

    1996-01-01

    In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

  7. A comparison of delayed radiobiological effects of depleted-uranium munitions versus fourth-generation nuclear weapons

    E-Print Network [OSTI]

    Gsponer, A; Vitale, B; Gsponer, Andre; Hurni, Jean-Pierre; Vitale, Bruno

    2002-01-01

    It is shown that the radiological burden due to the battle-field use of circa 400 tons of depleted-uranium munitions in Iraq (and of about 40 tons in Yugoslavia) is comparable to that arising from the hypothetical battle-field use of more than 600 kt (respectively 60 kt) of high-explosive equivalent pure-fusion fourth-generation nuclear weapons. Despite the limited knowledge openly available on existing and future nuclear weapons, there is sufficient published information on their physical principles and radiological effects to make such a comparison. In fact, it is shown that this comparison can be made with very simple and convincing arguments so that the main technical conclusions of the paper are undisputable -- although it would be worthwhile to supplement the hand calculations presented in the paper by more detailed computer simulations in order to consolidate the conclusions and refute any possible objections.

  8. The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of Plutonium, Neptunium, and Cesium

    E-Print Network [OSTI]

    Kenna, Timothy C

    2002-01-01

    This thesis addresses the sources and transport of nuclear weapons related contamination in the Ob River region, Siberia. In addition to being one of the largest rivers flowing into the Arctic Ocean, the bulk of the former ...

  9. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J. [United States Department of State, Bureau of Arms Control, Verification and Compliance, Office of Verification and Transparency Technologies, Washington, DC (United States); Jones, Anthony M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Benz, Jacob M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Denlinger, Laura Schmidt [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-05-04

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.

  10. Advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  11. Broken Arrows: Radiological hazards from nuclear warhead accidents (the Minot USAF base nuclear weapons incident)

    E-Print Network [OSTI]

    Liolios, Theodore

    2009-01-01

    According to numerous press reports, in 2007 at Minot US Air Force Base six AGM-129 Advanced Cruise Missiles mistakenly armed with W80-1 thermonuclear warheads were loaded on a B-52H heavy bomber in place of six unarmed AGM-129 missiles that were awaiting transport to Barksdale US Air Force Base for disposal. The live nuclear missiles were not reported missing, and stood unsecured and unguarded while mounted to the aircraft for a period of 36 hours. The present work investigates the radiological hazards associated with a worst-case postulated accident that would disperse the nuclear material of the six warheads in large metropolitan cities. Using computer simulations approximate estimates are derived for the ensuing cancer mortality and land contamination after the accident. Health, decontamination and evacuation costs are also estimated in the framework of the linear risk model.

  12. President Obama Calls for an End to Nuclear Weapons | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNational Nuclear SecuritySecurity

  13. Program Mission Campaigns are multi-year, multi-functional efforts involving, to varying degrees, every site in the nuclear

    E-Print Network [OSTI]

    degrees, every site in the nuclear weapons complex. They provide specialized scientific knowledge and technical support to the directed stockpile work on the nuclear weapons stockpile. Deliverables are defined/scheduled in each campaign plan and then coordinated with several key nuclear weapons complex directives, including

  14. Materials and Sensor R&D to Transform the Nuclear Stockpile:...

    Office of Scientific and Technical Information (OSTI)

    the nuclear stockpile. Risks include material supply issues, ever-increasing lifecycle costs, and loss of technical expertise across the weapons complex. For example, non-nuclear...

  15. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    , and reliability of the Nation's nuclear weapons without nuclear testing. The program provides this capability of the energy from a nuclear weapon is generated while in the high energy density (HED) state. High thermonuclear ignition to the national nuclear weapons program was one of the earliest motivations of the ICF

  16. A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts

    SciTech Connect (OSTI)

    Uribe, Eva C [Los Alamos National Laboratory; Sandoval, M Analisa [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Leitch, Rosalyn M [Los Alamos National Laboratory

    2009-01-01

    With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

  17. Trace Fission Product Ratios for Nuclear Forensics Attribution of Weapons-Grade Plutonium from Fast Breeder Reactor Blankets 

    E-Print Network [OSTI]

    Osborn, Jeremy

    2014-08-13

    for the 500-MWe Indian PFBR was obtained from Chirayath et al.22 and essential parameters are listed in Table II. There is an active core, one meter in height, which consists of an inner core and outer core of MOX “driver” fuel. The MOX fuel of the active...-Particle MOX – Mixed Oxide MWd/kg – Megawatt-day per kilogram of heavy metal MWe – Megawatt electric NPT – Treaty on the Non-Proliferation of Nuclear Weapons ORNL – Oak Ridge National Laboratory PFBR – Prototype Fast Breeder Reactor PHWR...

  18. Leveraging U.S. nuclear weapons policy to advance U.S. nonproliferation goals : implications of major theories of international relations.

    SciTech Connect (OSTI)

    Walter, Andrew

    2009-06-01

    National policymakers are currently considering a dilemma of critical importance to the continued security of the United States: how can U.S. nuclear weapons policies be leveraged to benefit U.S. nuclear nonproliferation goals in the near-term, without sacrificing U.S. national security? In its role supporting U.S. nuclear weapons policy, Sandia National Laboratories has a responsibility to provide objective technical advice to support policy deliberations on this question. However, to best fulfill this duty Sandia must have a broader understanding of the context of the problem. To help develop this understanding, this paper analyzes the two predominant analytical perspectives of international relations theory to explore their prescriptions for how nuclear weapons and nonproliferation policies interact. As lenses with which to view and make sense of the world, theories of international relations must play a crucial role in framing the trade-offs at the intersection of the nuclear weapons and nonproliferation policy domains. An analysis of what these theories suggest as courses of action to leverage nuclear weapons policies to benefit nonproliferation goals is then offered, with particular emphasis on where the policy prescriptions resulting from the respective theories align to offer near-term policy changes with broad theoretical support. These policy prescriptions are then compared to the 2001 Nuclear Posture Review to understand what the theories indicate policymakers may have gotten right in their dealing with the nuclear dilemma, and where they may have gone wrong. Finally, a brief international relations research agenda is proposed to help address the dilemma between nuclear deterrence and nuclear nonproliferation policies, with particular emphasis on how such an agenda can best support the needs of the policy community and a potential 'all things nuclear' policy deliberation and decision-support framework.

  19. President Truman Orders Development of Thermonuclear Weapon ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Orders Development of Thermonuclear Weapon | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  20. On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium

    SciTech Connect (OSTI)

    Kunsman, D.M.

    1993-03-01

    We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

  1. On the public perception of the risks from nuclear weapons: Would oralloy be more acceptable than plutonium?

    SciTech Connect (OSTI)

    Kunsman, D.M.

    1993-03-01

    We technologists generally only address risk magnitudes in our analyses, although other studies have found nineteen additional dimensions for the way the public perceives risk. These include controllability, voluntariness, catastrophic potential, and trust in the institution putting forth the risk. We and the geneml public use two different languages, and to understand what their concerns are, we need to realize that the culture surrounding nuclear weapons is completely alien to the general public. Ultimately, the acceptability of a risk is a values question, not a technical question. For most of the risk dimensions, the public would perceive no significant difference between using oralloy and plutonium. This does not mean that the suggested design change should not be proposed, only that the case for, or against, it be made comprehensively using the best information available today. The world has changed: the ending of the cold war has decreased the benefit of nuclear weapons in the minds of the public and the specter of Chernobyl has increased the perceived risks of processes that use radioactive materials. Our analyses need to incorporate the lessons pertinent to this newer world.

  2. The role of the DOE weapons laboratories in a changing national security environment: CNSS papers No. 8, April 1988

    SciTech Connect (OSTI)

    Hecker, S.S.

    1988-01-01

    The contributions of the Department of Energy (DOE) nuclear weapons laboratories to the nation's security are reviewed in testimony before the Subcommittee on Procurement and Military Nuclear Systems of the House Armed Services Committee. Also presented are contributions that technology will make in maintaining the strategic balance through deterrence, treaty verification, and a sound nuclear weapons complex as the nation prepares for significant arms control initiatives. The DOE nuclear weapons laboratories can contribute to the broader context of national security, one that recognizes that military strength can be maintained over the long term only if it is built upon the foundations of economic strength and energy security. 9 refs.

  3. Analysis and section of processes for the disposition of excess fissile material from nuclear weapon dismantlement in the United States

    SciTech Connect (OSTI)

    Myers, B.R.; Armantrout, G.A. [Lawrence Livermore National Lab., CA (United States); Erickson, R. [Los Alamos National Lab., NM (United States)

    1995-02-01

    The end of the cold war and the acceleration of nuclear disarmament efforts by the United States (US) and Russia are generating large quantities of surplus fissile nuclear materials that are no longer needed for military purposes. The safe and secure disposition of this surplus material to prevent theft or reuse in weapons has become a high priority for the US Department of Energy (USDOE). Many options exist for storage and disposition (use or disposal) of these surplus materials. The criteria, which have been developed from the basis for a preliminary ``screening`` of options, to eliminate from further consideration those options that do not meet minimal requirements. Factors, or attributes, contained in the screening and selection criteria include: (1) resistance to theft and diversion by unauthorized parties, (2) resistance to retrieval, extraction, and reuse by the host nation, (3) technical viability, (4) environmental, safety, and health impacts, (5) cost effectiveness, (6) timeliness, (7) fostering of progress and cooperation with Russia and others, (8) public and institutional acceptance, and (9) additional benefits. The evaluation of environmental impacts, in accordance with the US National Environmental Policy Ac (NEPA) process, is an integral part of the overall evaluation process. Because of the variety of physical and chemical forms of the nuclear material inventory, and because of the large number of possible disposition technologies and final forms, several hundred possible pathways to disposition have been defined and have undergone a systematic selection process. Also, because nuclear material disposition will have far ranging impacts, extensive public, in the form of public and stakeholder, input was integral to the selection process.

  4. Supercritical-fluid carbon dioxide (SCCO{sub 2}) cleaning of nuclear weapon components

    SciTech Connect (OSTI)

    Taylor, C.M.V.; Sivils, L.D.; Rubin, J.B.

    1998-05-01

    Supercritical fluid carbon dioxide (SCCO{sub 2}) has been evaluated as a cleaning solvent for the cleaning of plutonium (Pu) metal parts. The results of the evaluation show that SCCO{sub 2} is an effective alternative to halogenated solvents that are conventionally used for removing organic and inorganic contaminants from the surface of these parts. The cleaning process was demonstrated at the laboratory scale for steel and uranium substrates and has been found to be compatible with Pu. The efficacy of this cleaning method is found to be dependent on process conditions of pressure, temperature, fluid-flow rate, as well as cleaning time. Process parameters of P > 2,500 psi, T > 40 C, and moderate fluid flow rates, produced good cleaning results in less than 10 minutes using a simple flow-through process configuration. Within the parameter range studied, cleaning efficiency generally improved with increasing process pressure and flow rate. SCCO{sub 2} cleaning is suitable for a variety of component cleaning tasks and is adaptable to precision cleaning requirements. The SCCO{sub 2} cleaning process is currently being developed for deployment for weapons production at LANL.

  5. Legislative Reform of the Kaesong Industrial Complex in North Korea

    E-Print Network [OSTI]

    You, Jeehye

    2011-01-01

    non- proliferation of nuclear weapons and trade issues. Onlyproliferation of nuclear weapons and transfer of technologynon- proliferation of nuclear weapons, the international

  6. Robert C. Seamans, Jr. Appointed to Lead Nuclear Weapons Program | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNationalPrograms |National NuclearNuclear Security

  7. US weapons secrets revealed

    SciTech Connect (OSTI)

    Norris, R.S.; Arkin, W.M.

    1993-03-01

    Extraordinary details have only recently been revealed about the struggle over the control of early U.S. nuclear weapons and their initial deployments abroad. The information comes from a newly declassified top secret report, part of a larger study, The History of the Strategic Arms Competition, 1945-1972, commissioned by Defense Secretary James R. Schlisinger in summer 1974.

  8. Risk in the Weapons Stockpile

    SciTech Connect (OSTI)

    Noone, Bailey C

    2012-08-14

    When it comes to the nuclear weapons stockpile, risk must be as low as possible. Design and care to keep the stockpile healthy involves all aspects of risk management. Design diversity is a method that helps to mitigate risk.

  9. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    a safe, secure, and reliable nuclear weapons stockpile without underground testing. Science-based weapons under extreme conditions that approach the high energy density (HED) environments found in a nuclear in HED science and support broader national science goals. Virtually all of the energy from a nuclear

  10. Picture of the Week: From nuclear weapons testing to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUp inrd IEEE(Journal13 A9 From nuclear

  11. Sandia California works on nuclear weapon W80-4 Life Extension Program |

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNationalProgramsSSGF MagazineNational Nuclear

  12. New - DOE O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1E to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts, deliberate unauthorized use, and denial of authorized use. Cancels DOE O 452.4B, dated 1-22-10.

  13. Overview of contamination from US and Russian nuclear complexes

    SciTech Connect (OSTI)

    Bradley, D.J.

    1995-06-01

    This paper briefly compares the United States and Russian weapons complexes and provides a perspective on the releases of radioactivity to the environment in both countries. Fortunately, the technologies, data, models, and scientific experience that have been gained over the last 50 years are being shared between the US Department of Energy (DOE) and Ministry of Atomic Energy of the Russian Federation (MINATOM) which constitutes a new environmental partnership between the two countries.

  14. Alarm system for a nuclear control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  15. Console for a nuclear control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  16. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  17. Decommissioning of the Iraq former nuclear complex

    SciTech Connect (OSTI)

    Abbas, Mohammed [Ministry of Science and Technology (Iraq); Helou, Tuama; Ahmead, Bushra [Ministry of Environment (Iraq); Al-Atia, Mousa; Al-Mubarak, Mowaffak [Iraqi Radiation Sources Regulatory Authority (Iraq); Danneels, Jeffrey; Cochran, John; Sorenson, Ken [Sandia National Laboratories (United States); Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria)

    2007-07-01

    Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of the Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)

  18. Russia`s nuke complex: A case for downsizing

    SciTech Connect (OSTI)

    Bukharin, O.

    1995-07-01

    Nuclear weapons stored in former Soviet republics, uncontrolled export of bomb-grade nuclear materials, and recruitment of ex-Soviet nuclear physicists by Third-World nations remain today`s top proliferation risks, reports Oleg Bukharin, a visiting researcher at Princeton University`s Center for Energy and Environment Studies. To address these risks, Russia {open_quotes}must shift its weapons production and development to weapons dismantlement, management of weapons materials, and maintenance of a much smaller...arsenal,{close_quotes} Bukharin writes. The goal of such conversion, he says, {open_quotes}is a nuclear complex that is environmentally safe...and compatible with nonproliferation objectives.{close_quotes} Reconfiguration of Russia`s weapons complex also must provide for redeployment of the hundreds of thousands of scientists, engineers, and technicians who have supported the federation`s nuclear weapons program, Bukharin insists. {open_quotes}A truly durable strategy to prevent the dispersion of Russian weapons expertise must [involve] these weapons experts in non-weapons research,{close_quotes} says Bukharin. Furthermore, Bukharin writes, the Russian conversion program must prevent nuclear materials from falling into the wrong hands. {open_quotes}Widespread corruption, crime, and emerging black markets increase the risk of diversion of weapons-grade uranium or plutonium,{close_quotes} he says.

  19. Dynamics of nuclear envelope and nuclear pore complex formation

    E-Print Network [OSTI]

    Anderson, Daniel J.

    2008-01-01

    instability due to nuclear fusions. The universal action ofnegatively regulates nuclear membrane fusion and nuclearrequired for vesicle fusion during nuclear envelope assembly

  20. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  1. The Y-12 National Security Complex 4-1 4. The Y-12 National Security Complex

    E-Print Network [OSTI]

    Pennycook, Steve

    The Y-12 National Security Complex 4-1 4. The Y-12 National Security Complex The Y-12 Complex-of-a-kind manufacturing facility that plays an important role in US national security. The roles of the Y-12 Complex/enhanced surveillance of the nation's nuclear weapon stockpile; · safe and secure storage of nuclear materials

  2. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Ioffe, B. L.; Kochurov, B. P. [Institute of Theoretical and Experimental Physics (Russian Federation)

    2012-02-15

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  3. Review: Nuclear Power Is Not the Answer by Helen Caldicott

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2007-01-01

    and the possibility of nuclear weapons proliferation make itto a discussion of nuclear weapons proliferation. In the

  4. Review: Nuclear Power Is Not the Answer by Helen Caldicott

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2007-01-01

    the possibility of nuclear weapons proliferation make it ato a discussion of nuclear weapons proliferation. In the

  5. Securing NNSA's Nuclear Weapons Complex in a Post-9/11 World | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| StanfordOfficeImplementation and

  6. DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOEDepartmentWildlife Refuge |Department of

  7. Splitting Atoms, Fracturing Landscapes: Policymaking, Environmental Science, and the Nuclear Complex, 1945-1960

    E-Print Network [OSTI]

    Oatsvall, Neil Shafer

    2013-05-31

    serves as an apt representation of the interconnectedness between the environment and the development of nuclear energy, even if such connections have frequently gone unnoticed by both scholars. Historians have done a fine job chronicling nuclear energy..., decision makers had to grapple with the realities such creations produced. Can a nuclear weapon keep a nation safe? Can nuclear energy help improve society in tangible ways? On the other hand, if nuclear technology could accomplish the goals set out for it...

  8. On the benefits of an integrated nuclear complex for Nevada

    SciTech Connect (OSTI)

    Blink, J.A.; Halsey, W.G.

    1994-01-01

    An integrated nuclear complex is proposed for location at the Nevada Test Site. In addition to solving the nuclear waste disposal problem, this complex would tremendously enhance the southern Nevada economy, and it would provide low cost electricity to each resident and business in the affected counties. Nuclear industry and the national economy would benefit because the complex would demonstrate the new generation of safer nuclear power plants and revitalize the industry. Many spin-offs of the complex would be possible, including research into nuclear fusion and a world class medical facility for southern Nevada. For such a complex to become a reality, the cycle of distrust between the federal government and the State of Nevada must be broken. The paper concludes with a discussion of implementation through a public process led by state officials and culminating in a voter referendum.

  9. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01

    ambitions: The spread of nuclear weapons 1989-1990. Boulder:Determinants of nuclear weapons proliferation. UnpublishedWhy nations forgo nuclear weapons. Montreal: McGill-Queen’s

  10. Microscopic description of complex nuclear decay: multimodal fission

    E-Print Network [OSTI]

    A. Staszczak; A. Baran; J. Dobaczewski; W. Nazarewicz

    2009-06-23

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  11. Nuclear Deterrence | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work FeaturedNuclear &Deterrence Nuclear

  12. Legislative Reform of the Kaesong Industrial Complex in North Korea

    E-Print Network [OSTI]

    You, Jeehye

    2011-01-01

    program and promote nuclear proliferation worldwide. Evensignificance in non- proliferation of nuclear weapons andattention to its proliferation of nuclear weapons and

  13. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    SciTech Connect (OSTI)

    Anne C. Fitzpatrick

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsible for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.

  14. Determining Factors Influencing Nuclear Envelope and Nuclear Pore Complex Structure. 

    E-Print Network [OSTI]

    Gouni, Sushanth

    2013-02-04

    properties and their effects in gpi1 mutants....?..?.??21 NPC interactions with the Proteasome...............................................................25 Clustering mutant interactions with rpt6................................................................26 Nuclear Transport factors interactions with rpt6...............................................27 GPI anchor pathway interactions with rpt6........................................................29 IV DISCUSSION...

  15. The Y-12 National Security Complex 4-1 4. The Y-12 National Security Complex

    E-Print Network [OSTI]

    Pennycook, Steve

    to meet future missions and to do so in a safe, secure, environmentally, energy efficient, and sustainable, as part of the National Nuclear Security Administration Nuclear Weapons Complex, and with more than 60 critical elements of the National Nuclear Security Administration's (NNSA's) missions that ensure

  16. Disposition of excess weapons plutonium from dismantled weapons

    SciTech Connect (OSTI)

    Jardine, L.J.

    1997-01-01

    With the end of the Cold War and the implementation of various nuclear arms reduction agreements, US and Russia have been actively dismantling tens of thousands of nuclear weapons. As a result,large quantities of fissile materials, including more than 100 (tonnes?) of weapons-grade Pu, have become excess to both countries` military needs. To meet nonproliferation goals and to ensure the irreversibility of nuclear arms reductions, this excess weapons Pu must be placed in secure storage and then, in timely manner, either used in nuclear reactors as fuel or discarded in geologic repositories as solid waste. This disposition in US and Russia must be accomplished in a safe, secure manner and as quickly as practical. Storage of this Pu is a prerequisite to any disposition process, but the length of storage time is unknown. Whether by use as fuel or discard as solid waste, disposition of that amount of Pu will require decades--and perhaps longer, if disposition operations encounter delays. Neither US nor Russia believes that long-term secure storage is a substitute for timely disposition of excess Pu, but long-term, safe, secure storage is a critical element of all excess Pu disposition activities.

  17. Characterization of U/Pu Particles Originating From the Nuclear Weapon Accidents at Palomares, Spain, 1966 And Thule, Greenland, 1968

    SciTech Connect (OSTI)

    Lind, O.C.; Salbu, B.; Janssens, K.; Proost, K.; Garcia-Leon, M.; Garcia-Tenorio, R.

    2007-07-10

    Following the USAF B-52 bomber accidents at Palomares, Spain in 1966 and at Thule, Greenland in 1968, radioactive particles containing uranium (U) and plutonium (Pu) were dispersed into the environment. To improve long-term environmental impact assessments for the contaminated ecosystems, particles from the two sites have been isolated and characterized with respect to properties influencing particle weathering rates. Low [239]Pu/[235]U (0.62-0.78) and [240]Pu/[239]Pu (0.055-0.061) atom ratios in individual particles from both sites obtained by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) show that the particles contain highly enriched U and weapon-grade Pu. Furthermore, results from electron microscopy with Energy Dispersive X-ray analysis (EDX) and synchrotron radiation (SR) based micrometer-scale X-ray fluorescence ({micro}-XRF) 2D mapping demonstrated that U and Pu coexist throughout the 1-50 {micro}m sized particles, while surface heterogeneities were observed in EDX line scans. SR-based micrometer-scale X-ray Absorption Near Edge Structure Spectroscopy ({micro}-XANES) showed that the particles consisted of an oxide mixture of U (predominately UO[2] with the presence ofU[3][8]) and Pu ((III)/(IV), (V)/(V) or (III), (IV) and (V)). Neither metallic U or Pu nor uranyl or Pu(VI) could be observed. Characteristics such as elemental distributions, morphology and oxidation states are remarkably similar for the Palomares and Thule particles, reflecting that they originate from similar source and release scenarios. Thus, these particle characteristics are more dependent on the original material from which the particles are derived (source) and the formation of particles (release scenario) than the environmental conditions to which the particles have been exposed since the late 1960s.

  18. Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

  19. US nuclear warhead facility profiles

    SciTech Connect (OSTI)

    Cochran, T.B.; Arkin, W.A.; Norris, R.S.; Hoenig, M.M.

    1987-01-01

    US Nuclear Warhead Facility Profiles is the third volume of the Nuclear Weapons Databook, a series published by the Natural Resources Defense Council. This volume reviews the different facilities in the US nuclear warhead complex. Because of the linkage between nuclear energy and nuclear weapons, the authors cover not only those facilities associated mainly with nuclear power research, but also those well known for weapons development. They are: the Argonne National Laboratory; the Hanford Reservation; the Oak Ridge National Laboratory; the Pantex plant; the Los Alamos Test Site; the Rocky Flats plant; the Sandia National Laboratories; and a host of others. Information on each facility is organized into a standard format that makes the book easy to use. The reader will find precise information ranging from a facility's address to its mission, management, establishment, budget, and staff. An additional, more in-depth presentation covers the activities and technical process of each facility. Maps, pictures, and figures complement the text.

  20. Radiocesium Discharges and Subsequent Environmental Transport at the Major U.S. Weapons Production Facilities

    SciTech Connect (OSTI)

    Garten, Jr. C.T.; Hamby, D.M.; Schreckhise, R.G.

    1999-11-14

    Radiocesium is one of the more prevalent radionuclides in the environment as a result of weapons production related atomic projects in the United States and the former Soviet Union. Radiocesium discharges during the 1950's account for a large fraction of the historical releases from U.S. weapons production facilities. Releases of radiocesium to terrestrial and aquatic ecosystems during the early ,years of nuclear weapons production provided the opportunity to conduct multidisciplinary studies on the transport mechanisms of this potentially hazardous radionuclide. The major U.S. Department of Energy facilities (Oak Ridge Reservation in Tennessee, Hanford Site near Richland, Washington, and Savannah River Site near Aiken, South Carolina) are located in regions of the country that have different geographical characteristics. The facility siting provided diverse backgrounds for the development of an understanding of environmental factors contributing to the fate and transport of radiocesium. In this paper, we summarize the significant environmental releases of radiocesium in the early -years of weapons production and then discuss the historically significant transport mechanisms for r37Cs at the three facilities that were part of the U.S. nuclear weapons complex.

  1. Nuclear fusion in muonic deuterium-helium complex

    E-Print Network [OSTI]

    V. M. Bystritsky; M. Filipowicz; V. V. Gerasimov; P. E. Knowles; F. Mulhauser; N. P. Popov; V. A. Stolupin; V. P. Volnykh; J. Wozniak

    2005-06-22

    Experimental study of the nuclear fusion reaction in charge-asymmetrical d-mu-3He complex is presented. The 14.6 MeV protons were detected by three pairs of Si(dE-E) telescopes placed around the cryogenic target filled with the deuterium + helium-3 gas at 34 K. The 6.85 keV gamma rays emitted during the de-excitation of d-mu-3He complex were detected by a germanium detector. The measurements were performed at two target densities, 0.0585 and 0.169 (relative to liquid hydrogen density) with an atomic concentration of 3He c=0.0469. The values of the effective rate of nuclear fusion in d-mu-3He was obtained for the first time, and the J=0 nuclear fusion rate in d-mu-3He was derived.

  2. Recombinant Nup153 Incorporates in Vivo into Xenopus Oocyte Nuclear Pore Complexes

    E-Print Network [OSTI]

    Panté, Nelly

    Recombinant Nup153 Incorporates in Vivo into Xenopus Oocyte Nuclear Pore Complexes Nelly Pante´,*,1 of the nuclear basket of the nuclear pore complex (NPC) that plays a critical role in nuclear export of RNAs and pro- teins. In an effort to map this nucleoporin more precisely within the nuclear basket we have

  3. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  4. Computational Nuclear Forensics Analysis of Weapons-grade Plutonium Separated from Fuel Irradiated in a Thermal Reactor 

    E-Print Network [OSTI]

    Coles, Taylor Marie

    2014-04-27

    of bundle 16.4 kg Weight of U per bundle 13.4 kg Active Core Length 500 cm II.C. Monte Carlo N-Particle Code For the thesis work presented here, a code called Monte Carlo N-Particle (MCNP) was used. The manual describes MCNP as "a general... Working Group LWR- Light Water Reactor MCNP- Monte Carlo Neutral Particle MOX- Mixed Oxide NPT- Non-Proliferation Treaty NSG- Nuclear Suppliers Group ORNL- Oak Ridge National Laboratory PHWR- Pressurized Heavy Water Reactor PUREX- Plutonium Uranium...

  5. Strategies for denaturing the weapons-grade plutonium stockpile

    SciTech Connect (OSTI)

    Buckner, M.R.; Parks, P.B.

    1992-10-01

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

  6. Complex signal amplitude analysis for complete fusion nuclear reaction products

    E-Print Network [OSTI]

    Yu. S. Tsyganov

    2015-06-07

    A complex analysis has been performed on the energy amplitude signals corresponding to events of Z=117 element measured in the 249Bk+48Ca complete fusion nuclear reaction. These signals were detected with PIPS position sensitive detector. The significant values of pulse height defect both for recoils (ER) and fission fragments (FF) were measured. Comparison with the computer simulations and empirical formulae has been performed both for ER and FF signals.

  7. Complex signal amplitude analysis for complete fusion nuclear reaction products

    E-Print Network [OSTI]

    Tsyganov, Yu S

    2015-01-01

    A complex analysis has been performed on the energy amplitude signals corresponding to events of Z=117 element measured in the 249Bk+48Ca complete fusion nuclear reaction. These signals were detected with PIPS position sensitive detector. The significant values of pulse height defect both for recoils (ER) and fission fragments (FF) were measured. Comparison with the computer simulations and empirical formulae has been performed both for ER and FF signals.

  8. Destroyer of Worlds: War and Apocalypse in the Nuclear Epoch

    E-Print Network [OSTI]

    Sivak, Andrew Mark

    2015-01-01

    and the Non-Use of Nuclear Weapons Since 1945. New York:idealistic “taboo” against nuclear weapons use normativelyand the Non-Use of Nuclear Weapons Since 1945 (New York:

  9. Nonproliferation | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA, through its Office of...

  10. Paradigms of Development and Employment of Weapon Systems

    E-Print Network [OSTI]

    Gillespie, Daniel M.

    2008-10-23

    Weapons procurement decisions are extremely complex, with an unmanageable quantity of variables to take into account. The human brain, unable to process such a complex problem in a strictly rational way, seeks mechanisms ...

  11. Focus Article Nuclear winter

    E-Print Network [OSTI]

    Robock, Alan

    the climatic effects of nuclear war. Smoke from the fires started by nuclear weapons, especially the black in recorded human history. Although the number of nuclear weapons in the world has fallen from 70,000 at its the United States and the Soviet Union, smoke from the fires started by nuclear weapons, especially the black

  12. weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2Anational lab8/%2A en6/%2A enw80|

  13. Weapons | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport forRetirementAdministrationWayne Jones | National|

  14. Underground nuclear energy complexes - technical and economic advantages

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

    2010-01-01

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  15. Indicator system for advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  16. DOE's Former Rocky Flats Weapons Production Site to Become National...

    Broader source: Energy.gov (indexed) [DOE]

    Flats nuclear weapons production site to the Department of the Interior's (DOI) U.S. Fish and Wildlife Service (FWS) for use as a National Wildlife Refuge. After more than a...

  17. Annular Core Research Reactor - Critical to Science-Based Weapons...

    National Nuclear Security Administration (NNSA)

    to science-based weapons design and certification. The ACRR is a pool-type research reactor (Hazard Category 2 Nuclear Facility) that has been in operation since the 1970s...

  18. Examination of the role of nuclear deterrence in the 21st century: a systems analysis approach

    SciTech Connect (OSTI)

    Martz, Joseph C [Los Alamos National Laboratory; Stevens, Patrice A [Los Alamos National Laboratory; Branstetter, Linda [SNL; Hoover, Edward [SNL; O' Brien, Kevin [SNL; Slavin, Adam [SNL; Caswell, David [STANFORD UNIV

    2010-01-01

    Until very recently, an evaluation of US policy regarding deterrence and the role of its nuclear weapons arsenal as a deterrent has been largely absent in the public debate. With President's Obama embrace of a goal of a future world without nuclear weapons, issues of nuclear policy and deterrence have just recently risen to the forefront of policy discussions. The traditional role of US nuclear weapons-to deter the use of nuclear weapons by other states-endures, but is no longer unique nor even predominant. In an increasingly multi-polar world, the US now faces growing risks of nuclear weapons proliferation; the spread of weapons of mass destruction generally to non-state, substate and transnational actors; cyber, space, economic, environmental and resource threats along with the application of numerous other forms of 'soft power' in ways that are inimical to national security and to global stability. What concept of deterrence should the US seek to maintain in the 21st Century? That question remains fluid and central to the current debate. Recently there has been a renewed focusing of attention on the role of US nuclear weapons and a national discussion about what the underlying policy should be. In this environment, both the United States and Russia have committed to drastic reductions in their nuclear arsenals, while still maintaining forces sufficient to ensure unacceptable consequence in response to acts of aggression. Further, the declared nuclear powers have maintained that a limited nuclear arsenal continues to provide insurance against uncertain developments in a changing world. In this environment of US and Russian stockpile reductions, all declared nuclear states have reiterated the central role which nuclear weapons continue to provide for their supreme national security interests. Given this new environment and the challenges of the next several decades, how might the United States structure its policy and forces with regard to nuclear weapons? Many competing objectives have been stated across the spectrum of political, social, and military thought. These objectives include goals of ratification of the Comprehensive Test Ban Treaty, recommitment to further downsizing of the nuclear arsenal, embracing a long-term goal of the elimination of nuclear weapons, limitations on both the production complex and upgrades to nuclear weapons and delivery systems, and controls and constraints to limit proliferation of nuclear materials and weapons, particularly to rogue states and terrorist groups.

  19. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  20. Structural elucidation of a common architecture of the nuclear pore complex and COPIl vesicle coats

    E-Print Network [OSTI]

    Brohawn, Stephen Graf

    2010-01-01

    Nuclear pore complexes (NPCs) are massive protein assemblies that perforate the nuclear envelope and form the exclusive passageway for nucleocytoplasmic transport. NPCs play critical roles in molecular transport and a ...

  1. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01

    and Demand for Nuclear Weapons . . . 4.3 ProliferationZero: Is Pursuing a Nuclear-Weapon-Free World Too Difficult?Accidents, and Nuclear Weapons. Princeton University Press,

  2. Spin-On for the Renaissance? The Current State of China's Nuclear Industry

    E-Print Network [OSTI]

    Yuan, Jing-dong

    2010-01-01

    by Beijing to keep its nuclear weapons segment separate fromment of the country’s nuclear weapons capability. It was notprocesses. Fuel Supply As a nuclear weapons state, China has

  3. Complex-energy approach to sum rules within nuclear density functional...

    Office of Scientific and Technical Information (OSTI)

    Complex-energy approach to sum rules within nuclear density functional theory Citation Details In-Document Search This content will become publicly available on April 27, 2016...

  4. Complex-energy approach to sum rules within nuclear density functional...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Complex-energy approach to sum rules within nuclear density functional theory Citation Details In-Document Search This content will become publicly available on...

  5. Deterrence versus Preemption: Assessing U.S. Nuclear Policy

    SciTech Connect (OSTI)

    Schwartz, Stephen (Bulletin of the Atomic Scientists) [Bulletin of the Atomic Scientists

    2003-03-19

    Since coming into office in 2001, the Bush administration has enacted a series of controversial policies designed to create a more robust and more usable nuclear arsenal. From requiring new nuclear strike capabilities (including against non-nuclear countries), to threatening preemptive attacks, to investing billions of dollars in rebuilding the nuclear weapons production complex, the administration is systematically strengthening the role nuclear weapons play in defending the United States and its interests around the world. This presentation examines those policies and the thinking that underlies them. It questions the effectiveness of the administration's approach and explores some of the unintended consequences vis-a-vis U.S. policy toward North Korea, Iraq, Pakistan, and others. Finally, it takes a detailed look at current efforts to develop a new low-yield earth-penetrating nuclear weapon to destroy hardened underground facilities, assessing the feasibility of such a device and the potential effects of its use.

  6. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01

    nature of the nuclear recipient’s security environment. ThisKeywords: Nuclear weapons proliferation; security; securitynature of the nuclear recipient’s security environment. This

  7. Macroencapsulation Equivalency Guidance for Classified Weapon Components and NNSSWAC Compliance

    SciTech Connect (OSTI)

    Poling, J.

    2012-05-15

    The U.S. Department of Energy (DOE) complex has a surplus of classified legacy weapon components generated over the years with no direct path for disposal. The majority of the components have been held for uncertainty of future use or no identified method of sanitization or disposal. As more weapons are retired, there is an increasing need to reduce the amount of components currently in storage or on hold. A process is currently underway to disposition and dispose of the legacy/retired weapons components across the DOE complex.

  8. nuclear weapons | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National1-2130nsc |safeguards

  9. Loose Nukes: Nuclear Material Security in G.P.Gilfoyle

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    of Richmond, Virginia Outline: 1. Nuclear Weapons 101 2. What are loose nukes and why should you care? 3. What nuclear, biological, chemical (NBC), conventional and special weapons. #12;Nuclear Weapons 101 · Fissile of plutonium or 25 kg of highly-enriched uranium (HEU) is needed is needed to produce a weapon. #12;Nuclear

  10. ER Membrane Protein Complex Required for Nuclear Fusion Davis T.W. Ng and Peter Walter

    E-Print Network [OSTI]

    Walter, Peter

    ER Membrane Protein Complex Required for Nuclear Fusion Davis T.W. Ng and Peter Walter Department is localized to the luminal (i.e., noncytoplasmic) face of the ER mem- brane, yet nuclear fusion must initiate of Sec63p, Sec71p, and Sec72p plays a central role in mediating nuclear mem- brane fusion and requires ER

  11. Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    a weapon. NYSSAPS - April 24, 2010 ­ p. #12;Nuclear Weapons 101 - Basic Weapons Designs A uranium, gun-type nuclear weapon - High explosive pushes highly-enriched uranium at high speed down the gun tube Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

  12. Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Seminar - June 29, 2011 ­ p. #12;Nuclear Weapons 101 - Basic Weapons Designs Uranium, gun-type weapon Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The Test

  13. 96 SCIENTIFIC AMERICAN JUNE 2005 ew scientific challenges are more complex than

    E-Print Network [OSTI]

    California at Berkeley, University of

    of energy for environment, safety and health from 1998 to 2001, I was the chief safety officer to the production of nuclear warheads because it increases the yield of the explosions; throughout the cold war, the U.S. nuclear weapons complex was the nation's largest consumer of the substance. Beryllium and its

  14. Imaging the ionization track of alpha recoils for the directional detection of weapons grade plutonium

    E-Print Network [OSTI]

    Koch, William Lawrence

    2013-01-01

    Since the dawn of the nuclear weapons era, political, military, and scientific leaders around the world have been working to contain the proliferation of Special Nuclear Material and explosively fissile material. This paper ...

  15. Office of Test and Evaluation | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    weapons stockpile are safe, secure, and reliable by: Providing for development of engineering tools and manufacturing capabilities to support the life cycle of a nuclear weapon...

  16. EIS-0236-S4: Final Complex Transformation Supplemental Programmatic Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Complex Transformation Supplemental Programmatic Environmental Impact Statement (SPEIS) analyzes the potential environmental impacts of reasonable alternatives to continue transformation of the nuclear weapons complex to be smaller, and more responsive, efficient, and secure in order to meet national security requirements.

  17. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    SciTech Connect (OSTI)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y. [All-Russian Inst. of Experimental Physics, Moscow (Russian Federation)] [and others

    1998-12-31

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons.

  18. Characterization of a synthetic peroxodiiron(III) protein model complex by nuclear resonance vibrational spectroscopy

    E-Print Network [OSTI]

    Do, Loi Hung

    The vibrational spectrum of an ?[superscript 1],?[superscript 1]-1,2-peroxodiiron(III) complex was measured by nuclear resonance vibrational spectroscopy and fit using an empirical force field analysis. Isotopic 18O2 ...

  19. EM Develops Database for Efficient Solutions to Nuclear Cleanup Challenges Across Complex

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. – Many deactivation and decommissioning (D&D) projects across the EM complex require robotic and remote handling systems to protect workers during nuclear cleanup operations.

  20. Alan Roback Policy Implications of Nuclear Winter

    E-Print Network [OSTI]

    Robock, Alan

    and noncombatant nations alike. Nevertheless, nations of the world continue to produce nuclear weapons and make plans for their use. The number of nations with nuclear weapons continues to grow. Although the recent. The principal political implication of nuclear winter is that nuclear weapons cannot be used as an instrument

  1. Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    a weapon. Catholic University - April 6, 2011 ­ p. #12;Nuclear Weapons 101 - Basic Weapons Designs Uranium, gun-type weapon - High explo- sive fires highly-enriched uranium slug down the gun tube Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

  2. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01

    Without the bomb: The politics of nuclear nonproliferation.impact of nuclear weapons on international politics. Statesnuclear/missile ties and balance of power politics. The

  3. UNIT GUIDE 2014/15 SPAI30029 Dilemmas of a Nuclear-Armed World

    E-Print Network [OSTI]

    Bristol, University of

    that derive from the existence of nuclear weapons in the world. Throughout this unit, we will examine how your attached to the presence of nuclear weapons appear to you. Those dilemmas are not exclusively strategic nuclear weapons programs affect democratic accountability? How does the invention of nuclear weapons

  4. The Governance of Nuclear Technology

    SciTech Connect (OSTI)

    Vergino, E S; May, M

    2003-09-22

    Eisenhower's Atoms for Peace speech in 1953 is remembered for engaging the world, and the Soviet Union in particular, in a dialogue about arms control and the formulation of a nuclear regime in which national and international security concerns growing from this unprecedented emerging and frightening new weapons capability would be addressed while tapping the civilian promise of nuclear applications for the good of mankind. Out of it came a series of initiatives, leading fifteen years later to the NPT, intended to allow the growth and spread of the beneficial uses of nuclear know-how while constraining the incentives and capabilities for nuclear weapons. The last 50 years has seen a gradual spread in nations with nuclear weapons, other nations with nuclear knowledge and capabilities, and still others with nuclear weapon intentions. Still most nations of the world have forgone weapon development, most have signed and abided by the NPT, and some that have had programs or even weapons, have turned these capabilities off. Yet despite this experience, and despite a relatively successful record up to a few years ago, there is today a clear and generally recognized crisis in nuclear governance, a crisis that affects the future of all the cross-cutting civilian/security issues we have cited. The crux of this crisis is a lack of consensus among the major powers whose support of international efforts is necessary for effective governance of nuclear activities. The lack of consensus focuses on three challenges: what to do about non-compliance, what to do about non-adherence, and what to do about the possible leakage of nuclear materials and technologies to terrorist groups. Short of regaining consensus on the priority to be given to nuclear material and technology controls, it is unlikely that any international regime to control nuclear materials and technologies, let alone oversee a growth in the nuclear power sector, will be successful in the tough cases where it needs to be successful. Regaining that consensus on the other hand means alleviating some fundamental insecurity on the part of states, and weakening the hold that terrorist groups have on some state governments. This in turn requires that some fundamental issues be addressed, with recognition that these are part of a suite of complex and dynamic interactions. Among these issues are: How will states provide for their own security and other central interests while preventing further proliferation, protecting against the use of nuclear weapons, and yet allowing for the possible expansion of nuclear power?; How best can states with limited resources to fight terrorist activities and safeguard nuclear materials be assisted in securing their materials and technologies?; What is the future role of international inspections? Does the IAEA remain the right organization to carry out these tasks? If not, what are the desired characteristics of a successor agency and can there be agreement on one?; How confident can we be of nonproliferation as latent nuclear weapon capabilities spread? The policies to address these and other issues must explicitly deal with NPT members who do not observe their obligations; NPT non-members; illicit trade in SNM and weapon technologies and the possibility of a regional nuclear war.

  5. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  6. Program to Prevent Accidental or Unauthorized Nuclear Explosive Detonations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-12-18

    The order establishes the DOE program to prevent accidental or unauthorized nuclear explosive detonations, and to define responsibilities for DOE participation in the Department of Defense program for nuclear weapon and nuclear weapon system safety. Does not cancel other directives.

  7. January 3, 2007 National Nuclear Security AdministrationNational Nuclear Security Administration

    E-Print Network [OSTI]

    Learned, John

    & Objectives Reduce the threat to national security posed by nuclear weapons proliferation: Objectives: Develop and demonstrate technologies for detecting the stages of a foreign nuclear weapons · Detection of nuclear weapon and material smuggling Nonproliferation R&D #12;4 Nuclear Detonation Detection

  8. Department of Energy/ National Nuclear Security Administration FY 2007 Congressional Budget

    E-Print Network [OSTI]

    Department of Energy/ National Nuclear Security Administration FY 2007 Congressional Budget Volume..................................................................................................................25 Weapons Activities..............................................................................................................................51 Defense Nuclear Nonproliferation

  9. L Al N l D t N dLos Alamos Nuclear Data Needs and Activities From Experiment

    E-Print Network [OSTI]

    Danon, Yaron

    Associated with Nuclear WeaponsAssociated with Nuclear Weapons Stockpile Stewardship Program (SSP) · responsible for maintaining the safety, security, and reliability of the i ' l k ilnation's nuclear weapons) · Assess impacts of urban detonation of nuclear weapon to aid decision making in Operated by Los Alamos

  10. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    SciTech Connect (OSTI)

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP).

  11. Combating nuclear terrorism | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082Innovation PortalComPASS!Combating

  12. Nuclear Forensics Research and Development | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressure |CafésNuclear ExecutiveForces

  13. Nuclear Material Recovery | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 survey includes degreesRecovery Nuclear

  14. CRAD, Configuration Management- Los Alamos National Laboratory Weapons Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility.

  15. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    SciTech Connect (OSTI)

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  16. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  17. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David...

  18. Weapons production | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos and Videos/01/2012 Page

  19. Structural basis for assembly and disassembly of the CRM1 nuclear export complex

    SciTech Connect (OSTI)

    Dong, Xiuhua; Biswas, Anindita; Chook, Yuh Min; (UTSMC)

    2009-09-15

    CRM1 (or exportin 1, Xpo1) transports proteins out of the cell nucleus through the nuclear pore complex. In the cytoplasm, GTP hydrolysis and consequent dissociation of Ran from CRM1 releases low-affinity substrates, while additional factors facilitate release of high-affinity substrates. Here we provide a model for human CRM1 export complex assembly and disassembly through structural and biochemical analyses of CRM1 bound to the substrate snurportin 1 (SNUPN, also called snuportin 1).

  20. Measures to implement the Chemical Weapons Convention

    SciTech Connect (OSTI)

    Tanzman, E.; Kellman, B.

    1999-11-05

    This seminar is another excellent opportunity for those involved in preventing chemical weapons production and use to learn from each other about how the Chemical Weapons Convention (CWC) can become a foundation of arms control in Africa and around the world. The author is grateful to the staff of the Organization for the Prohibition of Chemical Weapons (OPCW) for inviting him to address this distinguished seminar. The views expressed in this paper are those of the authors alone, and do not represent the position of the government of the US nor or of any other institution. In 1993, as the process of CWC ratification was beginning, concerns arose that the complexity of integrating the treaty with national law would cause each nation to implement the Convention without regard to what other nations were doing, thereby causing inconsistencies among States Parties in how the Convention would be carried out. As a result the Manual for National Implementation of the Chemical Weapons Convention was prepared and presented it to each national delegation at the December 1993 meeting of the Preparatory Commission in The Hague. During its preparation, the Manual was reviewed by the Committee of Legal Experts on National Implementation of the Chemical Weapons Convention, a group of distinguished international jurists, law professors, legally-trained diplomats, government officials, and Parliamentarians from every region of the world, including Mica. In February 1998, the second edition of the Manual was published in order to update it in light of developments since the CWC entered into force on 29 April 1997. The second edition 1998 clarified the national implementation options to reflect post-entry-into-force thinking, added extensive references to national implementing measures that had been enacted by various States Parties, and included a prototype national implementing statute developed by the authors to provide a starting point for those whose national implementing measures were still under development. Last month, the Web Edition of the Manual was completed. It's internet address, or URL, is http://www.cwc.anl.gov/.

  1. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA reduces the threat to national security posed by nuclear weapons proliferation and possible detonation or the illicit trafficking of nuclear materials through the long-term...

  2. The Department of PhysicsPRESENTS Nuclear Physics & Society

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    on nuclear physics and public policy for anyone who wants to better understand nuclear power nuclear weapons P.M. Applications of Nuclear Physics on Earth: Nuclear power, weapons, and nuclear medicine. TopicsThe Department of PhysicsPRESENTS Nuclear Physics & Society A free, four-day short course

  3. Nuclear Deterrence in the Age of Nonproliferation

    SciTech Connect (OSTI)

    Richardson, J

    2009-01-21

    The fallacy of zero nuclear weapons, even as a virtual goal, is discussed. Because the complete abolition of nuclear weapons is not verifiable, nuclear weapons will always play a role in the calculus of assure, dissuade, deter and defeat (ADDD). However, the relative contribution of nuclear weapons to international security has diminished. To reconstitute the Cold War nuclear capability, with respect to both the nuclear weapons capability and their associated delivery systems, is fiscally daunting and not warranted due to competing budgetary pressures and their relative contribution to international security and nonproliferation. A proposed pathway to a sustainable nuclear weapons capability end-state is suggested which provides enough ADDD; a Dyad composed of fewer delivery and weapon systems, with trickle production at the National Laboratories and private sector to maintain capability and guard against technological surprise.

  4. Los Alamos National Laboratory | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    package in nuclear weapons. This laboratory possesses unique capabilities in neutron scattering, enhanced surveillance, radiography, and plutonium science and...

  5. Working toward a world without nuclear weapons

    SciTech Connect (OSTI)

    Drell, Sidney D. [SLAC National Accelerator Laboratory and the Hoover Institute, Stanford University, Stanford, California (United States)

    2014-05-09

    Limiting the number of warheads is a good beginning, but getting to the end state calls for new thinking. Six specific steps can start us down that path.

  6. Working toward a world without nuclear weapons

    SciTech Connect (OSTI)

    Drell, Sidney D. [Stanford University, Stanford, California, US (United States)] [Stanford University, Stanford, California, US (United States)

    2010-07-01

    Limiting the number of warheads is a good beginning, but getting to the end state calls for new thinking. Six specific steps can start us down that path.

  7. Working toward a world without nuclear weapons

    SciTech Connect (OSTI)

    Drell, Sidney D. [Stanford University, Stanford, California, US (United States)] [Stanford University, Stanford, California, US (United States)

    2010-07-15

    Limiting the number of warheads is a good beginning, but getting to the end state calls for new thinking. Six specific steps can start us down that path.

  8. AEC and control of nuclear weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01) (NotAdvanced70.4BOppenheimercontrol

  9. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A

  10. Uranium Weapons Components Successfully Dismantled | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinalUnexpectedofWyko NT33004. Uranium4.

  11. Nuclear Physics and National Security in an Age of Terrorism

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    235 neutrons A Chain Reaction #12;Nuclear Weapons 101 · A uranium, gun-type nuclear weapon - High (Tumbler Snapper). The fireball is about 20 m across. #12;HEU Gun-Type Design The figure to the right shows, University of Richmond, Virginia Outline: 1. How do we assess the threat? 1. Nuclear Weapons 101 2. Catching

  12. Nuclear Materials Management for the Nevada Test Site (NTS) PREPRINT

    SciTech Connect (OSTI)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge.

  13. Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Weapons Designs Uranium, gun-type weapon - High explo- sive fires highly-enriched uranium slug down Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing

  14. WEAPONS ON CAMPUS Authority: Chief of Police

    E-Print Network [OSTI]

    Scharf, Fred

    05.501 WEAPONS ON CAMPUS Authority: Chief of Police History: Established September 14, 2006 Source of weapons on UNCW property. II. Policy A. The University of North Carolina system of campuses is classified be unlawful for any person to possess the following weapons on UNCW property: 1. Dynamite cartridge, bomb

  15. Complex-energy approach to sum rules within nuclear density functional theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; Olsen, Erik

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore »efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  16. A systematic method for identifying vital areas at complex nuclear facilities.

    SciTech Connect (OSTI)

    Beck, David Franklin; Hockert, John

    2005-05-01

    Identifying the areas to be protected is an important part of the development of measures for physical protection against sabotage at complex nuclear facilities. In June 1999, the International Atomic Energy Agency published INFCIRC/225/Rev.4, 'The Physical Protection of Nuclear Material and Nuclear Facilities.' This guidance recommends that 'Safety specialists, in close cooperation with physical protection specialists, should evaluate the consequences of malevolent acts, considered in the context of the State's design basis threat, to identify nuclear material, or the minimum complement of equipment, systems or devices to be protected against sabotage.' This report presents a structured, transparent approach for identifying the areas that contain this minimum complement of equipment, systems, and devices to be protected against sabotage that is applicable to complex nuclear facilities. The method builds upon safety analyses to develop sabotage fault trees that reflect sabotage scenarios that could cause unacceptable radiological consequences. The sabotage actions represented in the fault trees are linked to the areas from which they can be accomplished. The fault tree is then transformed (by negation) into its dual, the protection location tree, which reflects the sabotage actions that must be prevented in order to prevent unacceptable radiological consequences. The minimum path sets of this fault tree dual yield, through the area linkage, sets of areas, each of which contains nuclear material, or a minimum complement of equipment, systems or devices that, if protected, will prevent sabotage. This method also provides guidance for the selection of the minimum path set that permits optimization of the trade-offs among physical protection effectiveness, safety impact, cost and operational impact.

  17. Opportunities exist for the diversion of weapons-usable material at the front end of the fuel cycle, during which

    E-Print Network [OSTI]

    Laughlin, Robert B.

    of proliferation: The more places in which this work is done, the harder it is to monitor. Weapons have been, and the technology seems to be not that hard to master or acquire. BURTON RICHTER Reducing Proliferation Risk if it comes without a great increase in the risk of the proliferation of nuclear weapons. FALL 2008 45 T he

  18. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  19. Hegemony and nuclear proliferation

    E-Print Network [OSTI]

    Miller, Nicholas L. (Nicholas LeSuer)

    2014-01-01

    Contrary to longstanding of predictions of nuclear tipping points, the number of states interested in nuclear weapons has sharply declined in recent decades. In contrast to existing explanations, this dissertation argues ...

  20. Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells

    SciTech Connect (OSTI)

    Michael Rodriquez

    2009-03-01

    As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the “Nuclear Renaissance”. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight precision. The gamma scanning equipment in the ALHC has taken on a new role also as a micro-gamma scanning system and has been put into service; allowing the linear and radial counting of a spent fuel segment to determine reaction characteristics within a small section of nuclear fuel. The nitrogen, oxygen and carbon analysis allows the identification of these impurities in spent nuclear fuel and also most oxides, nitrides, carbides, C-14 and tritium.

  1. HANDBOOK FOR CONDUCTING ORAL HISTORY INTERVIEWS RELATED TO TRIBAL AND INDIAN PARTICIPATION IN THE CONSTRUCTION, OPERATION AND CLEANUP OF THE NUCLEAR WEAPONS COMPLEX

    SciTech Connect (OSTI)

    Cristann Gibson; Mervyn L. Tano; Albert Wing

    1999-08-31

    There were three major projects undertaken at the outset of the DOE/EM 22 Cooperative Agreement back in September 1995. There was a project relating to Tribal oral histories. Another project of the Cooperative Agreement related to technology and Tribal values and needs. This project by analogy could apply to issues of technology, environmental cleanup and other indigenous peoples internationally. How can Indian Tribes participate in defining the need for technology development rather than merely learning to adapt themselves and their situations and values to technology developed by others with differing needs, values and economic resources? And the third project was the placement of a Tribal intern in EM-22.

  2. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect (OSTI)

    Gray, L.W.

    1986-10-04

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  3. Introduction to Pits and Weapons Systems (U)

    SciTech Connect (OSTI)

    Kautz, D.

    2012-07-02

    A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutonium is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.

  4. U.S. Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    related to the nuclear weapons complex was "required" and defined six factors to be considered in makingU.S. Nuclear Waste Technical Review Board A RepoRt to the U.S. CongReSS And the SeCRetARy of eneEpartmEnt of EnErgy-managEd high-lEvEl radioactivE wastE and spEnt nuclEar fuEl JunE 2015 #12;#12;U.S. nUCleAR

  5. NNSA Labs host U.S. and Nuclear Non-Proliferation Treaty (NPT...

    National Nuclear Security Administration (NNSA)

    Labs host U.S. and Nuclear Non-Proliferation Treaty (NPT) Non-Nuclear Weapon State Representatives | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  6. THE RISK OF NUCLEAR TERRORISM AND NEXT STEPS TO REDUCE THE DANGER

    E-Print Network [OSTI]

    Laughlin, Robert B.

    nuclear facility in South Africa, where hundreds of kilograms of weapon-grade highly enriched uranium (HEU nuclear weapon and every cache of potential nuclear bomb material worldwide is secured against the kinds terrorism. Do terrorists want nuclear weapons? For a small set of terrorists, the answer is clearly "yes

  7. Complex-energy approach to sum rules within nuclear density functional theory

    E-Print Network [OSTI]

    Nobuo Hinohara; Markus Kortelainen; Witold Nazarewicz; Erik Olsen

    2015-01-28

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or EDF. But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy FAM based on the QRPA. To compute sum rules, we carry out contour integration of the response function in the complex-energy plane. We benchmark our results against the conventional matrix formulation of the QRPA theory, the Thouless theorem for the energy-weighted sum rule, and the dielectric theorem for the inverse energy-weighted sum rule. We demonstrate that calculated sum-rule values agree with those obtained from the matrix formulation of the QRPA. We also discuss the applicability of both the Thouless theorem about the energy-weighted sum rule and the dielectric theorem for the inverse energy-weighted sum rule to nuclear density functional theory in cases when the EDF is not based on a Hamiltonian. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. The FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.

  8. Not So Permafrost Viewport for Nuclear Fusion

    E-Print Network [OSTI]

    Not So Permafrost Under Fire Viewport for Nuclear Fusion Hassle-Free Uranium 1663 LOS ALAMOS nuclear weapons. Nuclear weapons brought the war to a rapid and decisive close, and played an important ceased nuclear testing and the Laboratory entered an era of stockpile stewardship. Today, the Laboratory

  9. Analysis of Nuclear Reconstitution, Nuclear

    E-Print Network [OSTI]

    Forbes, Douglass

    CHAPTER Analysis of Nuclear Reconstitution, Nuclear Envelope Assembly, and Nuclear Pore Assembly ....................................................................... 180 8.5 Assaying Assembly and Integrity of the Nuclear Envelope................................... 182 8.6 A Nuclear Pore Complex Assembly Assay Using pore-free Nuclear Intermediates

  10. List of Major Information Systems,National Nuclear Security Administra...

    Broader source: Energy.gov (indexed) [DOE]

    emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. National Nuclear Security Administration ADaPT Network...

  11. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

  12. weapons

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A ¡BLM3/%2A

  13. Massive global ozone loss predicted following regional nuclear conflict

    E-Print Network [OSTI]

    Robock, Alan

    that nuclear war could be winnable, and preceded the first significant reductions in nuclear weapons stockpiles, the proliferation of nuclear weapons has produced greater risks of a regional nuclear conflict. At the same timeMassive global ozone loss predicted following regional nuclear conflict Michael J. Mills* , Owen B

  14. Weapons Program Associate Directors named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos and Videos/01/2012 Page 1WaterWaterComingWeapons

  15. A simple method for rapidly processing HEU from weapons returns

    SciTech Connect (OSTI)

    McLean, W. II; Miller, P.E.

    1994-01-01

    A method based on the use of a high temperature fluidized bed for rapidly oxidizing, homogenizing and down-blending Highly Enriched Uranium (HEU) from dismantled nuclear weapons is presented. This technology directly addresses many of the most important issues that inhibit progress in international commerce in HEU; viz., transaction verification, materials accountability, transportation and environmental safety. The equipment used to carry out the oxidation and blending is simple, inexpensive and highly portable. Mobile facilities to be used for point-of-sale blending and analysis of the product material are presented along with a phased implementation plan that addresses the conversion of HEU derived from domestic weapons and related waste streams as well as material from possible foreign sources such as South Africa or the former Soviet Union.

  16. Complex-energy approach to sum rules within nuclear density functional theory

    E-Print Network [OSTI]

    Hinohara, Nobuo; Nazarewicz, Witold; Olsen, Erik

    2015-01-01

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or EDF. But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy FAM based on the QRPA. To compute sum rules, we carry out contour integration of the response function in the complex-energy plane. We benchmark our results against the conventional matrix formulation of the QRPA theory...

  17. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    SciTech Connect (OSTI)

    J'Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated system and the economic allocation of electricity and heat resources. Safety issues include changes in regulatory constraints imposed on the facilities. Modeling and analysis tools, such as System Dynamics for time dependent operational and economic issues and RELAP5 3D for chemical transient affects, are evaluated. The results of this study advance the body of knowledge toward integration of nuclear reactors and process heat applications.

  18. Impacts of a nuclear war in South Asia on rice production in Mainland China

    E-Print Network [OSTI]

    Robock, Alan

    of nuclear weapons by the superpowers would be so catastrophic that we avoided such a tragedy for the first four decades after the invention of nuclear weapons. The realization, based on research con- ducted-size (15 kt) nuclear weapons to at- tack the other's most populated urban areas. Based on the analysis

  19. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    planning and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, for Weapons Ac- tivities and Defense Nuclear Nonproliferation, and Federal employees at the NNSA service379 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

  20. Print this Page Close The nuclear deal

    E-Print Network [OSTI]

    league. B At least in the eyes of the United States, India is now a nuclear weapons state. The gamble 'Entity List', which was drawn up outside the non-proliferation laws after our nuclear weapon testsPrint this Page Close The nuclear deal July 20, 2005 | 19:05 ISTT P Sreenivasan | y assuming

  1. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY

    E-Print Network [OSTI]

    and oversight for programs funded by the Weapons Activities, Defense Nuclear Non- proliferation, and Naval pro- gram direction for Weapons Activities and Defense Nuclear Nonproliferation, and Federal employees361 DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION Federal Funds General and special

  2. Sandia National Laboratories | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    nuclear weapons Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at...

  3. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    effectiveness of the nuclear weapons stockpile through well-managed scientific research, technology development, and advantageous international collaborations. The Office of...

  4. Contained Firing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear weapon W80-4 Life Extension Program Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Stewardship Science Academic Alliances Awards...

  5. John T. Mihalczo PhD. in Nuclear Engineering : University of Tennessee, 1970

    E-Print Network [OSTI]

    security by affecting safer assembly and handling of nuclear weapons components materials. The technologies in nuclear criticality safety, nuclear weapons identification, nuclear materials processing, and nuclearJohn T. Mihalczo PhD. in Nuclear Engineering : University of Tennessee, 1970 Masters in Physics

  6. Joint Venture Established Between Russian Weapons Plant And the...

    National Nuclear Security Administration (NNSA)

    Weapons Plant And the Largest Dialysis Provider in the U.S. Press Release Sep 20, 2001 Joint Venture Established Between Russian Weapons Plant And the Largest Dialysis...

  7. Reducing the Nuclear Weapons Stockpile | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    This Site Budget IG Web Policy Privacy No Fear Act Accessibility FOIA Sitemap Federal Government The White House DOE.gov USA.gov Jobs Apply for Our Jobs Our Jobs Working at NNSA...

  8. COLLOQUIUM: Nuclear Famine: The Threat to Humanity from Nuclear Weapons |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1, 2013, 4:15pm Colloquia MBGLabPrinceton Plasma

  9. Nuclear Weapons Testing Resumes | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster Session |SecurityNSDDfor 5thSafeguardsTesting

  10. SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNationalPrograms |NationalSpringThree labsC,

  11. Audit Report National Nuclear Security Administration Nuclear Weapons

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u tCorporationIt'sDOE PhasedareU.S.

  12. Nuclear Weapons Life Cycle | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 survey

  13. Reducing the Nuclear Weapons Stockpile | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us Hanford SiteRecoveryWater

  14. Nuclear Proliferation and the Deterrence of Conventional War: Justin Pollard

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Nuclear Proliferation and the Deterrence of Conventional War: A Proposal Justin Pollard April 2009) Introduction It seems counterintuitive to think that the spread of nuclear weapons could make the world a safer of ubiquitous nuclear armament is a more dangerous and unstable one. Certainly, a weapon of the nuclear

  15. Nuclear Science Center - 5 

    E-Print Network [OSTI]

    Unknown

    2009-01-01

    The proliferation of nuclear weapons is a great threat to world peace and stability. The question of strengthening the nonproliferation regime has been open for a long period of time. In 1997 the International Atomic Energy ...

  16. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    SciTech Connect (OSTI)

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

  17. INFORMATION: Inspection Report on "Removal of Categories I and II Special Nuclear Material from Sandia National Laboratories-New Mexico"

    SciTech Connect (OSTI)

    None

    2010-01-01

    The Department of Energy's (DOE's) Sandia National Laboratories-New Mexico (Sandia) develops science-based technologies in support of national security in areas such as nuclear weapons, nonproliferation, military technologies, and homeland security. Sandia's primary mission is ensuring that the U.S. nuclear arsenal is safe, secure, and reliable and can fully support the Nation's deterrence policy. Part of this mission includes systems engineering of nuclear weapons; research, design, and development of non-nuclear components; manufacturing of non-nuclear weapons components; the provision of safety, security, and reliability assessments of stockpile weapons; and the conduct of high-explosives research and development and environmental testing. Sandia Corporation, a subsidiary of Lockheed Martin Corporation, operates Sandia for the National Nuclear Security Administration (NNSA). On May 7, 2004, the Secretary announced that the Department would evaluate missions at DOE sites to consolidate Special Nuclear Material (SNM) in the most secure environments possible. The Administrator of the NNSA said that this effort was a key part of an overall plan to transform the nuclear weapons complex into a smaller, safer, more secure, and more efficient national security enterprise. In February 2008, Sandia was the first site to report it had reduced its on-site inventory of nuclear material below 'Categories I and II' levels, which require the highest level of security to protect material such as plutonium and highly enriched uranium. The Office of Inspector General initiated an inspection to determine if Sandia made appropriate adjustments to its security posture in response to the removal of the Categories I and II SNM. We found that Sandia adjusted its security posture in response to the removal of Categories I and II SNM. For example, security posts were closed; unneeded protective force weapons and equipment were excessed from the site; and, Sandia's Site Safeguards and Security Plan was modified. We also found that some highly enriched uranium in a complex material configuration was not removed from Sandia. This material was designated as Category III material using a methodology for assessing the attractiveness of complex materials that was not specifically addressed in any current DOE directive. Although DOE and NNSA officials believed that this designation was appropriate, the methodology used to support this designation had not, as of the time of our review, been incorporated into the DOE directives system. Historically, the Department has considered the categorization of SNM to be an important national security and public policy issue. Consequently, we believe that expedited action should be taken to formalize this methodology in the DOE directives system and that it be disseminated throughout the Department of Energy complex.

  18. Examination of the proposed conversion of the U.S. Navy nuclear fleet from highly enriched Uranium to low enriched Uranium

    E-Print Network [OSTI]

    McCord, Cameron (Cameron Liam)

    2013-01-01

    .The Treaty on the Non-Proliferation of Nuclear Weapons creates a loophole that allows a non-nuclear-weapon country to avoid international safeguards governing fissile materials if it claims that the materials will be used ...

  19. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect (OSTI)

    Boyer, Brian D.

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  20. Matrices: A Secret Weapon Algebra 5/Trig

    E-Print Network [OSTI]

    Lega, Joceline

    Matrices: A Secret Weapon Algebra 5/Trig May 4, 2010 In this worksheet we will learn how to use zero standing for a blank space. This is displayed at the top of page 784. This can be made more

  1. Excess Plutonium: Weapons Legacy or National Asset?

    SciTech Connect (OSTI)

    Klipa, G.; Boeke, S.; Hottel, R.

    2002-02-27

    The Nuclear Materials Stewardship Initiative was established in January, 2000, to accelerate the work of achieving integration and cutting long-term costs associated with the management of nuclear materials. As part of that initiative, the Department of Energy (DOE), Office of Environmental Management (EM), has established Nuclear Material Management Groups for the management of excess nuclear materials. As one of these groups, the Plutonium Material Management Group (PMMG) has been chartered to serve as DOE's complex wide resource and point of contact for technical coordination and program planning support in the safe and efficient disposition of the nations excess Plutonium 239. This paper will explain the mission, goals, and objectives of the PMMG. In addition, the paper will provide a broad overview of the status of the plutonium inventories throughout the DOE complex. The DOE currently manages approximately 99.5 MT of plutonium isotopes. Details of the various categories of plutonium, from material designated for national security needs through material that has been declared excess, will be explained. For the plutonium that has been declared excess, the various pathways to disposition (including reuse, recycling, sale, transfer, treatment, consumption, and disposal) will be discussed. At this time 52.5 MT of plutonium has been declared excess and the method of disposition for that material is the subject of study and evaluation within DOE. The role of the PMMG in those evaluations will be outlined.

  2. Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Designs Uranium, gun-type weapon - High explo- sive fires highly-enriched uranium slug down the gun tube Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban

  3. Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program

    SciTech Connect (OSTI)

    Rogers,E.; deBoer,G.; Crawford, C.; De Castro, K.; Landers, J.

    2009-10-19

    The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the "human factor." Gen. Eugene Habiger, a former "Assistant Secretary for Safeguards and Security" at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that "good security is 20% equipment and 80% people." Although eliminating the "human factor" is not possible, accounting for and mitigating the risk of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.

  4. Self-Reliability and Motivation in a Nuclear Security Culture Enhancement Program

    SciTech Connect (OSTI)

    Crawford, Cary E.; de Boer, Gloria; De Castro, Kara; Landers, John; Rogers, Erin

    2010-10-01

    The threat of nuclear terrorism has become a global concern. Many countries continue to make efforts to strengthen nuclear security by enhancing systems of nuclear material protection, control, and accounting (MPC&A). Though MPC&A systems can significantly upgrade nuclear security, they do not eliminate the “human factor.” Gen. Eugene Habiger, a former “Assistant Secretary for Safeguards and Security” at the U.S. Department of Energy’s (DOE) nuclear-weapons complex and a former commander of U.S. strategic nuclear forces, has observed that “good security is 20% equipment and 80% people.”1 Although eliminating the “human factor” is not possible, accounting for and mitigating the risk of the insider threat is an essential element in establishing an effective nuclear security culture. This paper will consider the organizational role in mitigating the risk associated with the malicious insider through monitoring and enhancing human reliability and motivation as well as enhancing the nuclear security culture.

  5. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    SciTech Connect (OSTI)

    Luke, S J

    2011-12-20

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the genetic information associated with the various pathogens. In addition, it has been determined that a suitable information barrier could be applied to this technology when the verification regime has been defined. Finally, the report posits a path forward for additional development of information barriers in a biological weapons verification regime. This path forward has shown that a new analysis approach coined as Information Loss Analysis might need to be pursued so that a numerical understanding of how information can be lost in specific measurement systems can be achieved.

  6. Technosocial Predictive Analytics for Illicit Nuclear Trafficking

    SciTech Connect (OSTI)

    Sanfilippo, Antonio P.; Butner, R. Scott; Cowell, Andrew J.; Dalton, Angela C.; Haack, Jereme N.; Kreyling, Sean J.; Riensche, Roderick M.; White, Amanda M.; Whitney, Paul D.

    2011-03-29

    Illicit nuclear trafficking networks are a national security threat. These networks can directly lead to nuclear proliferation, as state or non-state actors attempt to identify and acquire nuclear weapons-related expertise, technologies, components, and materials. The ability to characterize and anticipate the key nodes, transit routes, and exchange mechanisms associated with these networks is essential to influence, disrupt, interdict or destroy the function of the networks and their processes. The complexities inherent to the characterization and anticipation of illicit nuclear trafficking networks requires that a variety of modeling and knowledge technologies be jointly harnessed to construct an effective analytical and decision making workflow in which specific case studies can be built in reasonable time and with realistic effort. In this paper, we explore a solution to this challenge that integrates evidentiary and dynamic modeling with knowledge management and analytical gaming, and demonstrate its application to a geopolitical region at risk.

  7. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  8. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs). Supersedes DOE O 452.2D and DOE M 452.2-1A.

  9. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  10. Nuclear proliferation after the Cold War

    SciTech Connect (OSTI)

    Reiss, M.; Litwak, R.S.

    1994-01-01

    Today, former Soviet republics threaten to gain control over nuclear weapons sited on their territories, and reports on North Korea, Pakistan, India, and Iraq reveal current or recent weapon development programs. This document offers a timely assessment of the prospects for nuclear nonproliferation.

  11. Spectroscopic studies on two mono nuclear iron (III) complexes derived from a schiff base and an azodye

    SciTech Connect (OSTI)

    Mini, S. Sadasivan, V.; Meena, S. S. Bhatt, Pramod

    2014-10-15

    Two new mono nuclear Fe(III) complexes of an azodye (ANSN) and a Schiff base (FAHP) are reported. The azodye is prepared by coupling diazotized 1-amino-2-naphthol-4-sulphonicacid with 2-naphthol and the Schiff base is prepared by condensing 2-amino-3-hydroxy pyridine with furfural. The complexes were synthesized by the reaction of FeCl{sub 3}Ðœ‡2H{sub 2}O with respective ligands. They were characterized on the basis of elemental analysis and spectral studies like IR, NMR, Electronic and M.ssbauer. Magnetic susceptibility and Molar conductance of complexes at room temperature were studied. Based on the spectroscopic evidences and other analytical data the complexes are formulated as[Fe(ANSN)Cl(H{sub 2}O){sub 2}] and [Fe(FAHP)Cl{sub 2}(H{sub 2}O){sub 2}].

  12. NEW - DOE O 452.2E, Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  13. Investigation of processes for converting weapons plutonium into MOX fuel at the TOMOX facility

    SciTech Connect (OSTI)

    Polyakov, A.S.; Rovnyi, S.; Skiba, O.V.; Lloubtsev, R.I. [Minotom, Moxcow (Russian Federation)] [and others

    1996-12-31

    On November 12, 1992, the governments of France and Russia signed a cooperation agreement on civil uses of nuclear materials from Russian weapons. This agreement includes the AIDA/mixed-oxide (MOX) program for converting dismantled Russian weapons plutonium into MOX fuel to supply existing and future Russian VVER and BN reactors. AIDA/MOX covers six areas: strategic approaches, the neutronic aspects of loading reactors with military plutonium, the chemistry of alloyed plutonium and conversion into sinterable oxide, MOX fuel fabrication, possible reprocessing of MOX fuel, and incineration of weapons plutonium in new reactors. The short-term use of existing reactors requires a facility for converting weapons plutonium to MOX fuel; the TOMOX-1300 facility should be capable of processing 1300 kg of weapons plutonium annually to fabricate 26.5 tonnes of MOX fuel (1.5 t for the BN-600 reactor and 25 t for four VVER-1000 reactors). Research and development (R&D) undertaken from 1992 to 1996 by several Russian institutes under Minatom and by various Commissariat A l`Energie Atomique (CEA) divisions to select the processes to be implemented in the TOMOX plant is presented and analyzed in this paper.

  14. Y-12 employees receive awards recognizing excellence in nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receive ... Y-12 employees receive awards recognizing excellence in nuclear weapons program Posted: October 6, 2014 - 9:09am Defense Programs 2013 Award of Excellence recipient...

  15. National Nuclear Security Administration ENERGY U.S. DEPARTMENT...

    National Nuclear Security Administration (NNSA)

    safeguards play a central role in international efforts to prevent the spread of nuclear weapons. IAEA safeguards provide assurances to the international community that...

  16. Nuclear proliferation and testing: A tale of two treaties

    SciTech Connect (OSTI)

    Corden, Pierce S.; Hafemeister, David

    2014-04-01

    Despite progress in reducing stockpiles after the end of the Cold War, the disturbing actions of some nations could spread nuclear weapon capabilities and enlarge existing arsenals.

  17. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    SciTech Connect (OSTI)

    Case, R.; Berry, R.B.; Eras, A. [and others

    1998-08-01

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC.

  18. Nuclear bargaining : using carrots and sticks in nuclear counter-proliferation

    E-Print Network [OSTI]

    Reardon, Robert J

    2010-01-01

    This dissertation explores how states can use positive inducements and negative sanctions to successfully bargain with nuclear proliferators and prevent the spread of nuclear weapons. It seeks to answer the following ...

  19. Pantex Takes a Green Approach to Cleaning Weapons Parts | National...

    National Nuclear Security Administration (NNSA)

    Takes a Green Approach to Cleaning Weapons Parts At NNSA's Pantex Plant in Amarillo, Texas, a new green approach to cleaning weapons parts was brought online recently at the...

  20. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6. Blast measurements. Part 5. Measurement of density, temperature, and material velocity in an air shock produced by a nuclear explosion

    SciTech Connect (OSTI)

    Porzel, F.B.; Whitener, J.E.

    1985-09-01

    The results from laboratory tests and test firing were quite encouraging. It was concluded that: (1) the beta densitometer is a feasible device for the measurement of density as a function of time in the shock wave from a nuclear explosion. It is limited to pressure levels of 6 or 8 psi for bombs in the range of 50 kt, but is capable of higher-pressure levels on larger bombs where the interference from gamma rays is less serious; (2) dust-loading behind the shock wave is a major perturbation to the ideal hydrodynamics and can change the density by as large a factor as the shock itself; (3) the rise time at distances of 7,500 feet on Easy Shot was sharp within a resolution of approximately 0.2 msec; and (4) the field calibration used on Operation Greenhouse appeared reasonably accurate and was worthy of subsequent development.

  1. Biophysical and structural characterization of components from the nuclear pore complex and the ubiquitin pathway

    E-Print Network [OSTI]

    Partridge, James R. (James Robert)

    2010-01-01

    Formation of an endomembrane system in the eukaryotic cell is a hallmark of biological evolution. One such system is the nuclear envelope (NE), composed of an inner and outer membrane, used to form a nucleus and enclose ...

  2. A holistic investigation of complexity sources in nuclear power plant control rooms

    E-Print Network [OSTI]

    Sasangohar, Farzan

    2011-01-01

    The nuclear power community in the United States is moving to modernize aging power plant control rooms as well as develop control rooms for new reactors. New generation control rooms, along with modernized control rooms, ...

  3. "Hanford: A Conversation About Nuclear Waste and Cleanup"

    SciTech Connect (OSTI)

    Gephart, Roy E.

    2003-05-10

    In ''Hanford: A Conversation about Nuclear Waste and Cleanup'', Roy Gephart takes us on a journey through a world of facts, values, conflicts, and choices facing the most complex environmental cleanup project in the United States, the U.S. Department of Energy's Hanford Site. Starting with the top-secret Manhattan Project, Hanford was used to create tons of plutonium for nuclear weapons. Hundreds of tons of waste remain. In an easy-to-read, illustrated text, Gephart crafts the story of Hanford becoming the world's first nuclear weapons site to release large amounts of contaminants into the environment. This was at a time when radiation biology was in its infancy, industry practiced unbridled waste dumping, and the public trusted what it was told. The plutonium market stalled with the end of the Cold War. Public accountability and environmental compliance ushered in a new cleanup mission. Today, Hanford is driven by remediation choices whose outcomes remain uncertain. It's a story whose epilogue will be written by future generations. This book is an information resource, written for the general reader as well as the technically trained person wanting an overview of Hanford and cleanup issues facing the nuclear weapons complex. Each chapter is a topical mini-series. It's an idea guide that encourages readers to be informed consumers of Hanford news, to recognize that knowledge, high ethical standards, and social values are at the heart of coping with Hanford's past and charting its future. Hanford history is a window into many environmental conflicts facing our nation; it's about building upon success and learning from failure. And therein lies a key lesson, when powerful interests are involved, no generation is above pretense. Roy E. Gephart is a geohydrologist and senior program manager at the Pacific Northwest National Laboratory, Richland, Washington. He has 30 years experience in environmental studies and the nuclear waste industry.

  4. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasized and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.

  5. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore »and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  6. Gregory H. Friedman: Before the Subcommittee on Oversight and...

    Office of Environmental Management (EM)

    to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and...

  7. Synthesis, crystal structure and properties of a novel tetra-nuclear Cu complex of ANPyO

    SciTech Connect (OSTI)

    Liu Jinjian; Liu Zuliang; Cheng Jian

    2013-01-15

    A transition metal Cu complex with 2,6-diamino-3,5-dinitropyridine-N-oxide (ANPyO) ligand has been synthesized and its crystal structure has been analyzed by X-ray diffraction methods. The crystal belongs to Triclinic system with space group P-1. The cell parameters are a=8.6710(17) nm, b=11.226(2) nm, c=18.741(4) nm, {alpha}=98.26(3), {beta}=102.60(3), {gamma}=109.17(3), V=1635.1(6) nm{sup 3}, D{sub c}=1.957 g/cm{sup 3}, {mu}=2.663 mm{sup -1}, F(000)=968, Z=2, R{sub 1}=0.0764, WR{sub 2}=0.1608. The thermal decomposition process of the title complex was studied by means of the TG-DTG and DSC at a heating rate of 20 K/min. It consists of two slow endothermic peaks and one violent exothermic peak with 37.22% residues. The apparent activation energy and pre-exponential factor of the complex in thermal decomposition process were calculated by means of the Kissinger method and Ozawa-Doyle method. The thermal decomposition of AP was accelerated due to the catalyst of the complex, it suggests that the complex can provide theoretical support to further performance study as it is added to the propellant formulations to regulate the burning rate. - Graphical abstract: A novel tetra-nuclear Cu complex of ANPyO was synthesized and its molecular structure was measured. Highlights: Black-Right-Pointing-Pointer We have synthesized and characterized a new tetra-nuclear Cu complex. Black-Right-Pointing-Pointer We have measured its molecular structure and thermal decomposition. Black-Right-Pointing-Pointer A special coordination mode between ligand and central copper atoms has been obtained. Black-Right-Pointing-Pointer It provides theoretical support to further performance study as energetic catalyst.

  8. Materiel availability modeling and analysis for a complex army weapon

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle)SciTechNorrisAlphasub-NeptunesSciTechReport)system.

  9. Simple fold composition and modular architecture of the nuclear pore complex

    E-Print Network [OSTI]

    Sali, Andrej

    and California Institute for Quantitative Biomedical Research, University of California, Mission Bay QB3, 1700 4 York, NY 10021-6399 Edited by Peter Walter, University of California School of Medicine, San Francisco in the nuclear envelope that mediates macromolecular transport be- tween the cytosol and the nucleus. With

  10. The Chemical Weapons Convention -- Legal issues

    SciTech Connect (OSTI)

    NONE

    1997-08-01

    The Chemical Weapons Convention (CWC) offers a unique challenge to the US system of constitutional law. Its promise of eliminating what is the most purely genocidal type of weapon from the world`s arsenals as well as of destroying the facilities for producing these weapons, brings with it a set of novel legal issues. The reservations about the CWC expressed by US business people are rooted in concern about safeguarding confidential business information and protecting the constitutional right to privacy. The chief worry is that international verification inspectors will misuse their power to enter commercial property and that trade secrets or other private information will be compromised as a result. It has been charged that the Convention is probably unconstitutional. The author categorically disagrees with that view and is aware of no scholarly writing that supports it. The purpose of this presentation is to show that CWC verification activities can be implemented in the US consistently with the traditional constitutional regard for commercial and individual privacy. First, he very briefly reviews the types of verification inspections that the CWC permits, as well as some of its specific privacy protections. Second, he explains how the Fourth Amendment right to privacy works in the context of CWC verification inspections. Finally, he reviews how verification inspections can be integrated into these constitutional requirements in the SU through a federal implementing statute.

  11. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01

    Following the discovery of nuclear fission in the late 1930’products produced by a nuclear fission re- action present apathways to a nuclear fission weapon. In a nutshell, the

  12. Monitoring under the Plutonium Management and Disposition Agreement : the prospects of antineutrino detection as an IAEA verification metric for the disposition of weapons-grade plutonium in the United States

    E-Print Network [OSTI]

    Copeland, Christopher Michael, S.M. Massachusetts Institute of Technology

    2012-01-01

    After the end of World War II, the world entered an even more turbulent period as it faced the beginnings of the Cold War, during which the prospect of mutually assured destruction between the world's largest nuclear weapon ...

  13. Nuclear World Order and Nonproliferation

    SciTech Connect (OSTI)

    Joeck, N

    2007-02-05

    The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

  14. Limiting the Nuclear Club--Iraq, North Korea, et al. Jonathan I. Katz

    E-Print Network [OSTI]

    Katz, Jonathan I.

    proliferation of nuclear weapons. The first conclusion is that proliferation is easy and inevitable. The secondLimiting the Nuclear Club--Iraq, North Korea, et al. Jonathan I. Katz Washington University, St development of nuclear weapons in 1949. Two plausible conclusions may be drawn from this history of the first

  15. Department of Energy Releases Global Nuclear Energy Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan outlines a path forward to enable worldwide increase in the use of safe, emissions-free nuclear energy without contributing to the spread of nuclear weapons capabilities in...

  16. Complex composite engineering architectures for nuclear and high-radiation environments

    SciTech Connect (OSTI)

    Kornreich, Drew E [Los Alamos National Laboratory; Vaidya, Rajendra U [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory

    2010-01-01

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of these elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.

  17. High-value use of weapons-plutonium by burning in molten salt accelerator-driven subcritical systems or reactors

    SciTech Connect (OSTI)

    Bowman, C.D.; Venneri, F.

    1993-11-01

    The application of thermal-spectrum molten-salt reactors and accelerator-driven subcritical systems to the destruction of weapons-return plutonium is considered from the perspective of deriving the maximum societal benefit. The enhancement of electric power production from burning the fertile fuel {sup 232}Th with the plutonium is evaluated. Also the enhancement of destruction of the accumulated waste from commercial nuclear reactors is considered using the neutron-rich weapons plutonium. Most cases examined include the concurrent transmutation of the long-lived actinide and fission product waste ({sup 99}Tc, {sup 129}I, {sup 135}Cs, {sup 126}Sn and {sup 79}Se).

  18. Bonus-- Cameras Designed to Strengthen Nuclear Security Can Also Detect Cancer

    Broader source: Energy.gov [DOE]

    Technologies that are improving our ability to prevent the spread of nuclear weapons and material are also saving lives on a daily basis.

  19. Nuclear conflict and ozone depletion Quick summary

    E-Print Network [OSTI]

    Toohey, Darin W.

    Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

  20. Nuclear and Radiological Field Training Center | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressureNavy TurnsNuclear WeaponsComplex ...

  1. Nuclear fuel recycling in 4 minutes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNewsusceptometer under pressureNavy TurnsNuclear WeaponsComplex

  2. Ultra-High Temperature Steam Corrosion of Complex Silicates for Nuclear Applications: A Computational Study

    SciTech Connect (OSTI)

    Rashkeev, Sergey N.; Glazoff, Michael V.; Tokuhiro, Akira

    2014-01-01

    Stability of materials under extreme conditions is an important issue for safety of nuclear reactors. Presently, silicon carbide (SiC) is being studied as a cladding material candidate for fuel rods in boiling-water and pressurized water-cooled reactors (BWRs and PWRs) that would substitute or modify traditional zircaloy materials. The rate of corrosion of the SiC ceramics in hot vapor environment (up to 2200 degrees C) simulating emergency conditions of light water reactor (LWR) depends on many environmental factors such as pressure, temperature, viscosity, and surface quality. Using the paralinear oxidation theory developed for ceramics in the combustion reactor environment, we estimated the corrosion rate of SiC ceramics under the conditions representing a significant power excursion in a LWR. It was established that a significant time – at least 100 h – is required for a typical SiC braiding to significantly degrade even in the most aggressive vapor environment (with temperatures up to 2200 °C) which is possible in a LWR at emergency condition. This provides evidence in favor of using the SiC coatings/braidings for additional protection of nuclear reactor rods against off-normal material degradation during power excursions or LOCA incidents. Additionally, we discuss possibilities of using other silica based ceramics in order to find materials with even higher corrosion resistance than SiC. In particular, we found that zircon (ZrSiO4) is also a very promising material for nuclear applications. Thermodynamic and first-principles atomic-scale calculations provide evidence of zircon thermodynamic stability in aggressive environments at least up to 1535 degrees C.

  3. Interpretation of Nuclear Magnetic Resonance Measurements in Formations with Complex Pore Structure 

    E-Print Network [OSTI]

    Chi, Lu

    2015-08-10

    Irreducible BVM Bulk Volume Movable CT Computed Tomography CPMG Carr-Purcell-Meiboom-Gill EPC Euler-Poincare Characteristics FIB-SEM Focused Ion Beam Scanning Electron Microscope ILT Inverse Laplace Transform LBM Lattice Boltzmann Method NMR Nuclear... relaxation, (msec) T2B,eff Effective bulk relaxation time in the two-phase NMR simulations, (msec) T2B,hc Bulk relaxation time of hydrocarbon, (msec) T2B,w Bulk relaxation time of water or brine, (msec) T2cutoff T2 cutoff value between BVI and BVM...

  4. U.S. second line of defense: preventing nuclear smuggling across Russia's borders

    SciTech Connect (OSTI)

    Ball, D. Y.

    1998-11-16

    Preventing the theft of weapons-usable highly enriched uranium and plutonium in Russia is one of the central security concerns facing the US today. The dissolution of the highly centralized USSR and the resulting societal crisis has endangered Russia's ability to protect its more than 200 metric tons of plutonium and 1000 tons of highly enriched uranium (roughly 8 kg Pu or 25 kg HEU is sufficient to make a bomb). Producing this fissile material is the most difficult and expensive part of nuclear weapons production and the US must make every effort to ensure that fissile material (and nuclear-related technologies) does not reach the hands of terrorist groups, rogue states or other potential proliferators. In response to this concern, the US has undertaken a number of initiatives in partnership with Russia and other FSU states to prevent the theft of fissile material. The Material Protection, Control and Accounting Program (MPC&A) was begun in 1993 to prevent the theft of nuclear materials from Russian civilian complexes, that is facilities not under control of the Ministry of Defense, which is largely responsible for possession and oversight of nuclear weapons. The MPC&A program is considered the first line of defense against theft of nuclear material because its goal is to prevent theft of material at production and storage facilities. This year the Department of Energy (DOE) initiated a new program called the Second Line of Defense (SLD), the goal of which is to assist Russia in preventing the smuggling of nuclear material and weapons at its borders, either by land, sea or air. The SLD program represents an important phase in the overall effort to ensure the security of nuclear material and weapons in Russia. However, as the US engages Russian customs officials in this important project, Americans should keep in mind that providing equipment--even indigenous equipment--is insufficient by itself; material aid must be accompanied by rigorous inspection and accounting procedures. In addition, the equipment must be assessed according to international standards to ensure a high degree of confidence in its nuclear detection capability.

  5. Using Direct Sub-Level Entity Access to Improve Nuclear Stockpile Simulation Modeling

    SciTech Connect (OSTI)

    Robert Y. Parker

    1999-08-01

    Direct sub-level entity access is a seldom-used technique in discrete-event simulation modeling that addresses the accessibility of sub-level entity information. The technique has significant advantages over more common, alternative modeling methods--especially where hierarchical entity structures are modeled. As such, direct sub-level entity access is often preferable in modeling nuclear stockpile, life-extension issues, an area to which it has not been previously applied. Current nuclear stockpile, life-extension models were demonstrated to benefit greatly from the advantages of direct sub-level entity access. In specific cases, the application of the technique resulted in models that were up to 10 times faster than functionally equivalent models where alternative techniques were applied. Furthermore, specific implementations of direct sub-level entity access were observed to be more flexible, efficient, functional, and scalable than corresponding implementations using common modeling techniques. Common modeling techniques (''unbatch/batch'' and ''attribute-copying'') proved inefficient and cumbersome in handling many nuclear stockpile modeling complexities, including multiple weapon sites, true defect analysis, and large numbers of weapon and subsystem types. While significant effort was required to enable direct sub-level entity access in the nuclear stockpile simulation models, the enhancements were worth the effort--resulting in more efficient, more capable, and more informative models that effectively addressed the complexities of the nuclear stockpile.

  6. India and Pakistan`s nuclear arms race: Out of the closet but not in the street

    SciTech Connect (OSTI)

    Albright, D.

    1993-06-01

    CIA Director James Woolsey testified before the Senate on February 24, 1993, {open_quotes}The arms race between India and Pakistan poses perhaps the most probable prospect for future use of weapons of mass destruction, including nuclear weapons.{close_quotes} Currently, both countries are dependent on relatively crude nuclear bombs that do not appear to have been deployed. According to US officials, because of fears of accidental nuclear detonation, both sides would only assemble their nuclear weapons when absolutely necessary. Nevertheless, according to Woolsey, both nations {open_quotes}could, on short notice, assemble nuclear weapons.{close_quotes} Each has combat aircraft that could deliver these bombs in a crisis. India and Pakistan continue to improve their nuclear weapons. Unless their programs are stopped, they might succeed in moving from large, cumbersome bombs to miniaturized, easily armed and fuzed weapons able to be permanently deployed on attack aircraft or ballistic missiles, which are being developed or sought by both countries.

  7. A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)

    SciTech Connect (OSTI)

    Morris, Tommy J. [Los Alamos National Laboratory

    2012-07-05

    Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

  8. The Nuclear Posture Review (NPR) : are we safer?

    SciTech Connect (OSTI)

    Brune, Nancy E.

    2010-07-01

    Nuclear Posture Review (NPR) is designed to make world safer by reducing the role of U.S. nuclear weapons and reducing the salience of nuclear weapons. U.S. also seeks to maintain a credible nuclear deterrent and reinforce regional security architectures with missile defenses and other conventional military capabilities. But recent studies suggest that nuclear proliferation is a direct response to the perceived threat of U.S. conventional capabilities not U.S. nuclear stockpile. If this is true, then the intent of the NPR to reduce the role and numbers of nuclear weapons and strengthen conventional military capabilities may actually make the world less safe. First stated objective of NPR is to reduce the role and numbers of U.S. nuclear weapons, reduce the salience of nuclear weapons and move step by step toward eliminating them. Second stated objective is a reaffirmation of U.S. commitment to maintaining a strong deterrent which forms the basis of U.S. assurances to allies and partners. The pathway - made explicit throughout the NPR - for reducing the role and numbers of nuclear weapons while maintaining a credible nuclear deterrent and reinforcing regional security architectures is to give conventional forces and capabilities and missile defenses (e.g. non-nuclear elements) a greater share of the deterrence burden.

  9. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    SciTech Connect (OSTI)

    Graham, Thomas Jr. [7609 Glenbrook Rd., Bethesda, MD 20814 (United States)

    2014-05-09

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

  10. Nuclear and Alternative Energy Supply Options for an Environmentally Constrained World: A Long-Term Perspective. Final draft, 11.14.01

    E-Print Network [OSTI]

    Conference "Nuclear Power and the Spread of Nuclear Weapons: Can We Have One Without the Other?" Washington Mitigation Challenge Under IS92a Nuclear Power in Climate Change Mitigation and Associated Nuclear Weapons Risks Alternatives for Achieving Deep Reductions of CO2 Emissions in Power Generation Thermonuclear

  11. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    SciTech Connect (OSTI)

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T.; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Almo, Steven C.; Burley, Stephen K. (Einstein); (SLAC); (Rockefeller); (UCSF); (Lilly)

    2012-10-23

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of {approx}456 polypeptide chains contributed by {approx}30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal 'FG' repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 {angstrom} resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.

  12. Nuclear Explosive and Weapon Surety Program (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-21

    This draft has been scheduled for final review before the Directives Review Board on 12-4-2014. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 12-2-2014.

  13. Deproliferation Dynamics : : Why States Give Up Nuclear Weapons Programs

    E-Print Network [OSTI]

    Mehta, Rupal Naresh

    2014-01-01

    developing a gas centrifuge uranium enrichment capability,working on uranium conversion, gas- centrifuge enrichment,separation, uranium conversion, and gas centrifuges

  14. Deproliferation Dynamics : : Why States Give Up Nuclear Weapons Programs

    E-Print Network [OSTI]

    Mehta, Rupal Naresh

    2014-01-01

    Safeguards; Spent fuel reprocessing facility decommissioned.plans to build a spent fuel reprocessing plant (Blanc 2008).reprocessing plant (with a second plant in production) that could extract plutonium from the spent reactor fuel.

  15. EGS 01-01: Nuclear Weapon Program Enforcement Issues

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel TravelChallengesOhio andTechnologiesLand Rights-of-Way-EERE2 EEREAbout

  16. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployee &andHomelandPrograms

  17. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratoryInnovationEmployee &andHomelandProgramsSafety

  18. Linking Legacies: Connecting the Cold War Nuclear Weapons Production

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergyTurbineProcesses to Their Environmental Consequences |

  19. EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c iGoldendale Energy Project BonnevilleHigh-LevelSiteForeign Research

  20. Office of Weapons Material Protection | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance/%2A0348Diversity in0/%2A en

  1. Briefing, Classification of Nuclear Weapons-Related Information |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De pEnergy Industrialof Energy 7:30PMBrett

  2. Weapons Intern Program participants visit Pantex | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN AProject AssessmentWe the Geeks: Women Role Models

  3. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution JPG20, 2008 Notice of7,

  4. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution JPG20, 2008 Notice of7,Issues |

  5. National Day of Remembrance HSS Honors Former Nuclear Weapons Program

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1forEnergyatEnergy 6Workers |

  6. NNSA implements nondestructive gas sampling technique for nuclear weapon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy MovingAdministrationAdministrationcomponents

  7. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services » ProgramPolicy andResearch & Development

  8. Sandia completes major overhaul of key nuclear weapons test facilities |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque AlbuquerqueCybernetics:Defense SystemsWorkingZ-MachinePROthEDM

  9. Seventy Years of Computing in the Nuclear Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species SensitiveSeth Darling

  10. Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-Eearnstakes part inNeutronLosSecurity

  11. July 2014 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    B53 case on display in Texas "The Last of the Big Dogs" has a new home after Pantex workers recently delivered one of the few remaining B53 nuclear weapons cases to the Freedom...

  12. Complex Particle and Light Fragment Emission in the Cascade-Exciton Model of Nuclear Reactions

    E-Print Network [OSTI]

    Stepan G. Mashnik; Arnold J. Sierk; Konstantin K. Gudima

    2002-08-23

    A brief description of our improvements and refinements that led from the CEM95 version of the Cascade-Exciton Model (CEM) code to CEM97 and to CEM2k is given. The increased accuracy and predictive power of the code CEM2k are shown by several examples. To describe fission and light-fragment (heavier than 4He) production, the CEM2k code has been merged with the GEM2 code of Furihata. We present some results on proton-induced fragmentation and fission reactions predicted by this extended version of CEM2k. We show that merging CEM2k with GEM2 allows us to describe many fission and fragmentation reactions in addition to the spallation reactions which are already relatively well described. We have initiated another approach to describe fission, complex particles and fragment emission by developing further our CEM2k code addressing specifically these problems. In this effort, we have developed our own universal approximation for inverse cross sections, new routines to calculate Coulomb barriers and widths of emitted particles and to simulate their kinetic energy using arbitrary approximations for the inverse cross sections. To describe fission-fragment production, we have incorporated into CEM2k a thermodynamical model of fission by Stepanov. This extended version of CEM2k allows us to describe much better complex particle emission and many fission fragments, but it is still incomplete and needs further work.

  13. The nuclear materials control technology briefing book

    SciTech Connect (OSTI)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  14. Nuclear Explosive Safety Study Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-27

    A Nuclear Explosive Safety Study (NESS) is performed on all DOE Nuclear Explosive Operations (NEOs) in accordance with DOE O 452.1D, Nuclear Explosive and Weapon Surety Program; DOE O 452.2D, Nuclear Explosive Safety; and DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes.

  15. Potential Impact of Atmospheric Releases at Russian Far East Nuclear Submarine Complexes

    SciTech Connect (OSTI)

    Parker, F.; Mahura, A.; Compton, K.; Brown, K.; Takano, M.; Novikov, V.; Soerensen, J. H.; Baklanov, A.

    2003-02-25

    An ''Assessment of the Impact of Russian Nuclear Fleet Operations on Far Eastern Coastal Regions'' is being performed as part of the Radiation Safety of the Biosphere Project (RAD) of the International Institute for Applied Systems Analysis (IIASA) of Laxenburg, Austria. To the best of our knowledge, this is the first comprehensive unclassified analysis of the potential impact of accidents at the Russian Far East nuclear submarine sites near Vladivostok and Petropavlovsk. We have defined the situation there based upon available information and studies commissioned by RAD in collaboration with Russian research institutes including Russian Research Center-''Kurchatov Institute'', Institute of Northern Environmental Problems and Lazurit Central Design Bureau. Further, in our original work, some in collaboration with the staff of the Danish Meteorological Institute (DMI) and members of the Japan Atomic Energy Research Institute, we have calculated the nuclide trajectories from these sites in the atmospheric boundary layer, less than 1.5 kilometers high, and determined their probability of crossing any of the nearby countries as well as Asiatic Russia. We have further determined the concentrations in each of these crossings as well as the total, dry and wet depositions of nuclides on these areas. Finally, we have calculated the doses to the Japanese Island population from typical winter airflow patterns (those most likely to cross the Islands in the minimum times), strong north winds, weak north winds and cyclonic winds for conditions similar to the Chazhma Bay criticality accident (fresh fuel) and for a criticality accident for the same type of reactor with fuel being withdrawn (spent fuel). The maximum individual committed dosages were less than 2 x 10-7 and 2 x 10-3 mSv, respectively. The long-term external doses by radionuclides deposited on the ground and the internal doses by consumption of foods were not evaluated as it is believed that such doses can be avoided by social controls. In other calculations taking these longer term doses into account and determining the sum of the maximum individual committed dosages (SMICD), we found for each of the surrounding countries to be less than 1 mSv. In that part of Russia the (SMICD) is less than 6 mSv. For releases from the Petropavlovsk sites the (SMICD) for each of the surrounding countries is less than 0.3 mSv. In that part of Russia the (SMICD) is less than 6 mSv.

  16. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01

    does not prevent the proliferation of nuclear weapons andNuclear Policy in the 21 st Century Environment", ProliferationNuclear Policy in the 21 st Century Environment", Proliferation

  17. J. David Janiec Director for the Weapons and Energetics

    E-Print Network [OSTI]

    support, evaluation; in-service engineering for weapons, and to maintain and operate required facilities for Experimentation, Tactics and Joint Test and Evaluation Development in the Network Centric Warfare Office as the Director for Weapons Systems from 1996-1999, the Head of the Fuze and Proximity Sensors Division from 1994

  18. January 5, 2015 Policy on Firearms, Other Lethal Weapons,

    E-Print Network [OSTI]

    January 5, 2015 Policy on Firearms, Other Lethal Weapons, Fireworks and Dangerous Objects the possession, use or storage of firearms, other lethal weapons, fireworks, and other dangerous objects. Definitions Firearm means any device, regardless of its name, that is designed to expel a projectile

  19. Weapons assessment efficiencies through use of nondestructive laser gas

    E-Print Network [OSTI]

    . The technology was first used on a W76 Retrofit Evaluation System Test unit on May 3, 2012. Significant Cost Savings The cost savings are realized because the technology is nondestructive, allowing weapon components New weapons assessment technology engineered: nondestructive laser welding process far less expensive

  20. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  1. Rocky Flats Overview Aurora History Museum October 16, 2013

    Office of Environmental Management (EM)

    5 Nuclear Weapons Complex Nuclear Weapons Production Processes Step Process Major Sites 1 Uranium Mining, Milling, and Refining Uranium Mill Tailing Remedial Action Project sites,...

  2. Modeling of the performance of weapons MOX fuel in light water reactors

    SciTech Connect (OSTI)

    Alvis, J.; Bellanger, P.; Medvedev, P.G.; Peddicord, K.L.; Gellene, G.I.

    1999-05-01

    Both the Russian Federation and the US are pursing mixed uranium-plutonium oxide (MOX) fuel in light water reactors (LWRs) for the disposition of excess plutonium from disassembled nuclear warheads. Fuel performance models are used which describe the behavior of MOX fuel during irradiation under typical power reactor conditions. The objective of this project is to perform the analysis of the thermal, mechanical, and chemical behavior of weapons MOX fuel pins under LWR conditions. If fuel performance analysis indicates potential questions, it then becomes imperative to assess the fuel pin design and the proposed operating strategies to reduce the probability of clad failure and the associated release of radioactive fission products into the primary coolant system. Applying the updated code to anticipated fuel and reactor designs, which would be used for weapons MOX fuel in the US, and analyzing the performance of the WWER-100 fuel for Russian weapons plutonium disposition are addressed in this report. The COMETHE code was found to do an excellent job in predicting fuel central temperatures. Also, despite minor predicted differences in thermo-mechanical behavior of MOX and UO{sub 2} fuels, the preliminary estimate indicated that, during normal reactor operations, these deviations remained within limits foreseen by fuel pin design.

  3. Nuclear Physics and National Security in an Age of Jerry Gilfoyle

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    A uranium, gun-type nuclear weapon - High explosive pushes highly-enriched uranium at high speed down/2 #12;HEU Gun-Type Design The figure to the right shows the `Little Boy' design of the nu- clear bomb, University of Richmond, Virginia Outline: 1. How do we assess the threat? 1. Nuclear Weapons 101 2. Catching

  4. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  5. Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures 

    E-Print Network [OSTI]

    O'Kelly, David Sean

    2000-01-01

    The conversion of plutonium from a nuclear weapon to nuclear reactor fuel requires an evaluation of the residual gallium as a potential corrosive material within an operating nuclear fuel element. Homogeneous trace levels of gallium may remain...

  6. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    SciTech Connect (OSTI)

    Boyer, Brian D

    2012-08-15

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  7. Arms Control: US and International efforts to ban biological weapons

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  8. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

    Broader source: Energy.gov [DOE]

    Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

  9. Weapons of Mass Destruction Technology Evaluation and Training Range

    SciTech Connect (OSTI)

    Kevin Larry Young

    2009-05-01

    The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testing capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.

  10. Cooperative Studies in the Utilization and Storage of Excess Weapons-Grade Plutonium

    SciTech Connect (OSTI)

    Bolyatko, V. V.

    1998-01-29

    This technical report is a tangible and verifiable deliverable associated with the Nuclear Group subproject “Cooperative Studies in the Utilization and Storage of Excess Weapons-grade Plutonium.” This report is an assessment ofthe work performed by the Russian party from 1 October 1995 through 30 September 1996 regarding milestones defined in the contract between the Moscow Engineering Physics Institute (MEPhI) and the Texas Engineering Experiment Station (TEES). In these interactions, TEES serves as agent of the Amarillo National Resource Center for Plutonium (ANRCP) in the capacity oflead institution for the Nuclear Group of the ANRCP. The official Statement ofWork dated 8 April 1996 enumerates specific milestones and deliverables. In its present form, this report is an edited version ofthe translation submitted to TEES by MEPhI on 7 October 1996. The principal investigators for this subproject are Dr. Paul Nelson of TEES and Dr. Victor Bolyatko of the Moscow Engineering Physics Institute.

  11. The National Nuclear Security Administration's B61 Spin Rocket...

    Office of Environmental Management (EM)

    Laboratories are refurbishing the Spin Rocket Motor, a 1:rime component of the B61 nuclear weapon system. Both the originai motor produced i2 i906 and the version last produced...

  12. ReseaRch at the University of Maryland Nuclear Safety Research at the University of Maryland

    E-Print Network [OSTI]

    Hill, Wendell T.

    been a complicated rise and fall for nuclear technology. The proliferation of nuclear power plants and nuclear weapons was followed by controversial accidents and regulation. Today, nuclear power is considered that analyze the risks involved in the use of nuclear energy. Understanding and Using Radiation The ionizing

  13. Rocky Flats Plant: Test bed for transitioning from weapons production mission to environmental restoration, waste management, and economic development missions

    SciTech Connect (OSTI)

    Benjamin, A.; Murthy, K.S.; Krenzer, R.W.; Williams, R.E.; Detamore, J.A.; Brown, C.M.; Francis, G.E.; Lucerna, J.J.

    1993-01-07

    Redirection of Rocky Flats Plant`s (RF) mission is an inevitable result of changes in the worldwide social, political, and environmental factors. These changes were exemplified in the cancellation of the W-88 Warhead in January 1992, by the President of the United States. These unprecedented changes have altered the RF`s traditional nuclear weapons production mission to the transition mission, i.e., cleanup, preparation for deactivation and decontamination, decommissioning, dismantlement and demolition, and when appropriate, economic development, of the facilities. The purpose of this paper is to describe the essentials of the technical approach and management actions advanced by EG&G Rocky Flats, Inc., to organize, staff, direct, and control the activities necessary to transition the RF from its historical weapons production mission to the transition mission.

  14. Rocky Flats Plant: Test bed for transitioning from weapons production mission to environmental restoration, waste management, and economic development missions

    SciTech Connect (OSTI)

    Benjamin, A.; Murthy, K.S.; Krenzer, R.W.; Williams, R.E.; Detamore, J.A.; Brown, C.M.; Francis, G.E.; Lucerna, J.J.

    1993-01-07

    Redirection of Rocky Flats Plant's (RF) mission is an inevitable result of changes in the worldwide social, political, and environmental factors. These changes were exemplified in the cancellation of the W-88 Warhead in January 1992, by the President of the United States. These unprecedented changes have altered the RF's traditional nuclear weapons production mission to the transition mission, i.e., cleanup, preparation for deactivation and decontamination, decommissioning, dismantlement and demolition, and when appropriate, economic development, of the facilities. The purpose of this paper is to describe the essentials of the technical approach and management actions advanced by EG G Rocky Flats, Inc., to organize, staff, direct, and control the activities necessary to transition the RF from its historical weapons production mission to the transition mission.

  15. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect (OSTI)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  16. Slide 1

    Office of Environmental Management (EM)

    www.energy.govEM 9 The Nuclear Weapons Complex Produced Both Nuclear Weapons and Contamination on a Large Scale Over 1,000 metric tons of weapons- grade uranium Over 100 metric...

  17. Aerial of Nuclear Science Reactor 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Small graphite-moderated and gas-cooled reactors have been around since the beginning of the atomic age. Though their existence in the past has been associated with nuclear weapons programs, they are capable of being used in civilian power programs...

  18. DOE weapons laboratories' contributions to the nation's defense technology base

    SciTech Connect (OSTI)

    Hecker, S.S.

    1988-04-01

    The question of how the Department of Energy (DOE) weapons laboratories can contribute to a stronger defense technology base is addressed in testimony before the Subcommittee on Defense Industry and Technology of the Senate Armed Services Committee. The importance of the defense technology base is described, the DOE technology base is also described, and some technology base management and institutional issues are discussed. Suggestions are given for promoting a more stable, long-term relationship between the DOE weapons laboratories and the Department of Defense. 12 refs., 2 figs.

  19. Reevaluating nuclear safety and security in a post 9/11 era.

    SciTech Connect (OSTI)

    Booker, Paul M.; Brown, Lisa M.

    2005-07-01

    This report has the following topics: (1) Changing perspectives on nuclear safety and security; (2) Evolving needs in a post-9/11 era; (3) Nuclear Weapons--An attractive terrorist target; (4) The case for increased safety; (5) Evolution of current nuclear weapons safety and security; (6) Integrated surety; (7) The role of safety and security in enabling responsiveness; (8) Advances in surety technologies; and (9) Reevaluating safety.

  20. Iraq nuclear facility dismantlement and disposal project (NDs Project).

    SciTech Connect (OSTI)

    Cochran, John Russell

    2010-06-01

    The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.

  1. Evaluation of alternatives for the disposition of surplus weapons-usable plutonium

    SciTech Connect (OSTI)

    Dyer, J.S.; Butler, J.C. [Univ. of Texas, Austin, TX (United States); Edmunds, T. [Lawrence Livermore National Lab., CA (United States)] [and others

    1997-04-04

    The Department of Energy Record of Decision (ROD) selected alternatives for disposition of surplus, weapons grade plutonium. A major objective of this decision was to prevent the proliferation of nuclear weapons. Other concerns addressed included economic, technical, institutional, schedule, environmental, and health and safety issues. The analysis reported here was conducted in parallel with technical, environmental, and nonproliferation analyses; it uses multiattribute utility theory to combine these considerations in order to facilitate an integrated evaluation of alternatives. This analysis is intended to provide additional insight regarding alternative evaluation and to assist in understanding the rationale for the choice of alternatives recommended in the ROD. Value functions were developed for objectives of disposition, and used to rank alternatives. Sensitivity analyses indicated that the ranking of alternatives for the base case was relatively insensitive to changes in assumptions over reasonable ranges. The analyses support the recommendation of the ROD to pursue parallel development of the vitrification immobilization alternative and the use of existing light water reactors alternative. 27 refs., 109 figs., 20 tabs.

  2. Development of nuclear diagnostics for the National Ignition Facility ,,invited...

    E-Print Network [OSTI]

    Development of nuclear diagnostics for the National Ignition Facility ,,invited... V. Yu. Glebov, D 87185 S. P. Padalino SUNY Geneseo, Geneseo, New York 14454 C. Horsfield Atomic Weapons Establishment of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF

  3. A P-5 Nuclear Dialogue: Concept, Building Blocks, and Implementation

    E-Print Network [OSTI]

    #12;A P-5 Nuclear Dialogue: Concept, Building Blocks, and Implementation Paul I. Bernstein, biological, radiological, nuclear, and high explosives) by providing capabilities to reduce, eliminate affirmed "America's intention to seek the peace and security of a world without nuclear weapons" and stated

  4. The Security of Russia's Nuclear Arsenal: The Human Factor

    SciTech Connect (OSTI)

    Ball, D.Y.

    1999-10-12

    Assertions by the Russian military that all of their nuclear weapons are secure against theft and that nuclear units within the military are somehow insulated from the problems plaguing the Russian military should not be accepted uncritically. Accordingly, we should not give unwarranted credence to the pronouncements of military figures like Cal.-Gen. Igor Valynkin, Chief of the Defense Ministry's 12th Main Directorate, which oversees the country's nuclear arsenal. He contends that ''Russian nuclear weapons are under reliable supervision'' and that ''talk about the unreliability of our control over nuclear weapons has only one pragmatic goal--to convince international society that the country is incapable of maintaining nuclear safety and to introduce international oversight over those weapons, as it is done, for example, in Iraq.'' While the comparison to Iraq is preposterous, many analysts might agree with Valynkin's sanguine appraisal of the security of Russia's nuclear weapons. In contrast, I argue that the numerous difficulties confronting the military as a whole should cause concern in the West over the security of the Russian nuclear arsenal.

  5. No end in sight for nuclear squabble The decision on a site for a controversial nuclear fusion project has been delayed

    E-Print Network [OSTI]

    No end in sight for nuclear squabble The decision on a site for a controversial nuclear fusion supply, and fusion reactors would not produce fissile materials that could be used in nuclear weapons, with green groups pointing out that in 1950 scientists working on nuclear fusion said they needed another 50

  6. Nuclear programs in India and Pakistan

    SciTech Connect (OSTI)

    Mian, Zia

    2014-05-09

    India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.

  7. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    SciTech Connect (OSTI)

    Heiken, J.H. (ed.)

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  8. More arms, less stability: Nuclear, chemical, and missile proliferation in the Asia-Pacific. Final report

    SciTech Connect (OSTI)

    Mack, A.

    1991-04-01

    In the wake of the Gulf War, the Bush Administration has reaffirmed its determination to seek controls over weapons of mass destruction in the Third World, in particular nuclear, chemical, and biological weapons (CBW); and over ballistic missiles, one possible delivery system for nuclear and CBW systems. Attention over the past eight months has naturally focused on the Middle East, but the Asia-Pacific region contains a number of countries which are alleged to have CW and BW programs. One country, North Korea, is far closer to manufacturing nuclear weapons than Iraq was.

  9. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  10. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  11. Proceedings of the Tungsten Workshop for Hard Target Weapons Program

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Hayden, H.W.; Davis, R.M.

    1995-06-01

    The purpose of this meeting was to review and exchange information and provide technical input for improving technologies relevant to the Hard Target Weapons Program. This workshop was attended by representatives from 17 organizations, including 4 Department of Defense (DoD) agencies, 8 industrial companies, and 5 laboratories within DOE. Hard targets are defined as reinforced underground structures that house enemy forces, weapon systems, and support equipment. DOE-ORO and Martin Marietta Energy Systems, Inc. (Energy Systems) have been involved in advanced materials research and development (R&D) for several DOE and DoD programs. These programs are conducted in close collaboration with Eglin AFB, Department of the Army`s Picatinny Arsenal, and other DoD agencies. As part of this ongoing collaboration, Eglin AFB and Oak Ridge National Laboratory planned and conducted this workshop to support the Hard Target Weapons Program. The objectives of this workshop were to (1) review and identify the technology base that exists (primarily due to anti-armor applications) and assess the applicability of this technology to the Hard Target Weapons Program requirements; (2) determine future directions to establish the W materials, processing, and manufacturing technologies suitable for use in fixed, hard target penetrators; and (3) identify and prioritize the potential areas for technical collaboration among the participants.

  12. Disposition of weapons-grade plutonium in Westinghouse reactors 

    E-Print Network [OSTI]

    Alsaed, Abdelhalim Ali

    1996-01-01

    We have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. We have designed three transition cycles from an all LEU core to a partial MOX core. We found that four...

  13. Bridging the Gap in the Chemical Thermodynamic Database for Nuclear Waste Repository: Studies of the Effect of Temperature on Actinide Complexation

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01

    Thermodynamic Database for Nuclear Waste Repository: Studiesthermodynamic database for nuclear waste repository wherethe safe management of nuclear wastes is to store the high-

  14. Navy's Superlaser Is More Than a Weapon (Wired.com) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wired.comdangerroom201011navys-super-laser-wont-just-be-a-weapon Submitted: Wednesday, November 10, 2010...

  15. Environmental Radiation Dose Reconstruction for U.S. and Russian Weapons Production Facilities: Hanford and Mayak

    SciTech Connect (OSTI)

    Ansbaugh, Lynn R.; Degteva, M. O.; Kozheurov, V. P.; Napier, Bruce A.; Tolstykh, E. I.; Vorobiova, M. I.

    2003-05-01

    Another way to look at Cold War legacies is to examine the major environmental releases that resulted from past operation of Cold War-related facilities for the manufacture of nuclear weapons. Examining these historical releases and the resultant radiation dose to individuals living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States, such as the Hanford facility; several are also underway in other countries, such as at the Mayak facility in Russia. The efforts in the United States are mostly based on historical operating records and current conditions, which are used to estimate environmental releases, transport, and human exposure. The Russian efforts are largely based on environmental measurements and measurements of human subjects; environmental transport modelling, when conducted, is used to organize and validate the measurements. Past operation of Cold War-related facilities for the manufacture of nuclear weapons has resulted in major releases of radionuclides into the environment. Reconstruction of the historical releases and the resultant radiation dose to individuals in the public living near these facilities is called environmental dose reconstruction. Dose reconstructions have been performed or are underway at most large Cold War installations in the United States; several are also underway in other countries. The types of activity performed, the operating histories, and the radionuclide releases vary widely across the different facilities. The U.S. Hanford Site and the Russian Mayak Production Association are used here to illustrate the nature of the assessed problems and the range of approaches developed to solve them.

  16. Nuclear proliferation: Lessons learned from the Iraqi case. Master's thesis

    SciTech Connect (OSTI)

    Dixon, T.A.

    1992-12-01

    The nuclear weapons inspection regime implemented in Iraq following the United Nations coalition victory in Desert Storm is the most intrusive in history. Important conclusions about the current non-proliferation regime can therefore be determined from a study of Iraq's progress. This thesis examines Iraq's efforts to acquire nuclear weapons. The supply side of the equation is also studied, with a concentration upon the contributions of NATO nations. The strategic culture of Iraq is discussed, in an effort to discover why Iraq sought nuclear weapons. Finally, policy prescriptions are advanced. The current non-proliferation regime needs to be improved if the spread of nuclear weapons is to be halted, or even slowed. The most promising way to improve this regime is to involve the U.N. Special Commission and the U.N. Security Council in the management of the problem of nuclear proliferation.... Iraq, Strategic culture, Non-Proliferation treaty, International atomic energy agency, Nuclear weapons, Middle east security, Nuclear suppliers group, United Nations.

  17. Ira Helfand, MD International Physicians for the Prevention of Nuclear War

    E-Print Network [OSTI]

    Robock, Alan

    the urgent need to move with all possible speed to the negotiation of a nuclear weapons conventionIra Helfand, MD International Physicians for the Prevention of Nuclear War Physicians for Social Responsibility NUCLEAR FAMINE: A BILLION PEOPLE AT RISK Global Impacts of Limited Nuclear War on Agriculture

  18. Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation 

    E-Print Network [OSTI]

    Woddi, Taraknath Venkat Krishna

    2008-10-10

    to change the long-standing U.S. policy of preventing the spread of nuclear weapons by denying nuclear technology transfer to non-NPT signatory states. The nuclear tests in 1998 have convinced the world community that India would never relinquish its nuclear...

  19. Defining nuclear security in the 21st century

    SciTech Connect (OSTI)

    Doyle, James E

    2009-01-01

    A conference devoted to Reducing the Risks from Radioactive and Nuclear Materials presupposes that such risks exist. Few would disagree, but what are they? While debate on the nature and severity of risks associated with nuclear energy will always remain, it is easy to define a set of risks that are almost universally acknowledged. These include: (1) Nuclear warfare between states; (2) Continued proliferation of nuclear weapons and weapons-grade nuclear materials to states and non-state actors; (3) Terrorists or non-state actor acquisition or use nuclear weapons or nuclear materials; (4) Terrorists or non-state actors attack on a nuclear facility; and (5) Loss or diversion of nuclear weapons or materials by a state to unauthorized uses. These are listed in no particular order of likelihood or potential consequence. They are also very broadly stated, each one could be broken down into a more detailed set of discrete risks or threats. The fact that there is a strong consensus on the existence of these risks is evidence that we remain in an era of nuclear insecurity. This becomes even clearer when we note that most major trends influencing the probability of these risks continue to run in a negative direction.

  20. Security and Use Control of Nuclear Explosives and Nuclear Weapons (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-24

    This draft has been scheduled for final review before the Directives Review Board on 3-5-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 3-3-15.

  1. Security and Use Control of Nuclear Explosives and Nuclear Weapons - DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistanceand Governmentm D m

  2. U.S. No Longer Building Any Nuclear Weapons | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE: AprilCubic Feet)Million CubicMonth

  3. A Program to Stabilize Nuclear Materials as Managed by the Plutonium Focus Area

    SciTech Connect (OSTI)

    B. Kenley (Kenley Consulting); B. Scott; B. Seidel (ANL-W); D. Knecht (LMITCO); F. Southworth; K. Osborne (DOE-ID); N. Chipman; T. Creque

    1999-03-01

    This paper describes the program to stabilize nuclear materials, consistent with the Department of Energy Office of Environmental Management (EM) plan, Accelerating Cleanup: Paths to Closure. The program is managed by the Plutonium Stabilization and Disposition Focus Area, which defines and manages technology development programs to stabilize nuclear materials and assure their subsequent safe storage and final disposition. The scope of the Plutonium Stabilization and Disposition Focus Area (PFA) activities includes non-weapons plutonium materials, special isotopes, and other fissile materials. The PFA provides solutions to site-specific and complex wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. Our paper describes an important programmatic function of the Department of Energy nuclear materials stabilization program, including the tie-in of policy to research needs and funding for the nuclear materials disposition area. The PFA uses a rigorous systems engineering determination of technology needs and gaps, under the guidance of a Technical Advisory Panel, consisting of complex-wide experts. The Research and Development planning provides an example for other waste areas and should be of interest to Research and Development managers. The materials disposition maps developed by the PFA and described in this paper provide an evaluation of research needs, data gaps and subsequent guidance for the development of technologies for nuclear materials disposition. This paper also addresses the PFA prioritization methodology and its ability to forecast actual time to implementation.

  4. Key Response Planning Factors for the Aftermath of Nuclear Terrorism

    SciTech Connect (OSTI)

    Buddemeier, B R; Dillon, M B

    2009-01-21

    Despite hundreds of above-ground nuclear tests and data gathered from Hiroshima and Nagasaki, the effects of a ground-level, low-yield nuclear detonation in a modern urban environment are still the subject of considerable scientific debate. Extensive review of nuclear weapon effects studies and discussions with nuclear weapon effects experts from various federal agencies, national laboratories, and technical organizations have identified key issues and bounded some of the unknowns required to support response planning for a low-yield, ground-level nuclear detonation in a modern U.S. city. This study, which is focused primarily upon the hazards posed by radioactive fallout, used detailed fallout predictions from the advanced suite of three-dimensional (3-D) meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory (LLNL), including extensive global Key Response Planning Factors for the Aftermath of Nuclear Terrorism geographical and real-time meteorological databases to support model calculations. This 3-D modeling system provides detailed simulations that account for complex meteorology and terrain effects. The results of initial modeling and analysis were presented to federal, state, and local working groups to obtain critical, broad-based review and feedback on strategy and messaging. This effort involved a diverse set of communities, including New York City, National Capitol Regions, Charlotte, Houston, Portland, and Los Angeles. The largest potential for reducing casualties during the post-detonation response phase comes from reducing exposure to fallout radiation. This can be accomplished through early, adequate sheltering followed by informed, delayed evacuation.B The response challenges to a nuclear detonation must be solved through multiple approaches of public education, planning, and rapid response actions. Because the successful response will require extensive coordination of a large number of organizations, supplemented by appropriate responses by local responders and the general population within the hazard zones, regional planning is essential to success. The remainder of this Executive Summary provides summary guidance for response planning in three areas: (1) Public Protection Strategy details the importance of early, adequate shelter followed by informed evacuation. (2) Responder Priorities identify how to protect response personnel, perform regional situational assessment, and support public safety. (3) Key Planning Considerations refute common myths and provide important information on planning how to respond in the aftermath of nuclear terrorism.

  5. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    SciTech Connect (OSTI)

    Ewing, R.C.; Lutze, W. [New Mexico Univ., Albuquerque, NM (United States); Weber, W.J. [Pacific Northwest Lab., Richland, WA (United States)

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  6. Comments on implementation: Contingency options for chemical weapons demilitarization

    SciTech Connect (OSTI)

    Aroesty, J.

    1991-01-01

    The author discusses the need to formulate contingency options for complying with U.S./U.S.S.R. chemical weapon (C.W.) demilitarization timetables that start in 1992. These timetables could be overly optimistic in the face of emerging environmental concerns and potential political, technical, and operational difficulties. A similar approach may also be relevant to the situation in Iraq, where several years are likely to pass before a suitable C.W. destruction system is available for use.

  7. FAQS Qualification Card - Weapon Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order 13514ConstructionWeapon Quality Assurance FAQS

  8. FAQS Reference Guide - Weapon Quality Assurance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order 13514ConstructionWeaponTraining FAQS Reference

  9. Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials

    SciTech Connect (OSTI)

    NONE

    1995-03-29

    Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results.

  10. Feasibility of very deep borehole disposal of US nuclear defense wastes

    E-Print Network [OSTI]

    Dozier, Frances Elizabeth

    2011-01-01

    This thesis analyzes the feasibility of emplacing DOE-owned defense nuclear waste from weapons production into a permanent borehole repository drilled ~4 km into granite basement rock. Two canister options were analyzed ...

  11. Use of a High-Purity Germanium Semiconductor Detector for Rapid Post-Nuclear Event Forensics 

    E-Print Network [OSTI]

    Horowitz, Steven Michael

    2015-07-27

    This thesis investigates the ability of a high-purity germanium detector to perform post-detonation forensics on the debris from several types of nuclear weapons 24 hours after detonation. The ultimate result of this ...

  12. Nuclear deterrence in South Asia

    SciTech Connect (OSTI)

    Hagerty, D.T.

    1995-12-31

    Did India and Pakistan nearly fight a nuclear war in 1990? In a provocative 1993 article, Seymour M. Hersh claims that they did. During a crisis with India over the rapidly escalating insurgency in Kashmir, Pakistan openly deployed its main armored tank units along the Indian border and, in secret, placed its nuclear-weapons arsenal on alert. As a result, the Bush Administration became convinced that the world was on the edge of a nuclear exchange between Pakistan and India. Universe of cases is admittedly small, but my argument is supported by recent research indicating that preemptive attacks of any kind have been historically rarer than conventionally believed. The nuclear era has seen two instances of preventive attacks against nuclear facilities-the 1981 Israeli bombing of Iraq`s Osirak nuclear facility and the allied coalition`s 1991 air war against Iraq-but both of these actions were taken without fear of nuclear reprisal. In situations where nuclear retaliation has been a possibility, no leader of nuclear weapon state has chosen to launch a preemptive first strike. 97 refs.

  13. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to diver

  14. energy.gov -Speeches (Print Version) Tuesday, February 4, 2003 http://www.energy.gov/HQDocs/speeches/2003/febss/

    E-Print Network [OSTI]

    the capabilities of our defense complex, preventing the spread of nuclear weapons and materials, and continuing our of nuclear weapons and materials. We have increased our total '04 nonproliferation budget submission to more, and to protect or eliminate nuclear weapons, weapons-usable nuclear material, and the infrastructure

  15. A Latent Model to Detect Multiple Spatial Clusters with Application in a Mobile Sensor Network for Surveillance of Nuclear Materials

    E-Print Network [OSTI]

    devastating, and the global proliferation of nuclear weapon technology has made the threat increasingly serious. The U.S. government has made significant efforts to curb nuclear proliferation. In spite of many for Surveillance of Nuclear Materials Jerry Cheng, Minge Xie, Rong Chen and Fred Roberts1 Abstract Nuclear attacks

  16. Nuclear Energy. It is not a solution, it is a problem The Mediterranean Antinuclear Watch (MANW) is a non -

    E-Print Network [OSTI]

    Nuclear Energy. It is not a solution, it is a problem #12;The Mediterranean Antinuclear Watch (MANW - called "peaceful use" of nuclear energy as well as the production and proliferation of nuclear weapons pose. #12;Nuclear energy renaissance Twenty two years after the accident in Chernobyl NPP. Energy

  17. Preserving Nuclear Grade Knowledge

    SciTech Connect (OSTI)

    Lange, Bob

    2008-02-05

    When people think of the government they think of the President, or Congress, or the Internal Revenue Service (IRS), but there are thousands of people in government-related jobs doing things most don’t really notice everyday. You can find them everywhere, from the space science folks at NASA, to the Federal Bureau of Investigations (FBI) watching out for the bad guys. There are Rangers, and Social Workers, Nurses and Agricultural Managers. They are people working to keep the many facets of the USA rolling. One very diverse bunch is The Department of Energy (DOE) , a group who is expanding the ways we make and save energy to power our cars, homes, and businesses. Tucked away under the DOE is the National Nuclear Security Administration, the NNSA is an agency that maintains the safety, security, and reliability of the U.S. nuclear weapons stockpile. It works to reduce global danger from weapons of mass destruction. It provides the U.S. Navy with safe nuclear propulsion, and it responds to nuclear and radiological emergencies in the United States and abroad, and it supports efforts in science and technology*. (* DOE/NNSA/KCP website info)

  18. Putting the Genie Back in the Bottle: Nuclear Non-Proliferation in the New

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Putting the Genie Back in the Bottle: Nuclear Non-Proliferation in the New Millennium G.P.Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. How can nuclear materials hurt me? 2 with unmatched speed. ­ food processing. ­ waste stream treatment. #12;Nuclear Weapons 101 Fissile materials

  19. Metadata of the chapter that will be visualized online Chapter Title Seismic Monitoring of Nuclear Explosions

    E-Print Network [OSTI]

    Foulger, G. R.

    as nuclear weapons states by the 45Non-Proliferation Treaty of 1968. Listing them in the 46order in whichMetadata of the chapter that will be visualized online Chapter Title Seismic Monitoring of Nuclear Page Number: 0 Date:20/9/10 Time:20:22:18 1 S 2 SEISMIC MONITORING OF NUCLEAR EXPLOSIONSAu1 3 Paul G

  20. Network-centric Warfare and the Globalization of Technology: Transforming simple tools into dangerous weapons

    E-Print Network [OSTI]

    Oh, Ann

    2009-01-01

    simple tools into dangerous weapons New applications ofprogressive, but also dangerous when applied to warfare. Theabove, also a powerful and dangerous tool for terrorists to

  1. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    SciTech Connect (OSTI)

    Hayes, Timothy; Nelson, Roger

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)

  2. Use of open source information and commercial satellite imagery for nuclear nonproliferation regime compliance verification by a community of academics 

    E-Print Network [OSTI]

    Solodov, Alexander

    2009-06-02

    The proliferation of nuclear weapons is a great threat to world peace and stability. The question of strengthening the nonproliferation regime has been open for a long period of time. In 1997 the International Atomic Energy Agency (IAEA) Board...

  3. EIS-0236-S4: Final Supplemental Programmatic Environmental Impact...

    Energy Savers [EERE]

    to maintain the safety, security, and reliability of the United States' nuclear weapons stockpile. This Complex Transformation Supplemental Programmatic Environmental...

  4. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  5. Seaborne Delivery Interdiction of Weapons of Mass Destruction (WMD)

    SciTech Connect (OSTI)

    Glauser, H

    2011-03-03

    Over the next 10-20 years, the probability of a terrorist attack using a weapon of mass destruction (WMD) on the United States is projected to increase. At some point over the next few decades, it may be inevitable that a terrorist group will have access to a WMD. The economic and social impact of an attack using a WMD anywhere in the world would be catastrophic. For weapons developed overseas, the routes of entry are air and sea with the maritime vector as the most porous. Providing a system to track, perform a risk assessment and inspect all inbound marine traffic before it reaches US coastal cities thereby mitigating the threat has long been a goal for our government. The challenge is to do so effectively without crippling the US economy. The Portunus Project addresses only the maritime threat and builds on a robust maritime domain awareness capability. It is a process to develop the technologies, policies and practices that will enable the US to establish a waypoint for the inspection of international marine traffic, screen 100% of containerized and bulk cargo prior to entry into the US if deemed necessary, provide a palatable economic model for transshipping, grow the US economy, and improve US environmental quality. The implementation strategy is based on security risk, and the political and economic constraints of implementation. This article is meant to provide a basic understanding of how and why this may be accomplished.

  6. Y-12, the Cold War, and nuclear weapons dismantlement „ Or: The Cold War and nuclear weapons dismantlement (title used in The Oak Ridger)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single| National1958, Making theearlythe

  7. Los Alamos National Laboratory standard nuclear material container

    SciTech Connect (OSTI)

    Stone, Timothy A [Los Alamos National Laboratory

    2009-01-01

    The shut down of United States (U.S.) nuclear-weapons production activities in the early 1990s left large quantities of nuclear materials throughout the U.S. Department of Energy (DOE) complex in forms not intended for long-term storage. In May 1994, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 94-1, which called for the stabilization and disposition of 'thousands of containers of plutonium-bearing liquids and solids' in the DOE complex, including LANL in the nuclear-weapons-manufacturing pipeline when manufacturing ended. This resulted in the development of the 3013 standard with container requirements for long term storage (up to 50 years). A follow on was the Criteria For Interim Storage of Plutonium Bearing Materials, Charles B. Curtis, in 1996 to address storage other than the 3013 standard for shorter time frames. In January 2000, the DNFSB issued Recommendation 2000-1, which stated the need for LANL to repackage 'about one ton of plutonium metal and oxide,' declared excess to Defense Program (DP) needs. The DNFSB recommended that LANL 'stabilize and seal within welded containers with an inert atmosphere the plutonium oxides ... which are not yet in states conforming to the long-term storage envisaged by DOE-STD-3013,' and that they '... enclose existing and newly-generated legacy plutonium metal in sealed containers with an inert atmosphere,' and 'remediate and/or safely store the various residues.' Recommendation 2000-1, while adding to the number of items needing remediation, also reiterated the need to address remaining items from 1994-1 in a timely fashion. Since timetables slipped, the DNFSB recommended that the Complex 'prioritize and schedule tasks according to the consideration of risks.' In March 2005, the DNFSB issued Recommendation 2005-1. This recommendation addresses the need for a consistent set of criteria across the DOE complex for the interim storage of nuclear material packaged outside an engineered barrier. The Department of Energy (DOE) approved and issued on March 7, 2008, DOE M 441.1-1, Nuclear Material Packaging Manual [hereafter referred to as Manual] to address this recommendation, and a Prioritization Methodology as a complex-wide requirement for the packaging of nuclear material outside an engineered barrier. The Manual establishes 'technically justified criteria' for packages in order to ensure safe interim storage and handling outside an engineered barrier. The Prioritization Methodology establishes a risk-based procedure for identifying the order to repackage that would most efficiently reduce the overall risk. It is a logical extension of the work performed to meet the two earlier DNFSB recommendations to include all materials stored outside of engineered barriers, i.e., not just excess materials. LANL will continue to work all aspects of a comprehensive Implementation Plan to d monstrate all aspects of compliance with the Manual. Assessment of materials in nonstandard containers utilizing a risk based approach, repackaging up to 400 containers/year; activities include reprocessing of items to allow container consolidation and subsequent increase in vault capacity. Continued efforts in establishing and implementing a Surveillance and Maintenance Program for current Hagans and for the NG SNMCSs supported by a database for packaging and surveillance. Elastomer aging studies for the NG SNMCs will continue to justify extending the design life well beyond the currently specified five years. First production with containers available for use anticipated in June 2010. LANL will continue to define schedule and resources to meet these objectives.

  8. Picornaviruses and nuclear functions: Targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus

    E-Print Network [OSTI]

    Flather, D; Semler, BL

    2015-01-01

    interaction of heterogeneous nuclear ribonucleoprotein C2011). Nucleoporins: leaving the nuclear pore complex for ainduced rearrangement of the nuclear pore complex: hijacking

  9. Western Michigan University is a weapon free school. By order of the Board of Trustees: "No person shall possess on university property any firearms or other dangerous weapons with the exception of

    E-Print Network [OSTI]

    de Doncker, Elise

    person shall possess on university property any firearms or other dangerous weapons with the exception considered a dangerous weapon. Stun gun or taser, or any device that produces electrical current intended

  10. Report of a Workshop in Nuclear Forces and Nonproliferation held at the Woodrow Wilson International Center for Scholars, Washington, DC

    SciTech Connect (OSTI)

    Pilat, Joseph F [Los Alamos National Laboratory

    2009-01-01

    The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review (NPR) Review and the 2010 Conference (RevCon) of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The issues discussed are at the heart of the debate on nuclear policy issues such asfuture nuclear weapons requirements and nonproliferation, but also the stockpile stewardship program and infrastructure modernization. The workshop discussions reflected the importance of the NPRfor defining the role of US nuclear forces in dealing with 21s1 century threats and providing guidance that will shape NNSA and DoD programs. They also highlighted its importancefor NPT diplomacy. The discussion noted the report of the bipartisan Congressional Commission on the Strategic Posture of the United States, and the expectation that the NPR would likely reflect its consensus to a large degree (although the Administration was not bound by the report). There was widespread support for developing thefoundationsfor a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. The discussion also revealed a convergence of views, but no consensus, on a number of important issues, including the diminished role but continued importance of nuclear weapons; the need to take action to ensure the sustainability of the stockpile, and the recapitalization of the infrastructure and expertise; and the need to take action to promote nonproliferation, arms control and disarmament objectives.

  11. Chemical Weapons Convention Requirements Part 745page 1 Export Administration Regulations September 28, 2001

    E-Print Network [OSTI]

    Bernstein, Daniel

    Chemical Weapons Convention Requirements Part 745­page 1 Export Administration Regulations September 28, 2001 §745.1 ADVANCE NOTIFICATION AND ANNUAL REPORT OF ALL EXPORTS OF SCHEDULE 1 CHEMICALS the Organization for the Prohibition of Chemical Weapons (OPCW) not less than 30 days in advance of every export

  12. A suggested approach to applying IAEA safeguards to plutonium in weapons components

    SciTech Connect (OSTI)

    Lu, M.S.; Allentuck, J.

    1998-08-01

    It is the announced policy of the United States to make fissile material removed from its nuclear weapons stockpile subject to the US-IAEA voluntary safeguards agreement. Much of this material is plutonium in the form of pits. The application of traditional IAEA safeguards would reveal Restricted Data to unauthorized persons which is prohibited by US law and international treaties. Prior to the availability of a facility for the conversion of the plutonium in the pits to a non-sensitive form this obvious long-term solution to the problem is foreclosed. An alternative near-term approach to applying IAEA safeguards while preserving the necessary degree of confidentiality is required. This paper identifies such an approach. It presents in detail the form of the US declaration; the safeguards objectives which are met; inspection techniques which are utilized and the conclusion which the IAEA could reach concerning the contents of each item and the aggregate of all items. The approach would reveal the number of containers and the aggregate mass of plutonium in a set of n containers presented to the IAEA for verification while protecting data of the isotopic composition and plutonium mass of individual components. The suggested approach provides for traceability from the time the containers are sealed until the conversion of the plutonium to a non-sensitive form.

  13. Safeguards and security requirements for weapons plutonium disposition in light water reactors

    SciTech Connect (OSTI)

    Thomas, L.L.; Strait, R.S. [Lawrence Livermore National Lab., CA (United States). Fission Energy and Systems Safety Program

    1994-10-01

    This paper explores the issues surrounding the safeguarding of the plutonium disposition process in support of the United States nuclear weapons dismantlement program. It focuses on the disposition of the plutonium by burning mixed oxide fuel in light water reactors (LWR) and addresses physical protection, material control and accountability, personnel security and international safeguards. The S and S system needs to meet the requirements of the DOE Orders, NRC Regulations and international safeguards agreements. Experience has shown that incorporating S and S measures into early facility designs and integrating them into operations provides S and S that is more effective, more economical, and less intrusive. The plutonium disposition safeguards requirements with which the US has the least experience are the implementation of international safeguards on plutonium metal; the large scale commercialization of the mixed oxide fuel fabrication; and the transportation to and loading in the LWRs of fresh mixed oxide fuel. It is in these areas where the effort needs to be concentrated if the US is to develop safeguards and security systems that are effective and efficient.

  14. Contraband Detection with Nuclear Resonance Fluorescence: Feasibility and Impact

    SciTech Connect (OSTI)

    Pruet, J; Lange, D

    2007-01-03

    In this report they show that cargo interrogation systems developed to thwart trafficking of illicit nuclear materials could also be powerful tools in the larger fight against contraband smuggling. In particular, in addition to detecting special nuclear materials, cargo scanning systems that exploit nuclear resonance fluorescence to detect specific isotopes can be used to help find: chemical weapons; some drugs as well as some chemicals regulated under the controlled substances act; precious metals; materials regulated under export control laws; and commonly trafficked fluorocarbons.

  15. Nuclear forensics: Soil content

    SciTech Connect (OSTI)

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  16. Making the World Safe for Nuclear Energy 65 John Deutch, Institute Professor at the Massachusetts Institute of Technology, served as

    E-Print Network [OSTI]

    Deutch, John

    -Qaeda considers obtaining nuclear weapons to be a religious duty, presenting a risk of catastrophic terrorismDeutch,ArnoldKanter,ErnestMonizandDanielPoneman Interestin building nuclear power stationsis stirring At the same time, the world may be on the verge of a new phase of widespread deployment of nuclear power. The rapidly growing global demand for electricity

  17. To state the policy of LSU regarding the possession of firearms and dangerous weapons within its facilities and premises and

    E-Print Network [OSTI]

    Harms, Kyle E.

    PURPOSE To state the policy of LSU regarding the possession of firearms and dangerous weapons other firearm from which a shot or shots are discharged by an explosive. Dangerous Weapons. Any gas, LSU prohibits the possession of firearms or other dangerous weapons within the campus residences

  18. Flight Test of Weapons System Body by Navy Successful | National...

    National Nuclear Security Administration (NNSA)

    nuclear explosive testing." The FCET-51 reentry body was designed to measure vibration and shock environments in flight. The next-generation telemetry capability was...

  19. NRC - regulator of nuclear safety

    SciTech Connect (OSTI)

    1997-05-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

  20. Gas Centrifuges and Nuclear Proliferation

    SciTech Connect (OSTI)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  1. Reactor options for disposition of excess weapon plutonium: Selection criteria and decision process for assessment

    SciTech Connect (OSTI)

    Edmunds, T.; Buonpane, L.; Sicherman, A.; Sutcliffe, W.; Walter, C.; Holman, G.

    1994-01-01

    DOE is currently considering a wide range of alternatives for disposition of excess weapon plutonium, including using plutonium in mixed oxide fuel for light water reactors (LWRs). Lawrence Livermore National Laboratory (LLNL) has been tasked to assist DOE in its efforts to develop a decision process and criteria for evaluating the technologies and reactor designs that have been proposed for the fission disposition alternative. This report outlines an approach for establishing such a decision process and selection criteria. The approach includes the capability to address multiple, sometimes conflicting, objectives, and to incorporate the impact of uncertainty. The approach has a firm theoretical foundation and similar approaches have been used successfully by private industry, DOE, and other government agencies to support and document complex, high impact technology choice decisions. Because of their similarity and relatively simple technology, this report focuses on three light water reactors studied in Phase 1 of the DOE Plutonium Disposition Study. The decision process can be extended to allow evaluation of other reactor technologies and disposition options such as direct disposal and retrievable storage.

  2. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect (OSTI)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

  3. Soviet short-range nuclear forces: flexible response or flexible aggression. Student essay

    SciTech Connect (OSTI)

    Smith, T.R.

    1987-03-23

    This essay takes a critical look at Soviet short-range nuclear forces in an effort to identify Soviet capabilities to fight a limited nuclear war with NATO. From an analysis of Soviet military art, weapon-system capabilities and tactics, the author concludes that the Soviets have developed a viable limited-nuclear-attack option. Unless NATO reacts to this option, the limited nuclear attack may become favored Soviet option and result in the rapid defeat of NATO.

  4. Nuclear materials safeguards for the future

    SciTech Connect (OSTI)

    Tape, J.W.

    1995-12-31

    Basic concepts of domestic and international safeguards are described, with an emphasis on safeguards systems for the fuel cycles of commercial power reactors. Future trends in institutional and technical measures for nuclear materials safeguards are outlined. The conclusion is that continued developments in safeguards approaches and technology, coupled with institutional measures that facilitate the global management and protection of nuclear materials, are up to the challenge of safeguarding the growing inventories of nuclear materials in commercial fuel cycles in technologically advanced States with stable governments that have signed the nonproliferation treaty. These same approaches also show promise for facilitating international inspection of excess weapons materials and verifying a fissile materials cutoff convention.

  5. Iraq's nuclear hide-and-seek

    SciTech Connect (OSTI)

    Albright, D. (Friends of the Earth, Washington, DC (United States)); Hibbs, M.

    1991-09-01

    The revelation that Iraq had spent as much as $8 billion on its calutron program implies that Iraq sought to develop a large and renewable weapons material stockpile. While the calutron revelations are alarming, a nuclear weapons program requires more than equipment to produce fissile materials. Iraq lacked the hands-on experience required to nudge its fledgling gas centrifuge program out of the laboratory and into the large-scale production phase. No information to date suggests that Iraq would have escaped serious difficulties as it moved from a calutron pilot stage to large-scale production of highly enriched uranium. The revelations have raised hard questions about the quality of reconnaissance information on Iraq's nuclear effort. But the heat fingerprints left by a large calutron production plant would become visible only after the facility was producing enriched uranium. Tracking down and eliminating Iraq's nuclear weapons capabilities under the terms of Resolution 687, and a continued embargo to halt imports of relevant technologies and equipment, will be the most effective way to prevent Iraq's nuclear program from resurfacing.

  6. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    SciTech Connect (OSTI)

    Weber, P K; Ghosal, S; Leighton, T J; Wheeler, K E; Hutcheon, I D

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developed methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.

  7. Largest Federally Owned Wind Farm Breaks Ground at U.S. Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Largest Federally Owned ... Largest Federally Owned Wind Farm Breaks Ground at U.S. Weapons Facility Posted: August 13, 2013 - 12:01pm WASHINGTON - Building on President Obama's...

  8. US weapons-useable plutonium disposition policy: implementation of the MOX fuel option 

    E-Print Network [OSTI]

    Gonzalez, Vanessa L

    1998-01-01

    A comprehensive case study was conducted on the policy problem of disposing of U.S. weapons-grade plutonium which has been declared surplus to strategic defense needs. Specifically, implementation of the mixed-oxide fuel disposition option...

  9. Auratic Weapons, World War II, and Cultural Hegemony in The Lord of the Rings

    E-Print Network [OSTI]

    Silverstein, Michelle

    2013-01-01

    When Merry and Pippin are abducted by the Orc army, oneof the Orcs, Uglúk, takes their knives away from them. Merrywith the weapons causes the orc to cast them away. Once

  10. Environmental behavior of hafnium : the impact on the disposition of weapons-grade plutonium

    E-Print Network [OSTI]

    Cerefice, Gary Steven

    1999-01-01

    Experimental and analytical studies were performed to examine the environmental behavior of hafnium and its utility as a neutron poison for the disposition of weapons-grade plutonium in Yucca Mountain. The hydrolysis of ...

  11. Mission emphasis and the determination of needs for new weapon systems

    E-Print Network [OSTI]

    Gillespie, Daniel Mark

    2009-01-01

    Efforts to understand the determination of needs of new weapon systems must take into account inputs and actions beyond the formally documented requirements generation process. This study analyzes three recent historical ...

  12. Improving weapons of mass destruction intelligence Arnold Kanter

    E-Print Network [OSTI]

    Deutch, John

    of Chemistry, Room 6-208 Massachusetts Institute of Technology Cambridge, MA 02139 [jmd@mit.edu] A paper. For example, acquiring a nuclear explosive capability depends upon obtaining highly enriched uranium (HEU

  13. CIA sheds new light on nuclear control in CIS

    SciTech Connect (OSTI)

    Lockwood, D.

    1993-03-01

    In a wide-ranging presentation to the Senate Governmental Affairs Committee February 24, 1993, newly installed CIA director James Woolsey and one of his senior aides provided a great deal of new information on nuclear weapons issues and how they are controlled in the former USSR. The main topics covered in the briefing are briefly discussed.

  14. A Plan for Nuclear Waste http://www.washingtonpost.com/wp-dyn/content/article/2006/01/29/AR2006012900719_pf.html

    E-Print Network [OSTI]

    Deutch, John

    proliferation risks. Iran, which is suspected of using nuclear power development to disguise a weapons program in civilian nuclear power programs across the globe. This decision committed the United States to direct of radioactive waste and heighten rather than reduce public concerns about expanded nuclear power. We agree

  15. Stockpile Stewardship: How we Ensure the Nuclear Deterrent without Testing

    SciTech Connect (OSTI)

    2014-09-04

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.

  16. Status of Iran's nuclear program and negotiations

    SciTech Connect (OSTI)

    Albright, David

    2014-05-09

    Iran's nuclear program poses immense challenges to international security. Its gas centrifuge program has grown dramatically in the last several years, bringing Iran close to a point where it could produce highly enriched uranium in secret or declared gas centrifuge plants before its breakout would be discovered and stopped. To reduce the risk posed by Iran's nuclear program, the P5+1 have negotiated with Iran short term limits on the most dangerous aspects of its nuclear programs and is negotiating long-term arrangements that can provide assurance that Iran will not build nuclear weapons. These long-term arrangements need to include a far more limited and transparent Iranian nuclear program. In advance of arriving at a long-term arrangement, the IAEA will need to resolve its concerns about the alleged past and possibly on-going military dimensions of Iran's nuclear program.

  17. Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility 

    E-Print Network [OSTI]

    Batson, Vicky Lynn

    1994-01-01

    ), MnO2 occluded and organically bound phases. This implies that U may be available to the environment under a range of changing conditions (e.g., Eh and pH). Sequential extractions of the floodplain sediments demonstrated the presence of chemically...

  18. Neutralization of chemical and biological weapons of mass destruction using nuclear methods 

    E-Print Network [OSTI]

    McAffrey, Veronica Lynn

    2002-01-01

    was developed using TARTNP. MCNP4C was the code used to reproduce the model. At least 27 countries now possess - or are in the process of acquiring and developing - ballistic missiles. Furthermore, more than a dozen states are pursuing offensive CBW...

  19. Plutonium contamination twenty years after the nuclear weapons accident in Spain

    SciTech Connect (OSTI)

    Iranzo, E.; Richmond, C.R.

    1987-01-01

    An accident involving two US Air Force planes engaged in a refueling operation occurred at 0922 GMT on January 17, 1966 over the town of Palomares in southeastern Spain. Three of the bombs, one intact, were found on land, in or near Palomares while the fourth was removed from the Mediterranean Sea. The parachutes of two of the bombs did not deploy resulting in the detonation of their conventional explosives and release of fissile material upon impact. Partial burning of the fissile material formed an aerosol that contaminated approximately 226 hectares of uncultivated, farmed, and urban land. The objective of this study was to determine the magnitude of the risk from internal contamination of the area inhabitants immediately after the accident and during the emergency phase and to determine the short, medium and long-term risk of internal contamination for the inhabitants of Palomares and its environs and to those who consume planet products cultivated in that area.

  20. Detecting terrorist nuclear weapons at sea: The 10th door problem

    SciTech Connect (OSTI)

    Slaughter, D R

    2008-09-15

    While screening commercial cargo containers for the possible presence of WMD is important and necessary smugglers have successfully exploited the many other vehicles transporting cargo into the US including medium and small vessels at sea. These vessels provide a venue that is currently not screened and widely used. Physics limits that make screening of large vessels prohibitive impractical do not prohibit effective screening of the smaller vessels. While passive radiation detection is probably ineffective at sea active interrogation may provide a successful approach. The physics limits of active interrogation of ships at sea from standoff platforms are discussed. Autonomous platforms that could carry interrogation systems at sea, both airborne and submersible, are summarized and their utilization discussed. An R&D program to investigate the limits of this approach to screening ships at sea is indicated and limitations estimated.