National Library of Energy BETA

Sample records for nuclear transformation technology

  1. Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY...

  2. March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Broader source: Energy.gov [DOE]

    The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE’s nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly...

  3. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  4. October 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Global Nuclear Energy Partnership (GNEP) program is still evolving. Since our report of March 22, 2006 the DOE has sought to gauge industry interest in participation in the program from its...

  5. February 2004, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ANTT Subcommittee of NERAC met February 26th and 27th (S. Pillon absent) to begin a review of the potential role of transmutation technologies in increasing the capacity of the geological...

  6. Transformational Energy Technologies

    SciTech Connect (OSTI)

    None

    2010-09-01

    Broad Funding Opportunity Announcement Project: In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agencys inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The 37 projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-Es investment in these projects catalyzed an additional $33 million in investments.

  7. National Electric Delivery Technologies Roadmap: Transforming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America National Electric Delivery Technologies Roadmap: Transforming the Grid to ...

  8. Nuclear Energy Enabling Technologies | Department of Energy

    Energy Savers [EERE]

    Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that ...

  9. Production Technology | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Production Technology NNSA continues to assure the safety, security, and reliability of the existing stockpile as it progresses towards a newly responsive nuclear weapons infrastructure as called for in the 2001 Nuclear Posture Review and described in the vision for Complex Transformation. The work is one of the key providers of design-to-manufacturing and technological readiness capabilities for this transformation effort. NNSA closely integrates planning and project selection prioritization

  10. Nuclear Energy Safety Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Technologies - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  11. Solar Energy Technologies Program: Market Transformation

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram

  12. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  13. Energy Technology Solutions: Public-Private Partnerships Transforming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010 Energy Technology Solutions: Public-Private Partnerships Transforming Industry, ...

  14. Nuclear Technology Programs

    SciTech Connect (OSTI)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  15. nuclear technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    technology NNSA Updates Export Control Regulation WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) updated the Federal rule (10 CFR Part 810, or Part 810) that regulates the export of unclassified nuclear technology and assistance. The final rule was published in the Federal Register on Feb. 23 and will go into effect on

  16. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water ...

  17. Nuclear Physics Technology Saves Lives | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Technology Saves Lives Nuclear Physics Technology Saves Lives January 11, 2006 ... The basic technology is called nuclear functional imaging. Jefferson Lab's Detector and ...

  18. Peaceful Uses of Nuclear Technology | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Peaceful Uses of Nuclear Technology United States and China Mark 10th Anniversary of Peaceful Uses of Nuclear Technology Joint Coordination Meetings CHENGDU, CHINA - On May 6 and ...

  19. Nuclear Separations Technologies Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) sponsored a workshop on nuclear separations technologies in Bethesda, Maryland, on July 27 and 28, 2011, to (1) identify common needs and potential requirements in...

  20. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  1. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  2. Nuclear Reactor Technologies

    Broader source: Energy.gov [DOE]

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%)...

  3. Advanced Nuclear Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WHEN: Apr 29, 2016 6:00 PM - 8:00 PM WHERE: National Museum of Nuclear Science & History, ... enabled the rapid expansion and testing of capabilities, while others have ...

  4. The Governance of Nuclear Technology

    SciTech Connect (OSTI)

    Vergino, E S; May, M

    2003-09-22

    Eisenhower's Atoms for Peace speech in 1953 is remembered for engaging the world, and the Soviet Union in particular, in a dialogue about arms control and the formulation of a nuclear regime in which national and international security concerns growing from this unprecedented emerging and frightening new weapons capability would be addressed while tapping the civilian promise of nuclear applications for the good of mankind. Out of it came a series of initiatives, leading fifteen years later to the NPT, intended to allow the growth and spread of the beneficial uses of nuclear know-how while constraining the incentives and capabilities for nuclear weapons. The last 50 years has seen a gradual spread in nations with nuclear weapons, other nations with nuclear knowledge and capabilities, and still others with nuclear weapon intentions. Still most nations of the world have forgone weapon development, most have signed and abided by the NPT, and some that have had programs or even weapons, have turned these capabilities off. Yet despite this experience, and despite a relatively successful record up to a few years ago, there is today a clear and generally recognized crisis in nuclear governance, a crisis that affects the future of all the cross-cutting civilian/security issues we have cited. The crux of this crisis is a lack of consensus among the major powers whose support of international efforts is necessary for effective governance of nuclear activities. The lack of consensus focuses on three challenges: what to do about non-compliance, what to do about non-adherence, and what to do about the possible leakage of nuclear materials and technologies to terrorist groups. Short of regaining consensus on the priority to be given to nuclear material and technology controls, it is unlikely that any international regime to control nuclear materials and technologies, let alone oversee a growth in the nuclear power sector, will be successful in the tough cases where it needs to

  5. Market Transformation: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  6. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Licenses Transformational

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licenses Transformational Technology for Carbon Dioxide Capture Success Story Carbon capture and storage from fossil fuel-based power generation systems are critical strategic components to curb emissions of atmospheric carbon dioxide (CO 2 ). Currently available carbon capture processes are limited-significantly reducing the efficiency of power generation and increasing electricity cost. Working in collaboration with partners at Carnegie Mellon University, NETL researchers have developed a

  7. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  8. Nuclear Filter Technology | Open Energy Information

    Open Energy Info (EERE)

    Filter Technology Jump to: navigation, search Name: Nuclear Filter Technology Place: Golden, CO Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  9. NNSA Awards Information Technology Contract | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Information Technology Contract | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  10. National Electric Delivery Technologies Roadmap: Transforming the Grid to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolutionize Electric Power in North America | Department of Energy Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America National Electric Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America This Roadmap provides a framework for all of the stakeholders that comprise the electric industry to work together to achieve common aims. National Electric Delivery Technologies Roadmap: Transforming the

  11. DOE Selects 16 Transformational Carbon Capture Technologies Projects for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding | Department of Energy 16 Transformational Carbon Capture Technologies Projects for Funding DOE Selects 16 Transformational Carbon Capture Technologies Projects for Funding August 13, 2015 - 9:59am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected 16 projects to receive funding through NETL's Carbon Capture Program. The program funds development and testing of transformational carbon dioxide (CO2) capture systems for new and existing

  12. History of nuclear technology development in Japan

    SciTech Connect (OSTI)

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  13. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organizations capabilities, facilities, and culture.

  14. Nuclear Separations Technologies Workshop Report 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    i NUCLEAR SEPARATIONS TECHNOLOGIES WORKSHOP REPORT November 7, 2011 FINAL TABLE OF CONTENTS Acronyms and Initialisms............................................................................................................ iii Executive Summary ...................................................................................................................... 1 1. Introduction

  15. Transformative Battery Technology at the National Labs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

  16. Energy Technology Solutions: Public-Private Partnerships Transforming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry, November 2010 | Department of Energy Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010 Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010 itp_successes.pdf (5.39 MB) More Documents & Publications Energy Technology Solutions ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio:

  17. The nuclear materials control technology briefing book

    SciTech Connect (OSTI)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  18. Live Broadcast on Transforming Digital Technologies Across Government

    Broader source: Energy.gov [DOE]

    On Thursday, March 24 at 1:00pm ET, join the Office of the Chief Information Office for a discussion on transforming digital technologies across the federal government.

  19. Vehicle Technologies Office Merit Review 2015: Phase Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kinetics and Alloy Microsegregation in High Pressure Die Cast Magnesium Alloys | Department of Energy Phase Transformation Kinetics and Alloy Microsegregation in High Pressure Die Cast Magnesium Alloys Vehicle Technologies Office Merit Review 2015: Phase Transformation Kinetics and Alloy Microsegregation in High Pressure Die Cast Magnesium Alloys Presentation given by University of Michigan at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and

  20. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  1. Energy Department Invests $82 Million to Advanced Nuclear Technology...

    Energy Savers [EERE]

    Energy Department Invests 82 Million to Advanced Nuclear Technology Energy Department Invests 82 Million to Advanced Nuclear Technology June 14, 2016 - 1:41pm Addthis News ...

  2. ENTECH European Nuclear Technologies Ltd | Open Energy Information

    Open Energy Info (EERE)

    ENTECH European Nuclear Technologies Ltd Jump to: navigation, search Name: ENTECH (European Nuclear Technologies Ltd.) Place: Bristol, United Kingdom Zip: BS99 7JT Product: Entech...

  3. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Accomplish- ments for 1994 2 Nuclear Materials Technology DivisionLos Alamos ... Figure 1. Acid recycle and recovery system. 3 Nuclear Materials Technology DivisionLos ...

  4. ABB Combustion Engineering nuclear technology

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  5. Human factors in nuclear technology - a history

    SciTech Connect (OSTI)

    Jones, D.B. )

    1992-01-01

    Human factors, human factors engineering (HFE), or ergonomics did not receive much formal attention in nuclear technology prior to the Three Mile Island Unit 2 (TMI-2) incident. Three principal reasons exist for this lack of concern. First, emerging technologies show little concern with how people will use a new system. Making the new technology work is considered more important than the people who will use it. Second, the culture of the users of nuclear power did not recognize a need for human factors. Traditional utilities had well established and effective engineering designs for control of electric power generation, while medicine considered the use of nuclear isotopes another useful tool, not requiring special ergonomics. Finally, the nuclear industry owed much to Admiral Rickover. He was definitely opposed.

  6. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  7. 2012 Nuclear Energy Enabling Technology Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Enabling Technology Factsheet 2012 Nuclear Energy Enabling Technology Factsheet Learn more about the Nuclear Energy Enabling Technologies (NEET) program, which will develop crosscutting technologies that directly support and complement the Office of Nuclear Energy's (NE) development of new and advanced reactor concepts and fuel cycle technologies. 2012 Nuclear Energy Enabling Technology Factsheet (1.81 MB) More Documents & Publications NEET Workshop 2010 Advanced Sensors and

  8. Effective citizen advocacy of beneficial nuclear technologies

    SciTech Connect (OSTI)

    McKibben, J. Malvyn; Wood, Susan

    2007-07-01

    In 1991, a small group of citizens from communities near the Savannah River Site (SRS) formed a pro-nuclear education and advocacy group, Citizens for Nuclear Technology Awareness (CNTA). Their purpose was to: (1) counter nuclear misinformation that dominated the nation's news outlets, (2) provide education on nuclear subjects to area citizens, students, elected officials, and (3) provide informed citizen support for potential new missions for SRS when needed. To effectively accomplish these objectives it is also essential to establish and maintain good relations with community leaders and reporters that cover energy and nuclear subjects. The organization has grown considerably since its inception and has expanded its sphere of influence. We believe that our experiences over these fifteen years are a good model for effectively communicating nuclear subjects with the public. This paper describes the structure, operation and some of the results of CNTA. (authors)

  9. Market Demonstration: NREL Helps Transformative Technologies Go Mainstream

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Continuum Magazine | NREL Three men in a laboratory look at a computer monitor. NREL and Raytheon researchers perform system-level testing on the Marine's Miramar simulated microgrid at NREL's Energy Systems Integration Facility. Photo by Dennis Schroeder, NREL Market Demonstration: NREL Helps Transformative Technologies Go Mainstream NREL bridges scientific discovery and market adoption by helping technologies move from research through development, demonstration, and deployment. Marine

  10. Proliferation Persuasion. Coercive Bargaining with Nuclear Technology

    SciTech Connect (OSTI)

    Volpe, Tristan A.

    2015-08-31

    Why do states wait for prolonged periods of time with the technical capacity to produce nuclear weapons? Only a handful of countries have ever acquired the sensitive nuclear fuel cycle technology needed to produce fissile material for nuclear weapons. Yet the enduring trend over the last five decades is for these states to delay or forgo exercising the nuclear weapons option provided by uranium enrichment or plutonium reprocessing capabilities. I show that states pause at this threshold stage because they use nuclear technology to bargain for concessions from both allies and adversaries. But when does nuclear latency offer bargaining benefits? My central argument is that challengers must surmount a dilemma to make coercive diplomacy work: the more they threaten to proliferate, the harder it becomes to reassure others that compliance will be rewarded with nuclear restraint. I identify a range of mechanisms able to solve this credibility problem, from arms control over breakout capacity to third party mediation and confidence building measures. Since each step towards the bomb raises the costs of implementing these policies, a state hits a sweet spot when it first acquires enrichment and/or reprocessing (ENR) technology. Subsequent increases in proliferation capability generate diminishing returns at the bargaining table for two reasons: the state must go to greater lengths to make a credible nonproliferation promise, and nuclear programs exhibit considerable path dependency as they mature over time. Contrary to the conventional wisdom about power in world politics, less nuclear latency thereby yields more coercive threat advantages. I marshal new primary source evidence from archives and interviews to identify episodes in the historical record when states made clear decisions to use ENR technology as a bargaining chip, and employ this theory of proliferation persuasion to explain how Japan, North Korea, and Iran succeeded and failed to barter concessions from the

  11. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  12. Nuclear technologies for Moon and Mars exploration

    SciTech Connect (OSTI)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  13. Nuclear Reactor Technology Subcommittee of NEAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of NEAC Mujid Kazimi (Chair), Ashok Bhatnagar, Doug Chapin, Tom Cochran, Mike Corradini, Regis Matzie, Harold Ray, Joy Rempe. Briefing to Nuclear Energy Advisory Committee to Department of Energy December 10, 2014 1 NRT Subcommittee Meetings * Subcommittee met on September 29, 2014. * Briefed on the March 2014 DOE "Big Idea Summit", where Idaho National Laboratory (INL) led a break-out group that discussed more rapid advanced technology deployment in nuclear power plants and more rapid

  14. technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    technology PNNL offers 'virtual tour' of Shallow Underground Laboratory For the first time, some of the world's most sensitive radiation detection systems and fundamental physics research can be seen from your desktop computer or mobile device. PNNL recently launched a virtual tour showcasing its Shallow Underground Laboratory (SUL), a facility dedicated in 2011 as... Nike Named after the Greek goddess of victory, the Nike facility includes the world's largest krypton fluoride (KrF) laser. Nike

  15. Acquired experience resulting from transforming a chemical installation into a nuclear one

    SciTech Connect (OSTI)

    Zamfirache, M.; Stefan, L.; Bornea, A.; Stefanescu, I.

    2015-03-15

    ICIT-Valcea has developed an experimental pilot-scale installation for tritium and deuterium separation. The main objective of this pilot was to demonstrate the water detritiation technology and to transfer this technology to the CANDU reactors of the Cernavoda nuclear power plant. The pilot-scale installation was initiated in 1992. The initial design and construction were performed similarly to chemical plants as the separation of isotopes was focused on only hydrogen and deuterium to assess feasibility. In a second phase we have begun to transform it into a nuclear facility with the aim of separating tritium. Moving to tritium separation has imposed a lot of changes. Changes consisted mainly of: -) re-design of the technological systems for nuclear material processing, applying specific codes and standards (ASME, Romanian nuclear specific pressure boundary prescriptions for code classification); -) design and implementation of new systems, classified as safety systems; -) re-design and implementation of command and control systems, complying with the requirements of reliability and maintenance required for the project promoted; -) revaluation of auxiliary systems (utilities, power supply); -) implementing radiation protection systems, including secondary barriers; -) implementing and maintaining environment operational program specific to the new nuclear plant; -) developing and conducting safety analyzes; and -) the production of specific documentation to obtain the necessary permits for construction, commissioning and operation of the plant.

  16. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    SciTech Connect (OSTI)

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  17. June 2015 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    June 2015 Most Viewed Documents for Fission And Nuclear Technologies Estimation of gas ... MIGRATION IN SOILS OF THE CHERNOBYL NUCLEAR POWER PLANT EXCLUSION ZONE Farfan, E ...

  18. Most Viewed Documents for Fission and Nuclear Technologies: December...

    Office of Scientific and Technical Information (OSTI)

    Most Viewed Documents for Fission and Nuclear Technologies: December 2014 Stress analysis ... States)) (1992) 67 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. ...

  19. March 2016 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    March 2016 Most Viewed Documents for Fission And Nuclear Technologies Estimation of gas ... methods and test results utilized for nuclear core applications (LWBR Development ...

  20. December 2015 Most Viewed Documents for Fission And Nuclear Technologi...

    Office of Scientific and Technical Information (OSTI)

    December 2015 Most Viewed Documents for Fission And Nuclear Technologies Estimation of gas ... methods and test results utilized for nuclear core applications (LWBR Development ...

  1. NREL: Technology Deployment - Solar Deployment and Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with

  2. State Nuclear Power Technology Corporation SNPTC | Open Energy...

    Open Energy Info (EERE)

    Technology Corporation SNPTC Jump to: navigation, search Name: State Nuclear Power Technology Corporation (SNPTC) Place: Beijing, Beijing Municipality, China Zip: 100032 Product:...

  3. Energy Department Invests $67 Million to Advanced Nuclear Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    67 Million to Advanced Nuclear Technology Energy Department Invests 67 Million to Advanced Nuclear Technology August 20, 2014 - 12:00pm Addthis News Media Contact 202-586-4940 ...

  4. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  5. Nuclear Reactor Technology Subcommittee of NEAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEAC Mike Corradini (UW), Chair Ashok Bhatnagar (FPL), Doug Chapin (NPR), Tom Cochran (NRDC), Regis Matzie (Consultant) , Harold Ray (Consultant), Joy Rempe (Consultant) Nuclear Energy Advisory Committee Meeting December 11, 2015 1 Subcommittee Scope * Congress appropriated funds for "an advanced test/demonstration reactor planning study by the national laboratories, industry, and relevant stakeholders of such a reactor in the U.S. The study will evaluate advanced reactor technology

  6. Fostering the Next Generation of Nuclear Energy Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fostering the Next Generation of Nuclear Energy Technology Fostering the Next Generation of Nuclear Energy Technology September 29, 2014 - 11:06am Addthis Fostering the Next Generation of Nuclear Energy Technology Peter W. Davidson Peter W. Davidson Former Executive Director of the Loan Programs Office (LPO) What are the key facts? If finalized, this solicitation would make available $12.6 billion in loan guarantees for advanced nuclear energy technologies. Learn more about the draft

  7. Getting from here to there – energy technology transformation pathways in the EMF-27 scenarios

    SciTech Connect (OSTI)

    Krey, Volker; Luderer, Gunnar; Clarke, Leon E.; Kriegler, Elmar

    2014-04-01

    This apper discusses Getting from here to there – energy technology transformation pathways in the EMF-27 scenarios

  8. NEAC Nuclear Reactor Technology Subcommittee Report for December 11, 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting | Department of Energy Nuclear Reactor Technology Subcommittee Report for December 11, 2015 Meeting NEAC Nuclear Reactor Technology Subcommittee Report for December 11, 2015 Meeting NEAC Nuclear Reactor Technology Subcommittee Report (856.79 KB) More Documents & Publications MEETING MATERIALS: DECEMBER 11, 2015 MEETING MATERIALS: JUNE 17, 2016 MEETING MATERIALS: JUNE 26, 2015

  9. Preventing Proliferation of Nuclear Materials and Technology | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Preventing Proliferation of Nuclear Materials and Technology January 31, 2011 NNSA's Defense Nuclear Nonproliferation (DNN) Program plays a critical role in the nation's defense by preventing the spread of nuclear weapons and related materials, technologies and know-how. Leveraging the expertise and detection equipment developed as a result of a 60-year investment in nuclear security, DNN works with international partners and in more than 100

  10. Report, Long-Term Nuclear Technology Research and Development Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are

  11. Summary, Long-Term Nuclear Technology Research and Development Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary, Long-Term Nuclear Technology Research and Development Plan Summary, Long-Term Nuclear Technology Research and Development Plan In 1998, DOE established the Nuclear Energy Research Advisory Committee (NERAC) to provide advice to the Secretary and to the Director, Office of Nuclear Energy, Science, and Technology (NE), on the broad range of non-defense DOE nuclear technology programs. The NERAC recommended development of a long-range R&D program. This R&D

  12. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  13. March 2015 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    5 Most Viewed Documents for Fission And Nuclear Technologies Stress analysis and ... Maimoni, A. (1980) 101 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. ...

  14. Most Viewed Documents for Fission And Nuclear Technologies: September...

    Office of Scientific and Technical Information (OSTI)

    Most Viewed Documents for Fission And Nuclear Technologies: September 2014 Estimation of ... H.J. (1977) 71 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. ...

  15. March 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    4 Most Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 72 Peer-review study of the draft ...

  16. July 2013 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    July 2013 Most Viewed Documents for Fission And Nuclear Technologies Estimation of gas ... Ho, F.H. (1988) 136 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. ...

  17. June 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    June 2014 Most Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 78 Estimation of gas leak rates ...

  18. April 2013 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    April 2013 Most Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (null) 298 Estimation of gas leak rates ...

  19. Advances in Nuclear Nonproliferation Technology & Policy Conference:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bridging the Gaps in Nuclear Nonproliferation Advances in Nuclear Nonproliferation Technology & Policy Conference Advances in Nuclear Nonproliferation Technology & Policy Conference: Bridging the Gaps in Nuclear Nonproliferation WHEN: Sep 25, 2016 8:00 AM - Sep 30, 2016 5:00 PM WHERE: La Fonda Hotel, Santa Fe, NM CONTACT: Bill Flor (505) 665-8768 CATEGORY: Community Science INTERNAL: Calendar Login Event Description This conference seeks to build upon previous ANS topical conferences

  20. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Workers | Department of Energy Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC)

  1. Energy Department Invests $82 Million to Advanced Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Invests $82 Million to Advanced Nuclear Technology Energy Department Invests $82 Million to Advanced Nuclear Technology June 14, 2016 - 1:41pm Addthis News release from the Department of Energy, June 14, 2016. WASHINGTON -Today, the U.S. Department of Energy (DOE) announced over $82 million in nuclear energy research, facility access, crosscutting technology development, and infrastructure awards in 28 states. In total, 93 projects were selected to receive funding that

  2. Energy Department Invests $82 Million to Advanced Nuclear Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 82 Million to Advanced Nuclear Technology Energy Department Invests $82 Million to Advanced Nuclear Technology June 14, 2016 - 1:49pm Addthis NEWS MEDIA CONTACT (202) 586-4940 DOENews@hq.doe.gov WASHINGTON -Today, the U.S. Department of Energy (DOE) announced over $82 million in nuclear energy research, facility access, crosscutting technology development, and infrastructure awards in 28 states. In total, 93 projects were selected to receive funding that will help push

  3. Idaho Nuclear Technology and Engineering Center Tank Farm Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Idaho Nuclear Technology and Engineering Center Tank Farm Facility Idaho Nuclear Technology and Engineering Center Tank Farm Facility The Secretary of Energy signed Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 basis of determination for the disposal of grouted residual waste in the tank systems at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF) on November 19, 2006. Section 3116 of the

  4. Applying RFID technology in nuclear materials management.

    SciTech Connect (OSTI)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  5. Fusion Nuclear Science and Technology Program - Status and Plans...

    Office of Environmental Management (EM)

    Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research Presentation from the 34th Tritium Focus Group Meeting held in ...

  6. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research Presentation from the 35th Tritium Focus Group Meeting held in ...

  7. OSTIblog Articles in the nuclear weapons technology Topic | OSTI...

    Office of Scientific and Technical Information (OSTI)

    noted by Pete Domenici, senior fellow at the Bipartisan Policy... Related Topics: Bureau of Mines, communications, hydraulic fracturing, nasa, nuclear weapons technology, Oil Shale

  8. Section 3116 Determination for Idaho Nuclear Technology and Engineerin...

    Office of Environmental Management (EM)

    by Secretary Samuel W. Bodman Section 3116 Determination for Idaho Nuclear Technology and Engineering Center Tank Farm Facility, signed by Secretary Samuel W. Bodman Section 3116 ...

  9. NEAC Nuclear Reactor Technology Subcommittee Report for December...

    Broader source: Energy.gov (indexed) [DOE]

    NEAC Nuclear Reactor Technology Subcommittee Report (856.79 KB) More Documents & Publications MEETING MATERIALS: DECEMBER 11, 2015 MEETING MATERIALS: JUNE 17, 2016 MEETING ...

  10. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  11. The Los Alamos nuclear safeguards and nonproliferation technology development program

    SciTech Connect (OSTI)

    Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

    1994-04-01

    For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

  12. Argonne to work with small businesses on nuclear technologies | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory You may also like Argonne to work with small businesses on nuclear technologies July 6, 2016 Argonne, NNSA collaborate with China to convert micro-reactor April 22, 2016 10 cool science and technology stories from Argonne in 2015 December 23, 2015 Nuclear engineer Stauff awarded for excellence in research and early-career leadership November 9, 2015 MeV Summer School prepares next-generation nuclear scientists September 15, 2015 Argonne to work with small businesses on

  13. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  14. Nuclear Physics Accelerator Technology Yields New Process for Producing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boron-Nitride Nanotubes | U.S. DOE Office of Science (SC) Nuclear Physics Accelerator Technology Yields New Process for Producing Boron-Nitride Nanotubes Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  15. Configuration and technology implications of potential nuclear hydrogen system applications.

    SciTech Connect (OSTI)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given

  16. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect (OSTI)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  17. Advances in Nuclear Nonproliferation Technology & Policy Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification and Inspection Commission (UNMOVIC) Special Panel Sessions include: Iran Deal: 1 Year Later 2016 Nuclear Security Summit Lessons from the First 50 Years of ...

  18. Energy Department Announces $66 Million for Transformational Energy Technologies

    Broader source: Energy.gov [DOE]

    33 Technologies in 18 States Will Help Secure America’s Energy Future in Advanced Manufacturing and Natural Gas

  19. Y-12 honors inventors with Technology Transfer awards | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) inventors with Technology Transfer awards Tuesday, July 28, 2015 - 8:35am NNSA Blog , Twenty-nine Y-12 inventors were recognized for their technology and innovation during the recent 11th Annual Technology Transfer Awards. The site has long been producing technologies initially used at Y-12 and later transferred to the private sector. NNSA Blog The patents that were awarded were in areas ranging from nuclear material simulation devices to enhancing the

  20. Most Viewed Documents - Fission and Nuclear Technologies | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Fission and Nuclear Technologies Metals design handbook Betts, W.S. (1988) Estimation of gas leak rates through very small orifices and channels. From sealed PuOsub 2 containers ...

  1. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect (OSTI)

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  2. PPPL's MINDS Technology Takes Nuclear Detection to the Marketplace |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy PPPL's MINDS Technology Takes Nuclear Detection to the Marketplace PPPL's MINDS Technology Takes Nuclear Detection to the Marketplace October 20, 2011 - 5:25pm Addthis Charles Gentile (center) and other members of the MINDS team, including Ken Silber (right) and Bill Davis (left) work on new techniques to identify radionuclides. | Photo by Elle Starkman/Princeton Plasma Physics Laboratory Office of Communications Charles Gentile (center) and other members of the MINDS

  3. Vehicle Technologies Office Merit Review 2015: Phase Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Michigan at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation ... Annual Progress Report Integrated ...

  4. Production Technology | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The work is one of the key providers of design-to-manufacturing and technological ... and facilities and use science-based design, engineering, and manufacturing to ...

  5. Advanced Technology Development and Mitigation | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and ...

  6. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect (OSTI)

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  7. Technologies for detection of nuclear materials

    SciTech Connect (OSTI)

    DeVolpi, A.

    1996-03-30

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

  8. ARPA-E Awards $130 Million for 66 Transformational Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Awards $130 Million for 66 Transformational Energy Technology Projects ARPA-E Awards $130 Million for 66 Transformational Energy Technology Projects November 28, 2012 - 1:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, Energy Secretary Steven Chu announced 66 cutting-edge research projects selected by the Energy Department's Advanced Research Projects Agency - Energy (ARPA-E) to receive a total of $130 million in funding through its

  9. ABB Combustion Engineering`s nuclear experience and technologies

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  10. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  11. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect (OSTI)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  12. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect (OSTI)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  13. technology transfer | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Transfer Awards. The site has long been producing technologies initially used at Y-12 and later transferred to the private sector. The patents that were awarded were in areas

  14. Report of the Nuclear Reactor Technology Subcommittee

    Broader source: Energy.gov (indexed) [DOE]

    ... a particular reactor technology (fast or thermal, gas-cooled or sodium-cooled) could be used to reduce ... development of first-of-a-kind reactors within the NGNP have proved to ...

  15. Nuclear Reactor Technology Subcommittee of NEAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEAC: Advanced Test/Demo Reactor Options Study Mike Corradini (UW), Chair Ashok Bhatnagar (Consultant), Doug Chapin (MPR), Tom Cochran (NRDC emeritus), Regis Matzie (Consultant) , Harold Ray (Consultant), Joy Rempe (Consultant), John Sackett (Consultant) Nuclear Energy Advisory Committee Meeting June 17, 2016 1 NRT Subcommittee Scope * Congress appropriated funds for "an advanced test/demonstration reactor planning study by the national laboratories, industry, and relevant stakeholders of

  16. Computer Vision Technology Transforms Outcomes |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goal Line Technology Can Improve Industry Productivity Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) How Goal Line Technology Can Improve Industry Productivity Paulo Gallotti Rodrigues 2014.08.06 Ask any soccer fan and he or she will tell you that 2014 World Cup was one of the best in many years. We can list many

  17. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    SciTech Connect (OSTI)

    David Shropshire

    2009-09-01

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.

  18. June 2016 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information Fission And Nuclear Technologies Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. (1977) 449 Forces in bolted joints: analysis methods and test results utilized for nuclear core applications (LWBR Development Program) Crescimanno, P.J.; Keller, K.L. (1981) 280 Stress analysis and evaluation of a rectangular pressure vessel.

  19. Most Viewed Documents for Fission and Nuclear Technologies: December 2014 |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information Most Viewed Documents for Fission and Nuclear Technologies: December 2014 Stress analysis and evaluation of a rectangular pressure vessel. [For equipment for sampling Hanford tank radwaste] Rezvani, M.A.; Ziada, H.H. (Westinghouse Hanford Co., Richland, WA (United States)); Shurrab, M.S. (Westinghouse Savannah River Co., Aiken, SC (United States)) (1992) 67 Behavior of spent nuclear fuel in water pool storage Johnson,

  20. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate – and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance

  1. Chapter 4: Advancing Clean Electric Power Technologies | Nuclear Fuel Cycles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the

  2. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect (OSTI)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  3. March 2014 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information 4 Most Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 72 Peer-review study of the draft handbook for human-reliability analysis with emphasis on nuclear-power-plant applications, NUREG/CR-1278 Brune, R.L.; Weinstein, M.; Fitzwater, M.E. (1983) 67 Stress analysis and evaluation of a rectangular pressure vessel. [For equipment for sampling

  4. TRANSFORMER

    DOE Patents [OSTI]

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  5. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  6. Current Status of Helium-3 Alternative Technologies for Nuclear Safeguards

    SciTech Connect (OSTI)

    Henzlova, Daniela; Kouzes, R.; McElroy, R.; Peerani, P.; Aspinall, M.; Baird, K.; Bakel, A.; Borella, M.; Bourne, M.; Bourva, L.; Cave, F.; Chandra, R.; Chernikova, D.; Croft, S.; Dermody, G.; Dougan, A.; Ely, J.; Fanchini, E.; Finocchiaro, P.; Gavron, Victor; Kureta, M.; Ianakiev, Kiril Dimitrov; Ishiyama, K.; Lee, T.; Martin, Ch.; McKinny, K.; Menlove, Howard Olsen; Orton, Ch.; Pappalardo, A.; Pedersen, B.; Peranteau, D.; Plenteda, R.; Pozzi, S.; Schear, M.; Seya, M.; Siciliano, E.; Stave, S.; Sun, L.; Swinhoe, Martyn Thomas; Tagziria, H.; Vaccaro, S.; Takamine, J.; Weber, A. -L.; Yamaguchi, T.; Zhu, H.

    2015-12-01

    International safeguards inspectorates (e.g., International Atomic Energy Agency {IAEA}, or Euratom) rely heavily on neutron assay techniques, and in particular, on coincidence counters for the verification of declared nuclear materials under safeguards and for monitoring purposes. While 3He was readily available, the reliability, safety, ease of use, gamma-ray insensitivity, and high intrinsic thermal neutron detection efficiency of 3He-based detectors obviated the need for alternative detector technologies. However, the recent decline of the 3He gas supply has triggered international efforts to develop and field neutron detectors that make use of alternative materials. In response to this global effort, the U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) and Euratom launched a joint effort aimed at bringing together international experts, technology users and developers in the field of nuclear safeguards to discuss and evaluate the proposed 3He alternative materials and technologies. The effort involved a series of two workshops focused on detailed overviews and viability assessments of various 3He alternative technologies for use in nuclear safeguards applications. The key objective was to provide a platform for collaborative discussions and technical presentations organized in a compact, workshop-like format to stimulate interactions among the participants. The meetings culminated in a benchmark exercise providing a unique opportunity for the first inter-comparison of several available alternative technologies. This report provides an overview of the alternative technology efforts presented during the two workshops along with a summary of the benchmarking activities and results. The workshop recommendations and key consensus observations are discussed in the report, and used to outline a proposed path forward and future needs foreseeable in the area of 3

  7. Important technology considerations for space nuclear power systems

    SciTech Connect (OSTI)

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  8. Nuclear Safety R&D in the Waste Processing Technology Development...

    Office of Environmental Management (EM)

    & Technology 2 Outline Nuclear Safety Research & Development Overview Summary of EM- NSR&D Presentations from February 2009 Evaluating Performance of Nuclear Grade HEPA Filters ...

  9. (Safety and reliability of nuclear power plant technology)

    SciTech Connect (OSTI)

    Dickson, T.L.

    1990-10-22

    The traveler attended the 16th MPA Seminar on the Safety and Reliability of Plant Technology with Special Emphasis on Nuclear Technology. The objective of the trip was to gather information and data that could prove useful to the US Nuclear Regulatory Commission (USNRC) sponsored Heavy-Section Steel Irradiation (HSSI) and Heavy-Section Steel Technology (HSST) Programs and to present a paper entitled, Effects of Irradiation on Initiation and Crack-Arrest Toughness of Two High-Copper Welds and on Stainless Steel Cladding. This paper summarizes results from the 5th, 6th, and 7th Irradiation Series of experiments performed within the HSSI Program by the Metals and Ceramics Division at Oak Ridge National Laboratory (ORNL).

  10. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect (OSTI)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  11. {alpha}-particle optical potentials for nuclear astrophysics (NA) and nuclear technology (NT)

    SciTech Connect (OSTI)

    Avrigeanu, V.; Avrigeanu, M.

    2012-11-20

    The high precision of recent measurements for low-energy {alpha}-particle elastic-scattering as well as induced-reaction data makes possible the understanding of actual limits and possible improvement of the global optical model potentials parameters. Involvement of recent optical potentials for reliable description of both the elastic scattering and emission of {alpha}-particles, of equal interest for nuclear astrophysics (NA) and nuclear technology (NT) for fusion devices, is discussed in the present work.

  12. April 2013 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information April 2013 Most Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (null) 298 Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. (null) 292 Graphite design handbook Ho, F.H. (1988) 216 System Definition and Analysis: Power Plant Design and Layout NONE

  13. July 2013 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information July 2013 Most Viewed Documents for Fission And Nuclear Technologies Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. (1977) 286 Graphite design handbook Ho, F.H. (1988) 136 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 123 Stress analysis and evaluation of a rectangular pressure vessel. [For

  14. June 2014 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information June 2014 Most Viewed Documents for Fission And Nuclear Technologies Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 78 Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. (1977) 71 Review of thorium fuel reprocessing experience Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H. (1978) 70 Stress

  15. Most Viewed Documents for Fission And Nuclear Technologies: September 2014

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information for Fission And Nuclear Technologies: September 2014 Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. (1977) 71 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 68 Stress analysis and evaluation of a rectangular pressure vessel. [For equipment for sampling Hanford tank radwaste] Rezvani, M.A.;

  16. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    SciTech Connect (OSTI)

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  17. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    SciTech Connect (OSTI)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  18. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect (OSTI)

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  19. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect (OSTI)

    Harmon, J.E.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  20. Nuclear technology programs. Semiannual progress report, April--September 1991

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  1. Nuclear Technology Programs semiannual progress report, October 1990--March 1991

    SciTech Connect (OSTI)

    1992-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  2. Refractory alloy technology for space nuclear power applications

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  3. September 2013 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information September 2013 Most Viewed Documents for Fission And Nuclear Technologies Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. (1977) 133 Stress analysis and evaluation of a rectangular pressure vessel. [For equipment for sampling Hanford tank radwaste] Rezvani, M.A.; Ziada, H.H. (Westinghouse Hanford Co., Richland, WA (United

  4. September 2015 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information September 2015 Most Viewed Documents for Fission And Nuclear Technologies Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. (1977) 444 System Definition and Analysis: Power Plant Design and Layout NONE (1996) 273 Stress analysis and evaluation of a rectangular pressure vessel. [For equipment for sampling Hanford tank

  5. Future Science & Technology Programs | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Programs Future Science & Technology Programs NNSA has several major projects which are designed with future stockpile needs in mind. They are focused on the research and development efforts and the long-term vitality of science and engineering at NNSA. NNSA is focused on developing and maintaining the critical scientific and technical capabilities that are needed to maintain the nuclear weapons stockpile for the long term. Doing so is technically challenging, and

  6. December 2015 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information December 2015 Most Viewed Documents for Fission And Nuclear Technologies Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. (1977) 432 System Definition and Analysis: Power Plant Design and Layout NONE (1996) 323 Stress analysis and evaluation of a rectangular pressure vessel. [For equipment for sampling Hanford tank

  7. June 2015 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information June 2015 Most Viewed Documents for Fission And Nuclear Technologies Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. (1977) 305 System Definition and Analysis: Power Plant Design and Layout NONE (1996) 296 Stress analysis and evaluation of a rectangular pressure vessel. [For equipment for sampling Hanford tank radwaste]

  8. March 2015 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information 5 Most Viewed Documents for Fission And Nuclear Technologies Stress analysis and evaluation of a rectangular pressure vessel. [For equipment for sampling Hanford tank radwaste] Rezvani, M.A.; Ziada, H.H. (Westinghouse Hanford Co., Richland, WA (United States)); Shurrab, M.S. (Westinghouse Savannah River Co., Aiken, SC (United States)) (1992) 223 Estimation of gas leak rates through very small orifices and channels. [From

  9. Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    O'Connell, J. Michael

    2002-01-01

    OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

  10. Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's support for the next-generation nuclear energy technology -- small modular reactors.

  11. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  12. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  13. Proceedings of the Nuclear Criticality Technology Safety Workshop

    SciTech Connect (OSTI)

    Rene G. Sanchez

    1998-04-01

    This document contains summaries of most of the papers presented at the 1995 Nuclear Criticality Technology Safety Project (NCTSP) meeting, which was held May 16 and 17 at San Diego, Ca. The meeting was broken up into seven sessions, which covered the following topics: (1) Criticality Safety of Project Sapphire; (2) Relevant Experiments For Criticality Safety; (3) Interactions with the Former Soviet Union; (4) Misapplications and Limitations of Monte Carlo Methods Directed Toward Criticality Safety Analyses; (5) Monte Carlo Vulnerabilities of Execution and Interpretation; (6) Monte Carlo Vulnerabilities of Representation; and (7) Benchmark Comparisons.

  14. January 2013 Most Viewed Documents for Fission And Nuclear Technologies |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information January 2013 Most Viewed Documents for Fission And Nuclear Technologies Laboratory studies of shear/leach processing of zircaloy clad metallic uranium reactor fuel Swanson, J.L.; Bray, L.A.; Kjarmo, H.E.; Ryan, J.L.; Matsuzaki, C.L.; Pitman, S.G.; Haberman, J.H. Working session 3: Tubing integrity Cueto-Felgueroso, C. [Tecnatom, S.A., San Sebastian de los Reyes, Madrid (Spain)]; Strosnider, J. [NRC, Washington, DC (United

  15. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect (OSTI)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  16. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MARKET TRANSFORMATION SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.9 - 1 3.9 Market Transformation The Market Transformation sub-program is conducting activities to help implement and promote commercial and pre-commercial hydrogen and fuel cell systems in real world operating environments. These activities also provide feedback to research programs, U.S. industry manufacturers, and potential technology users. Currently, the capital and installation costs of early

  17. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  18. Market Transformation

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  19. Market Transformation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  20. Market Transformation

    SciTech Connect (OSTI)

    2011-02-15

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  1. NEAC Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study October 6 th , 2015 Meeting Summary and Comments Given direction from Congress, the Department of Energy's Office of Nuclear Energy (DOE- NE) is conducting a planning study for an advanced test and/or demonstration reactor (AT/DR study) in the United States. The Nuclear Energy Advisory Committee (NEAC) and specifically its Nuclear Reactor Technology (NRT) subcommittee has been asked to provide

  2. Nuclear physics detector technology applied to plant biology research

    SciTech Connect (OSTI)

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  3. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  4. Application of Telepresence Technologies to Nuclear Material Safeguards

    SciTech Connect (OSTI)

    Wright, M.C.; Rome, J.A.

    1999-09-20

    Implementation of remote monitoring systems has become a priority area for the International Atomic Energy Agency and other international inspection regimes. For the past three years, DOE2000 has been the US Department of Energy's (DOE's) initiative to develop innovative applications to exploit the capabilities of broadband networks and media integration. The aim is to enhance scientific collaboration by merging computing and communications technologies. These Internet-based telepresence technologies could be easily extended to provide remote monitoring and control for confidence building and transparency systems at nuclear facilities around the world. One of the original DOE2000 projects, the Materials Microcharacterization Collaboratory is an interactive virtual laboratory, linking seven DOE user facilities located across the US. At these facilities, external collaborators have access to scientists, data, and instrumentation, all of which are available to varying degrees using the Internet. Remote operation of the instruments varies between passive (observational) to active (direct control), in many cases requiring no software at the remote site beyond a Web browser. Live video streams are continuously available on the Web so that participants can see what is happening at a particular location. An X.509 certificate system provides strong authentication, The hardware and software are commercially available and are easily adaptable to safeguards applications.

  5. Energy Department Invests $60 Million to Advance Nuclear Technology

    Broader source: Energy.gov [DOE]

    The Department of Energy announces $60 million in awards for 68 nuclear projects across the country.

  6. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  7. U.S. Department of Energy Office of Nuclear Energy, Science and Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for

  8. Technology Prioritization: Transforming the U.S. Building Stock to Embrace Energy Efficiency

    SciTech Connect (OSTI)

    2013-07-01

    This paper discusses the efforts to accelerate the transformation in the U.S. building energy efficiency sector using a new technology prioritization framework. The underlying analysis examines building energy use micro segments using the Energy Information Administration Annual Energy Outlook and other publically available information. The U.S. Department of Energy’s Building Technologies Office (BTO) has developed a prioritization tool in an effort to inform programmatic decision making based on the long-term national impact of different energy efficiency measures. The prioritization tool can be used to investigate energy efficiency measures under a variety of scenarios and has a built-in energy accounting framework to prevent double counting of energy savings within any given portfolio. This tool is developed to inform decision making and estimate long term potential energy savings for different market adoption scenarios. It provides an objective comparison of new and existing measures and is being used to inform decision making with respect to BTO’s portfolio of projects.

  9. Technology Prioritization: Transforming the U.S. Building Stock to Embrace Energy Efficiency

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Farese, Philip; Abramson, Alexis; Phelan, Patrick

    2013-01-01

    The U.S. Buildings sector is responsible for about 40% of the national energy expenditures. This is due in part to wasteful use of resources and limited considerations made for energy efficiency during the design and retrofit phases. Recent studies have indicated the potential for up to 30-50% energy savings in the U.S. buildings sector using currently available technologies. This paper discusses efforts to accelerate the transformation in the U.S. building energy efficiency sector using a new technology prioritization framework. The underlying analysis examines building energy use micro segments using the Energy Information Administration Annual Energy Outlook and other publically available information. The tool includes a stock-and-flow model to track stock vintage and efficiency levels with time. The tool can be used to investigate energy efficiency measures under a variety of scenarios and has a built-in energy accounting framework to prevent double counting of energy savings within any given portfolio. This tool is developed to inform decision making and estimate long term potential energy savings for different market adoption scenarios.

  10. Guidance for Deployment of Mobile Technologies for Nuclear Power...

    Broader source: Energy.gov (indexed) [DOE]

    technology for the purpose of improving human performance and plant status control (PSC) ... Leveraging the latest commercial off-the- shelf technology should result in improved human ...

  11. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  12. March 2016 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Aiken, SC (United States)) (1992) 382 Forces in bolted joints: analysis methods and test results utilized for nuclear core applications (LWBR Development Program) Crescimanno, ...

  13. December 2015 Most Viewed Documents for Fission And Nuclear Technologi...

    Office of Scientific and Technical Information (OSTI)

    Aiken, SC (United States)) (1992) 250 Forces in bolted joints: analysis methods and test results utilized for nuclear core applications (LWBR Development Program) Crescimanno, ...

  14. Nuclear Materials Research and Technology/Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... sciences and nuclear facility engineering, is a necessary element of con- stancy for the future. ... for future programs in the fundamentals of plutonium materials science. ...

  15. Nuclear power program and technology development in Korea

    SciTech Connect (OSTI)

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t as easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.

  16. Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  17. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  18. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  19. Basis for Section 3116 Determination for the Idaho Nuclear Technology...

    Office of Environmental Management (EM)

    ... Spent nuclear fuel reprocessing was curtailed in 1992, and the first-cycle extraction process wastes stored in the TFF were removed and solidified (by calcination) by February 1998 ...

  20. Nuclear Energy: Policies and Technology for the 21st Century

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) Nuclear Energy Advisory Committee (NEAC) formed two subcommittees to develop a report for the new Administration: a Policy Subcommittee chartered to evaluate U.S....

  1. Most Viewed Documents for Fission and Nuclear Technologies: December...

    Office of Scientific and Technical Information (OSTI)

    67 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 64 ... Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water ...

  2. March 2015 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    McCright, R.D. (1996) 108 Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water solutions Maimoni, A. (1980) 101 Behavior of spent nuclear fuel in ...

  3. June 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 78 ... Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water ...

  4. March 2014 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 72 ... Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water ...

  5. July 2013 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    286 Graphite design handbook Ho, F.H. (1988) 136 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 123 Stress analysis and evaluation of a ...

  6. April 2013 Most Viewed Documents for Fission And Nuclear Technologies...

    Office of Scientific and Technical Information (OSTI)

    Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (null) 298 ... Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water ...

  7. Most Viewed Documents for Fission And Nuclear Technologies: September...

    Office of Scientific and Technical Information (OSTI)

    71 Behavior of spent nuclear fuel in water pool storage Johnson, A.B. Jr. (1977) 68 ... Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water ...

  8. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger M. C. Swenson

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  9. FY 2012 National Security Technologies, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) National Security Technologies, LLC, PER Summary SUMMARY OF FY 2012 NATIONAL SECURITY TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % $29,855,764 $28,020,923 93.85% National Security Technologies, LLC, the management and operating contractor for the Nevada National Security Site, earned an "Excellent" rating in Program, a "Very Good" in Operations and Institutional and Business Management, and 93.85

  10. Advanced Technology Development and Mitigation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Advanced Technology Development and Mitigation The Advanced Technology Development and Mitigation (ATDM) subprogram includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals relevant to the broad national security missions of the NNSA. It addresses the need to adapt current integrated design codes and build new codes that are attuned to emerging computing technologies. Performing this work within the

  11. OSTIblog Articles in the nuclear weapons technology Topic | OSTI...

    Office of Scientific and Technical Information (OSTI)

    The NASA space program of the 1960s helped make modern communications possible. By helping ... technology of the cold war to launch satellites, NASA engineers deserve special praise. ...

  12. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Publications Nuclear Fuels Ceramics Materials Charac- terization Synthesis Metallurgy Actinide Chemistry Separation Spectroscopy Thermochemistry Inorganic Chemistry Actinide Disposition Safeguards Review Articles NDA Measurements Calorimetry Chemical Systems Diagnostics Analytical Chemistry 5 10 15 20 25 30 Spring 1995 Los Alamos National Laboratory * A U.S. Department of Energy Laboratory Chief Scientist's Notes: Going Back to the Basics The Actinide Research o f t h e N u c l e a r M a t e r

  13. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect (OSTI)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  14. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect (OSTI)

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  15. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect (OSTI)

    Gohar, Yousry; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  16. World-changing technologies showcased at NNSA lab | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) World-changing technologies showcased at NNSA lab Wednesday, July 20, 2016 - 2:15pm Participants gathered last week in Los Alamos to see featured scientists' work and get the first shot at engaging in tech transfer opportunities. They also had an opportunity to network. PuLMo, a miniature artificial lung, mimics the response of the human lung to drugs, toxins, and other agents. The public was invited to learn about PuLMo and other technologies developed at

  17. Energy Department Invests $60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    Building on President Obama’s Climate Action Plan to continue America’s leadership in clean energy innovation, the Energy Department announced more than $60 million in nuclear energy research awards and improvements to university research reactors and infrastructure.

  18. Impact of the proposed energy tax on nuclear electric generating technologies

    SciTech Connect (OSTI)

    Edmunds, T.A.; Lamont, A.D.; Pasternak, A.D.; Rousseau, W.F.; Walter, C.E.

    1993-05-01

    The President`s new economic initiatives include an energy tax that will affect the costs of power from most electric generating technologies. The tax on nuclear power could be applied in a number of different ways at several different points in the fuel cycle. These different approaches could have different effects on the generation costs and benefits of advanced reactors. The Office of Nuclear Energy has developed models for assessing the costs and benefits of advanced reactor cycles which must be updated to take into account the impacts of the proposed tax. This report has been prepared to assess the spectrum of impacts of the energy tax on nuclear power and can be used in updating the Office`s economic models. This study was conducted in the following steps. First, the most authoritative statement of the proposed tax available at this time was obtained. Then the impacts of the proposed tax on the costs of nuclear and fossil fueled generation were compared. Finally several other possible approaches to taxing nuclear energy were evaluated. The cost impact on several advanced nuclear technologies and a current light water technology were computed. Finally, the rationale for the energy tax as applied to various electric generating methods was examined.

  19. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

    2000-11-01

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  20. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

    2000-10-31

    The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

  1. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  2. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect (OSTI)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  3. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

    2003-01-01

    The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first project quarter, a technical kick-off meeting was held on the Brown campus involving PIs from Brown (Hurt, Calo), BYU (Fletcher), and B&W (Sayre, Burge). Following this first meeting the current version of CBK (Version 8) was transferred to B&W McDermott and the HP-CBK code developed by BYU was transferred to Brown to help guide the code development in this project. Also during the first project year, progress was reviewed at an all-hands meeting was held at Brigham Young University in August, 2001. The meeting was attended by PIs Fletcher, Hurt, Calo, and Sayre, and also by affiliated investigators Steven Burge from McDermott and Prof. William Hecker from BYU. During the first project year, significant progress was made on several fronts, as described in detail in the previous annual report. In the current second annual report, we report on progress made on two important project tasks. At Brown University: (1) Char combustion reactivities at 500 C in air were determined for a diverse set of solid fuels and organic model compound chars. These varied over 4 orders of magnitude for the chars prepared at 700 C, and over 3 orders of magnitude for the chars prepared at 1000 C. The resultant reactivities correlate poorly with organic elemental composition and with char surface area. (2) Specially-acquired model materials with minute amounts of inorganic matter exhibit low reactivities that fall in a narrow band as a function of wt-% carbon. Reactivities in this sample subset correlate reasonably well with total char surface area. (3) A hybrid chemical/statistical model was developed which explains most of the observed reactivity variation based on four variables: the amounts of nano-dispersed K, nanodispersed (Ca+Mg), elemental carbon (wt-% daf), and

  4. Demonstration & Market Transformation

    Broader source: Energy.gov (indexed) [DOE]

    Demonstration & Market Transformation Peer Review Break-Out Presentation Jim Spaeth Program Manager Demonstration & Market Transformation March 23, 2015 2 | Bioenergy Technologies ...

  5. Energy Technology Solutions: Public-Private Partnerships Transforming Industry - December 2010

    SciTech Connect (OSTI)

    none,

    2010-12-01

    AMO's research and development partnerships with industry have resulted in more than 220 technologies and other solutions that can be purchased today. This document includes a description of each solution, its benefits, and vendor contact information. The document also identifies emerging technologies and other resources to help industry save energy.

  6. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond

  7. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect (OSTI)

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  8. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  9. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    SciTech Connect (OSTI)

    Garaizar, X

    2010-01-06

    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  10. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  11. Innovation in Nuclear Technology for the Least Product Price and Cost

    SciTech Connect (OSTI)

    Duffey, Romney

    2003-09-01

    In energy markets, costs dominate for all new technology introductions (pressure valves, gas turbines, reactors) both now and far into the future. Technology improves, and costs are reduced as markets are penetrated with the trend following a learning/experience curve (MCE) based on classic economic forces. The curve followed is governed by development costs and market targets, and nuclear systems follow such a curve in order to compete with other technologies and projected future cost for alternate energy initiatives. Funding impacts directly on market penetration and on the ''learning rate.'' The CANDU/AECL development path (experience curve) is a chosen balance between evolution and revolution for a competitive advantage.

  12. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  13. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  14. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  15. January 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ANTT Subcommittee met in Washington on Dec 4-5, 2002 to review progress in the transmutation program, and to learn about major organizational changes that affect the management of the program....

  16. October 2003, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE

    Office of Energy Efficiency and Renewable Energy (EERE)

    The committee met in Washington in Sept 16-17 to review progress in the program with respect to a changed set of mission priorities. Our last meeting took place in Dec 2002 after the reorganization...

  17. CLEAN CAST STEEL TECHNOLOGY: DETERMINATION OF TRANSFORMATION DIAGRAMS FOR DUPLEX STAINLESS STEEL.

    SciTech Connect (OSTI)

    Chumbley. L., S.

    2005-09-18

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (???????????????¯??????????????????????????????³) and chi (???????????????¯??????????????????????????????£) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling- transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe 22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (???????????????¯??????????????????????????????³ + ???????????????¯??????????????????????????????£) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations, The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents

  18. Implementing Arrangement Between the U.S. Department of Energy and the Agency of Natural Resources and Energy of Japan Concerning Cooperation in the Joint Nuclear Energy Research Initiative on Advanced Nuclear Technologies

    Broader source: Energy.gov [DOE]

    Noting further that representatives of DOE's Office of Nuclear Energy, Science, and Technology and ANRE have identified common interests in innovative light water reactor technologies, including...

  19. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. ...

  20. Most Viewed Documents - Fission and Nuclear Technologies | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information - Fission and Nuclear Technologies Metals design handbook Betts, W.S. (1988) Estimation of gas leak rates through very small orifices and channels. [From sealed PuO/sub 2/ containers under accident conditions] Bomelburg, H.J. () Graphite design handbook Ho, F.H. (1988) Motor-operated valve (MOV) actuator motor and gearbox testing DeWall, K.; Watkins, J.C.; Bramwell, D. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)]

  1. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-site facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.

  2. Supercritical Fluid Extraction of Radionuclides - A Green Technology for Nuclear Waste Management

    SciTech Connect (OSTI)

    Wai, Chien M.

    2003-09-10

    Supercritical fluid carbon dioxide (SF-CO2) is capable of extracting radionuclides including cesium, strontium, uranium, plutonium and lanthanides directly from liquid and solid samples with proper complexing agents. Of particular interest is the ability of SF-CO2 to dissolve uranium dioxide directly using a CO2-soluble tri-nbutylphosphate- nitric acid (TBP-HNO3) extractant to form a highly soluble UO2(NO3)2(TBP)2 complex that can be transported and separated from Cs, Sr, and other transition metals. This method can also dissolve plutonium dioxide in SF-CO2. The SF-CO2 extraction technology offers several advantages over conventional solvent-based methods including ability to extract radionuclides directly from solids, easy separation of solutes from CO2, and minimization of liquid waste generation. Potential applications of the SF-CO2 extraction technology for nuclear waste treatment and for reprocessing of spent nuclear fuels will be discussed. Information on current demonstrations of the SF-CO2 technology by nuclear companies and research organizations in different countries will be reviewed.

  3. Evaluation of Non-Nuclear Techniques for Well Logging: Technology Evaluation

    SciTech Connect (OSTI)

    Bond, Leonard J.; Denslow, Kayte M.; Griffin, Jeffrey W.; Dale, Gregory E.; Harris, Robert V.; Moran, Traci L.; Sheen, David M.; Schenkel, Thomas

    2010-11-01

    This report presents an initial review of the state-of-the-art nuclear and non-nuclear well logging methods and seeks to understand the technical and economic issues if AmBe, and potentially other isotope sources, are reduced or even eliminated in the oil-field services industry. Prior to considering alternative logging technologies, there is a definite need to open up discussions with industry regarding the feasibility and acceptability of source replacement. Industry views appear to range from those who see AmBe as vital and irreplaceable to those who believe that, with research and investment, it may be possible to transition to electronic neutron sources and employ combinations of non-nuclear technologies to acquire the desired petro-physical parameters. In one sense, the simple answer to the question as to whether petro-physical parameters can be sensed with technologies other than AmBe is probably "Yes". The challenges come when attention turns to record interpretation. The many decades of existing records form a very valuable proprietary resource, and the interpretation of subtle features contained in these records are of significant value to the oil-gas exploration community to correctly characterize a well. The demonstration of equivalence and correspondence/correlation between established and any new sensing modality, and correlations with historic records is critical to ensuring accurate data interpretation. Establishing the technical basis for such a demonstration represents a significant effort.

  4. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A; Patterson, Eileen F

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  9. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    SciTech Connect (OSTI)

    McFee, J.; Langsted, J.; Young, M.; Porcon, J.; Day, E.

    2007-07-01

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc., was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)

  10. Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources

    SciTech Connect (OSTI)

    Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D

    2011-08-31

    Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).

  11. ``White Land``...new Russian closed-cycle nuclear technology for global deployment

    SciTech Connect (OSTI)

    Bowman, C.D.

    1996-07-01

    A Russian technology called ``White Land`` is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ``dry`` molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed.

  12. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael; Harste, Hans; Maceira, Monica; Patton, Howard; Phillips, Scott; Randall, George; Rowe, Charlotte; Stead, Richard; Steck, Lee; Whitaker, Rod; Yang, Xiaoning

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  13. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  14. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    SciTech Connect (OSTI)

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.; Choi, Junoh; Howell, Stephen W.

    2015-09-01

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development of room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.

  15. An Advanced Reverse Osmosis Technology For Application in Nuclear Desalination Facilities

    SciTech Connect (OSTI)

    Humphries, J.R.; Davies, K.; Ackert, J.A.

    2002-07-01

    The lack of adequate supplies of clean, safe water is a growing global problem that has reached crisis proportions in many parts of the world. It is estimated that 1.5 billion people do not have access to adequate supplies of safe water, and that as a result nearly 10,000 people die every day and thousands more suffer from a range of debilitating illnesses due to water related diseases. Included in this total is an estimated 2.2 million child deaths annually. As the world's need for additional sources of fresh water continues to grow, seawater and brackish water desalination are providing an increasingly important contribution to the solution of this problem. Because desalination is an energy intensive process, nuclear desalination provides an economically attractive and environmentally sound alternative to the burning of fossil fuels for desalination. Nevertheless, the enormity of the problem dictates that additional steps must be taken to improve the efficiency of energy utilization and reduce the cost of water production in order to reduce the financial and environmental burden to communities in need. An advanced reverse osmosis (RO) desalination technology has been developed that emphasizes a nontraditional approach to system design and operation, and makes use of a sophisticated design optimization process that can lead to highly optimized design configurations and operating regimes. The technology can be coupled with a nuclear generating station (NGS) to provide an integrated facility for the co-generation of both water and electricity. Waste heat from the NGS allows the use of 'preheated' feedwater into the RO system, improving the efficiency of the RO process and reducing the cost of water production. Because waste heat, rather than process heat, is used the desalination system can be readily coupled to any existing or advanced reactor technology with little or no impact on reactor design and operation and without introducing additional reactor safety

  16. Public dialogue on physics and related technology after the Fukushima Daiichi nuclear accident

    SciTech Connect (OSTI)

    Sasao, Mamiko

    2015-12-31

    After the Fukushima Daiichi Nuclear Accident, the importance of bottom-up and two-way dialogue between scientists and the public has been recognized. In such dialogue, information provided must accurately match the public’s interest and ability regarding science and technology. We have started to investigate what people want to know about physics. Some were interested in energy security (a particular concern in Japan), but others were concerned about radioactivity in food and natural radiation background. The conversations revealed that physicists often give insufficient explanations of the biological effects of radiation and highlighted key points for physicists to make when talking with the public.

  17. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect (OSTI)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  18. Domestic Nuclear Detection Office's Approach to Detect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Nuclear Detection Office's Approach to Detect Concealed Threats Joel Rynes, PhD Department of Homeland Security (DHS) Domestic Nuclear Detection Office (DNDO) August 5, 2015 4:00 p.m. The Transformational and Applied Research (TAR) Directorate within the Domestic Nuclear Detection Office (DNDO) of the Department of Homeland Security (DHS) has the mission to develop break-through technologies that will have a dramatic impact on capabilities to detect nuclear and radiological threats

  19. Identification and Evaluation of Human Factors Issues Associated with Emerging Nuclear Plant Technology

    SciTech Connect (OSTI)

    O'Hara,J.M.; Higgins,J.; Brown, William S.

    2009-04-01

    This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

  20. ADVANCED TECHNOLOGIES FOR THE SIMULTANEOUS SEPARATION OF CESIUM AND STRONTIUM FROM SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Jack D. Law; Terry A. Todd; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson

    2005-02-01

    Two new solvent extraction technologies have been recently developed to simultaneously separate cesium and strontium from spent nuclear fuel, following dissolution in nitric acid. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. This new strip reagent reduces product volume by a factor of 20, over the baseline process. Countercurrent flowsheet tests on simulated spent nuclear fuel feed streams have been performed with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4',4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance.

  1. Environmental assessment report: Nuclear Test Technology Complex. [Construction and operation of proposed facility

    SciTech Connect (OSTI)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report.

  2. Fuel Cycle Technologies 2014 Achievement Report

    SciTech Connect (OSTI)

    Hong, Bonnie C.

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

  3. Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes

    SciTech Connect (OSTI)

    Wilmarth, William R.; Lumetta, Gregg J.; Johnson, Michael E.; Poirier, Micheal R.; Thompson, Major C.; Suggs, Patricia C.; Machara, N.

    2011-01-13

    The U.S. Department of Energy (DOE) is responsible for retrieving, immobilizing, and disposing of radioactive waste that has been generated during the production of nuclear weapons in the United States. The vast bulk of this waste material is stored in underground tanks at the Savannah River Site in South Carolina and the Hanford Site in Washington State. The general strategy for treating the radioactive tank waste consists of first separating the waste into high-level and low-activity fractions. This initial partitioning of the waste is referred to as pretreatment. Following pretreatment, the high-level fraction will be immobilized in a glass form suitable for disposal in a geologic repository. The low-activity waste will be immobilized in a waste form suitable for disposal at the respective site. This paper provides a review of recent developments in the application of pretreatment technologies to the processing of the Hanford and Savannah River radioactive tank wastes. Included in the review are discussions of 1) solid/liquid separations methods, 2) cesium separation technologies, and 3) other separations critical to the success of the DOE tank waste remediation effort. Also included is a brief discussion of the different requirements and circumstances at the two DOE sites that have in some cases led to different choices in pretreatment technologies.

  4. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest i.e., within the next 10-15 years.

  5. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  6. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect (OSTI)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  7. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  8. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  9. Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Cumblidge, Stephen E.

    2011-09-30

    Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guided wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.

  10. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    SciTech Connect (OSTI)

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  11. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  12. ldrd | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ldrd Laboratory Directed Research & Development The U.S. Department of Energy (DOE) is charged with a large and complex mission: to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The DOE executes this mission to a large extent at

  13. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    SciTech Connect (OSTI)

    BLanc, Katya Le; Powers, David; Joe, Jeffrey; Spielman, Zachary; Rice, Brandon; Fitzgerald, Kirk

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  14. Secretary Moniz Awards $125 Million for 41 Transformational Energy Technology Projects Ahead of COP21 in Paris

    Broader source: Energy.gov [DOE]

    ARPA-E’s OPEN 2015 Program selects innovative energy technologies to advance US energy security and help achieve climate goals.

  15. Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new...

  16. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  17. Nuclear Test Scenarios for Discussion of On-Site Inspection Technologies

    SciTech Connect (OSTI)

    Sweeney, J J; Hawkins, W

    2009-03-13

    The purpose of the ISS OSI Invited Meeting being held in Vienna March 24-27, 2009 is to obtain a better understanding of the phenomenology of underground nuclear explosions for On-Site Inspection (OSI) purposes. In order to focus the technology discussions, we have developed two very general scenarios, or models, of underground nuclear test configurations and phenomena that will help us explore the application of OSI methodologies and techniques. The scenarios describe testing environments, operations, logistics, equipment, and facilities that might be used in conducting an underground nuclear test. One scenario involves emplacement of a nuclear device into a vertical borehole in an area with relatively flat terrain; the other involves emplacement within a tunnel (horizontally) in an area with mountainous terrain. Vertical borehole geometry The example for this scenario is an intermediate yield nuclear explosion carried out in a flat desert area. The ground was cleared and smoothed over a 200 X 200 m fenced area for operational support activities, access to the borehole, and in order to place a few structures to house diagnostics equipment and control functions. Power lines were provided for local electrical power. The vertical emplacement borehole was 2 m in diameter and bored to a depth of 350 m. The emplacement hole was lined with steel pipe in order to keep the hole open and to avoid cave-ins during emplacement of the nuclear device. Emplacement was above the local water table, and the top of the saturation zone is about 30 m below the bottom of the emplacement hole. The detonation point was at a depth of 340 m. All of the rock material removed while drilling the borehole was removed to another place. Diagnostics and control for the test were relatively simple: about 2 dozen high capacity coaxial cables feed from the down hole instruments to the surface and then about 100 m laterally to a diagnostics trailer. Two strong steel cables were used to emplace the

  18. Fuel Cycle Technologies Annual Review Meeting Transactions Report

    SciTech Connect (OSTI)

    Lori Braase; W. Edgar May

    2014-11-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energys (DOEs) mission to: Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges. Goal 1 of DOEs Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOEs Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nations nuclear nonproliferation goals.

  19. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Michael W. Patterson

    2008-05-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible

  20. Technology for Brayton-cycle space powerplants using solar and nuclear energy

    SciTech Connect (OSTI)

    English, R.E.

    1986-02-01

    Brayton-cycle gas turbines have the potential to use either solar heat or nuclear reactors to generate from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power-generating system. Their development for solar-energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power-generating system has already demonstrated overall efficiency of 0.29 and operated for 38,000 hr. Tests of improved components show that, if installed in the power-generating system, these components would raise that efficiency to 0.32; this efficiency is twice that so far demonstrated by any alternate concept, a characteristic especially important for solar power systems. Because of this high efficiency, solar-heat Brayton-cycle power generators offer the potential to increase power per unit of solar-collector area to levels exceeding four times that from photovoltaic powerplants based on present technology for silicon solar cells. For the heat source, paraboloidal mirrors have been assembled from sectors here on Earth. One mirror, 1.5-m diameter, had a standard error for its surface of only 1 arc-min and a specific mass of only 1.3 kg/m 2. A heavier mirror (nearly 5 kg/m{sup 2}), assembled from 12 sectors, had a standard surface error of 3 arc-min but was 6 m in diameter. Either of these mirrors is sufficiently accurate for use with the Brayton cycle, but the techniques for actually assembling large mirrors in space must yet be worked out. For use during the shadow period of a low Earth orbit (LEO), heat could be stored in LiF, a salt that melts at 1121 K (1558{degrees}F) and whose latent heat of fusion exceeds 1 MJ/kg. Because of the prior experience with its fabrication and of its tolerance of the thermal cycling in LEO, Nb-1Zr was selected to contain the LiF.

  1. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Wastewater Discharge Facility

    SciTech Connect (OSTI)

    Ansley, Shannon L.

    2002-02-20

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.

  2. Tribology of improved transformation-toughened ceramics-heat engine test. Final report: DOE/ORNL Ceramic Technology Project

    SciTech Connect (OSTI)

    Lilley, E.; Rossi, G.A.; Pelletier, P.J.

    1992-04-01

    A short term study has been carried out to evaluate the suitability as cam roller followers of three ceria zirconia toughened aluminas and two yttria stabilized tetragonal zirconias (YTZPs) previously enhanced in programs supported by ORNL. Norton Si{sub 3}N{sub 4} (NBD-100) was also included in this study as a reference material, because it was known from work at Northwestern University that Si{sub 3}N{sub 4} to experienced little or no wear in this application, and NBD-100 is currently a successful commercial bearing material. The tribological studies were subcontracted to the Torrington Company. They found that in cam roller follower simulated tests that there was essentially no wear after 1 hour and 5 hours of testing detectable by weighing and concluded that all of these ceramics are, therefore, candidate materials. Because of the minute amounts of wear it was not possible to identify the wear mechanism or to make any correlations with the other physical properties which were evaluated such as MOR, K{sub IC} hardness, density and grain size. Phase transformation during rolling has been of interest in the tribology of zirconia contain materials. The least stable of the ceria zirconia toughened aluminas resulted in as much as 33% monoclinic phase after testing whereas the yttria stabilized (TTZ) contained very little of this transformed phase. The results of this study show that oxide materials can now be considered as candidates for cam roller followers in heat engines.

  3. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    SciTech Connect (OSTI)

    Warren, N. Jill

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Defining the “proven technology” technical criterion in the reactor technology assessment for Malaysia’s nuclear power program

    SciTech Connect (OSTI)

    Anuar, Nuraslinda; Kahar, Wan Shakirah Wan Abdul Manan, Jamal Abdul Nasir Abd

    2015-04-29

    Developing countries that are considering the deployment of nuclear power plants (NPPs) in the near future need to perform reactor technology assessment (RTA) in order to select the most suitable reactor design. The International Atomic Energy Agency (IAEA) reported in the Common User Considerations (CUC) document that “proven technology” is one of the most important technical criteria for newcomer countries in performing the RTA. The qualitative description of five desired features for “proven technology” is relatively broad and only provides a general guideline to its characterization. This paper proposes a methodology to define the “proven technology” term according to a specific country’s requirements using a three-stage evaluation process. The first evaluation stage screens the available technologies in the market against a predefined minimum Technology Readiness Level (TRL) derived as a condition based on national needs and policy objectives. The result is a list of technology options, which are then assessed in the second evaluation stage against quantitative definitions of CUC desired features for proven technology. The potential technology candidates produced from this evaluation is further narrowed down to obtain a list of proven technology candidates by assessing them against selected risk criteria and the established maximum allowable total score using a scoring matrix. The outcome of this methodology is the proven technology candidates selected using an accurate definition of “proven technology” that fulfills the policy objectives, national needs and risk, and country-specific CUC desired features of the country that performs this assessment. A simplified assessment for Malaysia is carried out to demonstrate and suggest the use of the proposed methodology. In this exercise, ABWR, AP1000, APR1400 and EPR designs assumed the top-ranks of proven technology candidates according to Malaysia’s definition of “proven technology”.

  5. EERE Success Story-Vortex Hydro Energy Develops Transformational...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents EERE Success Story-Vortex Hydro Energy Develops Transformational Technology to ...

  6. Supporting Technology for Chain of Custody of Nuclear Weapons and Materials throughout the Dismantlement and Disposition Processes

    SciTech Connect (OSTI)

    Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep; Benz, Jacob M.; Denlinger, Laura Schmidt

    2014-05-04

    The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic

  7. Deployment & Market Transformation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

  8. Technological Opportunities to Increase the Proliferation Resistance of Global Civilian Nuclear Power Systems (TOPS)

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 1999 the U.S. Department of Energy (DOE) formed a special task force, called the TOPS Task Force, from the Nuclear Energy Research Advisory Committee (NERAC) to identify near- and long-term...

  9. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect (OSTI)

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  10. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  11. AISI/DOE Technology Roadmap Program: Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels

    SciTech Connect (OSTI)

    Wayne Chuko; Jerry Gould

    2002-07-08

    This report describes work accomplished in the project, titled ''Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels.'' The Phase 1 of the program involved development of in-situ temper diagrams for two gauges of representative dual-phase and martensitic grades of steels. The results showed that tempering is an effective way of reducing hold-time sensitivity (HTS) in hardenable high-strength sheet steels. In Phase 2, post-weld cooling rate techniques, incorporating tempering, were evaluated to reduce HTS for the same four steels. Three alternative methods, viz., post-heating, downsloping, and spike tempering, for HTS reduction were investigated. Downsloping was selected for detailed additional study, as it appeared to be the most promising of the cooling rate control methods. The downsloping maps for each of the candidate steels were used to locate the conditions necessary for the peak response. Three specific downslope conditions (at a fix ed final current for each material, timed for a zero-, medium-, and full-softening response) were chosen for further metallurgical and mechanical testing. Representative samples, were inspected metallographically, examining both local hardness variations and microstructures. The resulting downslope diagrams were found to consist largely of a C-curve. The softening observed in these curves, however, was not supported by subsequent metallography, which showed that all welds made, regardless of material and downslope condition, were essentially martensitic. CCT/TTT diagrams, generated based on microstructural modeling done at Oak Ridge National Laboratories, showed that minimum downslope times of 2 and 10 s for the martensitic and dual-phase grades of steels, respectively, were required to avoid martensite formation. These times, however, were beyond those examined in this study. These results show that downsloping is not an effective means of reducing HTS for production resistance spot

  12. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  13. Validation of smart sensor technologies for instrument calibration reduction in nuclear power plants

    SciTech Connect (OSTI)

    Hashemian, H M; Mitchell, D W; Petersen, K M; Shell, C S

    1993-01-01

    This report presents the preliminary results of a research and development project on the validation of new techniques for on-line testing of calibration drift of process instrumentation channels in nuclear power plants. These techniques generally involve a computer-based data acquisition and data analysis system to trend the output of a large number of instrument channels and identify the channels that have drifted out of tolerance. This helps limit the calibration effort to those channels which need the calibration, as opposed to the current nuclear industry practice of calibrating essentially all the safety-related instrument channels at every refueling outage.

  14. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  15. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    SciTech Connect (OSTI)

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

  16. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and

  17. Retrieval of Hanford Single Shell Nuclear Waste Tanks using Technologies Foreign and Domestic

    SciTech Connect (OSTI)

    EACKER, J.A.; GIBBONS, P.W.

    2003-01-01

    The Hanford Site is accelerating its SST retrieval mission. One aspect of this acceleration is the identification of new baseline retrieval technologies that can be applied to all tank conditions for salt & sludge wastes in both sound & leaking tanks.

  18. Energy Supply Transformation Needed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supply Transformation Needed - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  19. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even ...

  20. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  1. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  2. 20 Years of Success: Science, Technology, and the Nuclear Weapons Stockpile

    SciTech Connect (OSTI)

    None, None

    2015-10-22

    On Oct. 22, 2015, NNSA celebrated the proven success of the Stockpile Stewardship Program at a half-day public event featuring remarks by Secretary of Energy Ernest Moniz, Secretary of State John Kerry, and Under Secretary for Nuclear Security and NNSA Administrator Lt. Gen. (retired) Frank G. Klotz. The event also featured remarks by Deputy Secretary of Energy Elizabeth Sherwood-Randall and NNSA Principal Deputy Administrator Madelyn Creedon.

  3. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  4. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HiWAIS technology is a significant step forward in the warfighter support arena. Honeybees for Explosive Detection Honeybees for Explosive Detection Los Alamos researchers have ...

  5. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    SciTech Connect (OSTI)

    1993-12-31

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  6. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect (OSTI)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  7. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  8. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Nuclear Energy Nuclear Energy Tara Camacho-Lopez 2016-06-29T14:02:38+00:00 Contributing to the Next Generation of Nuclear Power Generation Our nuclear energy and fuel cycle technologies supports the safe, secure, reliable, and sustainable use of nuclear power worldwide through strengths in repository science, nonproliferation, safety and security, transportation, modeling, and system demonstrations. Areas of Expertise Defense Waste Management Sandia advises the U.S. Department

  9. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  10. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    SciTech Connect (OSTI)

    G. Palmiotti

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  11. Demonstration & Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration & Market Transformation Peer Review Break-Out Presentation Jim Spaeth Program Manager Demonstration & Market Transformation March 23, 2015 2 | Bioenergy Technologies Office DMT Portfolio Peer Review * Introduction of the DMT Peer Review Team * Peer Review Process - Ground rules for review process * DMT Approach to Project Management - Budget Periods * Changes Made in Response to the 2013 Peer Review - Lessons Learned / Best Practices * Portfolio Overview - FOA Status and

  12. TIGER -- A technology to improve the delivery capability of nuclear bombs and the survivability of the delivery aircraft

    SciTech Connect (OSTI)

    1980-12-31

    The TIGER (Terminal guided and Extended-Range) Program was initiated in 1972 to study improved delivery capabilities for stockpiled tactical nuclear bombs. The Southeast Asia conflict fostered the development of air-delivered standoff conventional weapons utilizing terminal guidance systems. SNL initiated the TIGER program to determine if current nuclear bombs could be provided with a similarly accurate standoff capabilities. These conventional weapon delivery techniques, while allowing highly accurate attack, generally require entering the target area at high altitude to establish line of sight to the target. In parallel with the TIGER program, system studies analyzed this concept and showed marked improvement in aircraft and weapon survivability with moderate standoff (10--20 km) if low level deliveries (60 m) could be accomplished. As a result of this work, the TIGER program was redirected in early 1974 to demonstrate a standoff bomb with good accuracy (90 m CEP) when delivered from low flying aircraft. This program redirection resulted in the selection of an inertial guidance system to replace the earlier terminal guidance systems. This program was called the Extended-Range Bomb (ERB). In May 1974, a joint Air Force/DOE study identified the desirability of having a single tactical weapon which could be employed against either fixed, preselected targets, or mobile battlefield targets. Studies conducted on the ERB system showed that the inertially guided weapon could fly not only the standoff mission but also a return-to-target mission against the mobile battlefield targets whose locations are not known accurately enough to use a standoff delivery. The ERB program evolved from these initial investigations into an exploratory program to develop the hardware and demonstrate the technology required to fly standoff and return-to-target trajectories. The application of this technology in the form of field retrofit kits to the B61 bomb is called TIGER II.

  13. A Novel, Safe, and Environmentally Friendly Technology for Water Production Through Recovery of Rejected Thermal Energy From Nuclear Power Plants

    SciTech Connect (OSTI)

    Khalil, Yehia F.; Elimelech, Menachem

    2006-07-01

    In this work, we describe a novel design that utilizes seawater and a portion of rejected heat from a nuclear plant's steam cycle to operate a water desalination system using forward osmosis technology. Water produced from this process is of sufficient quality to be readily used to supply plant demands for continuous makeup water. The proposed process minimizes the environmental concerns associated with thermal pollution of public waters and the resulting adverse impact on marine ecology. To demonstrate the technical feasibility of this conceptual design of a water treatment process, we discuss a case study as an example to describe how the proposed design can be implemented in a nuclear power station with a once--through cooling system that discharges rejected heat to an open sound seawater as its ultimate heat sink. In this case study, the station uses a leased (vendor owned and operated) onsite water treatment system that demineralizes and polishes up to 500-gpm of city water (at 100 ppm TDS) to supply high-quality makeup water (< 0.01 ppm TDS) to the plant steam system. The objectives of implementing the new design are three fold: 1) forego current practice of using city water as the source of plant makeup water, thereby reducing the nuclear station's impact on the region's potable water supply by roughly 100 million gallons/year, 2) minimize the adverse impact of discharging rejected heat into the open sound seawater and, hence, protect the marine ecology, and 3) eliminate the reliance on external vendor that owns and operates the onsite water treatment system, thereby saving an annual fixed cost of $600 K plus 6 cents per 1,000 gallons of pure water. The design will also eliminate the need for using two double-path reverse osmosis (RO) units that consume 425 kW/h of electric power to operate two RO pumps (480 V, 281.6 HP, and 317.4 amps). (authors)

  14. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad approach to different, but related, scientific

  15. Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformations, Inc. Net Zero Energy Communities Devens, Easthampton, Townsend, Massachusetts PROJECT INFORMATION Construction: New home Type: Single-family, market-rate and affordable Builder: Transformations, Inc. www.transformations-inc.com Size: 1,064 to 2,365 ft 2 Price Range: $125,000-$400,000 Date Completed: 2010-ongoing Climate Zone: Cold PERFORMANCE DATA HERS Index Range: -21 to 43 Projected annual energy cost: $88* Incremental cost of energy efficiency measures: $3/ft 2 * Incremental

  16. Retrieval Of Hanford's Single Shell Nuclear Waste Tanks Using Technologies Foreign And Domestic

    SciTech Connect (OSTI)

    Eacker, J. A.; Thompson, W. T.; Gibbons, P. W.

    2003-02-26

    Significant progress has been made on the Hanford single shell tank (SST) retrieval projects since they were initiated as part of the modified Hanford Federal Facility Agreement and Consent Order (Tri-party Agreement) in 2000. Four of the 149 SSTs at the U.S. Department of Energy (DOE) Office of River Protection (ORP) Hanford facility are being retrieved to meet Tri-Party Agreement commitments. An additional tank is being retrieved to demonstrate an alternate technical approach. As the Hanford Site transitions to an accelerated retrieval and closure mission, these methods will be the baseline methods for SST retrieval. The five SSTs are located within the Hanford 200- Area tank farms operated by CH2M HILL Hanford Group (CH2M HILL) for ORP. Included in this paper will be discussions on the technologies selected for retrieval of each tank; electrical resistance technologies that are being evaluated for ex-tank leak detection and monitoring; and the Cold Test Training Facility (CTTF) used for testing of and training on the different retrieval systems.

  17. OSTIblog Articles in the nuclear security Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    the nation's energy, environmental and nuclear challenges through transformative science ... in strategic areas * Enhancing nuclear security through defense, ...

  18. Nuclear War Against Cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear War Against Cancer 1663 Los Alamos science and technology magazine Latest Issue:March 2016 past issues All Issues submit Nuclear War Against Cancer Los Alamos, in ...

  19. THE VALUE OF HELIUM-COOLED REACTOR TECHNOLOGIES OF NUCLEAR WASTE

    SciTech Connect (OSTI)

    C. RODRIGUEZ; A. BAXTER

    2001-03-01

    Helium-cooled reactor technologies offer significant advantages in accomplishing the waste transmutation process. They are ideally suited for use with thermal, epithermal, or fast neutron energy spectra. They can provide a relatively hard thermal neutron spectrum for transmutation of fissionable materials such as Pu-239 using ceramic-coated transmutation fuel particles, a graphite moderator, and a non-fertile burnable poison. These features (1) allow deep levels of transmutation with minimal or no intermediate reprocessing, (2) enhance passive decay heat removal via heat conduction and radiation, (3) allow operation at relatively high temperatures for a highly efficient generation of electricity, and (4) discharge the transmuted waste in a form that is highly resistant to corrosion for long times. They also offer the possibility for the use of epithermal neutrons that can interact with transmutable materials more effectively because of the large atomic cross sections in this energy domain. A fast spectrum may be useful for deep burnup of certain minor actinides. For this application, helium is essentially transparent to neutrons, does not degrade neutron energies, and offers the hardest possible neutron energy environment. In this paper, we report results from recent work on materials transmutation balances, safety, value to a geological repository, and economic considerations.

  20. 2015 Peer Review Presentations-Demonstration and Market Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration and Market Transformation 2015 Peer Review Presentations-Demonstration and Market Transformation The Bioenergy Technologies Office hosted its 2015 Project Peer Review ...

  1. Nuclear Controls | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Controls Challenge: Detect/deter illicit transfers of nuclear/dual-use materials, technology, and commodities. Solution: Build domestic and international capacity to implement and meet export control obligations. Related Topics international security international security policy NIS nuclear controls safeguards safeguards and security verification Related News Nuclear Verification International Nuclear Safeguards Nonproliferation Policy Nonproliferation and Arms Control NIS

  2. Market Transformation Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Transformation Fact Sheet Market Transformation Fact Sheet This fact sheet describes the Fuel Cell Technologies Office's Market Transformation strategies and activities, which are aimed at accelerating early market adoption and advancing pre-competitive technologies. Market Transformation (1.49 MB) More Documents & Publications Early Markets: Fuel Cells for Material Handling Equipment Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets Early Markets:

  3. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect (OSTI)

    Blumenthal, Daniel J.; Clark, Harvey W.; Essex, James J.; Wagner, Eric C.

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  4. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  5. Nuclear Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Nuclear Security Centers of Excellence: Fact Sheet March 23, 2012 "We [the Participating States]... Acknowledge the need for capacity building for nuclear security and cooperation at bilateral, regional and multilateral levels for the promotion of nuclear security culture through technology development, human resource development, education, and training; and stress the importance of optimizing international cooperation and coordination of

  6. Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 1

    SciTech Connect (OSTI)

    Hofmann, P.L.; Breslin, J.J.

    1981-01-01

    The papers in this volume cover the following subjects: waste isolation and the natural geohydrologic system; repository perturbations of the natural system; radionuclide migration through the natural system; and repository design technology. Individual papers are abstracted.

  7. Higher temperature reactor materials workshop sponsored by the Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES).

    SciTech Connect (OSTI)

    Allen, T.; Bruemmer, S.; Kassner, M.; Odette, R.; Stoller, R.; Was, G.; Wolfer, W.; Zinkle, S.; Elmer, J.; Motta, A.

    2002-08-12

    On March 18-21, 2002, the Department of Energy, Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES) sponsored a workshop to identify needs and opportunities for materials research aimed at performance improvements of structural materials in higher temperature reactors. The workshop focused discussion around the reactor concepts proposed as part of the Generation IV Nuclear Energy System Roadmap. The goal of the Generation IV initiative is to make revolutionary improvements in nuclear energy system design in the areas of sustainability, economics, safety and reliability. The Generation IV Nuclear Energy Systems Roadmap working groups have identified operation at higher temperature as an important step in improving economic performance and providing a means for nuclear energy to support thermochemical production of hydrogen. However, the move to higher operating temperatures will require the development and qualification of advanced materials to perform in the more challenging environment. As part of the process of developing advanced materials for these reactor concepts, a fundamental understanding of materials behavior must be established and the data-base defining critical performance limitations of these materials under irradiation must be developed. This workshop reviewed potential reactor designs and operating regimes, potential materials for application in high-temperature reactor environments, anticipated degradation mechanisms, and research necessary to understand and develop reactor materials capable of satisfactory performance while subject to irradiation damage at high temperature. The workshop brought together experts from the reactor materials and fundamental materials science communities to identify research and development needs and opportunities to provide optimum high temperature nuclear energy system structural materials.

  8. RF transformer

    DOE Patents [OSTI]

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  9. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and technology. The United States relies on Los Alamos National ...

  10. Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 2

    SciTech Connect (OSTI)

    Hofmann, P.L.

    1982-01-01

    The twenty papers in this volume are divided into three parts: site exploration and characterization; repository development and design; and waste package development and design. These papers represent the status of technology that existed in 1981 and 1982. Individual papers were processed for inclusion in the Energy Data Base.

  11. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Nuclear Fuel Cycle Options Catalog ...

  12. TRANSFORMER APPARATUS

    DOE Patents [OSTI]

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  13. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  14. CSP technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  15. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  16. SPACE-R Thermionic Space Nuclear Power System: Design and Technology Demonstration Program. Semiannual technical progress report for period ending March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This Semiannual Technical Progress Report summarizes the technical progress and accomplishments for the Thermionic Space Nuclear Power System (TI-SNPS) Design and Technology Demonstration Program of the Prime Contractor, Space Power Incorporated (SPI), its subcontractors and supporting National Laboratories during the first half of the Government Fiscal Year (GFY) 1993. SPI`s subcontractors and supporting National Laboratories include: Babcock & Wilcox for the reactor core and externals; Space Systems/Loral for the spacecraft integration; Thermocore for the radiator heat pipes and the heat exchanger; INERTEK of CIS for the TFE, core elements and nuclear tests; Argonne National Laboratories for nuclear safety, physics and control verification; and Oak Ridge National laboratories for materials testing. Parametric trade studies are near completion. However, technical input from INERTEK has yet to be provided to determine some of the baseline design configurations. The INERTEK subcontract is expected to be initiated soon. The Point Design task has been initiated. The thermionic fuel element (TFE) is undergoing several design iterations. The reactor core vessel analysis and design has also been started.

  17. Nuclear Security 101 | National Nuclear Security Administration | (NNSA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security 101 March 23, 2012 The goal of United States Government's nuclear security programs is to prevent the illegal possession, use or transfer of nuclear material, technology and expertise or radioactive material. Successful nuclear security relies on the integration of technology, policy, operational concepts and international collaboration to prevent acts of nuclear terrorism. The Basics of Nuclear Security include: Removing or Eliminating Highly Enriched Uranium (HEU) and

  18. Global Nuclear Energy Partnership Steering Group Members Approve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformation to the International Framework for Nuclear Energy Cooperation | Department of Energy Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation June 21, 2010 - 11:59am Addthis The Global Nuclear Energy Partnership Steering Group met in Accra, Ghana on June

  19. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national laboratories

  20. International Nuclear Safeguards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and Member States to implement and meet safeguards obligations. The Office of International Nuclear Safeguards develops and supports the policies, concepts, technologies, expertise, and international safeguards infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to

  1. Low-energy RI beam technology and nuclear clusters in the explosive pp-chain breakout process

    SciTech Connect (OSTI)

    Kubono, S. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0 (Japan); Yamaguchi, H.; Kahl, D. M.; Ohshiro, Y.; Watanabe, S.; Yamazaki, N. [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-858 (Japan); Yanagisawa, Y.; Wakabayashi, Y.; Kase, M. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hayakawa, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95125 Catania (Italy); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-81 (Korea, Republic of); Hashimoto, T.; Fukuda, Y. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); He, J. J. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); Goto, A. [Faculty of Medcine, Yamagata University, Yamagata 990-2331 (Japan); Muto, H. [Center of General Education, Tokyo University of Science at Suwa, Chino, Nagano 391-0292 (Japan)

    2014-05-09

    The lecture includes two parts: One is a discussion on the technology for developing RIB beam facility based on the in-flight method and relevant experimental technology. The second part is a discussion on experimental efforts for studying the breakout process from the pp-chain region based on recent works with low energy RI beams. The discussion of the second part specifically covers the problem of the vp-process in type II supernovae in terms of alpha cluster nature for the reactions.

  2. Global Nuclear Energy Partnership Steering Group Members Approve...

    Office of Environmental Management (EM)

    Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve ...

  3. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman: Science Overview and the Experimental Program ppt | pdf Tony Thomas: Nuclear Physics ...

  4. Laboratory Directed Research & Development | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Laboratory Directed Research & Development The U.S. Department of Energy (DOE) is charged with a large and complex mission: to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The DOE executes this mission to a large extent at its 17 national laboratories, a group of institutions which were created and are supported by the federal government to perform

  5. Integrated Global Nuclear Materials Management Preliminary Concepts

    SciTech Connect (OSTI)

    Jones, E; Dreicer, M

    2006-06-19

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  6. New Technologies for Repairing Aging Cables in Nuclear Power Plants: M3LW-14OR0404015 Cable Rejuvenation Report

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.; Roberts, John A.

    2014-09-08

    The goal of this project is to conceptually demonstrate techniques to repair cables that have degraded through subjection to long-term thermal and radiation exposure in nuclear power plants. In fiscal year 2014 (FY14) we focused on commercially available ethylene-propylene rubber (EPR) as the relevant test material, isolated a high surface area form of the EPR material to facilitate chemical treatment screening and charaterization, and measured chemical changes in the material due to aging and treatment using Fourier Transfrom Infrared (FTIR) spectroscopy.

  7. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    SciTech Connect (OSTI)

    Hamid, Nasri A. Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-29

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO{sub 2} emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper

  8. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear

    Office of Environmental Management (EM)

    Safeguards | Department of Energy Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more

  9. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect (OSTI)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  10. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  11. Requirements for a Dynamic Solvent Extraction Module to Support Development of Advanced Technologies for the Recycle of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Jack Law; Veronica Rutledge; Candido Pereira; Jackie Copple; Kurt Frey; John Krebs; Laura Maggos; Kevin Nichols; Kent Wardle; Pratap Sadasivan; Valmor DeAlmieda; David Depaoli

    2011-06-01

    The Department of Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program has been established to create and deploy next generation, verified and validated nuclear energy modeling and simulation capabilities for the design, implementation, and operation of future nuclear energy systems to improve the U.S. energy security. As part of the NEAMS program, Integrated Performance and Safety Codes (IPSC's) are being produced to significantly advance the status of modeling and simulation of energy systems beyond what is currently available to the extent that the new codes be readily functional in the short term and extensible in the longer term. The four IPSC areas include Safeguards and Separations, Reactors, Fuels, and Waste Forms. As part of the Safeguards and Separations (SafeSeps) IPSC effort, interoperable process models are being developed that enable dynamic simulation of an advanced separations plant. A SafeSepss IPSC 'toolkit' is in development to enable the integration of separation process modules and safeguards tools into the design process by providing an environment to compose, verify and validate a simulation application to be used for analysis of various plant configurations and operating conditions. The modules of this toolkit will be implemented on a modern, expandable architecture with the flexibility to explore and evaluate a wide range of process options while preserving their stand-alone usability. Modules implemented at the plant-level will initially incorporate relatively simple representations for each process through a reduced modeling approach. Final versions will incorporate the capability to bridge to subscale models to provide required fidelity in chemical and physical processes. A dynamic solvent extraction model and its module implementation are needed to support the development of this integrated plant model. As a stand-alone application, it will also support solvent development of extraction flowsheets and integrated

  12. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Comparison of two decommissioning cost estimates developed for the same commercial nuclear reactor power station

    SciTech Connect (OSTI)

    Konzek, G.J.; Smith, R.I. )

    1990-12-01

    This study presents the results of a comparison of a previous decommissioning cost study by Pacific Northwest Laboratory (PNL) and a recent decommissioning cost study of TLG Engineering, Inc., for the same commercial nuclear power reactor station. The purpose of this comparative analysis on the same plant is to determine the reasons why subsequent estimates for similar plants by others were significantly higher in cost and external occupational radiation exposure (ORE) than the PNL study. The primary purpose of the original study by PNL (NUREG/CR-0672) was to provide information on the available technology, the safety considerations, and the probable costs and ORE for the decommissioning of a large boiling water reactor (BWR) power station at the end of its operating life. This information was intended for use as background data and bases in the modification of existing regulations and in the development of new regulations pertaining to decommissioning activities. It was also intended for use by utilities in planning for the decommissioning of their nuclear power stations. The TLG study, initiated in 1987 and completed in 1989, was for the same plant, Washington Public Supply System's Unit 2 (WNP-2), that PNL used as its reference plant in its 1980 decommissioning study. Areas of agreement and disagreement are identified, and reasons for the areas of disagreement are discussed. 31 refs., 3 figs., 22 tabs.

  13. State-of-the-Art of Non-Destructive Testing Methods and Technologies for Application to Nuclear Power Plant Safety-Related Concrete Structures

    SciTech Connect (OSTI)

    Wiggenhauser, Dr. Herbert; Naus, Dan J

    2014-01-01

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: locating steel reinforcement and identification of its cover depth locating tendon ducts and identification of the condition of the grout materials detection of cracking, voids, delamination, and honeycombing in concrete structures detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner methods capable of identification of corrosion occurrence on the concrete side of the containment liner

  14. State-of-the-art of non-destructive testing methods and technologies for application to nuclear power plant safety-related concrete structures

    SciTech Connect (OSTI)

    Wiggenhauser, Herbert; Naus, Dan J.

    2014-02-18

    The inspection of nuclear power plant concrete structures presents challenges different from conventional civil engineering structures. Wall thicknesses can be in excess of one meter and the structures often have increased steel reinforcement density with more complex detailing. The accessibility for any testing method may be limited due to the presence of liners and other components and there can be a number of penetrations or cast-in-place items present. The objective of the report is to present the state-of-the art of non-destructive testing methods and technologies for the inspection of thick, heavily-reinforced nuclear power plant concrete cross-sections with particular respect to: •locating steel reinforcement and identification of its cover depth •locating tendon ducts and identification of the condition of the grout materials •detection of cracking, voids, delamination, and honeycombing in concrete structures •detection of inclusions of different materials or voids adjacent to the concrete side of the containment liner •methods capable of identification of corrosion occurrence on the concrete side of the containment liner.

  15. Transformer Resilience and Advanced Components (TRAC) Program

    Broader source: Energy.gov [DOE]

    To date, much of the “smart grid” transformation has focused on applying advanced digital information and communication technologies to the power grid to improve the system’s reliability,...

  16. Transforming a Transformative School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming a Transformative School Transforming a Transformative School October 11, 2012 - 10:14am Addthis During a yearlong renovation, Harding Charter Preparatory school upgraded lighting fixtures, installed a new heating and cooling system, and replaced the entry doors. The new doors allow daylight into the school and restore the historical building envelope. | Photo courtesy of John Winkel, Energy Department. During a yearlong renovation, Harding Charter Preparatory school upgraded

  17. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  18. THE CREATIVE APPLICATION OF SCIENCE TECHNOLOGY & WORK FORCE INNOVATIONS TO THE D&D OF PLUTONIUM FINISHING PLANT (PFP) AT THE HANFORD NUCLEAR RESERVATION

    SciTech Connect (OSTI)

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program. The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D&D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D&D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D&D mission with a can-do attitude. They went into D&D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox cleanout. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these challengers are

  19. Global Nuclear Energy Partnership Steering Group Members Approve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformation to the International Framework for Nuclear Energy Cooperation | Department of Energy Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation Global Nuclear Energy Partnership Steering Group Members Approve Transformation to the International Framework for Nuclear Energy Cooperation June 18, 2010 - 12:00am Addthis The Global Nuclear Energy Partnership Steering Group met in Accra, Ghana on June 16-17, 2010 and approved

  20. Critical Path to Nuclear Science and Technology Knowledge Transfer and Skill Development in K-12 Schools: Why America Needs Action and Support from Federal and State Education Departments Now

    SciTech Connect (OSTI)

    Vincenti, J.R.; Anderson, G.E.

    2006-07-01

    With the signing of President Bush's energy bill in August of 2005, the successful application of the new energy legislation may have more to do with educational standards required in our schools than applications of research and technology in the long-term. Looking inside the new legislation, the future of that legislation's success may not just hinge on investment in technology, but ensuring that our citizens, especially our youth, are prepared and better informed to be able to understand, react, and apply the economically and national security driven intent of the law. How can our citizens make sense of change if they lack the skills to be able to understand, not only the technology, but also the science that drives the change? President Bush's passage of the 1,724-page bill emphasizes conservation, clean energy research, and new and improved technology. The legislation also provides for economic incentives toward building more nuclear power plants. This paper will use four questions as a focal point to emphasize the need for both state and federal education departments to review their current standards and respond to deficiencies regarding learning about radioactivity, radiation, and nuclear science and technology. The questions are: 1. Will America accept new nuclear power development? 2. Will waste issues be resolved concerning high- and low-level radioactive waste management and disposal? 3. Will nuclear 'anything' be politically correct when it comes to your backyard? 4. Is our youth adequately educated and informed about radioactivity, radiation, and nuclear science and technology? This paper will use Pennsylvania as a case study to better understand the implications and importance of the educational standards in our school systems. This paper will also show how the deficiency found in Pennsylvania's academic standards, and in other states, has a significant impact on the ability to fulfill the legislation's intent of realizing energy independence and

  1. The Fuel Cell Mobile Light Project - A DOE Market Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOEBoeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Fuel Cell Product CertificationListing Lessons Learned Market Transformation ...

  2. National Nuclear Science Week 2013 - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... List of Exhibitors: Aiken Technical College * American Nuclear Society * AREVA * Augusta Technical College * The Babcock & Wilcox Company * Citizens for Nuclear Technology ...

  3. Press Releases | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    ... November 03, 2015 NNSA Labs host U.S. and Nuclear Non-Proliferation Treaty (NPT) ... to Sign Agreement on Countering the Proliferation of Nuclear Materials and Technologies ...

  4. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  5. September 2010 | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    Reducing Site's Nuclear Footprint Y-12 Transformation Continues With Potable Water Project, New Towers NNSA Breaks Ground on New Facility in Kansas City Sandia Cutting ...

  6. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Security Summit U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Statement on Signing of the Administrative Arrangement to the Agreement for

  7. nuclear security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    security U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... Secretary Moniz awards Hutcheon memorial nonproliferation fellowship to Thomas Gray

  8. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  9. Technology Performance Exchange

    SciTech Connect (OSTI)

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  10. Some thoughts on the nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Krikorian N.H.; Hawkins, H.T.

    1996-05-01

    This paper discusses factors controlling the dissemination of nuclear technologies and especially fissile materials.

  11. National Nuclear Chemistry Summer School

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Division of Nuclear Chemistry and Technology of the American Chemical Society (ACS) is sponsoring two INTENSIVE six-week Summer Schools in Nuclear and Radiochemistry for undergraduates. Funding is provided by the US Department of Energy.

  12. National Nuclear Chemistry Summer School

    Office of Energy Efficiency and Renewable Energy (EERE)

    he Division of Nuclear Chemistry and Technology of the American Chemical Society (ACS) is sponsoring two INTENSIVE six-week Summer Schools in Nuclear and Radiochemistry for undergraduates. Funding...

  13. Predictive Science Academic Alliance Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Predictive Science Academic Alliance Program | National Nuclear Security Administration ... Home About Us Our Programs Defense Programs Future Science & Technology Programs ...

  14. Belgium Nuclear Security Summit: Fact Sheet | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Nuclear Security Summit: Fact Sheet March 27, 2012 As one of the leaders in nuclear technology development, Belgium's nuclear program has covered all aspects of nuclear fuel cycle including reprocessing and operated a reprocessing plant between 1966 and 1974. Belgium signed the NPT in 1975 as a non-weapons state, but has retained a leading nuclear technology research center and derives over 50% of its energy from nuclear power using 7 power reactors. SCK-CEN is one of

  15. 2013 Nuclear Workforce Development Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ∎ Tuesday, October 22, 2013 Welcome Opening Anna Johnson - Shaw AREVA MOX Services Dr. Marc Miller - SRS Community Reuse Organization Chair Mayor Deke Copenhaver - Augusta, Georgia Nuclear Technology: Opportunities in Energy & Beyond Laura Clise, AREVA Director, External Communications & Corporate Citizenship Innovation in nuclear technology will continue to make a difference in our everyday lives. Opportunities to leverage nuclear technology in support of economic prosperity, health,

  16. Mechanisms of transformation toughening

    SciTech Connect (OSTI)

    Olson, G.B.

    1992-02-01

    Modelling the thermodynamics and kinetics of isothermal martensitic transformation under stress, transformation toughening in austenitic steels, and dispersed phase transformation plasticity in low alloy steels are discussed briefly in this progress report for Doe Grant DE-FG02-88ER45365.

  17. Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise. Vietnam Removal Working in close...

  18. Nonproliferation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and detect and control the proliferation of related WMD technology and expertise. ... both state- and non-state-based proliferation of nuclear and radiological materials ...

  19. Leadership | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... military, and commercial technological advances in countries of a proliferation concern. ...

  20. Nuclear Safety | Department of Energy

    Energy Savers [EERE]

    Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) (408.42 KB) More Documents & Publications Front-end Nuclear Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009) of Energy

    Regulatory Commission Regulatory and Licensing Matters Nuclear Regulatory Commission Regulatory and Licensing Matters GC-52

  1. Development of Toroidal Core Transformers

    SciTech Connect (OSTI)

    Leon, Francisco

    2014-05-31

    The original objective of this project was to design, build and test a few prototypes of singlephase dry-type distribution transformers of 25 kVA, 2.4 kV primary to 120 V transformers using cores made of a continuous steel strip shaped like a doughnut (toroid). At different points during the development of the project, the scope was enhanced to include the more practical case of a 25 kVA transformer for a 13.8 kV primary system voltage. Later, the scope was further expanded to design and build a 50 kVA unit to transformer voltage from 7.62 kV to 2x120 V. This is a common transformer used by Con Edison of New York and they are willing to test it in the field. The project officially started in September 2009 and ended in May 2014. The progress was reported periodically to DOE in eighteen quarterly reports. A Continuation Application was submitted to DOE in June 2010. In May 2011 we have requested a non-cost extension of the project. In December 2011, the Statement of Project Objectives (SOPO) was updated to reflect the real conditions and situation of the project as of 2011. A second Continuation Application was made and funding was approved in 2013 by DOE and the end date was extended to May 2014.The technical challenges that were overcome in this project include: the development of the technology to pass the impulse tests, derive a model for the thermal performance, produce a sound mechanical design, and estimate the inrush current. However, the greatest challenge that we faced during the development of the project was the complications of procuring the necessary parts and materials to build the transformers. The actual manufacturing process is relatively fast, but getting all parts together is a very lengthy process. The main products of this project are two prototypes of toroidal distribution transformers of 7.62 kV (to be used in a 13.8 kV system) to 2x120 V secondary (standard utilization voltage); one is rated at 25 kVA and the other at 50 kVA. The 25 k

  2. Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    Michael F. Simpson; Jack D. Law

    2010-02-01

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  3. Nuclear Hydrogen R&D Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Hydrogen R&D Plan March 2004 Nuclear Hydrogen R&D Plan March 2004 Department Of Energy Office of Nuclear Energy, Science and Technology CONTENTS 1. Hydrogen and The Role of Nuclear Energy ................................................................................. 1-1 1.1 The DOE Hydrogen Program ........................................................................................... 1-2 1.2 Energy Sources for Hydrogen - The Nuclear Connection

  4. EERE Success Story-Vortex Hydro Energy Develops Transformational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Harness Energy from Water Currents | Department of Energy Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents EERE Success Story-Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents April 10, 2013 - 12:00am Addthis EERE is funding Vortex Hydro Energy to commercialize the Vortex Induced Vibration Aquatic Clean Energy (VIVACE) converter, which is a University of Michigan-patented marine and

  5. Transformative Simulation of Shock-Generated Magnetic Fields | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

  6. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Storage Technologies Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Carbon Dioxide Storage Technologies

  7. National Power Transformer Reserve

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alliance for FLEX Emergency Response (SAFER) team, to implement off-site capabilities in ... warehouses would have predefined restoration transformers for rapid recovery. ...

  8. Maintaining the Stockpile | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Maintaining the Stockpile NNSA ensures the Nation sustains a safe, secure, and effective nuclear deterrent through the application of science, technology, engineering, and manufacturing. To deal with the changing face of nuclear deterrence and more-widely dispersed nuclear knowledge, NNSA also ensures the United States maintains excellence in nuclear science and technology that is second to none. Within the Nuclear Security Enterprise, the central mission which includes maintaining

  9. Overview paper on nuclear power

    SciTech Connect (OSTI)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  10. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  11. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation Manufacturing Safety, Codes & Standards Education Market Transformation Systems Analysis Information Resources Financial Opportunities News Events Contact Us

  12. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  13. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  14. EM Hosts Successful Visit from Canadian Nuclear Laboratories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    professionals from Canadian Nuclear Laboratories (CNL) - Canada's premier nuclear technology and engineering organization - for two days at EM's Hanford site in November this year. ...

  15. DOE, NNSA Announce Availability of Reserve Stockpile of Nuclear...

    National Nuclear Security Administration (NNSA)

    the peaceful use of nuclear energy without exacerbating nuclear proliferation risks. ... a fuel supply without promoting proliferation sensitive technologies is a critical ...

  16. 2012 Monitoring Research Review: Ground-Based Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    Review: Ground-Based Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring ...

  17. September 2013 Most Viewed Documents for Fission And Nuclear...

    Office of Scientific and Technical Information (OSTI)

    September 2013 Most Viewed Documents for Fission And Nuclear Technologies Estimation of ... Tianfu; Pruess, Karsten (2001) 45 LWR nuclear fuel bundle data for use in fuel bundle ...

  18. Energy Department Announces New Investments in Advanced Nuclear...

    Energy Savers [EERE]

    in the next generation of nuclear energy technologies and enable low-carbon nuclear power to be a significant ... analysis on sodium thermal hydraulics to support ...

  19. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect (OSTI)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  20. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT TECHNOLOGY DEVELOPMENT REPORT FISCAL YEAR 2010

    SciTech Connect (OSTI)

    Bush, S.

    2010-10-22

    The mission of the Department of Energy's (DOE's) Office of Environmental Management (EM) is to clean up the environmental legacy of nuclear weapons research and production during the Cold War. That mission includes cleaning up nuclear waste, contaminated groundwater and soil, nuclear materials, and contaminated facilities covering two million acres of land in thirty-five states. EM's principal program goals include timely completion of tank waste treatment facilities, reduction of the life-cycle costs and acceleration of the cleanup of the Cold War legacy, and reduction of the EM footprint. The mission of the EM Technology Innovation and Development program is to transform science and innovation into practical solutions to achieve the EM mission. During fiscal year 2010 (October 2009-September 2010), EM focused upon accelerating environmental cleanup by expeditiously filling identified gaps in available knowledge and technology in the EM program areas. This report describes some of the approaches and transformational technologies in tank waste processing, groundwater and soil remediation, nuclear materials disposition, and facility deactivation and decommissioning developed during fiscal year 2010 that will enable EM to meet its most pressing program goals.

  1. A Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  2. Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  3. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  4. Energy Technology Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Solutions Energy Technology Solutions Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies itp_successes.pdf (5.39 MB) More Documents & Publications Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010 ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive

  5. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › U.S. nuclear outages this summer were higher than in summer 2015

  6. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear forensics Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the

  7. 2015 Peer Review Presentations-Demonstration and Market Transformation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Demonstration and Market Transformation 2015 Peer Review Presentations-Demonstration and Market Transformation The Bioenergy Technologies Office hosted its 2015 Project Peer Review on March 23-27, 2015, at the Hilton Mark Center in Alexandria, Virginia. The presentations from the demonstration and market transformation sessions are available to view and download below. For detailed session descriptions and presentation titles, view the 2015 Project Peer Review Program

  8. China | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    China U.S. and China Continue Cooperative Partnership to Advance Safe, Secure Civil Nuclear Energy for Clean Energy Future DOE/NNSA Hosts 11th U.S.-China Peaceful Uses of Nuclear Technology Meeting at Savannah River National Laboratory in Aiken, South Carolina (Aiken, South Carolina) - On May 10-11, 2016 the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) and the China... NNSA Deputy Administrator Creedon Travels to China In March, National Nuclear Security

  9. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  10. Advanced Nuclear Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects Advanced Nuclear Energy Projects ADVANCED NUCLEAR ENERGY 1 PROJECT in 1 LOCATION 2,200 MW GENERATION CAPACITY 17,200,000 MWh PROJECTED ANNUAL GENERATION * 10,000,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL Technology specific capacity factors. For cases in which NREL's capacity

  11. Nuclear Deployment Scorecards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards April 28, 2016 Quarterly Nuclear Deployment Scorecard - April 2016 News items on TVA Early Site Permit, UAMPS site use permit, south texas project license, PSEG early site permit. January 22, 2016 Quarterly Nuclear Deployment Scorecard - January 2016 Watts Bar Unit 2 completes fuel load. PSEG ESP final environmental impact statement completed. October 27, 2015 Quarterly Nuclear Deployment

  12. Integrated Nuclear-Renewable Energy Systems: Foundational Workshop Report

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Richard Boardman; John Collins; Mark Ruth; Owen Zinaman; Charles Forsberg

    2014-08-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for

  13. Secretary Moniz Awards $125 Million for 41 Transformational Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards 125 Million for 41 Transformational Energy Technology Projects Ahead of COP21 in Paris ... an inexpensive, polymer-based energy-saving material that can be applied to windows. ...

  14. Transforming Commercial Building Operations - 2013 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Commercial Building Operations - 2013 BTO Peer Review Transforming Commercial Building Operations - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review commlbldgs13_underhill_040413.pdf (946.69 KB) More Documents & Publications Transforming the Commercial Building Operations - 2014

  15. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    SciTech Connect (OSTI)

    Klingensmith, A. L.

    2012-03-21

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nations verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  16. Before the House Science and Technology Committee | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (32.64 KB) More Documents & Publications Nuclear Energy Research and Development Roadmap 2012 Nuclear Energy Enabling Technology Factsheet Meeting Materials: December 18, 2009

  17. DOE Science Showcase: Space Technology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    Examples of this technology include space nuclear power, applications to detect and ... Additional Resources DOE Office of Science DOE Office of Nuclear Energy Infographic: Where ...

  18. Proceedings of the 21st Seismic Research Symposium: Technologies...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Test-Ban Treaty Citation Details In-Document Search Title: Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear ...

  19. Evaluated Nuclear Data

    SciTech Connect (OSTI)

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  20. Series Transmission Line Transformer

    DOE Patents [OSTI]

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  1. R&D for Better Nuclear Security: Radiation Detector Materials

    SciTech Connect (OSTI)

    Kammeraad, J E

    2009-04-02

    I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

  2. Nuclear Power Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) (408.42 KB) More Documents & Publications Front-end Nuclear Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009)

  3. ARPA-E Announces $43 Million for Transformational Energy Storage Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Advance Electric Vehicle and Grid Technologies | Department of Energy $43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies ARPA-E Announces $43 Million for Transformational Energy Storage Projects to Advance Electric Vehicle and Grid Technologies August 2, 2012 - 10:34am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Department of Energy today announced that 19 transformative new projects will receive a total of $43 million

  4. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  5. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).

  6. CASL - Massachusetts Institute of Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Massachusetts Institute of Technology Cambridge, MA The Department of Nuclear Science and Engineering at MIT has been a leader in the development of the nuclear engineering spectrum of curriculum and research activities, integrating foundational scientific knowledge with engineering proactive to advance. Fission and fusion energy Advanced materials Nuclear radiation technologies Security science and policy Key Contributions Scientific contribution and coordination in the Material Performance and

  7. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) – Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : • Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. • Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. • Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. • Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. • Supporting industry in helping to create a larger qualified nuclear supplier network. • Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. • Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. • Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with

  8. DOE Initiates Environmental Impact Statement for Global Nuclear...

    Office of Environmental Management (EM)

    statement (EIS) for the technology demonstration program of the Global Nuclear Energy ... an EIS for the GNEP technology demonstration program and plans to issue the final ...

  9. Pakistan’s nuclear Taj Mahal

    SciTech Connect (OSTI)

    Leslie, Stuart W.

    2015-02-15

    Inspired by the promise of Atoms for Peace, the Pakistan Institute of Nuclear Science and Technology eventually succumbed to the demands of the country’s nuclear weapons program.

  10. Office of Nuclear Energy Fiscal Year 2014 Budget Request

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Energy (NE) supports the diverse civilian nuclear energy programs of the U.S. Government, leading Federal efforts to research and develop nuclear energy technologies,...

  11. Travel to France as Chief US Delegate at a meeting of International Standards Organization ISO/TC-85, ``Nuclear Technology``. Foreign trip report, March 17--March 26, 1994

    SciTech Connect (OSTI)

    Westfall, R.M.

    1994-04-11

    As overall US Advisor for ISO/TC-85, SC-5, Dr. Westfall met with (1) Work Group 1, ``Measurement Techniques for the Chemical and Physical Characterization of UF{sub 6}, UO{sub 2}, and Mixed Oxide,`` on Monday, March 21, (2) Work Group 5, ``Standardization of Measurement Methods for the Characterization of Solid and Solidified Waste Forms, and for the Corrosion of their Primary Containers,`` on Tuesday, March 22; and (3) the full Subcommittee-5 on Wednesday, March 23. The status of work by all seven work groups in SC-5 was reported. Those having to do with nuclear fuel transportation (WG-4: UF, Containers, WG-9: Cask Trunnions, and WG-10: Cask Confinement) either have approved standards or drafts at an advanced stage of development. These work group convenors were asked to maintain their membership and establish new work areas in the field of nuclear fuel packaging. Definition of scope for new work is to be done in coordination with the interested staff members of the International Atomic Energy Agency, Vienna, Austria. On Thursday, March 24, the Cogema-Marcoule Plant staff hosted the SC-5 members to technical tours of their nuclear fuel reprocessing and waste vitrification and storage facilities.

  12. Sandia Energy - Past Market Transformation Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Market Transformation Activities Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Past Market Transformation...

  13. NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE

    SciTech Connect (OSTI)

    Sherman, S

    2008-09-22

    A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

  14. Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2006, the National Nuclear Security Administration (NNSA) announced the selection of National Security Technologies, LLC (NSTec) to manage and operate the Nevada Test Site (NTS) for the NNSA Nevada Site Office. The contract, valued at approxi- mately $500 million annually, is for five years. There are poten- tially five additional perform- ance-based award-term years available under this contract. NSTec is made up of Northrop Grumman, AECOM, CH2M Hill, and Nuclear Fuel Services. Dr. James E.

  15. Technical Area V (TA-V) transformation project close-out report.

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    Sandia National Laboratories (SNL) Technical Area V (TA-V) has provided unique nuclear experimental environments for decades. The technologies tested in TA-V facilities have furthered the United States Nuclear Weapons program and has contributed to the national energy and homeland security mission. The importance of TA-V working efficiently to produce an attractive and effective platform for experiments should not be underestimated. Throughout its brief history, TA-V has evolved to address multiple and diverse sets of requirements. These requirements evolved over many years; however, the requirements had not been managed nor communicated comprehensively or effectively. A series of programmatic findings over several years of external audits was evidence of this downfall. Today, these same requirements flow down through a new TA-V management system that produces consistently applied and reproducible approaches to work practices. In 2008, the TA-V department managers assessed the state of TA-V services and work activities to understand how to improve customer interfaces, stakeholders perceptions, and workforce efficiencies. The TA-V management team initiated the TA-V Transformation Project after they deemed the pre-June 2008 operational model to be ineffective in managing work and in providing integrated, continuous improvement to TA-V processes. This report summarizes the TA-V Transformation Project goals, activities, and accomplishments.

  16. Chapter 4: Advancing Clean Electric Power Technologies | Biopower Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  17. High Impact Commercial Technology RFI Review

    Broader source: Energy.gov [DOE]

    This webinar will review the Request for Information (RFI) DE-FOA-0001352. This RFI covers the High Impact Technology (HIT) Catalyst, which supports the technology-related market transformation...

  18. Nuclear stockpile stewardship and Bayesian image analysis (DARHT...

    Office of Scientific and Technical Information (OSTI)

    Subject: 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; 42 ENGINEERING; HYDRODYNAMICS; IMAGE PROCESSING; NUCLEAR WEAPONS; RELIABILITY; STOCKPILES; TESTING; TEST FACILITIES ...

  19. Final Complex Transformation Supplemental Programmatic Environmental Impact Statement October 2008

    Office of Environmental Management (EM)

    I Volume I Chapters 1 - 4 Chapters 1 - 4 DOE/EIS-0236-S4 National Nuclear Security Administration U.S. Department of Energy October 2008 C C CO O OM MP PL LE EXtransfo o or r rm m mat on COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy, National Nuclear Security Administration TITLE: Final Complex Transformation Supplemental Programmatic Environmental Impact Statement (Complex Transformation SPEIS, DOE/EIS-0236-S4) CONTACTS: For further information on this SPEIS, For general information

  20. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    SciTech Connect (OSTI)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-07-18

    Cleaning up the nation’s nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  1. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  2. Online Monitoring of Plant Assets in the Nuclear Industry

    SciTech Connect (OSTI)

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  3. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  4. Monitoring international nuclear activity

    SciTech Connect (OSTI)

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  5. Nuclear Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  6. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  7. Edward Purcell and Nuclear Magnetic Resonance (NMR)

    Office of Scientific and Technical Information (OSTI)

    Purcell first observed nuclear magnetic resonance (NMR) in 1945 while working at the Massachusetts Institute of Technology (MIT) Radiation Laboratory in an after-hours experiment. ...

  8. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    R&D is organized into two offices: Proliferation Detection develops technologies to detect ... Learn More Proliferation Detection Nuclear Detonation Detection Related Topics ...

  9. International Nuclear Energy Policy and Cooperation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fast reactors, light water reactor accident-tolerant fuels, actinide separations and waste forms technologies, and nuclear fuel performance modeling and simulation codes. ...

  10. sandia national lab | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national lab NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation ...

  11. Maintaining the Stockpile | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    This will allow NNSA to meet today's military and national security requirements. Each ... of national policy, strategy, military, nuclear deterrence, and technology requirements. ...

  12. Nuclear Fuel Cycle | Department of Energy

    Office of Environmental Management (EM)

    advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. ...

  13. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  14. DOE Announces Strategic Engineering and Technology Roadmap for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era ...

  15. DOE Science Showcase: Space Technology | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect - space technology results from DOE science, technology, and engineering ... RefreshLine.png Additional Resources DOE Office of Science DOE Office of Nuclear Energy ...

  16. Market Transformation Fact Sheet

    Broader source: Energy.gov (indexed) [DOE]

    ... Traditional backup power technologies used during power grid outages employ batteries or genera- tors that operate on diesel, propane, or gasoline. Although these systems are ...

  17. Ad Lucem: Modeling Market Transformation Pathways Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AD LUCEM ... TOWARD THE LIGHT! 1 Ad Lucem: Modeling Market Transformation Pathways Workshop Berkeley, California | Friday, February 17, 2012 Ad lucem - Latin for toward the light - captures the essence of the SunShot Initiative. We seek to accelerate the global transition to clean, abundant solar energy by expanding our understanding of the technology-society-economics nexus. The ability to control energy resources is the enabler for growth, development, and opportunity. The diffusion of

  18. Residential market transformation: National and regional indicators

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura L.; McNamara, Maureen; Suozzo, Margaret

    2000-06-01

    A variety of programs are underway to address market barriers to the adoption of energy-efficient residential technologies and practices. Most are administered by utilities, states, or regions that rely on the Energy Star as a consistent platform for program marketing and messaging. This paper reviews regional and national market transformation activities for three key residential end-uses -- air conditioning, clothes washing, and lighting -- characterizing current and ongoing programs; reporting on progress; identifying market indicators; and discussing implications.

  19. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary FAQS Overview Data Status of U.S. nuclear outages (interactive) Nuclear power plants Uranium & nuclear fuel Spent nuclear fuel All nuclear data ...

  20. Office of Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Nuclear Energy Small Modular Reactors Small Modular Reactors The Small Modular Reactor program advances the licensing and commercialization of this next-generation technology in the United States. Read more Middle School STEM Curriculum Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more Educating Future Nuclear Engineers Educating Future Nuclear Engineers The Nuclear Energy University

  1. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear science nuclear chemistry Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line

  2. Comprehensive Nuclear Test-Ban Treaty | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear Test-Ban Treaty Administrator Leads a Strong NNSA Team at CTBT Science & Technology Conference NNSA Administrator Frank Klotz was a featured speaker on June 22, 2015, at the fifth Comprehensive Nuclear Test-Ban Treaty (CTBT) Science & Technology Conference (SnT15) in Vienna, Austria. Over 1100 participants met to further strengthen the relationship between the international scientific

  3. Nuclear Security Centers of Excellence: Fact Sheet | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Nuclear Security Centers of Excellence: Fact Sheet March 23, 2012 "We [the Participating States]... Acknowledge the need for capacity building for nuclear security and cooperation at bilateral, regional and multilateral levels for the promotion of nuclear security culture through technology development, human resource development, education, and training; and stress the importance of optimizing international cooperation and coordination of

  4. Laser-Compton Light Source Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mega ray Laser-Compton Light Source Technology Laser-Compton light source technology enables production of mono-energetic gamma rays and x rays. In the gamma-ray regime, these sources enable new, isotope-specific nuclear materials detection systems and photon-based study of nuclear processes (nuclear photonics). Laser-Compton light sources and related nuclear missions concepts were conceived of and realized over the course of the last decade at LLNL. Created by Compton scattering short-duration

  5. Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements

    Office of Energy Efficiency and Renewable Energy (EERE)

    As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research...

  6. Virtual nuclear weapons

    SciTech Connect (OSTI)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  7. CFR | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    CFR NNSA Updates Export Control Regulation WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) updated the Federal rule (10 CFR Part 810, or Part 810) that regulates the export of unclassified nuclear technology and assistance. The final rule was published in the Federal Register on Feb. 23 and will go into effect on

  8. laos | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    laos DOE/NNSA's Nonproliferation Experts Lead First Workshop on the IAEA Additional Protocol in Lao PDR Twenty-five participants from the Lao Ministry of Foreign Affairs, Ministry of Science and Technology and other key stakeholder organizations attended the event. WASHINGTON - The U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) sponsored the Fundamentals of Nuclear

  9. Reduction/Transformation Operators

    Energy Science and Technology Software Center (OSTI)

    2006-09-01

    RTOp (reduction/transformation operators) is a collection of C++ software that provides the basic mechanism for implementinig vector operations in a flexible and efficient manner. This is the main interface utilized by Thyra to allow for the specification of specific vector reduction and/or transformation operations. The RTOp package contains three different types of software. (a) a small number of interoperability interfaces. (b) support software including code for the parallel SPMD mode based on only Teuchos::Comm(and notmore » MPl directly(, and (c) a library of pre-implemented RTOp subclasses for everything from simple AXPYs and norms, to more specialized vector operations. RTOp allows an algorithm developer to implement their own RTOp subclasses in a way that is independent from any specific serial, parallel, out-of-core or other type of vector implementation. RTOp is a required package by Thyra and MOOCHO. (c)« less

  10. Transformational Energy Action Management (TEAM) Wireless Energy Efficiency Keys Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Transformational Energy Action Management (TEAM) Wireless Energy Efficiency Keys Initiative *Ways of Using Wireless Technology to Help You Reduce Energy Usage at your Facility Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy

  11. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  12. Scaled Wind Farm Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scaled Wind Farm Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  13. Marine Energy Technology Symposium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Technology Symposium - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  14. Final Technical Report; NUCLEAR ENGINEERING RECRUITMENT EFFORT

    SciTech Connect (OSTI)

    Kerrick, Sharon S.; Vincent, Charles D.

    2007-07-02

    This report provides the summary of a project whose purpose was to support the costs of developing a nuclear engineering awareness program, an instruction program for teachers to integrate lessons on nuclear science and technology into their existing curricula, and web sites for the exchange of nuclear engineering career information and classroom materials. The specific objectives of the program were as follows: OBJECTIVE 1: INCREASE AWARENESS AND INTEREST OF NUCLEAR ENGINEERING; OBJECTIVE 2: INSTRUCT TEACHERS ON NUCLEAR TOPICS; OBJECTIVE 3: NUCLEAR EDUCATION PROGRAMS WEB-SITE; OBJECTIVE 4: SUPPORT TO UNIVERSITY/INDUSTRY MATCHING GRANTS AND REACTOR SHARING; OBJECTIVE 5: PILOT PROJECT; OBJECTIVE 6: NUCLEAR ENGINEERING ENROLLMENT SURVEY AT UNIVERSITIES

  15. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect (OSTI)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  16. IEA Technology Roadmaps | Open Energy Information

    Open Energy Info (EERE)

    Plug-in Hybrid Vehicles Energy Efficient Buildings: heating & cooling systems Geothermal Nuclear Power Smart Grids Solar Photovoltaic Wind Energy" References "IEA Technology...

  17. National Laboratories' Energy Technologies and System Solutions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories' Energy Technologies and System Solutions Center Director - Sandia Energy Energy Search Icon Sandia Home Locations ... Nuclear Fuel Cycle Defense Waste Management Programs ...

  18. Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station

    SciTech Connect (OSTI)

    Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro; Kondo, Yoshikazu; Noguchi, Yoshikazu

    2013-07-01

    For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

  19. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  20. Getting on the same page-transformation | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Getting on the same ... Getting on the same page-transformation Posted: August 17, 2015 - 9:53am Transformation is an effort to unify the Pantex Plant and the Y-12 National Security Complex as one team, working better together, to serve the National Nuclear Security Administration's mission and deliver critical products and services. In the dynamic international nuclear environment, we must prove that our strong traditions and reputation of excellence are still relevant, while adapting our

  1. NREL: Hydrogen and Fuel Cells Research - Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Transformation NREL's market transformation activities address technical and non-technical barriers to the commercialization of hydrogen and fuel cell technologies to ensure that laboratory advances can be realized in the marketplace. Projects focus on deploying hydrogen and fuel cells in key early markets-specialty vehicles, backup and remote power, portable power, and primary power for critical applications such as hospitals or data centers-and renewable hydrogen production

  2. The Linear Engine Pathway of Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Linear Engine Pathway of Transformation The Linear Engine Pathway of Transformation This poster highlights the major milestones in the history of the linear engine in terms of technological advances, novel designs, and economic/social impact. p-06_covington.pdf (214.04 KB) More Documents & Publications Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Modeling the

  3. Proliferation Detection | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research and Development Proliferation Detection The Office of Proliferation Detection (PD) develops capabilities to detect special nuclear materials and weapons production and movement, as well as for transparent nuclear reductions and monitoring. The PD efforts are aligned along three functional areas: Nuclear Weaponization and Material Production Detection: Supports the development of technology to target the detection and characterization of foreign weapons program activities, including

  4. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  5. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  6. EIS-0236-S4: Final Complex Transformation Supplemental Programmatic Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This Complex Transformation Supplemental Programmatic Environmental Impact Statement (SPEIS) analyzes the potential environmental impacts of reasonable alternatives to continue transformation of the nuclear weapons complex to be smaller, and more responsive, efficient, and secure in order to meet national security requirements.

  7. U.S. and India Conclude First Workshop of the Civil Nuclear Working...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy's Office of Nuclear Energy, Science and Technology. India was represented by Dr. R. B. Grover, director of ... as fusion energy, high energy physics, and nuclear physics. ...

  8. Nuclear Navy

    SciTech Connect (OSTI)

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  9. Nuclear World Order and Nonproliferation

    SciTech Connect (OSTI)

    Joeck, N

    2007-02-05

    The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

  10. Our People | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    About Our People NNSA has the best science, technology and engineering in the world, and we are fortunate to have dedicated professionals who are truly leaders in their fields working every day to promote our nuclear security mission. The people who make up the nuclear security enterprise are on the front lines fighting nuclear terrorism and proliferation every single day, keeping us safe at home and abroad. NNSA has the best science, technology and engineering in the world, and we are fortunate

  11. Nuclear Facility Operations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations Nuclear Facility Operations INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. INL is a science-based, applied engineering national laboratory dedicated to meeting the nation's environmental, energy, nuclear technology, and national security needs. The Idaho Operations Office oversees these contract activities in accordance with DOE directives. INL is a multi-program

  12. Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tools and Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  13. DOE Initiates Environmental Impact Statement for Global Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership Technology Demonstrations | Department of Energy Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations DOE Initiates Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations March 22, 2006 - 9:39am Addthis WASHINGTON , DC - The U.S. Department of Energy (DOE) today announced plans to prepare an environmental impact statement (EIS) for the technology demonstration program of the Global Nuclear Energy

  14. Careers in Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Careers In Fuel Cell Technologies Existing and emerging fuel cell applications hold large job growth potential. Fuel cells are among the promising technologies that are expected to transform our energy sector. They represent highly efficient and fuel- flexible technologies that offer diverse benefits. For example, fuel cells can be used in a wide range of applications- from portable electronics, to combined heat and power (CHP) units used for distributed electricity generation, to passenger

  15. Market Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Through the SunShot Initiative, the U.S. Department of Energy (DOE) works with manufacturers, communities, states, utilities, and other partners to enable the solar market by reducing non-hardware balance-of-system (BOS) costs, developing a skilled workforce, and eliminating market barriers to widespread adoption of solar technologies. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  16. Marketing Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Through the SunShot Initiative, the U.S. Department of Energy (DOE) works with manufacturers, communities, states, utilities, and other partners to enable the solar market by reducing non-hardware balance-of-system (BOS) costs, developing a skilled workforce, and eliminating market barriers to widespread adoption of solar technologies.

  17. Detrecting and Locating Partial Discharges in Transformers

    SciTech Connect (OSTI)

    Shourbaji, A.; Richards, R.; Kisner, R. A.; Hardy, J.

    2005-02-04

    A collaborative research between the Oak Ridge National Laboratory (ORNL), the American Electric Power (AEP), the Tennessee Valley Authority (TVA), and the State of Ohio Energy Office (OEO) has been formed to conduct a feasibility study to detect and locate partial discharges (PDs) inside large transformers. The success of early detection of the PDs is necessary to avoid costly catastrophic failures that can occur if the process of PD is ignored. The detection method under this research is based on an innovative technology developed by ORNL researchers using optical methods to sense the acoustical energy produced by the PDs. ORNL researchers conducted experimental studies to detect PD using an optical fiber as an acoustic sensor capable of detecting acoustical disturbances at any point along its length. This technical approach also has the potential to locate the point at which the PD was sensed within the transformer. Several optical approaches were experimentally investigated, including interferometric detection of acoustical disturbances along the sensing fiber, light detection and ranging (LIDAR) techniques using frequency modulation continuous wave (FMCW), frequency modulated (FM) laser with a multimode fiber, FM laser with a single mode fiber, and amplitude modulated (AM) laser with a multimode fiber. The implementation of the optical fiber-based acoustic measurement technique would include installing a fiber inside a transformer allowing real-time detection of PDs and determining their locations. The fibers are nonconductive and very small (core plus cladding are diameters of 125 μm for single-mode fibers and 230 μm for multimode fibers). The research identified the capabilities and limitations of using optical technology to detect and locate sources of acoustical disturbances such as in PDs in large transformers. Amplitude modulation techniques showed the most promising results and deserve further research to better quantify the technique’s sensitivity

  18. Compilation of requests for nuclear data

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    A request list for nuclear data which was produced from a computerized data file by the National Nuclear Data Center is presented. The request list is given by target nucleus (isotope) and then reaction type. The purpose of the compilation is to summarize the current needs of US Nuclear Energy programs and other applied technologies for nuclear data. Requesters are identified by laboratory, last name, and sponsoring US government agency. (WHK)

  19. Duncan - Rickover and the Nuclear Navy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operational Management » History » Historical Resources » History Publications » Duncan - Rickover and the Nuclear Navy Duncan - Rickover and the Nuclear Navy Francis Duncan. Rickcover and the Nuclear Navy: The Discipline of Technology. 1989. The text in each PDF is fully searchable. DuncanRickoverandtheNuclearNavyComplete.pdf (5.6 MB) DuncanRickoverandtheNuclearNavyPicturesOnly.pdf (10.32 MB) More Documents & Publications Hewlett and Duncan, Nuclear Navy, 1946-1962

  20. Nuclear Detection and Sensor Testing Center | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards April 28, 2016 Quarterly Nuclear Deployment Scorecard - April 2016 News items on TVA Early Site Permit, UAMPS site use permit, south texas project license, PSEG early site permit. January 22, 2016 Quarterly Nuclear Deployment Scorecard - January 2016 Watts Bar Unit 2 completes fuel load. PSEG ESP final environmental impact statement completed. October 27, 2015 Quarterly Nuclear Deployment

  1. Crosscutting Technology Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Technology Development Crosscutting Technology Development The NEET Crosscutting Technology Development (CTD) activity provides R&D support to various reactor and fuel cycle technologies, both existing and under development. These include several areas that crosscut multiple nuclear technologies CTD aims to: Work with other NE R&D programs to identify critical capabilities and common technology needs. Encourage and lead coordinated research and development activities to

  2. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    SciTech Connect (OSTI)

    Rubin, Edward M.

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy/sup +/ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy/sup +/ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy/sup +/ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  3. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  4. Energy Recovered Light Source Technology at TJNAF | U.S. DOE...

    Office of Science (SC) Website

    Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ... Applications of Nuclear Science Archives Energy Recovered Light Source Technology at TJNAF ...

  5. Cyclotron Road: Creating a Home for Top Clean Energy Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    major priority to transform the way EERE works with the Department's national ... conventional wisdom in search of the best path for bringing new technologies to market. ...

  6. Revolution Now: The Future Arrives for Four Clean Energy Technologies...

    Office of Environmental Management (EM)

    In 2013, the DOE released a report called Revolution Now highlighting four transformational technologies that are here today: onshore wind power, polysilicon photovoltaic (PV) ...

  7. Transforming the U.S. Energy Infrastructure

    SciTech Connect (OSTI)

    Larry Demick

    2010-07-01

    The U.S. energy infrastructure is among the most reliable, accessible and economic in the world. On the other hand, the U.S. energy infrastructure is excessively reliant on foreign sources of energy, experiences high volatility in energy prices, does not practice good stewardship of finite indigenous energy resources and emits significant quantities of greenhouse gases (GHG). This report presents a Technology Based Strategy to achieve a full transformation of the U.S. energy infrastructure that corrects these negative factors while retaining the positives.

  8. Correlation between Fermi surface transformations and superconductivit...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Correlation between Fermi surface transformations and superconductivity ... Title: Correlation between Fermi surface transformations and superconductivity in the ...

  9. Engineering Molecular Transformations for Sustainable Energy...

    Office of Scientific and Technical Information (OSTI)

    Engineering Molecular Transformations for Sustainable Energy Conversion Citation Details In-Document Search Title: Engineering Molecular Transformations for Sustainable Energy ...

  10. Helping nuclear power help us

    SciTech Connect (OSTI)

    Schecker, Jay A

    2009-01-01

    After a prolonged absence, the word 'nuclear' has returned to the lexicon of sustainable domestic energy resources. Due in no small part to its demonstrated reliability, nuclear power is poised to playa greater role in the nation's energy future, producing clean, carbon-neutral electricity and contributing even more to our energy security. To nuclear scientists, the resurgence presents an opportunity to inject new technologies into the industry to maximize the benefits that nuclear energy can provide. 'By developing new options for waste management and exploiting new materials to make key technological advances, we can significantly impact the use of nuclear energy in our future energy mix,' says Chris Stanek, a materials scientist at Los Alamos National Laboratory. Stanek approaches the big technology challenges by thinking way small, all the way down to the atoms. He and his colleagues are using cutting edge atomic-scale simulations to address a difficult aspect of nuclear waste -- predicting its behavior far into the future. Their research is part of a broader, coordinated effort on the part of the Laboratory to use its considerable experimental, theoretical, and computational capabilities to explore advanced materials central to not only waste issues, but to nuclear fuels as well.

  11. Graphite Technology Development Plan

    SciTech Connect (OSTI)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical nuclear grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  12. PRESENTATION: TRANSFORMATION OF THE GRID

    Broader source: Energy.gov [DOE]

    A briefing to the Secretary's Energy Advisory Board on the transformation of the grid delivered by Patricia Hoffman, U.S. Department of Energy.

  13. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more ...

  14. Front-end Nuclear Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Front-end Nuclear Facilities (2008) Front-end Nuclear Facilities (2008) Front-end Nuclear Facilities (2008) (399.4 KB) More Documents & Publications Nuclear Power Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009)

  15. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect (OSTI)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  16. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect (OSTI)

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  17. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  18. Chapter 4: Advancing Clean Electric Power Technologies | Fast-Spectrum Reactors Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Fast-spectrum Reactors Chapter 4:

  19. Chapter 4: Advancing Clean Electric Power Technologies | Solar Power Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Solar Power Technologies Chapter 4: Technology Assessments Introduction Solar energy

  20. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    -ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.