Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Life beyond nuclear testing the Nevada Test Site.  

E-Print Network (OSTI)

??The Nevada Test Site (NTS) has served a crucial role in protecting the nation's security over the last 50 years. Changing national budgets and fiscal (more)

Martinez-Myers, Fina

1999-01-01T23:59:59.000Z

2

Special Nuclear Material Portal Monitoring at the Nevada Test Site  

SciTech Connect

Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program.

DeAnn Long; Michael Murphy

2008-07-01T23:59:59.000Z

3

Special Nuclear Material Portal Monitoring at the Nevada Test Site  

SciTech Connect

In the past, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site has been performed by the Radiological Health Instrumentation Department. Calibration and performance tests on the PM-700 personnel portal monitor were performed but there was no test program for the VM-250 vehicle portal monitor because it had never been put into service. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no program in place to test them quarterly. In April of 2007, the Material Control and Accountability (MC&A) Manager at the time decided that the program needed to be strengthened and MC&A took over performance testing of all SNM portal monitoring equipment. This paper will discuss the following activities associated with creating a performance testing program: changing the culture, learning the systems, writing procedures, troubleshooting/repairing, validating the process, control of equipment, acquisition of new systems, and running the program.

Mike Murphy

2008-03-01T23:59:59.000Z

4

Finding of No Significant Impact Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada Test Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOLOGICAL/NUCLEAR COUNTERMEASURES TEST AND EVALUATION COMPLEX, NEVADA TEST SITE The U.S. Department of Homeland Security (DHS) is the Federal organization charged with defending the borders of the United States under the authority the Homeland Security Act of 2002 (Public Law 107-296). The DHS requested the National Nuclear Security Administration (NNSA) to develop at the Nevada Test Site (NTS) a complex for testing and evaluating countermeasures for interdicting potential terrorist attacks using radiological and/or nuclear weapons of mass destruction. In response to that request, NNSA proposes to construct, operate, and maintain the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC). NNSA has prepared an Environmental Assessment (DOE/EA-1499) (EA) which analyzes the potential

5

Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada National Security Site Nuclear Testing Artifacts Become Part Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S. Cultural Archive Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S. Cultural Archive April 1, 2012 - 12:00pm Addthis Stanchions are among the remnants of Smoky Tower. Stanchions are among the remnants of Smoky Tower. LAS VEGAS, NV - The Nevada National Security Site's (NNSS) historic Smoky site may soon join a long list of former nuclear testing locations eligible for inclusion in the National Register of Historic Places. The Desert Research Institute (DRI) is currently working alongside the Nevada Site Office (NSO) to determine the eligibility of Smoky and a number of other EM sites slated for cleanup and closure. "In the last year, we've conducted assessments at over 30 EM sites,"

6

Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado  

SciTech Connect

The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient.

Earman, S.; Chapman, J.; Andricevic, R.

1996-09-01T23:59:59.000Z

7

Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico  

SciTech Connect

The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, {sup 90}Sr, and {sup 137}Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test.

Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

1996-09-01T23:59:59.000Z

8

Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico  

SciTech Connect

A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site.

Pohll, G.; Pohlmann, K.

1996-08-01T23:59:59.000Z

9

ENVIRONMENTAL IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS  

Office of Legacy Management (LM)

IlONITORING REPORT FOR THE NEVADA TEST SITE IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1975 Nonitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U . S . ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION EMSL-LV-5 39-4 May 1976 ENVIRONMENTAL 14ONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December I975 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of

10

A study of residual Cesium 137 contamination in southwestern Utah soil following the nuclear weapons tests at the Nevada Test Site in the 1950's and 1960's.  

E-Print Network (OSTI)

??The Nevada Test Site (NTS) was the location for at least 100 above ground Nuclear Weapons tests during the 1950's and early 1960's. Radioactive fallout (more)

[No author

2008-01-01T23:59:59.000Z

11

Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado  

SciTech Connect

DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab.

Chapman, J.; Earman, S.; Andricevic, R.

1996-10-01T23:59:59.000Z

12

Characterization of Pu-contaminated soils from Nuclear Site 201 at the Nevada Test Site  

SciTech Connect

Distribution and characteristics of Pu-bearing radioactive particles throughout five soil profiles from Nuclear Site (NS) 201 were investigated. Concentrations of /sup 239/ /sup 240/Pu and /sup 241/Am decreased with depth and most of the contamination was contained in the top 5 cm except in profile 4 where it extended to 10 cm. The mean activity ratio of /sup 239/ /sup 240/Pu to /sup 241/Am and its standard error were 5.8 +- 0.3 (N=42). Most of the total radioactivity of the soils was contributed by 0.25 to 2 mm sand size fraction which comprised 20 to 50% by weight of the soils. The radioactive particles in the 0.25 to 2 mm size fraction occurred as spherical glass particles or as glass coatings on sand particles. The glass coatings had gas voids in the matrix but were not as porous as the radioactive particles from NS 219. After impact grinding the >0.25-mm size fractions for one hour, 85% of the initial activity in a NS 201 sample remained with the particles on the 0.25 mm sieve, whereas in the NS 219 sample only 10% remained. The results show that the radioactive particles from NS 201 were much more stable against the impact grinding force than those from NS 219. Therefore, the NS 201 soils would be expected to have a lower probability of producing respirable-size radioactive particles by saltation during wind erosion. 19 references, 3 figures, 3 tables.

Lee, S.Y.; Tamura, T.; Larsen, I.L.

1983-01-01T23:59:59.000Z

13

Assessment of hydrologic transport of radionuclides from the Gasbuggy underground nuclear test site, New Mexico  

SciTech Connect

The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gasbuggy site in northwestern New Mexico was the location of an underground detonation of a 29-kiloton nuclear device in 1967. The test took place in the Lewis Shale, approximately 182 m below the Ojo Alamo Sandstone, which is the aquifer closest to the detonation horizon. The conservative assumption was made that tritium was injected from the blast-created cavity into the Ojo Alamo Sandstone by the force of the explosion, via fractures created by the shot. Model results suggest that if radionuclides produced by the shot entered the Ojo Alamo, they are most likely contained within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity, followed by the variance in hydraulic conductivity, the correlation scale of hydraulic conductivity, the transverse hydrodynamic dispersion coefficient, and uncertainty in the source size. This modeling was performed to investigate how the uncertainty in various physical parameters affects calculations of radionuclide transport at the Gasbuggy site, and to serve as a starting point for discussion regarding further investigation at the site; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values.

Earman, S.; Chapman, J.; Andricevic, R.

1996-09-01T23:59:59.000Z

14

Historical Photographs: Nevada Test Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Nevada Test Site Small Image 1. A nuclear reactor sitting on a test cell pad prior to preliminary tests at the Nevada Test Site (circa 1968). This Phoebus 2 design was part of...

15

Concentration of Actinides in Plant Mounds at Safety Test Nuclear Sites in Nevada  

SciTech Connect

Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around large shrubs and are common features in deserts in the southwestern United States. Believed to be an important factor in their formation, the shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, {sup 241}Am, and U in plant mounds at safety test sites. The NAEG studies found concentrations of these contaminants to be greater in shrub mounds than in the surrounding areas of desert pavement. For example, at Project 57 on the NTTR, it was estimated that 15 percent of the radionuclide inventory of the site was associated with shrub mounds, which accounted for 17 percent of the surface area of the site, a ratio of inventory to area of 0.85. At Clean Slate III at the TTR, 29 percent of the inventory was associated with approximately 32 percent of the site covered by shrub mounds, a ratio of 0.91. While the total inventory of radionuclides in intershrub areas was greater, the ratio of radionuclide inventory to area was 0.40 and 0.38, respectively, at the two sites. The comparison between the shrub mounds and adjacent desert pavement areas was made for only the top 5 cm since radionuclides at safety test sites are concentrated in the top 5 cm of intershrub areas. Not accounting for radionuclides associated with the shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. As part of its Environmental Restoration Soils Subproject, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has proposed that the majority of its contaminated soil 'Corrective Action Units', including the safety test sites, be closed by fencing and posting with administrative controls. The concentration of actinides in the shrub mounds has important implications for postclosure management of the safety test sites. Because resuspension factors at safety test sites can be three to four orders-of-magnitude higher than soil sites associated with atmospheric tests where criticality occurred, the shrub mounds are an important factor in stabilization of actinide contaminants. Loss of shrubs associated with mounds from fire or plant die-back from drought could cause radionuclides at these sites to become more prone to suspension and water erosion until the sites are stabilized. Alternatively, although shrub mounds are usually composed of predominantly fine sand size particles, smaller silt and clay size particles in them are often high in CaCO{sub 3} content. The CaCO{sub 3} may act as a cementing agent to limit erosion of the shrub mounds even if the vegetation cover is temporarily lost.

David S. Shafer; Jenna Gommes

2008-09-15T23:59:59.000Z

16

DOE/EA-1499; Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada Test Site Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

499 499 Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nevada Test Site Final Environmental Assessment August 2004 U. S. Department of Energy National Nuclear Security Administration Nevada Site Office Las Vegas, Nevada Available for sale to the Public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@ntis..gov Online Ordering: http://www.ntis.gov/ordering.htm Available electronically at: http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors in paper from-- U.S. Department of Energy Office of Scientific and Technical Information

17

Investigation of CTBT OSI Radionuclide Techniques at the DILUTED WATERS Nuclear Test Site  

SciTech Connect

Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a verification regime that includes the ability to conduct an On-Site Inspection (OSI) will be established. The Treaty allows for an OSI to include many techniques, including the radionuclide techniques of gamma radiation surveying and spectrometry and environmental sampling and analysis. Such radioactivity detection techniques can provide the smoking gun evidence that a nuclear test has occurred through the detection and quantification of indicative recent fission products. An OSI faces restrictions in time and manpower, as dictated by the Treaty; not to mention possible logistics difficulties due to the location and climate of the suspected explosion site. It is thus necessary to have a good understanding of the possible source term an OSI will encounter and the proper techniques that will be necessary for an effective OSI regime. One of the challenges during an OSI is to locate radioactive debris that has escaped an underground nuclear explosion (UNE) and settled on the surface near and downwind of ground zero. To support the understanding and selection of sampling and survey techniques for use in an OSI, we are currently designing an experiment, the Particulate Release Experiment (PRex), to simulate a small-scale vent from an underground nuclear explosion. PRex will occur at the Nevada National Security Site (NNSS). The project is conducted under the National Center for Nuclear Security (NCNS) funded by the National Nuclear Security Agency (NNSA). Prior to the release experiment, scheduled for Spring of 2013, the project scheduled a number of activities at the NNSS to prepare for the release experiment as well as to utilize the nuclear testing past of the NNSS for the development of OSI techniques for CTBT. One such activitythe focus of this reportwas a survey and sampling campaign at the site of an old UNE that vented: DILUTED WATERS. Activities at DILUTED WATERS included vehicle-based survey, in situ measurements with high-purity germanium (HPGe) and hand-held LaBr3 systems, soil sampling with a variety of tools, and laboratory gamma spectrometric analysis of those samples. A further benefit of the measurement campaign was to gain familiarity with the many logistical aspects of performing radiological field work at NNSS ahead of the PRex. Many practical lessons concerning the proper methodologies and logistics of using the surveying and sampling equipment were noted. These Lessons Learned are compiled together in Appendix A. The vehicle-based survey was successful in that it found a previously unknown hotspot (determined to be 232Th) while it demonstrated that a better method for keeping a serpentine track without staking was needed. Some of the soil sampling equipment was found to be impractical for the application, though core sampling would not be the correct way to take soil samples for a fresh vent deposit (as opposed to an old site like DILUTED WATERS). Due to the sites age, 137Cs was the only fission radioisotope identified, though others were searched for. While not enough samples were taken and analyzed to definitively link the 137Cs to DILUTED WATERS as opposed to other NNSS activities, results were consistent with the historical DILUTED WATERS plume. MDAs were compared for soil sampling and in situ measurements.

Baciak, James E.; Milbrath, Brian D.; Detwiler, Rebecca S.; Kirkham, Randy R.; Keillor, Martin E.; Lepel, Elwood A.; Seifert, Allen; Emer, Dudley; Floyd, Michael

2012-11-01T23:59:59.000Z

18

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I  

Energy.gov (U.S. Department of Energy (DOE))

Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf). DOE/MA-0003. Washington, D.C.: Department of...

19

Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site  

SciTech Connect

This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program??s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

Duane P. Moser; Ken Czerwinski; Charles E. Russell; Mavrik Zavarin

2010-07-13T23:59:59.000Z

20

Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site  

Science Conference Proceedings (OSTI)

This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this programs Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

Duane P. Moser, Jim Bruckner, Jen Fisher, Ken Czerwinski, Charles E. Russell, and Mavrik Zavarin

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Isotropic and Nonisotropic Components of Earthquakes and Nuclear Explosions on the Lop Nor Test Site, China  

E-Print Network (OSTI)

Isotropic and Nonisotropic Components of Earthquakes and Nuclear Explosions on the Lop Nor Test and 1996 following events (seven nuclear explosions, three earthquakes) that occurred on the Lop Nor test Abstract Ð We test the hypothesis that the existence of an observable non-zero isotropic component

Ritzwolle, Mike

22

Idaho Site Nuclear Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Nuclear Facilities Idaho Idaho National Laboratorys (INL) Idaho Closure Project (ICP) This page was last updated on May 16...

23

Nuclear Sites Map  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal. Each...

24

Measurement of 37Ar to support technology for On-site Inspection under the Comprehensive Nuclear-Test-Ban Treaty  

E-Print Network (OSTI)

On-Site Inspection (OSI) is a key component of the verification regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Measurements of radionuclide isotopes created by an underground nuclear explosion are a valuable signature of a Treaty violation. Argon-37 is produced from neutron interaction with calcium in soil, 40Ca(n,{\\alpha})37Ar. For OSI, the 35-day half-life of 37Ar provides both high specific activity and sufficient time for completion of an inspection before decay limits sensitivity. This paper presents a low-background internal-source gas proportional counter with an 37Ar measurement sensitivity level equivalent to 45.1 mBq/SCM in whole air.

C. E. Aalseth; A. R. Day; D. A. Haas; E. W. Hoppe; B. J. Hyronimus; M. E. Keillor; E. K. Mace; J. L. Orrell; A. Seifert; V. T. Woods

2010-08-04T23:59:59.000Z

25

A dose assessment for a U.S. nuclear test site -- Bikini Atoll  

Science Conference Proceedings (OSTI)

On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. Here the authors provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island. The unique composition of coral soil greatly alters the relative contribution of cesium-137 and strontium-90 to the total estimated dose relative to expectations based on North American and European soils. Cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The estimated maximum annual effective dose is 4.4 mSv y{sup {minus}1} when imported foods, which are now an established part of the diet, are available. The 30-, 50-, and 70-y integral effective doses are 10 cSv, 14 cSv, and 16 cSv, respectively. An analysis of interindividual variability in 0- to 30-y expected integral dose indicates that 95% of Bikini residents would have expected doses within a factor of 3.4 above and 4.8 below the population-average value. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be {+-}35% of its expected value. The authors have evaluated various countermeasures to reduce {sup 137}Cs in food crops. Treatment with potassium reduces the uptake of {sup 137}Cs into food crops, and therefore the ingestion dose, to less than 10% of pretreatment levels and has essentially no negative environmental consequences.

Robison, W.L.; Bogen, K.T.; Conrado, C.L.

1993-07-01T23:59:59.000Z

26

An updated dose assessment for a U.S. Nuclear Test Site - Bikini Atoll  

Science Conference Proceedings (OSTI)

On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. There has been a continuing effort since 1977 to refine dose assessments for resettlement options at Bikini Atoll. Here we provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island as part of our continuing research and monitoring program that began in 1975. The unique composition of coral soil greatly alters the relative contribution of cesium-137 ({sup 137}Cs) and strontium-90 ({sup 90}Sr) to the total estimated dose relative to expectations based on North American and European soils. Without counter measures, cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The doses are calculated assuming a resettlement date of 1999. The estimated maximum annual effective dose for current island conditions is 4.0 mSv when imported foods, which are now an established part of the diet, are available. The corresponding 30-, 50-, and 70-y integral effective doses are 9.1 cSv, 13 cSv, and 15 cSv, respectively. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be {plus_minus}35% of its expected value. We have evaluated various countermeasures to reduce {sup 137}Cs in food crops. Treatment with potassium reduces the uptake of {sup 137}Cs into food crops, and therefore the ingestion dose, to about 5% of pretreatment levels and has essentially no negative environmental consequences.

Robison, W.L.; Bogen, K.T.; Conrado, C.L.

1995-10-01T23:59:59.000Z

27

Evaluation of Cavity Collapse and Surface Crater Formation at the Norbo Underground Nuclear Test in U8c, Nevada Nuclear Security Site, and the Impact on Stability of the Ground Surface  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) Containment Program performed a review of nuclear test-related data for the Norbo underground nuclear test in U8c to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. This request is similar to one made for the Salut site in U8c (Pawloski, 2012b). Review of the Norbo site is complicated because the test first exhibited subsurface collapse, which was not unusual, but it then collapsed to the surface over one year later, which was unusual. Of particular interest is the stability of the ground surface above the Norbo detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeology due to the nuclear detonation. Aviva Sussman from the Los Alamos National Laboratory (LANL) has also proposed work at this site. Both proposals require physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Security Site (NNSS), formerly the Nevada Test Site (NTS), and focus on possible activities such as visual observation, multispectral measurements, and shallow and deep geophysical surveys.

Pawloski, G A

2012-06-18T23:59:59.000Z

28

VARIATIONS IN RADON-222 IN SOIL AND GROUND WATER AT THE NEVADA TEST SITE  

E-Print Network (OSTI)

Table 1 Underground nuclear tests which were studied forunderground nuclear explosions, in "Nevada Test Site," E. B.Underground nuclear explosions at the Nevada Test Site (NTS)

Wollenberg, H.

2010-01-01T23:59:59.000Z

29

Subsurface Completion Report for Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin, Rev. No.: 1  

Science Conference Proceedings (OSTI)

Three underground nuclear tests were conducted on Amchitka Island, Alaska, in 1965, 1969, and 1971. The effects of the Long Shot, Milrow, and Cannikin tests on the environment were extensively investigated during and following the detonations, and the area continues to be monitored today. This report is intended to document the basis for the Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin (hereafter referred to as ''Amchitka Site'') subsurface completion recommendation of No Further Remedial Action Planned with Long-Term Surveillance and Maintenance, and define the long-term surveillance and maintenance strategy for the subsurface. A number of factors were considered in evaluating and selecting this recommendation for the Amchitka Site. Historical studies and monitoring data, ongoing monitoring data, the results of groundwater modeling, and the results of an independent stakeholder-guided scientific investigation were also considered in deciding the completion action. Water sampling during and following the testing showed no indication that radionuclides were released to the near surface, or marine environment with the exception of tritium, krypton-85, and iodine-131 found in the immediate vicinity of Long Shot surface ground zero. One year after Long Shot, only tritium was detectable (Merritt and Fuller, 1977). These tritium levels, which were routinely monitored and have continued to decline since the test, are above background levels but well below the current safe drinking water standard. There are currently no feasible means to contain or remove radionuclides in or around the test cavities beneath the sites. Surface remediation was conducted in 2001. Eleven drilling mud pits associated with the Long Shot, Milrow and Cannikin sites were remediated. Ten pits were remediated by stabilizing the contaminants and constructing an impermeable cap over each pit. One pit was remediated by removing all of the contaminated mud for consolidation in another pit. In addition to the mud pits, the hot mix plant was also remediated. Ongoing monitoring data does not indicate that radionuclides are currently seeping into the marine environment. Additionally, the groundwater modeling results indicate no seepage is expected for tens to thousands of years. If seepage does occur in the future, however, the rich, diverse ecosystems around the island could be at risk, as well as people eating foods from the area. An independent science study was conducted by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in accordance with the Amchitka Independent Science Plan (2003). The study report was published on August 1, 2005. The CRESP study states ''our geophysical and biological analyses did not find evidence of risk from radionuclides from the consumption of marine foods, nor indication of any current radionuclide contaminated migration into the marine environment from the Amchitka test shots''. The study also found evidence supporting the groundwater modeling conclusions of very slow contaminant transport (CRESP, 2005). While no further action is recommended for the subsurface of the Amchitka Site, long-term stewardship of Amchitka Island will be instituted and will continue into the future. This will include institutional controls management and enforcement, post-completion monitoring, performance of five-year reviews, public participation, and records management. Long-term stewardship will be the responsibility of the U.S. Department of Energy Office of Legacy Management. The Department of Energy is recommending completion of the investigation phase of the Amchitka Sites. The recommended remedy for the Amchitka Site is No Further Action with Long-Term Monitoring and Surveillance. The future long-term stewardship actions will be governed by a Long-Term Surveillance and Maintenance Plan. This Plan is currently being developed with input from the State, landowner, and other interested or affected stakeholders.

Echelard, Tim

2006-09-01T23:59:59.000Z

30

Finding the Site of the First Soviet Nuclear Test in 1949  

Science Conference Proceedings (OSTI)

Efforts by the U.S. government to detect the first Soviet atomic test began at least as early as 1946. Interception of radioactive debris from the first test was made by the Air Weather Service B-29 weather reconnaissance aircraft, which was ...

Lester Machta

1992-11-01T23:59:59.000Z

31

Nevada Test Site closure program  

SciTech Connect

This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use.

Shenk, D.P.

1994-08-01T23:59:59.000Z

32

WCI | Cutting-Edge Facilities | Site 300 Experimental Test Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Site 300 Site Access Contained Firing Facility (CFF) Continuously Operating Reference Station (CORS) What is Site 300? Lawrence Livermore National Laboratory's Site 300 is an experimental test site operated by the Lawrence Livermore National Security, LLC, for the Department of Energy's National Nuclear Security Administration. It is situated on 7,000 acres in rural foothills approximately six miles southwest of downtown Tracy and 15 miles southeast of Livermore. Site 300 was established in 1955 as a non-nuclear explosives test facility to support Livermore Laboratory's national security mission. The site gets its name from the early days of Lawrence Livermore, when the main laboratory was called Site 200 and the test facility was Site 300 (Lawrence Berkeley National Laboratory was Site 100). Today, work at Site 300

33

Ground motion from earthquakes and underground nuclear weapons tests: a comparison as it relates to siting a nuclear waste storage facility at NTS  

Science Conference Proceedings (OSTI)

Ground motion generated by a magnitude 4.3 earthquake at Massachusetts Mountain on the Nevada Test Site was measured at the control point and compared with ground motion generated at about the same distance by four underground nuclear weapons tests. The depth of the earthquake was between 4 and 4.6 km. The resulting signal at the distance considered was almost entirely body-wave components and had little or no contribution from the surface wave. The motion from the relatively shallower weapons tests had a signal with a pronounced surface-wave component. Comparison of the Pseudo Relative Response Velocity (PSRV) plots shows the earthquake signal richer in high frequencies and the weapons-test signals richer in low frequencies. If relationship between ground motion from the two sources can be confirmed for other earthquakes, weapons test ground motion could be used to estimate earthquake ground motion for magnitudes for which probability of occurrence in a given montoring period would be very small.

Vortman, L.J.

1982-01-01T23:59:59.000Z

34

Nevada Test Site Waste Acceptance Criteria (NTSWAC)  

SciTech Connect

This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

NNSA /NSO Waste Management Project

2008-06-01T23:59:59.000Z

35

First Subcritical Experiment Conducted at Nevada Test Site |...  

National Nuclear Security Administration (NNSA)

Subcritical Experiment Conducted at Nevada Test Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

36

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear...

37

Individualized Site Training | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Individualized Site Training | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

38

Fehner and Gosling, Origins of the Nevada Test Site | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Documents & Publications origins.indd Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I...

39

Atmospheric Corrosion Test Sites  

Science Conference Proceedings (OSTI)

Table 27   Some marine-atmospheric corrosion test sites around the world...Zealand Phia Marine 0.2 0.12 15.8 2.4 ? ? ? ? Greece Rafina Marine 0.2 0.12 13.6 1.0 ? ? ? ? Rhodes Marine 0.2 0.12 14.3 1.5 ? ? ? ? Netherlands Schagen Marine 2.4 1.5 17.0 2.0 ? ? ? ? Spain Almeria ? 0.035 0.022 22.4 1.6 ? ? ? ? Cartagena ? 0.050 0.031 5.2 1.9 ? ? ? ? La Coruña ? 0.160 0.1 26.2 1.4...

40

Nuclear Weapons Testing Resumes | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

> Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test...

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface  

Science Conference Proceedings (OSTI)

At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

Pawloski, G A

2012-04-25T23:59:59.000Z

42

Safe testing nuclear rockets economically  

DOE Green Energy (OSTI)

Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the RoverMERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

Howe, S. D. (Steven D.); Travis, B. J. (Bryan J.); Zerkle, D. K. (David K.)

2002-01-01T23:59:59.000Z

43

DOE - Office of Legacy Management -- Nevada Test Site - 023  

Office of Legacy Management (LM)

Nevada Test Site - 023 Nevada Test Site - 023 FUSRAP Considered Sites Site: Nevada Test Site (023) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Nevada Test Site was established by the Atomic Energy Commission in the 1950's to conduct field testing of nuclear explosives in connection with the research and development of nuclear weapons. The environmental management activities for this site are under the purview of the Department of Energy¿s Nevada Operations Office. The National Nuclear Security Administration is the site landlord and will be responsible for Long Term Stewardship. Also see Documents Related to Nevada Test Site

44

NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA  

Science Conference Proceedings (OSTI)

This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

2005-07-01T23:59:59.000Z

45

Individualized Site Training | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Individualized Site Training Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management &...

46

Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Site, Volume I Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf)....

47

Nevada Test Site Environmental Report 2008  

Science Conference Proceedings (OSTI)

The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

Cathy A. Wills

2009-09-01T23:59:59.000Z

48

Nevada Test Site Environmental Report 2008 Summary  

SciTech Connect

The Nevada Test Site Environmental Report (NTSER) 2008 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years NTSERs are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx.

Cathy A. Wills

2009-09-01T23:59:59.000Z

49

Siting of nuclear facilities. Selections from Nuclear Safety  

SciTech Connect

The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

Buchanan, J.R.

1976-07-01T23:59:59.000Z

50

Semipalatinsk Nuclear Tests - Springer  

Science Conference Proceedings (OSTI)

3.1 Tower used for measurements of nuclear weapon effects near ground zero. 3.1 A Brief ... atomic bomb. This output is 6% of all the nuclear explosions in.

51

Site map | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

map | National Nuclear Security Administration map | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Site map Site map Front page Front page of National Nuclear Security Administration NNSA Site Navigation Our Mission Managing the Stockpile Stockpile Stewardship Program Quarterly Experiments Dismantlement and Disposition Weapons NPT Compliance

52

Nevada Test Site Environmental Report 2007 Summary  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) directs the management and operation of the Nevada Test Site (NTS). The NTS is the nation's historical testing site for nuclear weapons from 1951 through 1992 and is currently the nation's unique site for ongoing national-security related missions and high-risk operations. NNSA/NSO strives to provide to the public an understanding of the current activities on the NTS, including environmental monitoring and compliance activities aimed at protecting the public and the environment from radiation hazards and from nonradiological impacts. This document is a summary of the Nevada Test Site Environmental Report (NTSER) for calendar year 2007 (see attached compact disc on inside back cover). The NTSER is a comprehensive report of environmental activities performed at the NTS and offsite facilities over the previous calendar year. It is prepared annually to meet the requirements and guidelines of the U.S. Department of Energy (DOE) and the information needs of NNSA/NSO stakeholders. To provide an abbreviated and more readable version of the NTSER, this summary report is produced. This summary does not include detailed data tables, monitoring methods or design, a description of the NTS environment, or a discussion of all environmental program activities performed throughout the year. The reader may obtain a hard copy of the full NTSER as directed on the inside front cover of this summary report.

Cathy Wills

2008-09-01T23:59:59.000Z

53

The Nevada Test Site as a Lunar Analog Test Area  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) is a large (1,350 square miles) secure site currently operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy and was established in 1951 to provide a venue for testing nuclear weapons. Three areas with a variety of elevation and geological parameters were used for testing, but the largest number of tests was in Yucca Flat. The Yucca Flat area is approximately 5 miles wide and 20 miles long and approximately 460 subsidence craters resulted from testing in this area. The Sedan crater displaced approximately 12 million tons of earth and is the largest of these craters at 1,280 feet across and 320 feet deep. The profiles of Sedan and the other craters offer a wide variety of shapes and depths that are ideally suited for lunar analog testing.

Sheldon Freid

2007-02-13T23:59:59.000Z

54

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

55

Nevada Test Site Radiation Protection Program  

Science Conference Proceedings (OSTI)

Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

Radiological Control Managers' Council, Nevada Test Site

2007-08-09T23:59:59.000Z

56

Nevada Test Site Waste Acceptance Criteria  

Science Conference Proceedings (OSTI)

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2005-10-01T23:59:59.000Z

57

Site Information | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Information | National Nuclear Security Administration Information | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Site Information Home > About Us > Our Programs > Defense Programs > Military Academic Collaborations > Site Information Site Information The NNSA's nuclear security enterprise spans eight sites, including three national laboratories, with more than six decades of cutting-edge nuclear

58

Site Information | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Information | National Nuclear Security Administration Information | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Site Information Home > About Us > Our Programs > Defense Programs > Military Academic Collaborations > Site Information Site Information The NNSA's nuclear security enterprise spans eight sites, including three national laboratories, with more than six decades of cutting-edge nuclear

59

Announced United States nuclear tests, July 1945--December 1990  

SciTech Connect

This document lists chronologically and alphabetically by event name all nuclear tests conducted and announced by the United States from July 1945 to December 1990 with the exception of the GMX experiments. Discussion is included on test dates, test series, test yields, test locations, test types and purposes, test totals for Nevada Test Site (NTS) detection of radioactivity from NTS events, and categorization of NTS nuclear tests. Briefly discussed are agreements between the US and the Soviet Union regarding test banning. (MB)

Not Available

1991-01-01T23:59:59.000Z

60

Spent fuel test project, Climax granitic stock, Nevada Test Site  

SciTech Connect

The Spent Fuel Test-Climax (SFT-C) is a test of dry geologic storage of spent nuclear reactor fuel. The SFT-C is located at a depth of 420 m in the Climax granitic stock at the Nevada Test Site. Eleven canisters of spent commercial PWR fuel assemblies are to be stored for 3 to 5 years. Additional heat is supplied by electrical heaters, and more than 800 channels of technical information are being recorded. The measurements include rock temperature, rock displacement and stress, joint motion, and monitoring of the ventilation air volume, temperature, and dewpoint.

Ramspott, L.D.

1980-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Trinity Site - World's First Nuclear Explosion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project » Signature Manhattan Project » Signature Facilities » Trinity Site - World's First Nuclear Explosion Trinity Site - World's First Nuclear Explosion Trinity Site - World's First Nuclear Explosion The world's first nuclear explosion occurred on July 16, 1945, when a plutonium implosion device was tested at a site located 210 miles south of Los Alamos on the barren plains of the Alamogordo Bombing Range, known as the Jornada del Muerto. Inspired by the poetry of John Donne, J. Robert Oppenheimer code-named the test Trinity. Hoisted atop a 150-foot tower, the plutonium device, or Gadget, detonated at precisely 5:30 a.m. over the New Mexico desert, releasing 18.6 kilotons of power, instantly vaporizing the tower and turning the surrounding asphalt and sand into green glass.

62

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs  

Science Conference Proceedings (OSTI)

This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

NONE

1994-06-01T23:59:59.000Z

63

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

64

Drilling operations at the Nevada Test Site  

SciTech Connect

The Nevada Operations Office (NV) is responsible for supporting the nuclear test programs of the Los Alamos and Lawrence Livermore National Laboratories. This support includes the drilling of test holes for nuclear device testing a the Nevada Test Site (NTS). The purpose of this audit was to assess the effectiveness of the Department of Energy's management of test hole inventories at the NTS. Our audit disclosed that NV accumulated a large inventory of unused test holes and approved drilling additional holes for which neither laboratory (Los Alamos nor Livermore) had identified a need. The overdrilling of test holes occurred because NV did not comply with good inventory practices that would have had NV's approving official question the need for, and the timing of, the laboratories' drilling requests. Instead, NV gave perfunctory approval to the laboratories' work orders for drilling test holes, and emphasized keeping two drill rig crews busy and satisfying the laboratories' demands for dedicated drilling personnel. Although NV did not agree that overdrilling had occurred, it has cut back its drilling activities and estimated that this will save abut $7.6 million annually. NV agreed with the recommendations in the report and has taken corrective actions.

1990-05-29T23:59:59.000Z

65

DOE - Office of Legacy Management -- Shoal Test Site - NV 03  

Office of Legacy Management (LM)

Shoal Test Site - NV 03 Shoal Test Site - NV 03 FUSRAP Considered Sites Site: SHOAL TEST SITE (NV.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sand Springs Range NV.03-1 Location: Near U.S. Highway 50 , Fallon , Nevada NV.03-2 Evaluation Year: 1987 NV.03-2 Site Operations: Underground nuclear detonation site. NV.03-1 Site Disposition: Eliminated - Potential for contamination remote NV.03-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: None at the Surface and Fission Fragments Within the Subsurface NV.03-1 Radiological Survey(s): Yes Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to SHOAL TEST SITE NV.03-1 - Report (NVO-1229-105 Part I); Evaluation of the Project

66

Savannah River Site | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Site | National Nuclear Security Administration Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Savannah River Site Savannah River Site http://www.srs.gov/general/srs-home.html Field Office: Located south of Aiken, South Carolina, the Savannah River Field Office (SRFO) is responsible for the NNSA Defense Program missions at

67

Savannah River Site | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Site | National Nuclear Security Administration Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Savannah River Site Savannah River Site http://www.srs.gov/general/srs-home.html Field Office: Located south of Aiken, South Carolina, the Savannah River Field Office (SRFO) is responsible for the NNSA Defense Program missions at

68

Nevada Test Site Environmental Report 2009  

SciTech Connect

The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

Cathy Wills, ed.

2010-09-13T23:59:59.000Z

69

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing August 22, 1958 Washington, DC Eisenhower Halts Nuclear Weapons Testing

70

September 12, 1995, Board staff trip report at Nevada Test Site...  

NLE Websites -- All DOE Office Websites (Extended Search)

DEFENSE NUCLEAR FACILITIES SAFETY BOARD 1. Purpose: This report documents a review of test activities and recent exercises at the Nevada Test Site (NTS). The review was performed...

71

DOE - Office of Legacy Management -- Tatum Salt Dome Test Site...  

Office of Legacy Management (LM)

Tatum Salt Dome Test Site - MS 01 FUSRAP Considered Sites Site: Tatum Salt Dome Test Site (MS.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

72

OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE  

Office of Legacy Management (LM)

F F O R THE NEVADA TEST SITE ' i A N D OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1978 Nuclear Radiation Assessment D i v i s i o n Environmental Monitoring Systems Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 October 1979 This work performed under a Memorandum o f Understanding No. EY-76-A-08-0539 for t h e U.S. DEPARTMENT O F ENERGY OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE A N D OTHER TEST AREAS USED F O R UNDERGROUND NUCLEAR DETONATIONS January through December 1978 by R. F. Grossman Nuclear Radi a t i o n Assessment D i v i s i o n Environmental Monitoring Systems Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 This work performed under a Memorandum o f Understanding No. EY-76-A-08-0539

73

Nevada Test Site Wetlands Assessment  

SciTech Connect

This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

D. J. Hansen

1997-05-01T23:59:59.000Z

74

The Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada, was the site for a 12-kiloton-ton nuclear test  

Office of Legacy Management (LM)

NV/13609-53 NV/13609-53 Development of a Groundwater Management Model for the Project Shoal Area prepared by Gregg Lamorey, Scott Bassett, Rina Schumer, Douglas P. Boyle, Greg Pohll, and Jenny Chapman submitted to Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada September 2006 Publication No. 45223 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Available for sale to the public, in paper, from: U.S. Department of Commerce

75

Extra-Territorial Siting of Nuclear Installations  

Science Conference Proceedings (OSTI)

Arrangements might be created for siting nuclear installations on land ceded by a host State for administration by an international or multinational organization. Such arrangements might prove useful in terms of resolving suspicions of proliferation in troubled areas of the world, or as a means to introduce nuclear activities into areas where political, financial or technical capabilities might otherwise make such activities unsound, or as a means to enable global solutions to be instituted for major nuclear concerns (e.g., spent fuel management). The paper examines practical matters associated with the legal and programmatic aspects of siting nuclear installations, including diplomatic/political frameworks, engaging competent industrial bodies, protection against seizure, regulation to ensure safety and security, waste management, and conditions related to the dissolution of the extra-territorial provisions as may be agreed as the host State(s) achieve the capabilities to own and operate the installations. The paper considers the potential for using such a mechanism across the spectrum of nuclear power activities, from mining to geological repositories for nuclear waste. The paper considers the non-proliferation dimensions associated with such arrangements, and the pros and cons affecting potential host States, technology vendor States, regional neighbors and the international community. It considers in brief potential applications in several locations today.

Shea, Thomas E.; Morris, Frederic A.

2009-10-07T23:59:59.000Z

76

Idaho Site Achieves Successful Nuclear Shipment on Newly Constructed Haul  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieves Successful Nuclear Shipment on Newly Achieves Successful Nuclear Shipment on Newly Constructed Haul Road Idaho Site Achieves Successful Nuclear Shipment on Newly Constructed Haul Road May 1, 2012 - 12:00pm Addthis The HFEF-6 cask is transported on the haul road. The HFEF-6 cask is transported on the haul road. IDAHO FALLS, Idaho - Close coordination among operations, security and transportation teams at the Idaho site helped ensure the recent success of the first nuclear shipment on a newly constructed haul road. The new road located between the Critical Infrastructure Test Range Complex (CITRC) and the Materials and Fuels Complex (MFC) is expected to help save significant time and cost over the life of the project by avoiding traffic disruptions on the public highway and increased cost associated with

77

National Nuclear Security Administration Pantex Site Office  

NLE Websites -- All DOE Office Websites (Extended Search)

DCARTER at 3:47 pm, Jan 11, 2008 DCARTER at 3:47 pm, Jan 11, 2008 c Department of Energy National Nuclear Security Administration Pantex Site Office P. 0. Box 30030 Amarillo, TX 791 20 MhdWswQAtwbWM JAN 3 2008 MEMORANDUM FOR: Dennis Huddleston, EP&O, B&W Pantex LLC FROM: & Site Engineering Programs SUBJECT: Interagency Agreement (LQG) for the Pantex Superfund Site (Pantex or Pantex Site) Please reference the attached Environmental Protection Agency (EPA) letter dated December 1 1,2007, subject as above. Subject letter was informally transmitted to B&W Pantex's Regulatory Compliance Department on December 19,2007, to expedite any subsequent requirements by the Pantex Site. The enclosed IAG identifies specific review and response times for each of the participating agencies

78

Independent Oversight Inspection, Nevada Test Site, Summary Report -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Inspection, Nevada Test Site, Summary Report Oversight Inspection, Nevada Test Site, Summary Report - October 2002 Independent Oversight Inspection, Nevada Test Site, Summary Report - October 2002 October 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Nevada Test Site The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the National Nuclear Security Administration (NNSA) Nevada Test Site (NTS) in September and October 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. Overall, safety management at NTS has substantially improved in the past

79

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts associated with the U.S. Department of Energy proposed action to conduct a lead test assembly program to confirm the viability of using a commercial light water reactor to produce tritium. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 1997 EA-1210: Finding of No Significant Impact Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington July 22, 1997 EA-1210: Final Environmental Assessment

80

Report on PV Test Sites and Test Prepared for the  

E-Print Network (OSTI)

Report on PV Test Sites and Test Protocols Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Revised Task 8 Deliverable PV Test Sites and Test

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PIA - Savannah River Nuclear Solutions Badge Request and Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - 10th International Nuclear Graphite Specialists Meeting registration web site MOX Services Unclassified Information System PIA, National Nuclear Services Administration...

82

Nuclear Weapons Testing Resumes | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Resumes | National Nuclear Security Administration Testing Resumes | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test moratorium and the United States

83

Sodium Reaction Experimental Test Facility (SRETF) - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Form Modeling Departments Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems...

84

Reducing emissions to improve nuclear test detection | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing emissions to improve nuclear test detection | National Nuclear Reducing emissions to improve nuclear test detection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Reducing emissions to improve nuclear test detection Reducing emissions to improve nuclear test detection Posted By Office of Public Affairs In early November, medical isotope producers met with nuclear explosion

85

EMERGENCY RESPONSE PLAN DEVINE TEST SITE  

E-Print Network (OSTI)

HSE MANUAL EMERGENCY RESPONSE PLAN DEVINE TEST SITE EXPLORATION GEOPHYSICS LAB FIELD SITE MEDINA THE UNIVERSITY OF TEXAS AT AUSTIN 1 #12;TABLE OF CONTENTS MEMORANDUM PAGE 3 MEDICAL EMERGENCY RESPONSE PLANS PAGE LIST OF CONTACTS ­ SITE MANAGERS AND EMERGENCY RESPONSE PAGE 20 CERTIFICATE OF COMPLETION PAGE 21 2 #12

Texas at Austin, University of

86

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear  

National Nuclear Security Administration (NNSA)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing July 03, 1993 Washington, DC

87

Nevada Test Site Environmental Report 2008 Attachment A: Site Description  

SciTech Connect

This attachment expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2008 (National Security Technologies, LLC [NSTec], 2009a). Included are subsections that summarize the sites geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the sites environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site that afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

Cathy A. Wills

2009-09-01T23:59:59.000Z

88

Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Removing Used Nuclear Fuel From Shutdown Evaluation of Removing Used Nuclear Fuel From Shutdown Sites Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America's Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. Shutdown sites are defined as those commercial nuclear power reactor sites where the

89

Remediation of Soil at Nuclear Sites  

Science Conference Proceedings (OSTI)

As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste.

Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

2000-03-01T23:59:59.000Z

90

Remediation of soil at nuclear sites  

SciTech Connect

As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

R. Holmes; C. Boardman; R. Robbins (BNFL); R. Fox; B. J. Mincher (INEEL)

2000-02-28T23:59:59.000Z

91

Nevada Test Site Environmental Report 2005, Attachment A - Site Description  

SciTech Connect

This appendix to the ''Nevada Test Site Environmental Report 2005'', dated October 2006 (DOE/NV/11718--1214; DOE/NV/25946--007) expands on the general description of the Nevada Test Site (NTS) presented in the Introduction. Included are subsections that summarize the site?s geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This appendix complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

Cathy A. Wills

2006-10-01T23:59:59.000Z

92

NREL: Wind Research - Field Test Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Sites Field Test Sites Aerial view of the National Wind Technology Center with the Flatiron Mountains in the background NREL's NWTC has numerous test pads available to industry partners for testing wind turbines that range in size from a few hundred kilowatts to several megawatts. PIX 17711. Manufacturers can take advantage of NREL's numerous test pads and the technical expertise of its staff to field test prototypes of small and large wind turbines. Many of the small wind turbines tested at the NWTC are participants in NREL's Small Wind Turbine Independent Test Program. Small and mid-sized turbines field tested at the NWTC include those manufactured by Atlantic Orient Corporation, Bergey Windpower, Southwest Wind Power, Northern Power Systems, Endurance Wind Power Inc., Gaia-Wind Ltd.,

93

Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites  

SciTech Connect

This report fulfills the M2 milestone M2FT-13PN0912022, Stranded Sites De-Inventorying Report. In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on Americas Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

2013-09-30T23:59:59.000Z

94

Nuclear facility decommissioning and site remedial actions  

SciTech Connect

The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

1990-09-01T23:59:59.000Z

95

Nuclear facility decommissioning and site remedial actions  

SciTech Connect

The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

1989-09-01T23:59:59.000Z

96

Nevada Test Site Environmental Report 2007 Attachment A: Site Description  

SciTech Connect

This appendix expands on the general description of the Nevada Test Site (NTS) presented in the Introduction to the Nevada Test Site Environmental Report 2007 (U.S. Department of Energy [DOE], 2008). Included are subsections that summarize the site's geological, hydrological, climatological, and ecological setting. The cultural resources of the NTS are also presented. The subsections are meant to aid the reader in understanding the complex physical and biological environment of the NTS. An adequate knowledge of the site's environment is necessary to assess the environmental impacts of new projects, design and implement environmental monitoring activities for current site operations, and assess the impacts of site operations on the public residing in the vicinity of the NTS. The NTS environment contributes to several key features of the site which afford protection to the inhabitants of adjacent areas from potential exposure to radioactivity or other contaminants resulting from NTS operations. These key features include the general remote location of the NTS, restricted access, extended wind transport times, the great depths to slow-moving groundwater, little or no surface water, and low population density. This attachment complements the annual summary of monitoring program activities and dose assessments presented in the main body of this report.

Cathy Wills

2008-09-01T23:59:59.000Z

97

Chesapeake Bay Test Site | Open Energy Information  

Open Energy Info (EERE)

Chesapeake Bay Test Site Chesapeake Bay Test Site Jump to: navigation, search Name Chesapeake Bay Test Site Facility Chesapeake Bay Test Site Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Gamesa and Newport News Energy Developer Gamesa and Newport News Energy Location Atlantic Ocean VA Coordinates 37.243°, -76.062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.243,"lon":-76.062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Site map | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

99

Waste generation and pollution prevention progress fact sheet: Nevada Test Site  

SciTech Connect

The Nevada Test Site is responsible for maintaining nuclear testing capability, supporting science-based Stockpile Stewardship experiments, maintaining nuclear agency response capability, applying environmental restoration techniques to areas affected by nuclear testing, managing low-level and mixed radioactive waste, investigating demilitarization technologies, investigating counter- proliferation technologies, supporting work-for-others programs and special Department of Defense activities, operating a hazardous materials spill test center, and providing for the commercial development of the site. This fact sheet provides information on routine waste generation and projected reduction by waste type. Also, materials recycled by the Nevada Test Site in 1994 are listed.

NONE

1994-12-31T23:59:59.000Z

100

Closure Report for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 107 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Low Impact Soil Sites' and consists of the following 15 Corrective Action Sites (CASs), located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site: CAS 01-23-02, Atmospheric Test Site - High Alt; CAS 02-23-02, Contaminated Areas (2); CAS 02-23-03, Contaminated Berm; CAS 02-23-10, Gourd-Amber Contamination Area; CAS 02-23-11, Sappho Contamination Area; CAS 02-23-12, Scuttle Contamination Area; CAS 03-23-24, Seaweed B Contamination Area; CAS 03-23-27, Adze Contamination Area; CAS 03-23-28, Manzanas Contamination Area; CAS 03-23-29, Truchas-Chamisal Contamination Area; CAS 04-23-02, Atmospheric Test Site T4-a; CAS 05-23-06, Atmospheric Test Site; CAS 09-23-06, Mound of Contaminated Soil; CAS 10-23-04, Atmospheric Test Site M-10; and CAS 18-23-02, U-18d Crater (Sulky). Closure activities were conducted from February through April 2009 according to the FFACO (1996; as amended February 2008) and Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 107 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2009). The corrective action alternatives included No Further Action and Closure in Place with Administrative Controls. Closure activities are summarized.

NSTec Environmental Restoration

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nevada Test Site Environmental Report 2003  

Science Conference Proceedings (OSTI)

The Nevada Test Site Environmental Report 2003 was prepared by Bechtel Nevada to meet the requirements and guidelines of the U.S. Department of Energy and the information needs of the public. This report is meant to be useful to members of the public, public officials, regulators, and Nevada Test Site contractors. The Executive Summary strives to present in a concise format the purpose of the document, the NTS mission and major programs, a summary of radiological releases and doses to the public resulting from site operations, a summary of non-radiological releases, and an overview of the Nevada Test Site Environmental Management System. The Executive Summary, combined with the following Compliance Summary, are written to meet all the objectives of the report and to be stand-alone sections for those who choose not to read the entire document.

Bechtel Nevada

2004-10-01T23:59:59.000Z

102

National Nuclear Security Administration Pantex Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEP A Compliance Officer Rationale NEP A Compliance Officer Rationale Pantex Site Office Proj. No.: MWO-ll-004-C NEPA ID No.: PXP-ll-0001 Parking Lot South of Bullding 16-35 Application of DOE NEPA Procedure: Categorical Exclusion B1.15, Applicable to Facility Operations (10 CFR Part 1021, Subpart 0, Appendix B), applies to this proposal. Therefore, neither an Environmental Assessment nor an Environmental Impact Statement is necessary for the activity described in NEPA Review Form (NRF) PXP-II-000l, which is hereby incorporated by reference. Rationale: The U.S. Department of Energy, National Nuclear Security Administration, proposes to construct a permanent parking lot south of Building 16-35 on the Pantex Plant. The parking lot would be approximately 220 feet in length and 170 feet wide. Four metal culverts,

103

National Nuclear Security Administration Nevada Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93-851 8 93-851 8 JAM 1 4 2010 Scott Blake Harris, General Counsel, DOEiHQ (GC-1) FORS NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE (NNSA/NSO) NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) ANNUAL PLANNING SUMMARY Pursuant to DOE Order 451. IB, NEPA Compliance Program, NNSA/NSO is pleased to provide the enclosed Annual NEPA Planning Summary. The document provides a brief description of ongoing and planned NEPA actions for calendar year 201 0. If there are any questions regarding this summary, please contact our NEPA Compliance Officer, Linda M. Cohn, at (702) 295-0077. s r4/(&~1/:~d Stephen A. Mellington Enclosure: As stated cc wtencl. via e-mail: C. M. Borgstrom, DOEiHQ (GC-54) FORS B. A. Costner, DOEiHQ (GC-54) FORS M. E. Martin, NNSAIHQ (NA-56) FORS

104

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary to Visit Georgia Nuclear Reactor Site and Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy February 13, 2012 - 6:16pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Secretary Steven Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge National Laboratory on Wednesday, February 15 to highlight steps the Obama Administration is taking to restart America's nuclear energy industry. In Waynesboro, Secretary Chu will join Southern Company CEO Thomas A. Fanning, Georgia Power CEO W. Paul Bowers, and local leaders for a tour of Vogtle units 3 and 4 -- the site of the first two new nuclear power units

105

FTCP Site Specific Information - Chief of Nuclear Safety | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Nuclear Safety FTCP Site Specific Information - Chief of Nuclear Safety FTCP Agent Organization Name Phone E-Mail CNS Richard Lagdon 202586-9471 chip.lagdon@hq.doe.gov...

106

Ground test facility for nuclear testing of space reactor subsystems  

SciTech Connect

Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs.

Quapp, W.J.; Watts, K.D.

1985-01-01T23:59:59.000Z

107

Office of Material Consolidation & Civilian Sites | National Nuclear  

National Nuclear Security Administration (NNSA)

Material Consolidation & Civilian Sites | National Nuclear Material Consolidation & Civilian Sites | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Office of Material Consolidation & Civilian Sites Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices > Office of International Material

108

Nevada Test Site seismic: telemetry measurements  

SciTech Connect

The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

Albright, J N; Parker, L E; Horton, E H

1983-08-01T23:59:59.000Z

109

Los Alamos Site Office Nuclear Maintenance Management Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluations Activity Report for the Los Alamos Site Office Nuclear Maintenance Management Program Oversight Self-Assessment Dates of Activity : 11142011 - 11182011 Report...

110

Record of Decision for the Savannah River Site Spent Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Final Environmental Impact Statement, Aiken, SC AGENCY: Department of Energy (DOE). ACTION: Record of decision. SUMMARY: The Savannah River Site Spent Nuclear Fuel...

111

National Nuclear Security Administration LOS ALAMOS SITE OFFICE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LOS ALAMOS SITE OFFICE National Nuclear Security Administration CONTRACT MANAGEMENT PLAN For LOS ALAMOS NATIONAL LABORATORY CONTRACT NO. DE-AC52-06NA25396 Los Alamos...

112

Defense Nuclear Facilitiets Safety Board Visit and Site Lead...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos...

113

NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006  

Science Conference Proceedings (OSTI)

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

2006-06-01T23:59:59.000Z

114

Nevada Test Site Environmental Report 2007  

Science Conference Proceedings (OSTI)

The Nevada Test Site Environmental Report 2007 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2007. This NTSER was prepared to satisfy DOE Order 231.1A, Environment, Safety and Health Reporting. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This report meets these objectives for the NTS and three offsite Nevada facilities mentioned in this report.

Cathy Wills

2008-09-01T23:59:59.000Z

115

Tonopah Test Range closure sites revegetation plan  

SciTech Connect

This document is a revegetation plan for long-term stabilization (revegetation) of land disturbed by activities associated with the closure of a Bomblet Pit and the Five Points Landfill. Both sites are on the Tonopah Test Range (TTR) located in south-central Nevada. This document contains general reclamation practices and procedures that will be followed during the revegetation of these sites. The revegetation procedures proposed have been developed over several years of research and include the results of reclamation trials at Area 11 and Area 19 on the Nevada Test Site (NTS), and more recently at the Double Tracks (Nellis Air Force Range) reclamation demonstration plots. In addition, the results of reclamation efforts and concurrent research efforts at the Yucca Mountain Project have been considered in the preparation of this revegetation plan.

Anderson, D.C.; Hall, D.B.

1997-05-01T23:59:59.000Z

116

Nevada Test Site Radiological Control Manual  

Science Conference Proceedings (OSTI)

This document supersedes DOE/NV/25946--801, Nevada Test Site Radiological Control Manual, Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs.

Radiological Control Managers' Council Nevada Test Site

2010-02-09T23:59:59.000Z

117

Clinton Extends Moratorium on Nuclear Weapons Testing | National...  

National Nuclear Security Administration (NNSA)

Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing July 03, 1993 Washington, DC Clinton Extends Moratorium on Nuclear Weapons Testing President Clinton...

118

Appraisal of nuclear waste isolation in the vadose zone in arid and semiarid regions (with emphasis on the Nevada Test Site)  

SciTech Connect

An appraisal was made of the concept of isolating high-level radioactive waste in the vadose zone of alluvial-filled valleys and tuffaceous rocks of the Basin and Range geomorphic province. Principal attributes of these terranes are: (1) low population density, (2) low moisture influx, (3) a deep water table, (4) the presence of sorptive rocks, and (5) relative ease of construction. Concerns about heat effects of waste on unsaturated rocks of relatively low thermal conductivity are considered. Calculations show that a standard 2000-acre repository with a thermal loading of 40 kW/acre in partially saturated alluvium or tuff would experience an average temperature rise of less than 100{sup 0}C above the initial temperature. The actual maximum temperature would depend strongly on the emplacement geometry. Concerns about seismicity, volcanism, and future climatic change are also mitigated. The conclusion reached in this appraisal is that unsaturated zones in alluvium and tuff of arid regions should be investigated as comprehensively as other geologic settings considered to be potential repository sites.

Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

1983-05-01T23:59:59.000Z

119

Disposal Practices at the Nevada Test Site 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at the Nevada Test Site 2008...

120

Radiation Emergency Assistance Center / Training Site | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Emergency Assistance Center / Training Site | National Nuclear Radiation Emergency Assistance Center / Training Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiation Emergency Assistance Center / Training Site Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Consequence Management > Radiation Emergency Assistance

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington  

SciTech Connect

The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

1988-12-01T23:59:59.000Z

122

Development of Onsite Transportation Safety Documents for Nevada Test Site  

Science Conference Proceedings (OSTI)

Department of Energy (DOE) Orders require each DOE site to develop onsite transportation safety documents (OTSDs). The Nevada Test Site approach divided all onsite transfers into two groups with each group covered by a standalone OTSD identified as Non-Nuclear and Nuclear. The Non-Nuclear transfers involve all radioactive hazardous material in less than Hazard Category (HC)-3 quantities and all chemically hazardous materials. The Nuclear transfers involve all radioactive material equal to or greater than HC-3 quantities and radioactive material mated with high explosives regardless of quantity. Both OTSDs comply with DOE O 460.1B requirements. The Nuclear OTSD also complies with DOE O 461.1A requirements and includes a DOE-STD-3009 approach to hazard analysis (HA) and accident analysis as needed. All Nuclear OTSD proposed transfers were determined to be non-equivalent and a methodology was developed to determine if equivalent safety to a fully compliant Department of Transportation (DOT) transfer was achieved. For each HA scenario, three hypothetical transfers were evaluated: a DOT-compliant, uncontrolled, and controlled transfer. Equivalent safety is demonstrated when the risk level for each controlled transfer is equal to or less than the corresponding DOT-compliant transfer risk level. In this comparison the typical DOE-STD-3009 risk matrix was modified to reflect transportation requirements. Design basis conditions (DBCs) were developed for each non-equivalent transfer. Initial DBCs were based solely upon the amount of material present. Route-, transfer-, and site-specific conditions were evaluated and the initial DBCs revised as needed. Final DBCs were evaluated for each transfers packaging and its contents.

Frank Hand, Willard Thomas, Frank Sciacca, Manny Negrete, Susan Kelley

2008-05-08T23:59:59.000Z

123

Nevada Test Site Environmental Report 2005  

SciTech Connect

The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts.

Cathy A. Wills

2006-10-01T23:59:59.000Z

124

Nuclear Supersymmetry: New Tests and Extensions  

E-Print Network (OSTI)

Extensions of nuclear supersymmetry are discussed, together with a proposal for new, more stringent and precise tests that probe the susy classification and specific two-particle correlations among supersymmetric partners. The combination of these theoretical and experimental studies may play a unifying role in nuclear phenomena.

A. Frank; J. Barea; R. Bijker

2003-05-13T23:59:59.000Z

125

Evaluation of critical pathways, radionuclides, and remedial measures for reducing the radiological dose to returning populations at a former nuclear test site  

Science Conference Proceedings (OSTI)

Bikini Island, the major residence island at Bikini Atoll, was contaminated with radioactive fallout as a result of the BRAVO test conducted on March 1, 1954. We have identified the critical radionuclides and supplied radiological data needed to develop dose estimates for all possible exposure pathways. These estimates show that the major dose to returning populations would result from ingestion of cesium-137 (137 Cs) in locally grown terrestrial foods where the predicted population average effective dose exceeds current federal guidelines. Consequently, we designed several long-term field experiments to develop and evaluate methods to reduce the 137 Cs content in locally grown foods.This paper gives a general outline of the remediation experiments with a more detailed description of a preferred combined option. Our comparative evaluation on various remedial methods show that the combined option--potassium treatment of the entire islands with limited excavation of soil in village an d housing areas--will be effective in reducing the dose to about 10% of pretreatment levels, and offers very significant benefits with respect to adverse environmental impacts as well as savings in overall costs, time, and required expert resources.

Robison, W. L., LLNL

1997-11-01T23:59:59.000Z

126

Disposal Practices at the Nevada Test Site 2008 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Practices at the Nevada Test Site 2008 Disposal Practices at the Nevada Test Site 2008 Full Document and Summary Versions are available for download Disposal Practices at...

127

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County,...

128

Changes related to "Chesapeake Bay Test Site" | Open Energy Informatio...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Chesapeake Bay Test Site" Chesapeake Bay Test Site Jump to: navigation, search This is a list of...

129

EA-1097: Solid waste Disposal - Nevada Test Site, Nye County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Solid waste Disposal - Nevada Test Site, Nye County, Nevada EA-1097: Solid waste Disposal - Nevada Test Site, Nye County, Nevada SUMMARY This EA evaluates the environmental...

130

Measuring and Test Equipment Assessment Plan,NNSA/Nevada Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measuring and Test Equipment Assessment Plan,NNSANevada Site Office Independent Oversight Division Measuring and Test Equipment Assessment Plan,NNSANevada Site Office Independent...

131

Congressional, State Officials Tour Hanford's Test Site for Safe...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional, State Officials Tour Hanford's Test Site for Safe Tank Waste Cleanup Congressional, State Officials Tour Hanford's Test Site for Safe Tank Waste Cleanup September...

132

Testing of coatings for the nuclear industry  

SciTech Connect

Coatings for commercial nuclear power plants need to withstand humidity, radiation exposure, and LOC accident conditions; they also must be decontaminable. Tests for decontaminability, radiation stability, and design-basis-accident (DBA) resistance are described. An irradiation test facility using spent fuel assemblies and a spray loop for simulating a DBA are described. A sample test report sheet is presented. (DLC)

Goldberg, G.

1975-01-01T23:59:59.000Z

133

Reducing emissions to improve nuclear test detection | National...  

National Nuclear Security Administration (NNSA)

Reducing emissions to improve nuclear test detection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

134

Clinton Extends Moratorium on Nuclear Weapons Testing | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

135

Safety Oversight of Decommissioning Activities at DOE Nuclear Sites  

Science Conference Proceedings (OSTI)

The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

2008-01-15T23:59:59.000Z

136

OSI Passive Seismic Experiment at the Former Nevada Test Site  

SciTech Connect

On-site inspection (OSI) is one of the four verification provisions of the Comprehensive Nuclear Test Ban Treaty (CTBT). Under the provisions of the CTBT, once the Treaty has entered into force, any signatory party can request an on-site inspection, which can then be carried out after approval (by majority voting) of the Executive Council. Once an OSI is approved, a team of 40 inspectors will be assembled to carry out an inspection to ''clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of Article I''. One challenging aspect of carrying out an on-site inspection (OSI) in the case of a purported underground nuclear explosion is to detect and locate the underground effects of an explosion, which may include an explosion cavity, a zone of damaged rock, and/or a rubble zone associated with an underground collapsed cavity. The CTBT (Protocol, Section II part D, paragraph 69) prescribes several types of geophysical investigations that can be carried out for this purpose. One of the methods allowed by the CTBT for geophysical investigation is referred to in the Treaty Protocol as ''resonance seismometry''. This method, which was proposed and strongly promoted by Russia during the Treaty negotiations, is not described in the Treaty. Some clarification about the nature of the resonance method can be gained from OSI workshop presentations by Russian experts in the late 1990s. Our understanding is that resonance seismometry is a passive method that relies on seismic reverberations set up in an underground cavity by the passage of waves from regional and teleseismic sources. Only a few examples of the use of this method for detection of underground cavities have been presented, and those were done in cases where the existence and precise location of an underground cavity was known. As is the case with many of the geophysical methods allowed during an OSI under the Treaty, how resonance seismology really works and its effectiveness for OSI purposes has yet to be determined. For this experiment, we took a broad approach to the definition of ''resonance seismometry''; stretching it to include any means that employs passive seismic methods to infer the character of underground materials. In recent years there have been a number of advances in the use of correlation and noise analysis methods in seismology to obtain information about the subsurface. Our objective in this experiment was to use noise analysis and correlation analysis to evaluate these techniques for detecting and characterizing the underground damage zone from a nuclear explosion. The site that was chosen for the experiment was the Mackerel test in Area 4 of the former Nevada Test Site (now named the Nevada National Security Site, or NNSS). Mackerel was an underground nuclear test of less than 20 kT conducted in February of 1964 (DOENV-209-REV 15). The reason we chose this site is because there was a known apical cavity occurring at about 50 m depth above a rubble zone, and that the site had been investigated by the US Geological Survey with active seismic methods in 1965 (Watkins et al., 1967). Note that the time delay between detonation of the explosion (1964) and the time of the present survey (2010) is nearly 46 years - this would not be typical of an expected OSI under the CTBT.

Sweeney, J J; Harben, P

2010-11-11T23:59:59.000Z

137

Lempke visits Savannah River Site | National Nuclear Security  

National Nuclear Security Administration (NNSA)

visits Savannah River Site | National Nuclear Security visits Savannah River Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Lempke visits Savannah River Site Lempke visits Savannah River Site Posted By Office of Public Affairs NNSA Associate Principal Deputy Administrator Michael Lempke recently visited the Savannah River Site, getting an up-close look at facilities

138

EA-1954: Resumption of Transient Testing of Nuclear Fuels and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National...

139

Y-12 builds capacity to meet nuclear testing schedule - Or: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

builds capacity to meet nuclear testing schedule - Or: Increasing capacity to meet nuclear testing schedule (title as it appeared in The Oak Ridger) The continuing high volume...

140

Freshwater algae of the Nevada Test Site  

SciTech Connect

Fifty-two species of freshwater algae were identified in samples collected from the eight known natural springs of the Nevada Test Site. Although several species were widespread, 29 species were site specific. Diatoms provided the greatest variety of species at each spring. Three-fifths of all algal species encountered were diatoms. Well-developed mats of filamentous green algae (Chlorophyta) were common in many of the water tanks associated with the springs and accounted for most of the algal biomass. Major nutrients were adequate, if not abundant, in most spring waters - growth being limited primarily by light and physical habitat. There was some evidence of cesium-137 bioconcentration by algae at several of the springs.

Taylor, W.D.; Giles, K.R.

1979-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

National Nuclear Secutffy Admlnlsbrrtlon NEVADA SITE OFFICE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secutffy Admlnlsbrrtlon Secutffy Admlnlsbrrtlon NEVADA SITE OFFICE CONTRACT MANAGEMENT PLAN for CONTRACT NO. DE-AC52-06NA25946 with NATIONAL SECURITY TECHNOLOGIES, LLC Jose Stephen A. ~ e l l ; l ~ t o n , Manager Nevada Site Office Date Nevada Site Office Contract Management Plan December 17.2008 Table of Contents ................................................................. ABBREVIATIONS AND ACRONYMS 3 .................................................................................. 1.0 INTRODUCTION 4 ............................................................................................ 2.0 PURPOSE 5 .................................................................................... 2.1 Applicability 6 ...................................................................... 2.2 Updates and Distribution 6

142

Site Information | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

nonproliferation, bio threats, global climate modeling and other critical problems. NTS Nevada National Security Site (NNSS), near Las Vegas, Nev., is where the U.S....

143

Nevada Test Site Radiation Protection Program - Revision 1  

SciTech Connect

Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

Radiological Control Managers' Council

2008-06-01T23:59:59.000Z

144

Federal Register Notice: National Nuclear Security Administration Site-Wide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Register Notice: National Nuclear Security Administration Register Notice: National Nuclear Security Administration Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM) Federal Register Notice: National Nuclear Security Administration Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM) Federal Register / Vol. 76, No. 156 / Friday, August 12, 2011 / Notices. National Nuclear Security Administration Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM). NNSA.SWEIS_.SNL_.NM_.pdf More Documents & Publications EIS-0466: Re-opening of Public Scoping Period and Announcement of Additional Public Scoping Meetings EIS-0466: Notice of Intent to Prepare an Environmental Impact Statement EIS-0281: Notice of Intent to Prepare a Site-Wide Environmental Impact

145

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

146

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massive Cement Pour into Hanford Site Nuclear Facility Underway: Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations Massive Cement Pour into Hanford Site Nuclear Facility Underway: Recovery Act Funding Puts U Canyon in Home Stretch of Demolition Preparations June 14, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Hanford workers are pouring enough cement-like material to fill six Olympic-size wimming pools in one of the U.S. Department of Energy's (DOE) largest nuclear facilities at the Hanford Site in southeast Washington State to prepare the massive building for demolition.

147

NNSA labs, sites receive DOE Sustainability Awards | National Nuclear  

National Nuclear Security Administration (NNSA)

labs, sites receive DOE Sustainability Awards | National Nuclear labs, sites receive DOE Sustainability Awards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA labs, sites receive DOE Sustainability Awards NNSA labs, sites receive DOE Sustainability Awards Posted By Office of Public Affairs In keeping with NNSA's commitment to improving the way it does business,

148

Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National Nuclear  

National Nuclear Security Administration (NNSA)

Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National Nuclear Oak Ridge, Tenn. Selected as Uranium Enrichment Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Oak Ridge, Tenn. Selected as Uranium Enrichment Site Oak Ridge, Tenn. Selected as Uranium Enrichment Site September 19, 1942 Oak Ridge, TN

149

Nevada Test Site annual site environmental report for calendar year 1998  

Science Conference Proceedings (OSTI)

Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the US Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring Programs conducted by the US Environmental Protection Agency's (EPA) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this tenth combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

Black, S.C.; Townsend, Y.E.

1999-10-01T23:59:59.000Z

150

Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999  

SciTech Connect

Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

Townsend, Y.E.; Grossman, R.F.

2000-10-01T23:59:59.000Z

151

Nevada Test Site Annual Site Environmental Report for Calendar Year - 1999  

SciTech Connect

Prior to 1989, annual reports of environmental monitoring and assessment results for the Nevada Test Site (NTS) were prepared in two separate parts. Onsite effluent monitoring and environmental monitoring results were reported in an onsite report prepared by the U.S. Department of Energy, Nevada Operations Office (DOE/NV). Results of the Offsite Radiological Surveillance and Long-Term Hydrological Monitoring programs conducted by the U.S. Environmental Protection Agency's (EPA's) Laboratory (various names) in Las Vegas, Nevada, were reported separately by that Agency. Beginning with the 1989 Annual Site Environmental Report for the NTS, these two documents were combined into a single report to provide a more comprehensive annual documentation of the environmental protection activities conducted for the nuclear testing program and other nuclear and non-nuclear operations at the NTS. The two agencies have coordinated preparation of this eleventh combined onsite and offsite report through sharing of information on environmental surveillance and releases as well as meteorological, hydrological, and other supporting data used in dose-estimation calculations.

Townsend, Y.E.; Grossman, R.F.

2000-10-01T23:59:59.000Z

152

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment March 28, 2013 - 12:00pm Addthis CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. Piping in the east boiler basement of the sodium processing building was color coded for easy identification. Orange indicates sodium and green identifies cooling water.

153

National Nuclear Security Administration Pantex Site Office  

NLE Websites -- All DOE Office Websites (Extended Search)

M M m I Nudeor hriiy Adminisbnabn JAN - 7 2009 MEMORANDUM FOR: W. R. Mairson, Environment, Safety, & Health, B&W Pantex FROM: Johnnie F. Guelker, Assistant Manager for Environmental & Site Engineering Programs SUBJECT: Notice of Approval of an On-Site Sewage Facility Please reference the attached Texas Commission on Environmental Quality (TCEQ) letter dated December 16,2008, subject as above. Attached letter notifies the Pantex Site Office that the On-Site Sewage Facility (OSSF) has satisfied the design, construction, and installation requirements of the TCEQ and pursuant to Title 30, Texas Administrative Code (TAC). TCEQ has approved the OSSF constructed under TCEQ ID No.: 033- 0245 and the final inspection occurred on December 16,2008.

154

Correlation Testing in Nuclear Density Functional Theory  

E-Print Network (OSTI)

Correlation testing provides a quick method of discriminating amongst potential terms to include in a nuclear mass formula or functional and is a necessary tool for further nuclear mass models; however a firm mathematical foundation of the method has not been previously set forth. Here, the necessary justification for correlation testing is developed and more detail of the motivation behind its use is give. Examples are provided to clarify the method analytically and for computational benchmarking. We provide a quantitative demonstration of the method's performance and short-comings, highlighting also potential issues a user may encounter. In concluding we suggest some possible future developments to improve the limitations of the method.

M. G. Bertolli

2012-08-07T23:59:59.000Z

155

A thousand suns : political motivations for nuclear weapons testing  

E-Print Network (OSTI)

Nuclear weapon testing is the final step in the nuclear development process, an announcement of ability and strength. The consequences of a nuclear test are far from easy to bear, however: economic sanctions can be crippling ...

Raas, Whitney

2006-01-01T23:59:59.000Z

156

EIS-0426: Site-Wide Environmental Impact Statement for Continued Operation of the Department of Energy / National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada  

Energy.gov (U.S. Department of Energy (DOE))

This Site-Wide EIS evaluates the potential environmental impacts of proposed alternatives for continued management and operation of the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) and other U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)-managed sites in Nevada.

157

Test storage of spent reactor fuel in the Climax granite at the Nevada Test Site  

SciTech Connect

A test of retrievable dry geologic storage of spent fuel assemblies from an operating commercial nuclear reactor is underway at the Nevada Test Site. This generic test is located 420 m below the surface in the Climax granitic stock. Eleven canisters of spent fuel approximately 2.3 years out of reactor core (about 2 kW/canister thermal output) will be emplaced in a storage drift along with 6 electrical simulator canisters and their effects will be compared. Two adjacent drifts will contain electrical heaters, which will be operated to simulate within the test array the thermal field of a large repository. The test objectives, technical concepts and rationale, and details of the test are stated and discussed.

Ramspott, L.D.; Ballou, L.B.

1980-02-13T23:59:59.000Z

158

OFF-SITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE  

Office of Legacy Management (LM)

FOR THE NEVADA TEST SITE FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1977 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 July 1978 This work performed under a Memorandum of Understanding No. EY-76-A-08-0539 for the U.S. DEPARTMENT OF ENERGY O F F - S I T E ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA T E S T S I T E AND OTHER T E S T AREAS USED F O R UNDERGROUND NUCLEAR DETONATIONS J a n u a r y through December 1977 by R, F . G r o s s m a n M o n i t o r i n g O p e r a t i o n s D i v i s i o n E n v i r o n m e n t a l M o n i t o r i n g and Support Laboratory U, S . ENVIRONMENTAL PROTECTION AGENCY Las V e g a s , N e v a d a 89114 J u l y 1978 T h i s w o r k p e r f o r m e d under a M e m o r a n d u m of U n d e r

159

A perspective on atmospheric nuclear tests in Nevada: Fact Book, Revision 2  

SciTech Connect

This fact book provides historical background and perspective on the nuclear testing program at the Nevada Test Site (NTS). Nuclear tests contributing to the off-site deposition of radioactive fallout are identified, and the concept of cumulative estimated exposure is explained. The difficulty of associating health effects with radiation is presented also. The status of litigation against the government and legislation as of September 1994 are summarized.

Friesen, H.N.

1995-06-01T23:59:59.000Z

160

Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.  

Science Conference Proceedings (OSTI)

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

National Nuclear Security Administration Pantex Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Site Office Pantex Site Office P. 0. Box 30036 Amarillo, TX 79120 JAN 1 2 2011 MEMORANDUM FOR: KENNETH W. POWERS ASSOCIATE ADMINISTRATOR FOR STEVEN C. ERHART MANAGER FROM: SUBJECT: Submission of Annual National Environmental Policy Act (NEPA) Planning Summaries for Fiscal Year 20 1 1 Please reference your memorandum dated December 17,2010, subject as above. Attached are the Pantex Site Ofice (PXSO) Annual NEPA Planning Summaries. All PXSO NEPA documentation expected in the near future or already under development is listed in these forms. This information is being disseminated through the Pantex Website at www.pantex.com and will be made available to the public in area Department of Energy Information Repositories. The PXSO does not anticipate preparing any Environmental Assessments within the next 12 months or

162

Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)  

Science Conference Proceedings (OSTI)

In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet Americas nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in green technology.

Jesse Schrieber

2008-07-01T23:59:59.000Z

163

Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)  

SciTech Connect

In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet Americas nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in green technology.

Jesse Schreiber

2008-03-01T23:59:59.000Z

164

Pantex Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Pantex Site Pantex Site The primary mission of the Pantex Plant is the assembly, disassembly, testing, and evaluation of nuclear wespons in support of the NNSA stockpile...

165

Nevada Test Site Resource Management Plan  

SciTech Connect

The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

NONE

1998-12-01T23:59:59.000Z

166

Site Index: Nuclear Engineering Division (Argonne National Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Index Site Index Welcome Organization Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Bookmark and Share Site Index A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A go to top About NE, see also Welcome from the Director Achievements Contact us Highlights Organization Visiting Argonne Welcome from the Director Working with Argonne Achievements, List of - Awards Patents Argonne Distinguished Fellows Professional Societies Nuclear Reactors designed by Argonne National Laboratory Advanced Reactor Development Aerosol Lab (facilities) ANL/NDM Reports (Nuclear Data and Measurements Series Reports and Related Material)

167

DOE - Office of Legacy Management -- Trinity Test Site - NM 17  

Office of Legacy Management (LM)

Trinity Test Site - NM 17 Trinity Test Site - NM 17 FUSRAP Considered Sites Site: TRINITY TEST SITE (NM.17 ) Eliminated from consideration under FUSRAP - U.S. Army controls site Designated Name: Not Designated Alternate Name: None Location: missile range - 30 miles west of Carrizozo , White Sands , New Mexico NM.17-1 Evaluation Year: 1985 NM.17-1 Site Operations: Detonation of the first atomic bomb occurred at this site. NM.17-1 Site Disposition: Eliminated NM.17-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Fission fragments NM.17-1 Radiological Survey(s): NM.17-1 Site Status: Eliminated from consideration under FUSRAP - U.S. Army controls site NM.17-1 Also see Documents Related to TRINITY TEST SITE NM.17-1 - DOE Memorandum/Checklist; Jones to File; Subject:

168

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

169

Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

NSTec Environmental Restoration

2007-07-01T23:59:59.000Z

170

Small scale heater tests in argillite of the Eleana Formation at the Nevada Test Site  

SciTech Connect

Near-surface heater tests were run in the Eleana Formation at the Nevada Test Site, in an effort to evaluate argillaceous rock for nuclear waste storage. The main test, which employed a full-scale heater with a thermal output approximating commercial borosilicate waste, was designed to operate for several months. Two smaller, scaled tests were run prior to the full-scale test. This report develops the thermal scaling laws, describes the pretest thermal and thermomechanical analysis conducted for these two tests, and discusses the material properties data used in the analyses. In the first test, scaled to a large heater of 3.5 kW power, computed heater temperatures were within 7% of measured values for the entire 96-hour test run. The second test, scaled to a large heater having 5.0 kW power, experienced periodic water in-flow onto the heater, which tended to damp the temperature. For the second test, the computed temperatures were within 7% of measured for the first 20 hours. After this time, the water effect became significant and the measured temperatures were 15 to 20% below those predicted. On the second test, rock surface spallation was noted in the bore hole above the heater, as predicted. The scaled tests indicated that in-situ argillite would not undergo major thermostructural failure during the follow-on, 3.5 kW, full-scale test. 24 figures, 6 tables.

McVey, D.F.; Thomas, R.K.; Lappin, A.R.

1979-11-01T23:59:59.000Z

171

Local Event - Nevada Test Site, Las Vegas, NV | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Event - Nevada Test Site, Las Vegas, NV Local Event - Nevada Test Site, Las Vegas, NV October 26, 2013 10:00AM PDT to October 27, 2013 5:00PM PDT Las Vegas Intertribal...

172

Audit of Subsidized Ancillary Services at the Nevada Test Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Audit of Subsidized Ancillary Services at the Nevada Test Site, WR-B-95-08 Audit of Subsidized Ancillary Services at the Nevada Test Site,...

173

EA-1136: Double Tracks Test Site, Nye County, Nevada | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Double Tracks Test Site, Nye County, Nevada EA-1136: Double Tracks Test Site, Nye County, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S....

174

Nuclear Material Processing at the Savannah River Site  

Science Conference Proceedings (OSTI)

Plutonium production for national defense began at Savannah River in the mid-1950s, following construction of production reactors and separations facilities. Following the successful completion of its production mission, the site`s nuclear material processing facilities continue to operate to perform stabilization of excess materials and potentially support the disposition of these materials. A number of restoration and productivity improvement projects implemented in the 1980s, totaling nearly a billion dollars, have resulted in these facilities representing the most modern and only remaining operating large-scale processing facilities in the DOE Complex. Together with the Site`s extensive nuclear infrastructure, and integrated waste management system, SRS is the only DOE site with the capability and mission of ongoing processing operations.

Severynse, T.F. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-07-01T23:59:59.000Z

175

Limited Test Ban Treaty Signed | National Nuclear Security Administrat...  

NLE Websites -- All DOE Office Websites (Extended Search)

Limited Test Ban Treaty Signed | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

176

Senate Rejects Test Ban Treaty | National Nuclear Security Administrat...  

NLE Websites -- All DOE Office Websites (Extended Search)

Senate Rejects Test Ban Treaty | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

177

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obtains Patent for Nuclear Reactor Sodium Cleanup Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment March 28, 2013 - 12:00pm Addthis CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. Piping in the east boiler basement of the sodium processing building was color coded for easy identification. Orange indicates sodium and green identifies cooling water.

178

Risk analysis and solving the nuclear waste siting problem  

SciTech Connect

In spite of millions of dollars and countless human resources being expended on finding nuclear wastes sites, the search has proved extremely difficult for the nuclear industry. This may be due to the approach followed, rather than inadequacies in research or funding. A new approach to the problem, the reverse Dutch auction, is suggested. It retains some of the useful elements of the present system, but it also adds new ones.

Inhaber, H.

1993-12-01T23:59:59.000Z

179

National Nuclear Security Administration Pantex Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JAN 2 7 2012 JAN 2 7 2012 MEMORANDUM FOR: TIMOTHY G. LYNCH ACTING GENERAL COUNSEL FROM: STEVEN C. ERHART MANAGER SUBJECT: Submission of Annual National Environmental Policy Act (NEPA) Planning Summaries for Fiscal Year 2012 Attached are the Pantex Site Office (PXSO) Annual NEPA Planning Summaries. All PXSO NEPA documentation expected in the near future or already under development is listed in these forms. This information is being disseminated through the Pantex Website at www.pantex.com and will be made available to the public in area Department of Energy Information Repositories. PXSO does not anticipate preparing any Environmental Assessments within the next 12 months or any Environmental Impact Statements within the next 24 months. We have begun preparing a new

180

National Nuclear Security Administration Pantex Site Office  

NLE Websites -- All DOE Office Websites (Extended Search)

JAN 22 2010 MEMORANDUM FOR: J. Brian Bidwell, Prime Contract Manager, Babcock & Wilcox Technical Services Pantex, LLC / / / FROM: Seb M. Klein, Contracting Officer, Pantex Site Offic ~ SUBJECT: Contract No. DE-AC04-00AL66620, Contract Modification No. M193 to B& W Pantex Contract Enclosed for your retention is an executed copy of the subject modification. This modification revises Part II, Section I - Contract Clauses, Part III Section J, Appendix A - Definitions, Part I - Compensation System, Part II - Benefits Program, Part IV Miscellaneous Human Resources Programs, incorporates Reimbursement Authorizations Thirty (30) Thirty One (31 ) Thirty Two (32), previously approved by a Contracting Officer, replace Appendix E - "List of Applicable Directives," with as of

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Existing nuclear sites can be used for new powerplants and nuclear waste storage  

SciTech Connect

Locating future nuclear powerplants at existing sites offers important advantages which warrant consideration by the Nuclear Regulatory Commission. The number of locations committed to long-term restricted use and periodic surveillance and maintenance could be limited. The burden of long-term care and final disposition of retired nuclear powerplants could be eased. Overall environmental impacts from the construction and operation of the powerplants could be reduced. Time and money in completing licensing proceedings could be saved. GAO also found that low-level wastes can be stored at nuclear powerplant sites, but such storage only postpones the inevitable need for disposal. Finally, permanent waste disposal at powerplant sites should only be permitted when sites conform to the national low-level waste disposal plan being prepared by the Department of Energy.

Staats, E.B.

1980-04-01T23:59:59.000Z

182

Correlations Tests in Nuclear Mass Model Development  

E-Print Network (OSTI)

Correlation testing provides a quick method of discriminating amongst potential terms to include in a nuclear mass formula or functional; however a firm mathematical foundation of the method has not been previously set forth. Here, the necessary justification for correlation testing is developed and more detail of the motivation behind its use is given. We provide a quantitative demonstration of the method's performance and short-comings, highlighting also potential issues a user may encounter. In concluding we suggestion some possible future developments to improve the limitations of the method.

Bertolli, M G

2012-01-01T23:59:59.000Z

183

EIS-0243: Nevada Test Site and Off-Site Locations in the State of Nevada |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Nevada Test Site and Off-Site Locations in the State of 3: Nevada Test Site and Off-Site Locations in the State of Nevada EIS-0243: Nevada Test Site and Off-Site Locations in the State of Nevada Summary This EIS evaluates the potential environmental impacts of the management of low-level waste (LLW) at all sites and continue, to the extent practicable, disposal of on- site LLW at the Idaho National Engineering and Environmental Laboratory (INEEL), the Los Alamos National Laboratory (LANL) in New Mexico, the Oak Ridge Reservation (ORR) in Tennessee, and the Savannah River Site (SRS) in South Carolina. Public Comment Opportunities None available at this time. Documents Available for Download November 3, 2003 EIS-0243-SA-02: Supplement Analysis Nevada Test Site and Off-Site Locations in the State of Nevada to Address

184

Idaho Site Taps Old World Process to Treat Nuclear Waste | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste September 9, 2013 - 12:00pm Addthis The Idaho site's sodium...

185

Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

NSTec Environmental Restoration

2009-07-31T23:59:59.000Z

186

Field investigation at the Faultless Site Central Nevada Test Area  

DOE Green Energy (OSTI)

An evaluation of groundwater monitoring at non-Nevada Test Site underground nuclear test sites raised questions about the potential for radionuclide migration from the Faultless event and how to best monitor for such migration. With its long standing interest in the Faultless area and background in Nevada hydrogeology, the Desert Research Institute conducted a field investigation in FY92 to address the following issues: The status of chimney infilling (which determines the potential for migration); the best level(s) from which to collect samples from the nearby monitoring wells, HTH-1 and HTH-2; the status of hydraulic heads in the monitoring well area following records of sustained elevated post-shot heads. The field investigation was conducted from July 27 to 31 and August 4 to 7, 1992. Temperature and electrical conductivity logging were performed in HTH-1, HTH-2, and UC-1-P-2SR. Water samples were collected from HTH-1 and HTH-2. Lawrence Livermore National Laboratory (LLNL) also collected samples during the July trip, including samples from UC-1-P-2SR. This report presents the data gathered during these field excursions and some preliminary conclusions. Full interpretation of the data in light of the issues listed above is planned for FY93.

Chapman, J.B.; Mihevc, T.M.; Lyles, B.

1992-11-01T23:59:59.000Z

187

Particle-Size-Distribution of Nevada Test Site Soils  

SciTech Connect

The amount of each size particle in a given soil is called the particle-size distribution (PSD), and the way it feels to the touch is called the soil texture. Sand, silt, and clay are the three particle sizes of mineral material found in soils. Sand is the largest sized particle and it feels gritty; silt is medium sized and it feels floury; and clay is the smallest and if feels sticky. Knowing the particle-size distribution of a soil sample helps to understand many soil properties such as how much water, heat, and nutrients the soil will hold, how fast water and heat will move through the soil, and what kind of structure, bulk density and consistence the soil will have. Furthermore, the native particle-size distribution of the soil in the vicinity of ground zero of a nuclear detonation plays a major role in nuclear fallout. For soils that have a high-sand content, the near-range fallout will be relatively high and the far-range fallout will be relatively light. Whereas, for soils that have a high-silt and high-clay content, the near-range fallout will be significantly lower and the far-range fallout will be significantly higher. As part of a program funded by the Defense Threat Reduction Agency (DTRA), the Lawrence Livermore National Laboratory (LLNL) has recently measured the PSDs from the various major areas at the Nevada Test Site where atmospheric detonations and/or nuclear weapon safety tests were performed back in the 50s and 60s. The purpose of this report is to document those results.

Spriggs, G; Ray-Maitra, A

2007-09-17T23:59:59.000Z

188

Evaluation of potential geopressure geothermal test sites in southern Louisiana  

DOE Green Energy (OSTI)

Six geopressured-geothermal prospects in southern Louisiana were studied in detail to assess their potential use as test sites for the production of geopressure-geothermal energy. Each of the six sites contains substantial quantities of energy. Three of these prospects, Grand Lake, Lake Theriot, and Bayou Hebert, appear to be suitable for a test site. A summary of the findings is presented.

Bassiouni, Z.

1980-04-01T23:59:59.000Z

189

Nuclear waste repository transparency technology test bed demonstrations at WIPP  

SciTech Connect

Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS).

BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

2000-01-27T23:59:59.000Z

190

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01T23:59:59.000Z

191

Related Sites, Experimental Resources for Nuclear Data Studies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

192

Sodium Plugging Test Loop - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Plugging Test Loop Sodium Plugging Test Loop Sodium Plugging Test Loop Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sodium Plugging Test Loop This experimental setup is part of the Global Nuclear Energy Partnership (GNEP) Advanced Fuel Cycle R&D work carried out at Argonne on advanced sodium component technology. Bookmark and Share For long range sodium technology research and development, employing supercritical CO2 Brayton cycle power conversion technology as an advanced balance of plant technology is being considered. The component that provides the interface between the sodium and supercritical CO2 is a compact heat exchanger known as a printed circuit heat exchanger (PCHE). This heat exchanger has very small coolant flow passages that may foul or

193

Non-Destructive Evaluation (NDE) and Testing Facilities - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities > Non-Destructive Facilities > Non-Destructive Evaluation (NDE) and Testing Facilities Non-Destructive Evaluation (NDE) and Testing Facilities Overview MTS Table Top Load Frame X-ray Inspection Systems Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Non-Destructive Evaluation (NDE) and Testing Facilities The Non-Destructive Evaluation (NDE) and Testing Facilities contain state-of-the-art NDE laboratories including microwave/millimeter wave, acoustic/ultrasonic, X-ray, thermal imaging, optics, and eddy current for health monitoring of materials and components used in aerospace, defense, and power generation (fossil and nuclear) industries as well as for medical and scientific research. Bookmark and Share

194

Victor J. Daniel Jr. CO2 Injection Test Site Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi Test Site JAF02664.PPT 1 1.1 SITE BACKGROUND 1.2 GENERAL IDENTIFICATION DATA 1.3 REGULATORY CLASSIFICATION 1.4 WELL DATA - INJECTION WELL NO. 1 1.5 WELL DATA -...

195

Technical safety appraisal of the Nevada Test Site  

Science Conference Proceedings (OSTI)

This report presents the results of one of a series of Technical Safety Appraisals (TSAs) being conducted of Department of Energy (DOE) operations (nuclear and non-nuclear) by the Assistant Secretary of Environment, Safety and Health (ES&H), Office of Safety Appraisals. These TSAs are one of the initiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE`s environment, safety, and health program. This TSA report focuses on the safety and health operations of the Nevada Operations Office (NV) at the Nevada Test Site (NTS), which was conducted concurrently, with and supporting a Tiger Team Assessment. The total effort of all the Tiger Team assessment, including environmental and manager evaluations, is reported in the Tiger Team Report, issued January 1990. The assessment of the NTS began November 5, 1989 with the briefing of the Tiger Team in Las Vegas at the Nevada Operations Office. The TSA team evaluation was conducted November 6--17, and November 26--December 1, 1989 at the NTS.

NONE

1990-12-01T23:59:59.000Z

196

Nuclear reactor containment spray testing system. [PWR  

SciTech Connect

Disclosed is a method for periodic testing of a spray system in a nuclear reactor containment. The method includes injecting a gas into the spray system such that a temperature differential exists between the gas and the containment atmosphere. Scanning the gas jet discharged from the spray nozzles with infrared apparatus then provides a real-time thermal image on a monitor, such as a cathode ray tube, and detects any partially or completely blocked nozzles in the spray system. The scanning may be performed from the containment operating deck. 1 claim, 4 figures.

Rubin, K.

1978-01-10T23:59:59.000Z

197

Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure Verification Forms for CAS 03-23-06 and CAS 19-19-01 are included as Appendix C of this report. These forms include before and after photographs of the sites, descriptions and removal status of waste, and waste disposal information. CAU 537, Waste Sites, was closed by characterizing and disposing of debris. The purpose of this CR is to summarize the completed closure activities, document appropriate waste disposal, and confirm that the closure standards were met.

NSTec Envirornmental Restoration

2007-07-01T23:59:59.000Z

198

Transfer of Excess Personal Property From the Nevada Test Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Transfer of Excess Personal Property From the Nevada Test Site to theCommunity Reuse Organization, IG-0589 Transfer of Excess Personal Property...

199

Tonopah Test Range Environmental Restoration Corrective Action Sites  

SciTech Connect

This report describes the status (closed, closed in place, or closure in progress) of the Corrective Action Sites and Corrective Action Units at the Tonopah Test Range

NSTec Environmental Restoration

2010-08-04T23:59:59.000Z

200

Chu Visits Site of America?s First New Nuclear Reactor in Three...  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2012 Chu Visits Site of Americas First New Nuclear Reactor in Three Decades Energy Secretary Announces New Nuclear Energy Research Grants and Next Steps on Used Fuel...

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

INDUSTRIAL HYGIENE ASPECTS OF UNDERGROUND NUCLEAR WEAPON TEST DEBRIS RECOVERY  

SciTech Connect

The formation of a collapse crater by underground nuclear explosions is described. Safety problems associated with the re-entry of underground nuclear explosion areas include cavity collapse, toxic gases, explosive gases, radioactive gases, radioactive core, and hazards from the movement of heavy equipment on unstable ground. Data irom television, geophones, and telemetered radiation detectors determine when radiation and toxic material surveys of the area can be made and drills can be used to obtain samples of the bubble crust for analysis. Hazards to persornel engaged in obtaining weapon debris samples are reviewed. Data are presented on the radiation dose received by personnel at the Nevada Test Site engaged in this work during 1962. (C.H.)

Wilcox, F.W.

1963-03-27T23:59:59.000Z

202

Independent Oversight Inspection, Nevada Test Site - June 2007 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site - June 2007 Nevada Test Site - June 2007 Independent Oversight Inspection, Nevada Test Site - June 2007 June 2007 Inspection of Emergency Management at the Nevada Test Site The U.S. Department of Energy (DOE) Office of Independent Oversight inspected the emergency management program at DOE's Nevada Test Site (NTS) in March-April 2007. The inspection was performed as a joint effort by Independent Oversight's Office of Environment, Safety and Health Evaluations (HS-64) and the Office of Emergency Management Oversight (HS-63). This 2007 inspection found that NSO and NTS organizations have generally continued to improve the site's emergency management program. The most noteworthy program attribute identified during this emergency management inspection is that NSO, NSTec, and JNPO have established and provided the

203

Independent Oversight Inspection, Nevada Test Site - September 2004 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site - September 2004 Nevada Test Site - September 2004 Independent Oversight Inspection, Nevada Test Site - September 2004 September 2004 Security and Emergency Management Pilot Integrated Performance Tests at the Nevada Test Site The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance, conducted an inspection of safeguards and security and emergency management programs at the U.S. Department of Energy's (DOE) Nevada Test Site (NTS) in July and August 2004. The inspection was performed as a joint effort by the OA Office of Safeguards and Security Evaluations and Office of Emergency Management Oversight. This report discusses the observations related to the emergency management objectives for these two performance

204

Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada  

SciTech Connect

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2006-06-01T23:59:59.000Z

205

Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

NSTec Environmental Restoration

2007-06-01T23:59:59.000Z

206

Hanford Site Emergency Alerting System siren testing report  

Science Conference Proceedings (OSTI)

The purpose of the test was to determine the effective coverage of the proposed upgrades to the existing Hanford Site Emergency Alerting System (HSEAS). The upgrades are to enhance the existing HSEAS along the Columbia River from the Vernita Bridge to the White Bluffs Boat Launch as well as install a new alerting system in the 400 Area on the Hanford Site. Five siren sites along the Columbia River and two sites in the 400 Area were tested to determine the site locations that will provide the desired coverage.

Weidner, L.B.

1997-08-13T23:59:59.000Z

207

On-Chip Test Infrastructure Design for Optimal Multi-Site Testing of System Chips  

E-Print Network (OSTI)

On-Chip Test Infrastructure Design for Optimal Multi-Site Testing of System Chips Sandeep Kumar Goel Erik Jan Marinissen Philips Research Laboratories IC Design ­ Digital Design & Test Prof.Jan.Marinissen¡ @philips.com Abstract Multi-site testing is a popular and effective way to increase test throughput

Paris-Sud XI, Université de

208

Nevada Test Site Treatment Plan. Revision 2  

SciTech Connect

Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada`s input. The options and schedules reflect a ``bottoms-up`` approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions.

1996-03-01T23:59:59.000Z

209

Office of Research, Development, Test, and Evaluation | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development, Test, and Evaluation | National Nuclear Research, Development, Test, and Evaluation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Research, Development, Test, and Evaluation Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation

210

Independent Oversight Inspection, Nevada Test Site, Volume 2 - September  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Inspection, Nevada Test Site, Volume 2 - Independent Oversight Inspection, Nevada Test Site, Volume 2 - September 2004 Independent Oversight Inspection, Nevada Test Site, Volume 2 - September 2004 September 2004 Inspection of Emergency Management at the Nevada Test Site The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance, conducted an inspection of safeguards and security and emergency management programs at the U.S. Department of Energy's (DOE) Nevada Test Site (NTS) in July and August 2004. The inspection was performed as a joint effort by the OA Office of Safeguards and Security Evaluations and Office of Emergency Management Oversight. This volume discusses the results of the review of the NTS emergency management program.

211

Independent Oversight Inspection, Nevada Test Site - June 2007 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site - June 2007 Nevada Test Site - June 2007 Independent Oversight Inspection, Nevada Test Site - June 2007 June 2007 Inspection of Environment, Safety, and Health Programs at the Nevada Test Site The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), conducted an inspection of environment, safety, and health (ES&H) programs at the DOE Nevada Test Site (NTS) during March and April 2007. The ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations (HS-64). NSO has some adequate oversight program elements, such as the Facility Representative program, and in several cases NSO is effectively using contract performance measures to drive performance improvements. NSO has

212

Local Event - Nevada Test Site, Las Vegas, NV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Event - Nevada Test Site, Las Vegas, NV Local Event - Nevada Test Site, Las Vegas, NV Local Event - Nevada Test Site, Las Vegas, NV October 25, 2013 9:00AM PDT National Day of Remembrance Local Event Where: National Atomic Testing Museum 755 E Flamingo Rd Las Vegas, NV 89119 On June 11th, 2013, Senators Mark Udall (D-CO) and Lamar Alexander (R-TN) introduced a bipartisan resolution to designate October 30 as the fifth annual National Day of Remembrance for former nuclear weapons workers and uranium miners who proudly served their country starting with the Manhattan Project through present day. Representatives from the DOE, Federal Government, and Atomic Testing Museum will speak on behalf of former workers. Admission to the National Atomic Testing Museum will be free for the day. Local coordinators will have a booth and conduct outreach on the

213

Chu Visits Site of America's First New Nuclear Reactor in Three...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Visits Site of America's First New Nuclear Reactor in Three Decades Chu Visits Site of America's First New Nuclear Reactor in Three Decades February 15, 2012 - 2:12pm Addthis...

214

Chu Visits Site of America's First New Nuclear Reactor in Three...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Visits Site of America's First New Nuclear Reactor in Three Decades Chu Visits Site of America's First New Nuclear Reactor in Three Decades February 15, 2012 - 12:40pm Addthis...

215

Development of the DOE Nuclear Criticality Safety Program Web Site for the Nuclear Criticality Safety Professional  

SciTech Connect

Development of the DOE Nuclear Criticality Safety Program (NCSP) web site is the result of the efforts of marry members of the Nuclear Criticality Safety (NCS) community and is maintained by Lawrence Livermore National Laboratory under the direction of the NCSP Management Team. This World Wide Web (WWW) resource was developed as part of the DOE response to the DNFSB Recommendation 97-2, which reflected the need to make criticality safety information available to a wide audience. The NCSP web site provides information of interest to NCS professionals and includes links to other sites actively involved in the collection and dissemination of criticality safety information. To the extent possible, the hyperlinks on this web site direct the user to the original source of the referenced material in order to ensure access to the latest, most accurate version.

Lee, C.K.; Huang, S.; Morman, J.A.; Garcia, A.S.

2000-02-01T23:59:59.000Z

216

Transuranic (TRU) Waste Repackaging at the Nevada Test Site  

Science Conference Proceedings (OSTI)

This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Sites (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M&O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum bronze filters and sample ports to prevent sparking during penetration. A remotely operated cold-drilling process with self-drilling, self-tapping titanium coated spark-resistant filters was used for boxes with wall thickness of up to 6.35 mm (0.25 in). The box headspace was sampled for the presence of flammable gases. To further accelerate the project schedule, an innovative treatment process was used. Several of the OSBs were re-assayed and determined to be mixed low-level waste (MLLW) which allowed treatment, followed by disposal in the Mixed Waste Disposal Unit at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The MLLW boxes were certified using real-time radiography and overpacked into custom-built polyethylene-lined macroencapsulation containers. The polyethylene-lined lid was welded to the poly-lined box using automatically controlled resistance heating through embedded wiring in the lid. The work was performed under the existing Documented Safety Analysis since plastic welding is accomplished at low temperature and does not introduce the risks of other macroencapsulation processes, such as welding stainless steel containers. The macroencapsulation process for MLLW not only accelerated the schedule by reducing the number of boxes requiring size reduction, but it also resulted in significantly improved safety with as low as reasonable achievable levels of exposure to workers plus reduced cost by eliminating the need to perform repackaging in the VERB.

E.F. Di Sanza; G. Pyles; J. Ciucci; P. Arnold

2009-03-01T23:59:59.000Z

217

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

218

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

National Nuclear Security Administration (NNSA)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

219

Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

A. T. Urbon

2003-07-01T23:59:59.000Z

220

First Thermonuclear Device Successfully Tested | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermonuclear Device Successfully Tested | National Nuclear Security Thermonuclear Device Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Thermonuclear Device Successfully Tested First Thermonuclear Device Successfully Tested December 31, 1952 Enewetak Atoll First Thermonuclear Device Successfully Tested

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

First Plutonium Bomb Successfully Tested | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Bomb Successfully Tested | National Nuclear Security Plutonium Bomb Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Plutonium Bomb Successfully Tested First Plutonium Bomb Successfully Tested July 16, 1945 Los Alamos, NM First Plutonium Bomb Successfully Tested

222

First Plutonium Bomb Successfully Tested | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Plutonium Bomb Successfully Tested | National Nuclear Security Plutonium Bomb Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Plutonium Bomb Successfully Tested First Plutonium Bomb Successfully Tested July 16, 1945 Los Alamos, NM First Plutonium Bomb Successfully Tested

223

Summary - Disposal Practices at the Nevada Test Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site, NV Nevada Test Site, NV EM Project: Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive waste (MLLW) are disposed of in Area 5 in shallow

224

Distributed Power Program DER Pilot Test at the Nevada Test Site  

SciTech Connect

The DOE Distributed Power Program conducted a pilot test of interconnection test procedures November 12-16, 2001 at Area 25 of the Nevada Test Site (NTS). The objective of this pilot test was to respond to Congressional direction in the Energy and Water Development Appropriations Act of 2001 to complete a distributed power demonstration at the Nevada Test Site and validated interconnection tests in the field. The demonstration consisted of field verification of tests in IEEE P1547 (Draft 7) that are required for interconnection of distributed generation equipment to electrical power systems. Some of the testing has been conducted in a laboratory setting, but the Nevada Test Site provided a location to verify the interconnection tests in the field. The testing also provided valuable information for evaluating the potential for the Nevada Test Site to host future field-testing activities in support of Distributed Energy Resources System Integration R&D.

Kroposki, B.; DeBlasio, R.; Galdo, J.

2002-05-01T23:59:59.000Z

225

Nuclear facility decommissioning and site remedial actions: a selected bibliography  

SciTech Connect

This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

1982-09-01T23:59:59.000Z

226

Nuclear facility decommissioning and site remedial actions: a selected bibliography  

SciTech Connect

This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

1982-09-01T23:59:59.000Z

227

USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?  

SciTech Connect

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (assets) to worthless (wastes). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or in the case of high level waste awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Sites (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as waste include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

Magoulas, V.

2013-06-03T23:59:59.000Z

228

Office of Test and Evaluation | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Test and Evaluation Home > About Us > Our Programs >...

229

Microsoft Word - NevadaTestSite20020717.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site Development Corporation Nevada Test Site Development Corporation WASHINGTON, D.C. - The Department of Energy (DOE) today announced that it will award $300,000 to the Nevada Test Site Development Corporation (NTSDC). This block grant will enable the NTSDC to continue to provide administrative support for rural economic development, renewable energy, aerospace activities, asset management and business incubation. "The Energy Department is a good neighbor to the communities surrounding our sites," Secretary of Energy Spencer Abraham said. "Working with the NTSDC and other community reuse organizations around the country, the Department has retained, expanded or created over 25,000 jobs for workers affected by restructuring efforts at DOE sites."

230

Site selection and assessment for a nuclear storage facility  

SciTech Connect

We investigate the structure and accuracy of the decision making process in finding an optimal location for stored nuclear materials for 25-50 years. Using a well-documented facility design, benefit hierarchy is set up for different sites to rank a given site for different options. Criteria involve safeguards standards, technical viability, environmental effects, economics, political impact, and public acceptance. Problem faced here is multi-criterion decision making. Two approaches are investigated: analytic hierarchy process (AHP) of Saaty, and fuzzy logic approach of Yager. Whereas AHP requires a pairwise comparison of criteria and pairwise comparison of alternatives, in Yager`s approach each alternative is considered independently, allowing one to extend the analysis without performing time-consuming computation.

Rutherford, D.A.; Zardecki, A.

1996-09-01T23:59:59.000Z

231

Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554.

David A. Strand

2004-10-01T23:59:59.000Z

232

Congressional, State Officials Tour Hanford's Test Site for Safe Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional, State Officials Tour Hanford's Test Site for Safe Congressional, State Officials Tour Hanford's Test Site for Safe Tank Waste Cleanup Congressional, State Officials Tour Hanford's Test Site for Safe Tank Waste Cleanup September 30, 2013 - 12:00pm Addthis Ben Harp, center, manager of Hanford’s Waste Treatment Plant Start-up and Commissioning Integration, discusses the advantages of ORP's Cold Test Facility to a group of congressional and state legislative staffers during a recent tour. Ben Harp, center, manager of Hanford's Waste Treatment Plant Start-up and Commissioning Integration, discusses the advantages of ORP's Cold Test Facility to a group of congressional and state legislative staffers during a recent tour. RICHLAND, Wash. - EM's Office of River Protection (ORP) recently hosted a group of congressional and state legislative staffers on a tour of the

233

Identifying and Characterizing Candidate Areas for Siting New Nuclear Capacity in the United States  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory (ORNL) staff recently completed an internal 'Energy Assurance' study examining the key issues associated with the country's energy needs for the future focusing on generation sources, baseload options, transmission and distribution, reduction of greenhouse gases, and overall energy security issues. In examining the various generation sources including nuclear power and renewables, one principal finding was that 300 GW(e) of new nuclear electrical generating capacity would be needed by 2050. With that need, the initial, obvious question is can 300 GW(e) of nuclear capacity be sited in the United States? In an attempt to address that question as well as others, ORNL initiated a 'National Electric Generation Siting Study,' which is to be a multiphase study to address several key questions related to our national electrical energy supply. The initial phase of this study is to examine the nuclear option. This paper summarizes the approach developed for screening sites, the methodology employed that includes spatial modeling, and preliminary results using the southeast United States to demonstrate the usefulness of the overall approach as a test case.

Mays, Gary T [ORNL; Jochem, Warren C [ORNL; Greene, Sherrell R [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Hadley, Stanton W [ORNL

2009-01-01T23:59:59.000Z

234

Nevada Test Site Environmental Report 2006 and Site Description (Volume 1)  

Science Conference Proceedings (OSTI)

The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollution prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders.

Cathy Wills

2007-10-01T23:59:59.000Z

235

United States nuclear tests, July 1945 through September 1992  

Science Conference Proceedings (OSTI)

This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

Not Available

1994-12-01T23:59:59.000Z

236

TECHNICAL NOTE Testing avian, squamate, and mammalian nuclear markers for  

E-Print Network (OSTI)

TECHNICAL NOTE Testing avian, squamate, and mammalian nuclear markers for cross amplification amplifications to assess 120 previously described nuclear markers for phylogeographic and phylogenetic analysis. marmorata or P. castaneus, and a subset of eight markers amplified single products across a test panel of 11

Grether, Gregory

237

Test and Evaluation of Two Microturbines at Customer Sites  

Science Conference Proceedings (OSTI)

This program focused on installing distributed resources (DR) systems at customer sites, then performing a series of tests based on a selected protocol. Tests included evaluation of heat rate, air and noise emissions, power quality, and an economic analysis for each DR technology in the program.

2001-11-30T23:59:59.000Z

238

OFFSITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE  

Office of Legacy Management (LM)

OFFSITE ENVIRONMENTAL MONITORING REPORT F OFFSITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE A N D OTHER TEST AREAS USED F O R UNDERGROUND NUCLEAR DETONATIONS January through December 1979 Nuclear R a d i a t i o n Assessment D i v i s i o n Environmental M o n i t o r i n g Systems Laboratory U. S. Envi ronmental P r o t e c t i o n Agency Las Vegas, Nevada 89114 A p r i l 1980 T h i s work performed under Memorandum o f ' Understanding No. EY-76-A-08-0539 f o r t h e U.S. Department o f Energy This page intentionally left blank OFFSITE ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1979 G. D. P o t t e r , R. F. Grossman, W. A. B l i s s , D. J . Tlom6 Nuclear Radiation Assessment Division Environmental Monitoring Systems Laboratory U. S. Envi ronmental P

239

Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) to the dose-based final action level (FAL). The presence of TED exceeding the FAL is considered a radiological contaminant of concern (COC). Anything identified as a COC will require corrective action. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters will be used to measure external radiological dose. Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plume, it was determined that the releases from the nuclear tests are co-located and will be investigated concurrently. A field investigation will be performed to define areas where TED exceeds the FAL and to determine whether other COCs are present at the site. The investigation will also collect information to determine the presence and nature of contamination associated with migration and excavation, as well as any potential releases discovered during the investigation. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

Patrick Matthews

2011-08-01T23:59:59.000Z

240

Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Calendar year 2003 : annual site enviromental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2003. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2003) and DOE Order 231.1 Chg 2., Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2004-09-01T23:59:59.000Z

242

First Thermonuclear Device Successfully Tested | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 Earn 11 R&D 100 Awards Jul 2, 2013 US, International Partners Remove Last Remaining HEU from Vietnam, Set Nuclear Security Milestone View All > Timeline Curious about NNSA...

243

June 28, 2005 France to Be Site of World's First Nuclear Fusion Reactor  

E-Print Network (OSTI)

June 28, 2005 France to Be Site of World's First Nuclear Fusion Reactor By CRAIG S. SMITH PARIS the reactor in the southern French city of Cadarache. Nuclear fusion is the process by which the atomic nuclei than burning fossil fuels or even nuclear fission, which is used in nuclear reactors today but produces

244

Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington  

SciTech Connect

The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site`s non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small.

1997-03-01T23:59:59.000Z

245

Radionuclide Partitioning in an Underground Nuclear Test Cavity  

Science Conference Proceedings (OSTI)

In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors: chemical volatility effects that occur during the initial plasma condensation, and groundwater remobilization that occurs over a much longer time frame. Fission product partitioning is very sensitive to the early cooling history of the test cavity because the decay of short-lived (t{sub 1/2} data to update the range in partitioning values for contaminant transport models at the Nevada National Security Site (formerly known as the Nevada Test Site).

Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

2009-01-09T23:59:59.000Z

246

Site Release Reports for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits  

SciTech Connect

The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to the reclaimed sites. Sixty percent of the reference area means for density, cover, and species richness were compared to the estimated means for the reclaimed sites. Plant density, cover, and species richness at the C-Well Pipeline and UE-25 Large Rocks test site were greater than the success criteria and all key attributes indicated the sites were in acceptable condition. Therefore, these two sites were recommended for release from further monitoring. Of the 29 ground surface facility test pits, 26 met the criterion for density, 21 for cover, and 23 for species richness. When key attributes and conditions of the plant community near each pit were taken into account, 27 of these pits were recommended for release. Success parameters and key attributes at ground surface facility test pits 19 and 20 were inadequate for site release. Transplants of native species were added to these two sites in 2001 to improve density, cover, and species richness.

K.E. Rasmuson

2002-04-02T23:59:59.000Z

247

Testing the Physics of Nuclear Isomers  

SciTech Connect

For much of the past century, physicists have searched for methods to control the release of energy stored in an atom's nucleus. Nuclear fission reactors have been one successful approach, but finding other methods to capitalize on this potential energy source have been elusive. One possible source being explored is nuclear isomers. An isomer is a long-lived excited state of an atom's nucleus--a state in which decay back to the nuclear ground state is inhibited. The nucleus of an isomer thus holds an enormous amount of energy. If scientists could develop a method to release that energy instantaneously in a gamma-ray burst, rather than slowly over time, they could use it in a nuclear battery. Research in the late 1990s indicated that scientists were closer to developing such a method--using x rays to trigger the release of energy from the nuclear isomer hafnium-178m ({sup 178m}Hf). To further investigate these claims, the Department of Energy (DOE) funded a collaborative project involving Lawrence Livermore, Los Alamos, and Argonne national laboratories that was designed to reproduce those earlier results.

Hazi, A

2006-01-25T23:59:59.000Z

248

Young Professionals in Nuclear Industry Group Forms at Savannah River Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Young Professionals in Nuclear Industry Group Forms at Savannah Young Professionals in Nuclear Industry Group Forms at Savannah River Site Young Professionals in Nuclear Industry Group Forms at Savannah River Site January 1, 2012 - 12:00pm Addthis The Savannah River Chapter of North American – Young Generation in Nuclear is a new group forming at the Savannah River Site. The Savannah River Chapter of North American - Young Generation in Nuclear is a new group forming at the Savannah River Site. AIKEN, S.C. - Supporting the development of young nuclear professionals in the Central Savannah River Area (CSRA) is the purpose behind a new group forming at the Savannah River Site (SRS). The Savannah River Chapter of North American - Young Generation in Nuclear (SR-YGN) will hold a kick-off meeting Jan. 26 in Aiken and all

249

Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

Grant Evenson

2006-04-01T23:59:59.000Z

250

Testing quantum correlations with nuclear probes  

E-Print Network (OSTI)

We investigated the feasibility of quantum-correlation measurements in nuclear physics experiments. In a first approach, we measured spin correlations of singlet-spin (1S0) proton pairs, which were generated in 1H(d,2He) and 12C(d,2He) nuclear charge-exchange reactions. The experiment was optimized for a clean preparation of the 2He singlet state and offered a 2pi detection geometry for both protons in the exit channel. Our results confirm the effectiveness of the setup for theses studies, despite limitations of a small data sample recorded during the feasibility studies.

S. Hamieh; H. J. Woertche; C. Baeumer; A. M. van den Berg; D. Frekers; M. N. Harakeh; J. Heyse; M. Hunyadi; M. A. de Huu; C. Polachic; S. Rakers; C. Rangacharyulu

2003-10-17T23:59:59.000Z

251

Nevada Test Site FFCA Consent Order, March 27, 1996 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Site Federal Facility Compliance Act Test Site Federal Facility Compliance Act Consent Order, March 27, 1996 State Nevada Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Enforce the STP and establish procedures for reviewing schedules, deleting waste streams, and administrative procedures Parties DOE; Nevada Division of Environmental Protection Date 3/27/1996 SCOPE * Require DOE to achieve compliance with the requirements of the FFCAct through the STP which contains schedules and applicable strategies for achieving compliance with the applicable LDR standards. * Establish procedures for reviewing schedules, deleting waste streams, and administrative procedures. * Establish enforceable schedules and milestones applicable to this Order. ESTABLISHING MILESTONES *

252

Nuclear Operations Application to Environmental Restoration at Corrective Action Unit 547, Miscellaneous Contaminated Waste Sites, at the Nevada National Security Site  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has responsibility for environmental restoration at the Nevada National Security Site (formerly the Nevada Test Site). This includes remediation at locations where past testing activities have resulted in the release of plutonium to the environment. One of the current remediation efforts involves a site where an underground subcritical nuclear safety test was conducted in 1964. The underground test was vented through a steel pipe to the surface in a closed system where gas samples were obtained. The piping downstream of the gas-sampling apparatus was routed belowground to a location where it was allowed to vent into an existing radioactively contaminated borehole. The length of the pipe above the ground surface is approximately 200 meters. This pipe remained in place until remediation efforts began in 2007, at which time internal plutonium contamination was discovered. Following this discovery, an assessment was conducted to determine the quantity of plutonium present in the pipe. This site has been identified as Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites. The quantity of plutonium identified at CAU 547 exceeded the Hazard Category 3 threshold but was below the Hazard Category 2 threshold specified in DOE Standard DOE-STD-1027-92. This CAU, therefore, was initially categorized as a Hazard Category 3 environmental restoration site. A contaminated facility or site that is initially categorized as Hazard Category 3, however, may be downgraded to below Hazard Category 3 if it can be demonstrated through further analysis that the form of the material and the energy available for release support reducing the hazard category. This is an important consideration when performing hazard categorization of environmental restoration sites because energy sources available for release of material are generally fewer at an environmental restoration site than at an operating facility and environmental restoration activities may result in the complete removal of source material.

Kevin Cabble (NSO), Mark Krauss and Patrick Matthews (N-I)

2011-03-03T23:59:59.000Z

253

Idaho Site Taps Old World Process to Treat Nuclear Waste | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste Idaho Site Taps Old World Process to Treat Nuclear Waste September 9, 2013 - 12:00pm Addthis The Idaho site's sodium distillation system. The Idaho site's sodium distillation system. The top of a sodium distillation vessel, where waste enters the system. The top of a sodium distillation vessel, where waste enters the system. The Idaho site's sodium distillation system. The top of a sodium distillation vessel, where waste enters the system. IDAHO FALLS, Idaho - The EM program at the Idaho site is using an age-old process to treat transuranic (TRU) waste left over from nuclear reactor experiments. Developed in the first century and perfected by moonshiners in the 19th century, distillation will be used at the Idaho Nuclear Technology and

254

Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site  

Science Conference Proceedings (OSTI)

The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure cover has been placed on unit U-3ax/bl (Corrective Action Unit 110) at the Area 3 RWMS. Monolayer-evapotranspirative closure cover designs for the U-3ah/at and U-3bh units are provided in this plan. The current-design closure cover thickness is 3 meters (10 feet). The final design cover will have an optimized cover thickness, which is expected to be less than 3 m (10 ft). Although waste operations at the Area 3 RWMS have ceased at the end of June 2006, disposal capacity is available for future disposals at the U-3ah/at and U-3bh units. The Area 3 RWMS is expected to start closure activities in fiscal year 2025, which include the development of final performance assessment and composite analysis documents, closure plan, closure cover design for construction, cover construction, and initiation of the post-closure care and monitoring activities. Current monitoring at the Area 3 RWMS includes monitoring the cover of the closed mixed waste unit U-3ax/bl as required by the Nevada Department of Environmental Protection, and others required under federal regulations and DOE orders. Monitoring data, collected via sensors and analysis of samples, are needed to evaluate radiation doses to the general public, for performance assessment maintenance, to demonstrate regulatory compliance, and to evaluate the actual performance of the RWMSs. Monitoring provides data to ensure the integrity and performance of waste disposal units. The monitoring program is designed to forewarn management and regulators of any failure and need for mitigating actions. The plan describes the program for monitoring direct radiation, air, vadose zone, biota, groundwater, meteorology, and subsidence. The requirements of post-closure cover maintenance and monitoring will be determined in the final closure plan.

NSTec Environmental Management

2007-09-01T23:59:59.000Z

255

Geomechanics of the Climax mine-by, Nevada Test Site  

SciTech Connect

A generic test of retrievable geologic storage of spent fuel assemblies in an underground chamber is being conducted at the Nevada Test Site. The horizontal shrinkage of the pillars is not explainable, but the vertical pillar stresses are easily understood. A two-phase project was initiated to estimate the in-situ deformability of the Climax granite and to refine the in-situ stress field data, and to model the mine-by. (DLC)

Heuze, F.E.

1981-03-01T23:59:59.000Z

256

Characterization ReportOperational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations.

Bechtel Nevada Geotechnical Sciences

2005-06-01T23:59:59.000Z

257

Disposal Practices at the Nevada Test Site 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Area 5 LLRW & MLLW Disposal Area 5 LLRW & MLLW Disposal ETR Report Date: July 2008 ETR-14 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Disposal Practices at the Nevada Test Site Why DOE-EM Did This Review Radioactively contaminated materials from the Nevada Test Site (NTS), other DOE facilities and other federal agencies are disposed of at NTS at two low-level radioactive waste (LLRW) management sites: Areas 3 and 5. Disposal operations at Area 3 have been discontinued, but the facility is available for future disposal. The anticipated closure date for Area 3 is 2027. Area 5 is operating and will be expanded to accept future wastes. LLRW and mixed low-level radioactive

258

On-Chip Test Infrastructure Design for Optimal Multi-Site Testing of System Chips  

E-Print Network (OSTI)

Multi-site testing is a popular and effective way to increase test throughput and reduce test costs. We present a test throughput model, in which we focus on wafer testing, and consider parameters like test time, index time, abort-on-fail, and contact yield. Conventional multi-site testing requires sufficient ATE resources, such as ATE channels, to allow to test multiple SOCs in parallel. In this paper, we design and optimize on-chip DfT, in order to maximize the test throughput for a given SOC and ATE. The on-chip DfT consists of an E-RPCT wrapper, and, for modular SOCs, module wrappers and TAMs. We present experimental results for a Philips SOC and several ITC'02 SOC Test Benchmarks.

Goel, Sandeep Kumar

2011-01-01T23:59:59.000Z

259

Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

2009-03-01T23:59:59.000Z

260

Nuclear Detection and Sensor Testing Center | Y-12 National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and ... Detection and ... Nuclear Detection and Sensor Testing Center As part of our increased global nuclear nonproliferation efforts, Y-12 commissioned the Nuclear Detection and Sensor Testing Center, which offers dedicated facilities for the testing of radiation detection capabilities using enriched and highly enriched uranium. In addition to supporting measurements of instrumentation for detecting ionizing radiation, non-destructive measurements of both fissile and non-fissile materials may be deployed at NDSTC. The NDSTC supports proliferation detection, nuclear safeguards, emergency response, treaty verification, and university research. We can test devices with various forms and quantities of HEU, and the Center offers subject matter experts to assist in planning measurements, safely deploy material,

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Closure Report for Corrective Action Unit 540: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 540: Spill Sites, Nevada Test Site, Nevada. This CR complies with the requirements of the 'Federal Facility Agreement and Consent Order' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 540 is located within Areas 12 and 19 of the Nevada Test Site and is comprised of the following Corrective Action Sites (CASs): CAS 12-44-01, ER 12-1 Well Site Release; CAS 12-99-01, Oil Stained Dirt; CAS 19-25-02, Oil Spill; CAS 19-25-04, Oil Spill; CAS 19-25-05, Oil Spill; CAS 19-25-06, Oil Spill; CAS 19-25-07, Oil Spill; CAS 19-25-08, Oil Spills (3); and CAS 19-44-03, U-19bf Drill Site Release. The purpose of this CR is to provide documentation supporting recommendations of no further action for the CASs within CAU 540. To achieve this, the following actions were performed: (1) Reviewed the current site conditions, including the concentration and extent of contamination; (2) Performed closure activities to address the presence of substances regulated by 'Nevada Administrative Code' 445A.2272 (NAC, 2002); and (3) Documented Notice of Completion and closure of CAU 540 issued by the Nevada Division of Environmental Protection.

McClure, Lloyd

2006-10-01T23:59:59.000Z

262

Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada  

SciTech Connect

This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

Not Available

1994-06-01T23:59:59.000Z

263

Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site  

Science Conference Proceedings (OSTI)

This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

L.E. Demick

2011-10-01T23:59:59.000Z

264

Chu Visits Site of America's First New Nuclear Reactor in Three Decades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Visits Site of America's First New Nuclear Reactor in Three Chu Visits Site of America's First New Nuclear Reactor in Three Decades Chu Visits Site of America's First New Nuclear Reactor in Three Decades February 15, 2012 - 2:12pm Addthis Just two days after the Department of Energy requested more than $770 million for nuclear energy in 2013, U.S. Secretary of Energy Steven Chu visited the Vogtle nuclear power plant in Waynesboro, Georgia and Oak Ridge National Laboratory to highlight the steps the Obama Administration is taking to restart America's nuclear industry as part of an all-of-the-above American energy strategy. During remarks to more than 500 workers at the Vogtle nuclear power plant, Secretary Chu highlighted the wide variety of steps the Obama Administration has taken to help restart America's nuclear energy

265

Chu Visits Site of America's First New Nuclear Reactor in Three Decades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Visits Site of America's First New Nuclear Reactor in Three Chu Visits Site of America's First New Nuclear Reactor in Three Decades Chu Visits Site of America's First New Nuclear Reactor in Three Decades February 15, 2012 - 12:40pm Addthis WASHINGTON, D.C. - Just two days after the Department of Energy requested more than $770 million for nuclear energy in 2013, U.S. Secretary of Energy Steven Chu visited the Vogtle nuclear power plant in Waynesboro, Georgia and Oak Ridge National Laboratory to highlight the steps the Obama Administration is taking to restart America's nuclear industry as part of an all-of-the-above American energy strategy. During remarks to more than 500 workers at the Vogtle nuclear power plant, Secretary Chu highlighted the wide variety of steps the Obama Administration has taken to help restart America's nuclear energy

266

Material Testing - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments involved: Engineering Development and Applications Irradiated Materials Two hot-cell test facilities are used to develop experimental data on the irradiation-assisted...

267

Preliminary Evaluation of Removing Used Nuclear Fuel From Nine Shutdown Sites  

SciTech Connect

he Blue Ribbon Commission on Americas Nuclear Future identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. In this report, a preliminary evaluation of removing used nuclear fuel from nine shutdown sites was conducted. The shutdown sites included Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion. At these sites a total of 7649 used nuclear fuel assemblies and a total of 2813.2 metric tons heavy metal (MTHM) of used nuclear fuel are contained in 248 storage canisters. In addition, 11 canisters containing greater-than-Class C (GTCC) low-level radioactive waste are stored at these sites. The evaluation was divided in four components: characterization of the used nuclear fuel and GTCC low-level radioactive waste inventory at the shutdown sites an evaluation of the onsite transportation conditions at the shutdown sites an evaluation of the near-site transportation infrastructure and experience relevant to the shipping of transportation casks containing used nuclear fuel from the shutdown sites an evaluation of the actions necessary to prepare for and remove used nuclear fuel and GTCC low-level radioactive waste from the shutdown sites. Using these evaluations the authors developed time sequences of activities and time durations for removing the used nuclear fuel and GTCC low-level radioactive waste from a single shutdown site, from three shutdown sites located close to each other, and from all nine shutdown sites.

Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul

2013-04-30T23:59:59.000Z

268

Department of Energy Awards $300,000 to Nevada Test Site Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada Test Site Development Corporation Department of Energy Awards 300,000 to Nevada Test Site Development Corporation Department of Energy Awards 300,000 to Nevada Test Site...

269

Analysis of ER-12-3 FY 2005 Hydrologic Testing, Nevada Test Site, Nye County, Nevada, Rev. No.: 0  

Science Conference Proceedings (OSTI)

This report documents the analysis of data collected for ER-12-3 during the fiscal year (FY) 2005 Rainier Mesa/Shoshone Mountain well development and hydraulic testing program (herein referred to as the ''testing program''). Well ER-12-3 was constructed and tested as a part of the Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain, Phase I drilling program during FY 2005. These activities were conducted on behalf of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) for the Underground Test Area (UGTA) Project. As shown on Figure 1-1, ER-12-3 is located in central Rainier Mesa, in Area 12 of the Nevada Test Site (NTS). Figure 1-2 shows the well location in relation to the tunnels under Rainier Mesa. The well was drilled to a total depth (TD) of 4,908 feet (ft) below ground surface (bgs) (surface elevation 7,390.8 ft above mean sea level [amsl]) in the area of several tunnels mined into Rainier Mesa that were used historically for nuclear testing (NNSA/NSO, 2006). The closest nuclear test to the well location was YUBA (U-12b.10), conducted in the U-12b Tunnel approximately 1,529 ft northeast of the well site. The YUBA test working point elevation was located at approximately 6,642 ft amsl. The YUBA test had an announced yield of 3.1 kilotons (kt) (SNJV, 2006b). The purpose of this hydrogeologic investigation well is to evaluate the deep Tertiary volcanic section below the tunnel level, which is above the regional water table, and to provide information on the section of the lower carbonate aquifer-thrust plate (LCA3) located below the Tertiary volcanic section (SNJV, 2005b). Details on the drilling and completion program are presented in the ''Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain'' (NNSA/NSO, 2006). Development and hydraulic testing of ER-12-3 took place between June 3 and July 22, 2005. The development objectives included removing residual drilling fluids and improving the hydraulic connection of the well within the lower carbonate aquifer (LCA). The hydraulic testing objectives focused on obtaining further hydrogeologic, geochemical, and radiochemical data for the site. Details on the data collected during the testing program are presented in the report ''Rainier Mesa Well ER-12-3 Data Report for Well Development and Hydraulic Testing'' (SNJV, 2006b). Participants in ER-12-3 testing activities were: Stoller-Navarro Joint Venture (SNJV), Bechtel Nevada (BN), Desert Research Institute (DRI), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and the U.S. Geological Survey (USGS). Stoller-Navarro Joint Venture served as the lead contractor responsible for providing site supervision, development and testing services, and waste management services; BN provided construction and engineering support services; DRI provided well logging services and participated in groundwater sampling and laboratory analyses; LANL and LLNL participated in groundwater sampling and laboratory analyses; and the USGS performed laboratory analyses. Analyses of data from the ER-12-3 testing program presented in this document were performed by SNJV except as noted.

Bill Fryer

2006-07-01T23:59:59.000Z

270

Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

Irene Farnham

2011-05-01T23:59:59.000Z

271

Overview of software development at the Parabolic Dish Test Site  

DOE Green Energy (OSTI)

The development history of the data acquisition and data analysis software is discussed in this report. The software development occurred between 1978 and 1984 in support of solar energy module testing at the Jet Propulsion Laboratory's Parabolic Dish Test Site, located within Edwards Test Station. The development went through incremental stages, starting with a simple single-user BASIC set of programs, and progressing to the relative complex multi-user FORTRAN system that was used until the termination of the project. Additional software in support of testing is discussed including software in support of the meteorological subsystem and the Test Bed Concentrator Control Console interface. Conclusions and recommendations for further development are discussed.

Miyazono, C.K.

1985-07-15T23:59:59.000Z

272

Detailed Burnup Calculations for Testing Nuclear Data  

Science Conference Proceedings (OSTI)

A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross-section data for burnup calculations, using some of the main available evaluated nuclear data files (ENDF-B-VI-Rel.8, JEFF-3.0, JENDL-3.3), on an isotope-by-isotope basis as much as possible. The selected experimental burnup benchmarks are reference cases for LWR and HWR reactors, with analysis of isotopic composition as a function of burnup. For LWR (H2O-moderated uranium oxide lattices) four benchmarks are included: ATM-104 NEA Burnup credit criticality benchmark; Yankee-Rowe Core V; H.B.Robinson Unit 2 and Turkey Point Unit 3. For HWR (D2O-moderated uranium oxide cluster lattices), three benchmarks were selected: NPD-19-rod Fuel Clusters; Pickering-28-rod Fuel Clusters; and Bruce-37-rod Fuel Clusters. The isotopes with experimental concentration data included in these benchmarks are: Se-79, Sr90, Tc99, Ru106, Sn126, Sb125,1129, Cs133-137, Nd143, 145, Sm149-150, 152, Eul53-155, U234-235, 238, Np237, Pu238-242, Am241-243, and Cm242-248. Results and analysis of differences between calculated and measured absolute and/or relative concentrations of these isotopes for the seven benchmarks are included in this work.

Leszczynski, F. [Centro Atomico Bariloche (CNEA), 8400 S.C.de Bariloche (Argentina)

2005-05-24T23:59:59.000Z

273

Closure Report for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996, and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SA4FER) Plan for CAU 398: Area 25 Spill Sites, Nevada Test Site, Nevada (U.S. Department of Energy, Nevada Operations Office [DOEN], 2001). CAU 398 consists of the following thirteen Corrective Action Sites (CASs) all located in Area 25 of the Nevada Test Site (NTS) (Figure 1): CAS 25-25-02, Oil Spills, CAS 25-25-03, Oil Spills, CAS 25-25-04, Oil Spills, CAS 25-25-05, Oil Spills, CAS 25-25-06, Oil Spills, CAS 25-25-07, Hydraulic Oil Spill(s), CAS 25-25-08, Hydraulic Oil Spill(s), CAS 25-25-16, Diesel Spill (from CAS 25-01-02), CAS 25-25-17, Subsurface Hydraulic Oil Spill, CAS 25-44-0 1, Fuel Spill, CAS 25-44-04, Acid Spill (from CAS 25-01-01), CAS 25-44-02, Spill, and CAS 25-44-03, Spill. Copies of the analytical results for the site verification samples are included in Appendix B. Copies of the CAU Use Restriction Information forms are included in Appendix C.

K. B. Campbell

2003-04-01T23:59:59.000Z

274

Pages that link to "Chesapeake Bay Test Site" | Open Energy Informatio...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Chesapeake Bay Test Site" Chesapeake Bay Test Site Jump to: navigation, search What links here Page:...

275

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

NONE

1988-01-01T23:59:59.000Z

276

Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada with ROTC-1, Revision 0  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 370 is located in Area 4 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and/or implement a corrective action. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The investigation results may also be used to evaluate improvements in the Soils Project strategy to be implemented. The site will be investigated based on the data quality objectives (DQOs) developed on December 10, 2007, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Desert Research Institute; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 370. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to the CAS. The scope of the CAI for CAU 370 includes the following activities: Move surface debris and/or materials, as needed, to facilitate sampling. Conduct radiological surveys. Perform field screening. Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern are present. If contaminants of concern are present, collect samples to define the extent of the contamination. Collect samples of investigation-derived waste including debris deemed to be potential source material, as needed, for waste management purposes.

Pat Matthews

2008-04-01T23:59:59.000Z

277

Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996  

SciTech Connect

The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

1997-04-01T23:59:59.000Z

278

Corrective Action Investigation Plan for Corrective Action Unit 557: Spills and Tank Sites, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

Corrective Action Unit (CAU) 557 is located in Areas 1, 3, 6, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada, and is comprised of the four corrective action sites (CASs) listed below: 01-25-02, Fuel Spill 03-02-02, Area 3 Subdock UST 06-99-10, Tar Spills 25-25-18, Train Maintenance Bldg 3901 Spill Site These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 3, 2008, by representatives of the Nevada Division of Environmental Protection (NDEP); U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 557. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 557 includes the following activities: Move surface debris and/or materials, as needed, to facilitate sampling. Conduct radiological survey at CAS 25-25-18. Perform field screening. Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern are present. If contaminants of concern are present, collect additional step-out samples to define the extent of the contamination. Collect samples of investigation-derived waste, as needed, for waste management purposes.

Alfred Wickline

2008-07-01T23:59:59.000Z

279

Nevada Test Site tortoise population monitoring study. Final report  

Science Conference Proceedings (OSTI)

A Tortoise Population Monitoring Study was initiated to determine and monitor the density of desert tortoises (Gopherus agassizii) on the Nevada Test Site. Quadrat sampling was conducted following methodology described in the Draft Desert Tortoise Recovery Plan (FWS, 1993). So few tortoises were found that densities could not be calculated. Based on estimates of capture probabilities and densities from other studies, it was determined that 1-km{sup 2} (0.4 mi{sup 2}) plots did not contain enough tortoises for estimating densities with the Recovery Plan methods. It was recommended that additional surveys on the Nevada Test Site using those methods not be conducted. Any future efforts to monitor desert tortoise densities should start by identifying other possible methods, determining their relative power to detect changes, and estimating their cost.

Mueller, J.M.; Zander, K.K.

1994-12-01T23:59:59.000Z

280

Nevada Test Site Area 25. Radiological survey and cleanup project, 1974-1983. Final report  

SciTech Connect

This report describes radiological survey, decontamination and decommissioning of the Nevada Test Site (NTS) Area 25 facilities and land areas incorporated in the Nuclear Rocket Development Station (NRDS). Buildings, facilities and support systems used after 1959 for nuclear reactor and engine testing were surveyed for the presence of radioactive contamination. The cleanup was part of the Surplus Facilities Management Program funded by the Department of Energy's Richland Operations Office. The radiological survey portion of the project encompassed portable instrument surveys and removable contamination surveys (swipe) for alpha and beta plus gamma radiation contamination of facilities, equipment and land areas. Soil sampling was also accomplished. The majority of Area 25 facilities and land areas have been returned to unrestricted use. Remaining radiologically contaminated areas are posted with warning signs and barricades. 12 figures.

McKnight, R.K.; Rosenberry, C.E.; Orcutt, J.A.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Savannah River Site ECS-2 tests uncertainty report  

SciTech Connect

This document presents a measurement uncertainty analysis for the instruments used in the ECS-2 test series conducted for the Savannah River Site at the Idaho National Engineering Laboratory. The tests are a series of downflow dryout heat transfer experiments designed to support computer code development and verification in setting limits for the Savannah River Production reactors. The measurements include input current, voltage, and power; air and water flows, fluid and metal temperatures, and absolute and differential pressures. An analysis of the data acquisition system as it relates to these measurements is also included. 18 refs., 6 figs., 12 tabs.

Wilkins, S.C.; Larson, R.A.

1990-07-01T23:59:59.000Z

282

Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada  

Science Conference Proceedings (OSTI)

A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

K.J. Halford; R.J. Laczniak; D.L. Galloway

2005-10-07T23:59:59.000Z

283

Radionuclide Partitioning in an Underground Nuclear Test Cavity  

SciTech Connect

In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors: chemical volatility effects that occur during the initial plasma condensation, and groundwater remobilization that occurs over a much longer time frame. Fission product partitioning is very sensitive to the early cooling history of the test cavity because the decay of short-lived (t{sub 1/2} < 1 hour) fission-chain precursors occurs on the same time scale as melt glass condensation. Fission product chains that include both volatile and refractory elements, like the mass 99, 125, and 129 chains, can show large variations in partitioning behavior depending on the cooling history of the cavity. Uranium exhibits similar behavior, though the chemical processes are poorly understood. The water temperature within the Chancellor cavity remains elevated (75 C) more than two decades after the test. Under hydrothermal conditions, high solubility chemical species such as {sup 125}Sb and {sup 129}I are readily dissolved and transported in solution. SEM analyses of melt glass samples show clear evidence of glass dissolution and secondary hydrothermal mineral deposition. Remobilization of {sup 99}Tc is also expected during hydrothermal activity, but moderately reducing conditions within the Chancellor cavity appear to limit the transport of {sup 99}Tc. It is recommended that the results from this study should be used together with the IAEA data to update the range in partitioning values for contaminant transport models at the Nevada National Security Site (formerly known as the Nevada Test Site).

Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

2009-01-09T23:59:59.000Z

284

Nuclear Test-Experimental Science: Annual report, fiscal year 1988  

Science Conference Proceedings (OSTI)

Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B. (eds.)

1988-01-01T23:59:59.000Z

285

Reactor Safety Testing and Analysis - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

286

Mine seismicity and the Comprehensive Nuclear Test Ban Treaty  

SciTech Connect

Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1,000 squared kilometers. In active mining districts this area could include several different mining operations. So, an OSI could be disruptive both to the mining community and to the US Government which must host the foreign inspection team. Accordingly, it is in the best interest of all US parties to try and eliminate the possible occurrence of false alarms. This can be achieved primarily by reducing the ambiguity of mine-induced seismic signals, so that even if these remain visible to the IMS they are clearly consistent with recognizable mining patterns.

Chiappetta, F. [Blasting Analysis International, Allentown, PA (United States); Heuze, F.; Walter, W. [Lawrence Livermore National Lab., CA (United States); Hopler, R. [Powderman Consulting Inc., Oxford, MD (United States); Hsu, V. [Air Force Technical Applications Center, Patrick AFB, FL (United States); Martin, B. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, C. [Los Alamos National Lab., NM (United States); Stump, B. [Southern Methodist Univ., Dallas, TX (United States); Zipf, K. [Univ. of New South Wales (Australia)

1998-12-09T23:59:59.000Z

287

DRAFT ENVIRONMENTAL ASSESSMENT FOR CHARACTERIZATION OF THE HANFORD SITE PURSUANT TO THE NUCLEAR WASTE POLICY ACT OF 1982  

E-Print Network (OSTI)

step-by-step process by which the President, Congress, affected individual states and Indian tribes, U.S. Department of Energy (DOE), and other Federal agencies can work together in the siting, construction, and operation of a high-level nuclear waste repository. The DOE is required by Section 116(a) of the Act to identify states having potentially acceptable sites for a waste repository. A potentially acceptable site is defined by the Act as...any site at which, after geologic studies and field mapping but before detailed geologic data gathering, the Department undertakes preliminary drilling and geophysical testing for the definition of the site location. " By letter dated February 2, 1983, the Secretary of the DOE notified the Governor and Legislature of the State of Washington that the Hanford Site, near

Public Law; Public Law; Ooe-richland Wa Foreword

1983-01-01T23:59:59.000Z

288

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

NONE

1988-01-01T23:59:59.000Z

289

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

290

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 7  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Neavada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining hte geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare and environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

291

An aerial radiological survey of the Nevada Test Site  

SciTech Connect

A team from the Remote Sensing Laboratory conducted an aerial radiological survey of the US Department of Energy's Nevada Test Site including three neighboring areas during August and September 1994. The survey team measured the terrestrial gamma radiation at the Nevada Test Site to determine the levels of natural and man-made radiation. This survey included the areas covered by previous surveys conducted from 1962 through 1993. The results of the aerial survey showed a terrestrial background exposure rate that varied from less than 6 microroentgens per hour (mR/h) to 50 mR/h plus a cosmic-ray contribution that varied from 4.5 mR/h at an elevation of 900 meters (3,000 feet) to 8.5 mR/h at 2,400 meters (8,000 feet). In addition to the principal gamma-emitting, naturally occurring isotopes (potassium-40, thallium-208, bismuth-214, and actinium-228), the man-made radioactive isotopes found in this survey were cobalt-60, cesium-137, europium-152, protactinium-234m an indicator of depleted uranium, and americium-241, which are due to human actions in the survey area. Individual, site-wide plots of gross terrestrial exposure rate, man-made exposure rate, and americium-241 activity (approximating the distribution of all transuranic material) are presented. In addition, expanded plots of individual areas exhibiting these man-made contaminations are given. A comparison is made between the data from this survey and previous aerial radiological surveys of the Nevada Test Site. Some previous ground-based measurements are discussed and related to the aerial data. In regions away from man-made activity, the exposure rates inferred from the gamma-ray measurements collected during this survey agreed very well with the exposure rates inferred from previous aerial surveys.

Hendricks, T J; Riedhauser, S R

1999-12-01T23:59:59.000Z

292

Freedom of Information Act Related Sites | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

agency established by Congress in 1988 to provide safety oversight of the nuclear weapons complex operated by the DOE. National Technical Information Service A centralized...

293

Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report  

Science Conference Proceedings (OSTI)

Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

1998-07-01T23:59:59.000Z

294

Environmental Survey preliminary report, Nevada Test Site, Mercury, Nevada  

Science Conference Proceedings (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Nevada Test Site (NTS), conducted June 22 through July 10, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the NTS. The Survey covers all environment media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations and activities performed at the NTS, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by the Battelle Columbus Division under contract with DOE. When completed, the results will be incorporated into the NTS Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the NTS Survey. 165 refs., 42 figs., 52 tabs.

Not Available

1988-04-01T23:59:59.000Z

295

Preliminary interpretation of thermal data from the Nevada Test Site  

DOE Green Energy (OSTI)

Analysis of data from 60 wells in and around the Nevada Test Site, including 16 in the Yucca Mountain area, indicates a thermal regime characterized by large vertical and lateral gradients in heat flow. Estimates of heat flow indicate considerable variation on both regional and local scales. The variations are attributable primarily to hydrologic processes involving interbasin flow with a vertical component of (seepage) velocity (volume flux) of a few mm/yr. Apart from indicating a general downward movement of water at a few mm/yr, the reults from Yucca Mountain are as yet inconclusive. The purpose of the study was to determine the suitability of the area for proposed repository sites.

Sass, J.H.; Lachenbruch, A.H.

1982-01-01T23:59:59.000Z

296

Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada  

SciTech Connect

The Special Projects Section (SPS) of Reynolds Electrical & Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities.

NONE

1994-02-01T23:59:59.000Z

297

Handling effluent from nuclear thermal propulsion system ground tests  

SciTech Connect

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Allen, G.C.

1992-09-09T23:59:59.000Z

298

Effluent treatment options for nuclear thermal propulsion system ground tests  

DOE Green Energy (OSTI)

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Brockmann, J.E.

1992-10-16T23:59:59.000Z

299

Parity- and Time-Reversal Tests in Nuclear Physics  

E-Print Network (OSTI)

Nuclear physics tests of parity- and time-reversal invariance have both shaped the development of the Standard Model and provided key tests of its predictions. These studies now provide vital input in the search for physics beyond the Standard Model. We give a brief review of a few key experimental and theoretical developments in the history of this sub-field of nuclear physics as well as a short outlook, focusing on weak decays, parity-violation in electron scattering, and searches for permanent electric dipole moments of the neutron and neutral atoms.

Hertzog, David

2013-01-01T23:59:59.000Z

300

HALLAM NUCLEAR POWER FACILITY PREOPERATIONAL TEST COMPLETION REPORT, HOT SODIUM CIRCULATION TEST  

SciTech Connect

Tests were conducted to verify the adequacy of the design, construction, and components of the main heat transfer system of the Hallam Nuclear Power Facility (HNPF) for elevated-temperature and low-power operation. Tests revealed piping interferences, inoperative hangars, and valve difficulties. These discrepancies were rectified and rechecked. Detailed information concerning test results is included. (J.R.D.)

Shaw, P.F.; Johnson, L.L.

1962-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Calendar Year 2001 Annual Site Environmental Report Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

Sandia Corporation (a subsidiary of Lockheed Martin Corporation through its contract with the U.S. Department of Energy [DOE]), National Nuclear Security Administration (NNSA) operates the Tonopah Test Range (TTR) in Nevada. Westinghouse Government Service, TTR's operations and maintenance contractor, performs most all environmental program functions. This Annual Site Environmental Report (ASER), which is published to inform the public about environmental conditions at TTR, describes environmental protection programs and summarizes the compliance status with major environmental laws and regulations during Calendar Year (CY) 2001.

VIGIL, FRANCINE S.

2002-09-01T23:59:59.000Z

302

Status of the flora and fauna on the Nevada Test Site, 1989--1991  

Science Conference Proceedings (OSTI)

This volume includes six reports of monitoring work to determine the status of and trends in flora and fauna populations on the Nevada Test Site (NTS) from 1989 through 1991. The Nevada Operations Office of the US Department of Energy supported monitoring under its Basic Environmental Compliance and Monitoring Program (BECAMP) since 1987. Under this program several undisturbed baseline plots, and numerous plots in disturbed areas, are sampled on annual or three-year cycles. Perennial plant populations, ephemeral plants, small mammals, reptiles, birds, and large mammals were monitored. Monitoring results are reported for five baseline sites, one from each major landform on the NTS (Jackass Flats, Frenchman Flat, Yucca Flat, Pahute Mesa, and Rainier Mesa), and for areas cleared of vegetation by fires, atmospheric nuclear weapons tests, construction, and gophers. Roadside flora and fauna were studied at two locations, and several historical study plots around the NTS were recensused to determine vegetation changes over long time spans. Three subsidence craters resulting from below-ground nuclear weapons tests were also studied. A major influence on plants and animals during the report period was a severe drought during 1989 and 1990, followed by more moderate drought in 1991.

Hunter, R.B. [comp.

1994-03-01T23:59:59.000Z

303

Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the underground testing areas on a regional scale. The groundwater flow model was used in conjunction with a particle-tracking code to define the pathlines followed by groundwater particles originating from 415 points associated with 253 nuclear test locations. Three of the most rapid pathlines were selected for transport simulations. These pathlines are associated with three nuclear test locations, each representing one of the three largest testing areas. These testing locations are: BOURBON on Yucca Flat, HOUSTON on Central Pahute Mesa, and TYBO on Western Pahute Mesa. One-dimensional stochastic tritium transport simulations were performed for the three pathlines using the Monte Carlo method with Latin hypercube sampling. For the BOURBON and TYBO pathlines, sources of tritium from other tests located along the same pathline were included in the simulations. Sensitivity analyses were also performed on the transport model to evaluate the uncertainties associated with the geologic model, the rates of groundwater flow, the tritium source, and the transport parameters. Tritium concentration predictions were found to be mostly sensitive to the regional geology in controlling the horizontal and vertical position of transport pathways. The simulated concentrations are also sensitive to matrix diffusion, an important mechanism governing the migration of tritium in fractured carbonate and volcanic rocks. Source term concentration uncertainty is most important near the test locations and decreases in importance as the travel distance increases. The uncertainty on groundwater flow rates is as important as that on matrix diffusion at downgradient locations. The risk assessment was performed to provide conservative and bounding estimates of the potential risks to human health and the environment from tritium in groundwater. Risk models were designed by coupling scenario-specific tritium intake with tritium dose models and cancer and genetic risk estimates using the Monte Carlo method. Estimated radiation doses received by individuals from chronic exposure to tritium, and the corre

None

1997-10-01T23:59:59.000Z

304

Closure Report for Corrective Action Unit 346: Areas 8, 10 Housekeeping Sites, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report documents the closure activities conducted for Corrective Action Unit (CAU) 346: Areas 8, 10 Housekeeping Sites. CAU 346 is listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996) and consists of the following 14 Corrective Action Sites (CASs) located in Areas 8 and 10 of the Nevada Test Site (NTS): (1) CAS 08-22-04: Drums (2); (2) CAS 08-22-11: Drums; Bucket; (3) CAS 08-24-02: Battery; (4) CAS 10-14-01: Transformer; (5) CAS 10-22-06: Drum (Gas Block); (6) CAS 10-22-10: Drum (Gas Block); (7) CAS 10-22-12: Drum (Gas Block); (8) CAS 10-22-13: Drum (Gas Block); (9) CAS 10-22-16: Drum (Gas Block); (10) CAS 10-22-22: Drum; (11) CAS 10-22-25: Drum; (12) CAS 10-22-36: Paint Can; (13) CAS 10-22-37: Gas Block; and (14) CAS 10-24-11: Battery. Closure activities consisted of closing each CAS by removing debris and/or material, disposing of the generated waste, and verifying that each site was clean-closed by visual inspection and/or laboratory analysis of soil verification samples.

K. B. Campbell

2003-08-01T23:59:59.000Z

305

Gamma-Ray Bursts Nuclear Test Ban Treaty, 1963  

E-Print Network (OSTI)

Lecture 18 Gamma-Ray Bursts #12;Nuclear Test Ban Treaty, 1963 First Vela satellite pair launched and their predecessors, Vela 4, discovered the first gamma-ray bursts. The discovery was announced by Klebesadel, Strong, and Olson (ApJ, 182, 85) in 1973. #12;First Gamma-Ray Burst The Vela 5 satellites functioned from July, 1969

Harrison, Thomas

306

Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

NSTec Environmental Restoration

2008-08-01T23:59:59.000Z

307

Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes  

Science Conference Proceedings (OSTI)

This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

1992-09-01T23:59:59.000Z

308

2012 Annual Workforce Analysis and Staffing Plan Report - Nuclear Energy Oak Ridge Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Oak Ridge Site Office Nuclear Energy Oak Ridge Site Office 2012 Annual Workforce Analysis and Staffing Plan Report for Federal Technical Personnel January 2013 DOENE-ORSO CONCURRENCE AND APPROVAL CONCURRENCE: Marianne Heiskell, Lease and Technical Management Branch Chief Nuclear Energy Oak Ridge Site Office Randy DeVault, Regulatory Management Branch Chief, NE-ORSO Nucl~ffic ,___.~,. Larry Perkins, Deputy Manager, Nuclear Energy Oak Ridge Site Office APPROVAL: January 2013 2012 Annual Workforce Analysis and Staffing Plan Report Date I /v/13 Date! 1/~3/13 Date ,;:L :/ /. * ~ Page ii DOENE-ORSO Table of Contents Section 1: Current Mission(s) of the Organization and Potential Changes Section 2: Technical Staffing Section 3: Current Shortages and Plans for Filling

309

Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test  

Science Conference Proceedings (OSTI)

Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

2004-03-01T23:59:59.000Z

310

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

311

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act  

Science Conference Proceedings (OSTI)

The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

NONE

1988-01-01T23:59:59.000Z

312

Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site  

Science Conference Proceedings (OSTI)

The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

Patton, S.E.; Novo, M.G.; Shinn, J.H.

1986-04-01T23:59:59.000Z

313

Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: 01-02-01, Underground Storage Tank 07-02-01, Underground Storage Tanks 10-02-01, Underground Storage Tank 20-02-03, Underground Storage Tank 20-99-05, Tar Residue 22-02-02, Buried UST Piping 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: Reviewed the current site conditions, including the concentration and extent of contamination. Implemented any corrective actions necessary to protect human health and the environment. Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify COCs for CAU 130. Assessment of the data generated from closure activities indicates that no further action is necessary because no COCs were identified at any CAU 130 CAS. Debris removal from these CASs was considered a best management practice because no contamination was detected. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: No further corrective action is required at all CAU 130 CASs. A Notice of Completion to DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 130. Corrective Action Unit 130 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

Alfred Wickline

2009-03-01T23:59:59.000Z

314

Assessment of Seismic Hazard at 34 U.S. Nuclear Plant Sites  

Science Conference Proceedings (OSTI)

Interest in recent years in early site permits (ESPs) for new nuclear plants has prompted a reevaluation of seismic design criteria and a reexamination of the basis for current criteria. Currently, Regulatory Guide 1.208 bases seismic design requirements on a performance-based approach using probabilistic seismic hazard analysis (PSHA). The performance-based approach was based on PSHA results at 29 nuclear plant sites, using results that were published in 1989 and 1994. These results were supported by pr...

2008-08-27T23:59:59.000Z

315

A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site  

SciTech Connect

The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.

Jackson, J. P.; Pastor, R. S.

2002-02-28T23:59:59.000Z

316

Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present, to determine the potential for a release; (7) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes; and (8) Collect quality control samples. This Corrective Action Investigation Document (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense. Under the FFACO, this CAIP will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval.

Wickline, Alfred

2006-12-01T23:59:59.000Z

317

Nevada Test Site-Directed Research and Development FY 2010 Annual Report  

SciTech Connect

This annual report of the Site-Directed Research and Development (SDRD) program represents the highly significant R&D accomplishments conducted during fiscal year 2010. This year was noteworthy historically, as the Nevada Test Site was renamed to the Nevada National Security Site (NNSS). This change not only recognizes how the site's mission has evolved, but also heralds a future of new challenges and opportunities for the NNSS. In many ways, since its inception in 2002, the SDRD program has helped shape that evolving mission. As we approach 2012, SDRD will also mark a milestone, having completed its first full decade of innovative R&D in support of the site and national security. The program continues to fund advanced science and technology development across traditional Department of Energy (DOE) nuclear security areas such as stockpile stewardship and non-proliferation while also supporting Department of Homeland Security (DHS) needs, and specialized work for government agencies like the Department of Defense (DoD) and others. The NNSS will also contribute technologies in the areas of treaty verification and monitoring, two areas of increasing importance to national security. Keyed to the NNSS's broadened scope, the SDRD program will continue to anticipate and advance R&D projects that will help the NNSS meet forthcoming challenges.

Howard Bender, comp.

2011-04-04T23:59:59.000Z

318

Guidelines for inservice testing at nuclear power plants  

Science Conference Proceedings (OSTI)

The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

Campbell, P.

1995-04-01T23:59:59.000Z

319

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

320

Accelerated Testing of Neutron-Absorbing Alloys for Nuclear Criticality Control  

Science Conference Proceedings (OSTI)

Special Issue Technical Paper / Second Seminar on Accelerated Testing of Materials in Spent Nuclear Fuel and High-Level Waste Storage Systems / Materials for Nuclear Systems

R. E. Mizia; T. E. Lister

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

1998 Annual Site Environmental Report Tonopah Test Range, Nevada  

SciTech Connect

Sandia National Laboratories (SNL) operates the Tonopah Test Range (TTR) for the Department of Energy (DOE) Weapons Ordnance Program. This annual report (calendar year 1998) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act (NEPA). In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance at TTR extends only to those areas where SNL activities are carried out. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared in accordance with DOE Order 5400.1, General Environmental Protection Program (DOE 1990a).

Duncan, D.K.; Fink, C.H.; Sanchez, R.V.

1999-09-01T23:59:59.000Z

322

FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST  

NLE Websites -- All DOE Office Websites (Extended Search)

FIELD FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST AREA DOEINV/10845--T3 DE93 005915 by JennyB. Chapman, Thdd M. Mihevc and Brad Lyles Water Resources Center Desert Research Institute DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring

323

1997 annual site environmental report, Tonopah Test Range, Nevada  

SciTech Connect

Sandia National Laboratories (SNL) operates the Tonopah Test Range for the Department of Energy's (DOE) Weapons Ordnance Program. Thes annual report (calendar year 1997) summarizes the compliance status to environmental regulations applicable at the site including those statutes that govern air and water quality, waste management, cleanup of contaminated areas, control of toxic substances, and adherence to requirements as related to the National Environmental Policy Act. In compliance with DOE orders, SNL also conducts environmental surveillance for radiological and nonradiological contaminants. SNL's responsibility for environmental surveillance extends only to those activities performed by SNL or under its direction. Annual radiological and nonradiological routine releases and unplanned releases (occurrences) are also summarized. This report has been prepared as required by DOE Order 5400.1, General Environmental Protection Program.

Culp, Todd; Duncan, Dianne (ed.); Forston, William; Sanchez, Rebecca (ed.)

1998-08-01T23:59:59.000Z

324

Biodiversity Analysis of Vegetation on the Nevada Test Site  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) located in south central Nevada encompasses approximately 3,561 square kilometers and straddles two major North American deserts, Mojave and Great Basin. Transitional areas between the two desert types have been created by gradients in elevation, precipitation, temperature, and soils. From 1996-1998, more than 1,500 ecological landform units were sampled at the NTS for numerous biotic and abiotic parameters. These data provide a basis for spatial evaluations of biodiversity over landscape scales at the NTS. Species diversity maps (species richness vs. species abundance) have been produced. Differences in ecosystem diversity at the ecoregion, alliance, association, and ecological landform unit levels are presented. Spatial distribution maps of species presence and abundance provide evidence of where transition zones occur and the resulting impact on biodiversity. The influences of abiotic factors (elevation, soil, precipitation) and anthropogenic disturbance on biodiversity are assessed.

W. K. Ostler; D. J. Hansen

2001-06-01T23:59:59.000Z

325

Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests  

SciTech Connect

The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85{degree}C and 25{degree}C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs.

Wilson, C.N.

1990-06-01T23:59:59.000Z

326

Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1  

Science Conference Proceedings (OSTI)

This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the Corrective Action Strategy in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

Gregg Ruskuaff

2010-01-01T23:59:59.000Z

327

Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment  

SciTech Connect

In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

2012-07-01T23:59:59.000Z

328

Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test  

SciTech Connect

The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

2004-03-01T23:59:59.000Z

329

Idaho Site Completes Demolition of Cold War-era Nuclear Fuel Reprocessing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Demolition of Cold War-era Nuclear Fuel Completes Demolition of Cold War-era Nuclear Fuel Reprocessing Facility Idaho Site Completes Demolition of Cold War-era Nuclear Fuel Reprocessing Facility December 22, 2011 - 11:12am Addthis Media Contact Erik Simpson (208) 360-0426 A gravel mound, larger than half a city block and several feet thick, is the only visible feature that remains at the site of a Cold War-era spent nuclear fuel reprocessing facility at the U.S. Department of Energy's Idaho site. About $44 million in American Recovery and Reinvestment Act funds helped Idaho Cleanup Project crews accelerate the demolition of the facility that during its 40 years of operation recovered more than $1 billion worth of uranium. "The ability to retain our highly skilled workforce was a huge contributor to the success of this project," said Idaho Cleanup Project

330

Land surface cleanup of plutonium at the Nevada Test Site  

SciTech Connect

The Nevada Test Site (NTS) covers approximately 3300 km{sup 2} of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs.

Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

1991-01-01T23:59:59.000Z

331

Testing of Small Graphite Samples for Nuclear Qualification  

Science Conference Proceedings (OSTI)

Accurately determining the mechanical properties of small irradiated samples is crucial to predicting the behavior of the overal irradiated graphite components within a Very High Temperature Reactor. The sample size allowed in a material test reactor, however, is limited, and this poses some difficulties with respect to mechanical testing. In the case of graphite with a larger grain size, a small sample may exhibit characteristics not representative of the bulk material, leading to inaccuracies in the data. A study to determine a potential size effect on the tensile strength was pursued under the Next Generation Nuclear Plant program. It focuses first on optimizing the tensile testing procedure identified in the American Society for Testing and Materials (ASTM) Standard C 781-08. Once the testing procedure was verified, a size effect was assessed by gradually reducing the diameter of the specimens. By monitoring the material response, a size effect was successfully identified.

Julie Chapman

2010-11-01T23:59:59.000Z

332

Advanced Nuclear Technology: Final Test Results on 80% Service Test and Implementation Plans  

Science Conference Proceedings (OSTI)

Current practice within the nuclear power industry is to use performance discharge tests for condition monitoring to determine when a battery has reached 80% of its rated capacity, which is considered the end of its service life. A service test is now used every refueling outage to verify that a battery can satisfy its design basis function as defined by the battery duty cycle. A modified performance test is used at ...

2013-04-03T23:59:59.000Z

333

Pilot study risk assessment for selected problems at the Nevada Test Site (NTS)  

Science Conference Proceedings (OSTI)

The Nevada Test Site (NTS) is located in southwestern Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. A series of tests was conducted in the late 1950s and early 1960s at or near the NTS to study issues involving plutonium-bearing devices. These tests resulted in the dispersal of about 5 TBq of {sup 239,24O}Pu on the surficial soils at the test locations. Additionally, underground tests of nuclear weapons devices have been conducted at the NTS since late 1962; ground water beneath the NTS has been contaminated with radionuclides produced by these tests. These two important problems have been selected for assessment. Regarding the plutonium contamination, because the residual {sup 239}Pu decays slowly (half-life of 24,110 y), these sites could represent a long-term hazard if they are not remediated and if institutional controls are lost. To investigate the magnitude of the potential health risks for this no-remediation case, three basic exposure scenarios were defined that could bring individuals in contact with {sup 239,24O}Pu at the sites: (1) a resident living in a subdivision, (2) a resident farmer, and (3) a worker at a commercial facility -- all located at a test site. The predicted cancer risks for the resident farmer were more than a factor of three times higher than the suburban resident at the median risk level, and about a factor of ten greater than the reference worker at a commercial facility. At 100 y from the present, the 5, 50, and 95th percentile risks for the resident farmer at the most contaminated site were 4 x 10{sup {minus}6}, 6 x 10{sup {minus}5}, and 5 x 10{sup {minus}4}, respectively. For the assessment of Pu in surface soil, the principal sources of uncertainty in the estimated risks were population mobility, the relationship between indoor and outdoor contaminant levels, and the dose and risk factors for bone, liver, and lung.

Daniels, J.I. [ed.; Anspaugh, L.R.; Bogen, K.T.; Daniels, J.I.; Layton, D.W.; Straume, T. [Lawrence Livermore National Lab., CA (United States); Andricevic, R.; Jacobson, R.L. [Nevada Univ., Las Vegas, NV (United States). Water Resources Center; Meinhold, A.F.; Holtzman, S.; Morris, S.C.; Hamilton, L.D. [Brookhaven National Lab., Upton, NY (United States)

1993-06-01T23:59:59.000Z

334

Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007  

SciTech Connect

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This is the dose limit established for someone living off of the NTS from radionuclides emitted to air from the NTS. This limit does not include the radiation doses that members of the public may receive through the intake of radioactive particles unrelated to NTS activities, such as those that come from naturally occurring elements in the environment (e.g., naturally occurring radionuclides in soil or radon gas from the earth or natural building materials), or from other man-made sources (e.g., medical treatments). The NTS demonstrates compliance using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. There are six critical receptor locations on the NTS that are actually pseudocritical receptor locations because they are hypothetical receptor locations; no person actually resides at these onsite locations. Annual average concentrations of detected radionuclides are compared with Concentration Levels (CL) for Environmental Compliance values listed in 40 CFR 61, Appendix E, Table 2. Compliance is demonstrated if the sum of fractions (CL/measured concentrations) of all detected radionuclides at each pseudo-critical receptor location is less than one. In 2007, as in all previous years for which this report has been produced, the NTS has demonstrated that the potential dose to the public from radiological emissions to air from current and past NTS activities is well below the 10 mrem/yr dose limit. Air sampling data collected onsite at each of the six pseudo-critical receptor stations on the NTS had average concentrations of nuclear test-related radioactivity that were a fraction of the limits listed in Table 2 in Appendix E of 40 CFR 61. They ranged from less than 1 percent to a maximum of 20 percent of the allowed NESHAP limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, concentrations at this location would be only a small fraction of that measured on the NTS.

Robert Grossman; Ronald Warren

2008-06-01T23:59:59.000Z

335

A conceptual model and preliminary estimate of potential tritium migration from the Benham (U-20c) site, Pahute Mesa, Nevada Test Site  

Science Conference Proceedings (OSTI)

U-20c is the site of a large below-water-table nuclear test near the Nevada Test Site boundary. A conceptual model of potential groundwater migration of tritium from U-20c is constructed and quantitatively evaluated in this report. The lower portion of the collapse chimney at Benham is expected to intersect 200 m of permeable rhyolite lava, overlain by similar thicknesses of low-permeability zeolitized bedded tuff, then permeable welded tuff. Vertical groundwater flow through the chimney is predicted to be minimal, horizontal transport should be controlled by the regional groundwater flow. Analytic solutions treating only advective transport indicate 1 to 2 km of tritium movement (95% confidence interval 0.7--2.5 km) within 5 years after test-related pressure-temperature transients have dissipated. This point lies at the axis of a potentiometric surface trough along the west edge of Area 20, Nevada Test Site. Within 25 years, movement is predicted to extend to 3 km (95% confidence interval 2--5 km) approximately to the intersection of the trough and the Nevada Test Site boundary. Considering the effects of radioactive decay, but not dispersion, plume concentration would fall below Safe Drinking Water Act standards by 204 years, at a predicted distance of 11 km (95% confidence interval 7--31 km). This point is located in the eastern portion of the Timber Mountain Caldera moat within the Nellis Air Force Range (military bombing range).

Brikowski, T.; Mahin, G. [Nevada Univ., Reno, NV (United States). Water Resources Center

1993-08-01T23:59:59.000Z

336

Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada  

DOE Green Energy (OSTI)

This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench).

D. S. Tobiason

2002-03-01T23:59:59.000Z

337

Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 543, Liquid Disposal Units, is listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. CAU 543 consists of seven Corrective Action Sites (CASs) located in Areas 6 and 15 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven CASs: {sm_bullet} CAS 06-07-01, Decon Pad {sm_bullet} CAS 15-01-03, Aboveground Storage Tank {sm_bullet} CAS 15-04-01, Septic Tank {sm_bullet} CAS 15-05-01, Leachfield {sm_bullet} CAS 15-08-01, Liquid Manure Tank {sm_bullet} CAS 15-23-01, Underground Radioactive Material Area {sm_bullet} CAS 15-23-03, Contaminated Sump, Piping From January 24, 2005 through April 14, 2005, CAU 543 site characterization activities were conducted, and are reported in Appendix A of the CAU 543 Corrective Action Decision Document (CADD) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005). The recommended corrective action as stated in the approved CADD is No Further Action for five of the CAU 543 CASs, and Closure In Place for the remaining two CASs.

NSTec Environmental Restoration

2006-09-01T23:59:59.000Z

338

Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site  

DOE Green Energy (OSTI)

Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

Murphy, R.W.; Domingo, N.

1982-05-01T23:59:59.000Z

339

Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada  

DOE Green Energy (OSTI)

Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

G. N. Doyle

2002-02-01T23:59:59.000Z

340

Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0  

DOE Green Energy (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

RADIOACTIVE MATERIALS LABORATORY SAFETY REPORT, MARTIN NUCLEAR FACILITY, QUEHANNA SITE  

SciTech Connect

A description is given of the safety features and the major alterations to be performed prior to occupancy. The evaluation was made in support of fubrication work on the production of safe isotopic power sources from Cm/sup 242/ and Sr/sup 90/. The chemical, nuclear, and radiobiological properties of Cm/sup 242/ and Sr/sup 90/ are outlined. The projected physical fiow of materials for production of the isotopic power souroes is schematically given. An evaluation of the malfunctions, operational hazards, and remedial health physics procedures is presented. The analysis and evaluation of postulated maximum credible incidents are demonstrated. (B.O.G.)

1960-09-01T23:59:59.000Z

342

Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

NSTec Environmental Management

2008-01-01T23:59:59.000Z

343

Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings 6-605, 6-606, and 6-607, which consists of septic tanks, sumps, piping, floor drains, drain trenches, cleanouts, and a concrete foundation. Additional details of the site history are provided in the CAU 543 Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2004a), and the CAU 543 Corrective Action Decision Document (CADD) (NNSA/NSO, 2005).

NSTec Environmental Restoration

2007-04-01T23:59:59.000Z

344

DOE - Office of Legacy Management -- Central Nevada Test Site...  

Office of Legacy Management (LM)

Action Unit 443: Central Nevada Test Area -Subsurface Central Nevada Test Area, Nevada, DOENV-997 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit...

345

Tests of time independence of the electron and nuclear masses with ultracold molecules S. Schiller  

E-Print Network (OSTI)

Tests of time independence of the electron and nuclear masses with ultracold molecules S. Schiller. Korobov Joint Institute for Nuclear Research, 141980, Dubna, Russia Received 18 June 2004; published 17 on the time independence of electron-to-nuclear and nuclear-nuclear mass ratios by comparing, via an optical

Schiller, Stephan

346

Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): 02-23-04, Atmospheric Test Site - Whitney 02-23-05, Atmospheric Test Site T-2A 02-23-06, Atmospheric Test Site T-2B 02-23-08, Atmospheric Test Site T-2 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU 105 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted after the plan is approved.

Patrick Matthews

2012-09-01T23:59:59.000Z

347

Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS-2011-001 NNSS-2011-001 Site: Nevada National Security Site Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer William Macon Activity Description/Purpose: The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), visited the Nevada Site Office (NSO) and the Nevada National Security Site (NNSS) from February 14-17, 2011. The purpose of the visit was to observe the Defense Nuclear Facilities Safety Board (DNFSB) review and maintain operational awareness of NNSS activities. Result:

348

Nevada Test Site-Directed Research, Development, and Demonstration  

Science Conference Proceedings (OSTI)

The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R&D projects, as presented in this report.

Will Lewis, Compiler

2006-09-01T23:59:59.000Z

349

Nuclear criticality project plan for the Hanford Site tank farms  

SciTech Connect

The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste characterization with respect to fissile material. The review indicated that the conclusion in the FSARS, that a criticality is not credible, cannot be supported for a full range of potential tank constituents. Therefore, a USQ was declared. Development of a credible scenario leading to a criticality proved to be extremely difficult, given the paucity of data on the quantity and distribution of fissile material in the tanks. The objective of this project plan is to develop a strategy and technical approach to provide a CTBSD for the FSAR and for resolution of the nuclear criticality safety issue pertaining to tank farm waste storage and transfer operations. The strategy and technical approach identified in this project plan include definition of administrative and technical tasks. Technical analyses will include mechanistic studies, historical data review, and additional limited neutronics analysis. Completion of these studies will be documented in a CTBSD to support the existing criticality technical basis. The CTBSD will be incorporated in the criticality portion of the FSAR.

Bratzel, D.R., Westinghouse Hanford

1996-08-06T23:59:59.000Z

350

Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1  

SciTech Connect

The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

NONE

1992-08-01T23:59:59.000Z

351

Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada  

SciTech Connect

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

NSTec Environmental Restoration

2011-09-29T23:59:59.000Z

352

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

SciTech Connect

The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

NSTec Environmental Programs

2010-09-14T23:59:59.000Z

353

Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site  

SciTech Connect

The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E. [and others

1997-09-01T23:59:59.000Z

354

Closure Report for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action at the Test Cell A Leachfield System and to provide data confirming the corrective action. The Test Cell A Leachfield System is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 261. Remediation of CAU 261 is required under the FFACO (1996). CAU 261 is located in Area 25 of the Nevada Test Site (NTS) which is approximately 140 kilometers (87 miles) northwest of Las Vegas, Nevada (Figure 1). CAU 261 consists of two Corrective Action Sites (CASS): CAS 25-05-01, Leachfield; and CAS 25-05-07, Acid Waste Leach Pit (AWLP) (Figures 2 and 3). Test Cell A was operated during the 1960s and 1970s to support the Nuclear Rocket Development Station. Various operations within Building 3124 at Test Cell A resulted in liquid waste releases to the Leachfield and the AWLP. The following existing site conditions were reported in the Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999): Soil in the leachfield was found to exceed the Nevada Division of Environmental Protection (NDEP) Action Level for petroleum hydrocarbons, the U.S. Environmental Protection Agency (EPA) preliminary remediation goals for semi volatile organic compounds, and background concentrations for strontium-90; Soil below the sewer pipe and approximately 4.5 meters (m) (15 feet [ft]) downstream of the initial outfall was found to exceed background concentrations for cesium-137 and strontium-90; Sludge in the leachfield septic tank was found to exceed the NDEP Action Level for petroleum hydrocarbons and to contain americium-241, cesium-137, uranium-234, uranium-238, potassium-40, and strontium-90; No constituents of concern (COC) were identified at the AWLP. The NDEP-approved CADD (DOWNV, 1999) recommended Corrective Action Alternative 2, ''Closure of the Septic Tank and Distribution Box, Partial Excavation, and Administrative Controls.'' The corrective action was performed following the NDEP-approved Corrective Action Plan (CAP) (DOE/NV, 2000).

T. M. Fitzmaurice

2001-04-01T23:59:59.000Z

355

Evaluation of technologies for volume reduction of plutonium-contaminated soils from the Nevada Test Site  

Science Conference Proceedings (OSTI)

Nuclear testing at and around the Nevada Test Site (NTS) resulted in plutonium (Pu) contamination of the soil over an area of several thousands of acres. The objective of this project was to evaluate the potential of five different processes to reduce the volume of Pu-contaminated soil from three different areas, namely Areas 11, 13, and 52. Volume reduction was to be accomplished by concentrating the Pu into a small but highly contaminated soil fraction, thereby greatly reducing the volume of soil requiring disposal. The processes tested were proposed by Paramag Corp. (PARAMAG), Advanced Processing Technologies Inc. (APT), Lockheed Environmental Systems and Technologies (LESAT), Nuclear Remediation Technologies (NRT), and Scientific Ecology Group (SEG). Because of time and budgetary restraints, the NRT and SEG processes were tested with soil from Area 11 only. These processes typically included a preliminary soil conditioning step (e.g., attrition scrubbing, wet sieving), followed by a more advanced process designed to separate Pu from the soil, based on physiochemical properties of Pu compounds (e.g., magnetic susceptibility, specific gravity). Analysis of the soil indicates that a substantial fraction of the total Pu contamination is typically confined in a relatively narrow and small particle size range. Processes which were able to separate this highly contaminated soil fraction (using physical methods, e.g., attrition scrubbing, wet sieving), from the rest of the soil achieved volume (mass) reductions on the order of 70%. The advanced, more complex processes tested did not enhance volume reduction. The primary reason why processes that rely on the dependence of settling velocity on density differences failed was the very fine grain size of the Pu-rich particles.

Papelis, C.; Jacobson, R.L.; Miller, F.L.; Shaulis, L.K.

1996-06-01T23:59:59.000Z

356

Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 375 is located in Areas 25 and 30 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 375 comprises the two corrective action sites (CASs) listed below: 25-23-22, Contaminated Soils Site 30-45-01, U-30a, b, c, d, e Craters Existing information on the nature and extent of potential contamination present at the CAU 375 CASs is insufficient to evaluate and recommend corrective action alternatives (CAAs). This document details an investigation plan that will provide for the gathering of sufficient information to evaluate and recommend CAAs. Corrective Action Site 25-23-22 is composed of the releases associated with nuclear rocket testing at Test Cell A (TCA). Test Cell A was used to test and develop nuclear rocket motors as part of the Nuclear Rocket Development Station from its construction in 1958 until 1966, when rocket testing began being conducted at Test Cell C. The rocket motors were built with an unshielded nuclear reactor that produced as much as 1,100 kilowatts (at full power) to heat liquid hydrogen to 4,000 degrees Fahrenheit, at which time the expanded gases were focused out a nozzle to produce thrust. The fuel rods in the reactor were not clad and were designed to release fission fragments to the atmosphere, but due to vibrations and loss of cooling during some operational tests, fuel fragments in excess of planned releases became entrained in the exhaust and spread in the immediate surrounding area. Cleanup efforts have been undertaken at times to collect the fuel rod fragments and other contamination. Previous environmental investigations in the TCA area have resulted in the creation of a number of use restrictions. The industrial area of TCA is encompassed by a fence and is currently posted as a radioactive material area. Corrective Action Site 30-45-01 (releases associated with the Buggy Plowshare test) is located in Area 30 on Chukar Mesa. It was a Plowshare test where five nuclear devices were buried 140 feet (ft) deep in a row at 150-ft intervals. These devices were detonated on March 12, 1968, to produce a trench 254 ft wide, 865 ft long, and 70 ft deep. The mesa where the test was conducted is surrounded on three sides by ravines, and the entire end of the mesa is fenced and posted as a contamination area. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend CAAs. Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 2, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 375.

Patrick Matthews

2010-03-01T23:59:59.000Z

357

First Subcritical Experiment Conducted at Nevada Test Site |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Y-12 Earn 11 R&D 100 Awards Jul 2, 2013 US, International Partners Remove Last Remaining HEU from Vietnam, Set Nuclear Security Milestone View All > Timeline Curious about NNSA...

358

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01T23:59:59.000Z

359

Azimuthal Anisotropies as Stringent Test for Nuclear Transport Models  

E-Print Network (OSTI)

Azimuthal distributions of charged particles and intermediate mass fragments emitted in Au+Au collisions at 600AMeV have been measured using the FOPI facility at GSI-Darmstadt. Data show a strong increase of the in-plane azimuthal anisotropy ratio with the charge of the detected fragment. Intermediate mass fragments are found to exhibit a strong momentum-space alignment with respect of the reaction plane. The experimental results are presented as a function of the polar center-of-mass angle and over a broad range of impact parameters. They are compared to the predictions of the Isospin Quantum Molecular Dynamics model using three different parametrisations of the equation of state. We show that such highly accurate data provide stringent test for microscopic transport models and can potentially constrain separately the stiffness of the nuclear equation of state and the momentum dependence of the nuclear interaction.

P. Crochet; F. Rami; R. Dona; the FOPI Collaboration

1997-09-15T23:59:59.000Z

360

Los Alamos Site Office Nuclear Maintenance Management Program Oversight Self-Assessment, April 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11-18 11-18 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Los Alamos Site Office Nuclear Maintenance Management Program Oversight Self-Assessment Dates of Activity : 11/14/2011 - 11/18/2011 Report Preparer: Tim Martin Activity Description/Purpose: This activity report documents the results of the U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS) review of the Los Alamos Site Office (LASO) self-assessment of LASO's Nuclear Maintenance Management Program (NMMP) oversight program and activities. This self-assessment was led by the DOE LASO Facility Operations/Safety Engineering Team's (FO/SET) Nuclear Facility Maintenance Manager and was

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Closure Report for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 543, Liquid Disposal Units, according to the Federal Facility Agreement and Consent Order (FFACO, 1996) and the Corrective Action Plan (CAP) for CAU 543 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2007). CAU 543 is located at the Nevada Test Site (NTS), Nevada (Figure 1), and consists of the following seven Corrective Action Sites (CASs): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; CAS 15-23-03, Contaminated Sump, Piping; and CAS 06-07-01 is located at the Decontamination Facility in Area 6, adjacent to Yucca Lake. The remaining CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm in Area 15. The purpose of this CR is to provide a summary of the completed closure activities, to document waste disposal, and to present analytical data confirming that the remediation goals were met. The closure alternatives consisted of closure in place for two of the CASs, and no further action with implementation of best management practices (BMPs) for the remaining five CASs.

NSTec Environmental Restoration

2008-01-01T23:59:59.000Z

362

I Atlas Relocation and Operation At the Nevada Test Site Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlas Relocation and Operation Atlas Relocation and Operation At the Nevada Test Site Final Environmental Assessment May 2001 Department of Energy National Nuclear Security Administration Nevada Operations Office Las Vegas, Nevada Available for sale to the Public, in paper, from U.S. Department of Commerce National Teclmical Information Service 5285 Port Royal Road Springfield, VA 22 161 Phone: 800.553.6847 Fax: 703.605.6900 Email: orders@,ntis.fed~vorId.gov Online Ordering: http:llwww.ntis.gov/ordering.htm Available electronically at: http:ilwww.doe.govibridge Available for a processing fee to U.S. Department of Energy and its contractors in paper from-- U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 3783 1-0062 Phone: 865.576.8401

363

High-precision location and yield of North Korea's 2013 nuclear test Miao Zhang1  

E-Print Network (OSTI)

High-precision location and yield of North Korea's 2013 nuclear test Miao Zhang1 and Lianxing Wen2 Korea's 2009 nuclear test as reference and satellite imagery, we show that the location and yield of North Korea's 2013 nuclear test can be quickly and accurately determined based on seismic data. North

Wen, Lianxing

364

Corrective Action Decision Document/Closure Report for Corrective Action Unit 370: T-4 Atmospheric Test Site, Nevada Test Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 370, T-4 Atmospheric Test Site, located in Area 4 at the Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 370 is comprised of Corrective Action Site (CAS) 04-23-01, Atmospheric Test Site T-4. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 370 due to the implementation of the corrective action of closure in place with administrative controls. To achieve this, corrective action investigation (CAI) activities were performed from June 25, 2008, through April 2, 2009, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 370: T-4 Atmospheric Test Site and Record of Technical Change No. 1.

Patrick Matthews

2009-05-01T23:59:59.000Z

365

Corrective Action Investigation Plan for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

CAU 570 comprises the following six corrective action sites (CASs): 02-23-07, Atmospheric Test Site - Tesla 09-23-10, Atmospheric Test Site T-9 09-23-11, Atmospheric Test Site S-9G 09-23-14, Atmospheric Test Site - Rushmore 09-23-15, Eagle Contamination Area 09-99-01, Atmospheric Test Site B-9A These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 570. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The presence and nature of contamination at CAU 570 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed near the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

Patrick Matthews

2012-08-01T23:59:59.000Z

366

Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites  

Science Conference Proceedings (OSTI)

Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

NSTec Environmental Management

2009-06-23T23:59:59.000Z

367

Techniques Employed to Conduct Postshot Drilling at the former Nevada Test Site  

Science Conference Proceedings (OSTI)

Postshot drilling provided essential data on the results of the underground nuclear tests conducted at the Nevada Test Site (NTS), now identified as the Nevada National Security Site (NNSS). It was the means by which samples from the zone of interest were obtained for radiochemical analysis. This handbook describes how Lawrence Livermore National Laboratory (LLNL) conducted postshot drilling operations at the NTS, and it provides a general understanding of the process. Postshot drilling is a specialized application of rotary drilling. Accordingly, this handbook gives a brief description of rotary drilling in Section 2 to acquaint the reader with the general subject before proceeding to the specialized techniques used in postshot drilling. In Section 3, the handbook describes the typical postshot drilling situation at the former NTS and the drilling methods used. Section 4 describes the typical sequence of operations in postshot drilling at the former NTS. Detailed information on special equipment and techniques is given in a series of appendices (A through F) at the end of the handbook.

Dekin, W D

2011-04-14T23:59:59.000Z

368

Contaminant Boundary at the Faultless Underground Nuclear Test  

SciTech Connect

The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision analysis (DDA) (Pohll and Mihevc, 2000). This new model includes the uncertainty in the three-dimensional spatial distribution of lithology and hydraulic conductivity from the 1999 model as well as the uncertainty in the other flow and transport parameters from the 2000 DDA model. Additionally, the new model focuses on a much smaller region than was included in the earlier models, that is, the subsurface within the UC-1 land withdrawal area where the 1999 model predicted radionuclide transport will occur over the next 1,000 years. The purpose of this unclassified document is to present the modifications to the CNTA groundwater flow and transport model, to present the methodology used to calculate contaminant boundaries, and to present the Safe Drinking Water Act and risk-derived contaminant boundaries for the Faultless underground nuclear test CAU.

Greg Pohll; Karl Pohlmann; Jeff Daniels; Ahmed Hassan; Jenny Chapman

2003-04-01T23:59:59.000Z

369

Experimental Test of Complementarity by Nuclear Magnetic Resonance Techniques  

E-Print Network (OSTI)

We have tested complementarity for the ensemble-averaged spin states of nuclei $^{13}$C in the molecule of $^{13}$CHCl$_{3}$ by the use of the spin states of another nuclei $^{1}$H as the path marker. It turns out that the wave-particle duality holds when one merely measures the probability density of quantum states, and that the wave- and particle-like behavior is simultaneously observed with the help of measuring populations and coherence in a single nuclear magnetic resonance(NMR) experiment. Effects of path-marking schemes and causes of the appearance and disappearance of the wave behavior are analysed.

Xiwen Zhu; Ximing Fang; Xinhua Peng; Mang Feng; Kelin Gao; Fei Du

2000-11-22T23:59:59.000Z

370

RECORD OF CATEGORICAL EXCLUSION (CX) DETERMINATION I National Nuclear Security Administration/Kansas City Site Office  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear Security Administration/Kansas City Site Office National Nuclear Security Administration/Kansas City Site Office A. Description of Proposed Action: (lor 2 sentences: include title, general activities, location, timeframc) Kirtland Operations - Project 1769 - Relocate NC-135 Site Operations: transfer existing operations from the NC-135 site on Kirtland Air force Base (KAFB) to leased and other Federal property. No buildings designed for occupancy are being relocated. Transfer will consist of tenant improvements to the new leased properties and transfer through the relocation of existing equipment and office personnel. November 2012 thru April 2014. B. Number and Title of the Categorical Exclusion Being Applied: (See text in 10 CFR 1021, Subpart D.) B 1.24 - Property Transfer B 1.31 - Installation or relocation of machinery and equipment

371

Nevada Test Site annual site environmental report for calendar year 1997  

Science Conference Proceedings (OSTI)

Monitoring and surveillance, on and around the Nevada Test Site, (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1997, indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above existing background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA`s) Clean Air Package 1988 (CAP88)-PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.089 mrem. Hazardous wastes were shipped offsite to approved disposal facilities.

Black, S.C.; Townsend, Y.E. [eds.

1998-10-01T23:59:59.000Z

372

Nevada test site annual site environmental report for calendar year 1995  

SciTech Connect

Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1995 indicated that operations on the NTS were conducted in compliance with applicable federal and DOE regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of effluents, or resuspension was not detectable offsite, and no measurable net exposure to members of the offsite population was detected through the offsite dosimetry program. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits.

NONE

1996-09-01T23:59:59.000Z

373

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site |  

Open Energy Info (EERE)

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Author U.S. Geological Survey Published U.S. Geological Survey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site [Internet]. 2013. U.S. Geological Survey. [cited 2013/10/16]. Available from: http://water.usgs.gov/ogw/bgas/toxics/ml_bips.html Retrieved from "http://en.openei.org/w/index.php?title=Borehole_Imaging_of_In_Situ_Stress_Tests_at_Mirror_Lake_Research_Site&oldid=688729"

374

An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design  

SciTech Connect

Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

1993-10-25T23:59:59.000Z

375

Assessment of a hot hydrogen nuclear propulsion fuel test facility  

DOE Green Energy (OSTI)

Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

1991-01-01T23:59:59.000Z

376

Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act  

SciTech Connect

Chapter six describes the basis for facility design, the completed facility conceptual design, the completed analytical work relating to the resolution of design issues, and future design-related work. The basis for design and the conceptual design information presented in this chapter meet the requirements of the Nuclear Waste Policy Act of 1982, for a conceptual repository design that takes into account site-specific requirements. This information is presented to permit a critical evaluation of planned site characterization activities. Chapter seven describes waste package components, emplacement environment, design, and status of research and development that support the Nevada Nuclear Waste Storage Investigation (NNWSI) Project. The site characterization plan (SCP) discussion of waste package components is contained entirely within this chapter. The discussion of emplacement environment in this chapter is limited to considerations of the environment that influence, or which may influence, if perturbed, the waste packages and their performance (particularly hydrogeology, geochemistry, and borehole stability). The basis for conceptual waste package design as well as a description of the design is included in this chapter. The complete design will be reported in the advanced conceptual design (ACD) report and is not duplicated in the SCP. 367 refs., 173 figs., 68 tabs.

NONE

1988-01-01T23:59:59.000Z

377

Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site  

Science Conference Proceedings (OSTI)

This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

NONE

1998-01-01T23:59:59.000Z

378

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

NSTec Environmental Restoration

2008-09-30T23:59:59.000Z

379

Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

Alfred Wickline

2007-06-01T23:59:59.000Z

380

Identifying Potential Areas for Siting Interim Nuclear Waste Facilities Using Map Algebra and Optimization Approaches  

Science Conference Proceedings (OSTI)

The renewed interest in siting new nuclear power plants in the United States has brought to the center stage, the need to site interim facilities for long-term management of spent nuclear fuel (SNF). In this paper, a two-stage approach for identifying potential areas for siting interim SNF facilities is presented. In the first stage, the land area is discretized into grids of uniform size (e.g., 100m x 100m grids). For the continental United States, this process resulted in a data matrix of about 700 million cells. Each cell of the matrix is then characterized as a binary decision variable to indicate whether an exclusion criterion is satisfied or not. A binary data matrix is created for each of the 25 siting criteria considered in this study. Using map algebra approach, cells that satisfy all criteria are clustered and regarded as potential siting areas. In the second stage, an optimization problem is formulated as a p-median problem on a rail network such that the sum of the shortest distance between nuclear power plants with SNF and the potential storage sites from the first stage is minimized. The implications of obtained results for energy policies are presented and discussed.

Omitaomu, Olufemi A [ORNL; Liu, Cheng [ORNL; Cetiner, Mustafa Sacit [ORNL; Belles, Randy [ORNL; Mays, Gary T [ORNL; Tuttle, Mark A [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear test sites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Should high-level nuclear waste be disposed of at geographically dispersed sites?  

SciTech Connect

Consideration of the technical feasibility of Yucca Mountain in Nevada as the site for a high-level nuclear waste repository has led to an intense debate regarding the economic, social, and political impacts of the repository. Impediments to the siting process mean that the nuclear waste problem is being resolved by adhering to the status quo, in which nuclear waste is stored at scattered sites near major population centers. To assess the merits of alternative siting strategies--including both the permanent repository and the status quo- we consider the variables that would be included in a model designed to select (1) the optimal number of disposal facilities, (2) the types of facilities (e.g., permanent repository or monitored retrievable facility), and (3) the geographic location of storage sites. The objective function in the model is an all-inclusive measure of social cost. The intent of the exercise is not to demonstrate the superiority of any single disposal strategy; uncertainties preclude a conclusive proof of optimality for any of the disposal options. Instead, we want to assess the sensitivity of a variety of proposed solutions to variations in the physical, economic, political, and social variables that influence a siting strategy.

Bassett, G.W. Jr. [Chicago Univ., IL (United States). Dept. of Economics; Hemphill, R.; Kohout, E. [Argonne National Lab., IL (United States)

1992-07-01T23:59:59.000Z

382

Resolution of the nuclear criticality safety issue for the Hanford site high-level waste tanks  

SciTech Connect

This paper describes the approach used to resolve the Nuclear Criticality Safety Issue for the Hanford Site high-level waste tanks. Although operational controls have been in place at the Hanford Site throughout its operating life to minimize the amount of fissile material discarded as waste, estimates of the total amount of plutonium that entered the waste tanks range from 500 to 1,000 kg. Nuclear criticality safety concerns were heightened in 1991 based on a review of waste analysis results and a subsequent U.S. Department of Energy 1399 review of the nuclear criticality program. Although the DOE review team concluded that there was no imminent risk of a criticality at the Hanford Site tank farms, the team also stated its concern regarding the lack of definitive knowledge of the fissile material inventory and distribution within the waste tanks and the lack of sufficient management support for the overall criticality safety program. An in-depth technical review of the nuclear criticality safety of the waste tanks was conducted to develop a defensible technical basis to ensure that waste tanks are subcritical. The review covered all relevant aspects of nuclear criticality safety including neutronics and chemical and physical phenomena of the waste form under aging waste conditions as well as during routine waste management operations. This paper provides a review of the technical basis to support the conclusion that given current plutonium inventories and operating conditions, a nuclear criticality is incredible. The DOE has been requested to close the Nuclear Criticality Safety Issue. The Defense Nuclear Facilities Safety Board is currently reviewing the technicalbasis.

Bratzel, D.R.

1997-01-07T23:59:59.000Z

383

Thermally Induced Groundwater Flow Resulting from an Underground Nuclear Test  

SciTech Connect

The authors examine the transient residual thermal signal resulting from an underground nuclear test (buried below the water table) and its potential to affect local groundwater flow and radionuclide migration in a saturated, fractured, volcanic aquifer system. Thermal profiles measured in a drillback hole between 154 days and 6.5 years after the test have been used to calibrate a non-isothermal model of fluid flow. In this process, they have estimated the magnitude and relative changes in permeability, porosity and fracture density between different portions of the disturbed and undisturbed geologic medium surrounding the test location. The relative impacts of buoyancy forces (arising from the thermal residual of the test and the background geothermal gradient) and horizontal pressure gradients on the post-test flow system are better understood. A transient particle/streamline model of contaminant transport is used to visualize streamlines and streaklines of the flow field and to examine the migration of non-reactive radionuclides. Sensitivity analyses are performed to understand the effects of local and sub-regional geologic features, and the effects of fractured zones on the movement of groundwater and thermal energy. Conclusions regarding the overall effect of the thermal regime on the residence times and fluxes of radionuclides out of the system are drawn, and implications for more complicated, reactive contaminant transport are discussed.

Maxwell, R.M.; Tompson, A.F.B.; Rambo, J.T.; Carle, S.F.; Pawloski, G.A.

2000-12-16T23:59:59.000Z

384

A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 2 of 6  

SciTech Connect

This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

2009-02-01T23:59:59.000Z

385

A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 4 of 6  

SciTech Connect

This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

2009-02-01T23:59:59.000Z

386

A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 5 of 6  

SciTech Connect

This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

2009-02-01T23:59:59.000Z

387

A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6  

Science Conference Proceedings (OSTI)

This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

2009-02-01T23:59:59.000Z

388

A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6  

SciTech Connect

This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

2009-02-01T23:59:59.000Z

389

A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 3 of 6  

SciTech Connect

This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

2009-02-01T23:59:59.000Z

390

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater and Radionuclide Migration in the  

E-Print Network (OSTI)

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater, using FEHM, evaluate perturbed groundwater behavior associated with underground nuclear tests to an instantaneous pressurization event caused by a nuclear test when different permeability and porosity

391

Operation Cornerstone onsite radiological safety report for announced nuclear tests, October 1988--September 1989  

SciTech Connect

Cornerstone was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site (NTS) from October 1, 1988, through September 30, 1989. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Radiation Protection Technicians (RPT) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage were provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

Not Available

1990-08-01T23:59:59.000Z

392

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

393

CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing  

Office of Legacy Management (LM)

tudies/B ackground tudies/B ackground Book 1 CERCLA Preliminary Assessment of DOE'S Nevada Operations Office Nuclear Weapons Testing Areas Vol. 11, April 1988 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CERCLA PRELIMINARY ASSESSMENT OF DOE'S NEVADA OPERATIONS OFFICE WCILEAR WEAPONS T E S r n G AREAS Prepared by Water Resources Center Desert Research Institute University of Nevada System ,Prepared for U . S . Department of Energy Nevada Operations Office Las Vegas, Nevada under contract DE-AC08-85NV10384 A p r i l 1988 CONTENTS VOLUME I I. INTRODUCTION 1.1 11. NEVADA TEST SITE TESTING AREAS 2.1 Frenchman Flat (Area 5) 2.1.1 2.2 Yucca Flat (Areas 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, and 15)

394

Review of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations, January 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the of the Sandia Site Office Quality Assurance Assessment of the Manzano Nuclear Operations January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background ........................................................................................................................................... 1 4.0 Methodology ......................................................................................................................................... 2

395

Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1  

E-Print Network (OSTI)

for Analysis and Management of the Visual Resource, Incline Village, Nevada, April 23-25, 1979. 2 / AssociatesEvolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1 2/ Brian A/ The method can be used to train evaluators to use explicit criteria (vividness, intactness and unity

Standiford, Richard B.

396

Nevada Test Site annual site environmental report for calendar year 1996  

SciTech Connect

Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsite population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location.

Black, S.C.; Townsend, Y.E. [eds.

1997-10-01T23:59:59.000Z

397

<