National Library of Energy BETA

Sample records for nuclear test prepared

  1. DOE - NNSA/NFO -- Photo Library - Test Preparation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Preparation NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Test Preparation Photos in this category depict preparations for past nuclear tests. The last test at the Nevada National Security Site was conducted in 1992, the year President Bush instituted a moratorium. Since that time, the United States has ceased all nuclear testing. Instructions: Click the photograph THUMBNAIL to view the photograph details Click the Category, Number, or Date table header links

  2. Preparation Of Nonreactor Nuclear Facility Documented Safety...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9-2014, Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis by Website Administrator This Department of Energy (DOE) Standard (STD), DOE-STD-3009-2014, describes...

  3. ORISE: Message Testing for a Nuclear Detonation | How ORISE is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Message Testing for a Nuclear Detonation How ORISE is Making a Difference For the average person, radiological contamination is a confusing and fearful concept. To help prepare our ...

  4. nuclear testing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testing NNSA scientists find more effective ways to detect nuclear explosions near and far NNSA activities are vital to detecting nuclear explosions and helping verify compliance with the testing ban worldwide. Recent developments at NNSA's Livermore National Laboratory (LLNL) will help NNSA meet this commitment. Using computer-generated models and field experiments, LLNL simulates how

  5. testing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    testing Meet a Machine: Explosive science is booming at Livermore Lab's Contained Firing Facility A key mission of the National Nuclear Security Administration is to maintain the safety, security, and effectiveness of the U.S. nuclear weapons stockpile without nuclear explosive testing. Data gathered from experiments at the Contained Firing Facility (CFF) help validate computer

  6. Nuclear Weapons Testing Resumes | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Weapons Testing Resumes Nuclear Weapons Testing Resumes Washington, DC The Soviet Union breaks the nuclear test moratorium and the United States resumes testing

  7. Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing Washington, DC President Clinton extends the nuclear weapons testing moratorium for at least 15 months

  8. Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing Washington, DC President Eisenhower announces a moratorium on nuclear weapons testing to begin on October 31, 1958

  9. Preparation for Testing, Safe Packing and Shipping of Spent Nuclear Fuel from IFIN-HH, Bucharest-Magurele to Russian Federation

    SciTech Connect (OSTI)

    Dragolici, C.A.; Zorliu, A.; Popa, V.; Copaciu, V.; Dragusin, M.

    2007-07-01

    The Russian Research Reactor Fuel Return (RRRFR) program is promoted by IAEA and DOE in order to repatriate of irradiated research reactor fuel originally supplied by Russia to facilities outside the country. Developed under the framework of the Global Threat Reduction Initiative (GTRI) the take-back program [1] common goal is to reduce both proliferation and security risks by eliminating or consolidating inventories of high-risk material. The main objective of this program is to support the return to Russian Federation of fresh or irradiated HEU and LEU fuel. Being part of this project, Romania is fulfilling its tasks by examining transport and transfer cask options, assessment of transport routes, and providing cost estimates for required equipment and facility modifications. Spent Nuclear Fuel (SNF) testing, handling, packing and shipping are the most common interests on which the National Institute of Research and Development for Physics and Nuclear Engineering 'Horia Hulubei' (IFIN-HH) is focusing at the moment. (authors)

  10. Preparing the Nuclear Security Science Minds of Tomorrow | National...

    National Nuclear Security Administration (NNSA)

    Preparing the Nuclear Security Science Minds of Tomorrow Tuesday, December 17, 2013 - 10:28am Preparing the Nuclear Security Science Minds of Tomorrow On a recent Saturday at the ...

  11. Preparation and Issuance of Test Reports

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Revision 1 Effective June 2008 Preparation and Issuance of Test Reports Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:__________ Garrett Beauregard Approved by: _________________________________________________ Date: _______________ Donald B. Karner Procedure ETA-GAC003 Revision 1 2 ©2006 Electric Transportation Applications All Rights Reserved Table of Contents 1 Objective

  12. Lessons learned from the first U.S./Russian Federation joint tabletop exercise to prepare for conducting on-site inspections under the Comprehensive Nuclear Test Ban Treaty

    SciTech Connect (OSTI)

    Filarowski, C; Gough, R; Hawkins, W; Knowles, S; Kreek, S; MacLeod, G; Rockett, P; Smith, A; Sweeney, J; Wild, J; Wohletz, K

    1999-03-24

    A U.S./Russian Federation Joint Tabletop Exercise took place in Snezhinsk, Russia, from 19 to 24 October 1998, whose objectives were the following: (1) To simulate the actions of the Inspection Team (IT), including interactions with the inspected State Party (ISP), in order to examine different ways the United States and Russian Federation (RF) approach inspections and develop appropriate recommendations for the international community. (2) To identify ambiguities and contradictions in the interpretation of Treaty and Protocol provisions that might become apparent in the course of an inspection and that need clarification in connection with the development of Operational Manuals and on-site inspection (OSI) infrastructure. (3) To confirm the efficacy of using bilateral tabletop exercises to assist in developing an effective Comprehensive Test Ban Treaty (CTBT) verification regime. (4) To identify strong and weak points in the preparation and implementation methods of such exercises for the purpose of further improving possible future exercises.

  13. Last U.S. Underground Nuclear Test Conducted | National Nuclear...

    National Nuclear Security Administration (NNSA)

    U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  14. test44 | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test44 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  15. Video test page | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test page | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  16. Lessons learned from the first US/Russian Federation joint tabletop exercise to prepare for conducting on-site inspections under the Comprehensive Nuclear Test Ban Treaty

    SciTech Connect (OSTI)

    Filarowski, C; Kreek, S; Smith, A; Sweeney, J; Wild, J; Gough, R; Rockett, P; MacLeod, G; Hawkins, W; Wohletz, K; Knowles, S

    1999-03-24

    A U.S./Russian Federation Joint Tabletop Exercise took place in Snezhinsk, Russia, from 19 to 24 October 1998 whose objectives were to examine the functioning of an Inspection Team (IT) in a given scenario, to evaluate the strategies and techniques employed by the IT, to identify ambiguous interpretations of treaty provisions that needed clarification, and to confirm the overall utility of tabletop exercises to assist in developing an effective Comprehensive Test Ban Treaty (CTBT) verification regime. To achieve these objectives, the United States and Russian Federation (RF) agreed that two exercises would be conducted. The first would be developed by the RF, who would act as controller and as the inspected State Party (ISP), while the United States would play the role of the IT. The roles would be reversed in the second exercise; the United States would develop the scenario and play the ISP, while the RF would play the IT. A joint control team, comprised of members of both the U.S. and RF control teams, agreed on a number of ground rules for the two exercises and established a joint Evaluation Team to evaluate both of the exercises against the stated objectives. To meet time limitations, the scope of this joint exercise needed to be limited. The joint control team decided that each of the two exercises would not go beyond the first 25 days of an on-site inspection (OSI) and that the focus would be on examining the decision-making of the IT as it utilized the various technologies to clarify whether a nuclear test explosion had taken place. Hence, issues such as logistics, restricted access, and activities prior to Point of Entry (POE) would be played only to the extent needed to provide for a realistic context for the exercises' focus on inspection procedures, sensor deployments, and data interpretation. Each of the exercises began at the POE and proceeded with several iterations of negotiations between the IT and ISP, instrument deployments, and data evaluation by

  17. Comprehensive Nuclear-Test-Ban Treaty | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home Comprehensive Nuclear-Test-Ban Treaty Comprehensive Nuclear-Test-Ban Treaty Shake, Rattle, and Roll for National Security ...

  18. ETA-HAC003 - Preparation and Issuance of Test Reports

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effective November 1, 2004 "Preparation and Issuance of Test Reports" Prepared by Electric ... Review and approval of test documentation shall be in accordance with ETA- HAC04, "Review ...

  19. ETA-NAC003 - Preparation and Issuance of Test Reports

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparation and Issuance of Test Reports Prepared by Electric Transportation Applications ... Review and approval of test documentation shall be in accordance with ETA- NAC004, "Review ...

  20. ETA-HIAC03 - Preparation and Issuance of Test Reports

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparation and Issuance of Test Reports Prepared by Electric Transportation Applications ... Review and approval of test documentation shall be in accordance with ETA- HIAC04, "Review ...

  1. Preparing for the 2012 Nuclear Security Summit | National Nuclear...

    National Nuclear Security Administration (NNSA)

    over 10 countries - enough for 16 nuclear bombs. A dozen new countries joining the key international treaties. Over a dozen new nuclear security training and research "centers...

  2. The search for an underground nuclear test

    SciTech Connect (OSTI)

    Kramer, David

    2015-02-15

    In a month-long exercise, the on-site inspection capabilities of the Comprehensive Nuclear-Test-Ban Treaty Organization were put to the test.

  3. Clinton Extends Moratorium on Nuclear Weapons Testing | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing Washington, DC President Clinton extends the nuclear weapons testing ...

  4. ORISE: Preparing Nations to Fight Nuclear Smuggling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smuggling remains a global security threat. How ORISE is Making a Difference Recent seizures of weapon-grade nuclear materials suggest such materials remain in illegal...

  5. Comprehensive Nuclear Test Ban Treaty | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear Test Ban Treaty NNSA hosts international CTBT on-site inspection experts at Nevada National Security Site This month, NNSA hosted a Comprehensive Nuclear-Test-Ban Treaty (CTBT) on-site inspection activity at the Nevada National Security Site (NNSS). For the first time, CTBT surrogate inspectors and other inspection experts were able to visit NNSS, a former nuclear explosive test site that now supports... NNSA Conducts Experiment to Improve U.S. Ability to Detect

  6. Comprehensive Nuclear-Test-Ban Treaty Organization | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Nuclear-Test-Ban Treaty Organization NNSA hosts international CTBT on-site inspection experts at Nevada National Security Site This month, NNSA hosted a Comprehensive Nuclear-Test-Ban Treaty (CTBT) on-site inspection activity at the Nevada National Security Site (NNSS). For the first time, CTBT surrogate inspectors and other inspection experts were able to visit NNSS, a former nuclear explosive test site that now supports... NNSA Sites Host Head of Comprehensive

  7. Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-12

    This Department of Energy (DOE) Standard (STD), DOE-STD-3009-2014, describes a method for preparing a Documented Safety Analysis (DSA) that is acceptable to DOE for nonreactor nuclear facilities.

  8. Nuclear Energy Systems Laboratory (NESL) / Transient Nuclear Fuels Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient Nuclear Fuels Testing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  9. A new era of nuclear test verification

    SciTech Connect (OSTI)

    Auer, Matthias; Prior, Mark K.

    2014-09-01

    The global network of sensors commissioned to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty has proven capable of that task and more.

  10. test and evaluation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    test and evaluation NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range WASHINGTON - The National Nuclear Security Administration (NNSA) and United States Air Force completed the third development flight test of a non-nuclear B61-12 nuclear gravity bomb at Tonopah Test Range in Nevada on October 20, 2015. "This demonstration of effective end-to-end system... Flight Test of Weapons System Body by Navy Successful Third Flight

  11. Reducing emissions to improve nuclear test detection | National...

    National Nuclear Security Administration (NNSA)

    Reducing emissions to improve nuclear test detection | National Nuclear Security ... Home NNSA Blog Reducing emissions to improve nuclear test detection Reducing emissions ...

  12. Comprehensive Nuclear Test-Ban Treaty | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nuclear Test-Ban Treaty Administrator Leads a Strong NNSA Team at CTBT Science & Technology Conference NNSA Administrator Frank Klotz was a featured speaker on June 22, 2015, at the fifth Comprehensive Nuclear Test-Ban Treaty (CTBT) Science & Technology Conference (SnT15) in Vienna, Austria. Over 1100 participants met to further strengthen the relationship between the international scientific

  13. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOE Patents [OSTI]

    Hauth, J.J.; Anicetti, R.J.

    1962-12-01

    A method is described for preparing a fuel element for a nuclear reactor. According to the patent uranium dioxide is compacted in a metal tabe by directlng intense sound waves at the tabe prior to tamp packing or vibration compaction of the powder. (AEC)

  14. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOE Patents [OSTI]

    Roake, W.E.; Evans, E.A.; Brite, D.W.

    1960-06-21

    A method of preparing a fuel element for a nuclear reactor is given in which an internally and externally cooled fuel element consisting of two coaxial tubes having a plurality of integral radial ribs extending between the tubes and containing a powdered fuel material is isostatically pressed to form external coolant channels and compact the powder simultaneously.

  15. Nuclear Detection and Sensor Testing Center | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection and ... Nuclear Detection and Sensor Testing Center As part of our increased global nuclear nonproliferation efforts, Y-12 commissioned the Nuclear Detection and Sensor ...

  16. (Test, calibrate, and prepare a BGO photon detector system)

    SciTech Connect (OSTI)

    Awes, T.C.

    1990-10-19

    The traveler spent the year at CERN primarily to test, calibrate, and prepare a BGO photon detector system for use in the August 1990 run of WA80 with sulfur beams and for use in future planned runs with an expanded BGO detector. The BGO was used in test-beam runs in December 1989 and April--May 1990 and in the August data-taking run. The Midrapidity Calorimeters (MIRAC) were also prepared in a new geometry for the August run with a new transverse energy trigger. The traveler also continued to refine and carry out simulations of photon detector systems in present and future planned photon detection experiments. The traveler participated in several WA80 collaboration meetings, which were held at CERN throughout the period of stay. Invited talks were presented at the Workshop on High Resolution Electromagnetic Calorimetry in Stockholm, Sweden, November 9--11, 1989, and at the International Workshop on Software Engineering, Artificial Intelligence, and Expert Systems for High-Energy and Nuclear Physics at Lyon, France, March 19--24, 1990. The traveler participated in an experiment to measure particle--particle correlations at 30-MeV/nucleon incident energies at the SARA facility in Grenoble from November 11--24, 1989.

  17. Automated Nuclear Data Test Suite

    Energy Science and Technology Software Center (OSTI)

    2013-01-09

    Provides python routines to create a database of test problems in a user-defined directory tree, to query the database using user-defined parameters, to generate a list of test urns, to automatically run with user-defined particle transport codes. Includes natural isotope abundance data, and a table of benchmark effective for fast critical assemblies. Does not include input decks, cross-section libraries, or particle transport codes.

  18. DOE - NNSA/NFO -- Nuclear Testing Archive Fee Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Testing Archive > Fee Schedule NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Nuclear Testing Archive (NTA) Fee Schedule The U.S. Department of Energy ...

  19. NNSA Announces New Name for Test Site | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Announces New Name for Test Site August 23, 2010 LAS VEGAS -- National Nuclear Security ... incident involving nuclear materials and test the next generation of radiation detection ...

  20. Preparation of nuclear fuel spheres by flotation-internal gelation

    DOE Patents [OSTI]

    Haas, Paul A.; Fowler, Victor L.; Lloyd, Milton H.

    1987-01-01

    A simplified internal gelation process for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85.degree. C.) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column.

  1. Preparation of nuclear fuel spheres by flotation-internal gelation

    DOE Patents [OSTI]

    Haas, P.A.; Fowler, V.L.; Lloyd, M.H.

    1984-12-21

    A simplified internal gelation process is claimed for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85/sup 0/C) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column. 3 figs.

  2. Method of preparing nuclear wastes for tansportation and interim storage

    DOE Patents [OSTI]

    Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  3. flight test | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    flight test Fourth flight test for W88 Alt 370 successful A successful test conducted by the U.S. Navy, in coordination with NNSA, marked the fourth of its kind in support of NNSA's W88 alteration (Alt) 370 program. The unarmed W88 warhead was launched atop a Trident II missile from the USS Kentucky at the Pacific Missile Range Facility in Hawaii as part... NNSA, Air Force Complete Successful B61-12 Life Extension Program Instrumented Flight Tests WASHINGTON, D.C. - The National Nuclear Security

  4. Nuclear cask testing films misleading and misused

    SciTech Connect (OSTI)

    Audin, L.

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ``proof`` to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  5. Report to Congress on stockpile reliability, weapon remanufacture, and the role of nuclear testing

    SciTech Connect (OSTI)

    Miller, G.H.; Brown, P.S.; Alonso, C.T.

    1987-10-01

    This report analyzes two issues: (1) ''whether past warhead reliability problems demonstrate that nuclear explosive testing is needed to identify or to correct stockpile reliability,'' or (2) ''whether a program of stockpile inspection, nonnuclear testing, and remanufacture would be sufficient to deal with stockpile reliability problems.'' Chapter 1 examines the reasons for nuclear testing. Although the thrust of the request from Congressman Aspin et al., has to do with the need for nuclear testing as it relates to stockpile reliability and remanufacture, there are other very important reasons for nuclear testing. Since there has been increasing interest in the US Congress for more restrictive nuclear test limits, we have addressed the overall need for nuclear testing and the potential impact of further nuclear test limitations. Chapter 1 also summarizes the major conclusions of a recent study conducted by the Scientific and Academic Advisory Committee (SAAC) for the President of the University of California; the SAAC report is entitled, ''Nuclear Weapon Tests: The Role of the University of California-Department of Energy Laboratories.'' Chapter 2 presents a brief history of stockpile problems that involved post-deployment nuclear testing for their resolution. Chapter 3 addresses the problems involved in remanufacturing nuclear weapons, and Chapter 4 discusses measures that should be taken to prepare for possible future restrictive test limits.

  6. Laboratory's role in Cold War nuclear weapons testing program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons ...

  7. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  8. Nuclear Rocket Development Station at the Nevada Test Site |...

    Office of Environmental Management (EM)

    Rocket Development Station at the Nevada Test Site Nuclear Rocket Development Station at the Nevada Test Site During the 1950s, the United States launched a nuclear rocket program ...

  9. Nuclear facility licensing, documentaion, and reviews, and the SP-100 test site experience

    SciTech Connect (OSTI)

    Cornwell, B.C.; Deobald, T.L.; Bitten, E.J.

    1991-06-01

    The required approvals and permits to test a nuclear facility are extensive. Numerous regulatory requirements result in the preparation of documentation to support the approval process. The principal regulations for the SP-100 Ground Engineering System (GES) include the National Environmental Policy Act, Clean Air Act, and Atomic Energy Act. The documentation prepared for the SP-100 Nuclear Assembly Test (NAT) included an Environmental Assessment, state permit applications, and Safety Analysis Reports. This paper discusses the regulation documentation requirements and the SP-100 NAT Test Site experience. 12 refs., 2 figs., 2 tabs.

  10. Comprehensive Test Ban Treaty | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Test Ban Treaty 20th Anniversary of U.S. Commitment to Science-based Stockpile Stewardship WASHINGTON - This week marks the 20th anniversary of President Bill Clinton's announcement that the United States would pursue negotiations for the Comprehensive Nuclear Test Ban Treaty (CTBT) and maintain the U.S. nuclear arsenal without nuclear explosive tests. President Clinton stated that

  11. Limited Test Ban Treaty Signed | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Limited Test Ban Treaty Signed Limited Test Ban Treaty Signed Washington, DC The United States, Great Britain, and the Soviet Union sign the Limited Test Ban Treaty prohibiting underwater, atmospheric, and outer space nuclear tests. Nuclear testing continues underground

  12. Sandia completes major overhaul of key nuclear weapons test facilities |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) completes major overhaul of key nuclear weapons test facilities Tuesday, May 13, 2014 - 2:46pm Sandia National Laboratories recently completed the renovation of five large-scale test facilities that are crucial to ensuring the safety and reliability of the nation's nuclear weapons systems. The work supports Sandia's ongoing nuclear stockpile modernization work on the B61-12 and W88 Alt, assessments of current stockpile systems, and test and

  13. Microsoft Word - Remarks as Prepared for Delivery for Assistant Secretary for Nuclear Energy Dennis R. Spurgeon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR IMMEDIATE RELEASE Angela Hill, (202) 586-4940 Wednesday, July 23, 2008 Remarks as Prepared for Delivery for Assistant Secretary for Nuclear Energy Dennis R. Spurgeon Second Annual Nuclear Fuel Cycle Monitor Global Nuclear Renaissance Summit Alexandria, VA Thank you for inviting me to address the Second Annual Global Nuclear Renaissance Summit. My topic is the Department of Energy's role in developing our nation's nuclear energy policy: technologically robust, economically sound, and

  14. Xenon monitoring and the Comprehensive Nuclear-Test-Ban Treaty

    SciTech Connect (OSTI)

    Bowyer, Theodore W.

    2014-05-09

    How do you monitor (verify) a CTBT? It is a difficult challenge to monitor the entire world for nuclear tests, regardless of size. Nuclear tests 'normally' occur underground, above ground or underwater. Setting aside very small tests (let's limit our thinking to 1 kiloton or more), nuclear tests shake the ground, emit large amounts of radioactivity, and make loud noises if in the atmosphere (or hydroacoustic waves if underwater)

  15. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Energy Savers [EERE]

    Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Terrence ...

  16. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battlefield of the Cold War: The Nevada Test Site, Volume I | Department of Energy Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf). DOE/MA-0003. Washington,

  17. Introduction The Radiological/Nuclear Countermeasures Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiological/Nuclear Countermeasures Test and Evaluation Complex (RNCTEC) is a multi-use test and evaluation platform that will serve the U.S. homeland security mission. Background The Department of Homeland Security's Domestic Nuclear Detection Office (DNDO), with assistance from the U.S. Department of Energy National Nuclear Security Administration, has established the RNCTEC at the Nevada National Security Site, formerly known as the Nevada Test Site, to support all federal agencies to

  18. Supporting the Comprehensive Nuclear-Test-Ban Treaty

    ScienceCinema (OSTI)

    Bowyer, Ted

    2014-06-12

    PNNL operates the only certified laboratory in the U.S. for the Comprehensive Nuclear-Test-Ban Treaty's International Monitoring System (IMS).

  19. NSO Explores Closure Options for Historic Nuclear Testing Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSO Explores Closure Options for Historic Nuclear Testing Locations Recent environmental restoration work at the Nevada National Security Site (NNSS) focuses on a number of ...

  20. Supporting the Comprehensive Nuclear-Test-Ban Treaty

    SciTech Connect (OSTI)

    Bowyer, Ted

    2014-11-20

    PNNL operates the only certified laboratory in the U.S. for the Comprehensive Nuclear-Test-Ban Treaty's International Monitoring System (IMS).

  1. test1 | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    test1 Subscribe to test1 feed URL: https://nnsa.energy.gov/ Updated: 3 min

  2. Comparison of preparation techniques for nuclear materials for transmission electron microscopy (TEM)

    SciTech Connect (OSTI)

    Aitkaliyeva, Assel; Madden, James W.; Miller, Brandon D; Cole, James I; Gan, Jian

    2015-04-01

    Preparation of highly radioactive and irradiated nuclear fuels and materials for transmission electron microscopy (TEM) is conjoined with a set of unique challenges, including but not limited to personnel radiation exposure and contamination. The paper evaluates three specimen preparation techniques for preparation of irradiated materials and determines which technique yields to the most reliable characterization of radiation damage microstructure. Various specimen preparation artifacts associated with each technique are considered and ways of minimizing these artifacts are addressed.

  3. NNSA Conducts Successful W78 JTA Flight Test | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Test July 08, 2011 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA), working with the U.S. Air Force, recently conducted a successful W78 Joint Test ...

  4. Office of Test and Evaluation | National Nuclear Security Administrati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Test and Evaluation The primary goal of the Office of Test and Evaluation is to ensure that the warheads and bombs in the U.S. nuclear weapons stockpile are safe, secure, ...

  5. Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

    National Nuclear Security Administration (NNSA)

    Preparatory Commission Visits NNSA's Nevada National Security Site (NNSS) for First Time | National Nuclear Security Administration | (NNSA) Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Preparatory Commission Visits NNSA's Nevada National Security Site (NNSS) for First Time November 24, 2015 Dr. Lassina Zerbo of the Comprehensive Nuclear-Test-Ban Treaty Organization, center, inside the P-Tunnel at the Nevada National Security Site. P-Tunnel, a large tunnel inside Ranier

  6. Office of Test and Evaluation | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Office of Test and Evaluation The primary goal of the Office of Test and Evaluation is to ensure that the warheads and bombs in the U.S. nuclear weapons stockpile are safe, secure, and reliable by: Providing for development of engineering tools and manufacturing capabilities to support the life cycle of a nuclear weapon Providing oversight of engineering, design, manufacturing, and testing technology The Office of Test and Evaluation is responsible for supporting science, technology,

  7. United States nuclear tests, July 1945 through September 1992

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  8. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. ); Todosow, M. )

    1992-09-22

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  9. Research, Development, Test, and Evaluation | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Defense Programs Research, Development, Test, and Evaluation ... The Office of Research, Development, Test, and Evaluation directs research, development, ...

  10. Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60 years ago, scientists in Arco, Idaho successfully used nuclear energy to power four light bulbs. They laid the groundwork for decades of clean electricity and put the U.S. at...

  11. DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis, Roll Out Training

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety is performing a series of site visits to provide roll-out training and assistance to Program and Site Offices and their contractors on effective implementation of the new revision to DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis.

  12. CONTROL ROD FOR A NUCLEAR REACTOR AND METHOD OF PREPARATION

    DOE Patents [OSTI]

    Hausner, H.H.

    1958-12-30

    BS>An improved control rod is presented for a nuclear reactor. This control rod is comprised of a rare earth metal oxide or rare earth metal carbide such as gadolinium oxide or gadolinium carbide, uniformly distributed in a metal matrix having a low cross sectional area of absorption for thermal neutrons, such as aluminum, beryllium, and zirconium.

  13. Y-12 builds capacity to meet nuclear testing schedule - Or: ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demands of the nuclear testing program of the 1950's through September 23, 1992, required Y-12 management to purchase and install a huge amount of specialized machinery. It was...

  14. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    SciTech Connect (OSTI)

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L.

    1982-08-01

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

  15. First Thermonuclear Device Successfully Tested | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline First Thermonuclear Device Successfully Tested First...

  16. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    SciTech Connect (OSTI)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  17. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous

  18. NNSA Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty...

    National Nuclear Security Administration (NNSA)

    Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Friday, ... Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO); and NNSA ...

  19. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    SciTech Connect (OSTI)

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

  20. Preparation of Documented Safety Analysis for Interim Operations at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3011-2016 January 2016 DOE STANDARD PREPARATION OF DOCUMENTED SAFETY ANALYSIS FOR INTERIM OPERATIONS AT DOE NUCLEAR FACILITIES U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-3011-2016 ii FOREWORD 1. This Department of Energy (DOE) Standard (STD) has been approved to be used by DOE, including the National Nuclear Security Administration, and their contractors. 2. Beneficial comments

  1. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    SciTech Connect (OSTI)

    Graham, Thomas Jr.

    2014-05-09

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

  2. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    SciTech Connect (OSTI)

    Hurley, John

    2015-11-01

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces. During this annual reporting period, the finite element model was completed and used to design clamping jigs to hold the APMT plate to the larger blocks of superalloys during the bonding process. The clamping system was machined from titanium–zirconium–molybdenum and used to bond the APMT plate to the superalloy blocks. The bond between the APMT plate was weak for one of each of the superalloy blocks. We believe that this occurred because enough oxidation had occurred on the surface of the parts as a result of a 1-month time period between sandblasting to prepare the parts and the actual bonding process. The other blocks were, therefore, bonded within 1 day of preparing the parts for bonding, and their joints appear strong. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding. Also, phases rich in hafnium and tantalum had precipitated near the bond line in the APMT. Iron from the APMT had diffused into the superalloys during bonding, more extensively in the CM247LC than in the Rene 80. Nickel from the superalloys had diffused into the APMT, again more extensively in the joint with the CM247LC than

  3. Stockpile Stewardship: How we Ensure the Nuclear Deterrent without Testing

    SciTech Connect (OSTI)

    2014-09-04

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.

  4. Stockpile Stewardship: How we Ensure the Nuclear Deterrent without Testing

    ScienceCinema (OSTI)

    None

    2015-09-11

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.

  5. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect (OSTI)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  6. Nevada Test Site Contract Process Announced | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition | National Nuclear Security Administration | (NNSA) Nevada National Security Site Management and Operating (M&O) Contract Competition Contract Competition Home Page Welcome to the National Nuclear Security Administration's website for the Nevada National Security Site (NNSS) M&O Contract Competition. The NNSS is a geographically diverse outdoor testing, training, and evaluation complex situated on approximately 1,360 square miles. The facility helps ensure the security of

  7. Limited Test Ban Treaty | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Limited Test Ban Treaty US Air Force Launches Satellite Carrying NNSA-provided Nuclear Detonation Detection Sensors WASHINGTON, D.C. - On Friday, May 16, with the support of the National Nuclear Security Administration (NNSA), a U.S. Air Force Delta IV rocket lifted off from Cape Canaveral. Hosted onboard was a GPS IIF navigation satellite and a Global Burst Detector (GBD) payload designed to detect, identify

  8. NNSA to Conduct Background Radiation Testing | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) to Conduct Background Radiation Testing July 20, 2015 The National Nuclear Security Administration (NNSA) and Federal Emergency Management Agency (FEMA) under the Nuclear Incident Response Team (NIRT) program will be sponsoring an Aerial Measuring System (AMS) WINGS exercise July 20 - 24, 2015 in conjunction with the national level exercise Southern Exposure to be held in Florence, SC. Local, state and federal agencies will participate in an interoperability exercise

  9. W88 warhead program performs successful tests | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) W88 warhead program performs successful tests Tuesday, October 28, 2014 - 1:21pm The first flight and drop tests for the latest variant of the W88 nuclear warhead are providing data for Sandia National Laboratories to validate designs, improve computer modeling and update component specifications. The two successful tests, which were conducted this summer, provide data for the program, the W88 ALT 370 (alteration), to move forward, The Critical Radar Arming and Fuzing

  10. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  11. Preparation of most promising braided and/or textile-based adsorbents for seawater testing

    SciTech Connect (OSTI)

    Janke, Chris; Sadananda, Das; Mayes, Richard

    2014-02-26

    Progress Report...Prepare the most promising braided and/or textile-based adsorbents for seawater testing. M3FT-14OR0310012

  12. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect (OSTI)

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  13. Dual Axis Radiographic Hydrodynamic Test | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Dual Axis Radiographic Hydrodynamic Test NNSA releases Stockpile Stewardship Program quarterly experiments summary WASHIGTON, DC. - The National Nuclear Security Administration today released its current quarterly summary of experiments conducted as part of its science-based Stockpile Stewardship Program. The experiments carried out within the program are used in combination with complex computational models

  14. Public Invited to Comment on Draft Environmental Assessment for the Resumption of Transient Testing of Nuclear Fuels and Materials

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared for a proposal to resume transient testing of nuclear fuels and materials at either Idaho National Laboratory (INL) or Sandia National Laboratories (SNL).

  15. Resettlement of Bikini Atoll U.S. Nuclear Test Site

    SciTech Connect (OSTI)

    Robinson, W.L.; Conrado, C.L.; Stuart, M.L.; Stoker, A.C.; Hamilton, T.F.

    1999-09-09

    The US conducted a nuclear testing program at Bikini and Enewetak Atolls in the Marshall Islands from 1946 through 1958. Several atolls, including Bikini, were contaminated as a result of the nuclear detonations. Since 1974 the authors have conducted an extensive research and monitoring program to determine the radiological conditions at the atolls, identify the critical radionuclides and pathways, estimate the radiological dose to current or resettling populations, and develop remedial measures to reduce the dose to atoll populations. This paper describes exposure pathways and radionuclides; composition of atoll soils; radionuclide transport and dose estimates; remedial measures; and reduction in dose from a combined option.

  16. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Nonreactor Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STD-3007-2007 February 2007 DOE STANDARD GUIDELINES FOR PREPARING CRITICALITY SAFETY EVALUATIONS AT DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITIES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge,

  17. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    SciTech Connect (OSTI)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test.

  18. Bikini, Enewetak, and Rongelap Marshallese, and United States nuclear weapons testing in the Marshall Islands: A bibliography

    SciTech Connect (OSTI)

    Schultz, V. ); Schultz, S.C. ); Robison, W.L. )

    1991-05-01

    A considerable literature exists on the Bikini, Enewetak, and Rongelap Marshallese and their atolls; however, this literature consists of a large number of governmental documents that are relatively unknown and difficult to locate. This is particularly true of the documents of the Trust Territory of the Pacific Islands and those related to nuclear weapons testing in the Marshall Islands. Because a comprehensive bibliography on the impact of nuclear weapons testing on the Marshallese and their atolls does not exist, the preparation of a bibliography that includes sufficient information to locate all types of reports seems justified. This document is the bibliography.

  19. Picture of the Week: From nuclear weapons testing to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 From nuclear weapons testing to stockpile stewardship On Sept. 23, 1992, the last full-scale underground test of a nuclear weapon was conducted by Los Alamos National Lab at the Nevada Test Site. The test, code named "Divider," was the last of 1,030 nuclear tests carried out by the U.S. July 26, 2015 From nuclear weapons testing to stockpile stewardship x View larger version On Sept. 23, 1992, the last full-scale underground test of a nuclear weapon was conducted by Los Alamos

  20. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  1. Pyroprocessing of fast flux test facility nuclear fuel

    SciTech Connect (OSTI)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N.

    2013-07-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

  2. PREPARATION AND TESTING OF CORROSIONAND SPALLATION-RESISTANT COATINGS

    SciTech Connect (OSTI)

    Hurley, John

    2014-11-01

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses through the alloys and evaporates from their surfaces. Laboratory testing to determine the diffusion rate of Zn through the alloys has been completed. However, an analytical solution does not exist to model the diffusion of zinc through the alloys. For this reason, a finite difference algorithm using MATLAB was developed. It makes use of the hopscotch algorithm. The model allows the user to specify the dimensions of the metal parts, the Zn concentration at the bondline, the mesh size, time step, and Zn diffusivity. The experimentally measured values of diffusivity for Zn in APMT and Rene 80/CM 247LC are approximately 2.7 × 10-12 and 4 × 10-14 m2/s, respectively. While the qualitative behavior of the model appears correct, a comparison of the diffusion predictions with the experimental results from earlier in the project indicates that the expected Zn concentration is significantly higher than that measured experimentally. The difference depends on the assumed initial concentration, which is difficult to quantify exactly under experimental conditions for t = 0. In addition to the diffusion work, the coefficients of thermal expansions were determined for each of the alloys as a function of temperature. This information

  3. Preparation and testing of corrosion and spallation-resistant coatings

    SciTech Connect (OSTI)

    Hurley, John

    2012-09-30

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding. It involves placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses through the alloys and evaporates from their surfaces. Laboratory testing has shown that the diffusion rate of Zn through the FeCrAl alloy is much faster than through the nickel superalloys. This means that the FeCrAl will serve as a sink for the Zn bonding alloy during the evaporative metal bonding process. Also, the testing has shown that the Zn diffusion mechanism is bulk diffusion, and not intergranular. This is a surprise. However, it means that quantification of the Zn diffusivities in these samples will be significantly simpler than would have been the case if grain boundary diffusion dominated. In addition to the laboratory testing, gas impinger and particulate samples are being collected from a combustor firing syngas and natural gas to determine what types of microcontaminants may reach a turbine firing syngas. The syngas is created in one of two different pilot-scale pressurized coal gasifiers. The initial analysis of the impinger solutions was for standard U.S. Environmental Protection Agency (EPA) Method 29 determination of hazardous metals and did not include major element analysis. When syngas is fired, the amount of Mn in the combustor gas increases substantially. Halogens (Br2 and Cl2) and hydrogen

  4. Preparation for the Nuclear Non-Proliferation Treaty Extension Conference in 1995. Workshop summary

    SciTech Connect (OSTI)

    Chrzanowski, P.L.

    1993-05-07

    About 30 specialists in non-proliferation participated in a workshop to explore ideas for US Government preparatory steps leading to the 1995 Nuclear Non-Proliferation Treaty (NPT) Extension Conference. To that end, workshop sessions were devoted to reviewing the lessons learned from previous Review Conferences, discussing the threats to the non-proliferation regime together with ways of preserving and strengthening it, and examining the management of international nuclear commerce. A fundamental premise shared by workshop participants was that extension of the NPT is immensely important to international security. The importance of stemming proliferation and, more specifically, extending the Treaty, is growing as a result of the significant changes in the world. If the conferees of the Extension Conference decide on no extension or extension for a short limited duration, some technically advanced states that have foregone development of nuclear weapons may begin to rethink their options. Also, other arms control measures, such as the Chemical Weapons Convention, could start to unravel. The US must provide strong international leadership to ensure that the Extension Conference is a success, resulting in Treaty extension, perhaps through successive terms, into the indefinite future. Workshop participants were struck by the urgent need for the US to take organizational steps so that it is highly effective in its advance preparations for the Extension Conference. Moreover, the Extension Conference provides both a challenge and an opportunity to mold a cohesive set of US policy actions to define the future role of nuclear weapons and combat their proliferation.

  5. PREPARATION AND TESTING OF CORROSIONAND SPALLATION-RESISTANT COATINGS

    SciTech Connect (OSTI)

    Hurley, John

    2013-10-31

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin foil of zinc (Zn) between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the Zn melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The Zn then diffuses through the alloys and evaporates from their surfaces. Laboratory testing to determine the diffusion rate of Zn through the alloys has been completed. We have found that we were not able to create joints when temperatures much lower than the original temperature of 1214C are used. Therefore, we limited our diffusion rate measurements to the two hold temperatures used in the procedure: 700 and 1214C. The diffusivity of zinc in both APMT and CM247LC is quite similar at 700C. Diffusivity in the APMT appears to be slightly higher, but the midline composition after 30 minutes at this temperature is quite similar. At 1214C, the situation is very different. The calculated diffusivity of zinc in APMT is approximately 15 times higher than in CM247LC or Rene 80 (~120 vs. ~8 ?m/min) at that temperature. In addition to the diffusion work, the coefficients of thermal expansions were determined for each of the alloys as a function of temperature. This information has been entered into a finite element model using ANSYS so that appropriate force-applying structures can be designed for use in joining structures composed of APMT and the nickel alloys. Gasifier sampling activities continue to determine what types of trace

  6. High Sodium Simulant Testing To Support SB8 Sludge Preparation

    SciTech Connect (OSTI)

    Newell, J. D.

    2012-09-19

    Scoping studies were completed for high sodium simulant SRAT/SME cycles to determine any impact to CPC processing. Two SRAT/SME cycles were performed with simulant having sodium supernate concentration of 1.9M at 130% and 100% of the Koopman Minimum Acid requirement. Both of these failed to meet DWPF processing objectives related to nitrite destruction and hydrogen generation. Another set of SRAT/SME cycles were performed with simulant having a sodium supernate concentration of 1.6M at 130%, 125%, 110%, and 100% of the Koopman Minimum Acid requirement. Only the run at 110% met DWPF processing objectives. Neither simulant had a stoichiometric factor window of 30% between nitrite destruction and excessive hydrogen generation. Based on the 2M-110 results it was anticipated that the 2.5M stoichiometric window for processing would likely be smaller than from 110-130%, since it appeared that it would be necessary to increase the KMA factor by at least 10% above the minimum calculated requirement to achieve nitrite destruction due to the high oxalate content. The 2.5M-130 run exceeded the DWPF hydrogen limits in both the SRAT and SME cycle. Therefore, testing of this wash endpoint was halted. This wash endpoint with this minimum acid requirement and mercury-noble metal concentration profile appears to be something DWPF should not process due to an overly narrow window of stoichiometry. The 2M case was potentially processable in DWPF, but modifications would likely be needed in DWPF such as occasionally accepting SRAT batches with undestroyed nitrite for further acid addition and reprocessing, running near the bottom of the as yet ill-defined window of allowable stoichiometric factors, potentially extending the SRAT cycle to burn off unreacted formic acid before transferring to the SME cycle, and eliminating formic acid additions in the frit slurry.

  7. Oxygasoline torch cuts demolition time of nuclear test facility

    SciTech Connect (OSTI)

    Gezelman, J. )

    1993-04-01

    A large pressure vessel, which had been used to test relief valves in nuclear power plants, needed to be demolished once all the tests had been completed. What made this particular project so unusual was the fact that the vessel had 10-in.-thick steel walls and was 30 ft tall. James Gezelman Welding was contracted for the demolition. The main challenge was converting the tank to [number sign]1 scrap steel, which meant no piece could be larger than 5 X 2 ft. Since the tank had 10-in.-thick walls, oxygasoline cutting equipment manufactured by Petrogen Co. was chosen for the job. The reasons for this decision were cost-effectiveness, speed and safety.

  8. Nuclear Detection and Sensor Testing Center | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards April 28, 2016 Quarterly Nuclear Deployment Scorecard - April 2016 News items on TVA Early Site Permit, UAMPS site use permit, south texas project license, PSEG early site permit. January 22, 2016 Quarterly Nuclear Deployment Scorecard - January 2016 Watts Bar Unit 2 completes fuel load. PSEG ESP final environmental impact statement completed. October 27, 2015 Quarterly Nuclear Deployment

  9. Model of a nuclear thermal test pipe using ATHENA

    SciTech Connect (OSTI)

    Dibben, M.J.

    1992-03-01

    Nuclear thermal propulsion offers significant improvements in rocket engine specific impulse over rockets employing chemical propulsion. The computer code ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) was used in a parametric analysis of a fuelpipe. The fuelpipe is an annular particle bed fuel element of the reactor with radially inward flow of hydrogen through it. The outlet temperature of the hydrogen is parametrically related to key effects, including the effect of reactor power at two different pressure drops, the effect of the power coupling factor of the Annular Core Research Reactor, and the effect of hydrogen flow. Results show that the outlet temperature is linearly related to the reactor power and nonlinearly to the change in pressure drop. The linear relationship at higher temperatures is probably not valid due to dissociation of hydrogen. Once thermal properties of hydrogen become available, the ATHENA model for this study could easily be modified to test this conjecture.

  10. Transient Testing of Nuclear Fuels and Materials in United States

    SciTech Connect (OSTI)

    Daniel M. Wachs

    2012-12-01

    The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

  11. Declassification of the Yields of 11 Nuclear Tests Conducted as Part

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Declassification of the Yields of 11 Nuclear Tests Conducted as Part of the Plowshare Peaceful Uses for Nuclear Explosives Program The Department of Energy and the Department of Defense have jointly declassified the specific yields of 11 nuclear tests conducted between 1962 and 1968 at the Nevada Test Site, including three tests that, as previously announced, leaked radioactivity. Also declassified are the yields of two detonations that, together with another detonation whose yield has already

  12. NNSA Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty Organization

    National Nuclear Security Administration (NNSA)

    (CTBTO) | National Nuclear Security Administration | (NNSA) Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Friday, December 4, 2015 - 10:48am NNSA Blog From left, NNSA Deputy Administrator for Defense Nuclear Nonproliferation Anne Harrington; Dr. Lassina Zerbo, Executive Secretary of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO); and NNSA Acting Deputy Administrator for Defense Programs Brigadier General Stephen

  13. NEAC Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study October 6 th , 2015 Meeting Summary and Comments Given direction from Congress, the Department of Energy's Office of Nuclear Energy (DOE- NE) is conducting a planning study for an advanced test and/or demonstration reactor (AT/DR study) in the United States. The Nuclear Energy Advisory Committee (NEAC) and specifically its Nuclear Reactor Technology (NRT) subcommittee has been asked to provide

  14. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  15. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    SciTech Connect (OSTI)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  16. Experimental results from pressure testing a 1:6-scale nuclear power plant containment

    SciTech Connect (OSTI)

    Horschel, D.S.

    1992-01-01

    This report discusses the testing of a 1:6-scale, reinforced-concrete containment building at Sandia National Laboratories, in Albuquerque, New Mexico. The scale-model, Light Water Reactor (LWR) containment building was designed and built to the American Society of Mechanical Engineers (ASME) code by United Engineers and Constructors, Inc., and was instrumented with over 1200 transducers to prepare for the test. The containment model was tested to failure to determine its response to static internal overpressurization. As part of the US Nuclear Regulatory Commission`s program on containment integrity, the test results will be used to assess the capability of analytical methods to predict the performance of containments under severe-accident loads. The scaled dimensions of the cylindrical wall and hemispherical dome were typical of a full-size containment. Other typical features included in the heavily reinforced model were equipment hatches, personnel air locks, several small piping penetrations, and a ihin steel liner that was attached to the concrete by headed studs. In addition to the transducers attached to the model, an acoustic detection system and several video and still cameras were used during testing to gather data and to aid in the conduct of the test. The model and its instrumentation are briefly discussed, and is followed by the testing procedures and measured response of the containment model. A summary discussion is included to aid in understanding the significance of the test as it applies to real world reinforced concrete containment structures. The data gathered during SIT and overpressure testing are included as an appendix.

  17. Mine seismicity and the Comprehensive Nuclear Test Ban Treaty

    SciTech Connect (OSTI)

    Chiappetta, F.; Heuze, F.; Walter, W.; Hopler, R.; Hsu, V.; Martin, B.; Pearson, C.; Stump, B.; Zipf, K.

    1998-12-09

    Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1

  18. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    SciTech Connect (OSTI)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

    2013-06-13

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in

  19. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    SciTech Connect (OSTI)

    Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

    2009-01-09

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors

  20. Hybrid statistical testing for nuclear material accounting data and/or process monitoring data in nuclear safeguards

    SciTech Connect (OSTI)

    Burr, Tom; Hamada, Michael S.; Ticknor, Larry; Sprinkle, James

    2015-01-01

    The aim of nuclear safeguards is to ensure that special nuclear material is used for peaceful purposes. Historically, nuclear material accounting (NMA) has provided the quantitative basis for monitoring for nuclear material loss or diversion, and process monitoring (PM) data is collected by the operator to monitor the process. PM data typically support NMA in various ways, often by providing a basis to estimate some of the in-process nuclear material inventory. We develop options for combining PM residuals and NMA residuals (residual = measurement - prediction), using a hybrid of period-driven and data-driven hypothesis testing. The modified statistical tests can be used on time series of NMA residuals (the NMA residual is the familiar material balance), or on a combination of PM and NMA residuals. The PM residuals can be generated on a fixed time schedule or as events occur.

  1. Hybrid statistical testing for nuclear material accounting data and/or process monitoring data in nuclear safeguards

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burr, Tom; Hamada, Michael S.; Ticknor, Larry; Sprinkle, James

    2015-01-01

    The aim of nuclear safeguards is to ensure that special nuclear material is used for peaceful purposes. Historically, nuclear material accounting (NMA) has provided the quantitative basis for monitoring for nuclear material loss or diversion, and process monitoring (PM) data is collected by the operator to monitor the process. PM data typically support NMA in various ways, often by providing a basis to estimate some of the in-process nuclear material inventory. We develop options for combining PM residuals and NMA residuals (residual = measurement - prediction), using a hybrid of period-driven and data-driven hypothesis testing. The modified statistical tests canmore » be used on time series of NMA residuals (the NMA residual is the familiar material balance), or on a combination of PM and NMA residuals. The PM residuals can be generated on a fixed time schedule or as events occur.« less

  2. Nuclear proliferation and testing: A tale of two treaties

    SciTech Connect (OSTI)

    Corden, Pierce S.; Hafemeister, David

    2014-04-01

    Despite progress in reducing stockpiles after the end of the Cold War, the disturbing actions of some nations could spread nuclear weapon capabilities and enlarge existing arsenals.

  3. Improved Tests of the Weak Nuclear Force from Beta Decay | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Improved Tests of the Weak Nuclear Force from Beta Decay Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 08.19.16 Improved Tests of the Weak Nuclear

  4. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    SciTech Connect (OSTI)

    Warren, N. Jill

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. MeV Summer School prepares next-generation nuclear scientists...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer School is an annual 10-day program that provides early-career nuclear engineers with advanced studies in modeling, experimentation and validation of nuclear reactor design. ...

  6. Preparation for the Recovery of Spent Nuclear Fuel (SNF) at Andreeva Bay, North West Russia - 13309

    SciTech Connect (OSTI)

    Field, D.; McAtamney, N.

    2013-07-01

    Andreeva Bay is located near Murmansk in the Russian Federation close to the Norwegian border. The ex-naval site was used to de-fuel nuclear-powered submarines and icebreakers during the Cold War. Approximately 22,000 fuel assemblies remain in three Dry Storage Units (DSUs) which means that Andreeva Bay has one of the largest stockpiles of highly enriched spent nuclear fuel (SNF) in the world. The high contamination and deteriorating condition of the SNF canisters has made improvements to the management of the SNF a high priority for the international community for safety, security and environmental reasons. International Donors have, since 2002, provided support to projects at Andreeva concerned with improving the management of the SNF. This long-term programme of work has been coordinated between the International Donors and responsible bodies within the Russian Federation. Options for the safe and secure management of SNF at Andreeva Bay were considered in 2004 and developed by a number of Russian Institutes with international participation. This consisted of site investigations, surveys and studies to understand the technical challenges. A principal agreement was reached that the SNF would be removed from the site altogether and transported to Russia's reprocessing facility at Mayak in the Urals. The analytical studies provided the information necessary to develop the construction plan for the site. Following design and regulatory processes, stakeholders endorsed the technical solution in April 2007. This detailed the processes, facilities and equipment required to safely remove the SNF and identified other site services and support facilities required on the site. Implementation of this strategy is now well underway with the facilities in various states of construction. Physical works have been performed to address the most urgent tasks including weather protection over one of the DSUs, installation of shielding over the cells, provision of radiation

  7. Senate Rejects Test Ban Treaty | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Senate Rejects Test Ban Treaty Senate Rejects Test Ban Treaty Washington, DC The Senate votes 48-51 to reject the Comprehensive Test Ban Treaty

  8. FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Pressurized Water Reactor and BWR Environments | Department of Energy FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and BWR Environments FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and BWR Environments High-burnup spent nuclear fuel cladding has a significant amount of microcracks and hydrides which will reduce the stress intensity required for crack growth.

  9. Investigation of CTBT OSI Radionuclide Techniques at the DILUTED WATERS Nuclear Test Site

    SciTech Connect (OSTI)

    Baciak, James E.; Milbrath, Brian D.; Detwiler, Rebecca S.; Kirkham, Randy R.; Keillor, Martin E.; Lepel, Elwood A.; Seifert, Allen; Emer, Dudley; Floyd, Michael

    2012-11-01

    Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a verification regime that includes the ability to conduct an On-Site Inspection (OSI) will be established. The Treaty allows for an OSI to include many techniques, including the radionuclide techniques of gamma radiation surveying and spectrometry and environmental sampling and analysis. Such radioactivity detection techniques can provide the smoking gun evidence that a nuclear test has occurred through the detection and quantification of indicative recent fission products. An OSI faces restrictions in time and manpower, as dictated by the Treaty; not to mention possible logistics difficulties due to the location and climate of the suspected explosion site. It is thus necessary to have a good understanding of the possible source term an OSI will encounter and the proper techniques that will be necessary for an effective OSI regime. One of the challenges during an OSI is to locate radioactive debris that has escaped an underground nuclear explosion (UNE) and settled on the surface near and downwind of ground zero. To support the understanding and selection of sampling and survey techniques for use in an OSI, we are currently designing an experiment, the Particulate Release Experiment (PRex), to simulate a small-scale vent from an underground nuclear explosion. PRex will occur at the Nevada National Security Site (NNSS). The project is conducted under the National Center for Nuclear Security (NCNS) funded by the National Nuclear Security Agency (NNSA). Prior to the release experiment, scheduled for Spring of 2013, the project scheduled a number of activities at the NNSS to prepare for the release experiment as well as to utilize the nuclear testing past of the NNSS for the development of OSI techniques for CTBT. One such activitythe focus of this reportwas a survey and sampling campaign at the site of an old UNE that vented: DILUTED WATERS. Activities at DILUTED WATERS included vehicle-based survey, in situ

  10. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    SciTech Connect (OSTI)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P.

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  11. First Plutonium Bomb Successfully Tested | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Plutonium Bomb Successfully Tested First Plutonium Bomb Successfully Tested Los Alamos, NM Los Alamos scientists successfully test a plutonium implosion bomb in the Trinity shot at Alamogordo, New Mexico

  12. A perspective on atmospheric nuclear tests in Nevada: Fact Book, Revision 2

    SciTech Connect (OSTI)

    Friesen, H.N.

    1995-06-01

    This fact book provides historical background and perspective on the nuclear testing program at the Nevada Test Site (NTS). Nuclear tests contributing to the off-site deposition of radioactive fallout are identified, and the concept of cumulative estimated exposure is explained. The difficulty of associating health effects with radiation is presented also. The status of litigation against the government and legislation as of September 1994 are summarized.

  13. OSIRIS - Gamma-Ray Spectroscopy Software for On-Site Inspections under the Comprehensive Nuclear-Test-Ban Treaty

    SciTech Connect (OSTI)

    Caffrey, Augustine J.; Bowyer, Ted W.; Egger, A. E.; Hall, Jeter C.; Kelly, S. M.; Krebs, K. M.; Kreek, S.; Jordan, David V.; Milbrath, Brian D.; Padgett, Stephen W.; Wharton, C. J.; Wimer, Nathan G.

    2015-06-01

    OSIRIS - Gamma-Ray Spectroscopy Software for On-Site Inspections under the Comprehensive Nuclear-Test-Ban Treaty

  14. United States Nuclear Tests, July 1945 through September 1992, December 2000

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-12-01

    This document list chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Revision 15, dated December 2000.

  15. Nuclear Nonproliferation and Arms Control Primer Prepared for the Blue Ribbon Commission on America’s Nuclear Future

    SciTech Connect (OSTI)

    Williams, Laura S.

    2011-05-25

    To provide a brief overview of key arms control and nonproliferation arrangements for the layperson that may be relevant to the Commission's comprehensive review of policies for managing the back end of the nuclear fuel cycle. Primer would be published by the Commission and made publicly available, probably as an appendix to a larger Commission report.

  16. ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL

    SciTech Connect (OSTI)

    Ronald E. Mizia

    2011-10-01

    The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

  17. Laboratory's role in Cold War nuclear weapons testing program focus of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next 70th anniversary lecture 70th anniversary lecture Laboratory's role in Cold War nuclear weapons testing program focus of next 70th anniversary lecture Lab's role in the development of nuclear weapons during the Cold War period will be discussed by Byron Ristvet of the Defense Threat Reduction Agency. September 5, 2013 This photograph captures the expanding fireball of the world's first full-scale hydrogen bomb test, Ivy-Mike, which was conducted Oct. 31, 1952. This photograph captures

  18. Fuel subassembly leak test chamber for a nuclear reactor

    DOE Patents [OSTI]

    Divona, Charles J.

    1978-04-04

    A container with a valve at one end is inserted into a nuclear reactor coolant pool. Once in the pool, the valve is opened by a mechanical linkage. An individual fuel subassembly is lifted into the container by a gripper; the valve is then closed providing an isolated chamber for the subassembly. A vacuum is drawn on the chamber to encourage gaseous fission product leakage through any defects in the cladding of the fuel rods comprising the subassembly; this leakage may be detected by instrumentation, and the need for replacement of the assembly ascertained.

  19. Research, Development, Test, and Evaluation | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Programs Research, Development, Test, and Evaluation Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber of the National Ignition Facility at Lawrence Livermore National Laboratory The Office of Research, Development, Test, and Evaluation directs research, development, computer simulation, and inertial confinement fusion activities to maintain the safety, security and effectiveness of the

  20. Logistics Services Manager, Nevada Test Site | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Logistics Services Manager, Nevada Test Site Lance Rakow, NTS Logistics Services Mangager Lance Rakow August 2009 U.S. Department of Energy's Management Award Along with colleague Susan Livenick, Lance Rakow was awarded this years Department of Energy's Management Award honoring his outstanding achievements in energy and water management. Lance, the Logistics Services Manager at the Nevada Test Site, oversaw the conversion of nearly all fleet vehicles at NTS to using

  1. Development of the high-level waste high-temperature melter feed preparation flowsheet for vitrification process testing

    SciTech Connect (OSTI)

    Seymour, R.G.

    1995-02-17

    High-level waste (HLW) feed preparation flowsheet development was initiated in fiscal year (FY) 1994 to evaluate alternative flowsheets for preparing melter feed for high-temperature melter (HTM) vitrification testing. Three flowsheets were proposed that might lead to increased processing capacity relative to the Hanford Waste Vitrification Plant (HWVP) and that were flexible enough to use with other HLW melter technologies. This document describes the decision path that led to the selection of flowsheets to be tested in the FY 1994 small-scale HTM tests. Feed preparation flowsheet development for the HLW HTM was based on the feed preparation flowsheet that was developed for the HWVP. This approach allowed the HLW program to build upon the extensive feed preparation flowsheet database developed under the HWVP Project. Primary adjustments to the HWVP flowsheet were to the acid adjustment and glass component additions. Developmental background regarding the individual features of the HLW feed preparation flowsheets is provided. Applicability of the HWVP flowsheet features to the new HLW vitrification mission is discussed. The proposed flowsheets were tested at the laboratory-scale at Pacific Northwest Laboratory. Based on the results of this testing and previously established criteria, a reductant-based flowsheet using glycolic acid and a nitric acid-based flowsheet were selected for the FY 1994 small-scale HTM testing.

  2. Project Manager, Nevada Test Site | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Project Manager, Nevada Test Site Susan Livenick, NTS Project Manager Susan Livenick August 2009 U.S. Department of Energy's Management Award On August 12, Susan Livenick, a Project Manager at the Nevada Test Site received the 2009 U.S. Department of Energy's Management Award at a special awards ceremony in Providence, R.I. The awards honor outstanding achievements in energy and water management. Susan oversaw Bldg. B3's abatement and renovation from 2005-2008, making

  3. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  4. Used nuclear fuel separations process simulation and testing

    SciTech Connect (OSTI)

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D.

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  5. Integral Benchmark Data for Nuclear Data Testing Through the ICSBEP & IRPhEP

    SciTech Connect (OSTI)

    J. Blair Briggs; John D. Bess; Jim Gulliford; Ian Hill

    2013-10-01

    The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and International Reactor Physics Experiment Evaluation Project (IRPhEP) was last discussed directly with the nuclear data community at ND2007. Since ND2007, integral benchmark data that are available for nuclear data testing have increased significantly. The status of the ICSBEP and the IRPhEP is discussed and selected benchmark configurations that have been added to the ICSBEP and IRPhEP Handbooks since ND2007 are highlighted.

  6. Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Dual Axis Radiographic Hydrodynamic Test Facility An integral part of the national hydrotest program, the DARHT is the world's most powerful x-ray machine. DARHT consists of two electron accelerators oriented at right angles to one another. Each accelerator creates a powerful electron beam that is focused onto a metal target which converts the kinetic energy of the electron beam into high energy x or gamma-rays. The x-ray dose from one DARHT accelerator is

  7. Chemical Explosion Experiments to Improve Nuclear Test Monitoring [Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; Mellors, Robert J.; Patton, Howard J.; Sussman, Aviva J.; Townsend, Margaret J.; Walter, William R.

    2013-07-02

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less

  8. Compaction comparison testing using a modified impact soil tester and nuclear density gauge

    SciTech Connect (OSTI)

    Erchul, R.A.

    1999-07-01

    The purpose of this paper is to compare test results of a modified Impact Soil Tester (IST) on compacted soil with data obtained from the same soil using a nuclear density gauge at the US Army Corp of Engineer's Buena Vista Flood Wall project in Buena Vista, Virginia. The tests were run during construction of the earth flood wall during the summer of 1996. This comparison testing demonstrated the credibility of the procedure developed for the IST as a compacting testing device. The comparison data was obtained on a variety of soils ranging from silty sands to clays. The Flood Wall comparison compaction data for 90% Standard Proctor shows that the results of the IST as modified are consistent with the nuclear density gauge 89% of the time for all types of soil tested. However, if the soils are more cohesive than the results are consistent with the nuclear density gauge 97% of the time. In addition these comparison tests are in general agreement with comparison compaction testing using the same testing techniques and methods of compacted backfill in utility trenches conducted earlier for the Public Works Department, Chesterfield County, Virginia.

  9. Flight Test of Weapons System Body by Navy Successful | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Flight Test of Weapons System Body by Navy Successful April 02, 2015 Third Flight Demonstrated Dynamics and Functional Performance in Flight Environment WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced the Follow-On Commander Evaluation Test-51 (FCET-51) flight body was successfully flown by the Navy recently. This test was one of several in a sequence of flight tests for the qualification efforts of the W88-0/Mk5 ALT 370

  10. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    SciTech Connect (OSTI)

    Black, S. C.; Grossman, R. F.; Mullen, A. A.; Potter, G. D.; Smith, D. D.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982.

  11. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2012-07-01

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's

  12. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    SciTech Connect (OSTI)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  13. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from

  14. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    SciTech Connect (OSTI)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, {sup 90}Sr, and {sup 137}Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test.

  15. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  16. PREPARATION OF UO$sub 2$ FOR NUCLEAR REACTOR FUEL PELLETS

    DOE Patents [OSTI]

    Googin, J.M.

    1962-06-01

    A method is given for preparing high-density UO/sub 2/ compacts. An aqueous uranyl fluoride solution is contacted with an aqueous ammonium hydroxide solution at an ammonium to-uranium ratio of 25: 1 to 30:1 to form a precipitate. The precipitate is separated from the- mother liquor, dried, and contacted with steam at a uniform temperature within the range of 400 to 650 deg C to produce U/ sub 3/O/sub 8/. The U/sub 3/O/sub 8/ is red uced to UO/sub 2/ with hydrogen at a uniform temperature within the range of 550 to 600 deg C. The UO/sub 2/ is then compressed into compacts and sintered. High-density compacts are fabricated to close tolerances without use of a binder and without machining or grinding. (AEC)

  17. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    DOE Patents [OSTI]

    Brown, Roger A.

    1994-01-01

    Circuitry for testing the ability of an intermediate range nuclear instrut to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on.

  18. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    DOE Patents [OSTI]

    Brown, R.A.

    1994-04-19

    Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures.

  19. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  20. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    SciTech Connect (OSTI)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

  1. Chemical speciation of U, Fe, and Pu in melt glass from nuclear weapons testing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pacold, J. I.; Lukens, W. W.; Booth, C. H.; Shuh, D. K.; Knight, K. B.; Eppich, G. R.; Holliday, K. S.

    2016-05-18

    We report that nuclear weapons testing generates large volumes of glassy materials that influence the transport of dispersed actinides in the environment and may carry information on the composition of the detonated device. We determine the oxidation state of U and Fe (which is known to buffer the oxidation state of actinide elements and to affect the redox state of groundwater) in samples of melt glass collected from three U.S. nuclear weapons tests. For selected samples, we also determine the coordination geometry of U and Fe, and we report the oxidation state of Pu from one melt glass sample. Wemore » find significant variations among the melt glass samples and, in particular, find a clear deviation in one sample from the expected buffering effect of Fe(II)/Fe(III) on the oxidation state of uranium. In the first direct measurement of Pu oxidation state in a nuclear test melt glass, we obtain a result consistent with existing literature that proposes Pu is primarily present as Pu(IV) in post-detonation material. In addition, our measurements imply that highly mobile U(VI) may be produced in significant quantities when melt glass is quenched rapidly following a nuclear detonation, though these products may remain immobile in the vitrified matrices. The observed differences in chemical state among the three samples show that redox conditions can vary dramatically across different nuclear test conditions. The local soil composition, associated device materials, and the rate of quenching are all likely to affect the final redox state of the glass. Lastly, the resulting variations in glass chemistry are significant for understanding and interpreting debris chemistry and the later environmental mobility of dispersed material.« less

  2. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    SciTech Connect (OSTI)

    D. E. Lewis D. A. Hagemeyer Y. U. McCormick

    2012-07-07

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor

  3. Management and Retrieval of Historical Nuclear Waste Previously Prepared and Concreted for Sea Disposal

    SciTech Connect (OSTI)

    Abbott, H.; Davies, E.

    2002-02-27

    This paper describes the approach of dealing with an historic legacy of pharmaceutical manufacturing operations, which arose as a result of the temporary cessation of sea disposal in 1983. The result of that cessation was an accumulation of 1,000 reinforced concrete lined steel drums containing intermediate level nuclear waste of mixed chemical and physical form. Included are the steps taken which established a policy, the resulting strategy and the unique and innovative means by which the plan was implemented. The objective was to reduce the financial liability of the waste contained within the drums by removing those portions that had already decayed, segregating the waste in terms of non disposable and disposable isotopes, size reduction and long-term storage of the residues in a retrievable waste form. As part of this process the Company established a UK strategy which would ensure that the Company was self sufficient in radioactive waste handling storage facilities until the provision of a national facility, currently predicted to be approximately 2040.

  4. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    SciTech Connect (OSTI)

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L.; Flanagan, Michelle E.

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the area of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The

  5. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L.; Flanagan, Michelle E.

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the areamore » of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength

  6. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    SciTech Connect (OSTI)

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables.

  7. Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S. Cultural Archive

    Broader source: Energy.gov [DOE]

    LAS VEGAS – The Nevada National Security Site’s (NNSS) historic Smoky site may soon join a long list of former nuclear testing locations eligible for inclusion in the National Register of Historic Places. The Desert Research Institute (DRI) is currently working alongside the Nevada Site Office (NSO) to determine the eligibility of Smoky and a number of other EM sites slated for cleanup and closure.

  8. Environmental assessment report: Nuclear Test Technology Complex. [Construction and operation of proposed facility

    SciTech Connect (OSTI)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report.

  9. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect (OSTI)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  10. Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    1997-07-01

    The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation`s supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington.

  11. Response Time Test for The Application of the Data Communication Network to Nuclear Power Plant

    SciTech Connect (OSTI)

    Shin, Y.C.; Lee, J.Y.; Park, H.Y.; Seong, S.H.; Chung, H.Y.

    2002-07-01

    This paper discusses the response time test for the application of the Data Communication Network (DCN) to Nuclear Power Plant (NPP). Conventional Instrumentation and Control (I and C) Systems using the analog technology in NPP have raised many problems regarding the lack of spare parts, maintenance burden, inaccuracy, etc.. In order to solve the problems, the Korean Next Generation Reactor (KNGR) I and C system has adopted the digital technology and new design features of using the data communication networks. It is essential to prove the response time requirements that arise from the introduction of digital I and C technology and data communication networks to nuclear power plant design. For the response time test, a high reliable data communication network structure has been developed to meet the requirements of redundancy, diversity, and segmentation. This paper presents the results of network load analysis and response time test for the KNGR DCN prototype. The test has been focused on the response time from the field components to the gateway because the response times from the gateway to the specific systems are similar to those of the existing design. It is verified that the response time requirements are met through the prototype test for KNGR I and C systems. (authors)

  12. Subsidence in the craters of nuclear tests at the Pacific Proving Grounds

    SciTech Connect (OSTI)

    Burton, D.E.; Swift, R.P.; Bryan, J.B.; Glenn, H.D.

    1984-08-01

    The craters from high-yield nuclear tests at the Pacific Proving Ground are very broad and shallow in comparison with the bowl-shaped craters formed in continental rock at the Nevada Test Site (NTS) and elsewhere. Attempts to explain the difference in terms of device yield (which was much larger in the Pacific tests than at NTS) have been generally unsatisfactory. We have for the first time successfully modeled the Koa Event, a representative coral-atoll test. On the basis of plausible assumptions about the geology and about the constitutive relations for coral, we have shown that the size and shape of the Koa crater can be accounted for by subsidence and liquefaction phenomena. If future studies confirm these assumptions, it will mean that some scaling formulas based on data from the Pacific will have to be revised to avoid overestimating weapons effects in continental geology. 41 references, 10 figures, 1 table.

  13. Remediation of the Faultless underground nuclear test: Moving forward in the face of model uncertainty.

    SciTech Connect (OSTI)

    Jenny B. Chapman; Karl Pohlmann; Greg Pohll; Ahmed Hassan; Peter Sanders; Monica Sanchez; Sigurd Jaunarajs

    2001-10-18

    The hundreds of locations where nuclear tests were conducted underground are dramatic legacies of the cold war. The vast majority of these tests are within the borders of the Nevada Test Site (NTS), but 11 underground tests were conducted elsewhere. The Faultless test, conducted in central Nevada, is the site of an ongoing environmental remediation effort that has successfully progressed through numerous technical challenges due to close cooperation between the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) and the State of Nevada Division of Environmental Protection (NDEP). The challenges faced at this site are similar to those of many other sites of groundwater contamination: substantial uncertainties due to the relative lack of data from a highly heterogeneous subsurface environment. Knowing when, where, and how to devote the often enormous resources needed to collect new data is a common problem, and one that can cause disputes between remediators and regulators that stall progress toward closing sites. For Faultless, a variety of numerical modeling techniques and statistical tools were used to provide the information needed for NNSA and NDEP to confidently move forward along the remediation path to site closure. A general framework for remediation was established in an agreement and consent order between DOE and the State of Nevada that recognized that no cost-effective technology currently exists to remove the source of the contaminants in the nuclear cavities. Rather, the emphasis of the corrective action is on identifying the impacted groundwater resource and ensuring protection of human health and the environment from the contamination through monitoring. As a result, groundwater flow and transport modeling is the lynchpin in the remediation effort.

  14. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    SciTech Connect (OSTI)

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement provides

  15. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    SciTech Connect (OSTI)

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5 day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.

  16. Uranium Enrichment Standards of the Y-12 Nuclear Detection and Sensor Testing Center

    SciTech Connect (OSTI)

    Cantrell, J.

    2012-05-23

    The Y-12 National Security Complex has recently fabricated and characterized a new series of metallic uranium standards for use in the Nuclear Detection and Sensor Testing Center (NDSTC). Ten uranium metal disks with enrichments varying from 0.2 to 93.2% {sup 235}U were designed to provide researchers access to a wide variety of measurement scenarios in a single testing venue. Special care was taken in the selection of the enrichments in order to closely bracket the definitions of reactor fuel at 4% {sup 235}U and that of highly enriched uranium (HEU) at 20% {sup 235}U. Each standard is well characterized using analytical chemistry as well as a series of gamma-ray spectrometry measurements. Gamma-ray spectra of these standards are being archived in a reference library for use by customers of the NDSTC. A software database tool has been created that allows for easier access and comparison of various spectra. Information provided through the database includes: raw count data (including background spectra), regions of interest (ROIs), and full width half maximum calculations. Input is being sought from the user community on future needs including enhancements to the spectral database and additional Uranium standards, shielding configurations and detector types. A related presentation are planned for the INMM 53rd Annual Meeting (Hull, et al.), which describe new uranium chemical compound standards and testing opportunities at Y-12 Nuclear Detection and Sensor Testing Center (NDSTC).

  17. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect (OSTI)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  18. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  19. TEST - SECRETARY STEVEN CHU'S REMARKS AS PREPARED FOR DELIVERY TO THE DOE TRIBAL SUMMIT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Summit Secretary Steven Chu Remarks as Prepared for Delivery Thursday, May 5, 2011 Arlington, VA Good morning. Thank you all for joining us today, including those of you watching online. The Obama Administration is committed to strong engagement with Tribal Nations. As a sign of that commitment, you heard from Secretary Vilsack yesterday, and today you will also hear from Secretary Salazar, Administrator Jackson, and White House officials. When I started as Energy Secretary, I made a

  20. Operation Cornerstone onsite radiological safety report for announced nuclear tests, October 1988--September 1989

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    Cornerstone was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site (NTS) from October 1, 1988, through September 30, 1989. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Radiation Protection Technicians (RPT) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage were provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  1. Chemical reactivity testing for the National Spent Nuclear Fuel Program. Revision 2

    SciTech Connect (OSTI)

    Koester, L.W.

    2000-02-08

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, Y60-101PD, Quality Program Description, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted. The project consists of conducting three separate series of related experiments, ''Passivation of Uranium Hydride Powder With Oxygen and Water'', '''Passivation of Uranium Hydride Powder with Surface Characterization'', and ''Electrochemical Measure of Uranium Hydride Corrosion Rate''.

  2. Blast induced subsidence in the craters of nuclear tests over coral

    SciTech Connect (OSTI)

    Burton, D.E.; Swift, R.P.; Glenn, H.D.; Bryan, J.B.

    1985-02-01

    The craters from high-yield nuclear tests at the Pacific Proving Grounds are very broad and shallow in comparison with the bowl-shaped craters formed in continental rock at the Nevada Test Site and elsewhere. Attempts to account for the differences quantitatively have been generally unsatisfactory. We have for the first time successfully modeled the Koa Event, a representative coral-atoll test. On the basis of plausible assumptions about the geology and about the constitutive relations for coral, we have shown that the size and shape of the Koa crater can be accounted for by subsidence and liquefaction phenomena. If future studies confirm these assumptions, it will mean that some scaling formulas based on data from the Pacific will have to be revised to avoid overestimating weapons effects in continental geology. 9 refs., 5 figs.

  3. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2010-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the

  4. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  5. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    SciTech Connect (OSTI)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  6. EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho

    Broader source: Energy.gov [DOE]

    This Environmental Assessment (EA) evaluates U.S. Department of Energy (DOE) activities associated with its proposal to resume testing of nuclear fuels and materials under transient high-power test conditions at the Transient Reactor Test (TREAT) Facility at the Idaho National Laboratory. The State of Idaho and Shoshone-Bannock Tribes are cooperating agencies.

  7. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect (OSTI)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  8. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  9. Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    SciTech Connect (OSTI)

    Nichols, James W., LTC

    2000-09-15

    These proceedings contain papers prepared for the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), held 13-15 September 2000 in New Orleans, Louisiana. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), US Army Space and Missile Defense Command, Defense Special Weapons Agency (DSWA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  10. FY15 Status Report: CIRFT Testing of Spent Nuclear Fuel Rods from Boiler Water Reactor Limerick

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    2015-06-01

    The objective of this project is to perform a systematic study of used nuclear fuel (UNF, also known as spent nuclear fuel [SNF]) integrity under simulated transportation environments using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot-cell testing technology developed at Oak Ridge National Laboratory (ORNL) in August 2013. Under Nuclear Regulatory Commission (NRC) sponsorship, ORNL completed four benchmark tests, four static tests, and twelve dynamic or cycle tests on H. B. Robinson (HBR) high burn-up (HBU) fuel. The clad of the HBR fuels was made of Zircaloy-4. Testing was continued in fiscal year (FY) 2014 using Department of Energy (DOE) funds. The additional CIRFT was conducted on three HBR rods (R3, R4, and R5) in which two specimens failed and one specimen was tested to over 2.23 10⁷ cycles without failing. The data analysis on all the HBR UNF rods demonstrated that it is necessary to characterize the fatigue life of the UNF rods in terms of (1) the curvature amplitude and (2) the maximum absolute of curvature extremes. The maximum extremes are significant because they signify the maximum of tensile stress for the outer fiber of the bending rod. CIRFT testing has also addressed a large variation in hydrogen content on the HBR rods. While the load amplitude is the dominant factor that controls the fatigue life of bending rods, the hydrogen content also has an important effect on the lifetime attained at each load range tested. In FY 15, ten SNF rod segments from BWR Limerick were tested using ORNL CIRFT, with one under static and nine dynamic loading conditions. Under static unidirectional loading, a moment of 85 N·m was obtained at maximum curvature 4.0 m⁻¹. The specimen did not show any sign of failure in three repeated loading cycles to almost same maximum curvature. Ten cyclic tests were conducted with amplitude varying from 15.2 to 7.1 N·m. Failure was observed in nine of the tested rod specimens. The cycles to failure were

  11. Method for testing the strength and structural integrity of nuclear fuel particles

    DOE Patents [OSTI]

    Lessing, Paul A.

    1995-01-01

    An accurate method for testing the strength of nuclear fuel particles. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle.

  12. Method for testing the strength and structural integrity of nuclear fuel particles

    DOE Patents [OSTI]

    Lessing, P.A.

    1995-10-17

    An accurate method for testing the strength of nuclear fuel particles is disclosed. Each particle includes an upper and lower portion, and is placed within a testing apparatus having upper and lower compression members. The upper compression member includes a depression therein which is circular and sized to receive only part of the upper portion of the particle. The lower compression member also includes a similar depression. The compression members are parallel to each other with the depressions therein being axially aligned. The fuel particle is then placed between the compression members and engaged within the depressions. The particle is then compressed between the compression members until it fractures. The amount of force needed to fracture the particle is thereafter recorded. This technique allows a broader distribution of forces and provides more accurate results compared with systems which distribute forces at singular points on the particle. 13 figs.

  13. Photo Library of the Nevada Site Office (Includes historical archive of nuclear testing images)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Nevada Site Office makes available publicly released photos from their archive that includes photos from both current programs and historical activities. The historical collections include atmospheric and underground nuclear testing photos and photos of other events and people related to the Nevada Test Site. Current collections are focused on homeland security, stockpile stewardship, and environmental management and restoration. See also the Historical Film Library at http://www.nv.doe.gov/library/films/testfilms.aspx and the Current Film Library at http://www.nv.doe.gov/library/films/current.aspx. Current films can be viewed online, but only short clips of the historical films are viewable. They can be ordered via an online request form for a very small shipping and handling fee.

  14. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect (OSTI)

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  15. Nuclear Test Scenarios for Discussion of On-Site Inspection Technologies

    SciTech Connect (OSTI)

    Sweeney, J J; Hawkins, W

    2009-03-13

    The purpose of the ISS OSI Invited Meeting being held in Vienna March 24-27, 2009 is to obtain a better understanding of the phenomenology of underground nuclear explosions for On-Site Inspection (OSI) purposes. In order to focus the technology discussions, we have developed two very general scenarios, or models, of underground nuclear test configurations and phenomena that will help us explore the application of OSI methodologies and techniques. The scenarios describe testing environments, operations, logistics, equipment, and facilities that might be used in conducting an underground nuclear test. One scenario involves emplacement of a nuclear device into a vertical borehole in an area with relatively flat terrain; the other involves emplacement within a tunnel (horizontally) in an area with mountainous terrain. Vertical borehole geometry The example for this scenario is an intermediate yield nuclear explosion carried out in a flat desert area. The ground was cleared and smoothed over a 200 X 200 m fenced area for operational support activities, access to the borehole, and in order to place a few structures to house diagnostics equipment and control functions. Power lines were provided for local electrical power. The vertical emplacement borehole was 2 m in diameter and bored to a depth of 350 m. The emplacement hole was lined with steel pipe in order to keep the hole open and to avoid cave-ins during emplacement of the nuclear device. Emplacement was above the local water table, and the top of the saturation zone is about 30 m below the bottom of the emplacement hole. The detonation point was at a depth of 340 m. All of the rock material removed while drilling the borehole was removed to another place. Diagnostics and control for the test were relatively simple: about 2 dozen high capacity coaxial cables feed from the down hole instruments to the surface and then about 100 m laterally to a diagnostics trailer. Two strong steel cables were used to emplace the

  16. The network architecture and site test of DCIS in Lungmen nuclear power station

    SciTech Connect (OSTI)

    Lee, C. K.

    2006-07-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  17. Planning, Preparation, and Transport of the High-Enriched Uranium Spent Nuclear Fuel from the Czech Republic to the Russian Federation

    SciTech Connect (OSTI)

    M. J. Tyacke; I. Bolshinsky; Frantisek Svitak

    2007-10-01

    The United States, Russian Federation, and the International Atomic Energy Agency have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program, which is part of the Global Threat Reduction Initiative. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. In February 2003, the RRRFR Program began discussions with the Nuclear Research Institute (NRI) in Rež, Czech Republic, about returning their HEU spent nuclear fuel to the Russian Federation for reprocessing. In March 2005, the U.S. Department of Energy signed a contract with NRI to perform all activities needed for transporting their HEU spent nuclear fuel to Russia. After 2 years of intense planning, preparations, and coordination at NRI and with three other countries, numerous organizations and agencies, and a Russian facility, this shipment is scheduled for completion before the end of 2007. This paper will provide a summary of activities completed for making this international shipment. This paper contains an introduction and background of the RRRFR Program and the NRI shipment project. It summarizes activities completed in preparation for the shipment, including facility preparations at NRI in Rež and FSUE “Mayak” in Ozyorsk, Russia; a new transportation cask system; regulatory approvals; transportation planning and preparation in the Czech Republic, Slovakia, Ukraine, and the Russian Federation though completion of the Unified Project and Special Ecological Programs. The paper also describes fuel loading and cask preparations at NRI and final preparations/approvals for transporting the shipment across the Czech Republic, Slovakia, Ukraine, and the Russian Federation to FSUE Mayak where the HEU spent nuclear fuel will be processed, the uranium will be downblended and made into low-enriched uranium fuel for commercial reactor

  18. Thermal nuclear pulse simulation at the National Solar Thermal Test Facility

    SciTech Connect (OSTI)

    Cameron, C.P.; Ralph, M.E. ); Ghanbari, C.M. ); Oeding, R.; Shaw, K. )

    1991-01-01

    The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico is being used to simulate the thermal pulse from a nuclear weapon on relatively large surfaces. Pulses varying in length from 2 seconds to 7 seconds have been produced. The desired pulse length varies as a function of the yield of the weapon being simulated. The present experiment capability can accommodate samples as large as 1.2 {times} 1.5 meters. Samples can be flat or three-dimensional. Samples exposed have ranged from fabrics (protective clothing) to an aircraft canopy and cockpit system, complete with a mannequin in a flight suit and helmet. In addition, a windowed wind tunnel has been constructed which permits exposure of flight surface materials to thermal transients with air speed of Mach 0.8. The wind tunnel can accommodate samples up to .48 {times} .76 meters or an array of smaller samples. The maximum flux capability of the NSTTF is about 70 calories/cm{sup 2}-sec. A black-body temperature of about 6000 K is produced by the solar beam and is therefore ideal for simulating the nuclear source. 3 refs., 7 figs.

  19. Concentration of Actinides in Plant Mounds at Safety Test Nuclear Sites in Nevada

    SciTech Connect (OSTI)

    David S. Shafer; Jenna Gommes

    2008-09-15

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around large shrubs and are common features in deserts in the southwestern United States. Believed to be an important factor in their formation, the shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, {sup 241}Am, and U in plant mounds at safety test sites. The NAEG studies found concentrations of these contaminants to be greater in shrub mounds than in the surrounding areas of desert pavement. For example, at Project 57 on the NTTR, it was estimated that 15 percent of the radionuclide inventory of the site was associated with shrub mounds, which accounted for 17 percent of the surface area of the site, a ratio of inventory to area of 0.85. At Clean Slate III at the TTR, 29 percent of the inventory was associated with approximately 32 percent of the site covered by shrub mounds, a ratio of 0.91. While the total inventory of radionuclides in intershrub areas was greater, the ratio of radionuclide inventory to area was 0.40 and 0.38, respectively, at the two sites. The comparison between the shrub mounds and adjacent desert pavement areas was made for only the top 5 cm since radionuclides at safety test sites are concentrated in the top 5 cm of intershrub areas. Not accounting for radionuclides associated with the shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. As part of its Environmental Restoration Soils Subproject, the U.S. Department of Energy (DOE), National Nuclear

  20. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    SciTech Connect (OSTI)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E; Zavarin, Mavrik

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  1. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    SciTech Connect (OSTI)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  2. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    SciTech Connect (OSTI)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  3. Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    SciTech Connect (OSTI)

    Taylor, S.R.; Kamm, J.R.

    1993-11-01

    The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.

  4. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  5. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  6. An Empirical Study on Ultrasonic Testing in Lieu of Radiography for Nuclear Power Plants

    SciTech Connect (OSTI)

    Moran, Traci L.; Pardini, Allan F.; Ramuhalli, Pradeep; Prowant, Matthew S.; Mathews, Royce

    2012-09-01

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for inspecting nuclear power plant (NPP) components. A primary objective of this work is to evaluate UT techniques to assess their ability to detect, locate, size, and characterize fabrication flaws in typical NPP weldments. This particular study focused on the evaluation of four carbon steel pipe-to-pipe welds on specimens that ranged in thicknesses from 19.05 mm (0.75 in.) to 27.8 mm (1.094 in.) and were 355.6 mm (14.0 in.) or 406.4 mm (16.0 in.) in diameter. The pipe welds contained both implanted (intentional) fabrication flaws as well as bonus (unintentional) flaws throughout the entire thickness of the weld and the adjacent base material. The fabrication flaws were a combination of planar and volumetric flaw types, including incomplete fusion, incomplete penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array UT (PA UT) techniques applied primarily for detection and length sizing of the flaws. Radiographic examinations were also conducted on the specimens with RT detection and length sizing results being used to establish true state. This paper will discuss the comparison of UT and RT (true state) detection results conducted to date along with a discussion on the technical gaps that need to be addressed before these methods can be used interchangeably for repair and replacement activities for NPP components.

  7. nuclear forensics

    National Nuclear Security Administration (NNSA)

    serves as the premier technical leader in responding to and successfully resolving nuclear and radiological threats worldwide. When the need arises, NNSA is prepared to...

  8. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  9. Testing, licensing, and code requirements for seismic isolation systems (for nuclear power plants)

    SciTech Connect (OSTI)

    Seidensticker, R.W.

    1987-01-01

    The use of seismic isolation as an earthquake hazard mitigation strategy for nuclear reactor power plants is rapidly receiving interest throughout the world. Seismic isolation has already been used on at least two French PWR plants, was to have been used for plants to be built in Iran, and is under serious consideration for advanced LMR plants (in the US, UK, France, and Japan). In addition, there is a growing use of seismic isolation throughout the world for other critical facilities such as hospitals, emergency facilities, buildings with very high-cost equipment (e.g., computers) and as a strategy to reduce loss of life and expensive equipment in earthquakes. Such a design approach is in complete contrast to the conventional seismic design strategy in which the structure and components are provided with sufficient strength and ductility to resist the earthquake forces and to prevent structural collapses or failure. The use of seismic isolation for nuclear plants can, therefore, be expected to be a significant licensing issue. For isolation, the licensing process must shift away in large measure from the superstructure and concentrate on the behavior of the seismic isolation system. This paper is not intended to promote the advantages of seismic isolation system, but to explore in some detail those technical issues which must be satisfactorily addressed to achieve full licensability of the use of seismic isolation as a viable, attractive and economical alternative to current traditional design approaches. Special problems and topics associated with testing and codes and standards development are addressed. A positive program for approach or strategy to secure licensing is presented.

  10. Seismic fragility evaluation of a piping system in a nuclear power plant by shaking table test and numerical analysis

    SciTech Connect (OSTI)

    Kim, M. K.; Kim, J. H.; Choi, I. K.

    2012-07-01

    In this study, a seismic fragility evaluation of the piping system in a nuclear power plant was performed. For the evaluation of seismic fragility of the piping system, this research was progressed as three steps. At first, several piping element capacity tests were performed. The monotonic and cyclic loading tests were conducted under the same internal pressure level of actual nuclear power plants to evaluate the performance. The cracks and wall thinning were considered as degradation factors of the piping system. Second, a shaking tale test was performed for an evaluation of seismic capacity of a selected piping system. The multi-support seismic excitation was performed for the considering a difference of an elevation of support. Finally, a numerical analysis was performed for the assessment of seismic fragility of piping system. As a result, a seismic fragility for piping system of NPP in Korea by using a shaking table test and numerical analysis. (authors)

  11. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    SciTech Connect (OSTI)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables.

  12. Remediation of the Faultless Underground Nuclear Test: Moving Forward in the Face of Model Uncertainty

    SciTech Connect (OSTI)

    Chapman, J. B.; Pohlmann, K.; Pohll, G.; Hassan, A.; Sanders, P.; Sanchez, M.; Jaunarajs, S.

    2002-02-26

    The Faultless underground nuclear test, conducted in central Nevada, is the site of an ongoing environmental remediation effort that has successfully progressed through numerous technical challenges due to close cooperation between the U.S. Department of Energy, (DOE) National Nuclear Security Administration and the State of Nevada Division of Environmental Protection (NDEP). The challenges faced at this site are similar to those of many other sites of groundwater contamination: substantial uncertainties due to the relative lack of data from a highly heterogeneous subsurface environment. Knowing when, where, and how to devote the often enormous resources needed to collect new data is a common problem, and one that can cause remediators and regulators to disagree and stall progress toward closing sites. For Faultless, a variety of numerical modeling techniques and statistical tools are used to provide the information needed for DOE and NDEP to confidently move forward along the remediation path to site closure. A general framework for remediation was established in an agreement and consent order between DOE and the State of Nevada that recognized that no cost-effective technology currently exists to remove the source of contaminants in nuclear cavities. Rather, the emphasis of the corrective action is on identifying the impacted groundwater resource and ensuring protection of human health and the environment from the contamination through monitoring. As a result, groundwater flow and transport modeling is the linchpin in the remediation effort. An early issue was whether or not new site data should be collected via drilling and testing prior to modeling. After several iterations of the Corrective Action Investigation Plan, all parties agreed that sufficient data existed to support a flow and transport model for the site. Though several aspects of uncertainty were included in the subsequent modeling work, concerns remained regarding uncertainty in individual

  13. An Assessment of the Current Day Impact of Various Materials Associated with the U.S. Nuclear Test Program in the Marshall Island

    SciTech Connect (OSTI)

    Robison, W L; Noshkin, V E; Hamilton, T F; Conrado, C L; Bogen, K T

    2001-05-01

    Different stable elements, and some natural and man-made radionuclides, were used as tracers or associated in other ways with nuclear devices that were detonated at Bikini and Enewetak Atolls as part of the U.S. nuclear testing program from 1946 through 1958. The question has been raised whether any of these materials dispersed by the explosions could be of sufficient concentration in either the marine environment or on the coral islands to be of a health concern to people living, or planning to live, on the atolls. This report addresses that concern. An inventory of the materials involved during the test period was prepared and provided to us by the Office of Defense Programs (DP) of the United States Department of Energy (DOE). The materials that the DOE and the Republic of the Marshall Islands (RMI) ask to be evaluated are--sulfur, arsenic, yttrium, tantalum, gold, rhodium, indium, tungsten, thallium, thorium-230,232 ({sup 230,232}Th), uranium-233,238 ({sup 233,238}U), polonium-210 ({sup 210}Po), curium-232 ({sup 232}Cu), and americium-241 ({sup 241}Am). The stable elements were used primarily as tracers for determining neutron energy and flux, and for other diagnostic purposes in the larger yield, multistage devices. It is reasonable to assume that these materials would be distributed in a similar manner as the fission products subsequent to detonation. A large inventory of fission product and uranium data was available for assessment. Detailed calculations show only a very small fraction of the fission products produced during the entire test series remain at the test site atolls. Consequently, based on the information provided, we conclude that the concentration of these materials in the atoll environment pose no adverse health effects to humans.

  14. Application of the implicit TENSOR code to studies of containment of undergound nuclear tests

    SciTech Connect (OSTI)

    Burton, D.E.; Bryan, J.B.; Lettis, L.A. Jr.; Rambo, J.T.

    1982-02-01

    The TENSOR code, a two-dimensional finite-difference code, has been used extensively for the solution of stress wave propagation problems in materials, particularly those associated with the containment of underground nuclear test. These problems are typically characterized by shock waves at early times and by nearly incompressible flow at later times. To address this type of problem more economically, an implicit Newmark time integration has been implemented. Implicit differencing requires the solution of a coupled system of equations, by either direct or interative methods. An iterative technique has been selected to reduce the impact of the algorithm on the code structure and because it is the more economical method when only modest increases in timestep are desired. Although the algorithm is similar in some respects to the ICE method of Harlow and Amsden, substantial differences are required by the involvement of a complete stress tensor (instead of a scalar pressure) and by the highly nonlinear nature of the earth material constitutive relations.

  15. Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test

    SciTech Connect (OSTI)

    Lewis, L. A.; Knight, K. B.; Matzel, J. E.; Prussin, S. G.; Zimmer, M. M.; Kinman, W S; Ryerson, F. J.; Hutcheon, I. D.

    2015-07-28

    The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U (238U/235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/238U < 11.84 among all five spherules and 0.02 < 235U/238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/238U ratio is correlated with changes in major element composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/238U, 235U/238U, and 236U/238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.

  16. Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, L. A.; Knight, K. B.; Matzel, J. E.; Prussin, S. G.; Zimmer, M. M.; Kinman, W S; Ryerson, F. J.; Hutcheon, I. D.

    2015-07-28

    The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U (238U/235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/238U < 11.84 among all five spherules and 0.02 < 235U/238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/238U ratio is correlated with changes in major element composition, suggesting the agglomeration ofmore » chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/238U, 235U/238U, and 236U/238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.« less

  17. Method of preparing gas tags for identification of single and multiple failures of nuclear reactor fuel assemblies

    DOE Patents [OSTI]

    McCormick, Norman J.

    1976-01-01

    For use in the identification of failed fuel assemblies in a nuclear reactor, the ratios of the tag gas isotopic concentrations are located on curved surfaces to enable the ratios corresponding to failure of a single fuel assembly to be distinguished from those formed from any combination of two or more failed assemblies.

  18. Cultural Resource Investigations for the Resumption of Transient Testing of Nuclear Fuels and Material at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R. Pace; Julie B. Williams

    2013-11-01

    The U. S. Department of Energy (DOE) has a need to test nuclear fuels under conditions that subject them to short bursts of intense, high-power radiation called ‘transient testing’ in order to gain important information necessary for licensing new nuclear fuels for use in U.S. nuclear power plants, for developing information to help improve current nuclear power plant performance and sustainability, for improving the affordability of new generation reactors, for developing recyclable nuclear fuels, and for developing fuels that inhibit any repurposing into nuclear weapons. To meet this mission need, DOE is considering alternatives for re-use and modification of existing nuclear reactor facilities to support a renewed transient testing program. One alternative under consideration involves restarting the Transient Reactor Test (TREAT) reactor located at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL) site in southeastern Idaho. This report summarizes cultural resource investigations conducted by the INL Cultural Resource Management Office in 2013 to support environmental review of activities associated with restarting the TREAT reactor at the INL. These investigations were completed in order to identify and assess the significance of cultural resources within areas of potential effect associated with the proposed action and determine if the TREAT alternative would affect significant cultural resources or historic properties that are eligible for nomination to the National Register of Historic Places. No archaeological resources were identified in the direct area of potential effects for the project, but four of the buildings proposed for modifications are evaluated as historic properties, potentially eligible for nomination to the National Register of Historic Places. This includes the TREAT reactor (building #), control building (building #), guardhouse (building #), and warehouse (building #). The proposed re-use of these historic

  19. A report on high-level nuclear waste transportation: Prepared pursuant to assembly concurrent resolution No. 8 of the 1987 Nevada Legislature

    SciTech Connect (OSTI)

    1988-12-01

    This report has been prepared by the staff of the State of Nevada Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) in response to Assembly Concurrent Resolution No. 8 (ACR 8), passed by the Nevada State Legislature in 1987. ACR 8 directed the NWPO, in cooperation with affected local governments and the Legislative committee on High-Level Radioactive Waste, to prepare this report which scrutinizes the US Department of Energy`s (DOE) plans for transportation of high-level radioactive waste to the proposed yucca Mountain repository, which reviews the regulatory structure under which shipments to a repository would be made and which presents NWPO`s plans for addressing high-level radioactive waste transportation issues. The report is divided into three major sections. Section 1.0 provides a review of DOE`s statutory requirements, its repository transportation program and plans, the major policy, programmatic, technical and institutional issues and specific areas of concern for the State of Nevada. Section 2.0 contains a description of the current federal, state and tribal transportation regulatory environment within which nuclear waste is shipped and a discussion of regulatory issues which must be resolved in order for the State to minimize risks and adverse impacts to its citizens. Section 3.0 contains the NWPO plan for the study and management of repository-related transportation. The plan addresses four areas, including policy and program management, regulatory studies, technical reviews and studies and institutional relationships. A fourth section provides recommendations for consideration by State and local officials which would assist the State in meeting the objectives of the plan.

  20. Summary of results from the Series 2 and Series 3 NNWSI [Nevada Nuclear Waste Storage Investigations] bare fuel dissolution tests

    SciTech Connect (OSTI)

    Wilson, C.N.

    1987-11-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is studying dissolution and radionuclide release behavior of spent nuclear fuel in Nevada Test Site groundwater. Specimens were tested for multiple cycles in J-13 well water. The Series 2 tests were run in unsealed silica vessels under ambient hot cell air (25{sup 0}C) for five cycles for a total of 34 months. The Series 3 tests were run in sealed stainless steel vessels at 25{sup 0}C and 85{sup 0}C for three cycles for a total of 15 months. Selected summary results from Series 2 and Series 3 tests with bare fuel specimens are reported. Uranium concentrations in later test cycles ranged from 1 to 2 {mu}g/ml in the Series 2 Tests versus about 0.1 to 0.4 {mu}g/ml in Series 3 with the lowest concentrations occurring in the 85{sup 0}C tests. Preferential release of fission products Cs, I, Sr and Tc, and activation product C-14, was indicated relative to the actinides. Tc-99 and Cs-137 activities measured in solution after Cycle 1 increased linearly with time, with the rate of increase greater at 85{sup 0}C than at 25{sup 0}C. 8 refs., 8 figs., 3 tabs.

  1. TESTING DIAGNOSTICS OF NUCLEAR ACTIVITY AND STAR FORMATION IN GALAXIES AT z > 1

    SciTech Connect (OSTI)

    Trump, Jonathan R.; Barro, Guillermo; Koo, David C.; Faber, S. M.; Kocevski, Dale D.; Yan, Renbin; Juneau, Stephanie; McLean, Ian S.; Perez-Gonzalez, Pablo G.; Villar, Victor

    2013-01-20

    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z {approx} 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/H{beta} ratio is insufficient as an active galactic nucleus (AGN) indicator at z > 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/H{beta} versus [N II]/H{alpha} and [S II]/H{alpha}) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that 'composite' galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly {approx}2/3 of the z {approx} 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z > 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.

  2. An updated dose assessment for a U.S. Nuclear Test Site - Bikini Atoll

    SciTech Connect (OSTI)

    Robison, W.L.; Bogen, K.T.; Conrado, C.L.

    1995-10-01

    On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. There has been a continuing effort since 1977 to refine dose assessments for resettlement options at Bikini Atoll. Here we provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island as part of our continuing research and monitoring program that began in 1975. The unique composition of coral soil greatly alters the relative contribution of cesium-137 ({sup 137}Cs) and strontium-90 ({sup 90}Sr) to the total estimated dose relative to expectations based on North American and European soils. Without counter measures, cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The doses are calculated assuming a resettlement date of 1999. The estimated maximum annual effective dose for current island conditions is 4.0 mSv when imported foods, which are now an established part of the diet, are available. The corresponding 30-, 50-, and 70-y integral effective doses are 9.1 cSv, 13 cSv, and 15 cSv, respectively. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be {plus_minus}35% of its expected value. We have evaluated various countermeasures to reduce {sup 137}Cs in food crops. Treatment with potassium reduces the uptake of {sup 137}Cs into food crops, and therefore the ingestion dose, to about 5% of pretreatment levels and has essentially no negative environmental consequences.

  3. Evaluation of Cavity Collapse and Surface Crater Formation at the Norbo Underground Nuclear Test in U8c, Nevada Nuclear Security Site, and the Impact on Stability of the Ground Surface

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-06-18

    Lawrence Livermore National Laboratory (LLNL) Containment Program performed a review of nuclear test-related data for the Norbo underground nuclear test in U8c to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. This request is similar to one made for the Salut site in U8c (Pawloski, 2012b). Review of the Norbo site is complicated because the test first exhibited subsurface collapse, which was not unusual, but it then collapsed to the surface over one year later, which was unusual. Of particular interest is the stability of the ground surface above the Norbo detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeology due to the nuclear detonation. Aviva Sussman from the Los Alamos National Laboratory (LANL) has also proposed work at this site. Both proposals require physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Security Site (NNSS), formerly the Nevada Test Site (NTS), and focus on possible activities such as visual observation, multispectral measurements, and shallow and deep geophysical surveys.

  4. Comprehensive Nuclear-Test-Ban Treaty seismic monitoring: 2012 USNAS report and recent explosions, earthquakes, and other seismic sources

    SciTech Connect (OSTI)

    Richards, Paul G.

    2014-05-09

    A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major study published in March 2012 by the US National Academy of Sciences.

  5. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater

  6. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2006

    SciTech Connect (OSTI)

    Pawloski, G A; Raschke, K

    2006-03-16

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of Bechtel Nevada and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year Bechtel Nevada establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemistry Biology and Nuclear Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  7. Implementation of test for quality assurance in nuclear medicine gamma camera

    SciTech Connect (OSTI)

    Montoya Moreno, A.; Rodriguez Laguna, A.; Trujillo Zamudio, Flavio E

    2012-10-23

    In nuclear medicine (NM) over 90% of procedures are performed for diagnostic purposes. To ensure adequate diagnostic quality of images and the optimization of the doses received by patients originated from the radioactive material is essential for regular monitoring and equipment performance through a quality assurance program (QAP). The QAP consists of 15 proposed performance tomographic and not tomographic gamma camera (GC) tests, and is based on recommendations of international organizations. We describe some results of the performance parameters of QAP applied to a GC model e.cam Siemens, of the Department of NM of the National Cancer Institute of Mexico (INCan). The results were: (1) The average intrinsic spatial resolution (R{sub in}) was 4.67 {+-} 0.25 mm at the limit of acceptance criterion of 4.4 mm. (2) The sensitivity extrinsic (S{sub ext}), with maximum variations of 1.8% (less than 2% which is the criterion of acceptance). (3) Rotational Uniformity (U{sub rot}), with values of integral uniformity (IU) in the useful field of view detector (UFOV), with maximum percentage change of 0.97% and monthly variations equal angles, ranging from 0.13 to 0.99% less than 1%. (4) The displacement of the center of rotation (DCOR), indicated a maximum deviation of 0.155 {+-} 0.039 mm less than 4.795 mm, an absolute deviation of less than 0.5 where pixel 0.085 pixel is suggested, the criteria are assigned to low-energy collimator high resolution. (5) In tomographic uniformity (U{sub tomo}), UI values (%) and percentage noise level (rms%) were 7.54 {+-} 1.53 and 4.18 {+-} 1.69 which are consistent with the limits of acceptance of 7.0-12.0% and 3.0-6.0% respectively. The smallest cold sphere has a diameter of 11.4 mm. The implementation of a QAP allows for high quality diagnostic images, optimization of the doses given to patients, a reduction of exposure to occupationally exposed workers (POE, by its Spanish acronym), and generally improves the productivity of the

  8. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  9. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect (OSTI)

    A., B

    2008-07-31

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected

  10. Tests of time independence of the electron and nuclear masses with ultracold molecules

    SciTech Connect (OSTI)

    Schiller, S.; Korobov, V.

    2005-03-01

    We propose to use laser spectroscopy of ultracold molecules to establish improved limits on the time independence of electron-to-nuclear and nuclear-nuclear mass ratios by comparing, via an optical frequency comb, the frequencies of suitable sets of transitions in the ground electronic state. Hydrogen molecular ions trapped in a radiofrequency trap, sympathetically cooled by atomic ions, are identified as an accessible system. We show that the dipole-allowed rovibrational transition frequencies of HD{sup +} are suitable probes for a time dependence of m{sub e}/m{sub p} or m{sub p}/m{sub d}. Separate bounds on the time independence of these constants can be obtained from a comparison of HD{sup +} and H{sub 2}{sup +} transitions frequencies. Spectroscopy of single molecular ions via a quantum jump method is proposed as an approach toward ultrahigh precision.

  11. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    SciTech Connect (OSTI)

    1997-08-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs.

  12. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    SciTech Connect (OSTI)

    Brown, Austin Douglas; Runnels, Joel T.; Moore, Murray E.; Reeves, Kirk Patrick

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair

  13. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2007

    SciTech Connect (OSTI)

    Roberts, S K; Pawloski, G A; Raschke, K

    2007-04-26

    This report describes evaluation of collapse evolution for selected LLNL underground nuclear tests at the Nevada Test Site (NTS). The work is being done at the request of NSTec and supports the Department of Energy National Nuclear Security Association Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program and the Chemical Sciences Division who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary

  14. Fourth flight test for W88 Alt 370 successful | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Fourth flight test for W88 Alt 370 successful Wednesday, March 16, 2016 - 12:39pm An unarmed test weapon is launched from the Ohio-class ballistic missile submarine USS Kentucky during a test at the Pacific Test Range in Hawaii. A successful test conducted by the U.S. Navy, in coordination with NNSA, marked the fourth of its kind in support of NNSA's W88 alteration (Alt) 370 program. The unarmed W88 warhead was launched atop a Trident II missile from the USS Kentucky

  15. Comparison of dynamic characteristics of Fukushima Nuclear Power Plant containment building determined from tests and earthquakes

    SciTech Connect (OSTI)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-10-01

    Modal parameters determined from response measured in dynamic tests and from analytical models for simulating the tests and two subsequent earthquakes experienced by the containment building of Unit 1 of the Fukushima Power Station complex in Japan are compared for the purpose of evaluating the effectiveness of the dynamic tests in earthquake response prediction. The tests are found to have led to the correct identification of a fundamental frequency. The lack of agreement between test- and earthquake-determined modeshapes and damping is attributable more to the shortcomings of the simulation models than to differences in actual behavior.

  16. INTEGRAL BENCHMARK DATA FOR NUCLEAR DATA TESTING THROUGH THE ICSBEP AND THE NEWLY ORGANIZED IRPHEP

    SciTech Connect (OSTI)

    J. Blair Briggs; Lori Scott; Yolanda Rugama; Enrico Satori

    2007-04-01

    The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) was last reported in a nuclear data conference at the International Conference on Nuclear Data for Science and Technology, ND-2004, in Santa Fe, New Mexico. Since that time the number and type of integral benchmarks have increased significantly. Included in the ICSBEP Handbook are criticality-alarm / shielding and fundamental physic benchmarks in addition to the traditional critical / subcritical benchmark data. Since ND 2004, a reactor physics counterpart to the ICSBEP, the International Reactor Physics Experiment Evaluation Project (IRPhEP) was initiated. The IRPhEP is patterned after the ICSBEP, but focuses on other integral measurements, such as buckling, spectral characteristics, reactivity effects, reactivity coefficients, kinetics measurements, reaction-rate and power distributions, nuclide compositions, and other miscellaneous-type measurements in addition to the critical configuration. The status of these two projects is discussed and selected benchmarks highlighted in this paper.

  17. High energy-density physics: From nuclear testing to the superlasers

    SciTech Connect (OSTI)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  18. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-10-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors.

  19. Hybrid Statistical Testing for Nuclear Material Accounting Data and/or Process Monitoring Data

    SciTech Connect (OSTI)

    Ticknor, Lawrence O.; Hamada, Michael Scott; Sprinkle, James K.; Burr, Thomas Lee

    2015-04-14

    The two tests employed in the hybrid testing scheme are Page’s cumulative sums for all streams within a Balance Period (maximum of the maximums and average of the maximums) and Crosier’s multivariate cumulative sum applied to incremental cumulative sums across Balance Periods. The role of residuals for both kinds of data is discussed.

  20. Preparation of the Second Shipment of Spent Nuclear Fuel from the Ustav Jaderneho Vyzkumu Rez (UJV Rez), a.s., Czech Republic to the Russian Federation for Reprocessing - 13478

    SciTech Connect (OSTI)

    Trtilek, Radek; Podlaha, Josef [UJV Rez, a. s., Hlavni 130, 25068 Husinec-Rez (Czech Republic)] [UJV Rez, a. s., Hlavni 130, 25068 Husinec-Rez (Czech Republic)

    2013-07-01

    After more than 50 years of operation of the LVR-15 research reactor operated by the UJV Rez, a. s. (formerly Nuclear Research Institute - NRI), a large amount of the spent nuclear fuel (SNF) of Russian origin has been accumulated. In 2005 UJV Rez, a. s. jointed the Russian Research Reactor Fuel Return (RRRFR) program under the United States (US) - Russian Global Threat Reduction Initiative (GTRI) and started the process of SNF shipment from the LVR-15 research reactor back to the Russian Federation (RF). In 2007 the first shipment of SNF was realized. In 2011, preparation of the second shipment of spent fuel from the Czech Republic started. The experience obtained from the first shipment will be widely used, but some differences must be taken into the account. The second shipment will be realized in 2013 and will conclude the return transport of all, both fresh and spent, high-enriched nuclear fuel from the Czech Republic to the Russian Federation. After the shipment is completed, there will be only low-enriched nuclear fuel on the territory of the Czech Republic, containing maximum of 20% of U-235, which is the conventionally recognized limit between the low- and high-enriched nuclear materials. The experience (technical, organizational, administrative, logistic) obtained from the each SNF shipment as from the Czech Republic as from other countries using the Russian type research reactors are evaluated and projected onto preparation of next shipment of high enriched nuclear fuel back to the Russian Federation. The results shown all shipments provided by the UJV Rez, a. s. in the frame of the GTRI Program have been performed successfully and safely. It is expected the experience and results will be applied to preparation and completing of the Chinese Miniature Neutron Source Reactors (MNSR) Spent Nuclear Fuel Repatriation in the near future. (authors)

  1. Testing of nuclear grade lubricants and their effects on A540 B24 and A193 B7 bolting materials

    SciTech Connect (OSTI)

    Czajkowski, C.J.

    1985-01-01

    An investigation was performed on eleven commonly used lubricants by the nuclear power industry. The investigation included EDS analysis of the lubricants, notched-tensile constant extension rate testing of bolting materials with the lubricants, frictional testing of the lubricants and weight loss testing of a bonded solid film lubricant. The report generally concludes that there is a significant amount of variance in the mechanical properties of common bolting materials; that MoS/sub 2/ can hydrolyze to form H/sub 2/S at 100/sup 0/C and cause stress corrosion cracking (SCC) of bolting materials, and that the use of copper-containing lubricants can be potentially detrimental to high strength steels in an aqueous environment. Additionally, the testing of various lubricants disclosed that some lubricants contain potentially detrimental elements (e.g. S, Sb) which can promote SCC of the common bolting materials. One of the most significant findings of this report is the observation that both A193 B7 and A540 B24 bolting materials are susceptible to transgranular stress corrosion cracking in demineralized H/sub 2/O at 280/sup 0/C in notched tensile tests.

  2. Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Cox, Thomas S; Baldwin, Charles A; Bevard, Bruce Balkcom

    2013-08-01

    Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other

  3. Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts associated with the U.S. Department of Energy proposed action to conduct a lead test assembly program to confirm the viability of using a commercial...

  4. Sandia Participates in Preparation of New Mexico Renewable Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Preparation of New Mexico Renewable Energy Storage Report - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy

  5. Nuclear Energy Systems Laboratory (NESL) / Transient Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient Nuclear Fuels Testing - Sandia Energy Energy Search Icon Sandia Home Locations ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  6. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    SciTech Connect (OSTI)

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities.

  7. Simulated dry storage test of a spent PWR nuclear fuel assembly in air

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Gilbert, E.R.; Oden, D.R.; Stidham, D.L.; Garnier, J.E.; Weeks, D.L.; Dobbins, J.C.

    1985-02-01

    The purpose of the dry storage test was to investigate the behavior of Zircaloy-clad spent fuel in air between 200 and 275/sup 0/C. Atmospheric air was used for the cover gas because of the interest in establishing regimes where air inleakage into an initially inert system would not cause potential fuel degradation. Samples of the cover gas atmosphere were extracted monthly to determine fission gas concentrations as a function of time. The oxygen concentration was monitored to detect oxygen depletion, which would signal oxidation of the fuel. The gas analyses indicated very low but detectable levels of /sup 85/Kr during the first month of the test. A large increase (five orders of magnitude) in /sup 85/Kr and the appearance of helium in the cover gas indicated that a fuel rod had breached during the second month of the test. Stress rupture calculations showed that the stresses and temperatures were too low to expect breaches to form in defect-free cladding. It is theorized that the breach occurred in a fuel rod weakened by an existing cladding or end cap defect. Calculations based on the rate of /sup 85/Kr release suggest that the diameter of the initial breach was about 25 microns. A post-test fuel examination will be performed to locate and investigate the cause of the cladding breach and to determine if detectable fuel degradation progressed after the breach occurred. The post-test evaluation will define the consequences of a fuel rod breach occurring in an air cover gas at 270/sup 0/C, followed by subsequent exposure to air at a prototypic descending temperature.

  8. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    SciTech Connect (OSTI)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  9. Plan for glass waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    SciTech Connect (OSTI)

    Aines, R.D.

    1987-09-01

    The purpose of glass waste form testing is to determine the rate of release of radionuclides from breached glass waste containers. This information will be used to qualify glass waste forms with respect to the release requirements. It will be the basis of the source term from glass waste for repository performance assessment modeling. This information will also serve as part of the source term in the calculation of cumulative releases after 100,000 years in the site evaluation process. It will also serve as part of the source term input for calculation of cumulative releases to the accessible environment for 10,000 years after disposal, to determine compliance with EPA regulations. This investigation will provide data to resolve information needs. Information about the waste forms which is provided by the producer will be accumulated and evaluated; the waste form will be tested, properties determined, and mechanisms of degradation determined; and models providing long-term evaluation of release rates designed and tested. 23 refs.

  10. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    SciTech Connect (OSTI)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G.

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.