Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

An Overview of Nuclear vs. Non-Nuclear Design Code Requirements for a Candidate Steam Supply System for Commercial Applications  

SciTech Connect

The objective is to identify (mostly for industrial end-users) the difference between a Section III nuclear steam generator (classified as Structures, Systems and Components (SSC)) and a Section VIII steam generator in the same general conditions, but used in a conventional application. Specifically, applicable temperature and pressure ranges and a more quantitative description of how materials change, design margins change and required design rigor changes are of interest. This overview focuses on the steam generator pressure boundary but the downstream piping will also be considered. Within the designations of Section III and Section VIII there are subcategories with their specific regions of applicability. Each of these subcategories has evolved their own unique features with respect to design rules and their implementation. A general overview of the various design codes will be provided in sufficient detail to illustrate the major differences; however, a detailed discussion of the various design requirements and their implementation is beyond the scope of this discussion. References (1) and (2) are sources of more detailed information. Also, example wall sizing calculations will be provided to illustrate the application of the relevant design codes under the candidate design conditions. The candidate steam supply Design Conditions are 600C (1112F) and 24MPa (3,480psi). The Operating Conditions or Service Levels will be somewhat lower and the difference shows up in some of the various design methodologies employed.

Robert Jetter

2011-04-01T23:59:59.000Z

2

ORTAP: a nuclear steam supply system simulation for the dynamic analysis of high temperature gas cooled reactor transients  

SciTech Connect

ORTAP was developed to predict the dynamic behavior of the high temperature gas cooled reactor (HTGR) Nuclear Steam Supply System for normal operational transients and postulated accident conditions. It was developed for the Nuclear Regulatory Commission (NRC) as an independent means of obtaining conservative predictions of the transient response of HTGRs over a wide range of conditions. The approach has been to build sufficient detail into the component models so that the coupling between the primary and secondary systems can be accurately represented and so that transients which cover a wide range of conditions can be simulated. System components which are modeled in ORTAP include the reactor core, a typical reheater and steam generator module, a typical helium circulator and circulator turbine and the turbine generator plant. The major plant control systems are also modeled. Normal operational transients which can be analyzed with ORTAP include reactor start-up and shutdown, normal and rapid load changes. Upset transients which can be analyzed with ORTAP include reactor trip, turbine trip and sudden reduction in feedwater flow. ORTAP has also been used to predict plant response to emergency or faulted conditions such as primary system depressurization, loss of primary coolant flow and uncontrolled removal of control poison from the reactor core.

Cleveland, J.C.; Hedrick, R.A.; Ball, S.J.; Delene, J.G.

1977-08-10T23:59:59.000Z

3

ORCENT2. Nuclear Steam Turbine Cycle Analysis  

SciTech Connect

ORCENT2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine-generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram.

Fuller, L.C. [Oak Ridge National Lab, TN (United States)

1979-07-01T23:59:59.000Z

4

NUCLEAR FLASH TYPE STEAM GENERATOR  

DOE Patents (OSTI)

A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

1962-09-01T23:59:59.000Z

5

Steam Reheat in Nuclear Power Plants.  

E-Print Network (OSTI)

??In this work, reheating steam from a commercial nuclear power plant is explored in order to increase efficiency and power output. A thermal source in… (more)

Marotta, Paul John

2012-01-01T23:59:59.000Z

6

STEAM GENERATOR FOR NUCLEAR REACTOR  

DOE Patents (OSTI)

The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)

Kinyon, B.W.; Whitman, G.D.

1963-07-16T23:59:59.000Z

7

Derwent cogeneration renews steam supply to Courtauld`s  

SciTech Connect

A 220 MW gas turbine CHP scheme replaces coal-fired boilers at Courtauld`s power station, near Derby, England. It provides steam both to processes and to drive the three existing back-pressure turbines. The scheme that has evolved comprises four MS6001B gas turbines, with fired dual-pressure heat recovery boilers and a 58 MW condensing steam turbine. The plant is of outdoor construction, sited next to the existing Spondon H. With the original coal-fired boilers now decommissioned, the three back-pressure turbines bridge across the HP and LP steam outputs of the new plant. The plant is designed for dual-fuel operation, but in practice will burn only gas. The plant was completed in March this year and was available as an emergency steam supply to cover outages in the coal-fired plant. 6 figs.

Jeffs, E.

1995-05-01T23:59:59.000Z

8

Downhole steam generator using low pressure fuel and air supply  

DOE Patents (OSTI)

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

9

Power plant and system for accelerating a cross compound turbine in such plant, especially one having an HTGR steam supply  

SciTech Connect

An electric power plant having a cross compound steam turbine and a steam source that includes a high temperature gas-cooled nuclear reactor is described. The steam turbine includes high and intermediate-pressure portions which drive a first generating means, and a low-pressure portion which drives a second generating means. The steam source supplies superheat steam to the high-pressure turbine portion, and an associated bypass permits the superheat steam to flow from the source to the exhaust of the high-pressure portion. The intermediate and low-pressure portions use reheat steam; an associated bypass permits reheat steam to flow from the source to the low-pressure exhaust. An auxiliary turbine driven by steam exhausted from the high-pressure portion and its bypass drives a gas blower to propel the coolant gas through the reactor. While the bypass flow of reheat steam is varied to maintain an elevated pressure of reheat steam upon its discharge from the source, both the first and second generating means and their associated turbines are accelerated initially by admitting steam to the intermediate and low-pressure portions. The electrical speed of the second generating means is equalized with that of the first generating means, whereupon the generating means are connected and acceleration proceeds under control of the flow through the high-pressure portion. 29 claims, 2 figures.

Jaegtnes, K.O.; Braytenbah, A.S.

1977-02-15T23:59:59.000Z

10

Apparatus and methods for supplying auxiliary steam in a combined cycle system  

SciTech Connect

To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

Gorman, William G. (Ballston Spa, NY); Carberg, William George (Ballston Spa, NY); Jones, Charles Michael (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

11

Ensure cogen steam supply with fresh-air-fired HRSGs  

Science Conference Proceedings (OSTI)

Heat-recovery steam generators (HRSG) are used to capture thermal energy from the exhaust of gas turbines (GT), thus increasing a plant's overall efficiency. Where additional steaming capacity--above what can be recovered from the GT exhaust--is required, supplementary-fired duct or register burners can be installed. Because gas-turbine exhaust contains a relatively high level of excess air, no additional ambient combustion air is required in most cases; only fuel is needed. This article describes fresh-air-fired HRSGs which are similar to supplementary-fired units, but employ forced- or induced-draft (FD or ID) fans to rapidly convert to fully fired operation in the absence of hot exhaust during GT outages. Thus, fresh-air firing (FAF) is typically employed only at industrial plants where steam needs are more critical than electric-power generation requirements. In most plants using FAF, the GT is isolated using a damper or slide gate during fully fired HRSG operation. In virtually all applications, an FD fan is engaged automatically when a significant drop in exhaust flow is sensed, permitting the conversion to FAF with little or no interruption to the steam supply. However, one plant in Oklahoma employs an ID air fan, which operates even during GT operation, ensuring very rapid, reliable changeover to the FAF mode.

Froemming, J.; Hjalmarson, L.; Houshmand, M.

1993-08-01T23:59:59.000Z

12

Propellant actuated nuclear reactor steam depressurization valve  

DOE Patents (OSTI)

A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

1992-01-01T23:59:59.000Z

13

POWER PLANT USING A STEAM-COOLED NUCLEAR REACTOR  

SciTech Connect

A method of providing efficient and economic means for obtaining reheat from nuclear heat is described. A steamcooled steam-moderated reactor produces high-pressure, high-temperature steam. A multi-stage steam turbine partially expands the high-pressure steam, which is then withdrawn and reheated, and then further expanded for producing useful power. The saturated steam is superheated by leading it through tubular passages provided in the fuel assemblies of a nuclear reactor, leading the useful part of the superheated steam into a steam turbine in which it expands to a predetermined intermediate pressure, leading the steam at that reduced pressure from the turbine back into the reactor where it is reheated by flowing through other tubular passages in the fuel assemblies, and returning the reheated steam to the turbine for further expansion. (M.C.G.)

Nettel, F.; Nakanishi, T.

1963-10-29T23:59:59.000Z

14

Adaptive temperature control system for the supply of steam to a steam turbine  

SciTech Connect

A combined-cycle steam turbine power generating plant is described including a heat recovery steam generator for outputting steam at an instantaneous temperature and pressure, and a steam turbine having rotor expanding steam therethrough from the steam generator; means providing a signal representative of the temperature of the rotor of the turbine; and means for controlling the generation of steam by the steam generator to control the temperature of steam in accordance with a predetermined temperature gradient, the combination of: function generator means responsive to a signal representative of steam turbine throttle pressure for providing a throttle pressure related steam limit temperature according to a constant enthalpy characteristic; bias means responsive to the rotor temperature representative signal for providing a bias signal in excess of the rotor temperature signal by a predetermined amount; means responsive to the larger of the limit temperature signal and the bias signal for controlling the generation of steam by the steam generator to control the temperature of steam to iteratively raise the temperature of the rotor in accordance with the constant enthalpy characteristic and the bias signal during soaking.

Martens, A.; Myers, G.A.

1986-05-20T23:59:59.000Z

15

Steam Generator Tube Integrity Facilities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

16

,,,"with Any"," Steam Turbines Supplied by Either Conventional...  

U.S. Energy Information Administration (EIA) Indexed Site

Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " ,,,"Cogeneration" "NAICS",,,"Technology" "Code(a)","Subsector and Industry","Establishments(b)","in...

17

Downhole steam generator using low-pressure fuel and air supply  

DOE Patents (OSTI)

For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

18

Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater  

SciTech Connect

An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

Luongo, M.C.

1975-08-12T23:59:59.000Z

19

Steam Generator Management Program  

Science Conference Proceedings (OSTI)

The 24th EPRI Steam Generator NDE Workshop took place in San Diego, California, July 1113, 2005. It covered one full day and two half days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE iss...

2005-12-08T23:59:59.000Z

20

Nuclear steam-generator transplant total rises  

Science Conference Proceedings (OSTI)

Several utilities with pressurized water reactors (PWRs) are replacing leaking and corroded steam generators. Over half the PWRs face corrosion problems that will cost $50 million to $100 million per unit to correct. An alternative approach of installing new tube sleeves has only had one application. Corrosion prevention still eludes utilities, whose problems differ. Westinghouse units were the first to experience corrosion problems because they have almost all operated for a decade or more. Some advances in condenser and steam-generator technology should extend the component life of younger units, and some leaking PWR tubes can be plugged. Operating differences may explain why PWRs have operated for over 20 years on submarines using phosphate water chemistry, while the use of de-aerators in the secondary-systems of foreign PWRs may explain their better performance. Among the corrective steps recommended by Stone and Webster are tighter chemistry control, better plant layup practices, revamping secondary-system hardware, condensate polishing, and de-aerators. Research continues to find the long-term preventative. 2 tables. (DCK)

Smock, R.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Analysis and decision document in support of acquisition of steam supply for the Hanford 200 Area  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is now evaluating its facility requirements in support of its cleanup mission at Hanford. One of the early findings is that the 200-Area steam plants, constructed in 1943, will not meet future space heating and process needs. Because the 200 Area will serve as the primary area for waste treatment and long-term storage, a reliable steam supply is a critical element of Hanford operations. This Analysis and Decision Document (ADD) is a preliminary review of the steam supply options available to the DOE. The ADD contains a comprehensive evaluation of the two major acquisition options: line-term versus privatization. It addresses the life-cycle costs associated with each alternative, as well as factors such as contracting requirements and the impact of market, safety, security, and regulatory issues. Specifically, this ADD documents current and future steam requirements for the 200 Area, describes alternatives available to DOE for meeting these requirements, and compares the alternatives across a number of decision criteria, including life-cycle cost. DOE has currently limited the ADD evaluation alternatives to replacing central steam plants rather than expanding the study to include alternative heat sources, such as a distributed network of boilers or heat pumps. Thirteen project alternatives were analyzed in the ADD. One of the alternatives was the rehabilitation of the existing 200-East coal-fired facility. The other twelve alternatives are combinations of (1) coal- or gas-fueled plants, (2) steam-only or cogeneration facilities, (3) primary or secondary cogeneration of electricity, and (4) public or private ownership.

Brown, D.R.; Daellenbach, K.K.; Hendrickson, P.L.; Kavanaugh, D.C.; Reilly, R.W.; Shankle, D.L.; Smith, S.A.; Weakley, S.A.; Williams, T.A. [Pacific Northwest Lab., Richland, WA (United States); Grant, T.F. [Battelle Human Affairs Research Center, Seattle, WA (United States)

1992-02-01T23:59:59.000Z

22

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector  

SciTech Connect

Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m{sup 2} without non-condensable gas condition in steam. (authors)

Yutaka Abe; Yujiro Kawamoto [University of Tsukuba, Tsukuba, Ibaraki (Japan); Chikako Iwaki [Toshiba Corporation (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

23

Dual turbine power plant and method of operating such plant, especially one having an HTGR steam supply  

SciTech Connect

A power plant including dual steam turbine-generators connected to pass superheat and reheat steam from a steam generator which derives heat from the coolant gas of a high temperature gas-cooled nuclear reactor is described. Associated with each turbine is a bypass line to conduct superheat steam in parallel with a high pressure turbine portion, and a bypass line to conduct superheat steam in parallel with a lower pressure turbine portion. Auxiliary steam turbines pass a portion of the steam flow to the reheater of the steam generator and drive gas blowers which circulate the coolant gas through the reactor and the steam source. Apparatus and method are disclosed for loading or unloading a turbine-generator while the other produces a steady power output. During such loading or unloading, the steam flows through the turbine portions are coordinated with the steam flows through the bypass lines for protection of the steam generator, and the pressure of reheated steam is regulated for improved performance of the gas blowers. 33 claims, 5 figures

Braytenbah, A.S.; Jaegtnes, K.O.

1977-02-15T23:59:59.000Z

24

Introduction to Nuclear Plant Steam Turbine Control Systems  

Science Conference Proceedings (OSTI)

Since Nuclear Power Plants produce their power through the use of Steam Turbine Generators, any problems associated with the Turbine Control System has a direct effect on power generation. Although considerable effort has been expended in improving control system reliability, failures resulting in lost generation and high maintenance cost still plague the industry. On an individual basis, improvements have been made through maintenance techniques, modifications and upgrades. Unfortunately, this informati...

1995-03-02T23:59:59.000Z

25

HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear  

National Nuclear Security Administration (NNSA)

HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear Security Summit: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > HEU Minimization and the Reliable Supply of ... Fact Sheet HEU Minimization and the Reliable Supply of Medical Isotopes Nuclear

26

High Temperature Steam Corrosion of Cladding for Nuclear Applications: Experimental  

SciTech Connect

Stability of cladding materials under off-normal conditions is an important issue for the safe operation of light water nuclear reactors. Metals, ceramics, and metal/ceramic composites are being investigated as substitutes for traditional zirconium-based cladding. To support down-selection of these advanced materials and designs, a test apparatus was constructed to study the onset and evolution of cladding oxidation, and deformation behavior of cladding materials, under loss-of-coolant accident scenarios. Preliminary oxidation tests were conducted in dry oxygen and in saturated steam/air environments at 1000OC. Tube samples of Zr-702, Zr-702 reinforced with 1 ply of a ß-SiC CMC overbraid, and sintered a-SiC were tested. Samples were induction heated by coupling to a molybdenum susceptor inside the tubes. The deformation behavior of He-pressurized tubes of Zr-702 and SiC CMC-reinforced Zr-702, heated to rupture, was also examined.

McHugh, Kevin M; Garnier, John E; Sergey Rashkeev; Michael V. Glazoff; George W. Griffith; Shannong M. Bragg-Sitton

2013-01-01T23:59:59.000Z

27

SOME SPECIAL APPLICATIONS OF WELDING IN STEAM, GAS TURBINE, AND NUCLEAR POWER PLANTS  

SciTech Connect

Six special applications of welding in steam, gasturbine, and nuclear power plants are described. Experiences are quoted of: the welding of austenittc steel gas-turbine rotors; the butt welding of heat-exchanger tubes in dissimilar metals; the welding of steam pipes for advanced steam conditions; welding in relation to feedwater heaters; the construction of expansion bellows in alloy steels; and the attachment of fins to heat-exchanger tubes. (auth)

Robertson, J.M.

1961-10-01T23:59:59.000Z

28

POWER SUPPLY EXPANSION AND THE NUCLEAR OPTION  

E-Print Network (OSTI)

the fact that eventually thermal plant is duplicated by CO -2 free nuclear power. Similarly), Autoproducing Power Plants in Poland: Technological Data, Warsaw 1993b. ______, Public Thermal Power Plants% of all generating capacity, 5.6 GW, is combined heat and power (CHP), or cogeneration, plant, which also

29

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

energy is an important source of power, supplying 20 energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear nonproliferation controls. To develop viable technical solutions, these interdependent challenges must be addressed through tightly integrated multidisciplinary research and development efforts. Los Alamos National Laboratory is playing a key role in

30

Mathematical model of steam generator feed system at power unit of nuclear plant  

Science Conference Proceedings (OSTI)

A mathematical model of a steam generator feed system at a power unit of a nuclear plant with variable values of transfer function coefficients is presented. The model is realized in the MATLAB/Simulink/Stateflow event-driven simulation.

E. M. Raskin; L. A. Denisova; V. P. Sinitsyn; Yu. V. Nesterov

2011-05-01T23:59:59.000Z

31

Steam Generator Management Program: Proceedings of the 26th Steam Generator NDE Workshop  

Science Conference Proceedings (OSTI)

This year's Steam Generator nondestructive evaluation (NDE) Workshop took place in Big Sky, Montana, on July 1618, 2007, and included one full day and two half days of presentations. Attendees included representatives from domestic and international nuclear utilities, nuclear steam supply system (NSSS) vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE ...

2007-08-29T23:59:59.000Z

32

Modeling of a horizontal steam generator for the submerged nuclear power station concept  

SciTech Connect

A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube`s inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

Palmrose, D.E.; Herring, J.S.

1993-05-01T23:59:59.000Z

33

Modeling of a horizontal steam generator for the submerged nuclear power station concept  

Science Conference Proceedings (OSTI)

A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube's inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.

Palmrose, D.E.; Herring, J.S.

1993-01-01T23:59:59.000Z

34

Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant  

SciTech Connect

Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

2011-01-01T23:59:59.000Z

35

Locating hot and cold-legs in a nuclear powered steam generation system  

DOE Patents (OSTI)

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

Ekeroth, D.E.; Corletti, M.M.

1993-11-16T23:59:59.000Z

36

Locating hot and cold-legs in a nuclear powered steam generation system  

SciTech Connect

A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

Ekeroth, Douglas E. (Delmont, PA); Corletti, Michael M. (New Kensington, PA)

1993-01-01T23:59:59.000Z

37

Nondestructive Evaluation: 27th Annual EPRI Steam Generator NDE Workshop  

Science Conference Proceedings (OSTI)

This years Steam Generator Nondestructive Evaluation (NDE) Workshop took place in Palm Desert, California, on July 2123, 2008, and included one full day and two half days of presentations. Attendees included representatives from domestic and international nuclear utilities, nuclear steam supply system (NSSS) vendors, NDE service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generato...

2008-09-15T23:59:59.000Z

38

23rd EPRI Steam Generator NDE Workshop Proceedings  

Science Conference Proceedings (OSTI)

The 23rd EPRI Steam Generator NDE Workshop took place in Chicago, Illinois, July 12–14, 2004, and was made up of one full day and two half days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam genera...

2004-11-08T23:59:59.000Z

39

Steam Generator Management Program: Proceedings of the 25th Steam Generator NDE Workshop  

Science Conference Proceedings (OSTI)

This year8217s workshop took place in Marco Island, Florida, on July 24 26, 2006, and included one full-day and two half-days of presentations. Attendees included representatives from domestic and international nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE issues and ...

2006-11-21T23:59:59.000Z

40

A STEAM POWER INSTALLATION FOR NUCLEAR POWER PLANT WITH GAS-COOLED REACTORS  

SciTech Connect

A steam power plant is designed for use with gas-cooled power reactors. In this plant, the turbine is divided into two sections, one high pressure and the other low pressure, the low-pressure turbine being the condensing turbine. The feed water from the condensing turbine is divided into two streams, one of which is brought to a higher pressure than the other. The high-pressure feed water is evaporated and superheated in the heat exchanger and then supplied to the high-pressure turbine, while the low-pressure feed water is evaporated and mixed with the exhaust steam of the highpressure turbine before superhenting and then passing to the low-pressure condensing turbine. Circulation of the reactor coolant is effected by a blower driven by a series turbine with no regulating devices and arranged in the steam plant circuit upstream of the low-pressure turbine; such a turbine works with constant efficiency over its whole load range. (D.L.C.)

1961-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by...

42

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from...

43

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (9) System Outline and Endurance Test of Low-Pressure Steam Injectors  

Science Conference Proceedings (OSTI)

A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. We are developing technology for 'Innovative Simplified Nuclear Power Plants' in order to further improve the economy and safety of nuclear power plants. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying 'High-Efficiency SI', which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feedwater heaters and Emergency Core Cooling Systems (ECCS) of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). The innovative-simplified nuclear power plant consists of a simplified feedwater heating system, a passive core injection system and a passive containment cooling system. This report describes the results of the endurance and performance tests of low-pressure SIs for feedwater heaters with Jet-deaerator and core injection system. A part of this report are fruits of research which is carried out by Tokyo Electric Power Company (TEPCO), Toshiba, and 7 Universities in Japan, funded from the Ministry of Economy, Trade and Industry (METI) of Japan as the national public research-funded program. (authors)

Shuichi Ohmori; Michitsugu Mori; Shoji Goto [Tokyo Electric Power Company (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Chikako Iwaki; Yutaka Asanuma [Toshiba Corporation (Japan)

2006-07-01T23:59:59.000Z

44

Main Generator Seal Oil Supply Reliability Improvements at Southern California Edison's San Onofre Nuclear Generating Station  

Science Conference Proceedings (OSTI)

This paper presents the justification for the approach, details and results of the Main Generator Seal Oil System reliability enhancements on the San Onofre Nuclear Generating Station, SONGS. The SONGS, Unit 3 experienced substantial turbine damage in early 2001 after the turbine bearings lubrication oil supply failed. During a loss of off-site power incident, power was lost to the two AC powered turbine lubrication oil pumps due to a breaker failure in the switchgear and the DC powered emergency bearing lubricating oil pump failed to start due to a breaker trip. The SONGS turbine generators coasted down from full speed to a full stop without lubricating oil. This resulted in significant bearing, journal and steam path damage that required a four-month duration repair outage during a time period where electricity was in short supply in the State of California. The generator hydrogen sealing system remained operable during this event, however it was recognized during the event follow up investigation that this system had vulnerabilities to failure similar to the bearing lubrication system. In order to prevent a reoccurrence of this extremely costly event, SONGS has taken actions to modify both of these critical turbine generator systems by adding additional, continuously operating pumps with a new, independent power source and independently routed cables. The main challenge was to integrate the additional equipment into the existing lubrication and seal oil systems. The lubrication Oil System was the first system to be retro-fitted and these results already have been presented. Reference 2. This paper provides the result of the reliability enhancements for the Main Generator Seal Oil System, which concludes the turbine/generator critical oil systems reliability improvements, performed by SONGS. It is worth noting that the design team discovered and corrected a number of other significant operational issues, which had been present from the early days and also learned a great deal of detailed information about this vital system during the project. The SONGS approach and findings are discussed in this paper, as well as a summary of the work performed. This technical paper will be of interest to utilities with a need to improve turbine generator reliability issues. (authors)

Simma, Fred Y.; Chetwynd, Russell J. [Southern California Edison, P.O. Box 800, Rosemead, CA 91770 (United States); Rowe, Stuart A. [Alstom Power Service (United States)

2006-07-01T23:59:59.000Z

45

Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?  

SciTech Connect

For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

2011-11-14T23:59:59.000Z

46

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

SciTech Connect

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

47

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

48

Issues Associated with IAEA Involvement in Assured Nuclear Fuel Supply Arrangements  

SciTech Connect

Assured nuclear fuel supply has been discussed at various times as a mechanism to help limit expansion of enrichment and reprocessing (E&R) capability beyond current technology holders. Given the events in the last few years in North Korea and Iran, concern over weapons capabilities gained from acquisition of E&R capabilities has heightened and brought assured nuclear fuel supply (AFS) again to the international agenda. Successful AFS programs can be valuable contributions to strengthening the nonproliferation regime and helping to build public support for expanding nuclear energy.

Kessler, Carol E.; Mathews, Carrie E.

2008-02-08T23:59:59.000Z

49

" "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," "  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 8.3;" 3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion Turbines with Heat Recovery",,,"Combined-Cycle Combusion Turbines",,,"Internal Combusion Engines with Heat Recovery",,," Steam Turbines Supplied by Heat Recovered from High-Temperature Processes",,,," " " "," " ," " "NAICS Code(a)","Subsector and Industry","Establishments(b)","Establishments with Any Cogeneration Technology in Use(c)","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

50

Nuclear plant design and modification guidelines for PWR steam generator reliability  

Science Conference Proceedings (OSTI)

Operating experience gathered from PWR plant operation during the 1960's and 1970's has been incorporated into a series of design guidelines for secondary plant systems and steam generators. Specific guidelines included in this volume are: plant design for PWR steam generator inspection and nondestructive testing, revision 1; guidelines for design of steam generator blowdown systems, revision 1; plant design guidelines for layup and cleanup of steam, feedwater, and condensate systems, revision 1; design guidelines for plant secondary systems, revision 1 and plant design for steam generator replaceability, revision 1. The guidelines are intended to address those aspects of new plant design which will minimize corrosion damage to steam generators by controlling impurity ingress, facilitate steam generator nondestructive testing and provide for eventual replacement of steam generator if necessary. The guidelines, last revised in 1986, are primarily applicable to new plant construction, however, some of the guidelines may also be applicable to major backfits to existing plants.

Not Available

1991-09-01T23:59:59.000Z

51

Power supply expansion and the nuclear option in Poland  

SciTech Connect

Poland is in the process of liberalizing and modernizing its electric power system. Given its heavy reliance on coal and a consequent history of often severe environmental externalities associated with power production, the nature of capacity expansion in Poland has important environmental and social implications. To better understand capacity expansion in Poland, we constructed a data set of the Polish power sector for use with the Elfin capacity expansion planning model. Using Elfin, we derived four scenarios and several sensitivities for new generating capacity construction. These scenarios simulate choices among several generic generating technologies made to achieve the lowest overall net present cost of operating the power system through 2015. We find that natural gas is a highly desirable fuel for future power generation in Poland, but primarily as a peaking resource. As the current system is inflexible and peaking capacity appears to be the most pressing need, this result is not surprising. However, when nuclear power is included as a generation option, natural gas is less desirable than the Polish Power Grid Company (PPGCo) has suggested, and, despite the PPGCo`s claims to the contrary, nuclear power cannot be ruled out in Poland on economic grounds alone. In the unconstrained Elfin scenarios, using PPGCo assumptions, nuclear power is attractive, especially after 2010. The attractiveness of nuclear generation proves sensitive to certain input variables, however, notably fixed operating and maintenance cost, and possible carbon taxes. Moreover, we find that the effectiveness of conservation efforts designed to reduce airborne emissions is limited under scenarios in which nuclear generation is adopted. 23 refs., 11 figs., 5 tabs.

Marnay, C.; Pickle, S.

1997-06-01T23:59:59.000Z

52

Multimegawatt space nuclear power supply, Phase 1 Final report  

Science Conference Proceedings (OSTI)

This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

Not Available

1989-02-17T23:59:59.000Z

53

Destructive Examination of Tube R31C66 From the Ginna Nuclear Plant Steam Generator  

Science Conference Proceedings (OSTI)

Like some other PWR steam generators, the Ginna plant has experienced loss of steam pressure for several years. Deposits of up to 8 mils thick have been found and may explain the steam pressure loss. In addition, destructive and nondestructive examinations found a through-wall crack in the roll transition of a hot leg tube removed from this plant as well as shallow intergranular attack (IGA) in the tubesheet crevice region.

1991-07-01T23:59:59.000Z

54

Steam Reforming Solidification of Cesium and Strontium Separations Product from Advanced Aqueous Processing of Spent Nuclear Fuel  

SciTech Connect

The Advanced Fuel Cycle Initiative program is conducting research on aqueous separations processes for the nuclear fuel cycle. This research includes development of solvent extraction processes for the separation of cesium and strontium from dissolved spent nuclear fuel solutions to reduce the short-term decay heat load. The cesium/strontium strip solution from candidate separation processes will require treatment and solidification for managed storage. Steam reforming is currently being investigated for stabilization of these streams because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach-resistant aluminosilicate minerals, such as pollucite. These ongoing experimental studies are being conducted to evaluate the effectiveness of steam reforming for this application.

Julia L. Tripp; T. G. Garn; R. D. Boardman; J. D. Law

2006-02-01T23:59:59.000Z

55

Global nuclear power supply chains and the rise of China's nuclear industry  

E-Print Network (OSTI)

China has embarked on a massive expansion of nuclear power that may fundamentally change the global nuclear industry, for better or for worse. Some industry observers argue that the incumbent nuclear power companies are ...

Metzler, Florian

2012-01-01T23:59:59.000Z

56

An Assessment of Tritium Supply Alternatives in Support of the U.S. Nuclear Weapons Stockpile  

Science Conference Proceedings (OSTI)

Nuclear weapons require the periodic replacement of tritium, a radioactive gas that decays at approximately 5.5 percent per year. Currently no tritium-supply facility exists in the US, and due to the decay, the tritium inventory will fall below the required ... Keywords: Decision Analysis-Multiple Criteria, Government-Defense

Detlof Von Winterfeldt; Eric Schweitzer

1998-01-01T23:59:59.000Z

57

Initial steam flow regulator for steam turbine start-up  

SciTech Connect

In a combined steam generator-turbine system, a drain type is provided in front of the stop valve to drain the first steam supply with the stop valve closed until the temperature of the valve and/or the temperature of the steam exceeds the temperature of saturation by a predetermined amount, and logic circuitry is provided to generate permissive signals which combine to allow successive admission of steam to the gland seal and to the steam turbine.

Martens, A.; Hobbs, M. M.

1985-12-31T23:59:59.000Z

58

Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants  

Science Conference Proceedings (OSTI)

Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

Woo, H.H.; Lu, S.C.

1981-09-15T23:59:59.000Z

59

Nuclear steam turbines for power production in combination with district heating and desalination  

SciTech Connect

The optimization of the turbine plant of a nuclear power station in combination with heat production is dependent upon many factors, the most important being the heat requirements, full-load equivalent operating time, and the heat transport distance, i.e., the trunk mains' costs. With hot-water-based heat transport, this usually results in a large temperature difference between supply and return water and heating in two or three stages. The turbine can consist of a back-pressure turbine, a back-pressure turbine with condensing tail, or a condensing turbine with heat extractions. The most attractive solution from technical as well as economic points of view is the condensing turbine with extraction for district heating or desalination as appropriate. The turbines can be of conventional design, with only minor modifications needed to adapt them to the operating conditions concerned.

Frilund, B.; Knudsen, K.

1978-04-01T23:59:59.000Z

60

22nd Steam Generator NDE Workshop: June 30 - July 2, 2003, Hilton Head, South Carolina  

Science Conference Proceedings (OSTI)

This year's workshop took place in Hilton Head, South Carolina, from June 30th to July 2nd, 2003. It covered one full day and two half-days of presentations. Attendees included representatives from domestic and overseas nuclear utilities, nuclear steam supply system (NSSS) vendors, nondestructive evaluation (NDE) service and equipment organizations, research laboratories, and regulatory bodies. This annual workshop serves as a forum for NDE specialists to gather and discuss current steam generator NDE is...

2003-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Steam turbine plant  

SciTech Connect

A system for regulating the rate of closing of the turbine intake valve of a steam turbine plant is disclosed. A steam turbine is supplied from a steam generator through a turbine intake valve. A branch line conducts the steam to a bypass valve which is normally closed. In the event of conditions making it necessary to close the turbine intake valve rapidly, a regulator is provided to control the rate of closing of the turbine intake valve and the opening of the bypass valve so that the pressure conditions in the steam generator do not exceed the limits established by the manufacturer. Pressure measuring instruments are placed in the system to sense the pressure immediately upstream from the turbine intake valve and the bypass valve as well as the initial steam supply pressure. These pressure signals are transmitted to a computer which produces a control signal in accordance with predetermined conditions.

Skala, K.

1981-06-09T23:59:59.000Z

62

Project Management Guidance when Upgrading Steam Turbines at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

Many power producers upgrade steam turbines to gain megawatts (MW) instead of installing new capacity for a variety of reasons. The engineering challenges encounteredwhen managing procurement and adequately analyzing plant support systems affected by this upgradeare becoming more pronounced.

2007-01-15T23:59:59.000Z

63

Nuclear Plant Design and Modification Guidelines for PWR Steam Generator Reliability  

Science Conference Proceedings (OSTI)

Operating and maintenance experience relative to PWR steam generator reliability has produced a variety of "lessons learned." This information has been incorporated in a series of guidelines to aid utilities in major plant modifications and new plant construction.

1991-09-25T23:59:59.000Z

64

New technology for purging the steam generators of nuclear power plants  

Science Conference Proceedings (OSTI)

A technology for removal of undissolved impurities from a horizontal steam generator using purge water is developed on the basis of a theoretical analysis. A purge with a maximal flow rate is drawn off from the zone with the highest accumulation of sludge in the lower part of the steam generator after the main circulation pump of the corresponding loop is shut off and the temperatures of the heat transfer medium at the inlet and outlet of the steam generator have equilibrated. An improved purge configuration is used for this technology; it employs shutoff and regulator valves, periodic purge lines separated by a cutoff fixture, and a D{sub y} 100 drain union as a connector for the periodic purge. Field tests show that the efficiency of this technology for sludge removal by purge water is several times that for the standard method.

Budko, I. O.; Kutdjusov, Yu. F.; Gorburov, V. I. [Scientific-Research Center for Energy Technology 'NICE Centrenergo' (Russian Federation); Rjasnyj, S. I. [JSC 'The All-Rissia Nuklear Power Engineering Research and Development Institute' (VNIIAM) (Russian Federation)

2011-07-15T23:59:59.000Z

65

Steam turbine for geothermal power generation  

SciTech Connect

A steam turbine comprises a casing; turbine vanes rotatably set in the casing; a plurality of partition walls which extend along radial directions from the rotation center of the turbine vanes to define a plurality of steam valve chambers in the casing; steam supply pipes respectively connected to the corresponding steam valve chambers; and regulating valves which are fitted to the respective steam supply pipes to regulate respectively the flow rate of steam streams supplied to the respective steam valve chambers. At least one partition wall for dividing the interior space of the steam turbine into adjacent steam valve chambers is provided with at least one penetrating hole for causing the steam valve chambers to communicate with each other.

Tsujimura, K.; Hadano, Y.

1984-04-10T23:59:59.000Z

66

Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems  

SciTech Connect

The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design.

1977-01-01T23:59:59.000Z

67

Flash Steam Recovery Project  

E-Print Network (OSTI)

One of the goals of Vulcan's cost reduction effort is to reduce energy consumption in production facilities through energy optimization. As part of this program, the chloromethanes production unit, which produces a wide variety of chlorinated organic compounds, was targeted for improvement. This unit uses a portion of the high-pressure steam available from the plant's cogeneration facility. Continuous expansions within the unit had exceeded the optimum design capacity of the unit's steam/condensate recovery system, resulting in condensate flash steam losses to the atmosphere. Using computer simulation models and pinch analysis techniques, the Operational Excellence Group (Six Sigma) was able to identify a project to recover the flash steam losses as a supplemental low-pressure steam supply. The project was designed and implemented at no capital cost using existing instrumentation and controls. On an annualized basis steam usage per ton of product fell by about three percent. Absolute savings were about 15,800 million Btu.

Bronhold, C. J.

2000-04-01T23:59:59.000Z

68

The Development of Simulation Model for D2O Supply System in Heavy Water Nuclear Power Plant  

Science Conference Proceedings (OSTI)

The main purpose of this research is improvement of performance in control system for heavy water supply system of nuclear fuel change machine. Before started design of control system, the model of target system is needed because it is hard to test and ... Keywords: simulation, nuclear, heavy-water, D2O, MATLAB

Sung-Won Choi; Seong-Geun Kwak; Ji-Hyoung Ryu; Kil-To Chong; Chang-Goo Lee

2012-05-01T23:59:59.000Z

69

Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992  

SciTech Connect

This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

Carlisle, R.P.; Zenzen, J.M.

1994-01-01T23:59:59.000Z

70

Steam cooling system for a gas turbine  

SciTech Connect

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

Wilson, Ian David (Mauldin, SC); Barb, Kevin Joseph (Halfmoon, NY); Li, Ming Cheng (Cincinnati, OH); Hyde, Susan Marie (Schenectady, NY); Mashey, Thomas Charles (Coxsackie, NY); Wesorick, Ronald Richard (Albany, NY); Glynn, Christopher Charles (Hamilton, OH); Hemsworth, Martin C. (Cincinnati, OH)

2002-01-01T23:59:59.000Z

71

Steam generator support system  

SciTech Connect

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

72

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

73

[en] THERMOHIDRAULIC MODEL FOR A TYPICAL STEAM GENERATOR OF PWR NUCLEAR POWER PLANTS.  

E-Print Network (OSTI)

??[pt] Muitas centrais nucleares do tipo PWR utilizam vapor produzido em geradores de vapor do tipo tubos em U invertido, com recirculação interna natural, nos… (more)

CARLOS VALOIS MACIEL BRAGA

2011-01-01T23:59:59.000Z

74

Steam turbine gland seal control system  

SciTech Connect

A high pressure steam turbine having a sealing gland where the turbine rotor penetrates the casing of the turbine. Under certain conditions the gland is sealed by an auxiliary steam supply, and under other conditions the gland is self sealed by turbine inlet steam. A control system is provided to modify the temperature of the auxiliary steam to be more compatible with the self sealing steam, so as to eliminate thermal shock to the turbine rotor.

Martin, H. F.

1985-09-17T23:59:59.000Z

75

Solid particle magnetic deflection system for protection of steam turbine plants  

SciTech Connect

A method for removing metallic particles from a flow of steam supplied by a steam generator through a supply path to a steam turbine, the metallic particles being entrained in the flow of steam and, at least in part, having defoliated from boiler pipes of the steam generator is described comprising: defining an axial section of a predetermined axial direction, circumferential configuration and length, in the steam flow path from the steam generator to the steam turbine; producing a magnetic field in the defined section of the steam flow path; and trapping and collecting the deflected metallic particles, thereby to remove same from the flow of steam supplied to the turbine.

Viscovich, P.W.

1988-02-23T23:59:59.000Z

76

Steam Generator Replacement and Power Up-rating on Tihange 2 Nuclear Plant Safety Study Analyses  

SciTech Connect

The Tihange2 900 MWe 3-L PWR NPP, operated by the Belgian utility Electrabel, was first commissioned in 1982 with a design core power of 2775 MWth. Following an initial core power up-rating by 4,5% in 1995, Electrabel has since replaced the Steam Generators which has allowed a further core power increase by roughly 5% (total 10%) in 2001. For both of each projects, licensing and implementation studies were successfully performed by Tractebel Energy Engineering and Framatome ANP. The demanding new operating conditions required a complete review of the plant design basis for which advanced methods were applied and licensed through a continuous process of discussions with the client and the Belgian Safety Authorities AVN. The licensing process required flexibility in the methods application in order to meet the specific requirements of the S.A., which was achieved within the time schedule and without jeopardising the technical objectives of the utility. (authors)

Malaval, Andre; Marin-Lafleche, Pascale; Forgeot d'Arc, Myriam; Collin, Celine [Framatome ANP (France)

2002-07-01T23:59:59.000Z

77

Steam Generator Management Program: Alloy 800 Steam Generator Tubing Experience  

Science Conference Proceedings (OSTI)

Nuclear grade (NG) Alloy 800 has been used for steam generator tubing since 1972 in over 50 nuclear power plants worldwide. The operational performance of this alloy has been very good, although some degradation modes have recently been observed. This report describes worldwide operating experience for Alloy 800 steam generator tubing along with differences in tubing material, plant design, and operating conditions that can affect tube degradation. The various types of plants with Alloy 800 steam generat...

2012-06-26T23:59:59.000Z

78

Development of Technologies on Innovative Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (10) Application to a Small District-Heating Reactor  

SciTech Connect

A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to use as a passive ECCS pump and also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. In order to develop a high reliability passive ECCS pump and a compact feedwater heater, it is necessary to quantify the characteristics between physical properties of the flow field. We carried out experiments to observe the internal behavior of the water jet as well as measure the velocity of steam jet using a laser Doppler velocimetry. Its performance depends on the phenomena of steam condensation onto the water jet surface and heat transfer in the water jet due to turbulence on to the phase-interface. The analysis was also conducted by using a CFD code with the separate two-phase flow models. With regard to the simplified feed-water system, size of four-stage SI system is almost the same as the model SI that had done the steam and water test that pressures were same as that of current ABWR. The authors also conducted the hot water supply system test in the snow for a district heating. With regard to the SI core cooling system, the performance tests results showed that the low-pressure SI core cooling system will decrease the PCT to almost the same as the saturation temperature of the steam pressure in a pressure vessel. As it is compact equipment, SI is expected to bring about great simplification and materials-saving effects, while its simple structure ensures high reliability of its operation, thereby greatly contributing to the simplification of the power plant for not only an ABWR power plant but also a small PWR/ BWR for district heating system. (authors)

Tadashi Narabayashi; Yoichiro Shimadu; Toshiiro Murase; Masatoshi Nagai [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

79

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents (OSTI)

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

80

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The steam engine and industrialization  

E-Print Network (OSTI)

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

82

Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR  

DOE Patents (OSTI)

This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

Tokarz, R.D.

1981-10-27T23:59:59.000Z

83

Steam generator replacement overview  

Science Conference Proceedings (OSTI)

Since nuclear power began to be widely used for commercial purposes in the 1960s, unit operators have experienced a variety of problems with major components. Although many of the problems have diminished considerably, those associated with pressurized water reactor (PWR) steam generators persist. Steam generator problems rank second, behind refueling outages, as the most significant contributor to lost electricity generation. As of December 31, 1995, 38 steam generators had been replaced in 13 of the 72 operating PWRs, and three units had been shut down prematurely, due primarily (or partially) to degradation of their steam generators: Portland General Electric`s Trojan unit, located in Prescott, OR, in 1992; Southern California Edison`s San Onofre 1, located in San Clemente, CA, in 1992; and Sacramento Municipal Utility District`s Rancho Seco unit in 1989. In the coming years, operators of PWRs in the US with degraded steam generators will have to decide whether to make annual repairs (with eventual derating likely), replace the generators or shut the plants down prematurely. To understand the issues and decisions utility managers face, this article examines problems encountered at steam generators over the past few decades and identifies some of the remedies that utility operators and the nuclear community have employed, including operational changes, maintenance, repairs and steam generator replacement.

Chernoff, H. [Science Applications International Corp., McLean, VA (United States); Wade, K.C. [USDOE Energy Information Administration, Washington, DC (United States)

1996-01-01T23:59:59.000Z

84

IMPROVEMENTS IN OR RELATING TO STEAM GENERATING PLANT  

SciTech Connect

A nuclear power plant is designed using a heavy-watermoderated, steam- cooled reactor. In this plant, feed water is heated by the moderator and reactor steam to form feed steam, which is then superheated by superheated reactor steam and expanded through a nozzle. The feed steam issuing from the nozzie has added to it the superheated reactor steam, and the resulting steam is compressed, heated further in the reactor, and part of it passed to the turbine. (D.L.C.)

Bauer, S.G.; Jubb, D.H.

1962-10-10T23:59:59.000Z

85

Ultra-High Temperature Steam Corrosion of Complex Silicates for Nuclear Applications: A Computational Study  

SciTech Connect

Stability of materials under extreme conditions is an important issue for safety of nuclear reactors. Presently, silicon carbide (SiC) is being studied as a cladding material candidate for fuel rods in boiling-water and pressurized water-cooled reactors (BWRs and PWRs) that would substitute or modify traditional zircaloy materials. The rate of corrosion of the SiC ceramics in hot vapor environment (up to 2200 degrees C) simulating emergency conditions of light water reactor (LWR) depends on many environmental factors such as pressure, temperature, viscosity, and surface quality. Using the paralinear oxidation theory developed for ceramics in the combustion reactor environment, we estimated the corrosion rate of SiC ceramics under the conditions representing a significant power excursion in a LWR. It was established that a significant time – at least 100 h – is required for a typical SiC braiding to significantly degrade even in the most aggressive vapor environment (with temperatures up to 2200 °C) which is possible in a LWR at emergency condition. This provides evidence in favor of using the SiC coatings/braidings for additional protection of nuclear reactor rods against off-normal material degradation during power excursions or LOCA incidents. Additionally, we discuss possibilities of using other silica based ceramics in order to find materials with even higher corrosion resistance than SiC. In particular, we found that zircon (ZrSiO4) is also a very promising material for nuclear applications. Thermodynamic and first-principles atomic-scale calculations provide evidence of zircon thermodynamic stability in aggressive environments at least up to 1535 degrees C.

Sergey N. Rashkeev; Michael V. Glazoff; Akira Tokuhiro

2014-01-01T23:59:59.000Z

86

Steam Quality  

E-Print Network (OSTI)

"STEAM QUALITY has been generally defined as the amount of moisture/vapor (or lack thereof) contained within steam produced from some form of boiler. It has long been used as the standard term for the measurement of ""wet or dry"" steam and as a means of measuring enthalpy. Totally dry steam is said to be ""saturated"" steam. It is sometimes defined as the ""dryness faction"". The term in its historical denotation refers to a physical attribute of the steam. That attribute being ""what is the percentage water vapor content of the steam"" as compared to the amount of steam. Dry saturated steam is steam which carries no water vapor with it and is defined as having a quality of 1.00 (100%). Since water vapor is always present at the interface between the water level and the steam in a boiler, some water vapor will always tend to pass through the system with the steam. Hence, a continuing problem. If steam does carry water vapor past the separators it will tend to coalesce as a liquid, and in doing so it also will carry boiler chemicals with it."

Johnston, W.

1989-09-01T23:59:59.000Z

87

FM12 & rus Steam - Steam Users' Forums  

U.S. Energy Information Administration (EIA)

STORE COMMUNITY ABOUT SUPPORT Steam Users' Forums > Steam Game Discussions > D - G > Football Manager series

88

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold: 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in their early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were modeled using the process code HYSYS; a three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor and power conversion unit by means of an intermediate heat transport loop. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative heat exchanger size and turbomachinery work were estimated for the different working fluids. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. Recommendations on the optimal working fluid for each configuration were made. The helium working fluid produced the highest overall plant efficiency for the three-shaft and reheat cycle; however, the nitrogen-helium mixture produced similar efficiency with smaller component sizes. The CO2 working fluid is recommend in the combined cycle configuration.

Barner, Robert Buckner

2006-12-01T23:59:59.000Z

89

Cheng Cycle Brings Flexibility to Steam Plant  

E-Print Network (OSTI)

In 1983 Frito-Lay embarked on building a new 160,000 sq. ft. manufacturing facility in Kern County California. Based upon an estimated steam load between 5,000 and 50,000 lb/hr and an electrical load of approximately 1500 KW, the Engineering Department examined several energy optimization systems for this site. It was determined that a modified gas turbine cogeneration system was the best overall option. This system is unique in that it injects superheated steam from the waste heat boiler back into the gas turbine. When steam is injected into the turbine combustor, electrical output increases due to the increased mass flow and specific heat of the steam/air mixture. Electrical output ranges from 3.5 KW without injection to a theoretical 6.0 KW at maximum injection. Despite the volatility of nuclear power in California, project risk was low because the implementation of nuclear power would increase retail rates whereas the avoidance of nuclear power would increase avoided costs (buyback rates). When Frito-Lay decided, in 1983, to build a new snack food plant in Kern County, Calif., its main concern was to minimize the plant's total energy costs. The company therefore evaluated the various cogeneration options available and, for each option, conducted an energy-cost analysis. However, plant performance was not to be sacrificed in order to reduce the overall energy costs. After technical and economic analysis had been completed, Frito-Lay chose a cogeneration system using the Cheng Cycle---a gas-turbine system using steam injection that allows for efficient thermal tracking and simultaneous electrical generation. The company began construction of the Kern County plant to produce corn, tortilla, and potato chips in October 1984. Preliminary operation began in April 1986. The plant encompasses 160,000 ft, and is located just outside the city of Bakersfield. Steam is used for space heating as well as process applications. Total steam demand is expected to vary between 5000 and 55,000 lb/hr, depending on production and seasonal variations. The electrical usage of the plant is anticipated to fall between 1000 and 2500 kW, again depending on plant operations. Current utility energy costs are on the order of 50¢/therm for natural gas and 9¢/kWh for electricity. Cogeneration technology involves the simultaneous production of thermal and electrical energy. In Frito-Lay's case, the cogeneration system supplies steam for plant process needs and generates electricity for plant consumption and sale to the local utility. The modified gas turbine used in the plant is a Cheng Cycle Series Seven, Figure 1. It is a product of International Power Technology (IPT) of Palo Alto, Calif., which has patented the steam injection and control systems. The system is unique in that it injects superheated steam from the waste heat boiler back into the gas turbine. This steam injection process increases the electrical output of the turbine and improves cycle performance compared to traditional gas turbine systems.

Keller, D. C.; Bynum, D.; Kosla, L.

1987-09-01T23:59:59.000Z

90

Personnel supply and demand issues in the nuclear power industry. Final report of the Nuclear Manpower Study Committee  

SciTech Connect

The anticipated personnel needs of the nuclear power industry have varied widely in recent years, in response to both increasing regulatory requirements and declining orders for new plants. Recent employment patterns in the nuclear energy field, with their fluctuations, resemble those of defense industries more than those traditionally associated with electric utilities. Reactions to the accident at Three Mile Island Unit 2 by industry and regulators have increased the demand for trained and experienced personnel, causing salaries to rise. Industry, for example, has established several advisory organizations like the Institute for Nuclear Power Operations (INPO). At the same time, the US Nuclear Regulatory Commission (NRC) has imposed many new construction and operating requirements in an effort to take advantage of lessons learned from the Three Mile Island incident and to respond to the perceived public interest in better regulation of nuclear power. Thus, at present, utilities, architect-engineer firms, reactor vendors, and organizations in the nuclear development community have heavy workloads.

Not Available

1981-01-01T23:59:59.000Z

91

Steam electric plant factors, 1978. [48 states  

SciTech Connect

Fossil-fuel steam electric generation increased 5.8% in 1977 to 1,612.2 million MWh as compared to 1976. Thirty-four new fossil-fuel steam electric units and 7 new nuclear units became operational in 1977. Detailed data are reported for 748 plants, accounting for more than 99% of the total steam generation capacity, in the contiguous US.

1978-01-01T23:59:59.000Z

92

Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. The integrity assessments are normally performed during a reactor refueling outage. Nuclear power plant licensees who follow the guidance in this report will have satisfied the requirements for degradation assessments, condition monitoring, and operational assessment as defined in the Nuclear Energy Institute (NEI) Steam Generator Program Guidelin...

2009-11-19T23:59:59.000Z

93

Change steam tapping to save energy  

SciTech Connect

Induction turbines are common in large plants. They use both high pressure (HP) and low pressure (LP) steam and exhaust into a surface condenser operating under vacuum. Induction turbines are especially useful since they use maximum available LP steam with a balanced amount of HP steam and thus, achieve the best overall thermodynamic efficiency. LP steam is generally available as flash steam for boiler blow down, exhausts from back pressure turbines, process waste-heat recovery, etc. Typically, an LP steam header is routed around the plant with several connections to receive and supply steam. Therefore, it is common to connect each steam user/supplier to the nearest point on the main header. The portion of the header where steam turbine exhausts are connected has superheated LP steam and the header portion which receives steam from waste heat recovery, boiler blow down, etc., has saturated LP steam. Some portion of the header has mixed steam. Thus, the temperature of LP steam in the header varies over its length.

Antony, S.M.; Joshi, G.C.

1987-07-01T23:59:59.000Z

94

Steam Pricing  

E-Print Network (OSTI)

Steam is used in many plants to furnish both heat and mechanical energy. It is typically produced in several fired boilers which may operate at different pressures and with different efficiencies. It is then distributed throughout the plant to the various users in steam distribution systems, each one operating at a different pressure and temperature. This paper examines various ways to cost steam and discusses the importance of proper costing. Specifically it addresses three types of steam costs; Marginal Costs, Project Evaluation Costs and Financial Costs.

Jones, K. C.

1986-06-01T23:59:59.000Z

95

Steam Generator Integrity Assessment Guidelines  

Science Conference Proceedings (OSTI)

This report provides guidance for evaluating the condition of steam generator (SG) tubes based on nondestructive examination (NDE) or in situ pressure testing. This integrity assessment is normally performed during a reactor refueling outage. Nuclear power plant licensees who follow this document's guidelines will have satisfied their requirements for condition monitoring and operational assessment as defined in the Nuclear Energy Institute (NEI) initiative, Steam Generator Program Guidelines, NEI 97-06.

2006-07-25T23:59:59.000Z

96

Vapor generator steam drum spray head  

DOE Patents (OSTI)

A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.

Fasnacht, Jr., Floyd A. (Massillon, OH)

1978-07-18T23:59:59.000Z

97

Tests of Types 51A and 51M Steam Generators at Bugey 4 and Tricastin 1 Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report presents thermal-hydraulic and chemical sampling data obtained at various power levels from special instrumentation on Electricite de France's operating steam generators at Bugey-4 and Tricastin-1. The data include downcomer flow rates, shell temperatures, and temperatures and chemical concentrations near the secondary surface of tubesheets. These data are useful for qualifying thermal-hydraulic computer codes.

1982-10-01T23:59:59.000Z

98

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

(Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator Richard Redfield SteamThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Plant Operator Bohdan Sawa Steam Plant Operator Robert Tedesco Steam Plant Operator James Bradley

Raina, Ramesh

99

Nuclear Supply Chain Training - Warehouse Inventory Management v1.0  

Science Conference Proceedings (OSTI)

This software is a computer based training course that captures and communicates commercial nuclear industry-specific concepts to the end45user and assesses their skills. This software is a computer based training course that captures and communicates commercial nuclear industry45specific concepts to the end-user and assesses their skills. The course includes modules on inventory counting, issue and return, receiving and packaging, shipping, and foreign material exclusion. Platform Requirements Windows20...

2009-10-29T23:59:59.000Z

100

Steam inactivation of vegetative bacteria in ventilation air.  

E-Print Network (OSTI)

??Steam, made from abundant supply of clean water, is an inexpensive and thermally rich carrier of energy with the potential to deactivate the pathogens that… (more)

Nookong, Mookarin

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine  

SciTech Connect

The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

Eldrid, Sacheverel Q. (Saratoga Springs, NY); Salamah, Samir A. (Niskayuna, NY); DeStefano, Thomas Daniel (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

102

Laboratory Evaluations of Cobalt-Free, Nickel-Based Hard-Facing Alloys for Nuclear Applications  

Science Conference Proceedings (OSTI)

A number of international nuclear steam supply vendors specify cobalt-free hard-facing alloys to reduce radiation field buildup. Laboratory tests have identified several nickel-based alloys having the wear resistance and other properties acceptable for nuclear plant components.

1987-03-18T23:59:59.000Z

103

Optimized Control Of Steam Heating Coils  

E-Print Network (OSTI)

Steam has been widely used as the source of heating in commercial buildings and industries throughout the twentieth century. Even though contemporary designers have moved to hot water as the primary choice for heating, a large number of facilities still use steam for heating. Medical campuses with on-site steam generation and extensive distribution systems often serve a number of buildings designed prior to the mid-1980s. The steam is typically used for preheat as its high thermal content helps in heating the air faster and prevents coils from freezing in locations with extreme weather conditions during winter. The present work provides a comprehensive description of the various types of steam heating systems, steam coils, and valves to facilitate the engineer's understanding of these steam systems. A large percentage of the steam coils used in buildings are provided with medium pressure steam. Veterans Integrated Service Network and Army Medical Command Medical Facilities are examples which use medium pressure steam for heating. The current design manual for these medical facilities recommends steam at 30psig be provided to these coils. In certain cases although the steam heating coil is designed for a 5psig steam pressure, it is observed that higher pressure steam is supplied at the coil. A higher steam pressure may lead to excessive heating, system inefficiency due to increased heat loss, simultaneous heating and cooling, and increased maintenance cost. Field experiments were conducted to evaluate the effect of lowering steam pressure on the system performance. A 16% reduction in temperature rise across the coil was found when the steam pressure in the coil was reduced from 15psig to 5psig. The rise in temperature with lower pressure steam was sufficient to prevent coil freeze-up even in the most severe weather conditions. Additional benefits of reduced steam pressure are reduced flash steam losses (flash steam is vapor or secondary steam formed when hot condensate from the coil is discharged into a lower pressure area, i.e., the condensate return line) and radiation losses, increased flow of air through the coil thereby reducing air stratification and reduced energy losses in the event of actuator failure. The work also involved evaluating the existing control strategies for the steam heating system. New control strategies were developed and tested to address the short comings of existing sequences. Improved temperature control and occupant comfort; elimination of valve hunting and reduced energy consumption were benefits realized by implementing these measures.

Ali, Mir Muddassir

2011-12-01T23:59:59.000Z

104

Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93 93 Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration August 2007 Final Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject - August 2007 i TABLE OF CONTENTS List of Acronyms and Abbreviations............................................................................................. vi Chemicals and Units of Measure ................................................................................................. ix Conversion Chart ......................................................................................................................... xi Metric Prefixes .............................................................................................................................xii

105

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

106

Steam Generator Management Program: Steam Generator Progress Report: Revision 18  

Science Conference Proceedings (OSTI)

BackgroundSince 1985, the Electric Power Research Institute (EPRI) has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities. This document was published once a year and distributed via hardcopy. Until 1998, the method of acquiring data for this report had been to issue annual survey forms to all PWR and pressurized heavy water reactor nuclear utilities worldwide. The information included in ...

2013-11-20T23:59:59.000Z

107

Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies. Final report  

SciTech Connect

This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein.

Berg, R.; Stroinski, M.; Giachetti, R. [Multiple Dynamics Corp., Southfield, MI (United States)

1994-02-01T23:59:59.000Z

108

IMPROVEMENTS IN OR RELATING TO STEAM-OPERATED POWER PLANT  

SciTech Connect

A nuclear power plant is designed in which the reactor is steam-cooled and radioactivity is removed from the steam before entering the turbine. The plant has a steam circuit in which the steam from the reactor is passed through one flow path of a heat exchanger and then part of this steam is passed through contact washing equipment before being reheated in a second flow path of the heat exchanger and being led to the turbine. (D.L.C.)

Bauer, S.G.; Kendon, M.H.

1962-09-19T23:59:59.000Z

109

IMPROVEMENTS IN OR RELATING TO STEAM GENERATING PLANT  

SciTech Connect

A steam generating plant for marine vessels includes a steam superheater (nuclear reactor, perhaps) from which steam is ducted to the point of use (heat exchanger, etc.). A steam generator receiving the condensed steam from the point of use uses steam from the superheater to evaporate the condensate. The superheated steam used in the evaporation is compressed by a turbo-compressor and directed into the superheater. The condensate evaporated in the generator is used to drive the turbo-compressor. (D.C.W.)

Kendon, M.H.

1963-07-03T23:59:59.000Z

110

IMPROVEMENTS IN STEAM GENERATING AND SUPERHEATING PLANT AND AN IMPROVED METHOD OF PRODUCING LOW PRESSURE SUPERHEATED STEAM  

SciTech Connect

A steam supply arrangement is described which generates high-pressure steam and superheats steam from a low-pressure source. Inus, in operations cteam at 350 to 600 psi from a nuciear reactor is superheated in a heat exehanger anu later in gas-heated equipment to 1100 F and passed to a stage of a pluralstage steam turbine. When the reactor ls shut downs steam generated in the steam generator section may be passed directly to the gas-fired superheater. (T.R.H.)

1959-02-18T23:59:59.000Z

111

Steam-flooding  

SciTech Connect

Steam-flooding has become an established recovery technique within the last 20 years. This overview discusses its evolution, methods for selecting and designing steam-floods, constraints, and possible improvements. The term steam-flooding is used here in a general sense. The discussion includes steam soak (cyclic steam injection) and steam drive.

Matthews, C.S.

1983-03-01T23:59:59.000Z

112

Steam-channel-expanding steam form drive  

SciTech Connect

In a viscous oil reservoir in which the stratification of the rock permeability is insufficient to confine steam within the most permeable strata, oil can be produced by forming and expanding a steam channel through which steam is flowed and oil is produced. Steam is injected and fluid is produced at rates causing a steam channel to be extended between locations that are horizontally separated. A foam-forming mixture of steam, noncondensable gas and surfactant is then injected into the steam channel to provide foam and a relatively high pressure gradient within the channel, without plugging the channel. A flow of steam-containing fluid through the steam channel is continued in a manner such that the magnitudes of the pressure gradient, the rate of oil production, and the rate of steam channel expansion exceed those which could be provided by steam alone. 10 claims, 6 figures.

Dilgren, R.E.; Hirasaki, G.J.; Hill, H.J.; Whitten, D.G.

1978-05-02T23:59:59.000Z

113

Steam separator latch assembly  

SciTech Connect

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

Challberg, Roy C. (Livermore, CA); Kobsa, Irvin R. (San Jose, CA)

1994-01-01T23:59:59.000Z

114

Steam separator latch assembly  

DOE Patents (OSTI)

A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

Challberg, R.C.; Kobsa, I.R.

1994-02-01T23:59:59.000Z

115

Application of Data Stream Outlier Mining Techniques in Steam Generator Safety Early Warning System of Nuclear Power Plant  

Science Conference Proceedings (OSTI)

Mining outliers in data streams is a popular research issue in data mining field, which can help to find outliers under abnormal condition and then corresponding measures can be taken. The security guarantee of nuclear power plant is the center topic ... Keywords: safety early warning system, data stream, outlier mining, NPP

Liu Dingping, Zheng Kaitao, Yan Qiqi

2013-01-01T23:59:59.000Z

116

Combined cycle electric power plant and heat recovery steam generator having improved multi-loop temperature control of the steam generated  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube and a steam drum from which heated steam is directed through the superheater to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner serves to further heat the exhaust gas turbine gases passed to the superheater tube and a bypass conduit is disposed about the superheater tube whereby a variable steam flow determined by a bypass valve disposed in the bypass conduit may be directed about the superheater tube to be mixed with the superheated steam therefrom, whereby the temperature of the superheated steam supplied to the steam turbine may be accurately controlled. Steam temperature control means includes a first control loop responsive to the superheated steam temperature for regulating the position of the bypass valve with respect to a first setpoint, and a second control loop responsive to the superheated steam temperature for controlling the fuel supply to the afterburner with respect to a second setpoint varying in accordance with the bypass valve position. In particular, as the bypass valve position increases, the second setpoint, originally higher, is lowered toward a value substantially equal to that of the first setpoint.

Martz, L.F.; Plotnick, R.J.

1976-08-17T23:59:59.000Z

117

Downhole steam generator having a downhole oxidant compressor  

DOE Patents (OSTI)

Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

118

Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine  

SciTech Connect

The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

Wilson, Ian D. (Mauldin, SC); Wesorick, Ronald R. (Albany, NY)

2002-01-01T23:59:59.000Z

119

Implications of Steam Generator Fouling on the Degradation of ...  

Science Conference Proceedings (OSTI)

Corrosion products that originate from various components in the steam cycle of a nuclear power plant get pumped forward with the feed water where they ...

120

U.S. Steam Turbine Valve Actuator Condition Assessment  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators.

2008-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bayesian Modeling of Pitting Corrosion in Steam Generators.  

E-Print Network (OSTI)

??Steam generators in nuclear power plants experienced varying degrees of under-deposit pitting corrosion. A probabilistic model to accurately predict pitting corrosion is necessary for effective… (more)

Mao, Dan

2007-01-01T23:59:59.000Z

122

U.S. Steam Turbine Valve Metallurgy Guide  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the metallurgical aspects of the steam turbine valve components used in U.S. power plants.

2009-03-30T23:59:59.000Z

123

Thomas Reddinger Director, Steam  

E-Print Network (OSTI)

Supervisor (Distribution) Deborah Moorhead Office Coordinator III Martin Bower Steam Plant Operator RichardThomas Reddinger Director, Steam Operations Steven Richards Assistant Manager of Maintenance Redfield Steam Plant Operator SU Steam Station/Chilled Water Plant Bohdan Sawa Steam Plant Operator Robert

McConnell, Terry

124

A study of steam injection in fractured media  

SciTech Connect

Steam injection is the most widely used thermal recovery technique for unfractured reservoirs containing heavy oil. There have been numerous studies on theoretical and experimental aspects of steam injection for such systems. Fractured reservoirs contain a large fraction of the world supply of oil, and field tests indicate that steam injection is feasible for such reservoirs. Unfortunately there has been little laboratory work done on steam injection in such systems. The experimental system in this work was designed to understand the mechanisms involved in the transfer of fluids and heat between matrix rocks and fractures under steam injection.

Dindoruk, M.D.S.; Aziz, K.; Brigham, W.; Castanier, L.

1996-02-01T23:59:59.000Z

125

Steam Generator Reference Book, Revision 1: Volume 1  

Science Conference Proceedings (OSTI)

The Steam Generator Reference Book documents the state of the art in PWR steam generator technology, providing a comprehensive source for operators, owners, and designers of PWR nuclear power plants. The book summarizes pertinent steam generator operating issues and provides recommendations to improve operational efficiency. Information in the book represents 15 years of research and development activity over the course of several hundred research projects involving PWR steam generator issues.

1994-12-31T23:59:59.000Z

126

Steam Turbine Electronic Overspeed Protection System  

Science Conference Proceedings (OSTI)

BackgroundThe risk of turbine-generator destructive overspeed can be mitigated by employing protection systems that act to rapidly isolate the steam supply in the event of separation from the grid. These systems are the final line of defense against overspeed, and they are deployed separately from the systems used to control turbine load and speed during synchronized operation. Most steam turbines in operation today were commissioned with a mechanical trip device that ...

2013-12-23T23:59:59.000Z

127

Steam System Optimization  

E-Print Network (OSTI)

Most plant steam systems are complex systems. Usually the fuel required to produce the steam represents a major expense for manufacturing facilities. By properly operating and maintaining the steam system and making minor improvements, significant savings can be realized.

Aegerter, R. A.

1998-04-01T23:59:59.000Z

128

SteamMaster: Steam System Analysis Software  

E-Print Network (OSTI)

As director of Oregon's Industrial Assessment Center, I have encountered many industrial steam systems during plant visits. We analyze steam systems and make recommendations to improve system efficiency. In nearly 400 industrial assessments, we have recommended 210 steam system improvements, excluding heat recovery, that would save $1.5 million/year with a 0.4-year payback. 75% of those recommendations have been implemented for $1.1 million annual savings with 0.3-year payback. Recently I have developed a tool to facilitate the process. SteamMaster is based on an Excel spreadsheet with a Visual Basic interface to simplify system modeling and analysis. SteamMaster has many features and capabilities, including energy and cost savings calculations for five steam recommendations. This presentation will demonstrate SteamMaster software applied to one or more industrial steam systems. Software will be made available on a national web site at no cost.

Wheeler, G.

2003-05-01T23:59:59.000Z

129

HTGR-process steam/cogeneration and HTGR-steam cycle program. Semiannual report, October 1, 1979-March 31, 1980  

SciTech Connect

Progress in the design of an 1170-MW(t) High-Temperature Gas-Cooled Reactor (HTGR) Nuclear Steam Supply (NSS) is described. This NSS can integrate favorably into present petrochemical and primary metal process industries, heavy oil recovery operations, and future shale oil recovery and synfuel processes. The economics appear especially attractive in comparison with alternative coal-fired steam generation. Cost estimates for central station power-generating 2240- and 3360-MW(t) HTGR-Steam Cycle (HTGR-SC) plants are updated. The 2240-MW(t) HTGR-SC is treated to a probabilistic risk evaluation. Compared with the earlier 3000-MW(t) design, the results predict a slightly increased risk of core heatup, owing to the result of eliminating the capability of the boiler feed pump to operate at atmospheric backpressure. The differences in risk, however, are within the calculational uncertainties. Preliminary results of the ranking of safety enhancement features for the 1170-MW(t) HTGR indicate that the following modifications offer the most promise: (1) capability for main loop rundown, (2) natural circulation core auxiliary cooling, and (3) PCRV blowdown capability through the helium purification system to minimize activity release during some core heatups.

Not Available

1980-09-01T23:59:59.000Z

130

Steam driven markets  

Science Conference Proceedings (OSTI)

The market for steam equipment has been relatively level. Looking ahead, manufacturers anticipate steady market growth worldwide. Steam equipment manufacturers share a similar view of the market for next few years - upward. The steady upward climb is being attributed to a number of factors that will benefit steam turbine and heat recovery steam generator (HRSG) makers.

Anderson, J.L.

1993-02-01T23:59:59.000Z

131

High-temperature oxidation of Zircaloy in hydrogen-steam mixtures. [PWR; BWR  

DOE Green Energy (OSTI)

Oxidation rates of Zircaloy-4 cladding tubes have been measured in hydrogen-steam mixtures at 1200 to 1700/sup 0/C. For a given isothermal oxidation temperature, the oxide layer thicknesses have been measured as a function of time, steam supply rate, and hydrogen overpressure. The oxidation rates in the mixtures were compared with similar data obtained in pure steam and helium-steam environments under otherwise identical conditions. The rates in pure steam and helium-steam mixtures were equivalent and comparable to the parabolic rates obtained under steam-saturated conditions and reported in the literature. However, when the helium was replaced with hydrogen of equivalent partial pressure, a significantly smaller oxidation rate was observed. For high steam-supply rates, the oxidation kinetics in a hydrogen-steam mixture were parabolic, but the rate was smaller than for pure steam or helium-steam mixtures. Under otherwise identical conditions, the ratio of the parabolic rate for hydrogen-steam to that for pure steam decreased with increasing temperature and decreasing steam-supply rate.

Chung, H.M.; Thomas, G.R.

1982-09-01T23:59:59.000Z

132

Steam Generator Management Program: Pressurized Water Reactor Steam Generator Examination Guidelines: Revision 7  

Science Conference Proceedings (OSTI)

This report provides requirements for examination plans and processes that are necessary to meet the performance criteria set forth in the Nuclear Energy Institute (NEI) 97-06, Steam Generator Program.

2007-10-10T23:59:59.000Z

133

Supply - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... supply. View Archive ...

134

Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extenstion Project - Steam Plant Replacement Subproject  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93 93 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy Oak Ridge Y-12 Site Office National Nuclear Security Administration August 2007 DOE/EA-1593 Finding of No Significant Impact and Final Environmental Assessment for the Y-12 Steam Plant Life Extension Project - Steam Plant Replacement Subproject U.S. Department of Energy National Nuclear Security Administration

135

Method for improving the steam splits in a multiple steam injection process using multiple steam headers  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a primary steam header, at least one secondary steam header, a primary steam line connecting the generator to the primary header, at lease one secondary steam line connecting the primary header to the secondary steam header, and a plurality of tertiary steam lines connecting the secondary steam header to a plurality of stem injection wells. It comprises injecting a surfactant into the primary steam line, mixing the surfactant and steam in the primary steam line sufficiently so that the surfactant and the steam enter the primary steam header as a foam, and mixing the surfactant and steam in the secondary steam lines sufficiently so that the surfactant and the steam enter the secondary steam header as a foam.

Stowe, G.R.

1991-03-19T23:59:59.000Z

136

Circumferential cracking of steam generator tubes  

SciTech Connect

On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, {open_quote}Circumferential Cracking of Steam Generator Tubes.{close_quote} GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff`s assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness.

Karwoski, K.J.

1997-04-01T23:59:59.000Z

137

Method for supplying heat to an engine for external heat supply by intermittent combustion, and engine for carrying out the method  

SciTech Connect

This patent describes a reheat steam power plant including a turbine bypass system. The power plant comprises a boiler having a superheater and a reheater therein, a high pressure stream turbine driven by steam generated in the superheater and supplied through a main steam pipe and a first control valve means for controlling a flow of the steam through the main steam pipe. It also consists of a reheat steam turbine driven by reheat heated up in the reheater and conducted through a hot reheat steam pipe, a second control valve means for controlling a flow of steam through the hot reheat steam pipe, a condenser for condensing the reheat steam exhausted from the reheat steam turbine, and a cold reheat steam pipe connecting an outlet of the high pressure steam turbine with an inlet of the reheater. Plus a check valve means is disposed in the cold reheat steam pipe, a condensate pipe means for connecting the condenser with an upstream side of the superheater, a high pressure turbine bypass pipe means for connecting the main steam pipe with the cold reheat steam pipe, a turbine bypass valve disposed in the high pressure turbine bypass pipe, and means for reducing the quantity of the reheat steam introduced into the reheater from the superheater through the high pressure turbine bypass pipe means and for discharging an excess steam from the high pressure turbine bypass pipe means and the cold reheat steam pipe when the high pressure turbine bypass means is operated.

Hoizumi, S.; Abe, N.; Ueno, T.; Arakawa, T.; Hodozuka, K.

1987-09-15T23:59:59.000Z

138

REACTOR PRODUCING 3000 F STEAM FOR PROCESS HEAT  

SciTech Connect

A conceptual design is presented for a reactor producing 3000 deg F, 400 psi steam to supply process heat for high temperature endothermic chemical reactions. Specifically, the supplying of heat to a coal hydrogenation plant is studied but other applications are possible. Such a market for nuclear heat is economically interesting because the competition is with the relatively expensive oxygen combustion of coal. It was assumed that in the present state of the art a ceramic heat source could not contain nuclear fuel in an open cycle due to the hazard of fission product leakage into the process stream. This assumption limited the high temperature heat source to the order of 10% of the total reactor power. The particular design studied was found to be not economically feasible due 10 the unusually large inventory of enriched uranium required. However, it is felt that with the suggested changes, nuclear process heat from this type of reactor oould be competitive if the excess power produced could be sold economically. (auth)

Roberts, J.T.; Lagarias, J.S.; Remick, F.J.; Ritzmann, R.W.f Roberts, J.O.; Roberts, W.J.; Schmidt, J.E.; Kasten, P.R.

1956-08-01T23:59:59.000Z

139

Lab Supplies  

Science Conference Proceedings (OSTI)

reference materials, bleaching clay, activated bleaching earth and refining cups. Lab Supplies Lab Supplies Lab Supplies Laboratory Services analysis analytical methods aocs certified Certified Reference Materials (CRM) chemist chemists fats lab

140

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This paper describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine. It comprises: a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section; a gas turbine including a turbine section, a combustor, a fuel valve supplying the combustor, and an air compressor with a discharge end leading to the combustor; a load riven by the reheat steam turbine and the gas turbine; the reheat steam turbine, the gas turbine and the load all having rotating members; a heat recovery steam generator heated by the gas turbine, including a high pressure steam generating section supplying steam to the high pressure steam turbine section through the control valve, and a steam reheater section receiving steam exhausted from the high pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, and solid couplings serving to solidify couple the rotating members together as a single rotor, the rotor having a single thrust bearing.

Moore, J.H.

1991-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Combined cycle electric power plant with a steam turbine having a sliding pressure main bypass and control valve system  

SciTech Connect

A combined cycle electric power plant includes two gas turbines, a steam turbine, and a digital control system with an operator analog or manual backup. Each of the gas turbines has an exhaust heat recovery steam generator connected to a common header from which the steam is supplied by one or both of the steam generators for operating the steam turbine. The control system is of the sliding pressure type and maintains a predetermined steam pressure as a function of steam flow according to a predetermined characterization depending on the number of steam generators in service to limit the maximum steam velocity through the steam generators, and reduce the probability of water carryover into the steam turbine. Such control is always maintained by the bypass valve. The turbine control valve responds to the speed/load demand only, except when the bypass valve is closed and the rate of steam generation is insufficient to maintain a predetermined pressure flow relationship.

Uram, R.

1980-05-06T23:59:59.000Z

142

Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site  

Science Conference Proceedings (OSTI)

This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

L.E. Demick

2011-10-01T23:59:59.000Z

143

Steam Path Audits on Industrial Steam Turbines  

E-Print Network (OSTI)

The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify areas of performance degradation during a turbine outage. Repair priorities can then be set in accordance with quantitative results from the steam path audit. As a result of optimized repair decisions, turbine efficiency increases, emissions decrease, and maintenance expenses decrease. These benefits can be achieved by using a computer program Encotech, Inc. developed for the utility industry to perform steam path audits. With the increased emphasis on industrial turbine efficiency, and as a result of the experience with the Destec Operating Company, Encotech is adapting the computer program to respond to the needs of the industrial steam turbine community. This paper describes the results of using the STPE computer program to conduct a steam path audit at Destec Energy's Lyondell Cogeneration power plant.

Mitchell, D. R.

1992-04-01T23:59:59.000Z

144

EPRI steam-turbine-related research projects  

SciTech Connect

The current perspective is provided of EPRI-project activities that relate to steam turbine reliability. Compiling status information is a part of the planning effort for continuing projects on turbine rotor reliability, turbine chemistry monitoring and materials behavior, and for the proposed project related to cracking of shrunk-on discs in low pressure nuclear steam turbines. This document includes related work beyond the steam turbine itself to cover those research projects whose scope and results impact the efforts specific to the turbine.

Gelhaus, F.; Jaffee, R.; Kolar, M.; Poole, D.

1978-08-01T23:59:59.000Z

145

Solid fuel fired oil field steam generators  

Science Conference Proceedings (OSTI)

The increased shortages being experienced in the domestic crude oil supply have forced attention on the production of heavy crude oils from proven reserves to supplement requirements for petroleum products. Since most heavy crudes require heat to facilitate their extraction, oil field steam generators appear to represent a key component in any heavy crude oil production program. Typical oil field steam generator experience in California indicates that approx. one out of every 3 bbl of crude oil produced by steam stimulation must be consumed as fuel in the steam generators to produce the injection steam. The scarcity and price of crude oil makes it desirable to substitute more readily available and less expensive solid fuels for the crude oil which is presently serving as the primary steam generator fuel. Solid fuel firing capability also is of importance because of the substantial amounts of high heating value and low cost petroleum coke available from the processing of heavy crude oil and suitable for use as a steam generator fuel.

Young, W.W.

1982-01-01T23:59:59.000Z

146

Fuel cell integrated with steam reformer  

DOE Patents (OSTI)

A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

1987-01-01T23:59:59.000Z

147

Guidelines for Maintaining Steam Turbine Lubrication Systems  

Science Conference Proceedings (OSTI)

Failures of steam turbine bearings and rotors cost the utility industry an estimated $150 million a year. A third of these failures involve contaminated lubricants or malfunctioning lubricant supply system components. This report, outlining a comprehensive surveillance program, presents guidelines for maintaining major elements in the turbine lubrication system.

1986-07-01T23:59:59.000Z

148

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

1994-03-08T23:59:59.000Z

149

Steam atmosphere drying exhaust steam recompression system  

DOE Patents (OSTI)

This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

1994-01-01T23:59:59.000Z

150

Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide  

Science Conference Proceedings (OSTI)

The Turbine-Generator Auxiliary Systems, Volume 2: Turbine Steam Seal System Maintenance Guide provides nuclear and fossil plant personnel with operation and maintenance guidance on the turbine steam seal system components.

2006-12-14T23:59:59.000Z

151

Safety and availabili of steam generator tubes affected by secondary side corrosion  

E-Print Network (OSTI)

ELSEVIER Nuclear Engimering andDesign Safety and availabili of steam generator tubes affected the dominatingageingme&mism is. steam generator tubes made 61Iw0d 600.A variety of maiuttnanGe approacheswre developadand

Cizelj, Leon

152

High performance steam development  

SciTech Connect

DOE has launched a program to make a step change in power plant to 1500 F steam, since the highest possible performance gains can be achieved in a 1500 F steam system when using a topping turbine in a back pressure steam turbine for cogeneration. A 500-hour proof-of-concept steam generator test module was designed, fabricated, and successfully tested. It has four once-through steam generator circuits. The complete HPSS (high performance steam system) was tested above 1500 F and 1500 psig for over 102 hours at full power.

Duffy, T.; Schneider, P.

1995-12-31T23:59:59.000Z

153

Development of Steam Reforming for the Solidification of the Cesium and Stronitum Separations Product from Advanced Aqueous Reprocessing of Spent Nuclear Fuel  

SciTech Connect

Steam reforming is one option currently being investigated for stabilization of the cesium/strontium strip products from spent fuel reprocessing solvent extraction processes because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach resistant aluminosilicate minerals, such as pollucite. To produce pollucite and other mineral analogs of the alkaline metals, the feeds must be mixed with aluminosilicate compounds and thermally sintered or calcined to activate solid-state crystal formation. Scoping tests completed indicated that the cesium/strontium in these organic and acid solutions can be converted into aluminosilicate materials using steam reforming.

Julia L. Tripp; T. Garn; R. Boardman; J. Law

2006-10-01T23:59:59.000Z

154

Steam Generator Management Program: Steam Generator Progress Report  

Science Conference Proceedings (OSTI)

Since 1985, EPRI has published the Steam Generator Progress Report (SGPR), which provides historical information on worldwide steam generator activities.

2009-10-19T23:59:59.000Z

155

Advanced Nuclear Technology Advanced Light Water Reactor Utility Requirements Document, Revision 12  

Science Conference Proceedings (OSTI)

The utility requirement document (URD) is an industry-developed technical foundation for the design of advanced light water reactors (ALWRs). It was created with the objective of providing a comprehensive set of plant functional requirements that are considered important to utilities considering the construction of a nuclear plant and in ensuring successful deployment and operation of the plant. The scope of the URD is broad, addressing the entire plant (including the nuclear steam supply system, ...

2013-12-16T23:59:59.000Z

156

Overspeed protection for a gas turbine/steam turbine combined cycle  

SciTech Connect

This patent describes an improved combined cycle power plant and overspeed protection system of the type having a reheat steam turbine including a high pressure steam turbine section with at least one control valve, and a lower pressure steam turbine section. The improvement comprises: a valveless steam conduit connected between the outlet of the steam reheater section and the inlet of the lower pressure steam turbine section, a plurality of solid couplings serving to solidly couple the rotating members together as a single rotor, the rotor having a single thrust bearing, and control means for sensing a potential overspeed condition operatively connected to the control valves to prevent overspeed, whereby the steam in the steam reheater and in the valveless steam conduit may freely expand through the lower pressure steam turbine and potential overspeed of the rotor is resisted by the combined inertia of the coupled rotating members and by the braking torque of the air compressor, wherein the heat recovery steam generator includes a low pressure steam generating section connected to supply low pressure steam to the steam reheater section along with the steam exhausted from the high pressure steam turbine section.

Moore, J.H.

1992-03-31T23:59:59.000Z

157

Downhole steam quality measurement  

SciTech Connect

An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Muir, James F. (Albuquerque, NM); Wayland, Jr., J. Robert (Albuquerque, NM)

1987-01-01T23:59:59.000Z

158

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

2002-01-01T23:59:59.000Z

159

Downhole steam quality measurement  

DOE Patents (OSTI)

The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

1985-06-19T23:59:59.000Z

160

Steam Champions in Manufacturing  

E-Print Network (OSTI)

Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a steam system demands the managerial expertise of a "Steam Champion," which will be described in this paper. Briefly, the steam champion is a facility professional who embodies the skills, leadership, and vision needed to maximize the effectiveness of a plant's steam system. Perhaps more importantly, the steam champion's definitive role is that of liaison between the manufacturer's boardroom and the plant floor. As such, the champion is able to translate the functional impacts of steam optimization into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills.

Russell, C.

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

162

Steam Turbine Cogeneration  

E-Print Network (OSTI)

Steam turbines are widely used in most industrial facilities because steam is readily available and steam turbine is easy to operate and maintain. If designed properly, a steam turbine co-generation (producing heat and power simultaneously) system can increase energy efficiency, reduce air emissions and qualify the equipment for a Capital Cost tax Allowance. As a result, such a system benefits the stakeholders, the society and the environment. This paper describes briefly the types of steam turbine classified by their conditions of exhaust and review quickly the fundamentals related to steam and steam turbine. Then the authors will analyze a typical steam turbine co-generation system and give examples to illustrate the benefits of the System.

Quach, K.; Robb, A. G.

2008-01-01T23:59:59.000Z

163

Steam Trap Application  

E-Print Network (OSTI)

The effective application of steam traps encompasses three primary areas which are the selection and sizing, the installation, and the monitoring of the steam trapping system. Proper application of steam traps will improve production rates, product quality, and reduce energy and maintenance costs.

Murphy, J. J.

1982-01-01T23:59:59.000Z

164

Steam System Optimization  

E-Print Network (OSTI)

Refinery and chemical plant steam systems are complex and the fuel required to produce the steam represents a major expense. The incremental cost for generating a 1,000 lb./hr. of steam is typically $45,000 - $60,000/year. Most plants have numerous low/

Aegerter, R.

2004-01-01T23:59:59.000Z

165

Combined cycle electric power plant with coordinated steam load distribution control  

SciTech Connect

A combined cycle electric power plant includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes a superheater tube through which a fluid, e.g., water, is directed to be additionally heated into superheated steam by the exhaust gas turbine gases. An afterburner further heats the exhaust gas turbine gases passed to the superheater tube. The temperature of the gas turbine exhaust gases is sensed for varying the fuel flow to the afterburner by a fuel valve, whereby the temperatures of the gas turbine exhaust gases and therefore of the superheated steam, are controlled. Loading and unloading of the steam turbine is accomplished automatically in coordinated plant control as a function of steam throttle pressure.

Uram, R.

1979-09-25T23:59:59.000Z

166

Power Supplies  

Science Conference Proceedings (OSTI)

Figure: ...Fig. 5 Typical medium-frequency induction power supply incorporating (a) a parallel inverter and (b) a series inverter...

167

Control system for single shaft combined cycle gas and steam turbine unit  

SciTech Connect

This patent describes a method for starting and controlling a combined cycle turbine of the type having a gas turbine with a fuel flow control valve and a steam turbine with at least one steam control valve both disposed on a single shaft and having a heat recovery steam generator heated by the gas turbine and connected to supply steam to the steam control valve, the combined cycle turbine having a unified control system and driving a load, and also having an auxiliary steam source connected to the steam control valve. It comprises controlling of steam from the auxiliary steam source with the steam control valve to crank the combined cycle turbine for starting, initiating and controlling fuel flow to the gas turbine with the fuel flow control valve and initiating combustion, controlling initial acceleration of the combined cycle turbine with the steam control valve on auxiliary steam, coordinating control of the combined cycle turbine by the steam control valve and the fuel control valve with the unified control system, transferring acceleration control during a smooth acceleration phase of the combined cycle turbine by the steam control valve and the fuel control valve with the unified control system, transferring acceleration control during a smooth acceleration phase of the combined cycle turbine to the fuel flow control valve and gradually reducing the opening of the steam control valve to a minimum value when the turbine reaches rated speed.

Moore, J.H.; Kure-Jensen, J.; Rowen, W.I.

1991-08-27T23:59:59.000Z

168

Heat recovery steam generator outlet temperature control system for a combined cycle power plant  

Science Conference Proceedings (OSTI)

This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

1986-04-01T23:59:59.000Z

169

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

Ryan, M.J.

1987-05-04T23:59:59.000Z

170

Steam turbine control  

SciTech Connect

In a power plant which includes a steam turbine with main control valves for admitting steam into the steam turbine and a steam bypass with bypass control valves for diverting steam around the steam turbine directly into a condenser, it is necessary to coordinate the operation of the respective valves so that the steam turbine can be started, brought up to speed, synchronized with a generator and then loaded as smoothly and efficiently as possible. The present invention provides for such operation and, in addition, allows for the transfer of power plant operation from the so-called turbine following mode to the boiler following mode through the use of the sliding pressure concept. The invention described is particularly applicable to combined cycle power plants.

Priluck, D.M.; Wagner, J.B.

1982-05-11T23:59:59.000Z

171

Steam Generator Management Program: Evaluation of Steam Generator Eddy Current Analysis Algorithms  

Science Conference Proceedings (OSTI)

As part of the U.S. Nuclear Regulatory Commissions (NRCs) International Steam Generator Tube Integrity Program, Argonne National Laboratory (ANL) evaluated algorithms for computer-aided analysis of rotating probe eddy current data. The algorithms were designed for both flaw detection and flaw sizing. Rotating probe data collected on the flawed tubes in the NRCs steam generator (SG) mockup were used to document performance of the algorithms for both detection and sizing. In the NRC program, the results of...

2011-06-30T23:59:59.000Z

172

Workshop Proceedings: Pitting in Steam Generator Tubing  

Science Conference Proceedings (OSTI)

A two-day workshop focused on the probable causes of steam generator pitting at two nuclear plants and on whether pitting is a low-temperature or a high-temperature phenomenon. Participants also heard descriptions of various pit-resistant metals that are suitable for tube sleeving.

1984-10-01T23:59:59.000Z

173

Low chemical concentrating steam generating cycle  

DOE Patents (OSTI)

A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

Mangus, James D. (Greensburg, PA)

1983-01-01T23:59:59.000Z

174

Proceedings: Steam Turbine Stress Corrosion Workshop  

Science Conference Proceedings (OSTI)

A recent survey of utilities commissioned by EPRI indicated that cracking of steam turbine disk rims by stress corrosion was a pervasive problem in both fossil and nuclear power plants. There is a clear need to document industry experience in this area so that guidelines can be provided to utilities on managing the problem.

1997-11-03T23:59:59.000Z

175

Supply Implications  

U.S. Energy Information Administration (EIA)

Supply Implications. European export gasoline volumes likely to remain unchanged Uncertainties are weighted towards less availability But the quality of the available ...

176

Boiler steam engine with steam recovery and recompression  

SciTech Connect

A boiler type of steam engine is described which uses a conventional boiler with an external combustion chamber which heats water in a pressure chamber to produce steam. A mixing chamber is used to mix the steam from the boiler with recovered recompressed steam. Steam from the mixing chamber actuates a piston in a cylinder, thereafter the steam going to a reservoir in a heat exchanger where recovered steam is held and heated by exhaust gases from the combustion chamber. Recovered steam is then recompressed while being held saturated by a spray of water. Recovered steam from a steam accumulator is then used again in the mixing chamber. Thus, the steam is prevented from condensing and is recovered to be used again. The heat of the recovered steam is saved by this process.

Vincent, O.W.

1980-12-23T23:59:59.000Z

177

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning- steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensible gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer.

Deacon, W. T.

1989-09-01T23:59:59.000Z

178

Steam in Distribution and Use: Steam Quality Redefined  

E-Print Network (OSTI)

"Steam quality is an important measurement in steam generation. It's a measurement of steam to moisture ratio. In use, steam quality takes on a different meaning - steam which maximizes energy transfer. To do this, the steam must be clean, dry, of desired pressure and free of air and non-condensable gases. Objectives in these areas should be set and an action plan implemented. Typical objectives could be to specify steam pressure delivery of maximum pressure and to use steam at the lowest pressure possible. Steam velocity ranges and maximum system pressure drops should be set. Cleaning steam and protecting control devices is an important means of maintaining quality. Draining condensate and venting air and other gases preserves the steam quality at the point of use. Poor pressure control yields poor operation and efficiency. Dirty steam causes valve leaks and maintenance problems. Improper drainage and venting can cause premature corrosion and poor heat transfer."

Deacon, W.

1989-09-01T23:59:59.000Z

179

Downhole steam injector  

SciTech Connect

An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

180

Steam Turbine Developments  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Steam and Condensate Systems  

E-Print Network (OSTI)

In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from about $0.50 per 1,000# to $3.00 or more. Many see costs of $5.00 per 1,000# by 1980. These tremendous increases have caused steam systems, steam traps and condensate systems to become a major factor in overall plant efficiency and profit.

Yates, W.

1979-01-01T23:59:59.000Z

182

Steam and Condensate Systems  

E-Print Network (OSTI)

In the late 60's and early 70's oil was plentiful and steam was relatively inexpensive. The switch to low sulphur fuel oil and the oil embargo suddenly changed the picture. The cost of steam rose from $0.50 per 1,000# to today's cost of $4.00 or more. Many see costs of $6.00/$7.00 in the near future. These tremendous increases have caused steam systems, steam traps and condensate systems to become a major factor in overall plant efficiency and profit.

Yates, W.

1980-01-01T23:59:59.000Z

183

Steam Generator Management Program: Administrative Procedures, Revision 3  

Science Conference Proceedings (OSTI)

The Nuclear Energy Institute's "Guideline for the Management of Materials Issues" (NEI 03-08) is the industry's guideline for management of materials issues, and "Steam Generator Program Guidelines" (NEI 97-06) describes the fundamental elements that are included in a utility's steam generator program. With nuclear safety as the priority, these elements incorporate a balance of prevention, inspection, evaluation, repair, and leakage monitoring measures. NEI 97 06 establishes these measures with reference...

2010-12-13T23:59:59.000Z

184

Risks From Severe Accidents Involving Steam Generator Tube Leaks or Ruptures  

Science Conference Proceedings (OSTI)

The various types of corrosion observed in PWR steam generator tubes prompted the nuclear industry to initiate a program of Steam Generator Degradation Specific Management (SGDSM). This program's objective is to develop a cost-effective means to maintain plant safety while improving steam generator reliability. Critical to this program is an assessment of the impact of steam generator tube leakage or rupture during severe accidents. This study determined the contributions of these types of severe acciden...

1998-01-02T23:59:59.000Z

185

Economic Study of Geothermal Steam Production and Power Generation  

SciTech Connect

This report presents the results of the study to determine the required selling price of geothermal flash steam in order for Phillips Petroleum Company to obtain a rate of return on investment of 10, 15 or 20% on its discovery in Nevada. The economic evaluations are based on an order-of-magnitude type of estimate of capital costs for the flash steam production, steam gathering and brine reinjection system to supply steam to a 55 MW (Gross) geothermal power generating plant, using mixed pressure (double flash steam) and turbine design. Geothermal well costs, brine quality and well productivity data were provided by Phillips Petroleum Company and are based on the discovery wells in Nevada. Power plant costs are based on current technology and available hardware, under construction at the present time. Costs have been escalated to 1977.

1977-02-01T23:59:59.000Z

186

Optimizing Steam & Condensate System: A Case Study  

E-Print Network (OSTI)

Optimization of Steam & Condensate systems in any process plant results in substantial reduction of purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly, irrespective of the plant's size. This paper highlights the efforts taken by the management of a medium sized specialty chemicals plant in North East Louisiana. This site spent over $19 million in 2007 ($13.7 million for natural gas & $5.6 million for electricity). The site generates steam for its process operation from 3 gas fired boilers at 525-psig pressure. The steam is consumed at 5 process areas; Acid, Basics, Crystals, Derivatives & Hydrogen plants. All of the process areas recover condensate inside their area, utilize it partially, and drain the rest into the sewer. Boiler Feed Water (BFW) is supplied from the water treatment plant located at the Boiler House. The optimization study was conducted at this site, between Jul - Sep 2008, to identify opportunities to reduce the energy cost and to improve the steam system's reliability. The study identified 5 energy cost optimization opportunities that would result in a total cost savings of $1,181,000 annually. The initial estimates indicated that all the 5 projects recommended by the study would have simple payback periods of less than 2 years. This case study is a good example and motivation for all engineers and managers who are responsible for maintaining the efficiency and reliability of small and medium sized steam systems.

Venkatesan, V. V.; Norris, C.

2011-01-01T23:59:59.000Z

187

Steam turbines for cogeneration power plants  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of one of the largest cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. Problems associated with the retrofitting of existing condensing type turbines for cogeneration applications are identified. 4 refs.

Oliker, I.

1980-04-01T23:59:59.000Z

188

Steam generator designs  

SciTech Connect

A combined cycle is any one of combinations of gas turbines, steam generators or heat recovery equipment, and steam turbines assembled for the reduction in plant cost or improvement of cycle efficiency in the utility power generation process. The variety of combined cycles discussed for the possibilities for industrial applications include gas turbine plus unfired steam generator; gas turbine plus supplementary fired steam generator; gas turbine plus furnace-fired steam generator; and supercharged furnace-fired system generator plus gas turbine. These units are large enough to meet the demands for the utility applications and with the advent of economical coal gasification processes to provide clean fuel, the combined-cycle applications are solicited. (MCW)

Clayton, W.H.; Singer, J.G.

1973-07-01T23:59:59.000Z

189

A Case Study of Steam System Evaluation in a Petroleum Refinery  

E-Print Network (OSTI)

ASI conducted a steam system evaluation study at a multinational petroleum Refinery located in the Eastern UK during June-July, 1999. At this refinery, Steam, Fuel and Electricity systems are inter-connected. Steam is generated from direct fuel fired boilers as well from Furnace and Kiln waste heat. Steam is also supplied from the CHP waste heat boilers. Steam generation averages 1,500,000 lbs/hr and does not change significantly between winter and summer since steam needs for process and power generation dominates way above comfort heating. To generate steam, the refinery spends about £28 million per year ($46 million). The system evaluation study identified 31 Energy & steam system cost savings measures (ECM) to save fuel, steam and condensate in the areas of: Steam generation, Steam distribution, Steam Utilization, Condensate recovery, and Combustion optimization in kilns. By implementing all the above 31 ECMs, the refinery is estimated to save $3.5 million annually. Based on our preliminary investment estimate the average payback would be within 2 years. The refinery also would reduce 5600 metric tons Carbon emission to environment. Some of the opportunities address the installation defects of the steam system components that would improve the system reliability and longevity.

Venkatesan, V. V.; Iordanova, N.

2003-05-01T23:59:59.000Z

190

Streams of Steam The Steam Boiler Specification Case Study  

E-Print Network (OSTI)

Streams of Steam ­ The Steam Boiler Specification Case Study Manfred Broy, Franz Regensburger-tuned con- cepts of FOCUS by its application of the requirements specification of a steam boiler, see [Abr96-studies. In this context, applying FOCUS to the steam boiler case study ([Abr96]) led us to a couple of questions re- #12

Cengarle, María Victoria

191

Ensuring a Reliable Supply of Medical Radioisotopes | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ensuring a Reliable Supply of Medical Radioisotopes | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

192

Steam trap monitor  

DOE Patents (OSTI)

A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

Ryan, Michael J. (Plainfield, IL)

1988-01-01T23:59:59.000Z

193

Waste Steam Recovery  

E-Print Network (OSTI)

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally applicable to other sources of steam. The interaction of the recovery system with the plant's steam/power system has been included. Typical operating economics have been prepared. It was found that the profitability of most recovery schemes is generally dependent on the techniques used, the existing steam/power system, and the relative costs of steam and power. However, there will always be site-specific factors to consider. It is shown that direct heat exchange and thermocompression will always yield an energy profit when interacting with PRVs in the powerhouse. A set of typical comparisons between the three recovery techniques, interacting with various powerhouse and plant steam system configurations, is presented. A brief outline of the analysis techniques needed to prepare the comparison is also shown. Only operating costs are examined; capital costs are so size - and site-specific as to be impossible to generalize. The operating cost savings may be used to give an indication of investment potential.

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

194

Ukraine Steam Partnership  

SciTech Connect

The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

Gurvinder Singh

2000-02-15T23:59:59.000Z

195

Steam deflector assembly for a steam injected gas turbine engine  

SciTech Connect

A steam injected gas turbine engine is described having a combustor, a casing for the combustor and an annular manifold comprising a part of the casing, the annular manifold having an exterior port formed therein and a plurality of holes formed in the manifold leading to the interior of the combustor, the improvement comprising a steam carrying line connected to the port and a steam deflector means for protecting the casing from direct impingement by the steam from the steam line and for distributing the steam about the annular manifold, the steam deflector means being mounted adjacent the port and within the manifold.

Holt, G.A. III.

1993-08-31T23:59:59.000Z

196

The steam generator changeout at Beznau-1  

Science Conference Proceedings (OSTI)

At the Beznau-1 nuclear power plant in Switzerland, the unit's two steam generators were replaced in the second quarter of 1993. The steam generator replacement portion of the outage - the period from when contractors were given access to the containment to when the steam generators were ready for hydrostatic pressure testing - was 44 days (April 12- May 26, 1993), shorter than the 46 days gained. Total length of the outage was 99 days (April 2 - July 9). Collective radiation dose received by project personnel was 110 person-rem, much less than the planned 250 person-rem. Project cost was about $50 million, including the new SGs and the replacement work, according to Nordostschweizerische Kraftwerke AG (NOK), plant owner and operator.

Not Available

1993-11-01T23:59:59.000Z

197

Steam generator tube failures  

SciTech Connect

A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

1996-04-01T23:59:59.000Z

198

An Evaluation of Time Dependent Leak Rates in Degraded Steam Generator Tubing  

Science Conference Proceedings (OSTI)

Argonne National Laboratory (ANL) has performed leak rate testing of degraded steam generator tubing for a number of years as part of the Steam Generator Tube Integrity Program, under the sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. This document describes the results of a review and evaluation of ANL time-dependent leak rate information.

2007-12-13T23:59:59.000Z

199

Materials Performance in USC Steam  

DOE Green Energy (OSTI)

Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

2011-09-07T23:59:59.000Z

200

Robust controller design for main steam pressure based on SPEA2  

Science Conference Proceedings (OSTI)

Main steam pressure is an important physical quantity that reflects the energy supply-demand relationship between the boiler and turbine. It has a significant role in the unit operation. Because boiler burning behavior varies greatly and the model of ... Keywords: H? robust control, SPEA2, main steam pressure, weighing function matrix

Shuan Wang; Dapeng Hua; Zhiguo Zhang; Ming Li; Ke Yao; Zhanyou Wen

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

From Basic Control to Optimized Systems-Applying Digital Control Systems to Steam Boilers  

E-Print Network (OSTI)

This presentation examines the application of Distributed Digital Controls in order to review the application of this recent control technology towards Steam Boilers in a step-by-step manner. The main purpose of a steam generating boiler is to supply enough steam to meet process demands. Steam conditions must remain as stable as possible, because variations in the steam system can affect downstream processes. Pressure variations in the steam supply header, for example, can have a severe effect on heat transferred to a process. If that process suffers an upset, unstable conditions can propagate from one process to another via the steam supply system. The closer the tolerance in the boiler control system, the smaller the steam header disturbances will be. This reduces the interaction, or 'coupling', of upsets between steam-consuming processes. Also, it may reduce the complexity of instrumentation needed for those processes. If the boiler control system can eliminate major upsets, the downstream processes won't need exotic schemes to compensate for such upsets.

Hockenbury, W. D.

1982-01-01T23:59:59.000Z

202

CYCLIC STEAM STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CYCLIC STEAM STIMULATION ("Huff-and-Puff') (A well-stimulation method) This method is sometimes applied to heavy-oil reservoirs to boost recovery during the primary production...

203

Steam purity in PWRs  

Science Conference Proceedings (OSTI)

Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure.

Hopkinson, J.

1982-10-01T23:59:59.000Z

204

Economics of Steam Pressure Reduction  

E-Print Network (OSTI)

Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper will address the following. 1. Factors that determine the feasibility of reducing the plant steam operating pressure. 2. The operating advantages and disadvantages associated with the decreased steam pressure. 3. The economics of steam pressure reduction. Appropriate visual aids will be utilized as part of the discussion.

Sylva, D. M.

1985-05-01T23:59:59.000Z

205

Evaluating Steam Trap Performance  

E-Print Network (OSTI)

Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data from these tests, which determined their relative efficiencies, were used in performing economic analyses to determine their equivalent uniform annual cost (EUAC). The comparison was made using a computer program written for the Apple II computer to evaluate overall steam trap economics. This program calculates the EUAC for any steam trap based on 12 input variables including capital, maintenance and steam costs, interest rate and trap life. After determinIng the EUAC, the program will perform sensitivity analyses on any of the twelve variables. (This computer program is available from the author.) This study shows that inverted bucket traps have lower EUAC's under more conditions than other types of traps. Also, this study shows that live steam loss is the heaviest contributor to the annual operating cost of any steam trap and that maintenance frequency and repair cost are also more important than a trap's first cost.

Fuller, N. Y.

1986-06-01T23:59:59.000Z

206

External > Programs > Nuclear Fuel Supply  

NLE Websites -- All DOE Office Websites (Extended Search)

division manages a cooperative agreement with the United States Enrichment Corporation (USEC) that facilitates the deployment of new, cost-effective, advanced enrichment technology...

207

Natural gas-assisted steam electrolyzer  

DOE Patents (OSTI)

An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

208

Equips Nucleares SA | Open Energy Information  

Open Energy Info (EERE)

Nucleares, SA Place Madrid, Spain Zip 28006 Sector Services Product ENSA is a Spanish nuclear components and nuclear services supply company. References Equips Nucleares, SA1...

209

Bore tube assembly for steam cooling a turbine rotor  

SciTech Connect

An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

DeStefano, Thomas Daniel (Ballston Lake, NY); Wilson, Ian David (Clifton Park, NY)

2002-01-01T23:59:59.000Z

210

Power supply  

DOE Patents (OSTI)

A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

2007-12-04T23:59:59.000Z

211

Operating experience feedback report-reliability of safety-related steam turbine-driven standby pumps used in US commerical nuclear power plants  

SciTech Connect

Pump failure experience is collected by two primary means: (1) Licensee Event Reports, and (2) Nuclear Plant Reliability Data System failure reports. Certain safety-related turbine-driven standby pumps were identified by these data systems as experiencing significant ongoing repetitive failures of their turbine drivers, resulting in low reliability of the pump units. The root causes of identified failures were determined, and actions to preclude these repetitive failures were identified. 5 refs., 1 tab.

Boardman, J.R. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-01-01T23:59:59.000Z

212

Steam Heat: Winter Fountains in the City  

E-Print Network (OSTI)

Joan Brigham Steam Heat: Winter Fountains int h e City Steam is a phenomenon of the winter city. Iteven when the surging steam temporarily blinds them. When I

Brigham, Joan

1990-01-01T23:59:59.000Z

213

Fundamental Experiment and Analysis of Direct Energy Conversion Using Proton-Conducting Ceramic Fuel Cells Supplied with High-Temperature Nuclear Heat and Natural Gas  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Satoshi Fukada; Shigenori Suemori

214

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

DOE's BestPractices Steam End User Training Steam End User Training Steam Distribution Losses Module 1 June 29, 2010 Steam EndUser Training Steam Distribution System Losses Module Slide 1 Steam Distribution System Losses Module The steam distribution system typically consists of main steam

Oak Ridge National Laboratory

215

CHLORIDE DEPOSITION FROM STEAM ONTO SUPERHEATER FUEL CLAD MATERIALS  

SciTech Connect

Experimemts using Cl/sup 36/ in a steam test loop were conducted to study the deposition behavior of chlorides on BONUS superheater fuel assembly materials. The moisture content of the steam was varied between 0 and 0.5 wt%, and superheat was added up to 15 deg F before the steam passed over the test cartridge heater. The effects of vaiiables on the chloride deposition on the heater were studied in detail. Chloride deposition from moist steam was found to result in heavy, adherent deposits which are conducive to severe chloride stress corrosion of austenitic steels, while removal of all moisture from the incoming steam reduces the chloride deposition and minimizes the chloride stress corrosion. The heater surface condition was found to be a very important variable; deposition is increased by surface defects and pits. Neither the temperature of steam or heater nor the amount of superheat had an appreciable effect on the deposition, when no moisture existed in the steam. However, low steam velocities and spacer protoberances increase the deposition. Different clad materials (Inconel and Type 304 and 347 stainless steel) with similar surface conditions did not affect the deposition, although subsequent corrosion effects do modify the deposition behavior. Recommendations are given for the control of chloride deposition in nuclear superheater reactor systems. (D.L.C.)

Bevilacqua, F.; Brown, G.M.

1963-10-18T23:59:59.000Z

216

A demonstration experiment of steam-driven, high-pressure melt ejection  

DOE Green Energy (OSTI)

A steam blowdown test was performed at the Surtsey Direct Heating Test Facility to test the steam supply system and burst diaphragm arrangement that will be used in subsequent Surtsey Direct Containment Heating (DCH) experiments. Following successful completion of the steam blowdown test, the HIPS-10S (High-Pressure Melt Streaming) experiment was conducted to demonstrate that the technology to perform steam-driven, high-pressure melt ejection (HPME) experiments has been successfully developed. In addition, the HIPS-10S experiment was used to assess techniques and instrumentation design to create the proper timing of events in HPME experiments. This document discusses the results of this test.

Allen, M.D.; Pitch, M. (Sandia National Labs., Albuquerque, NM (USA)); Nichols, R.T. (Ktech Corp., Albuquerque, NM (USA))

1990-08-01T23:59:59.000Z

217

Power supply  

SciTech Connect

An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

Hart, Edward J. (Albuquerque, NM); Leeman, James E. (Albuquerque, NM); MacDougall, Hugh R. (Albuquerque, NM); Marron, John J. (Albuquerque, NM); Smith, Calvin C. (Amarillo, TX)

1976-01-01T23:59:59.000Z

218

The 3He Supply Problem  

Science Conference Proceedings (OSTI)

One of the main uses for 3He is in gas proportional counters for neutron detection. Radiation portal monitors deployed for homeland security and non-proliferation use such detectors. Other uses of 3He are for research detectors, commercial instruments, well logging detectors, dilution refrigerators, for targets or cooling in nuclear research, and for basic research in condensed matter physics. The US supply of 3He comes almost entirely from the decay of tritium used in nuclear weapons by the US and Russia. A few other countries contribute a small amount to the world’s 3He supply. Due to the large increase in use of 3He for homeland security, the supply has dwindled, and can no longer meet the demand. This white paper reviews the problems of supply, utilization, and alternatives.

Kouzes, Richard T.

2009-05-01T23:59:59.000Z

219

Method for improving the steam splits in a multiple steam injection process  

SciTech Connect

This patent describes a method for enhancing the uniformity of steam distribution in a multiple steam injection system comprising a steam generator, a steam header, a primary steam line connecting the generator to the header, and secondary steam lines connecting the header to steam injection wells. It comprises: injecting a surfactant into the primary steam line, and mixing the surfactant and steam sufficiently so that the surfactant and the steam enter the header as a foam.

Stowe, G.R. III.

1990-09-04T23:59:59.000Z

220

Steam Generator Management Program: Steam Generator Engineering Training Course 1  

Science Conference Proceedings (OSTI)

This technical update provides training material that was prepared for the first of three Steam Generator Engineer Training Program courses. The Steam Generator Engineer Training Program is a comprehensive training program of the Steam Generator Management Program. The content of this course is based on an industry-developed job analysis for a steam generator engineer. The job analysis resulted in eight high-level tasks; therefore, eight training modules will be developed over a three-year period beginni...

2009-03-25T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TRANSISTOR HIGH VOLTAGE POWER SUPPLY  

DOE Patents (OSTI)

High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

Driver, G.E.

1958-07-15T23:59:59.000Z

222

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

223

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

Maxey, L.C.; Simpson, M.L.

1995-01-17T23:59:59.000Z

224

Deaerators in Industrial Steam Systems  

SciTech Connect

This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

225

Inspect and Repair Steam Traps  

SciTech Connect

This revised ITP tip sheet on inspecting and repairing steam traps provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

226

Steam generator tube rupture study  

E-Print Network (OSTI)

This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

Free, Scott Thomas

1986-01-01T23:59:59.000Z

227

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby

Thomas, Andrew

228

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Corbett Lot Dunn Lot Chadbourne Merrill Aubert Hannibal Hamlin Steam Plant Crosby Machine Tool Lab Children's Center Rogers N

Thomas, Andrew

229

Belgrade Lot Steam Plant Lot  

E-Print Network (OSTI)

2 2A 2A Belgrade Lot Steam Plant Lot Alfond Lot Satellite Lot North Gym Lot Gym Lot Corbett Lot Greenhouse Patch Oceanographic Operations 1 2 8 5 3 4 7 6 AMC Chadbourne Merrill Aubert Hannibal Hamlin Steam

Thomas, Andrew

230

Fuzzy control of steam turbines  

Science Conference Proceedings (OSTI)

Keywords: PID control, comparison of PID and fuzzy control, fuzzy logic control, robustness, speed control, steam turbine control

N. Kiupel; P. M. Frank; O. Bux

1994-05-01T23:59:59.000Z

231

Steam Turbine Performance Engineer's Guide  

Science Conference Proceedings (OSTI)

The Steam Turbine Performance Engineer's Guide is meant to present the steam turbine performance engineer with the expected and important functions and responsibilities necessary to succeed in this position that are not necessarily taught in college. The instructions and recommendations in this guide, when properly executed, will improve the effectiveness of steam turbine performance engineers, positively affecting both the performance and reliability of the steam turbines under their care.

2010-12-23T23:59:59.000Z

232

Options for Generating Steam Efficiently  

E-Print Network (OSTI)

This paper describes how plant engineers can efficiently generate steam when there are steam generators and Heat Recovery Steam Generators in their plant. The process consists of understanding the performance characteristics of the various equipment as a function of load and operating them close to the maximum efficiency point.

Ganapathy, V.

1996-04-01T23:59:59.000Z

233

Downhole steam generator with improved preheating, combustion and protection features  

DOE Patents (OSTI)

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

234

STEAM GENERATOR PRELIMINARY DESIGN  

SciTech Connect

A conceptual study on design of sodium-cooled reactor steam generators was conducted. Included is a detailed description of the preliminary design and analysis, based on the use of known materials and existing methods of fabrication. (See also APAE-41 Vols. I and III.) (J.R.D.)

1959-02-28T23:59:59.000Z

235

Steam purity in PWRs  

Science Conference Proceedings (OSTI)

Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion.

Hopkinson, J.; Passell, T.

1982-10-01T23:59:59.000Z

236

Engineering Technical Training Module Water and Steam Properties (ETTM: WSP) Version 1.0  

Science Conference Proceedings (OSTI)

The purpose of this training module is to provide a foundational understanding on the engineering principals and properties of water and steam and how they apply in nuclear power plant applications. The topics that are included are steam tables, specific heat, the energy equation and how it applies to different plant systems, and example problems for analyzing different plant equipment to understand their water/steam properties. This computer-based training (CBT) module is intended for use by new engine...

2011-09-16T23:59:59.000Z

237

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

demands, and cogeneration. The Steam Distribution System Losses module will cover steam leaks, steam traps Analysis ­ (SSAT) Fuel selection Steam demands Cogeneration Steam Distribution System Losses - (3EDOE's BestPractices Steam End User Training Steam End User Training Welcome Module - 1 8

Oak Ridge National Laboratory

238

Steam assisted gas turbine engine  

SciTech Connect

A gas turbine engine is disclosed which has an integral steam power system consisting of heat absorbing boilers which convert an unpressurized liquid into an expanded and heated steam by utilizing heat normally lost through component cooling systems and the exhaust system. Upon completion of the steam power cycle, the steam is condensed back to a liquid state through a condensing system located within the compressor and other functional components of the gas turbine engine. A system of high pressure air and friction seals restrict steam or liquid condensate within designed flow bounds. The gas turbine engine disclosed is designed to give improved fuel efficiency and economy for aircraft and land use applications.

Coronel, P.D.

1982-06-08T23:59:59.000Z

239

Underground coal gasification using oxygen and steam  

Science Conference Proceedings (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

240

Steam System Balancing and Tuning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing and Steam System Balancing and Tuning Building America Stakeholder Meeting Austin, TX Jayne Choi, Energy Analyst, CNT Energy March 2, 2012 PARR Current collaboration with GTI as a part of the PARR Building America team - Steam Systems Balancing and Tuning Study - Heating season 2011-2012 Background In Chicago, heating is the focus of residential energy use Of the 470,000 multifamily units in the Chicago region, at least 70,000 of those are steam heated Old steam systems invariably suffer from imbalance - Tenants must use supplemental heat or open their windows to cool their apartments during the heating season Buildings are often overheated Problem Statement (CNT Energy) Steam Heating Steam heat was the best option for buildings constructed between 1900 and 1930

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NNSA TRITIUM SUPPLY CHAIN  

SciTech Connect

Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

Wyrick, Steven [Savannah River National Laboratory, Aiken, SC, USA; Cordaro, Joseph [Savannah River National Laboratory, Aiken, SC, USA; Founds, Nanette [National Nuclear Security Administration, Albuquerque, NM, USA; Chambellan, Curtis [National Nuclear Security Administration, Albuquerque, NM, USA

2013-08-21T23:59:59.000Z

242

ADVANCED STEAM GENERATORS  

SciTech Connect

Concerns about climate change have encouraged significant interest in concepts for ultra-low or ''zero''-emissions power generation systems. In some proposed concepts, nitrogen is removed from the combustion air and replaced with another diluent such as carbon dioxide or steam. In this way, formation of nitrogen oxides is prevented, and the exhaust stream can be separated into concentrated CO{sub 2} and steam or water streams. The concentrated CO{sub 2} stream could then serve as input to a CO{sub 2} sequestration process or utilized in some other way. Some of these concepts are illustrated in Figure 1. This project is an investigation of one approach to ''zero'' emission power generation. Oxy-fuel combustion is used with steam as diluent in a power cycle proposed by Clean Energy Systems, Inc. (CES) [1,2]. In oxy-fuel combustion, air separation is used to produce nearly pure oxygen for combustion. In this particular concept, the combustion temperatures are moderated by steam as a diluent. An advantage of this technique is that water in the product stream can be condensed with relative ease, leaving a pure CO{sub 2} stream suitable for sequestration. Because most of the atmospheric nitrogen has been separated from the oxidant, the potential to form any NOx pollutant is very small. Trace quantities of any minor pollutants species that do form are captured with the CO{sub 2} or can be readily removed from the condensate. The result is a nearly zero-emission power plant. A sketch of the turbine system proposed by CES is shown in Figure 2. NETL is working with CES to develop a reheat combustor for this application. The reheat combustion application is unusual even among oxy-fuel combustion applications. Most often, oxy-fuel combustion is carried out with the intent of producing very high temperatures for heat transfer to a product. In the reheat case, incoming steam is mixed with the oxygen and natural gas fuel to control the temperature of the output stream to about 1480 K. A potential concern is the possibility of quenching non-equilibrium levels of CO or unburned fuel in the mixing process. Inadequate residence times in the combustor and/or slow kinetics could possibly result in unacceptably high emissions. Thus, the reheat combustor design must balance the need for minimal excess oxygen with the need to oxidize the CO. This paper will describe the progress made to date in the design, fabrication, and simulation of a reheat combustor for an advanced steam generator system, and discuss planned experimental testing to be conducted in conjunction with NASA Glenn Research Center-Plumb Brook Station.

Richards, Geo. A.; Casleton, Kent H.; Lewis, Robie E.; Rogers, William A. (U.S. DOE National Energy Technology Laboratory); Woike, Mark R.; Willis; Brian P. (NASA Glenn Research Center)

2001-11-06T23:59:59.000Z

243

Crude oil steam distillation in steam flooding. Final report  

SciTech Connect

Steam distillation yields of sixteen crude oils from various parts of the United States have been determined at a saturated steam pressure of 200 psig. Study made to investigate the effect of steam pressure (200 to 500 psig) on steam distillation yields indicates that the maximum yields of a crude oil may be obtained at 200 psig. At a steam distillation correlation factor (V/sub w//V/sub oi/) of 15, the determined steam distillation yields range from 12 to 56% of initial oil volume for the sixteen crude oils with gravity ranging from 12 to 40/sup 0/API. Regression analysis of experimental steam distillation yields shows that the boiling temperature (simulated distillation temperature) at 20% simulated distillation yield can predict the steam distillation yields reasonably well: the standard error ranges from 2.8 to 3.5% (in yield) for V/sub w//V/sub oi/ < 5 and from 3.5 to 4.5% for V/sub w//V/sub oi/ > 5. The oil viscosity (cs) at 100/sup 0/F can predict the steam distillation yields with standard error from 3.1 to 4.3%. The API gravity can predict the steam distillation yields with standard error from 4.4 to 5.7%. Characterization factor is an unsatisfactory correlation independent variable for correlation purpose.

Wu, C.H.; Elder, R.B.

1980-08-01T23:59:59.000Z

244

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

245

Steam Turbine Mechanical Hydraulic Control System - Operation, Inspection, Setup, Troubleshooting, and Maintenance Guide, Revision 1  

Science Conference Proceedings (OSTI)

This report describes the components of General Electric and Westinghouse steam turbine mechanical hydraulic control systems and provides typical drawings. It focuses on systems located on the front standards and valve enclosures of utility-sized fossil and nuclear steam turbines manufactured by General Electric and Westinghouse. The report is intended to assist in maintaining, calibrating, and troubleshooting these systems.

2009-06-25T23:59:59.000Z

246

Electrostatic Charge and Its Influence on the Condensation of Steam in a Turbine  

Science Conference Proceedings (OSTI)

Some major contributors to efficiency loss in a fossil or nuclear plant are associated with nucleation of moisture from superheated steam, formation and release of liquid films on turbine surfaces, and flow of moist steam into the turbine exhaust and condenser. This document provides a state-of-knowledge report on the various electrostatic processes involved.

2001-09-28T23:59:59.000Z

247

Steam Generator Management Program: Onset of Fatigue Cracking in Steam Generator Tubes With Through Wall Flaws  

Science Conference Proceedings (OSTI)

Leak rate tests of steam generator tubing with stress corrosion cracks and electrodischarge machining notches were conducted at Argonne National Laboratory (ANL) under the sponsorship of the U.S. Nuclear Regulatory Commission. Some test specimens displayed a significant leak rate increase under constant pressure hold. It was suspected that fatigue caused by jet–structure interaction was responsible for the increased leak rate. EPRI Reports 1015123 and 1016560 investigated the ANL test results in terms of...

2011-11-10T23:59:59.000Z

248

Steam Generator Management Program: Simulation Model for Eddy Current Steam Generator Inspection  

Science Conference Proceedings (OSTI)

BackgroundEddy current techniques are used widely to evaluate the integrity of steam generator (SG) tubes in nuclear power plants. A variety of commercial probes have been used by industry; it is well known that eddy current probe responses change as the tube condition changes. Other factors that influence the eddy current signal include deposits, loose parts, and denting. Postulated SG conditions have been mocked up in the laboratory; however, capabilities are limited ...

2013-12-19T23:59:59.000Z

249

A protocol for evaluating thermal performance of 14 solar steam generators for the Kogan Creek solar boost project.  

E-Print Network (OSTI)

??The Kogan Creek Solar Boost is a world-first commercial project that sees AREVA Solar designing, supplying and constructing CLFR-based solar steam generators for CS Energy,… (more)

Watson, Bond

2012-01-01T23:59:59.000Z

250

dist_steam.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Steam Usage Form District Steam Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

251

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

252

Why Supply Chain  

E-Print Network (OSTI)

Why supply chain explains the importance of supply chains. It includes an introduction to ERP as designed by SAP.

Datta, Shoumen

2000-01-01T23:59:59.000Z

253

Steam Condensation Induced Waterhammer  

E-Print Network (OSTI)

This is the type of waterhammer that kills people. It's initiating mechanism is much different than the image most engineers have of what causes waterhammer-- i.e. fast moving steam picking up a slug of condensate and hurling it downstream against an elbow or a valve. Condensation Induced Waterhammer can be 100 times more powerful than this type of waterhammer. Because it does not require flowing steam, it often occurs during relatively quiescent periods when operators least expect it. It's most often initiated by opening a valve, even a drain valve to remove condensate. The overpressure from an event can easily exceed 1000 psi. This is enough pressure to fracture a cast iron valve, blow out a steam gasket, or burst an accordion type expansion joint. And, in fact, failure of each of these components in separate condensation induced waterhammer accidents has resulted in operator fatalities. Operators and engineers need to understand this type of waterhammer so they can avoid procedures which can initiate it and designs which are susceptible to it.

Kirsner, W.

2000-04-01T23:59:59.000Z

254

Institute sees possible uranium supply shortages after 2000  

SciTech Connect

This paper describes factors pertaining to the supply and demand for uranium. Forecasts described in a report titled {open_quotes}The Global Nuclear Fuel Market: Supply and Demand 1995-2015{close_quotes} are discussed.

Newman, P.

1996-09-10T23:59:59.000Z

255

Steam condensate leakage  

SciTech Connect

Argonne National Laboratory (ANL) is a multi-program research and development center owned by the United States Department of Energy and operated by the University of Chicago. The majority of the buildings on site use steam for heating and other purposes. Steam is generated from liquid water at the site`s central boiler house and distributed around the site by means of large pipes both above and below the ground. Steam comes into each building where it is converted to liquid condensate, giving off heat which can be used by the building. The condensate is then pumped back to the boiler house where it will be reheated to steam again. The process is continual but is not perfectly efficient. A substantial amount of condensate is being lost somewhere on site. The lost condensate has both economic and environmental significance. To compensate for lost condensate, makeup water must be added to the returned condensate at the boiler house. The water cost itself will become significant in the future when ANL begins purchasing Lake Michigan water. In addition to the water cost, there is also the cost of chemically treating the water to remove impurities, and there is the cost of energy required to heat the water, as it enters the boiler house 1000 F colder than the condensate return. It has been estimated that only approximately 60% of ANL`s steam is being returned as condensate, thus 40% is being wasted. This is quite costly to ANL and will become significantly more costly in the future when ANL begins purchasing water from Lake Michigan. This study locates where condensate loss is occurring and shows how much money would be saved by repairing the areas of loss. Shortly after completion of the study, one of the major areas of loss was repaired. This paper discusses the basis for the study, the areas where losses are occurring, the potential savings of repairing the losses, and a hypothesis as to where the unaccounted for loss is occurring.

Midlock, E.B.; Thuot, J.R.

1996-07-01T23:59:59.000Z

256

Steam Power Partnership: Improving Steam System Efficiency Through Marketplace Partnerships  

E-Print Network (OSTI)

The Alliance to Save Energy, a national nonprofit organization based in Washington DC, and the U.S. Department of Energy are working with energy efficiency suppliers to promote the comprehensive upgrade of industrial steam systems. Like EPA's Green Lights and DOE's Motor Challenge, the Steam Power Partnership program will encourage industrial energy consumers to retrofit their steam plants wherever profitable. The Alliance has organized a "Steam Team" of trade associations, consulting engineering firms, and energy efficiency companies to help develop this public- private initiative.

Jones, T.

1997-04-01T23:59:59.000Z

257

A PROBABILISTIC MECHANISTIC APPROACH FOR ASSESSING THE RUPTURE FREQUENCY OF SMALL MODULAR REACTOR STEAM GENERATOR TUBES USING UNCERTAIN INPUTS FROM IN-SERVICE INSPECTIONS.  

E-Print Network (OSTI)

??One of the significant safety issues in nuclear power plants is the rupture of steam generator tubes leading to the loss of radioactive primary coolant… (more)

Chatterjee, Kaushik

2011-01-01T23:59:59.000Z

258

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network (OSTI)

Both recent economic and environmental conditions in the U.S. have converged to bring about unprecedented attention to energy efficiency and sustainability in the country's industrial sector. Historically, energy costs in the U.S. have been low in comparison to global averages in some measure do to an extended tolerance for externalized costs related to environmental degradation. Consequently, awareness, innovation & implementation of technologies focused on energy efficiency and reduced environmental impact have not kept pace with other industrialized nations. The U.S. is confronted with looming tipping points with respect to energy supply and GHG emissions that represent very tangible constraints on future economic growth and quality of life. A recent 2008 article in Forbes Magazine highlights the top ten most energy efficient economies in the world. The U.S. is conspicuously absent from the list. The U.S. economy, with an estimated energy intensity of 9,000 Btu's/$GDP, is only half as energy efficient as Japan (holding the top spot on the list with an EI of 4,500 Btu's / US$ GDP). The U.S. Department of Energy has initiated the Save Energy Now program to address this by supporting reductions in U.S. industrial energy intensity by 25% by 2020. A recent 2005 survey conducted by Energy & Environmental Analysis, Inc. (EEA) for Oak Ridge National Laboratory indicates that the current U.S. inventory of commercial/industrial boilers stands at around 163,000 units and 2.7 million MMBtu/hr. total fuel input capacity. These boilers consume nearly 8,100 Tbtu per year, representing about 40% of all energy consumed in the commercial/industrial sectors. Moreover, this same survey indicates that 47% of all commercial/industrial boilers in the U.S. are 40+ years old while as many as 76% are 30+ years old. Boilers account for nearly half of commercial / industrial energy consumption and represent some of the most energy intensive systems comprising these sectors. Given the preponderance of aged, obsolete boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank-less / instantaneous water heating systems are eschewing a new era in energy efficiency in the residential sector, compact modular on-demand steam generation systems are poised to support the same kind of transformation in the commercial / industrial sector. This paper will illustrate how emerging on-demand steam generation technologies will play a part in addressing the energy and environmental challenges facing the country's commercial/ industrial sectors and in doing so help to transform the U.S. economy.

Smith, J. P.

2010-01-01T23:59:59.000Z

259

Steam generators, turbines, and condensers. Volume six  

SciTech Connect

Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

1986-01-01T23:59:59.000Z

260

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms.

Larinoff, M.W.

1990-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Constant-Pressure Measurement of Steam-  

E-Print Network (OSTI)

SGP-TR-169 Constant-Pressure Measurement of Steam- Water Relative Permeability Peter A. O by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative

Stanford University

262

Steam pretreatment for coal liquefaction  

SciTech Connect

Steam pretreatment is the reaction of coal with steam at temperatures well below those usually used for solubilization. The objective of the proposed work is to test the application of steam pretreatment to coal liquefaction. This quarter, a 300 ml stirred autoclave for liquefaction tests were specified and ordered, procedures for extraction tests were reestablished, and the synthesis of four model compounds was completed. Two of these compounds remain to be purified.

Graff, R.A.; Balogh-Nair, V.

1990-01-01T23:59:59.000Z

263

Process for purifying geothermal steam  

DOE Patents (OSTI)

Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

Li, Charles T. (Richland, WA)

1980-01-01T23:59:59.000Z

264

Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief  

SciTech Connect

A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

Not Available

2005-11-01T23:59:59.000Z

265

Degradation of Steam Generator Internals  

Science Conference Proceedings (OSTI)

Aug 1, 1999 ... Regulatory Perspective on Industry's Response to Generic Letter 97-06, " Degradation of Steam Generator Internals" by S. Coffin, M. Subudhi, ...

266

Downhole steam injector. [Patent application  

DOE Patents (OSTI)

An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

Donaldson, A.B.; Hoke, E.

1981-06-03T23:59:59.000Z

267

Steam Generator Group Project. Annual report, 1982  

SciTech Connect

The Steam Generator Group Project (SGGP) is an NRC program joined by additional sponsors. The SGGP utilizes a steam generator removed from service at a nuclear plant (Surry 2) as a vehicle for research on a variety of safety and reliability issues. This report is an annual summary of progress of the program for 1982. Information is presented on the Steam Generator Examination Facility (SGEF), especially designed and constructed for this research. Loading of the generator into the SGEF is then discussed. The report then presents radiological field mapping results and personnel exposure monitoring. This is followed by information on field reduction achieved by channel head decontaminations. The report then presents results of a secondary side examination through shell penetrations placed prior to transport, confirming no change in generator condition due to transport. Decontamination of the channel head is discussed followed by plans for eddy current testing and removal of the plugs placed during service. Results of a preliminary profilometry examination are then provided.

Clark, R.A.; Lewis, M.

1984-02-01T23:59:59.000Z

268

Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control  

Science Conference Proceedings (OSTI)

The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y. [PHILOSOPHIA, Inc., Seoul National University, San 56-1 Sillim-dong, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

269

Steam Generator Management Program: Assessment of Steam Generator Tube Plugs  

Science Conference Proceedings (OSTI)

EPRI Steam Generator Management Program guidelines require that utilities perform integrity assessments of all steam generator (SG) components, including tube plugs. SG inspection outages should specifically include monitoring of degradation in tube hardware such as plugs. This report provides guidance for utility engineers to use in determining tube plug inspection requirements, including scope, technique, and periodicity.BackgroundGenerally, utilities perform ...

2013-08-28T23:59:59.000Z

270

Turbocompressor downhole steam-generating system  

SciTech Connect

This patent describes a downhole steam-generating system comprising: an air compressor; a steam generating unit, including: a combustor for combusting fuel with the compressed air from the compressor producing combustor exhaust products; and steam conversion means, in indirect heat-exchange relationship with the combustor, for converting water which is fed into the steam-conversion means into steam; a turbine which is rotated by the combustor exhaust products and steam from the steam-generating unit, the rotational motion of the turbine is mechanically coupled to the air compressor to drive the air compressor; and control bypass means associated with the steam generating unit and turbine for regulating the relative amounts of the combustor exhaust product and steam delivered to the turbine from the steam generating unit. The air compressor and turbine form an integral turbocompressor unit. The turbocompressor unit, steam-generating unit and control bypass means are located downhole during operation of the steam-generating system.

Wagner, W.R.

1987-07-28T23:59:59.000Z

271

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

272

Benchmark the Fuel Cost of Steam Generation  

DOE Green Energy (OSTI)

BestPractices Steam tip sheet regarding ways to assess steam system efficiency. To determine the effective cost of steam, use a combined heat and power simulation model that includes all the significant effects.

Papar, R. [U.S. Department of Energy (US)

2000-12-04T23:59:59.000Z

273

Optimizing Steam and Condensate System: A Case Study  

E-Print Network (OSTI)

Optimization of Steam & Condensate systems in any process plant results in substantial reduction in purchased energy cost. During periods of natural gas price hikes, this would benefit the plant in controlling their fuel budget significantly, irrespective of the plant’s size. This paper highlights the efforts taken by the management of a medium sized specialty chemicals plant in Baton Rouge, LA. This site spent over $5.1 million in 2007 ($2.1 million for natural gas & $3.0 million for electricity). The site is generating steam for its process operation from the two gas fired boilers at 175-psig pressure. The steam is consumed at three of its five process areas. The other two process areas are not significant steam users. Condensate recovery is about 55%, while the system is designed to recover condensate from all steam users. Make-up water is supplied from a Reverse Osmosis (RO) plant. The optimization study was conducted at this site between Mar – May 2008, to identify opportunities to reduce the energy cost and to improve the steam system’s reliability. The study identified nine energy cost optimization opportunities that would result in a total cost savings of $306,000 annually. The initial estimates indicate that 7 of the 9 projects recommended by the study have simple payback periods of less than one year. This case study is a good example and motivation for all the engineers and managers who are responsible for maintaining the efficiency and reliability of small and medium size steam systems.

Venkatesan, V. V.; Merritt, B.; Tully, R. C.

2009-05-01T23:59:59.000Z

274

High Efficiency Steam Electrolyzer  

SciTech Connect

A novel steam electrolyzer has been developed. In conventional electrolyzers, oxygen produced from electrolysis is usually released in the air stream. In their novel design, natural gas is used to replace air in order to reduce the chemical potential difference across the electrolyzer, thus minimizing the electrical consumption. The oxygen from the electrolysis is consumed in either a total oxidation or a partial oxidation reaction with natural gas. Experiments performed on single cells shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. Using thin film materials and high performance cathode and anode, electrolysis could be done at temperatures as low as 700 C with electrolytic current as high as 1 A/cm{sup 2} at a voltage of 0.5 V only. The 700 C operating temperature is favorable to the total oxidation of natural gas while minimizing the need for steam that is otherwise necessary to avoid carbon deposition. A novel tubular electrolyzer stack has been developed. The system was designed to produce hydrogen at high pressures, taking advantage of the simplicity and high efficiency of the electrochemical compressors. A complete fabrication process was developed for making electrolyzer tubes with thin film coatings. A 100 W stack is being built.

Pham, A.Q.

2000-06-19T23:59:59.000Z

275

Reduction in Unit Steam Production  

E-Print Network (OSTI)

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects of thes

Gombos, R.

2004-01-01T23:59:59.000Z

276

Go Steam for Green Transportation  

Science Conference Proceedings (OSTI)

Railroads are very fuel-efficient in moving freight by land. The history of rail begins with steam power, moving to eventual dieselization. Some components, advantages and disadvantages of internal combustion engines (gasoline, diesel) and external combustion ... Keywords: diesel engine, steam engine, biocoal, biofuel, computer control, internal combustion, external combustion

Paul Fred Frenger

2013-04-01T23:59:59.000Z

277

America`s energy supply  

Science Conference Proceedings (OSTI)

The gist of the paper is to demonstrate that the economical utilization of the country`s energy supply requires generating electric power wherever hydraulic or fuel energy is available, and collecting the power electrically, just as it is distributed electrically. In the first section a short review of the country`s energy supply in fuel and water power is given, and it is shown that the total potential hydraulic energy of the country is about equal to the total utilized fuel energy. In the second section it is shown that the modern synchronous station is necessary for large hydraulic powers, but the solution of the problem of the economic development of the far more numerous smaller water powers is the adoption of the induction generator. However, the simplicity of the induction generator station results from the relegation of all the functions of excitation, regulation, and control to the main synchronous station. The economic advantage of the induction generator station is that its simplicity permits elimination of most of the hydraulic development by using, instead of one large synchronous station, a number of induction generator stations and collecting their power electrically. The third section considers the characteristics of the induction generator and the induction-generator station, and its method of operation, and discusses the condition of ``dropping out of step of the induction generator`` and its avoidance. In the appendix the corresponding problem is pointed out with reference to fuel power, showing that many millions of kilowatts of potential power are wasted by burning fuel and thereby degrading its energy, that could be recovered by interposing simple steam turbine induction generators between the boiler and the steam heating systems, and collecting their power electrically.

Steinmetz, C.P.

1998-04-01T23:59:59.000Z

278

Hartford Steam Co | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Hartford Steam Co Jump to: navigation, search Name Hartford Steam Co Place Connecticut Utility Id...

279

Combustion gas turbine/steam generator plant  

SciTech Connect

A fired steam generator is described that is interconnected with a gas turbine/steam generator plant having at least one gas turbine group followed by an exhaust-gas steam generator. The exhaust-gas steam generator has a preheater and an evaporator. The inlet of the preheater is connected to a feedwater distribution line which also feeds a preheater in the fired steam generator. The outlet of the preheater is connected to the evaporator of the fired steam generator. The evaporator outlet of the exhaust-gas steam generator is connected to the input of a superheater in the fired steam generator.

Aguet, E.

1975-11-18T23:59:59.000Z

280

Steam Basics: Use Available Data to Lower Steam System Cost  

E-Print Network (OSTI)

Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity target. However, the quality of steam is often taken for granted, even overlooked at times. When the recent global recession challenged companies to remain profitable as a first priority, the result was that maintenance budgets were cut and long term cost reduction initiatives for steam systems set aside due to more pressing issues. One of the regrettable results of such actions is that knowledgeable personnel are re-assigned, retired, or released when necessary steam system cost reduction programs are eliminated. When the time arrives to refocus on long term cost reduction by improving the steam system, some programs may have to start from the beginning and a clear path forward may not be evident. New personnel are often tasked with steam improvements when the programs restart, and they may experience difficulty in determining the true key factors that can help reduce system cost. The urgency for lowering long term fuel use and reducing the cost of producing steam is near for each plant. Population growth and resultant global demand are inevitable, so the global economy will expand, production will increase, more fossil fuel energy will be needed, and that fuel will become scarce and more costly. Although fuel prices are low now, energy costs can be expected to trend significantly upward as global production and demand increase. Now is the time for plants to make certain that they can deliver high quality steam to process equipment at lowest system cost. There are three stages to help optimize plant steam for best performance at a low system cost; Phase 1: Manage the condensate discharge locations (where the steam traps & valves are located), Phase 2: Optimize steam-using equipment, and Phase 3: Optimize the entire steam system. This presentation will focus primarily on management of the condensate discharge locations (CDLs) and show sites how to use readily available data to more efficiently achieve goals; but will also provide insight into how the three stages interact to reduce system cost and improve process performance.

Risko, J. R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluate deaerator steam requirements quickly  

Science Conference Proceedings (OSTI)

Steam plant engineers frequently have to perform energy balance calculations around the deaerator to estimate the steam required to preheat and deaerate the make-up water and condensate returns. This calculation involves solving two sets of equations, one for mass and the other for energy balance. Reference to steam tables is also necessary. However, with the help of this program written in BASIC, one can arrive at the make-up water and steam requirements quickly, without referring to steam tables. This paper shows the mass and energy balance equations for the deaerator. This paper gives the program listing. An number of condensate returns can be handled. An example illustrates the use of the program.

Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (US))

1991-02-01T23:59:59.000Z

282

Dynamic computer simulation of the Fort St. Vrain steam turbines  

SciTech Connect

A computer simulation is described for the dynamic response of the Fort St. Vrain nuclear reactor regenerative intermediate- and low-pressure steam turbines. The fundamental computer-modeling assumptions for the turbines and feedwater heaters are developed. A turbine heat balance specifying steam and feedwater conditions at a given generator load and the volumes of the feedwater heaters are all that are necessary as descriptive input parameters. Actual plant data for a generator load reduction from 100 to 50% power (which occurred as part of a plant transient on November 9, 1981) are compared with computer-generated predictions, with reasonably good agreement.

Conklin, J.C.

1983-01-01T23:59:59.000Z

283

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

0.PDF Table 10. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2011 (Thousand Barrels per Day) Commodity Supply Disposition...

284

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition...

285

Petroleum Supply Annual  

Annual Energy Outlook 2012 (EIA)

TABLE8.PDF Table 8. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2011 (Thousand Barrels per Day) Commodity Supply Disposition...

286

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE4.PDF Table 4. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2011 (Thousand Barrels per Day) Commodity Supply Disposition...

287

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

May 2013 Table 21. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, May 2013 (Thousand Barrels) Commodity Supply Disposition Ending...

288

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

5 May 2013 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, May 2013 (Thousand Barrels per Day) Commodity Supply Disposition...

289

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 Table 11. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply...

290

Petroleum Supply Annual  

Gasoline and Diesel Fuel Update (EIA)

TABLE6.PDF Table 6. PAD District 2 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2011 (Thousand Barrels per Day) Commodity Supply Disposition...

291

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

December 2011 Table 13. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition...

292

Nuclear power and nuclear-weapons proliferation  

SciTech Connect

The danger that fissile isotopes may be diverted from nuclear power production to the construction of nuclear weapons would be aggravated by a switch to the plutonium breeder: but future uranium supplies are uncertain.

Moniz, E.J.; Neff, T.L.

1978-04-01T23:59:59.000Z

293

SUBJECT: Insights and Implications of Steam Generator Operating, Inspecting and Maintenance Experience  

E-Print Network (OSTI)

The steam generator tube failure event at Indian Point Unit 2 and the potential issues surrounding the in-situ pressure testing of selected tubes and test specimens at Arkansas Nuclear One Unit 2, prompted industry to evaluate its generic steam generator guidelines, plant experiences, and insights gained from the periodic steam generator program review visits conducted by the Institute of Nuclear Power Operations (INPO). The purpose of this letter is to share with the NRC staff the industry conclusions and actions taken. As the NRC staff is well aware, the operation, inspection, and maintenance of steam generators are a high industry priority. Given the critical role of the steam generator in providing safe, reliable, and economic power production, steam generator performance has received broad industry attention for years. Generic industry activities, managed by EPRI, have been underway continuously since 1978. NRC staff is familiar with those efforts based on past briefings on the activities of the EPRI Steam Generator Management Program (SGMP) and attendance at selected SGMP workshops. More recently, other industry support organizations, such as NEI, INPO, and NSSS Owners Groups, have played important roles as well. Industry data indicates continual improvement in steam generator performance since the initiation of these efforts.

David J. Modeen; Dr. Brian; W. Sheron

2000-01-01T23:59:59.000Z

294

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

295

ULTRA-SUPERCRITICAL STEAM CORROSION  

SciTech Connect

Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.

Holcomb, G.R.; Alman, D.E.; Bullard, S.B.; Covino, B.S., Jr.; Cramer, S.D.; Ziomek-Moroz, M.

2003-04-22T23:59:59.000Z

296

Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors  

DOE Green Energy (OSTI)

A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

2011-08-01T23:59:59.000Z

297

Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation  

SciTech Connect

A control system for a combined cycle electric power plant is described. It contains: at least one gas turbine including an exit through which heated exhaust gases pass; means for generating steam coupled to said gas turbine exit for transferring heat from the exhaust gases to a fluid passing through the steam generator; a steam turbine coupled to the steam generator and driven by the steam supplied thereby; means for generating electric power by the driving power of the turbines; condenser means for receiving and converting the spent steam from the steam turbine into condensate; and steam generating means comprising a low pressure storage tank, a first heat exchange tube, a boiler feedwater pump for directing fluid from a low pressure storage tank through the first heat exchange tube, a main storage drum, a second heat exchange tube, and a high pressure recirculation pump for directing fluid from the main storage pump through the second heat exchange tube. The control system monitors the temperature of the exhaust gas turbine gases as directed to the steam generator and deactuates the steam turbine when a predetermined temperature is exceeded.

Martz, L.F.; Plotnick, R.J.

1974-08-08T23:59:59.000Z

298

Steam reformer with catalytic combustor  

DOE Patents (OSTI)

A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

Voecks, Gerald E. (La Crescenta, CA)

1990-03-20T23:59:59.000Z

299

GCFR steam generator conceptual design  

SciTech Connect

The gas-cooled fast reactor (GCFR) steam generators are large once-through heat exchangers with helically coiled tube bundles. In the GCFR demonstration plant, hot helium from the reactor core is passed through these units to produce superheated steam, which is used by the turbine generators to produce electrical power. The paper describes the conceptual design of the steam generator. The major components and functions of the design are addressed. The topics discussed are the configuration, operating conditions, design criteria, and the design verification and support programs.

Holm, R.A.; Elliott, J.P.

1980-01-01T23:59:59.000Z

300

Steam Plant Conversion Eliminating Campus Coal Use  

E-Print Network (OSTI)

Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

Dai, Pengcheng

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Combined Heat and Power Plant Steam Turbine  

E-Print Network (OSTI)

waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load SouthernCombined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

302

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network (OSTI)

This paper will present alternatives to costly corrective maintenance of the steam trap and condensate return system, and the paybacks associated with instituting a program of planned maintenance management of that system. Energy costs can be reduced by 10% and maintenance costs by 20%, while achieving other tangible improvements in the reliability and efficiency of the system. Recent studies have shown that more than 40% of all installed steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems in condensate return systems are due to poor design criteria. in expandlng or retrofitting existing return systems. By instituting a maintenance management program, a 95% reliability can be gained within two to four annual maintenance cycles. The associated operational problems can be greatly reduced. The maintenance management concept involves: 1) centralized project management; 2) diagnostic and inspection expertise; 3) system troubleshooting; 4) data analysis, reporting and recommendations; 5) maintenance repairs and follow-up; and 6) software and data base management. Several case studies, in which the concept has been successfully applied, will be presented. Energy costs, which have been on the rise for the past ten years, have now leveled off due to global supply and demand issues. But that is not true of the costs to maintain capital equipment such as steam distribution and power generation systems. Those costs continue to rise. If the basic principles of maintenance management are applied, when upgrading poorly maintained steam systems, those upgraded systems can be a fast payback of savings in energy, manpower and inventory. Three major areas where the savings can be gained are the steam traps, valve and condensate return systems. Such systems can be found in power generation, steam distribution, and in all types of durable and non-durable industrial productions.

Petto, S.

1987-09-01T23:59:59.000Z

303

Steam distillation effect and oil quality change during steam injection  

SciTech Connect

Steam distillation is an important mechanism which reduces residual oil saturation during steam injection. It may be the main recovery mechanism in steamflooding of light oil reservoirs. As light components are distilled the residual (initial) oil, the residuum becomes heavier. Mixing the distilled components with the initial oil results in a lighter produced oil. A general method has been developed to compute steam distillation yield and to quantify oil quality changes during steam injection. The quantitative results are specific because the California crude data bank was used. But general principles were followed and calculations were based on information extracted from the DOE crude oil assay data bank. It was found that steam distillation data from the literature can be correlated with the steam distillation yield obtained from the DOE crude oil assays. The common basis for comparison was the equivalent normal boiling point. Blending of distilled components with the initial oil results in API gravity changes similar to those observed in several laboratory and field operations.

Lim, K.T.; Ramey, H.J. Jr.; Brigham, W.E.

1992-01-01T23:59:59.000Z

304

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

: Introduction, Steam Generation Efficiency Resource Utilization Analysis, and Steam Distribution System Losses Stack Losses Resource Utilization Analysis Steam Distribution System Losses Conclusion Quiz If youDOE's BestPractices Steam End User Training Steam End User Training Navigational Tutorial - 1 8

Oak Ridge National Laboratory

305

DOE's BestPractices Steam End User Training Steam End User Training  

E-Print Network (OSTI)

horizontal runs of steam distribution piping from a common header. Steam distribution piping is insulatedDOE's BestPractices Steam End User Training Steam End User Training Introduction Module - 1 8/27/2010 Steam End User Training Introduction Module Slide 1 - Introduction Title Page Hello, and welcome

Oak Ridge National Laboratory

306

Simplify heat recovery steam generator evaluation  

SciTech Connect

Heat recovery steam generators (HRSGs) are widely used in process and power plants, refineries and in several cogeneration/combined cycle systems. They are usually designed for a set of gas and steam conditions but often operate under different parameters due to plant constraints, steam demand, different ambient conditions (which affect the gas flow and exhaust gas temperature in a gas turbine plant), etc. As a result, the gas and steam temperature profiles in the HRSG, steam production and the steam temperature differ from the design conditions, affecting the entire plant performance and economics. Also, consultants and process engineers who are involved in evaluating the performance of the steam system as a whole, often would like to simulate the performance of an HRSG under different gas flows, inlet gas temperature and analysis, steam pressure and feed water temperature to optimize the entire steam system and select proper auxiliaries such as steam turbines, condensers, deaerators, etc.

Ganapathy, V. (ABCO Industries, Abilene, TX (US))

1990-03-01T23:59:59.000Z

307

ROI Detection Using Spatial Kernel Based Filter for Steam Generator Tube Inspection in Eddy Current Nondestructive Evaluation  

Science Conference Proceedings (OSTI)

A combined image processing algorithm for ROI detection is presented for automatic analysis of eddy current data collected during the inspection of steam generator tubes in nuclear power plants. Keywords: steam generator, eddy current inspection, rotating probe coil, noise removal scheme

Jaejoon Kim; Lalita Udpa

2012-04-01T23:59:59.000Z

308

Steam Field | Open Energy Information  

Open Energy Info (EERE)

Field Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Steam field reservoirs are special cases where the fluid is predominantly found in a gas phase between 230°C to 240°C. "This special class of resource needs to be recognized, its uniqueness being the remarkably consistent initial temperature and pressure

309

The Elimination of Steam Traps  

E-Print Network (OSTI)

How would you like to have a share of $154,000,000,000 a year? According to the Department of Energy that is roughly what was spent for creating steam in 1978. Steam generation accounts for fully one half of the industrial and commercial energy dollar. That figure could be reduced by 10-20% or more by the simple elimination of steam traps. Recent engineering developments show that steam traps can be eliminated. Documented results demonstrate that the retrofitting of existing facilities to alternative methods of condensate removal is simple and economically feasible, with paybacks of less than 12 months. Advantages obtained in the first year remain consistent for several years after conversion with virtual elimination of maintenance.

Dickman, F.

1985-05-01T23:59:59.000Z

310

Computer Optimization of Steam Production  

E-Print Network (OSTI)

As fuel costs continued to rise sharply during the 1970' s, the staff at Exxon's Benicia Refinery realized there was a growing economic incentive to optimize the production of high pressure steam. A significant percentage of the Refinery's total energy is consumed in generating high pressure steam. Recently, a computer program was implemented to optimize high pressure steam production. The first challenge in developing the program was to provide reliable analog and digital instrumentation allowing simultaneous analog header control along with effective digital steam flow control. Once appropriate instrumentation became available, the effort focused on identifying the best approach for developing the computer control program. After screening several alternatives, it became apparent that we were dealing with an allocation problem which could be effectively handled with a linear program. The control program has performed well since it was commissioned. It has experienced a service factor of greater than 95% while reducing energy consumption of the boilers by over 500 million Btu's per day.

Todd, C. H.

1982-01-01T23:59:59.000Z

311

Heat Recovery Steam Generator Simulation  

E-Print Network (OSTI)

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs of the process plant, cogeneration or combined cycle plant. There is no need to design the HRSG per se and hence simulation is a valuable tool for anyone interested in evaluating the HRSG performance even before it is designed. It can also save a lot of time for specification writers as they need not guess how the steam side performance will vary with different gas/steam parameters. A few examples are given to show how simulation methods can be applied to real life problems.

Ganapathy, V.

1993-03-01T23:59:59.000Z

312

Steam Generator Management Program: Flaw Handbook Calculator  

Science Conference Proceedings (OSTI)

The EPRI Steam Generator Management Program: Steam Generator Degradation Specific Flaw Handbook v1.0 defines burst pressure equations for steam generator tubes with various degradation morphologies, and the EPRI Steam Generator Management Program: Steam Generator Integrity Assessment Guidelines (1019038) describes a probabilistic evaluation process which can be used to account for key input parameter uncertainties. The Flaw Handbook Calculator software is an automated Microsoft Excelspreadsheet which cal...

2010-04-20T23:59:59.000Z

313

Field Guide: Turbine Steam Path Damage  

Science Conference Proceedings (OSTI)

Steam path damage, particularly of blades, has long been recognized as a leading cause of steam turbine unavailability for large fossil fuel plants. Damage to steam path components by various mechanisms continues to result in significant economic impact domestically and internationally. Electric Power Research Institute (EPRI) Report TR-108943, Turbine Steam Path Damage: Theory and Practice, Volumes 1 and 2, was prepared to compile the most recent knowledge about turbine steam path damage: identifying th...

2011-12-12T23:59:59.000Z

314

Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control  

SciTech Connect

A combined cycle electric power plant is described that includes gas and steam turbines and a steam generator for recovering the heat in the exhaust gases exited from the gas turbine and for using the recovered heat to produce and supply steam to the steam turbine. The steam generator includes an economizer tube and a high pressure evaporator tube and a boiler feed pump for directing the heat exchange fluid serially through the aforementioned tubes. A condenser is associated with the steam turbine for converting the spent steam into condensate water to be supplied to a deaerator for removing undesired air and for preliminarily heating the water condensate before being pumped to the economizer tube. Condensate flow through the economizer tube is maintained substantially constant by maintaining the boiler feed pump at a predetermined, substantially constant rate. A bypass conduit is provided to feed back a portion of the flow heated in the economizer tube to the deaerator; the portion being equal to the difference between the constant flow through the economizer tube and the flow to be directed through the high pressure evaporator tube as required by the steam turbine for its present load.

Martz, L.F.; Plotnick, R.J.

1976-06-29T23:59:59.000Z

315

Free World Energy Resources--Petroleum, Coal, Nuclear  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... Free World Energy Resources--Petroleum, Coal, Nuclear ... William Pitt the Younger in terms of the development of steam as a source of power.

316

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

National Nuclear Security Administration (NNSA)

rod system. * Note: Does not include the steam turbine generator portion of the power plant. - Sensitive nuclear technology: Any information (including information...

317

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

to make additional steam for the steam turbine cycle. Thein multi-pressure-level steam turbines to produce additionalthe superheated steam to the steam turbine cycle. The most

Lu, Xiaoming

2012-01-01T23:59:59.000Z

318

Energy-supply options for Soldier's Grove, Wisconsin. A summary of recommendations  

DOE Green Energy (OSTI)

This report presents ANL's findings on energy supply options for Soldier's Grove, Wisconsin. Thirteen energy supply systems were considered. Although any of the systems could be used--at a price--Argonne recommends the new downtown be supplied by a wood-fired central heating plant with steam distribution. Although a list of the less desirable systems is provided, full details have been omitted here, but will be included in ANL's final report.

Kron, R; Davis, A; Davis, H; Kennedy, A S; Bauer, P; Hrabak, R; Tschanz, J F; Voelker, J

1979-02-01T23:59:59.000Z

319

Scaled physical model studies of the steam drive process. Second annual report, September 1978-September 1979  

SciTech Connect

A scaled physical model was operated to simulate steam drive operations in five-spot patterns with reservoir and operational parameters similar to those encountered in California reservoirs. The goal of this study was to elucidate the role of two important controllable parameters, viz., steam injection rate and steam quality and to explore the role of two important factors, oil viscosity and reservoir permeability on the performance of the steam drive. In addition, the influence of bottom water and a basal permeable layer were investigated. The experiments demonstrated that there is an optimum injection rate; that in the vicinity of this optimum an increased quantity results in improved oil steam ratios; that the viscosity of the oil at steam temperature, raised to a fractional power, 0.5, appears to correlate with oil production; that permeabilities in the darcy range have little effect on performance, but an increasing one with low viscosity oil, and that bottom water, which facilitates injection, results in toorer early performance but one which eventually rivals the oil/steam ratio of a uniform reservoir at a somewhat higher recovery of original oil in place. It has been concluded that the major value of the physical model is in describing the role of the reservoir and operational parameters of a class of steam drive operations rather than providing an exact prediction of a given operation.The problem of supplying the latter lies in the virtually impossible-to-define distribution of oil, gas and water in the reservoir on initiating the steam drive. Two years of this project have now been completed. During the forthcoming final phase of the program, effort will be devoted to studying the relative effects of solvent and gas addition to the steam, of diurnal injection, and of (horizontal) well placement.

Dosher, T.M.

1981-02-01T23:59:59.000Z

320

ProSteam- A Structured Approach to Steam System Improvement  

E-Print Network (OSTI)

Optimal operation of site utility systems is becoming an increasingly important part of any successful business strategy as environmental, legislative and commercial pressures grow. A reliable steam model allows a clear understanding of the system and of any operational constraints. It can also be used to determine the true cost of improvement projects, relating any changes in steam demand back to purchased utilities (fuel, power, and make-up water) at the site boundary. Example projects could include improved insulation, better condensate return, increased process integration, new steam turbines or even the installation of gas-turbine based cogeneration. This approach allows sites to develop a staged implementation plan for both operational and capital investment projects in the utility system. Steam system models can be taken one step further and linked to the site DCS data to provide real-time balances and improve the operation of the system, providing an inexpensive but very effective optimizer. Such a model ensures that the steam system is set in the optimum manner to react to current utility demands, emissions regulations, equipment availability, fuel and power costs, etc. This optimization approach typically reduces day-to-day utility system operating costs by between 1% and 5% at no capital cost.

Eastwood, A.

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE BestPractices Steam End User Training  

E-Print Network (OSTI)

DOE BestPractices Steam End User Training Guide Alternate Text Narratives and Graphic will discuss fuel selection, steam demands, and cogeneration. The Steam Distribution System Losses module

Oak Ridge National Laboratory

322

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

2005-09-01T23:59:59.000Z

323

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

Industrial Technologies Program's BestPractices tip sheet on improving efficiency of industrial steam systems by recovery latent heat from low-pressure steam.

Not Available

2005-09-01T23:59:59.000Z

324

Evaluation of UHT milk processed by direct steam injection and steam infusion technology.  

E-Print Network (OSTI)

??UHT direct steam injection and steam infusion are widely used; however there is no comparison of their impact on milk components. This study evaluates the… (more)

Malmgren, Bozena

2007-01-01T23:59:59.000Z

325

Steam Pressure Reduction, Opportunities, and Issues  

Science Conference Proceedings (OSTI)

Steam pressure reduction has the potential to reduce fuel consumption for a minimum capital investment. When the pressure at the boiler is reduced, fuel and steam are saved as a result of changes in the high-pressure side of the steam system from the boiler through the condensate return system. In the boiler plant, losses from combustion, boiler blowdown, radiation, and steam venting from condensate receivers would be reduced by reducing steam pressure. Similarly, in the steam distribution system, losses from radiation, flash steam vented from condensate receivers, and component and steam trap leakage would also be reduced. There are potential problems associated with steam pressure reduction, however. These may include increased boiler carryover, boiler water circulation problems in watertube boilers, increased steam velocity in piping, loss of power in steam turbines, and issues with pressure reducing valves. This paper is based a Steam Technical Brief sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and Enbridge Gas Distribution, Inc. (5). An example illustrates the use of DOE BestPractices Steam System Assessment Tool to model changes in steam, fuel, electricity generation, and makeup water and to estimate resulting economic benefits.

Berry, Jan [ORNL; Griffin, Mr. Bob [Enbridge Gas Distribution, Inc.; Wright, Anthony L [ORNL

2006-01-01T23:59:59.000Z

326

Steam Generator Management Program: Evaluation of Eddy Current Data Analysis Algorithms  

Science Conference Proceedings (OSTI)

As part of the U.S. Nuclear Regulatory Commission’s (NRC’s) International Steam Generator Tube Integrity Program, Argonne National Laboratory (ANL) was contracted to develop algorithms to assist in the analysis of rotating probe eddy current data. The algorithms were designed for both flaw detection and sizing. Rotating probe data collected on the flawed tubes in the NRC’s steam generator (SG) mockup were used to document the performance of the algorithms for both detection and ...

2012-09-28T23:59:59.000Z

327

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

Table 12. PAD District 2 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-May 2013 (Thousand Barrels per Day) Commodity Supply...

328

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Petroleum Supply Monthly, October 2011 11 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum ...

329

Proceedings: Condensate Polishing and Water Purification in the Steam Cycle  

Science Conference Proceedings (OSTI)

A workshop on Condensate Polishing and Water Purification in the Steam Cycle was held on March 20-22, 1995. The EPRI-sponsored workshop addressed the challenges that deregulation and increased competition within the electric power industry has placed on the operators of nuclear and fossil plants. Research results and operational experiences that can help utility personnel optimize their use of condensate polishers were presented in these proceedings. The goal was to help meet the demands of lowering oper...

1995-06-06T23:59:59.000Z

330

Steam Turbine Valve Actuator Condition Assessment: 2013 Update  

Science Conference Proceedings (OSTI)

This report provides nuclear and fossil plant personnel with current information on the inspection and assessment of steam turbine valve actuators. It covers the actuators that are typically found on the turbines of the two major U.S. original equipment manufacturers (OEMs), as well as those of several non-U.S. OEMs. The scope encompasses both mechanical hydraulic control (MHC) and electronic hydraulic control (EHC) types of hydraulic ...

2013-07-25T23:59:59.000Z

331

Biofuel Supply Chain Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies The Infrastructure Challenge of...

332

Distribution of fluid phases within the steam zone in steam injection processes  

SciTech Connect

The saturation distribution of steam, water, and oil within the steam zone in a steam injection process at constant injection rates is examined. It is shown theoretically that for typical values of injection parameters the oil saturation in the steam zone rapidly reaches its residual value at steam zone conditions. This result, which corroborates previous experimental evidence, is a consequence of the relatively fast changes in phase saturations compared to the rate of the advance of the steam front. Explicit expressions for the steam saturation distribution are obtained. It is shown that the average steam saturation is a slightly decreasing function of time and approaches a limiting value which is a nearly constant fraction of the steam saturation at the injection point. This result provides theoretical justification for the often made assumption of constant average steam saturation in steam injection calculations.

Yortsos, Y.C.

1982-09-01T23:59:59.000Z

333

IMPROVEMENTS IN STEAM GENERATING PLANT AND AN IMPROVED METHOD OF GENERATING STEAM  

SciTech Connect

A steam generating plant, designed for heat transfer from a liquid metal (potassium, sodium, or their alloy) with reduced danger of explosion, is based on the fact that, if steam (especially superheated) rather than water contacts the liquid metal, the risk of explosion is much reduced. In this plant steam is superheated by heat transfer from liquid metal, the steam bsing generated by heat transfer between the superheated steam and water. Diagrams are given for the plant, which comprises a series of heat exchangers in which steam is superheated; part of the superheated steam is recycled to convert water into steam. Apart from the danger of a steam--liquid metal contact, the main danger is that the superheated steam might cool, coming to the saturated condition; this danger can be averted by setting up mceans for detecting low steam temperatures. (D.L.C.)

Zoller, R.E.

1960-09-01T23:59:59.000Z

334

Steam Generator Management Program: Generic Plant Qualification and Application Plan for Dispersant Use During Steam Generator Wet L ayup  

Science Conference Proceedings (OSTI)

This report summarizes the results of an Electric Power Research Institute (EPRI) effort to develop dispersant application during steam generator (SG) wet layup as an additional deposit management strategy. Based on the results of this study, the addition of dispersant during wet layup is likely to modestly increase the amount of iron removed from the SGs of nuclear PWRs prior to power ascension, benefitting the utilities by reducing the corrosion product inventory within the SGs upon startup. The inform...

2011-06-30T23:59:59.000Z

335

Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)  

SciTech Connect

A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

Not Available

2012-04-01T23:59:59.000Z

336

Generating Steam by Waste Incineration  

E-Print Network (OSTI)

Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full production process steam requirements. The waste incineration system consists of a wood dunnage shredder, two Skid-Steer Loaders for incinerator charging, two incinerators, and a wet ash conveyor. The equipment is housed in a building with floor space to accommodate loads of combustible waste delivered for incineration. Incombustible material is segregated at the source. A review of operational experience and the results of a study on actual steam production costs will be presented with the intent that others will be able to use the information to advance the state of the art of high volume controlled air waste incineration.

Williams, D. R.; Darrow, L. A.

1981-01-01T23:59:59.000Z

337

Fast fluidized bed steam generator  

DOE Patents (OSTI)

A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

1980-01-01T23:59:59.000Z

338

Steam Generator Management Program: Dynamic Analysis of a Steam Generator: Part 2 – Stability Analysis of Representative Steam Gener ators  

Science Conference Proceedings (OSTI)

This report summarizes the results of a project that examined the effect of tube support plate blockage in recirculating steam generators on water level stability. This report builds upon Electric Power Research Institute (EPRI) report 1025134.BackgroundWater level oscillations in recirculating steam generators occur due to hydrodynamic instabilities in the natural circulation system. Utilities have reported water level oscillations in operating steam ...

2013-12-18T23:59:59.000Z

339

Steam Boiler Control Specification Problem:  

E-Print Network (OSTI)

Our solution to the specification problem in the specification language TLA+ is based on a model of operation where several components proceed synchronously. Our first specification concerns a simplified controller and abstracts from many details given in the informal problem description. We successively add modules to build a model of the state of the steam boiler, detect failures, and model message transmission. We give a more detailed controller specification and prove that it refines the abstract controller. We also address the relationship between the physical state of the steam boiler and the model maintained by the controller and discuss the reliability of failure detection. Finally, we discuss the implementability of our specification.

Tla Solution Frank; Frank Le Ke; Stephan Merz

1996-01-01T23:59:59.000Z

340

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Steam-system upgrades | Open Energy Information  

Open Energy Info (EERE)

Linked Data Page Edit History Share this page on Facebook icon Twitter icon Steam-system upgrades Jump to: navigation, search TODO: Add description List of Steam-system...

342

FEMP-FTA--Steam Trap Performance Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam Trap Function Steam Trap Function Steam traps are automatic valves used in every steam system to remove conden- sate, air, and other non-condensable gases while preventing or minimizing the passing of steam. If condensate is allowed to collect, it reduces the flow capacity of steam lines and the thermal capacity of heat transfer equipment. In addition, excess condensate can lead to "water hammer," with potentially destructive and dangerous results. Air that remains after system startup reduces steam pressure and temperature and may also reduce the thermal capacity of heat transfer equipment. Non-condensable gases, such as oxygen and carbon dioxide, cause corrosion. Steam that passes through the trap provides no heating ser- vice. This effectively reduces the heating capacity

343

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

344

Insulate Steam Distribution and Condensate Return Lines  

Science Conference Proceedings (OSTI)

This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

345

What is needed for the steam revolution  

E-Print Network (OSTI)

In four sequences, standing beside a huge steam wheel, Simon Schaffer discusses some of the things that are needed for the development of the steam revolution. These include reliable cylinders (from gun manufacture), good boilers ( from brewing...

Dugan, David

2004-08-18T23:59:59.000Z

346

The steam engine and what it needs  

E-Print Network (OSTI)

Simon Schaffer explains that to produce an effective steam engine you do not just need specific inventions, such as the separate condenser of James Watt, but also skills from clockworking, distillation, metal working and so on. Then the steam power...

Dugan, David

2004-08-18T23:59:59.000Z

347

Calibration of Instrumented Steam Separators to Determine Quality and Flow Distribution in an Operating Steam Generator  

Science Conference Proceedings (OSTI)

This study examined the feasibility of instrumenting steam separators on a steam generator as two-phase flowmeters to measure flow distributions and steam quality near the separator deck plate. Instrumented prototypical separators were tested in a laboratory under steam generator conditions, and test data correlations were developed. The usefulness of such data in the qualification of thermal-hydraulic computer codes was addressed.

1983-01-01T23:59:59.000Z

348

Identifying Steam Opportunity "Impact" Inputs for the Steam System Assessment Tool (SSAT)  

E-Print Network (OSTI)

The U.S. DOE BestPractices Steam "Steam System Assessment Tool" (SSAT) is a powerful tool for quantifying potential steam improvement opportunities in steam systems. However, all assessment tools are only as good as the validity of the modeling inputs.

Harrell, G.; Jendrucko, R.; Wright, A.

2004-01-01T23:59:59.000Z

349

Steam Generator Vibration and Wear Protection  

Science Conference Proceedings (OSTI)

This project developed and validated a steam generator flow-induced tube vibration and wear prediction methodology.

1998-03-27T23:59:59.000Z

350

Accelerated Weathering of Fluidized Bed Steam Reformation ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions by E.M. Pierce ...

351

CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT  

DOE Green Energy (OSTI)

The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completed and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.

Ted Berglund; Jeffrey T. Ranney; Carol L. Babb; Jacqueline G. Broder

2001-04-01T23:59:59.000Z

352

Temperature profiles determine HRSG steam production  

Science Conference Proceedings (OSTI)

This article examine how temperature profiles affect steam production in heat recovery steam generators(HRSG). A typical gas/steam temperature profile for a HRSG is shown. Heat balance equations for the superheater, evaporator, and the complete HRSG are given along with examples for calculating the HRSG temperature profiles after assuming the pinch and approach point temperatures.

Ganapathy, V.

1993-05-01T23:59:59.000Z

353

Capturing Energy Savings with Steam Traps  

E-Print Network (OSTI)

This paper will discuss the energy savings potential of steam traps and present the energy, economic, and environmental reason why an active steam trap maintenance program is good for the company's bottom line. Several case studies will be discussed to demonstrate the merits of steam trap technology.

Bockwinkel, R. G.; French, S. A.

1997-04-01T23:59:59.000Z

354

A LABORATORY INVESTIGATION OF STEAM ADSORPTION  

E-Print Network (OSTI)

A LABORATORY INVESTIGATION OF STEAM ADSORPTION IN GEOTHERMAL RESERVOIR ROCKS OF STANFORD UNIVERSITY, if any, liquid. Yet to satisfy material bal- ance constraints, another phase besides steam must be present. If steam adsorption occurring in significant amounts is not accounted for, the reserves

Stanford University

355

STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION  

E-Print Network (OSTI)

STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM Laboratory. iv #12;ABSTRACT Steam-water relative permeability curves are required for mathematical models of two-phase geothermal reservoirs. In this study, drainage steam- water relative permeabilities were

Stanford University

356

Materials Performance in USC Steam  

SciTech Connect

The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

2010-05-01T23:59:59.000Z

357

Supply | OpenEI  

Open Energy Info (EERE)

Supply Supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

358

Oil and Gas Supply Module  

Annual Energy Outlook 2012 (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

359

ICT Supply Chain Risk Management  

Science Conference Proceedings (OSTI)

... ICT Supply Chain Risk Management Manager's Forum ... ICT Supply Chain Risk Management National Institute of Standards and Technology Page 6. ...

2013-06-04T23:59:59.000Z

360

Accuracy of Petroleum Supply Data  

Reports and Publications (EIA)

Accuracy of published data in the Weekly Petroleum Status Report, the Petroleum Supply Monthly, and the Petroleum Supply Annual.

Tammy G. Heppner

2009-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Apparatus and method for partial-load operation of a combined gas and steam turbine plant  

SciTech Connect

Apparatus and method are disclosed for the partial load operation of a combined gas turbine and steam turbine plant, including a shaft being connected to the gas turbine and drivable at a given nominal speed of rotation, a first generator being connected to the shaft and electrically connectible to an electric network, a compressor being connected to the shaft and connected upstream of the gas turbine in gas flow direction, a heat exchanger having an output and a variable heat supply and being connected upstream of the gas turbine in gas flow direction, a steam generator for the steam turbine being connected downstream of the gas turbine in gas flow direction for receiving exhaust gases therefrom, a second generator being connected to the steam turbine and electrically connectible to the electric network for supplying given nominal power thereto along with the first generator, means for giving to the electric network and taking away from the network at least part of the nominal power if the shaft rotates at less than the nominal speed of rotation, and means for reducing the speed of rotation of the gas turbine for preventing a substantial drop in temperature at the output of the heat exchanger if the heat supply of the heat exchanger is reduced.

Becker, B.; Finckh, H.; Meyer-pittroff, R.

1982-07-20T23:59:59.000Z

362

Removal of H{sub2}S from geothermal steam by catalytic oxidation process: bench scale testing results. Interim report  

SciTech Connect

A process was investigated to remove hydrogen sulfide (H{sub2}S) from geothermal steam. This process is an upstream steam treatment process which utilizes a catalytic oxidation reaction to convert H{sub2}S in geothermal steam to water vapor and sulfur. The process consists of passing geothermal steam, containing H{sub2}S and other noncondensible gases, through fixed beds of activated carbon catalyst. Oxygen is provided by injection of air or oxygen upstream of the catalyst beds. The treated steam, with H{sub2}S being almost completely removed, passes to steam turbines for power generation. The elemental sulfur produced deposits on the catalyst surface and is retained. The catalyst activity decreases gradually with sulfur accumulation. Sulfur removal, and catalyst regeneration, is accomplished by solvent extraction. Sulfur is recovered from solvent by evaporation/crystallization. Bench scale experimental work on this process was performed to determine its performance and limits of applicability to power generation systems employing geothermal steam. The bench scale system employed a one-inch diameter reactor, a steam supply with controlled temperature and pressure, an injection system for adding {Hsub2}S and other gases at controlled rates, and instrumentation for control and measurement of temperatures, pressures, flow rates and presssure drop. H{sub2}S and other analyses were performed by wet chemistry techniques.

Li, C.T.; Brouns, R.A.

1978-11-01T23:59:59.000Z

363

Magnets and Power Supplies  

NLE Websites -- All DOE Office Websites (Extended Search)

Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal bunch profile and Magnets and Power Supplies Dipole Magnets and Power Supplies Value Dipole Number 80+1 No. of power supplies 1 Magnetic length 3.06 m Core length 3.00 m Bending radius 38.9611 m Power supply limit 500.0 A Field at 7 GeV 0.599 T Dipole trim coils Number 80+1 No. of power supplies 80 Magnetic length 3.06 m Core length 3.00 m Power supply limit 20.0 A Maximum field 0.04 T Horizontal Correction Dipoles Number 317 No. of power supplies 317 Magnetic length 0.160 m Core length 0.07 m Power supply limit 150.0 A Maximum field 0.16 T Max. deflection at 7 GeV 1.1 mrad Vertical Corrector Dipoles Number 317 No. of power supplies 317

364

Electricity Supply Sector  

U.S. Energy Information Administration (EIA)

Electricity Supply Sector Part 1 of 6 Supporting Documents Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary

365

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Petroleum Supply Monthly, October 2011 49 Table 37. Imports of Crude Oil and Petroleum Products by PAD District, ...

366

Supplying Water Social Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Handbook of Engaged Learning Projects SUPPLYING OUR WATER NEEDS: Africa Project Summary Scenario Student Pages References Index SubjectContent Area: World CulturesSocial Studies...

367

Power supply apparatus  

SciTech Connect

The outputs of a plurality of modules or generators of electrical energy, such as fuel cells, chemical storage batteries, solar cells, MHD generators and the like, whose outputs are different are consolidated efficiently. The modules supply a power distribution system through an inverter. The efficiency is achieved by interconnecting the modules with an alternating voltage supply and electronic valves so controlled that the alternating-voltage supply absorbs power from modules whose output voltage is greater than the voltage at which the inverter operates and supplies this power as a booster to modules whose output voltage is less than the voltage at which the inverter operates.

Dickey, D. E.

1984-09-18T23:59:59.000Z

368

Horizontal Steam Generator Thermal-Hydraulics at Various Steady-State Power Levels  

Science Conference Proceedings (OSTI)

Three-dimensional computer simulation and analyses of the horizontal steam generator thermal-hydraulics of the WWER 1000 nuclear power plant have been performed for 50% and 75% partial loads, 100% nominal load and 110% over-load. Presented results show water and steam mass flow rate vectors, steam void fraction spatial distribution, recirculation zones, swell level position, water mass inventory on the shell side, and other important thermal-hydraulic parameters. The simulations have been performed with the computer code 3D ANA, based on the 'two-fluid' model approach. Steam-water interface transport processes, as well as tube bundle flow resistance, energy transfer, and steam generation within tube bundles are modelled with {sup c}losure laws{sup .} Applied approach implies non-equilibrium thermal and flow conditions. The model is solved by the control volume procedure, which has been extended in order to take into account the 3D flow of liquid and gas phase. The methodology is validated by comparing numerical and experimental results of real steam generator operational conditions at various power levels of the WWER Novovoronezh, Unit 5. One-dimensional model of the horizontal steam generator has been built with the RELAP 5 standard code on the basis of the multidimensional two-phase flow structure obtained with the 3D ANA code. RELAP 5 and 3D ANA code results are compared, showing acceptable agreement. (authors)

Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia); Stosic, Zoran V.; Kiera, Michael; Stoll, Uwe [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany)

2002-07-01T23:59:59.000Z

369

Evaluation of Microwave Steam Bags for the Decontamination of Filtering Facepiece Respirators  

E-Print Network (OSTI)

Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers ’ instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9 % effective for inactivating MS2 on FFRs; however, more research is required to

Edward M. Fisher; Jessica L. Williams; Ronald E. Shaffer

2011-01-01T23:59:59.000Z

370

TWR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

Marshall, D.W.; Soelberg, N.R.

2003-05-21T23:59:59.000Z

371

TWR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

D. W. Marshall; N. R. Soelberg

2003-05-01T23:59:59.000Z

372

Air-cooled vacuum steam condenser  

SciTech Connect

This patent describes a steam powered system. It comprises: a turbine for converting steam energy into mechanical energy upon expansion of steam therein, a boiler for generating steam to be fed to the turbine, and a conduit arrangement coupling the boiler to the turbine and then recoupling the turbine exhaust to the boiler through steam condensing mechanisms. The condensing mechanisms including: a plurality of finned tubes through which the expanded exhaust steam flows and is condensed; a plurality of bundle from headers at the lower ends of the condensing tubes for receiving exhaust steam from the turbine; a plurality of bundle divided rear headers, one for each tube row in the bundle, at the higher ends of the condensing tubes for receiving non-condensible gases; and means in the rear and last headers to remove non-condensible gasses from the rear headers along their full length.

Larinoff, M.W.

1990-03-06T23:59:59.000Z

373

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant (Redirected from Flash Steam Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility

374

Steam generator tube integrity program: Phase II, Final report  

SciTech Connect

The Steam Generator Tube Integrity Program (SGTIP) was a three phase program conducted for the US Nuclear Regulatory Commission (NRC) by Pacific Northwest Laboratory (PNL). The first phase involved burst and collapse testing of typical steam generator tubing with machined defects. The second phase of the SGTIP continued the integrity testing work of Phase I, but tube specimens were degraded by chemical means rather than machining methods. The third phase of the program used a removed-from-service steam generator as a test bed for investigating the reliability and effectiveness of in-service nondestructive eddy-current inspection methods and as a source of service degraded tubes for validating the Phase I and Phase II data on tube integrity. This report describes the results of Phase II of the SGTIP. The object of this effort included burst and collapse testing of chemically defected pressurized water reactor (PWR) steam generator tubing to validate empirical equations of remaining tube integrity developed during Phase I. Three types of defect geometries were investigated: stress corrosion cracking (SCC), uniform thinning and elliptical wastage. In addition, a review of the publicly available leak rate data for steam generator tubes with axial and circumferential SCC and a comparison with an analytical leak rate model is presented. Lastly, nondestructive eddy-current (EC) measurements to determine accuracy of defect depth sizing using conventional and alternate standards is described. To supplement the laboratory EC data and obtain an estimate of EC capability to detect and size SCC, a mini-round robin test utilizing several firms that routinely perform in-service inspections was conducted.

Kurtz, R.J.; Bickford, R.L.; Clark, R.A.; Morris, C.J.; Simonen, F.A.; Wheeler, K.R.

1988-08-01T23:59:59.000Z

375

Steam atmosphere drying concepts using steam exhaust recompression  

SciTech Connect

In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

1992-08-01T23:59:59.000Z

376

Steam atmosphere drying concepts using steam exhaust recompression  

SciTech Connect

In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

1992-08-01T23:59:59.000Z

377

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

378

Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks  

E-Print Network (OSTI)

challenges and generate nonproliferation and other benefits? · If such services were to be offered, how would Bush proposed assuring nuclear fuel supply for countries meeting certain nonproliferation criteria

379

Solar production of industrial process steam ranging in temperature from 300/sup 0/F to 550/sup 0/F (Phase I). Volume 1. Final report, September 30, 1978-June 30, 1979  

DOE Green Energy (OSTI)

This section summarizes the Foster Wheeler Development Corporation/Dow Chemical Company Phase I solar industrial process steam system and includes a system schematic, a brief system description, general specifications of the major system components, expected system performance, and a cost estimate summary for Phases II and III. The objectives of Phase I are: (1) design a cost-effective solar steam generating system, using state-of-the-art components and technology, to supply steam for Dow Chemical Company's Dalton, Georgia, plant; (2) predict the performance of the solar process steam plant; (3) conduct a safety evaluation and an environmental impact assessment of the solar steam system; (4) conduct an economic analysis to determine the potential economic benefits of a solar-augmented process steam production system compared with an existing fossil-fuel-fired steam generator; and (5) promote the project extensively to make it visible to industry and the general public.

Not Available

1979-06-30T23:59:59.000Z

380

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

in a Heat Recovery Steam Generator (HRSG) to make additionalAuxiliary Power Block Steam turbine generator using steam

Lu, Xiaoming

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Combined gas turbine and steam turbine power plant  

SciTech Connect

A description is given of a power plant arrangement having a gas turbine, a heat recovery steam generator, a steam turbine and means for controlling steam flow from the heat recovery steam generator to the steam turbine. Steam conditions are maintained generally constant and variations in power plant loading are carried by the steam turbine while operating the gas turbine at a generally constant fuel flow.

Baker, J.M.; Clark, G.W.; Harper, D.M.; Tomlinson, L.O.

1978-04-04T23:59:59.000Z

382

Monitoring and Controlling Carryover in Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Optimization of the cycle chemistry in the steam generating system of combined-cycle/heat recovery steam generator (HRSG) plants is vital to ensuring the efficient and reliable operation of the equipment. Monitoring of steam purity and drum carryover are core parameters for HRSG chemistry programs. Carryover is any solid, liquid, or vaporous contaminant that leaves the HRSG steam drum along with the steam. Carryover might be the result of the limited separation of the steam/water mixture in the steam dru...

2010-10-27T23:59:59.000Z

383

High-Efficiency Steam Electrolyzer  

SciTech Connect

We are developing a novel high-efficiency, high-temperature steam electrolyzer. Although water or steam electrolysis is well known to be one of the cleanest ways to produce hydrogen, widespread utilization is hindered by high operational costs because of high electricity consumption. To decrease the electrical power input requirements in electrolysis, our approach uses natural gas as an anode depolarizer. This approach essentially replaces one unit of electricity with one equivalent-energy unit of natural gas at much lower cost. The direct use of natural gas on the electrolyzer enables very high system efficiency with respect to primary energy. Experiments performed on single cells have shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. System efficiency has been estimated to be 50 to 80%, depending on the electrolytic current. A 200-W prototype unit is being developed.

Pham, A Q

2001-06-20T23:59:59.000Z

384

Technical evaluation: 300 Area steam line valve accident  

SciTech Connect

On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.

Not Available

1993-08-01T23:59:59.000Z

385

Steam Turbine Materials and Corrosion  

Science Conference Proceedings (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Holcomb, G.H.; Hsu, D.H.

2008-07-01T23:59:59.000Z

386

Steam Turbine Materials and Corrosion  

E-Print Network (OSTI)

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60 % efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

Gordon R. Holcomb; Derek Hsu

2007-01-01T23:59:59.000Z

387

Significant Silica Solubility in Geothermal Steam  

DOE Green Energy (OSTI)

Although it is widely believed that silica solubility in low pressure (5 to 10 bar) geothermal steam is negligible, when one takes into account steam flows exceeding 10 million tonnes a year--at Wairakei, for instance--it is found that the amount transmitted in the vapor has the potential to give significant deposits on turbine nozzles and blades. A 150 MWe power station, when based on flows from a hot water reservoir at (a) 250 C or (b) 315 C, and with separator pressures of 6 bar, is found to carry about 100 and 200 kg/year respectively in the steam phase. In the case of a similar sized station exploiting a dry steam reservoir such as The Geysers, equivalent silica flows are obtained, dissolved in steam and carried as dust--the latter as solid particles precipitating from the vapor en route from source to turbine, and not preexisting in the formations as is commonly considered. Choking or coating of subterranean rock near such dry steam wells due to exsolving silica, may be the principal cause of declining steam discharge under production. Silica from completely dry or superheated steam can also seal the cap and sides of steam reservoirs when expanding below the criticus temperature (236 C) in a way previously thought possible only by hot water or wet steam.

James, Russell

1986-01-21T23:59:59.000Z

388

Compilation of Results and Feedback Regarding Turbine Upgrades at Nuclear and Fossil Power Plants  

Science Conference Proceedings (OSTI)

This report compiles results and feedback and draws a number of conclusions and lessons learned regarding steam turbine generator upgrades at nuclear and fossil power plants.

2008-11-24T23:59:59.000Z

389

Steam systems in industry: Energy use and energy efficiency improvement potentials  

E-Print Network (OSTI)

Repair Flash Steam Recovery/ Condensate Return Condensateflash steam. When a steam trap purges condensate from ais removed by a steam trap, which allows condensate to pass

Einstein, Dan; Worrell, Ernst; Khrushch, Marta

2001-01-01T23:59:59.000Z

390

U.S. Coal Supply and Demand  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous Editions 2009 Review 2008 Review 2007 Review 2006 Review 2005 Review 2004 Review 2003 Review 2002 Review 2001 Review 2000 Review 1999 Review Data for: 2010 Released: May 2011 Next Release Date: April 2012 Table 3. Electric Power Sector Net Generation, 2009-2010 (Million Kilowatthours) New England Coal 14,378 14,244 -0.9 Hydroelectric 7,759 6,861 -11.6 Natural Gas 48,007 54,680 13.9 Nuclear 36,231 38,361 5.9 Other (1) 9,186 9,063 -1.3 Total 115,559 123,210 6.6 Middle Atlantic Coal 121,873 129,935 6.6 Hydroelectric 28,793 26,463 -8.1 Natural Gas 89,808 104,341 16.2 Nuclear 155,140 152,469 -1.7

391

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 20. PAD District 4 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 511 - - - - 289 -169 -49 4 579 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 316 0 13 11 -264 - - 2 16 15 44 Pentanes Plus .................................................. 50 0 - - 0 -38 - - 0 6 13 -7 Liquefied Petroleum Gases ..............................

392

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 19. PAD District 4 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 393 - - - - 330 -111 -46 4 562 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 406 0 2 15 -333 - - 0 20 9 61 Pentanes Plus .................................................. 58 0 - - - -33 - - 0 6 9 10 Liquefied Petroleum Gases .............................. 348 - - 2 15 -299 - -

393

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 23. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,197 - - - - 1,186 - -47 -4 2,340 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 14 4 - - - -60 83 20 43 Pentanes Plus .................................................. 32 0 - - - - - - -1 26 2 5 Liquefied Petroleum Gases .............................. 37 - - 14 4 - - - -59

394

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 7. PAD District 1 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 24 - - - - 854 -10 42 -28 935 3 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 42 0 27 67 119 - - -30 26 1 259 Pentanes Plus .................................................. 7 0 - - - - - - 0 - 0 7 Liquefied Petroleum Gases .............................. 35 - - 27 67 119 - - -30 26

395

Role of gas and steam turbines to reduce industrial plant energy costs  

SciTech Connect

Data are given to help industry select the economic fuel and economic mix of steam and gas turbines for energy-conservation measures and costs. Utilities and industrials can no longer rely on a firm supply of natural gas to fuel their boilers and turbines. The effect various liquid fuels have on gas turbine maintenance and availability is summarized. Process heat requirements per unit of power, process steam pressure, and the type of fuel will be factors in evaluating the proper mix of steam and gas turbines. The plant requirements for heat, and the availability of a reliable source of electric power will influence the amount of power (hp and kW) that can be economically generated by the industrial. (auth)

Wilson, W.B.; Hefner, W.J.

1973-11-01T23:59:59.000Z

396

Environmental Challenges of Climate-Nuclear Fusion: A Case Study of India  

E-Print Network (OSTI)

possibilities of imports of nuclear fuels as well as powerrange of activities from nuclear fuel supplies, technologyPLANTS, IMPACT ASSESSMENT NUCLEAR FUEL REPROCES- PLANS 6 (

Badrinarayan, Deepa

2011-01-01T23:59:59.000Z

397

Flash Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Flash Steam Power Plant Flash Steam Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Flash Steam Power Plants General List of Flash Steam Plants Flash Steam power plant process diagram - DOE EERE 2012 Flash steam plants are the most common type of geothermal power generation plants in operation in the world today. Fluid at temperatures greater than 360°F (182°C) is pumped under high pressure into a tank at the surface held at a much lower pressure, causing some of the fluid to rapidly vaporize, or "flash." The vapor then drives a turbine, which drives a generator. If any liquid remains in the tank, it can be flashed again in a second tank to extract even more energy.[1] Facility Name Owner Capacity (MW) Facility Type Commercial Online Date Geothermal Area

398

The economics of repowering steam turbines  

SciTech Connect

Repowering is defined as displacing steam presently generated in an existing fossil fuel fired boiler with a gas turbine-heat recovery steam generator (HRSG) system. The steam generated in the HRSG is expanded in the existing steam turbine generator. Repowering advantages include a significant increase in power output at an improved heat rate relative to the base value for the existing steam turbine cycle being repowered. In addition, the reduction in emissions can be advantageous in most locations. This paper discusses application and economic considerations associated with repowering. In addition, an illustration will show how repowering coal fired steam turbine systems may prove economic relative to retrofit scrubbers and/or low sulfur coal fuel substitution that may be part of the forthcoming acid rain legislation.

Kovacik, J.M.; Stoll, H.G. (General Electric Co., Schenectady, NY (United States))

1990-01-01T23:59:59.000Z

399

Steam System Optimization : A Case Study  

E-Print Network (OSTI)

The steam system optimization (generation, distribution, use and condensate return) offers a large opportunity for action to comply with the new levels of energy efficiency standards. Superior design and improved maintenance practices are the two main sources of savings in steam systems. Increased competition no longer permits an industry to survive with energy waste that could be eliminated. This paper highlights the study findings of the steam system in a plant from the Food industry. The steam system operates with an annual budget of $1.9 million. Normal steam demand ranges between 80,000 to 85,000 lb/hr. The steam system analysis identified energy savings worth $270,000 per year. The optimization measures were in two categories: • No cost/low cost optimizations that can be done through a better maintenance and improved operating condition • Major improvements that require a significant investment, and includes the modification of the process and major equipment.

Iordanova, N.; Venkatesan, V. V.; Calogero, M.

2002-04-01T23:59:59.000Z

400

Steam Management- The 3M Approach  

E-Print Network (OSTI)

As one of the world's leading manufacturers of innovative products, 3M is continually working to improve energy efficiency in offices, research centers, and production facilities. Steam system optimization is one of the keys to this process, beginning at the boiler room and continuing throughout the facility. Boiler selection, installation, and operation are carefully monitored to ensure that steam is produced as efficiently as possible. The program encourages 3M facilities to establish Steam Teams to monitor and maintain steam systems. These teams are in continual contact with corporate facilities specialists in order to readily resolve problems relating to distribution, piping, and trapping. Team goals include evaluating existing equipment installations to verify that their design is appropriate for today's needs, periodically evaluating steam traps for correct selection and correct operation, and regularly inspecting steam and condensate piping runs to ensure that they are functioning safely and correctly.

Renz, R. L.

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Savings Through Steam Trap Management  

E-Print Network (OSTI)

Sustainability and energy management are broad topics which have become a common focus in industry. Recognizing the need for greater cost reduction and competitive advantage through sustainability, industry is putting forth resources to improve energy management controls. When the topic of energy management relates to steam trap management however, the focus becomes less clear and action less notable. The seemingly “low hanging” fruit of steam traps are not often tied to significant and sustainable energy management projects. Typically this holds true because of the failure of industry to put a value on the cost of steam and because of the lack of energy tracking from failed steam traps as part of best practice. The use of technology can help industry transform how steam systems are managed and sustainability in steam systems is achieved.

Gibbs, C.

2008-01-01T23:59:59.000Z

402

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

Ending Stocks by PAD District, December 2011 (Thousand Barrels, Except Where Noted) Process PAD Districts U.S. Total 1 2 3 4 5 Total Daily Average Supply Field Production...

403

European supply chain study  

E-Print Network (OSTI)

Introduction: Supply chain management has been defined as, "..a set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouses and stores, so that merchandise is produced and distributed at the ...

Puri, Mohitkumar

2009-01-01T23:59:59.000Z

404

Petroleum Supply Monthly  

Annual Energy Outlook 2012 (EIA)

and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6...

405

Improving supply chain resilience  

E-Print Network (OSTI)

Due to the global expansion of Company A's supply chain network, it is becoming more vulnerable to many disruptions. These disruptions often incur additional costs; and require time to respond to and recover from these ...

Leung, Elsa Hiu Man

2009-01-01T23:59:59.000Z

406

Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam  

SciTech Connect

This revised ITP tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

407

Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart  

E-Print Network (OSTI)

Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical assistance program on steam efficiency. In 1997, the Steam Partnership began to define the appropriate activities, tools, and services of a public-private program on steam. Modeled after the successful Motor Challenge program and the newly launched Compressed Air Challenge program, "Steam Challenge" will highlight the importance of steam system efficiency and provide information and technical assistance on technologies for today's industrial steam systems. This paper will introduce Steam Challenge, describe what has been accomplished over the last year, and describe the program's future goals and activities.

Jones, T.; Hart, F.

1998-04-01T23:59:59.000Z

408

Advances in steam turbine technology for power generation  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. It is organized under the following headings: Solid particle erosion in steam turbines, Steam turbine failure analysis, Steam turbine upgrades, steam turbine blading development, Boiler feed pumps and auxiliary steam turbine drives.

Bellanca, C.P. (Dayton Power and Light Company (US))

1990-01-01T23:59:59.000Z

409

Method of steam reforming methanol to hydrogen  

DOE Patents (OSTI)

The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA)

1990-01-01T23:59:59.000Z

410

Steam Generator Management Program: Laboratory Testing to Validate pH and Conductivity MULTEQ Calculations, Revision 1  

Science Conference Proceedings (OSTI)

Measures to control corrosion processes in steam generators have for the most part proven successful to date, but intergranular attack/stress corrosion cracking (IGA/SCC) of Alloy 600 continues to occur in steam generators at some nuclear plants. The present mitigation strategy is based on the premise that crack initiation and propagation rates depend on pH and electrochemical potential. There is some evidence suggesting that lead (Pb) may play a key role. This report documents laboratory testing to vali...

2011-11-28T23:59:59.000Z

411

Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief  

SciTech Connect

The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

2003-06-01T23:59:59.000Z

412

Steam Generator Management Program: Steam Generator Engineering Training Course 2 Handbook  

Science Conference Proceedings (OSTI)

This Technical Update provides training material that was prepared for the second Steam Generator Engineering Training class. The Steam Generator Engineering Training is a comprehensive training program for steam generator program managers. The content of the training is based on an industry-developed job analysis for a steam generator engineer. The job analysis resulted in eight high-level tasks; consequently, eight training modules were planned to be developed over a three-year period beginning in 2008...

2010-04-26T23:59:59.000Z

413

Save Energy Now in Your Steam Systems  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial steam systems.

2006-01-01T23:59:59.000Z

414

Major Corrosion Problems in Steam Turbines  

Science Conference Proceedings (OSTI)

...O. Jonas, Corrosion of Steam Turbines, Corrosion: Environments and Industries, Vol 13C, ASM Handbook, ASM International, 2006, p 469â??476...

415

Efficiently generate steam from cogeneration plants  

SciTech Connect

As cogeneration gets more popular, some plants have two choices of equipment for generating steam. Plant engineers need to have a decision chart to split the duty efficiently between (oil-fired or gas-fired) steam generators (SGs) and heat recovery steam generators (HRSGs) using the exhaust from gas turbines. Underlying the dilemma is that the load-versus-efficiency characteristics of both types of equipment are different. When the limitations of each type of equipment and its capability are considered, analysis can come up with several selection possibilities. It is almost always more efficient to generate steam in an HRSG (designed for firing) as compared with conventional steam generators. However, other aspects, such as maintenance, availability of personnel, equipment limitations and operating costs, should also be considered before making a final decision. Loading each type of equipment differently also affects the overall efficiency or the fuel consumption. This article describes the performance aspects of representative steam generators and gas turbine HRSGs and suggests how plant engineers can generate steam efficiently. It also illustrates how to construct a decision chart for a typical installation. The equipment was picked arbitrarily to show the method. The natural gas fired steam generator has a maximum capacity of 100,000 lb/h, 400-psig saturated steam, and the gas-turbine-exhaust HRSG has the same capacity. It is designed for supplementary firing with natural gas.

Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

1997-05-01T23:59:59.000Z

416

Steam System Improvement: A Case Study  

E-Print Network (OSTI)

The industrial sector consumes the largest share of the world's energy. The pulp and paper industry is one of the five most energy-intensive industries in the world. Therefore, optimum energy efficiency plays a pivotal role in the profitability of this sector. Also, energy cost accounts for a significant share in production cost in pulp and paper industries. This paper highlights the findings of a study done on the steam system of a paper mill (covering steam generation, steam distribution and steam usage) where steam generation accounts for 85% of the total energy used. Therefore, optimization of the steam system has the biggest energy saving potential. This paper mill produces 40,000 pounds of steam at 600 psig and distributes it to the paper-making process at various pressure levels. This New England paper mill spends approximately $1.9 million every year on its steam system. The study identified an opportunity to save the plant steam costs in the amount of 12%. Among the identified saving measures, there are some measures that can be done through better maintenance and improvement of operating conditions. The average payback period to implement the identified saving measures is 12 months. In addition to this, upon the implementation of the proposed measures, the paper mill can reduce its carbon emissions in the amount of 500 tons per year and thus, can help save the environment as well.

Leigh, N.; Venkatesan, V. V.

1999-05-01T23:59:59.000Z

417

Coreflood experimental study of steam displacement.  

E-Print Network (OSTI)

??The main objective of this study was to verify experimentally whether or not a Buckley-Leverett shock front exists when steam displaces oil in a porous… (more)

Cerutti, Andres Enrique

2012-01-01T23:59:59.000Z

418

The Bending of Wood With Steam.  

E-Print Network (OSTI)

??Based on experimentation with the steam bending of wood to curved shapes, this thesis describes my involvement with three basic aspects of the process. First… (more)

Cottey Jr., James H.

2008-01-01T23:59:59.000Z

419

Steam catalysis in CaO carbonation under low steam partial pressure  

Science Conference Proceedings (OSTI)

CaO was widely used to capture CO{sub 2} in direct hydrogen production process, where steam always existed simultaneously. The effect of steam on CaO carbonation performance under low steam partial pressure was investigated using a pressurized thermogravimetric apparatus. The experimental results revealed that steam improved CaO carbonation performance significantly no matter whether Ca(OH){sub 2} was produced or not. At 823 K and 0.5 MPa of steam partial pressure, effect of steam on CaO carbonation performance could not be attributed mainly to production of Ca(OH){sub 2} because the hydration rate of CaO was very slow. The main reason was steam catalysis in CaO carbonation. Enhancement of steam on CaO carbonation performance without Ca(OH){sub 2} production could not be attributed to improvement of steam on the physical property, but to catalytic effect of steam. Effects of CaO precursors, CO{sub 2} partial pressure, steam partial pressure, and temperature with steam addition on CaO carbonation performance were also investigated.

Yang, S.J.; Xiao, Y.H. [Chinese Academy of Science, Beijing (China)

2008-06-15T23:59:59.000Z

420

CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT  

DOE Green Energy (OSTI)

The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.

Ted Berglund; Jeffrey T. Ranney; Carol L. Babb; Jacqueline G. Broder

2001-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Steam turbine materials and corrosion  

SciTech Connect

Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

2007-12-01T23:59:59.000Z

422

Foam Cleaning of Steam Turbines  

E-Print Network (OSTI)

The efficiency and power output of a steam turbine can be dramatically reduced when deposits form on the turbine blades. Disassembly and mechanical cleaning of the turbine is very time consuming and costly. Deposits can be removed from the turbine internals in situ by foaming an appropriate cleaning solution and injecting it through the turbine, dissolving the deposits and removing them from the system. Because disassembly of the turbine is not required, foam cleaning is a much faster and more cost-effective method of removing deposits. In recent years, HydroChem has removed copper deposits from over 130 Westinghouse and General Electric turbines nationwide using patented equipment.

Foster, C.; Curtis, G.; Horvath, J. W.

2000-04-01T23:59:59.000Z

423

Designing an ultrasupercritical steam turbine  

Science Conference Proceedings (OSTI)

Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

Klotz, H.; Davis, K.; Pickering, E. [Alstom (Germany)

2009-07-15T23:59:59.000Z

424

Transient Steam Flow in Porous Media - Theory and Experiment  

SciTech Connect

The adsorption of steam in porous media, leading to a delay in steam pressure breakthrough, has been incorporated into a revised model of steam flow in a porous medium.

Herkelrath, W.N.; Moench, A.F.

1980-12-16T23:59:59.000Z

425

Steam Plant Replaces Outdated Coal-Fired System | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam Plant Replaces Outdated Coal-Fired System Steam Plant Replaces Outdated Coal-Fired System September 1, 2012 - 12:00pm Addthis A new natural gas-fired steam plant will replace...

426

Computational Modeling of Combined Steam Pyrolysis and Hydrogasification of Ethanol  

E-Print Network (OSTI)

is fed to the steam methane reformer from which we getis fed into the steam methane reformer where it is convertedis produced in the steam methane reformer. Fischer-Tropsch

Singh, S; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

427

Computational Modeling of Combined Steam Pyrolysis and Hydrogasification of Ethanol  

E-Print Network (OSTI)

H. (1981). Reactivities of carbon to steam and hydrogen andreaction kinetics of steam gasification for a transportof coal gasification with steam and CO2. Fuel, 77(15), 17.

Singh, S; Park, C S; Norbeck, J N

2005-01-01T23:59:59.000Z

428

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

turbine NGST Natural gas steam turbine NWPP Northwest Powerfrom natural gas steam turbine (NGST) and natural gasNGST = Natural gas steam turbine; NWPP = Northwest Power

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

429

Steam  

E-Print Network (OSTI)

stations ? Retail Access was established in MD in 2000 ? As part of deregulation, many state policymakers required that customers ’ rates be frozen – in most cases below the wholesale cost of power ? As rate freezes expired, rates increased to reflect market ratesThe Electric Utility Industry ? The electric utility industry consists of three functions needed to deliver power to customer loads:

Joan Kowal

2009-01-01T23:59:59.000Z

430

High-Efficiency Steam Electrolyzer  

SciTech Connect

We are developing a novel high-efficiency, high-temperature steam electrolyzer. Although water or steam electrolysis is well known to be one of the cleanest ways to produce hydrogen, widespread utilization is hindered by high operational costs because of high electricity consumption. To decrease the electrical power input requirements in electrolysis, our approach uses natural gas as an anode depolarizer. This approach essentially replaces one unit of electricity with one equivalent-energy unit of natural gas at much lower cost. The direct use of natural gas on the electrolyzer enables very high system efficiency with respect to primary energy. Experiments performed on single cells have shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. System efficiency has been estimated to be 50 to 80%, depending on the electrolytic current density. During FY02, we have accomplished several major milestones, including the development of a metal-to-ceramic seal that withstands 150 psi differential, the fabrication of the electrolyzer tubes of up to 16 inches in length, the improvement of single tube performance and the demonstration of the first electrolyzer stack.

Pham, A Q; See, E; Lenz, D; Martin, P; Glass, R

2002-07-03T23:59:59.000Z

431

Equipment and Supplies  

Science Conference Proceedings (OSTI)

Table 3   Composition of low-alloy steel solid electrodes...is intended for welds in the core belt region of nuclear

432

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1. TABLE1.PDF 1. TABLE1.PDF Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 190,109 - - - - 264,348 6,359 12,794 445,596 2,425 0 1,039,424 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 73,905 -587 13,044 6,935 - - -11,335 15,883 8,313 80,436 118,039 Pentanes Plus .................................................. 8,824 -587 - - 1,699 - - -805 4,946 2,754 3,041 16,791 Liquefied Petroleum Gases

433

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

2.PDF 2.PDF Table 12. PAD District 5 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,180 - - - - 1,014 - 146 29 2,312 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 69 0 33 6 - - - -25 83 20 30 Pentanes Plus .................................................. 33 0 - - - - - - -1 27 4 3 Liquefied Petroleum Gases .............................. 37 - - 33 6 - - - -24 56 17 27 Ethane/Ethylene

434

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 233,810 - - - - 237,344 8,334 7,688 468,825 2,975 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 81,196 -552 19,023 4,020 - - 3,027 16,794 13,937 69,929 189,672 Pentanes Plus .................................................. 11,167 -552 - - 772 - - -700 5,666 2,989 3,432 18,036 Liquefied Petroleum Gases

435

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 1. U.S. Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 182,188 - - - - 270,188 2,576 -6,767 460,074 1,646 0 1,026,829 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 72,869 -607 11,545 7,801 - - -12,921 17,534 6,391 80,604 128,709 Pentanes Plus .................................................. 9,170 -607 - - 2,421 - - 1,146 5,321 2,200 2,317 17,598 Liquefied Petroleum Gases

436

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 17. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,175 - - - - 10,226 -3,426 -1,436 132 17,407 1 0 15,969 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,584 -10 52 460 -10,314 - - -12 611 282 1,891 1,375 Pentanes Plus .................................................. 1,788 -10 - - - -1,036 - - -15 174 273 310 180 Liquefied Petroleum Gases

437

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 15. PAD District 3 - Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 3,327 - - - - 4,646 -720 39 -191 7,482 - 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,380 -1 304 84 227 - - -113 306 108 1,693 Pentanes Plus .................................................. 155 -1 - - 77 -58 - - 35 106 1 31 Liquefied Petroleum Gases ..............................

438

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 9. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,019 - - - - 52,699 26,041 2,973 12 109,175 1,544 0 93,189 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 14,079 -560 812 2,541 -423 - - -6,605 4,051 2,114 16,889 48,197 Pentanes Plus .................................................. 1,354 -560 - - 21 2,843 - - 110 1,049

439

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 September 2013 Table 16. PAD District 3 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 4,354 - - - - 3,718 -413 345 75 7,905 24 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,615 0 454 39 170 - - 62 282 267 1,666 Pentanes Plus .................................................. 195 0 - - 36 -65 - - 15 113 4 35 Liquefied Petroleum Gases

440

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE9.PDF TABLE9.PDF Table 9. PAD District 4 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 12,961 - - - - 10,783 -3,879 896 2,868 17,893 0 0 18,695 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 12,770 -9 127 502 -11,116 - - -50 621 280 1,423 1,326 Pentanes Plus .................................................. 1,484 -9 - - - -1,152 - - 7 122 264 -70 187 Liquefied Petroleum Gases

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 3. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 734 - - - - 26,368 419 -1,209 627 25,554 130 0 10,529 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,314 -6 923 1,606 2,621 - - -1,556 707 53 7,254 6,409 Pentanes Plus .................................................. 213 -6 - - - - - - 3 5 6 193 34 Liquefied Petroleum Gases ..............................

442

Alternate Water Supply System  

Office of Legacy Management (LM)

Alternate Water Supply Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Office of Legacy Management DOE M/1570 2008 - -L Work Performed Under DOE Contract No. for the U.S. Department of Energy Office of Legacy Management. DE-AC01-02GJ79491 Approved for public release; distribution is unlimited. Office of Legacy Management Office of Legacy Management Office of Legacy Management U.S. Department of Energy This page intentionally left blank DOE-LM/1570-2008 Alternate Water Supply System Flushing Report Riverton, Wyoming, Processing Site January 2008 Work Performed by S.M. Stoller Corporation under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado This page intentionally left blank

443

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE5.PDF TABLE5.PDF Table 5. PAD District 2 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 29,902 - - - - 53,695 23,732 5,619 2,406 108,247 2,295 0 95,547 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 13,989 -544 1,333 2,797 949 - - -6,644 3,628 2,687 18,853 41,545 Pentanes Plus .................................................. 1,274 -544 - - 11 4,162 - - 233 966

444

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 4. U.S. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 7,340 - - - - 7,778 239 25 15,229 104 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,516 -18 716 175 - - 133 465 434 2,358 Pentanes Plus .................................................. 340 -18 - - 38 - - 20 168 134 38 Liquefied Petroleum Gases .............................. 2,176 - - 716

445

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 18. PAD District 4 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 139,573 - - - - 79,019 -46,108 -13,333 1,073 158,068 10 0 19,287 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 86,184 -86 3,535 3,052 -71,945 - - 423 4,378 4,054 11,885 1,893 Pentanes Plus ..................................................

446

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

30 30 September 2013 Table 24. PAD District 5 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 1,101 - - - - 1,091 - 115 -14 2,320 1 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 65 0 67 5 - - - 13 63 14 47 Pentanes Plus .................................................. 29 0 - - - - - - 1 21 4 3 Liquefied Petroleum Gases ..............................

447

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

.PDF .PDF Table 2. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 6,133 - - - - 8,527 205 413 14,374 78 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,384 -19 421 224 - - -366 512 268 2,595 Pentanes Plus .................................................. 285 -19 - - 55 - - -26 160 89 98 Liquefied Petroleum Gases .............................. 2,099 - - 421 169 - - -340 353 179 2,497 Ethane/Ethylene

448

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 September 2013 Table 10. PAD District 2 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 366,285 - - - - 501,418 159,175 -109,633 -12,929 918,349 11,825 0 102,610 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 122,918 -4,579 37,556 21,926 4,444 - - 15,132 24,244 34,819 108,070 58,830 Pentanes Plus ..................................................

449

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

20 20 September 2013 Table 14. PAD District 3 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 1,188,751 - - - - 1,015,091 -112,708 94,064 20,399 2,158,191 6,608 0 882,207 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 440,766 -88 123,986 10,625 46,383 - - 16,960 76,972 72,880 454,860 114,138 Pentanes Plus ..................................................

450

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 2. U.S. Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 2,003,948 - - - - 2,123,490 65,265 6,899 4,157,486 28,318 0 1,067,149 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 686,936 -4,909 195,516 47,812 - - 36,219 127,051 118,364 643,721 189,672 Pentanes Plus .................................................. 92,842 -4,909 - - 10,243 - -

451

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

1.PDF 1.PDF Table 11. PAD District 5 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 36,593 - - - - 31,429 - 4,534 890 71,666 - 0 55,877 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,154 -11 1,013 192 - - - -786 2,587 629 918 3,544 Pentanes Plus .................................................. 1,013 -11 - - - - - - -35 842 110 85 36 Liquefied Petroleum Gases ..............................

452

Petroleum Supply Annual  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE7.PDF TABLE7.PDF Table 7. PAD District 3 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January 2012 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil 6 ............................................................ 109,919 - - - - 142,073 -20,272 -3,481 6,003 222,236 - 0 858,776 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 43,678 -17 9,648 1,838 7,546 - - -2,299 8,340 4,663 51,989 65,215 Pentanes Plus .................................................. 4,840 -17 - - 1,688 -3,010 - -

453

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 September 2013 Table 8. PAD District 1 - Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 32 - - - - 843 -1 230 8 1,061 35 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 71 0 45 40 77 - - 1 16 10 205 Pentanes Plus .................................................. 12 0 - - 1 0 - - 0 0 2 9 Liquefied Petroleum Gases ..............................

454

Petroleum Supply Monthly Archives  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Supply Monthly Petroleum Supply Monthly Petroleum Supply Monthly Archives With Data for December 2011 | Release Date: February 29, 2012 Changes to Table 26. "Production of Crude Oil by PAD District and State": Current State-level data are now included in Table 26, in addition to current U.S. and PAD District sums. State offshore production for Louisiana, Texas, Alaska, and California, which are included in the State totals, are no longer reported separately in a "State Offshore Production" category. Previously, State-level values lagged 2 months behind the U.S. and PAD District values. Beginning with this publication, they will be on the same cycle. Also included in this publication are two additional pages for Table 26 that provide October and November data. With the release of

455

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 3. U.S. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels per Day) Commodity Supply Disposition Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports Adjust- ments 1 Stock Change 2 Refinery and Blender Net Inputs Exports Products Supplied 3 Crude Oil 4 ............................................................ 5,877 - - - - 8,716 83 -218 14,841 53 0 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 2,351 -20 372 252 - - -417 566 206 2,600 Pentanes Plus .................................................. 296 -20 - - 78 - - 37 172 71 75 Liquefied Petroleum Gases .............................. 2,055 - - 372 174 - - -454 394 135 2,525

456

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 September 2013 Table 22. PAD District 5 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 300,668 - - - - 297,837 - 31,342 -3,713 633,292 267 0 52,719 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 17,739 -73 18,288 1,401 - - - 3,536 17,170 3,791 12,858 8,270 Pentanes Plus .................................................. 7,914

457

Petroleum Supply Monthly  

Gasoline and Diesel Fuel Update (EIA)

December 2011 December 2011 Table 5. PAD District 1 - Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, December 2011 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 751 - - - - 26,471 -300 1,308 -869 28,999 100 0 9,902 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 1,313 -7 839 2,091 3,702 - - -929 816 33 8,018 7,618 Pentanes Plus .................................................. 225 -7 - - - - - - 3 - 11 204 31 Liquefied Petroleum Gases

458

Petroleum Supply Monthly  

U.S. Energy Information Administration (EIA) Indexed Site

September 2013 Table 6. PAD District 1 - Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum Products, January-September 2013 (Thousand Barrels) Commodity Supply Disposition Ending Stocks Field Production Renewable Fuels and Oxygenate Plant Net Production Refinery and Blender Net Production Imports (PADD of Entry) 1 Net Receipts 2 Adjust- ments 3 Stock Change 4 Refinery and Blender Net Inputs Exports Products Supplied 5 Crude Oil ............................................................. 8,672 - - - - 230,125 -359 62,824 2,069 289,586 9,606 0 10,326 Natural Gas Plant Liquids and Liquefied Refinery Gases ................................................... 19,329 -83 12,151 10,808 21,118 - - 168 4,287 2,821 56,047 6,541 Pentanes Plus ..................................................

459

Corrosion of Low Pressure Steam Turbine Components  

Science Conference Proceedings (OSTI)

Most outage hours for steam turbines are due to corrosion of low pressure (LP) blades and disks in the phase transition zone (PTZ). The development of an effective localized corrosion damage prediction technology is essential for the successful avoidance of unscheduled outages of steam

2000-11-28T23:59:59.000Z

460

Steam Conservation and Boiler Plant Efficiency Advancements  

E-Print Network (OSTI)

This paper examines several cost-effective steam conservation and boiler plant efficiency advancements that were implemented during a recently completed central steam boiler plant replacement project at a very large semiconductor manufacturing complex. The measures include: 1) Reheating of dehumidified cleanroom make-up air with heat extracted during precooling. 2) Preheating of deionization feedwater with refrigerant heat of condensation. 3) Preheating of boiler combustion air with heat extracted from boiler flue gas. 4) Preheating of boiler feedwater with heat extracted from gas turbine exhaust. 5) Variable speed operation of boiler feedwater pumps and forced-draft fans. 6) Preheating of boiler make-up water with heat extracted from boiler surface blow-down. The first two advancements (steam conservation measures) reduced the amount of steam produced by about 25% and saved about $1,010,000/yr by using recovered waste heat rather than steam-derived heat at selected heating loads. The last four advancements (boiler plant efficiency measures) reduced the unit cost of steam produced by about 13% and saved about $293,500/yr by reducing natural gas and electricity usage at the steam boiler plant. The combined result was a 35% reduction in annual steam costs (fuel and power).

Fiorino, D. P.

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear steam supply" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

LMR steam generator blowdown with RETRAN  

SciTech Connect

One of the transients being considered in the FSAR Chapter 15 analyses of anticipated LMR transients is the fast blowdown of a steam generator upon inadvertent actuation of the liquid metal/water reaction mitigation system. For the blowdown analysis, a stand-alone steam generator model for the IFR plant was constructed using RETRAN.

Wei, T.Y.C.

1985-01-01T23:59:59.000Z

462

Steam System Optimization: A Case Study  

E-Print Network (OSTI)

This paper highlights the study findings in a steam system in a plant from a multinational Petrochemical giant in an European country. The steam system operates with an annual budget of $8.9 million (local currency was converted to US Dollars). Normal steam demand ranges from 500,000 to 600,000 lbs/hr. 380,000 lbs/hr is imported from an outside power plant and 170,000 lbs/hr is internally generated as waste heat recovery. The steam system analysis identified energy savings worth of $2,400,000 per year. The optimization measures were in two categories: • no cost / low cost that can be done through better maintenance and improvement of operating conditions. • major improvement that requires a significant amount of investment, that includes the modification of process and major equipment. Though the findings are specific to a single site, the basics of steam system analysis are applicable to any steam system. A critical review on any steam system always identifies controllable wastes. Improvements in steam system efficiency equal reduced energy consumption and saved environment.

Iordanova, N.; Venkatesan, V. V.

2000-04-01T23:59:59.000Z

463

The Future of Steam: A Preliminary Discussion  

E-Print Network (OSTI)

Steam production represents a significant proportion of today's industrial energy demand. But the evolution of process technologies, as well as turbulence in energy markets, suggests that steam's role may be subject to change in the next decade. Questions as to the ways those changes will manifest are addressed by this paper. Specifically, the text presents an outline of parameters that (in the authors' opinions) will ultimately shape the dimensions of industrial steam use in the next 10 to 20 years. Technical, business, institutional, and labor developments are the forces in question. This paper provides a systematic review of these forces, and suggests how they may influence industrial asset purchasing decisions. The coming decade will witness opportunities for maintaining and growing steam markets, but there are also reasons to believe that steam will be supplanted by alternative technologies in certain industries and applications. Combined heat and power applications are the wildcard in this formula, since they may facilitate the replacement of some traditional steam applications. But at the same time, CHP may ensure that steam indirectly serves industry by powering generators that serve newer electric applications. The trends discussed in this paper suggest the components for an industrial steam policy agenda.

Russell, C.; Harrell, G.; Moore, J.; French, S.

2001-05-01T23:59:59.000Z

464

Pages that link to "Coyote Canyon Steam Plant Biomass Facility...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Coyote Canyon Steam Plant Biomass Facility" Coyote Canyon Steam Plant Biomass Facility Jump to:...

465

Steam Oxidation of New PVD Nano-Structured and Microstructured ...  

Science Conference Proceedings (OSTI)

Symposium, Properties, Processing, and Performance of Steels and Ni-Based Alloys for Advanced Steam Conditions. Presentation Title, Steam Oxidation of ...

466

Changes related to "Coyote Canyon Steam Plant Biomass Facility...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Coyote Canyon Steam Plant Biomass Facility" Coyote Canyon Steam Plant Biomass Facility Jump to:...

467

Boiler Upgrades and Decentralizing Steam Systems Save Water and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval...

468

Design with Constructal Theory: Steam Generators, Turbines and Heat Exchangers.  

E-Print Network (OSTI)

?? This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of… (more)

Kim, Yong Sung

2010-01-01T23:59:59.000Z

469

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the...

470

Savannah River's Biomass Steam Plant Success with Clean and Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the federal energy...

471

HYDROGEN PRODUCTION FROM PHOTOLYSIS OF STEAM ADSORBED ONTO PLATINIZED SrTiO3  

E-Print Network (OSTI)

PRODUCTION FROM PHOTOLYSIS OF STEAM ADSORBED ONTO PLATINIZEDPRODUCTION FROM PHOTOLYSIS OF STEAM ADSORBED ONTO PLATINIZED

Carr, R.G.

2013-01-01T23:59:59.000Z

472

Hockey-stick steam generator for LMFBR  

SciTech Connect

This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test results to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.

Hallinan, G.J.; Svedlund, P.E.

1981-01-01T23:59:59.000Z

473

Waste heat steams ahead with injection technology  

Science Conference Proceedings (OSTI)

Owners of Commercial-Industrial-Institutional buildings whose thermal usage is too variable to implement cogeneration are looking to a gasturbine steam-injection technology, called the Cheng Cycle, to reduce their energy costs. The Cheng Cycle uses industrial components-a gas-turbine generating set, a waste-heat recovery steam generator and system controls-in a thermodynamically optimized mode. In the process, steam produced from waste heat can be used for space or process heating or to increase the electrical output of a gas turbine. The process was patented in 1974 by Dr. Dah Yu Cheng, of the University of Santa Clara, Santa Clara, Calif. When a plant's thermal needs fall because of production or temperature changes, unused steam is directed back to the turbine to increase electrical output. As thermal requirements rise, the process is reversed and needed steam is channeled to plant uses.

Shepherd, S.; Koloseus, C.

1985-03-01T23:59:59.000Z