Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear Safety Workshop Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Summary Workshop Summary September 19-20, 2012 1 Nuclear Safety Workshop Summary On September 19-20, 2012, the U.S. Department of Energy (DOE) held a second Nuclear Safety Workshop covering the results of the Department's actions to improve its posture for analyzing and responding to severe accidents in light of lessons learned from the March 2011 nuclear accident in Japan. Sponsored by DOE and championed by Deputy Secretary of Energy Daniel Poneman, the two-day workshop discussed the lessons learned in a national and international context. The workshop's theme

2

Nuclear Safety Workshop Summary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Summary Workshop Summary Nuclear Safety Workshop Summary September 19-20, 2012 Nuclear Safety Workshop Summary On September 19-20, 2012, the U.S. Department of Energy (DOE) held a second Nuclear Safety Workshop covering the results of the Department's actions to improve its posture for analyzing and responding to severe accidents in light of lessons learned from the March 2011 nuclear accident in Japan. Sponsored by DOE and championed by Deputy Secretary of Energy Daniel Poneman, the two-day workshop discussed the lessons learned in a national and international context. The workshop's theme was Post Fukushima Initiatives and Results, and included technical breakout sessions focused on beyond design basis events (BDBEs) analysis and response, safety culture, and risk assessment and management.

3

2012 Nuclear Safety Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » 2012 Nuclear Safety Workshop Nuclear Safety » 2012 Nuclear Safety Workshop 2012 Nuclear Safety Workshop Glenn Podonsky 1 of 13 Glenn Podonsky Glenn Podonsky (DOE Chief Health, Safety and Security Officer) provides his welcoming remarks. Daniel Poneman 2 of 13 Daniel Poneman DOE Deputy Secretary Daniel Poneman discusses maintaining our focus on nuclear safety. Akira Kawano 3 of 13 Akira Kawano Akira Kawano, Tokyo Electric Power Company, provides lessons learned from the Fukushima nuclear accident. Bill Ostendorff 4 of 13 Bill Ostendorff NRC Commissioner Bill Ostendorff gives his perspective on the NRC's response to the Fukushima nuclear accident. Miroslav Lipar 5 of 13 Miroslav Lipar Miroslav Lipar, IAEA, provides an international perspective on the Fukushima nuclear accident. Dr. Sonja Haber 6 of 13

4

2012 Nuclear Safety Workshop Presentations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations Wednesday, September 19 - Plenary Session September 19, 2012 Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company September 19, 2012 A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Presenter: Honorable William C. Ostendorff, Commissioner US Nuclear Regulatory Commission September 19, 2012 International Perspective on Fukushima Accident Presenter: Miroslav Lipár, Head, Operational Safety Section, Department of

5

Nuclear Safety Research and Development Status Workshop Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSR&D STATUS WORKSHOP SUMMARIES Caroline Garzon Chief of Nuclear Safety Staff NUCLEAR SAFETY R&D Perform a peer review of Risk Assessment Corporation WTP analysis by a team and...

6

NUCLEAR SAFETY WORKSHOP AGENDA Post Fukushima Initiatives and Results  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR SAFETY WORKSHOP AGENDA NUCLEAR SAFETY WORKSHOP AGENDA Post Fukushima Initiatives and Results September 19-20, 2012 - Bethesda North Marriott TUESDAY, SEPTEMBER 18 - Grand Ballroom, Salons F/G/H 1 9/14/12 6:00 - 8:00 pm Registration WEDNESDAY, SEPTEMBER 19 - Grand Ballroom, Salons F/G/H 7:00 - 8:00 am Registration 8:00 - 8:05 am Logistics Stephen A. Kirchhoff, Office of Health, Safety and Security US Department of Energy 8:05 - 8:15 am Welcoming Remarks and Workshop Objectives Glenn S. Podonsky, Chief Health, Safety and Security Officer US Department of Energy 8:15 - 8:45 am Maintaining Our Focus on Nuclear Safety Daniel B. Poneman, Deputy Secretary US Department of Energy 8:45 - 9:30 am Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - the

7

Proceedings of the Nuclear Criticality Technology and Safety Project Workshop  

SciTech Connect

This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

Sanchez, R.G. [comp.

1994-01-01T23:59:59.000Z

8

2012 Nuclear Safety Workshop Photos | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » 2012 Nuclear Safety Workshop Photos 2012 Nuclear Safety Workshop Photos Addthis Glenn Podonsky 1 of 13 Glenn Podonsky Glenn Podonsky (DOE Chief Health, Safety and Security Officer) provides his welcoming remarks. Daniel Poneman 2 of 13 Daniel Poneman DOE Deputy Secretary Daniel Poneman discusses maintaining our focus on nuclear safety. Akira Kawano 3 of 13 Akira Kawano Akira Kawano, Tokyo Electric Power Company, provides lessons learned from the Fukushima nuclear accident. Bill Ostendorff 4 of 13 Bill Ostendorff NRC Commissioner Bill Ostendorff gives his perspective on the NRC's response to the Fukushima nuclear accident. Miroslav Lipar 5 of 13 Miroslav Lipar Miroslav Lipar, IAEA, provides an international perspective on the Fukushima nuclear accident.

9

Y-12 hosts safety workshop | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

and Knoxville Building and Construction Trades Council. NNSA Blog About the photo Advisor Rizwan Shah and CNS Safety Culture Program Manager Paul Wasilko welcome participants...

10

Office of Nuclear Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Safety (HS-30) Office of Nuclear Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us

11

Integrated Safety Management Champions Workshop | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Champions Workshop Integrated Safety Management Champions Workshop Integrated Safety Management Champions Workshop Dear colleagues, On behalf of Mr. Glenn Podonsky, Chief Health,...

12

Safety Training Collaborative Workshop Summary Reports | Department...  

Office of Environmental Management (EM)

Safety Training Collaborative Workshop Summary Reports Safety Training Collaborative Workshop Summary Reports Performed in Collaboration with DOE National Training CenterNational...

13

DOE/EFCOG Electrical Safety Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL 2014 EFCOGDOE Electrical Safety Workshop July 14 - 18, 2014 Hosted by the National Renewable Energy Laboratory (NREL), the 2014 EFCOGDOE Electrical Safety Workshop will be...

14

Hydrogen Safety Sensors Workshop  

Energy.gov (U.S. Department of Energy (DOE))

A DOE-sponsored workshop was held in Washington, DC on April 4, 2007 with approximately 50 experts from industry, government, national laboratories, and universities. The workshop included...

15

Safety System Oversight: 2010 Safety System Oversight Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety System Oversight Workshop Safety System Oversight Workshop May 12 - 13, 2010 Las Vegas, NV 2010 Facility Representative and Safety System Oversight Workshops Summary: PDF SSO Steering Committee Meeting Minutes: PDF 2009 Safety System Oversight Annual Award Workshop Agenda: PDF Workshop Presentations: Panel Discussion on the Integration of Facility Representatives and Safety System Oversight Personnel at Site Programs Presentation Panel Highlights Introduction, Goals, and Objectives for SSO Workshop Community Update Demographic Survey Results Introduction of the Safety System Oversight Steering Committee Earl Hughes Presentation Oak Ridge Fire Protection SSO Program Pat Smith, Oak Ridge Office Presentation Commercial Grade Dedication Fran Lemieux, NSTec, Nevada Test Site Presentation

16

USW Health Safety and Environment Conference - HSS Workshop ...  

Office of Environmental Management (EM)

USW Health Safety and Environment Conference - HSS Workshop USW Health Safety and Environment Conference - HSS Workshop Workshop Date: March 7, 2012 Documents Available for...

17

The Office of Nuclear Energy Announces Central Europe Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Office of Nuclear Energy Announces Central Europe Nuclear The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional Nuclear Safety Workshop on Trends in Nuclear Power Plant Safety for Robust Civil Nuclear Programs on Oct. 10-13, 2011 in Prague. U.S. Ambassador Norman Eisen and Department of Energy Assistant Secretary for Nuclear Energy Dr. Pete Lyons will deliver speeches welcoming participants. Representatives from the Czech Republic, Bulgaria, Lithuania,

18

2007 Integrated Safety Management Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

ISM ISM Workshop 2007 a vision for Integrated Safety Management in the Department of Energy complex ISM Workshop 2007 ® Sample of how the graphic may be used on documents where the "Good to Great" verbiage is not includ "Good to Great" is a registered trademark of Jim Collins and is being used with permission. November 27-30, 2007 Hosted by Brookhaven National Laboratory "Good to Great" is a registered trademark of Jim Collins and is being used with permission. 2 Special Thanks Brookhaven National Laboratory Safety, Emergency and Traffic Information Safety, Health and Security Environment, Safety & Health Hotline: 631-344-8800 Occupational Medicine Clinic: 631-344-3670 Security Badging Office: 631-344-5149 Computer Security: 631-344-5522

19

Safety System Oversight: 2010 Safety System Oversight Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety System Oversight Office of Nuclear Safety Home Safety System Oversight Home Annual SSO/FR Workshop DOE Safety Links › ORPS Info › Operating Experience Summary › DOE Lessons Learned › Accident Investigation Program Assessment Tools › SSO CRADS Subject Matter Links General Program Information › Program Mission Statement › SSO Program Description › SSO Annual Award Program › SSO Annual Award › SSO Steering Committee › SSO Program Assessment CRAD SSO Logo Items Site Leads and Steering Committee Archive Facility Representative Contact Us HSS Logo SSO SSO 2012 SAFETY SYSTEM OVERSIGHT ANNUAL AWARD Congratulations to Ronnie Alderson, Nevada Field Office, the Winner of the 2012 DOE Safety System Oversight Annual Award! 2012 NOMINEES: Charles Maggart Idaho Operations Office

20

Office of Nuclear Facility Safety Programs: Nuclear Facility Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety (HS-30) Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us » Facility Representative Program

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integrated Safety Management Workshop Registration, PIA, Idaho...  

Office of Environmental Management (EM)

Safety Management Workshop Registration, PIA, Idaho National Laboratory More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory...

22

Nuclear Engineering Nuclear Criticality Safety  

E-Print Network (OSTI)

Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

Kemner, Ken

23

Nuclear Safety Regulatory Framework  

Energy Savers (EERE)

Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946...

24

Integrated Safety Management Workshop - Building Mission Success  

NLE Websites -- All DOE Office Websites (Extended Search)

Image layout spacer Integrated Safety Management Workshop - Building Mission Success Acting Deputy Secretary Jeff Kupfer addresses the audience at the 2008 ISM Workshop. Over 500 U.S. Department of Energy and contractor employees started the Labor Day weekend with safety in mind. Hosted by the U.S. Department of Energy's Idaho Operations Office, along with the prime contractors at the Idaho National Laboratory Site, the 2008 Integrated Safety Management Workshop, which was held in Idaho Falls, concluded Aug. 28. Acting Deputy Secretary for the Department of Energy, Jeff Kupfer described the workshop as "the Department of Energy's signature safety event," stating that safety enables the Department's mission success, and complacent work is safety's enemy. Kupfer also noted that workshop participation helps to

25

Safety Training Collaborative Workshop Summary Reports | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Training Collaborative Workshop Summary Reports Safety Training Collaborative Workshop Summary Reports Safety Training Collaborative Workshop Summary Reports Performed in Collaboration with DOE National Training Center/National Institute of Environmental Health Sciences The report provides results and recommendations developed by workshop attendees on possible enhancements to the safety training programs across the Los Alamos National Laboratory (LANL) complex, Idaho National Laboratory (INL) complex, Savannah River Site (SRS) complex and Oak Ridge reservation. Documents Available for Download Idaho Worker Safety Training Workshop Report [January 2011] Los Alamos Worker Safety Training Workshop Report [December 2010] Oak Ridge Worker Safety Training Workshop Report [August 2009] Savannah River Site Worker Safety Training Workshop Report [May 2010]

26

2015 DOE Safety and Security Enforcement Workshop - Badging and...  

Office of Environmental Management (EM)

2015 DOE Safety and Security Enforcement Workshop - Badging and Facility Information 2015 DOE Safety and Security Enforcement Workshop - Badging and Facility Information January...

27

2011 DOE Safety and Security Enforcement Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 DOE Safety and Security Workshop 2011 DOE Safety and Security Workshop Enforcement Home Registration - CLOSED Agendas Day 1 Agenda and Presentations Day 2 Agenda and Presentations Hotel Information Enforcement Home 2011 DOE Safety and Security Enforcement Workshop Office of Enforcement and Oversight The Office of Health, Safety and Security's (HSS) Office of Enforcement will be hosting its 2011 DOE Safety and Security Enforcement Workshop on the dates and location provided below. When: April 5 - 7, 2011 April 5 and 6 are open to Federal employees and contractors (8 am - 5 pm) April 7 is a half-day session for Federal participants only (8 - 11:30 am) The Energy Facility Contractors Group (EFCOG) Enforcement Coordination Working Group will be holding a meeting on April 7 at the Nevada Support Facility. For more information about that meeting, click here.

28

Nuclear criticality safety guide  

SciTech Connect

This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

1996-09-01T23:59:59.000Z

29

Nuclear Engineer (Criticality Safety)  

Energy.gov (U.S. Department of Energy (DOE))

This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

30

General Engineer (Nuclear Safety)  

Energy.gov (U.S. Department of Energy (DOE))

The Chief of Nuclear Safety (CNS) reports the US/M&P; in serving as the Central Technical Authority (CTA) for M&P; activities, ensuring the Departments nuclear safety policies and...

31

Nuclear Safety Regulatory Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting DOE Directives & Manuals DOE Standards Central Technical Authorities (CTA) Office of Health, Safety, and Security (HSS) Line Management SSO/ FAC Reps 48 CFR 970 48 CFR 952 Federal Acquisition Regulations External Oversight *Defense Nuclear Facility

32

2015 DOE Safety and Security Enforcement Workshop | Department...  

Energy Savers (EERE)

Workshop 2015 DOE Safety and Security Enforcement Workshop WHEN: May 5 and 6, 2015 (EFCOG Meeting on May 7) WHERE: Nevada Support Facility Nevada Field Office REGISTRATION FEE:...

33

Nuclear Explosive Safety Manual  

Directives, Delegations, and Requirements

This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

2009-04-14T23:59:59.000Z

34

Nuclear Engineer (Nuclear Safety Specialist)  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate of this position will serve as a Nuclear Engineer (Nuclear Safety Specialist) responsible for day-to-day technical monitoring, and evaluation of aspects of authorization...

35

Nuclear Explosive Safety  

Directives, Delegations, and Requirements

The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

2014-07-10T23:59:59.000Z

36

Nuclear Explosive Safety  

Directives, Delegations, and Requirements

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

2015-01-26T23:59:59.000Z

37

X WORKSHOP ON NUCLEAR PHYSICS (WONP 2005)  

E-Print Network (OSTI)

First Call X WORKSHOP ON NUCLEAR PHYSICS (WONP´ 2005) The X International Workshop on Nuclear Physics, Nuclear Physics, Particles and Fields, Physics of Beams, Radiation Physics, Radiation Protection Manso Guevara Nuclear Physics Department Instituto Superior de Tecnologias y Ciencias Aplicadas (In

Stevenson, Paul

38

Integrated Safety Management (ISM) Workshop - November 28-30, 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

D - Developing Effective Safety Culture D - Developing Effective Safety Culture ISM Workshop Presentations November 28-30, 2007 Wednesday, November 28, 2007 11:00 - 12:30 Tank S-102 Waste Spill, Shirley Olinger, ORP and Jerry Long, CH2MHill Practices in Implementing Human Performance Initiative, Bill Hartley, BWXT Pantex 2:00 - 3:30 Safety Observation to Support Human Performance Improvement, Chris Contwell, Todd Conklin and John Tseng, LANL Human Performance Training and Job Aid for Nuclear Materials Applications, William Brown, BNL Developing Effective Safety Cultures, Dr. Isabel Perry 4:00 - 5:30 Commercial Nuclear Industry Progress on Safety Culture (Sensitive Material - Contact Presenter Directly), George Mortensen, INPO Communication with the Dead is only Slightly Harder than talking with an Engineer, William Rigot, WSRC

39

Proceedings of the Advisory Committee on Reactor Safeguards Safety Culture Workshop  

Energy.gov (U.S. Department of Energy (DOE))

NUREG/CP-0183, Proceedings of the Advisory Committee on Reactor Safeguards Safety Culture Workshop, June 12, 2003 U.S. Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards Washington, DC 20555-0001.

40

Promulgating Nuclear Safety Requirements  

Directives, Delegations, and Requirements

Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

1996-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PRIVACY IMPACT ASSESSMENT: Integrated Safety Management Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Integrated Safety Management Workshop Registration PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Department of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional guidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetextlneword/206/o2061.pdf Please complete electronically: no hand-written submissions will be accepted. This template may not be modified. MODULE 1- PRIVACY NEEDS ASSESSMENT Date Departmental Element&·Slte 16/Jun/09 Idaho National Laboratory Engineering Research Office Building (EROB) Name of-Information System or IT Project Integrated Safety Management Workshop Registration Exhibit Project UID 207765 NewPIA D Update 0 DOE PIA - ISMS Workshop Finallxw.doc N T "tl I

42

ARTISAN/FARMSTEAD CHEESEMAKER FOOD SAFETY WORKSHOP  

E-Print Network (OSTI)

cheesemakers understand best practices and techniques for pathogen control in their facilities to assure. The workshop will include topics such as GMPs, sanitation, preventative and microbial controls, environmental looking to protect consumers and their businesses through good food safety practices · Extension

Alpay, S. Pamir

43

Nuclear Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Basis Safety Basis FUNCTIONAL AREA GOAL: A fully compliant Nuclear Facility Safety Basis. Program is implemented and maintained across the site. REQUIREMENTS:  10 CFR 830 Subpart B Guidance:  DOE STD 3009  DOE STD 1104  DOE STD  DOE G 421.1-2 Implementation Guide For Use in Developing Documented Safety Analyses To Meet Subpart B Of 10 CFR 830  DOE G 423.1-1 Implementation Guide For Use In Developing Technical Safety Requirements  DOE G 424.1-1 Implementation Guide For Use In Addressing Unreviewed Safety Question Requirements Performance Objective 1: Contractor Program Documentation The site contractor has developed an up-to-date, comprehensive, compliant, documented nuclear facility safety basis and associated implementing mechanisms and procedures for all required nuclear facilities and activities (10 CFR

44

Nuclear Explosive Safety  

Directives, Delegations, and Requirements

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

2009-04-14T23:59:59.000Z

45

Nuclear Explosive Safety  

Directives, Delegations, and Requirements

This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

2009-04-14T23:59:59.000Z

46

1,200 To Attend DOE Safety Workshop - Integrated Safety Management (ISM)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1,200 To Attend DOE Safety Workshop - Integrated Safety Management 1,200 To Attend DOE Safety Workshop - Integrated Safety Management (ISM) Workshop Features Nationally Renowned Speakers 1,200 To Attend DOE Safety Workshop - Integrated Safety Management (ISM) Workshop Features Nationally Renowned Speakers September 9, 2011 - 12:00pm Addthis KENNEWICK, WASH. - The Department of Energy (DOE) offices at Hanford will host the 2011 Integrated Safety Management (ISM) Champions Workshop at the Three Rivers Convention Center in Kennewick for DOE and contractor employees from sites across the country on September 12-15. More than 1,200 people are expected to attend the workshop, which features nationally acclaimed keynote speakers and high-level DOE officials. The workshop agenda also includes tours of Hanford, a safety symposium,

47

Nuclear Explosive Safety  

Directives, Delegations, and Requirements

The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

2006-06-12T23:59:59.000Z

48

Office of Nuclear Facility Safety Programs  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

49

Nuclear Explosive Safety  

Directives, Delegations, and Requirements

The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

2006-06-12T23:59:59.000Z

50

CRAD, Nuclear Safety Delegations for Documented Safety Analysis...  

Office of Environmental Management (EM)

Nuclear Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

51

Nuclear Safety Management  

NLE Websites -- All DOE Office Websites (Extended Search)

[6450-01-P] [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Part 830 Nuclear Safety Management AGENCY: Department of Energy (DOE). ACTION: Final Rule. SUMMARY: The Department of Energy (DOE) is issuing a final rule regarding Nuclear Safety Management. This Part establishes requirements for the safe management of DOE contractor and subcontractor work at the Department's nuclear facilities. Today's rule adopts the sections that will make up the generally applicable provisions for Part 830. It also adopts the specific section on provisions for developing and implementing a formalized quality assurance program. EFFECTIVE DATE: This regulation becomes effective [insert 30 days after publication in the Federal Register.] FOR FURTHER INFORMATION CONTACT: Frank Hawkins, U.S. Department of Energy, Nuclear Safety

52

Nuclear Separations Technologies Workshop Report 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i i NUCLEAR SEPARATIONS TECHNOLOGIES WORKSHOP REPORT November 7, 2011 FINAL TABLE OF CONTENTS Acronyms and Initialisms............................................................................................................ iii Executive Summary ...................................................................................................................... 1 1. Introduction ............................................................................................................................. 9 1.1 Overview .......................................................................................................................... 9 1.2 Background .................................................................................................................... 10

53

Nuclear Safety News | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety News Nuclear Safety News October 4, 2012 Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations The U.S....

54

Nuclear Explosive Safety Manual  

Directives, Delegations, and Requirements

This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

2009-04-14T23:59:59.000Z

55

Nuclear Explosive Safety Evaluation Processes  

Directives, Delegations, and Requirements

This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

2009-04-14T23:59:59.000Z

56

Intermediate-energy nuclear chemistry workshop  

SciTech Connect

This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

1981-05-01T23:59:59.000Z

57

Enhancing nuclear power safety  

Science Journals Connector (OSTI)

Through its ClydeUnion Pumps brand, SPX has a long history of providing pumps to the nuclear power industry and is working to help provide solutions that enhance vital safety systems on these plants. Compared with traditional alternatives, its TWL steam turbine driven pump is designed to increase the reliability of systems that provide heat removal from pressurised water reactors and boiling water reactors during extended emergency periods.

2014-01-01T23:59:59.000Z

58

Nuclear fuel cycle information workshop  

SciTech Connect

This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

Not Available

1983-01-01T23:59:59.000Z

59

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE))

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

60

Nuclear Safety and Global Cooperation.  

E-Print Network (OSTI)

??The thesis of is to strengthen the capacity building of nuclear safety and disaster prevention all over the world from a preventive perspective, and to (more)

Chang, Yu-shan

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Safety Reports Series No. 11, Developing Safety Culture in Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities:...

62

Office of Nuclear Safety - Directives  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives The HSS Office of Nuclear Safety is the responsible office for the development, interpretation, and revision of the following Department of Energy (DOE) directives. Go to DOE's Directives Web Page to view these directives. DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

63

Summary: Workshop RecommendationsArgonne National Laboratory Specialists Workshop on Basic Research Needs for Nuclear Waste Management  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists Workshop on Basic Research Needs for Nuclear Waste Management

A. M. Friedman; D. J. Lam; M. G. Seitz

64

Office of Nuclear Safety Enforcement | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Office of Nuclear Safety Enforcement Office of Nuclear Safety Enforcement MISSION The Office of Nuclear Safety Enforcement implements the Department's nuclear safety...

65

Nuclear Safety Policy, Guidance & Reports | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety Policy, Guidance & Reports Nuclear Safety Policy, Guidance & Reports The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and...

66

Nuclear Reactor Safety Design Criteria  

Directives, Delegations, and Requirements

The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

1993-01-19T23:59:59.000Z

67

Nuclear Explosive Safety Evaluation Processes  

Directives, Delegations, and Requirements

This Manual provides supplemental details to support the nuclear explosive safety (NES) evaluation requirement of Department of Energy (DOE) Order (O) 452.2D, Nuclear Explosive Safety, dated 4/14/09. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-2.

2009-04-14T23:59:59.000Z

68

Nuclear Separations Technologies Workshop Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report The Department of Energy (DOE) sponsored a workshop on nuclear separations technologies in Bethesda, Maryland, on July 27 and 28, 2011, to (1) identify common needs and potential requirements in separations technologies and opportunities for program partnerships, and (2) evaluate the need for a DOE nuclear separations center of knowledge to improve cross- program collaboration in separations technology. The workshop supported Goal 3 of the DOE Strategic Plan1 to enhance nuclear security through defense, nonproliferation, and environmental management. The Office of Environmental Management (EM), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA) jointly sponsored the workshop. The Office of Science

69

December 23, 2010, Los Alamos Worker Safety Training Workshop Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 23, 2010 December 23, 2010 MEMORANDUM FOR KEVIN W. SMITH MANAGER LOS ALAMOS SITE OFFICE FROM: LESLEY A. GASPERO . f i'l.1J 4 y---- ACTING DIRECTOR /v ,.., /I NATIONAL TRAININ C .'.fE'R OFFICE OF HEALTH S ETY A SECURITY t SUBJECT: Los Alamos Safety Trainirlg Workshop Report Attached please find the final report from the July 26-27, 2010 Safety Training Collaborative Workshop conducted for the Los Alamos Site Office (LASO), which was attended by key LASO federal, contractor and union representatives. The report provides results and recommendations developed by workshop attendees on possible enhancements to the safety training programs across the Los Alamos National Laboratory {LANL) complex. It should be noted that LANL has already implemented numerous initiatives to gain efficiencies in safety

70

May 6, 2010, Savannah River Site Safety Training Workshop Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MAY o G aorn MAY o G aorn MEMORANDUM FOR JACK CRAIG MANAGER SAVANNAH RIVER sr~~ FROM: ARNOLDE.GUEVA~ DIRECTOR NATIONAL TRAINING CENTER OFFICE OF HEAL TH, SAFETY AND SECURITY SUBJECT: Savannah River Site Safety Training Workshop Report Attached please find the final report from the December 8-9, 2009 collaborative safety training workshop conducted in Savannah River Site (SRS), which was attended by key SRS federal, contractor and union representatives. We apologize for the belated delivery of this report. The report provides results and recommendations developed by workshop attendees on possible enhancements to the safety training programs across the SRS complex. It should be noted that SRS has already implemented numerous initiatives to gain

71

A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)  

SciTech Connect

Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

Morris, Tommy J. [Los Alamos National Laboratory

2012-07-05T23:59:59.000Z

72

A Look at Safety Goals and Safety Design Trends for Advanced Light Water Power Reactors  

Science Journals Connector (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Nuclear Safety

David Okrent

73

Nuclear safety | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

safety Subscribe to RSS - Nuclear safety Actions taken to prevent nuclear and radiation accidents or to limit their consequences. A farewell to arms? Scientists developing a novel...

74

Nuclear Safety Reporting Criteria | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reporting Criteria Nuclear Safety Reporting Criteria January 1, 2012 Nuclear Safety Noncompliances Associated With Occurrences (DOE Order 232.2) These tables provide the criteria...

75

Independent Activity Report, Defense Nuclear Facilities Safety...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October...

76

Nuclear Safety Regulatory Framework | Department of Energy  

Energy Savers (EERE)

Presentation that outlines the rules, policies and orders that comprise the Department of Energy Nuclear Safety Regulatory Framework. Nuclear Safety Regulatory Framework More...

77

Nuclear Separations Technologies Workshop Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Separations Technologies Workshop Report Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report The Department of Energy (DOE) sponsored a workshop on nuclear separations technologies in Bethesda, Maryland, on July 27 and 28, 2011, to (1) identify common needs and potential requirements in separations technologies and opportunities for program partnerships, and (2) evaluate the need for a DOE nuclear separations center of knowledge to improve cross- program collaboration in separations technology. The workshop supported Goal 3 of the DOE Strategic Plan1 to enhance nuclear security through defense, nonproliferation, and environmental management. The Office of Environmental Management (EM), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA) jointly sponsored the workshop. The Office of Science

78

2012 Facility Representative/Safety System Oversight/Fire Safety Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative  Safety System Oversight  Fire Safety Facility Representative  Safety System Oversight  Fire Safety Overall Workshop Agenda May 14-18, 2012  Alexis Park Hotel  Las Vegas, Nevada Monday, May 14, 2012 8:00 a.m. - 5:00 p.m. SAF-271, SSO Assessments (Day 1) Zeus B Quality Assurance Overview for FR/SSO Personnel Zeus A 5:00 p.m. - 7:00 p.m. Workshop Registration Zeus Foyer Tuesday, May 15, 2012 8:00 a.m. - 5:00 p.m. Fire Safety Workshop Track Begins (see track agenda) Parthenon 4 SAF-271, SSO Assessments (Day 2) Zeus B . Safety Culture Workshop Zeus A Federal Technical Capability Panel Parthenon 2 5:00 p.m. - 7:00 p.m. Workshop Registration Zeus Foyer Wednesday, May 16, 2012 6:30 a.m. - 7:45 a.m. Workshop Registration Zeus Foyer 8:00 a.m. - 11:30 a.m. FR/SSO Tracks Begin; Plenary session with Fire Safety Track Parthenon 2 & 4

79

CRAD, Facility Safety - Nuclear Facility Safety Basis | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Nuclear Facility Safety Basis More Documents & Publications CRAD, Facility Safety - Unreviewed Safety Question Requirements Site Visit Report, Livermore Site Office - February 2011 FAQS Job Task Analyses - Nuclear Safety Specialist

80

2012 Facility Representative/Safety System Oversight/Fire Safety Workshop - Registrants  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative / Safety System Oversight Workshop Facility Representative / Safety System Oversight Workshop DOE Fire Safety Workshop Federal Technical Capability Panel (FTCP) Meeting May 14 - 18, 2012, at the Alexis park Resort Hotel, Las Vegas, NV Registrants As of 5/15/2012 Total Number: 218 First Name Last Name Government /Contractor Agency Secretarial Office Site Position Training Course FTCP FS 5/15 FS 5/16 FR/SSO Plenary FR Track SSO Track Fire Safety Training Tour Ron Alderson Government Employee DOE NNSA Nevada SSO SAF-271 No No No Yes No Yes No No Josh Allen Government Employee DOE EM Richland FR No No No No Yes Yes No No No Mark Alsdorf Government Employee DOE HSS Headquarters NTC Safety Training Manager SAF-271 Yes No No Yes No No No No Xavier Aponte Government Employee

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

2009 UK/US Nuclear Engineering Workshop Report  

SciTech Connect

This report summarizes the 2009 UK/US Nuclear Engineering Workshop held April 20-21, 2010, in Washington, D.C. to discuss opportunities for nuclear engineering collaboration between researchers in the United States and the United Kingdom.

Richard Rankin

2009-04-01T23:59:59.000Z

82

NNSA Hosts International Nuclear Forensics Workshop with Participants from  

NLE Websites -- All DOE Office Websites (Extended Search)

Hosts International Nuclear Forensics Workshop with Participants from Hosts International Nuclear Forensics Workshop with Participants from Ten Countries | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA Hosts International Nuclear Forensics Workshop with ... Press Release NNSA Hosts International Nuclear Forensics Workshop with Participants from

83

Nuclear Safety: Software Quality Assurance  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety: Software Quality Assurance Nuclear Safety: Software Quality Assurance cd Welcome to the Department of Energy's Office of Health, Safety and Security (HSS) Software Quality Assurance (SQA) homepage. The purpose of this Web site is to promote continuous improvement and the sharing of knowledge of safety software quality assurance among interested parties across the DOE complex. It consolidates information and contains links to subject matter experts, procedures, training material, program descriptions, good practices, lessons learned and the Central Registry Toolbox Codes. The Portal also provides capabilities for member collaboration in product development and threaded discussions. Central Registry: The Central Registry provides a library of DOE "Toolbox" Codes covering site boundary accident dose consequences, fire accident source terms, leakpath factors, chemical release/dispersion and consequence, and radiological dispersion and consequence.

84

Nuclear Safety Information | Department of Energy  

Office of Environmental Management (EM)

Safety Information Nuclear Safety Information Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Idaho National Laboratory's Advanced Test Reactor (ATR) |...

85

Nuclear Energy Institute (NEI) Attachment, Integrated Safety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an...

86

Nuclear Safety (Pennsylvania) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Safety and Operational Guidelines Provider Pennsylvania Department of Environmental Protection The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the activities associated with management and disposal of a low-level radioactive waste disposal facility in Pennsylvania and provides planning and support for Bureau response to incidents involving nuclear power plants and/or radioactive material in

87

NRC - regulator of nuclear safety  

SciTech Connect

The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

NONE

1997-05-01T23:59:59.000Z

88

Safety of Nuclear Explosive Operations  

Directives, Delegations, and Requirements

This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

2001-08-07T23:59:59.000Z

89

Autoclave nuclear criticality safety analysis  

SciTech Connect

Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

1991-12-31T23:59:59.000Z

90

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

A - Work Planning and Control A - Work Planning and Control ISM Workshop Presentations August 25-28, 2008 Wednesday, August 27, 2008 1:00 - 2:30 Safety Directives: Providing a Systems-Based Approach to Directives Management, Steve Kirchoff, DOE-HSS New International Standards and Organizational Principles for Integrated Management Systems, Michael Penders, Esq, Environmental Security International Moving From The Integrated Safety Management System (ISMS) to Integrated Management (IM) to Build Mission Success, Cary Staffo, DOE-EERE 3:00 - 5:00 Integrating Safety and Security into the EMS Life Cycle: A Body Contact Sport, Dennis Hjeresen, Los Alamos A Team Approach to Making Safety Signs Effective, Lynne Coe-Leavitt/Charlene Johnson, INL Managing Chemicals Using an Integrated Lifecycle Strategy at Pacific Northwest National Laboratory, Cindy Caldwell, PNL

91

NIF Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

NIF Workshops Laser Safety Laser Safety Officer Workshop 2014 For individuals with laser safety responsibility and interest in a research, industrial or academic setting who want...

92

Physics of nuclear reactor safety  

Science Journals Connector (OSTI)

Provides a concise review of the physical aspects of safety of nuclear fission reactors. It covers the developments of roughly the last decade. The introductory chapter contains an analysis of the changes in safety philosophy that are characteristic of the last decade and that have given rise to an increased importance of physical aspects because of the emphasis on passive or natural safety. The second chapter focuses on the basics of reactor safety, identifying the main risk sources and the main principles for a safe design. The third chapter concerns a systematic treatment of the physical processes that are fundamental for the properties of fission chain reacting processes and the control of those processes. Because of the rather specialized nature of the field of reactor physics, each paragraph contains a very concise description of the theory of the phenomenon under consideration, before presenting a review of the developments. Chapter 4 contains a short review of the thermal aspects of reactor safety, restricted to those aspects that are characteristic of the nuclear reactor field, because thermal hydraulics of fission reactors is not principally different from that of other physical systems. In chapter 5 the consequences of the physics treated in the preceding chapters for the dynamics and safety of actual reactors are reviewed. The systematics of the treatment is mainly based on a division of reactors into three categories according to the type of coolant, which to a large extent determines the safety properties of the reactors. The last chapter contains a physical analysis of the Chernobyl accident that occurred in 1986. The reason for an attempt to give a review of this accident, as complete as possible within the space limits set by the editors, is twofold: the Chernobyl accident is the most severe accident in history and physical properties of the reactor played a decisive role, thereby serving as an illustration of the material of the preceding chapters.

H van Dam

1992-01-01T23:59:59.000Z

93

Nuclear Safety Information Dashboard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reporting » Analytical Dashboards » Nuclear Safety Reporting » Analytical Dashboards » Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting and Processing System (ORPS) to easily identify, organize, and analyze nuclear safety-related events reported into ORPS. The NSI Dashboard displays information developed from occurrence information reported into DOE's ORPS database. Events or conditions associated with nuclear safety are reported into ORPS, assigned unique ORPS reporting criteria and used for trending. ORPS reporting criteria are assigned a weighted value to indicate their relative importance to nuclear safety; associated ORPS reporting criteria are combined in key groups and charted over time to index trends in nuclear

94

World Institute for Nuclear Security Workshop at Y-12 Brings...  

National Nuclear Security Administration (NNSA)

Institute for Nuclear Security Workshop at Y-12 Brings Together More than 20 Countries OAK RIDGE, TENN. - This week, more than 20 countries are represented at the first-ever...

95

Integrated Safety Management Workshop - Building Mission Success  

NLE Websites -- All DOE Office Websites (Extended Search)

No. 08-164 September 8, 2008 NRC DOCKETS YUCCA MOUNTAIN APPLICATION, ADOPTS DOE'S ENVIRONMENTAL IMPACT STATEMENT The Nuclear Regulatory Commission has formally docketed the Department of Energy's license application for the proposed high-level nuclear waste repository at Yucca Mountain, Nev. The agency staff has also recommended that the Commission adopt, with further supplementation, DOE's Environmental Impact Statement for the repository project. The decision to docket the application follows the NRC staff's determination that the application, submitted June 3, is sufficiently complete for the staff to begin its full technical review. Docketing the application does not indicate whether the Commission will approve or reject the construction authorization for the repository, nor does it preclude the Commission or the agency staff from requesting additional information from DOE during the course of its comprehensive technical review.

96

Nuclear Criticality Safety | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Criticality Safety Criticality Safety SHARE Criticality Safety Nuclear Criticality Safety ORNL is the lead national laboratory responsible for supporting the National Nuclear Security Administration (NNSA) in managing the US Nuclear Criticality Safety Program. NCSP is chartered to maintain the technical infrastructure (integral experiments, computational tools, training, data, etc.) needed to support safe, efficient fissionable material operations. ORNL has extensive expertise in the area of nuclear criticality safety (NCS) based upon years of experience in the following areas: Operations Support: providing fissionable material operations support for enrichment, fabrication, production, and research; Critical Experiments: performing experiments at the Y-12 Critical Experiment Facility;

97

Chapter 30 - Nuclear Energy and Safety  

Science Journals Connector (OSTI)

Safety in nuclear industries is a very serious topic due to its greater accident consequence as seen in Chernobyl, and also due to the pictorial perceptions of nuclear accidents being similar to the Hiroshima and Nagasaki nuclear explosions. This chapter points out some important safety aspects of the nuclear industry. Beginning with the current laws and regulations of nuclear safety, this chapter reviews different types of nuclear reactors, nuclear waste treatment systems, reliability of nuclear system, operations of reactors, incident reporting, and a short review of previous accident history. Finally, historical Rasmussen reports are reviewed.

Sam Mannan

2014-01-01T23:59:59.000Z

98

Hanford to Host ISMS Safety Workshop in Kennewick: Abstracts Due in June  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford to Host ISMS Safety Workshop in Kennewick: Abstracts Due in Hanford to Host ISMS Safety Workshop in Kennewick: Abstracts Due in June for September Event Hanford to Host ISMS Safety Workshop in Kennewick: Abstracts Due in June for September Event May 18, 2011 - 12:00pm Addthis Media Contact Cameron Hardy, DOE (509) 376-5365 Cameron.Hardy@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) at Hanford will hold its annual DOE Integrated Safety Management (ISM) Champions Workshop on September 12-15, 2011, at the Three Rivers Convention Center in Kennewick, Wash. DOE's Richland Operations Office and Office of River Protection are hosting this year's event. The purpose of the workshop is to promote a robust safety culture and educate attendees on safety developments and environmental compliance methods for effective implementation of the

99

Nuclear safety information sharing agreement between NRC and...  

Office of Environmental Management (EM)

Nuclear safety information sharing agreement between NRC and DOE's Office of Environment, Health, Safety and Security Nuclear safety information sharing agreement between NRC and...

100

CRAD, New Nuclear Facility Documented Safety Analysis and Technical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements - December 2, 2014 (EA CRAD 31-07, Rev. 0) CRAD, New Nuclear Facility Documented Safety Analysis...

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Panel Discussion Panel Discussion ISM Workshop Presentations August 25-28, 2008 Intergration of Management Systems, Mike Kirkpatrick The Need for Integration of All Functional Areas with Line Management into a Single Management System, Elizabeth Sellers, Idaho Operations Office The Role of Effective Integration in the Successful Startup of the Interim Savannah River Site High Level Waste Salt Processing Campaign, Frank McCoy, Washington Safety Management Solutions Integrating the Environmental and Occupational Safety & Health Management Systems, Jim Tarpinian, Battelle Memorial Institute Integration in Assuring the Successful Startup of the W80 Weapons System Campaign, Greg Meyer, B&W Pantex Resolution of the Hanford Tank Farm Vapor Issues, Mark Spears, CH2M Hill

102

Inherent safety concepts in nuclear power reactors  

Science Journals Connector (OSTI)

Different inherent safety concepts being considered in fast and thermal reactors are presented after outlining the basic goals of nuclear reactor safety, the defence in depth philosophy to achieve these goal...

O M Pal Singh; R Shankar Singh

1989-06-01T23:59:59.000Z

103

Nuclear Plant Dynamics and Safety - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis > Nuclear Plant Dynamics and Safety Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Nuclear Plant Dynamics and Safety Bookmark and Share Activities in Nuclear Plant Dynamics and Safety research and development fulfill a primary goal of the Nuclear Engineering (NE) Division to promote improvements in safe and reliable operation of present and future

104

Software Quality Assurance for Nuclear Safety Systems  

SciTech Connect

The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: {sm_bullet} Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe {sm_bullet} Considers the larger system that uses the software and its impacts {sm_bullet} Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety-critical software and applies the highest level of rigor for those systems. DOE has further defined a risk approach to nuclear safety system software consistent with the analyses required for operation of nuclear facilities. This requires the grading of software in terms of safety class and safety significant structures, systems and components (SSCs). Safety-class SSCs are related to public safety where as safety-significant SSCs are identified for specific aspects of defense-in-depth and worker safety. Industry standards do not directly categorize nuclear safety software and DOE sites are not consistent in their approach to nuclear safety software quality assurance. DOE is establishing a more detailed graded approach for software associated with safety class and safety significant systems. This paper presents the process and results that DOE utilized to develop a detailed classification scheme for nuclear safety software.

Sparkman, D R; Lagdon, R

2004-05-16T23:59:59.000Z

105

DOE Nuclear Criticality Safety Program - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Nuclear Criticality Safety Program DOE Nuclear Criticality Safety Program Nuclear Criticality Safety Overview Experience Analysis Tools Current NCS Activities Current R&D Activities DOE Criticality Safety Support Group (CSSG) Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr The DOE Nuclear Criticality Safety Program Bookmark and Share J. Morman and R. Bucher load J. Morman and R. Bucher load samples into the ZPR-6 critical assembly for material worth measurements. Click on image to view larger image. The DOE Nuclear Criticality Safety Program (NCSP) is focused on maintaining fundamental infrastructure that enables retention of DOE capabilities and expertise in nuclear criticality safety necessary to support line

106

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE))

This Nuclear Safety Research & Development (NSR&D) Committee Charter provides the membership, roles, and responsibilities of the NSR&D Committee.

107

NUCLEAR SAFETY SPECIALIST QUALIFICATION STANDARD REFERENCE GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Nuclear Safety Specialist Qualification Standard Reference Guide AUGUST 2008 This page is intentionally blank. i Table of Contents LIST OF FIGURES ..................................................................................................................... iv LIST OF TABLES ........................................................................................................................ v ACRONYMS ................................................................................................................................ vi PURPOSE...................................................................................................................................... 1 SCOPE ...........................................................................................................................................

108

International Workshop on Characterization and PIE Needs for Fundamental Understanding of Fuels Performance and Safety  

SciTech Connect

The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russian Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.

Not Listed

2011-12-01T23:59:59.000Z

109

Nuclear Safety Information Agreement Between the U.S. Nuclear...  

Office of Environmental Management (EM)

Operations (NRC)), Jim O'Brien, Director, Office of Nuclear Safety (EHSS DOE), Robert Johnson (Chief, Fuel Manufacturing Branch (NRC)) Front Row: Matt Moury, Associate Under...

110

Nuclear Explosive Safety Study Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3015-2001 3015-2001 February 2001 Superseding DOE-STD-3015-97 January 1997 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY PROCESS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3015-2001 iii CONTENTS FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1. PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. SCOPE . . . . . . . . . . . . . . . . . . . . . . .

111

The history of nuclear weapon safety devices  

SciTech Connect

The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

Plummer, D.W.; Greenwood, W.H.

1998-06-01T23:59:59.000Z

112

Integrated Safety Management (ISM) Workshop - November 28-30, 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

A - Work Planning and Control A - Work Planning and Control ISM Workshop Presentations November 28-30, 2007 Wednesday, November 28, 2007 11:00 - 12:30 Workplace Hazards Monitoring and Recent Oversight Results, Thomas Staker, DOE-HSS SAFER Dialogue as Pre-Job and Activity Review Tool, Brian Harkins, DOE-ORP Hazard Analysis Process, William Schleyer, DOE-AL 2:00 - 3:30 ISM Implementation at R&D User Facility, Allison Campbell, PNL Experimental Safety Review - SMBS Process, Rob Doty, BNL R&D Work Planning and Control at SRNL, John Miller, SRNL 4:00 - 5:30 A Three Tiered Work Planning Process, Steven Coleman, BNL WSRC Work Planning and Control for all Activity - Level of Work, Tim Flake, WSRC SWPF Construction Work Planning and Control Process, Stephen Lindamood, Persons Thursday, November 29, 2007

113

Integrated Safety Management (ISM) Workshop - August 25-28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

C - Work Planning and Control C - Work Planning and Control ISM Workshop Presentations August 25-28, 2008 Wednesday, August 27, 2009 1:00 - 2:30 Role of ISM in Nano-Material Research at DOE Facilities, Marvin Mielke, DOE-HSS Y-12 Sitewide Risk Management Program, Abe Mathews, NNSA Y12 Applying Safe System Work Control Processes to Integrate Safety Management Achieve Target Zero, Mike Brooks/Adam Hotzel, Bechtel, BWXT Idaho 3:00 - 5:00 Utilizing ISM Core Functions to Control PNNL Contractor Activities, Todd Haynie, PNNL IMWOG Work Management Subgroup Peer Assist Visit Best Practice, Steve Little, B&W Y12 Lean/Six Sigma Approach to Work Control Process Improvements at the WVDP, Joe Jablonski, WVES Integrating Human Performance Improvement into ISMS, T. Shane Bush Thursday, August 28, 2008

114

CRAD, Nuclear Safety Component - June 29, 2011 | Department of...  

Office of Environmental Management (EM)

CRAD, Nuclear Safety Component - June 29, 2011 CRAD, Nuclear Safety Component - June 29, 2011 June 29, 2011 Nuclear Safety Component and Services Procurement (HSS CRAD 45-12, Rev....

115

Nuclear rapprochement in Argentina and Brazil: Workshop summary  

SciTech Connect

On October 21 and 22, 1998, the Center for International Security Affairs at Los Alamos National Laboratory and the Center for Global Security and Cooperation at Science Applications International Corporation hosted the first of a series of work-shops on states that have chosen to roll back their pursuit of nuclear arms. The objective of the workshop series is to conduct a systematic evaluation of the roles played by U.S. nonproliferation policy in cases of nuclear rollback or restraint and to provide recommendations for future nonproliferation efforts based on lessons learned. Key attendees at the workshop included officials and former officials from the foreign ministries of Argentina and Brazil, and current and former officials from the U.S. Department of State, the Arms Control and Disarmament Agency (ACDA), and the Department of Energy (DOE). Scholars and independent researchers who have examined nuclear policy in Argentina and Brazil also participated. This workshop report includes important background information that helps set the stage for assessing nuclear policies in Argentina and Brazil. It describes national perspectives and areas of consensus and debate among the participants, particularly on the questions of lessons learned and their salience to proliferation challenges in other states. It also summarizes key questions and propositions regarding the roles played in these cases by U.S. nonproliferation policy.

James E. Doyle

1999-10-01T23:59:59.000Z

116

Materials Modeling and Simulation for Nuclear Fuels (MMSNF) Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerial photo of Argonne National Laboratory Argonne National Laboratory University of Chicago Chicago Photography courtesy Thomas F Ewing Privacy and Security Notice The MMSNF Workshops The goal of the Materials Modeling and Simulation for Nuclear Fuels (MMSNF) workshops is to stimulate research and discussions on modeling and simulations of nuclear fuels, to assist the design of improved fuels and the evaluation of fuel performance. In addition to research focused on existing or improved types of LWR reactors, recent modeling programs, networks, and links have been created to develop innovative nuclear fuels and materials for future generations of nuclear reactors. Examples can be found in Europe (e.g. F-BRIDGE project and ACTINET network and SAMANTHA cooperative network), in the USA (e.g. CASL, NEAMS, CESAR and CMSN network

117

Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings  

SciTech Connect

Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

Ruth, M.; Antkowiak, M.; Gossett, S.

2011-12-01T23:59:59.000Z

118

004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop  

E-Print Network (OSTI)

004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing Discuss CNG Field Performance Data Discuss Safety Testing of Type 4 Tanks Current work to support Codes & Standards Development #12;3 Storage Tank Technologies 4 basic types of tank designs Type 1 ­ all metal

119

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of...

120

Nuclear Safety Enforcement Letter issued to Sandia Corporation...  

Energy Savers (EERE)

Nuclear Safety Enforcement Letter issued to Sandia Corporation Nuclear Safety Enforcement Letter issued to Sandia Corporation 9222014 Enforcement Letter, Sandia Corporation,...

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Summary Pamphlet, Nuclear Safety at the Department of Energy...  

Office of Environmental Management (EM)

Summary Pamphlet, Nuclear Safety at the Department of Energy Summary Pamphlet, Nuclear Safety at the Department of Energy September 2010 This pamphlet is developed as part of the...

122

Nuclear Safety Research and Development Program Operating Plan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating...

123

Nuclear Safety Research and Development Annual Report, December...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Annual Report, December 2014 Nuclear Safety Research and Development Annual Report, December 2014 December 8, 2014 - 1:22pm Addthis Nuclear Safety Research...

124

Comparison of radiation safety and nuclear explosive safety disciplines  

SciTech Connect

In August 1945, U.S. Navy Captain William Parsons served as the weaponeer aboard the Enola Gay for the mission to Hiroshima (Shelton 1988). In view of the fact that four B-29s had crashed and burned on takeoff from Tinian the night before, Captain Parsons made the decision to arm the gun-type weapon after takeoff for safety reasons (15 kilotons of TNT equivalent). Although he had no control over the success of the takeoff, he could prevent the possibility of a nuclear detonation on Tinian by controlling what we now call the nuclear explosive. As head of the Ordnance Division at Los Alamos and a former gunnery officer, Captain Parsons clearly understood the role of safety in his work. The advent of the pre-assembled implosion weapon where the high explosive and nuclear materials are always in an intimate configuration meant that nuclear explosive safety became a reality at a certain point in development and production not just at the time of delivery by the military. This is the only industry where nuclear materials are intentionally put in contact with high explosives. The agency of the U.S. Government responsible for development and production of U.S. nuclear weapons is the Department of Energy (DOE) (and its predecessor agencies). This paper will be limited to nuclear explosive safety as it is currently practiced within the DOE nuclear weapons

Winstanley, J. L.

1998-10-10T23:59:59.000Z

125

Code of Federal Regulations NUCLEAR SAFETY MANAGEMENT  

Energy.gov (U.S. Department of Energy (DOE))

This part governs the conduct of DOE contractors, DOE personnel, and other persons conducting activities (including providing items and services) that affect, or may affect, the safety of DOE nuclear facilities.

126

FAQS Reference Guide Nuclear Safety Specialist  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide has been developed to address the competency statements in the November 2007 edition of DOE Standard DOE-STD-1183-2007, Nuclear Safety Specialist Functional Area Qualification Standard.

127

Nuclear Safety Enforcement Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2001 Issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety Management at the Hanford Site Tank Farms March 19, 2001 Preliminary Notice of Violation, BNFL, Inc -...

128

FAQS Qualification Card - Nuclear Safety Specialist | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Specialist Nuclear Safety Specialist FAQS Qualification Card - Nuclear Safety Specialist A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-NuclearSafetySpecialist-2007.docx Description Nuclear Safety Specialist Qualification Card - 2007 FAQC-NuclearSafetySpecialist-2004.docx

129

Nuclear and Facility Safety Policy Rules | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear and Facility Safety Policy Rules Nuclear and Facility Safety Policy Rules DOE provides safety requirements and guidance in a number of forms. One form in which we publish...

130

Nuclear Safety Research and Development (NSR&D) Program | Department...  

Office of Environmental Management (EM)

Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program The Nuclear Safety Research and Development (NSR&D) Program is managed by...

131

Nuclear Explosive Safety Study Functional Area Qualification Standard  

Directives, Delegations, and Requirements

A Nuclear Explosive Safety Study (NESS) is performed on all DOE Nuclear Explosive Operations (NEOs) in accordance with DOE O 452.1D, Nuclear Explosive and Weapon Surety Program; DOE O 452.2D, Nuclear Explosive Safety; and DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes.

2010-05-27T23:59:59.000Z

132

January 20, 2011, Memo for Idaho National Laboratory Safety Training Collaboration Workshop Summary Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 20, 2011 January 20, 2011 MEMORANDUM FOR RICHARD B. PROVENCHER MANAGER IDAHO OPERATIONS OFFICE FROM: SUBJECT: LESLEY A. GASPEROW ACTING DIRECTOR NATIONAL TRAINING C OFFICE OF HEALTH, SAF TER Y AND SECURITY Idaho Safety Training Workshop Report Attached is the final report from the October 19-20, 2010 Safety Training Collaborative Workshop conducted for the Idaho Operations Office (DOE-ID), which was attended by key DOE-ID federal, contractor and union representatives. The report provides results and recommendations developed by workshop attendees on possible enhancements to the safety training programs across the Idaho National Laboratory (INL) complex. It should be noted that INL has already implemented numerous initiatives to gain efficiencies in safety training,

133

August 21, 2009, Transmittal Memorandum and ORO safety Training Workshop Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 21, 2009 August 21, 2009 MEMORANDUM FOR GERALD BOYD MANAGER FROM: SUBJECT: OAK RIDGE OFFICE TED SHERRY MANAGER Y-12 SITE OFFICE /\fl; ARNOLD E. GUEVA~ ACTING DIRECTOR NATIONAL TRAINING CENTER OFFICE OF HEAL TH, SAFETY AND SECURITY OR/YSO Safety Training Workshop Report Attached please find the final report from the July 21 -22, 2009 collaborative safety training workshop conducted in Oak Ridge, which was attended by key Oak Ridge Office (OR) and Y-12 Plant federal, contractor and union representatives. The report provides results and recommendations developed by workshop attendees on possible enhancements to the safety training programs across the Oak Ridge reservation. It should be noted that OR and the Y-12 Site Office (YSO) have already implemented numerous initiatives to gain efficiencies in

134

Nuclear Safety Enforcement Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement » Nuclear Safety Enforcement Documents Enforcement » Nuclear Safety Enforcement Documents Nuclear Safety Enforcement Documents Documents Available for Download July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic Deficiencies in the Software Quality Assurance Program at the Lawrence Livermore National Laboratory February 12, 2013 Enforcement Letter, NEL-2013-02 Issued to Los Alamos National Security, LLC related to a Radiological Contamination Event at the Los Alamos Neutron Science Center at Los Alamos National Laboratory January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant October 23, 2012 Enforcement Letter, Controlled Power Company - WEL-2012-02

135

Office of Nuclear Safety Basis and Facility Design  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

136

Nuclear Safety Research and Development Annual Report, December 2014  

Energy.gov (U.S. Department of Energy (DOE))

This document is the first annual report of DOEs Nuclear Safety Research and Development (NSR&D) Program, managed by the Office of Nuclear Safety in the Office of Environment, Health, Safety and Security. The report includes a description of the program and summaries of R&D projects related to DOE (including NNSA) nuclear facility and operational safety.

137

U.S. and India Conclude First Workshop of the Civil Nuclear Working Group |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conclude First Workshop of the Civil Nuclear Working Conclude First Workshop of the Civil Nuclear Working Group U.S. and India Conclude First Workshop of the Civil Nuclear Working Group January 12, 2006 - 10:31am Addthis Aimed at Fostering Cooperation on Peaceful Uses of Nuclear Energy MUMBAI, INDIA -- The U.S. and India today concluded a four-day workshop on civilian nuclear energy, building on the U.S.-India Energy Dialogue initiated by President George W. Bush and Indian Prime Minister Manmohan Singh in September 2004, and launched by Secretary of Energy Samuel Bodman and India Deputy Chairman of Planning Commission Dr. Montek Singh Ahluwalia in May, 2005. The U.S. was represented at the first workshop of the Civil Nuclear Working Group by R. Shane Johnson, acting director of the U.S. Department of Energy's Office of Nuclear Energy, Science and Technology. India was

138

FAQS Qualification Card - Nuclear Explosive Safety Study | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Explosive Safety Study Nuclear Explosive Safety Study FAQS Qualification Card - Nuclear Explosive Safety Study A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-NuclearExplosiveSafetyStudy.docx Description Nuclear Explosive Safety Study Qualification Card More Documents & Publications

139

DOE's Approach to Nuclear Facility Safety Analysis and Management  

Energy.gov (U.S. Department of Energy (DOE))

Presenter: Dr. James O'Brien, Director, Office of Nuclear Safety, Office of Health, Safety and Security, US Department of Energy

140

Chapter 6 - Nuclear-Powered Payload Safety  

Science Journals Connector (OSTI)

Abstract This chapter introduces the concepts of Space Nuclear Power Systems (SNPSs), describes the history and nature of these ingenious energy-generating machines. The basic principles of the Radioisotope Thermoelectric Generator (RTG) and the recently developed Stirling Radioisotope Generator (SRG) are explored and an account of their application in several extra-terrestrial missions is presented. Nuclear fission power as a promising alternative for future outer planet and extra-solar explorations is discussed. The flight safety review and launch approval processes for U.S., as well as the failures and accidents for U.S. and U.S.S.R. (Russian) nuclear powered space missions since 1961 are presented chronologically. A comprehensive probabilistic consequence analysis of all conceivable potential hazards associated with nuclear powered space flights is set out. The chapter concludes with how \\{SNPSs\\} must be designed with the built-in safety features to minimize accidents and to prevent radiation exposure.

Firooz A. Allahdadi; Sayavur I. Bakhtiyarov; Gregory D. Wyss; Gary F. Polansky; Joseph A. Sholtis; Curt D. Botts

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Office of Nuclear Safety and Environmental Assessments  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Nuclear Safety and Environmental Assessments conducts assessments to provide critical feedback and objective information on programs and performance in protecting our workers, the public and environment from radiological hazards with a focus on hazardous nuclear facilities and operations. This information provides assurance to our stakeholders and identifies areas for improvement to our leadership to support the safe performance of the Departments mission.

142

June 2010, Risk Assessment in Support of DOE Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Safety Policy and Assistance Office of Nuclear Safety Policy and Assistance Nuclear Safety, Quality Assurance and Environment Information Notice June 2010 1 BACKGROUND & PURPOSE: On August 12, 2009, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2009-1, Risk Assessment Methodologies at Defense Nuclear Facilities. This recommendation focused on the need for clear direction on use of quantitative risk assessments in nuclear safety applications at defense nuclear facilities. The Department of Energy (DOE) is presently analyzing directives, standards, training, and other tools that may support more effective development and use of

143

Nuclear safety lies in greater transparency  

Science Journals Connector (OSTI)

... Chinas nuclear expansion relies on generation III reactors, such as the Westinghouse AP1000 and the Areva European Pressurized Reactor (EPR). The industry promises that these models ... work and cost-cutting often flourish, will sacrifice safety for speed. To date, the AP1000 reactors in the Zhejiang and Shandong provinces are the only commercial units worldwide. Of ...

Qiang Wang

2013-02-26T23:59:59.000Z

144

SAFETY AND RELIABILITY ANALYSIS OF NUCLEAR REACTORS  

Science Journals Connector (OSTI)

Abstract A survey of the various aspects of safety and reliability analysis of nuclear reactors is presented with particular emphasis on the interrelation between structural reliability and systems reliability. In reactor design this interrelation is of overriding importance since it is the task of the control, protective and containment systems to protect the mechanical system and the structure from accidental overloading.

T.A. JAEGER

1972-01-01T23:59:59.000Z

145

QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12  

SciTech Connect

The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

KHARZEEV,D.

1999-04-20T23:59:59.000Z

146

Management of National Nuclear Power Programs for assured safety  

SciTech Connect

Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

Connolly, T.J. (ed.)

1985-01-01T23:59:59.000Z

147

DOE Cites Fluor Fernald Inc. for Nuclear Safety Violations |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Cites Fluor Fernald Inc. for Nuclear Safety Violations DOE Cites Fluor Fernald Inc. for Nuclear Safety Violations August 25, 2005 - 2:43pm Addthis Washington, D.C. - The...

148

Nuclear Safety Research and Development Annual Report, December...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

This document is the first annual report of DOE's Nuclear Safety Research and Development (NSR&D) Program, managed by the Office of Nuclear Safety in the Office of Environment,...

149

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have any authority to direct DOE and/or NNSA program

150

Workshops  

Energy.gov (U.S. Department of Energy (DOE))

Presentations, video and audio files, and other information related to AMO workshops are available for review.

151

Safety of Decommissioning of Nuclear Facilities  

SciTech Connect

Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

152

Central Technical Authority Responsibilities Regarding Nuclear Safety Requirements  

Directives, Delegations, and Requirements

The order establishes Central Technical Authority and Chief of Nuclear Safety/Chief of Defense Nuclear Safety responsibilities and requirements directed by the Secretary of Energy in the development and issuance of Department of Energy regulations and directives that affect nuclear safety. No cancellations.

2007-08-28T23:59:59.000Z

153

Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety  

Directives, Delegations, and Requirements

This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

2000-03-28T23:59:59.000Z

154

Nuclear and Facility Safety Directives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear and Facility Safety Nuclear Safety » Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. HS-30 Contact: James O'Brien

155

Nuclear Safety Specialist Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83-2007 83-2007 November 2007 DOE STANDARD NUCLEAR SAFETY SPECIALIST FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1183-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1183-2007 iv INTENTIONALLY BLANK DOE-STD-1183-2007 v TABLE OF CONTENTS ACKNOWLEDGMENT ................................................................................................................ vii PURPOSE ....................................................................................................................................9

156

Best Practices Workshop for Safety Culture | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA Production Office Manager Steve Erhart, DOE Organizational Culture Program Advisor Rizwan Shah and CNS Safety Culture Program Manager Paul Wasilko welcome participants...

157

Double-clad nuclear fuel safety rod  

DOE Patents (OSTI)

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, William H. (Los Altos, CA); Atcheson, Donald B. (Cupertino, CA); Vaidyanathan, Swaminathan (San Jose, CA)

1984-01-01T23:59:59.000Z

158

DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Ecology Corp. for Violating Nuclear Safety Safety and Ecology Corp. for Violating Nuclear Safety Rules DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules June 14, 2005 - 4:53pm Addthis WASHINGTON, D.C. -- The Department of Energy (DOE) today notified Safety and Ecology Corporation, the contractor responsible for radiological safety at the Portsmouth Gaseous Diffusion Project in Portsmouth, Ohio, that it will fine the company $55,000 for violating the department's regulations prohibiting retaliation against employees who raise nuclear safety concerns. "We take safety very seriously at the Department of Energy," said Assistant Secretary for Environment, Safety and Health John Shaw. "Today's action illustrates the department's commitment to ensuring that any and all valid

159

Nuclear power's threat to health, safety, and freedom  

Science Journals Connector (OSTI)

Nuclear power's threat to health, safety, and freedom ... In particular, they may differ on whether the nuclear power plants that are the result of the 1953 Atoms for Peace movement help or hinder the control of nuclear weapons. ...

1980-10-13T23:59:59.000Z

160

Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Culture in the US Nuclear Regulatory Commission's Reactor Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process September 19, 2012 Presenter: Undine Shoop, Chief, Health Physics and Human Performance Branch, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission Topics covered: Purpose of the Reactor Oversight Process (ROP) ROP Framework Safety Culture within the ROP Safety Culture Assessments Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process More Documents & Publications A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 2/17/11

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor  

SciTech Connect

The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

Eric C. Woolstenhulme; Dana M. Meyer

2007-04-01T23:59:59.000Z

162

Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency  

Energy.gov (U.S. Department of Energy (DOE))

Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

163

Nuclear safety information sharing agreement between NRC and DOEs Office of Environment, Health, Safety and Security  

Energy.gov (U.S. Department of Energy (DOE))

Nuclear safety information sharing agreement between NRC and DOEs Office of Environment, Health, Safety and Security.

164

CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval January 8, 2015 (EA CRAD 31-09, Rev. 0)  

Energy.gov (U.S. Department of Energy (DOE))

CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval January 8, 2015 (EA CRAD 31-09, Rev. 0)

165

Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Institute for Strategic Energy Analysis is operated by the Alliance Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of Mines, the Colorado State University, the Massachusetts Institute of Technology, and Stanford University. Contract No. DE-AC36-08GO28308 Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings Mark Ruth, Mark Antkowiak, and Scott Gossett Technical Report NREL/TP-6A30-52256 December 2011 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's National Renewable Energy Laboratory, the University of Colorado-Boulder,

166

Enforcement Regulations and Directives - Nuclear Safety | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Nuclear Safety Enforcement Regulations and Directives - Nuclear Safety 10 C.F.R. Part 820 and Amendments 10 C.F.R. Part 820 - Procedural Rules for DOE Nuclear Activities 10 C.F.R. Part 820 - Procedural Rules for DOE Nuclear Activities; General Statement of Enforcement Policy; Final rule; amendment of enforcement policy statement and confirmation of interim rule 10 C.F.R. Part 830 10 C.F.R. Part 830 - Nuclear Safety Management; Final Rule Office of General Counsel Interpretation regarding the Application of DOE Technical Standard 1027-92 under 10 C.F.R. Part 830 Office of General Counsel Interpretation regarding Noncompliant Documented Safety Analyses and Exemption Relief (9/28/2011) Related Guidance DOE-STD-1083-2009, Processing Exemptions to Nuclear Safety Rules and

167

Princeton Plasma Physics Lab - Nuclear safety  

NLE Websites -- All DOE Office Websites (Extended Search)

safety Actions taken to safety Actions taken to prevent nuclear and radiation accidents or to limit their consequences. en Celebrating the 20th anniversary of the tritium shot heard around the world http://www.pppl.gov/news/2013/12/celebrating-20th-anniversary-tritium-shot-heard-around-world-2

Tensions rose in the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) as the seconds counted down. At stake was the first crucial test of a high-powered mixture of fuel for producing fusion energy. As the control-room clock reached "zero," a flash of light on a closed-circuit television monitor marked a historic achievement:

168

Ris-R-679(EN) Nuclear Safety Research  

E-Print Network (OSTI)

of the nuclear facilities at Risø. The activities include personnel dosimetry, maintenance and calibra- tionRisø-R-679(EN) mil Nuclear Safety Research Department Annual Progress Report 1992 Edited by B March 1993 #12;Nuclear Safety Research K«*«i Department Annual Progress Report 1992 Edited by B

169

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

170

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

171

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

172

Microsoft Word - Nuclear Safety Pamphlet Final September 1 2010...  

Energy Savers (EERE)

A Basic Overview of NUCLEAR SAFETY AT THE DEPARTMENT OF ENERGY Outreach & Awareness Series Office of Health, Safety and Security (HSS) U.S. Department of Energy September 2010...

173

Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency  

Energy.gov (U.S. Department of Energy (DOE))

Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency, IAEA, 1991

174

Tutorial on nuclear thermal propulsion safety for Mars  

SciTech Connect

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-01-01T23:59:59.000Z

175

Tutorial on nuclear thermal propulsion safety for Mars  

SciTech Connect

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-08-01T23:59:59.000Z

176

Nuclear Safety Component and Services Procurement, June 29, 2011...  

Office of Environmental Management (EM)

Office of Enforcement and Oversight Criteria Review and Approach Document Subject: Nuclear Safety Component and Services Procurement Inspection Criteria, Inspection Activities, and...

177

10 CFR Part 830 Nuclear Safety Technical Positions  

Energy.gov (U.S. Department of Energy (DOE))

Technical Positions to directives issued by Nuclear and Facility Safety Policy provide clarification for specific applications of the requirements in DOE orders, rules, and other directives.

178

Development of Probabilistic Risk Assessments for Nuclear Safety...  

Office of Environmental Management (EM)

OF PROBABILISTIC RISK ASSESSMENTS FOR NUCLEAR SAFETY APPLICATIONS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release;...

179

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

180

Senior Technical Safety Manager Qualification Program Self-Assessment- Chief of Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE))

This Chief of Nuclear Safety (CNS) Report was prepared to summarize the results of the July 2013 CNS self-assessment of the Senior Technical Safety Manager Qualification Program.

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Safety Information Dashboard QuickStart Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard QuickStart Guide September 2012 Office of Analysis (HS-24) Office of Environmental Protection, Sustainability Support and Corporate Safety Analysis Office of Health, Safety and Security (HSS) Purpose of Nuclear Safety Information (NSI) Dashboard * The NSI Dashboard provides a new user interface to the Occurrence Reporting and Processing System (ORPS) to easily identify, organize, and analyze nuclear safety-related events reported into ORPS. * ORPS reporting criteria associated with events at nuclear facilities have pre-assigned weighting factors according to their relative importance and are placed into groups. * This information can be evaluated to identify trends and, using insights from current events and nature of operations, enable

182

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

183

Application of Risk Assessment and Management to Nuclear Safety |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application of Risk Assessment and Management to Nuclear Safety Application of Risk Assessment and Management to Nuclear Safety Application of Risk Assessment and Management to Nuclear Safety September 20, 2012 Presenter: Commissioner George Apostolakis US Nuclear Regulatory Commission Topics covered: Management of (unquantified at the time) uncertainty was always a concern. Defense-in-depth and safety margins became embedded in the regulations. "Defense-in-Depth is an element of the NRC's safety philosophy that employs successive compensatory measures to prevent accidents or mitigate damage if a malfunction, accident, or naturally caused event occurs at a nuclear facility." [Commission's White Paper, February 1999] Design Basis Accidents are postulated accidents that a nuclear facility must be designed and built to withstand without loss to the

184

Chief of Nuclear Safety (CNS) Senior Technical Safety Manager (STSM) Qualification Program Self-Assessment Report - August 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chief of Nuclear Safety (CNS) Chief of Nuclear Safety (CNS) Self-Assessment Report Senior Technical Safety Manager Qualification Program CONTENTS Background ................................................................................................................................ 1 Results ....................................................................................................................................... 1 Assessment Criteria ................................................................................................................... 1 Finding ....................................................................................................................................... 2 Observation ............................................................................................................................... 2

185

Nuclear Safety Information Agreement Between the U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, and the U.S. Department of Energy, Office of Environment, Health, Safety and Security  

Energy.gov (U.S. Department of Energy (DOE))

On December 15, Matt Moury, Associate Under Secretary, Office of Environment, Health, Safety and Security (EHSS DOE) and EHSS Office of Nuclear Safety staff met with the NRC Executive Director for Operations, the Deputy Executive Director for Operations, and the Director, Office of Nuclear Materials Safety and Safeguards to sign a nuclear safety information exchange agreement between NRC Office of Nuclear Materials Safety and Safeguards and the Office of Environment, Health, Safety and Security.

186

Nuclear Safety Enforcement Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2002 14, 2002 Preliminary Notice of Violation, Fluor Hanford, Incorporated - EA-2002-03 Preliminary Notice of Violation issued to Fluor Hanford, Incorporated, related to Quality Assurance issues at the Hanford Site. June 19, 2002 Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 Enforcement Letter issued to Kaiser-Hill Company, LLC related to Unplanned Radioactive Material Uptakes at the Rocky Flats Environmental Technology Site October 22, 2001 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 Special Report Order issued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site October 9, 2001 Enforcement Letter, LANL - October 9, 2001 Enforcement Letter issued to Los Alamos National Laboratory related to

187

FAQS Job Task Analyses - Nuclear Safety Specialist  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

JOB / TASK ANALYSIS for JOB / TASK ANALYSIS for Nuclear Safety Specialist (NSS) Functional Area Qualification Standard (FAQS) DOE-STD-1183-2007 Instructions for Step 1: Step 1 Identify and evaluate tasks - Develop a comprehensive list of tasks that define the job. o A great starting point is the list of Duties and Responsibilities from the FAQS. o Give careful thought to additional tasks that could be considered. o Don't worry about deleting tasks at this point - that is a part of the process further down. - List the tasks (and their sources, e.g., Duties and Responsibilities #1) in the chart below. - Discuss each task as a group and come to a consensus pertaining to Importance and Frequency of the task (i.e., each team member can consent to the assigned value, even

188

Defense Nuclear Facilities Safety Board's enabling legislation  

NLE Websites -- All DOE Office Websites (Extended Search)

ENABLING STATUTE OF THE ENABLING STATUTE OF THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD 42 U.S.C. § 2286 et seq. NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1989 (Pub. L. No. 100-456, September 29, 1988), AS AMENDED BY NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1991 (Pub. L. No. 101-510, November 5, 1990), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEARS 1992 AND 1993 (Pub. L. No. 102-190, December 5, 1991), ENERGY POLICY ACT OF 1992 (Pub. L. No. 102-486, October 24, 1992), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 1994 (Pub. L. No. 103-160, November 30, 1993), FEDERAL REPORTS ELIMINATION ACT OF 1998 (Pub. L. No. 105-362, November 10, 1998), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 2001 (Pub. L. No. 106-398, October 30, 2000), AND

189

DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jacobs Company for Nuclear Safety Violations Jacobs Company for Nuclear Safety Violations DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations August 4, 2005 - 2:36pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) today notified the Bechtel Jacobs Company (BJC) that it will fine the company $247,500 for violations of the department's nuclear safety requirements. The company is the department's contractor responsible for environmental cleanup and waste management at its Oak Ridge Reservation in Tennessee. "One of our top safety priorities is to improve the performance of subcontractors, and to do that we need to hold prime contractors responsible," said John Shaw, Assistant Secretary for Environment, Safety and Health. "Our goal is to have work conducted in a manner that protects

190

Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analyses and Technical Safety Requirements)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 1996 February 1996 CHANGE NOTICE NO. 2 Date November 2005 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS DOCUMENTS (DOCUMENTED SAFETY ANALYSES AND TECHNICAL SAFETY REQUIREMENTS) U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, Fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Adminis tration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

191

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

192

Facility Representative Program: 2010 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

193

Workshop on exotic hadronic atoms, deeply bound kaonic nuclear states and antihydrogen: present results, future challenges  

E-Print Network (OSTI)

These are the miniproceedings of the workshop "Exotic hadronic atoms, deeply bound kaonic nuclear states and antihydrogen: present results, future challenges," which was held at the European Centre for Theoretical Nuclear Physics and Related Studies (ECT*), Trento (Italy), June 19-24, 2006. The document includes a short presentation of the topics, the list of participants, and a short contribution from each speaker.

Catalina Curceanu; Akaki Rusetsky; Eberhard Widmann

2006-10-16T23:59:59.000Z

194

Microsoft Word - Nuclear Safety Reporting Criteria.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Noncompliance Reporting Criteria (as of January 1, 2012) Safety Noncompliance Reporting Criteria (as of January 1, 2012) Nuclear Safety Noncompliances Associated With Occurrences (DOE Order 232.2) Consult the DOE Order for the full text of each occurrence criterion 1 Reporting Criteria Group Subgroup Occurrence Category and Summary Description 2 1. Operational Emergencies 3 N/A (1) Operational Emergency (2) Alert (3) Site Area Emergency (4) General Emergency 2. Personnel Safety and Health C. Fires (1) Fire within primary confinement/containment (2d) Self-extinguishing fires D. Explosions (1) Unplanned explosion within primary confinement/containment 3. Nuclear Safety Basis A. Technical Safety Requirement (TSR) Violations (1) Violation of TSR/Operational Safety Requirement (OSR) Safety Limit (2) Violation of other TSR/OSR requirement

195

An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems  

SciTech Connect

The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated toolkit consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

Timothy J. Leahy

2010-06-01T23:59:59.000Z

196

Nuclear Safety Reserch and Development Program Operating Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Research and Development Safety Research and Development Program Operating Plan Office of Nuclear Safety Office of Health, Safety and Security U.S. Department of Energy June 2012 INTENTIONALLY BLANK NSR&D Program Operating Plan June 2012 Table of Contents 1.0 INTRODUCTION................................................................................................................. 1 2.0 BACKGROUND ................................................................................................................... 1 3.0 OBJECTIVES ....................................................................................................................... 2 4.0 NSR&D PROGRAM PROCESSES .................................................................................... 3

197

Work for Nuclear Regulatory Commission, Safety Related Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Regulatory Nuclear Regulatory Commission Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Safety-Related Applications Overview DOE Office of Nuclear Energy, Science, and Technology Nuclear Regulatory Commission National Aeronautics and Space Administration (NASA) Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Safety Related Applications Bookmark and Share Nuclear Regulatory Commission International Steam Generator Tube Integrity Program Key objectives of the International Steam Generator Tube Integrity Program

198

Safety Related Applications (Sensors and Instrumentation and NDE) - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Office of DOE Office of Nuclear Energy, Science, and Technology Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Safety-Related Applications Overview DOE Office of Nuclear Energy, Science, and Technology Nuclear Regulatory Commission National Aeronautics and Space Administration (NASA) Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Safety Related Applications Bookmark and Share DOE Office of Nuclear Energy, Science, and Technology The objective of this Nuclear Energy Plant Optimization Project is to

199

Pantex sets safety record | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

sets safety record | National Nuclear Security Administration sets safety record | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex sets safety record Pantex sets safety record Posted By Office of Public Affairs Pantex has set a new safety record with the lowest recordable case rate in the plant's history. The record total recordable case rate of 0.26 is a fitting end to an

200

Pantex receives two safety awards | National Nuclear Security  

National Nuclear Security Administration (NNSA)

two safety awards | National Nuclear Security two safety awards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex receives two safety awards Pantex receives two safety awards Posted By Office of Public Affairs B&W Pantex was honored last week with a pair of awards for its exemplary safety record. The President's Award for Best Performing Business Unit and the Target

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Defense Nuclear Facilities Safety Board's first decade  

Science Journals Connector (OSTI)

Concern over the safety of the United States' defense nuclear reactors in the late 1980s led to congressional creation of an independent oversight board. The Defense Nuclear Facility Safeties Board (DNFSB) is responsible for overseeing safety issues at the U.S. Department of Energy's nuclear facilities and issuing recommendations on operations and safety at these facilities, which include South Carolina's Savannah River Site, Texas' Pantex facility, Colorado's Rocky Flats Depot, and others. This article provides an historical overview of the DNFSB's first decade and discusses its relationship and interaction with the Department of Energy and congressional oversight committees as well as the recommendations it has issued on nuclear safety. An assessment of DNFSB's future prospects concludes the article.

Bert Chapman

2000-01-01T23:59:59.000Z

202

DOE Cites University of Chicago for Nuclear Safety Violations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Chicago for Nuclear Safety Violations University of Chicago for Nuclear Safety Violations DOE Cites University of Chicago for Nuclear Safety Violations March 7, 2006 - 11:42am Addthis WASHINGTON , DC - The Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to the University of Chicago (University), the Management and Operating contractor for DOE's Argonne National Laboratory (ANL), for nuclear safety violations identified through several safety reviews and inspections conducted by DOE. A series of reviews and inspections, the most recent of which occurred in 2005, identified breakdowns in the contractor's quality improvement, radiation protection, work process, and independent and management assessment programs. Prior to 2005, senior contractor management at ANL

203

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...  

Energy Savers (EERE)

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste...

204

Deputy Secretary Poneman Discusses Nuclear Safety at the IAEA | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discusses Nuclear Safety at the IAEA Discusses Nuclear Safety at the IAEA Deputy Secretary Poneman Discusses Nuclear Safety at the IAEA June 20, 2011 - 12:00am Addthis Washington, D.C. - U.S. Deputy Secretary of Energy Daniel Poneman today addressed the plenary session at the International Atomic Energy Agency's Ministerial Conference on Nuclear Safety. Deputy Secretary Poneman emphasized the importance of international cooperation and information sharing for developing lessons learned from the Fukushima accident. The IAEA is leading the process to develop these international best practices, which will help strengthen the international nuclear regulatory regime. Remarks as prepared for delivery are below. Thank you, Mr. Ambassador, for your work in organizing this important Conference and to Director General Amano and his staff for convening it.

205

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

206

Nuclear Safety Research and Development Committee Charter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter Nuclear Safety Research and Development Committee Charter July 5, 2012 Nuclear Safety Research and Development Committee Charter The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have

207

Supplemnental Volume - Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume Volume Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS i Independent Oversight Assessment of Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant Supplemental Volume Table of Contents Foreword ...................................................................................................................................................... iii Acronyms ...................................................................................................................................................... v

208

Development of the Nuclear Safety Information Dashboard - September 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of the Nuclear Safety Information Dashboard - September Development of the Nuclear Safety Information Dashboard - September 2012 Development of the Nuclear Safety Information Dashboard - September 2012 September 2012 A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria. The sum of the severity-weighted factors for the sixty-five ORPS Reporting Criteria equals 100%. Paired pairing is an analytical tool used to determine weighted factors. A team evaluated pairs of ORPS reporting criteria and concurred on the relative importance of each pair. Each ORPS reporting criterion in a group was compared with one other ORPS reporting

209

Development of the Nuclear Safety Information Dashboard - September 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of the Nuclear Safety Information Dashboard - September Development of the Nuclear Safety Information Dashboard - September 2012 Development of the Nuclear Safety Information Dashboard - September 2012 September 2012 A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria. The sum of the severity-weighted factors for the sixty-five ORPS Reporting Criteria equals 100%. Paired pairing is an analytical tool used to determine weighted factors. A team evaluated pairs of ORPS reporting criteria and concurred on the relative importance of each pair. Each ORPS reporting criterion in a group was compared with one other ORPS reporting

210

FAQS Job Task Analyses - Nuclear Explosive Safety Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Explosive Safety Study FAQS Nuclear Explosive Safety Study FAQS STEP 1: Job Task Analysis for Tasks Task (and Number) Source Importance Frequency (1) Serves as a member or chair of the NESSG. FAQS Duties and Responsibilities Paragraph A 5 3 (2) Provides guidance on and interpretation of nuclear explosive safety (NES) requirements and policy. FAQS Duties and Responsibilities Paragraph B 5 4 (3) Drafts policy directives for the DOE/NNSA, Nuclear Explosive Safety Operations Branch (NESB) and reviews DOE/NNSA policies on NES. FAQS Duties and Responsibilities Paragraph D 5 3 (4) Provides instruction and guidance regarding NES to individuals assigned NES responsibilities. FAQS Duties and Responsibilities Paragraph E 5 3-4 (5) Monitors ongoing NEOs to ensure compliance with NES standards and

211

DOE Cites Washington TRU Solutions for Nuclear Safety Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington TRU Solutions for Nuclear Safety Violations Washington TRU Solutions for Nuclear Safety Violations DOE Cites Washington TRU Solutions for Nuclear Safety Violations December 22, 2005 - 4:53pm Addthis WASHINGTON, D.C. -- The Department of Energy (DOE) today notified Washington TRU Solutions (WTS) that it will fine the company $192,500 for violations of the department's nuclear safety requirements. The Preliminary Notice of Violation (PNOV) issued today cites a number of deficiencies that led to a series of low-level plutonium uptakes by workers at a WTS mobile facility (MOVER) stationed at the Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. The violations reflected WTS' limited understanding of the design and operational limitations of the MOVER facility, a portable waste processing facility designed to be

212

Exelon Statement Regarding Nuclear Safety and 10 CFR 810  

Energy.gov (U.S. Department of Energy (DOE))

Exelon respectfully submits that the existing 810 rule, as currently interpreted, and the proposed revised rule, both work as deterrents to improving safety in nuclear operations around the world.

213

A probabilistic safety analysis of incidents in nuclear research reactors  

Science Journals Connector (OSTI)

......System for Research Reactor (IRSRR). Available...System for Research Reactor (IRSRR). Available...76. 7 Manual on reliability data collection for research reactor PSAs. (1992) IAEA...probabilistic safety analysis of incidents in nuclear......

Valdir Maciel Lopes; Gian Maria Agostinho Angelo Sordi; Mauricio Moralles; Tufic Madi Filho

2012-06-01T23:59:59.000Z

214

Interface with the Defense Nuclear Facilities Safety Board  

Directives, Delegations, and Requirements

This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1A.

2001-03-30T23:59:59.000Z

215

Interface with the Defense Nuclear Facilities Safety Board  

Directives, Delegations, and Requirements

The manual defines the process DOE will use to interface with the Defense Nuclear Facilities Safety Board and its staff. Canceled by DOE M 140.1-1A. Does not cancel other directives.

1996-12-30T23:59:59.000Z

216

Interface with the Defense Nuclear Facilities Safety Board  

Directives, Delegations, and Requirements

This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1.

1999-01-26T23:59:59.000Z

217

The unique signal concept for detonation safety in nuclear weapons  

SciTech Connect

The purpose of a unique signal (UQS) in a nuclear weapon system is to provide an unambiguous communication of intent to detonate from the UQS information input source device to a stronglink safety device in the weapon in a manner that is highly unlikely to be duplicated or simulated in normal environments and in a broad range of ill-defined abnormal environments. This report presents safety considerations for the design and implementation of UQSs in the context of the overall safety system.

Spray, S.D.; Cooper, J.A.

1993-06-01T23:59:59.000Z

218

THE IMPACT OF THE GLOBAL NUCLEAR SAFETY REGIME IN BRAZIL  

SciTech Connect

A turning point of the world nuclear industry with respect to safety occurred due to the accident at Chernobyl, in 1986. A side from the tragic personal losses and the enormous financial damage, the Chernobyl accident has literally demonstrated that ''a nuclear accident anywhere is an accident everywhere''. The impact was felt immediately by the nuclear industry, with plant cancellations (e.g. Austria), elimination of national programs (e.g. Italy) and general construction delays. However, the reaction of the nuclear industry was equally immediate, which led to the proposal and establishment of a Global Nuclear Safety Regime. This regime is composed of biding international safety conventions, globally accepted safety standard, and a voluntary peer review system. In a previous work, the author has presented in detail the components of this Regime, and briefly discussed its impact in the Brazilian nuclear power organizations, including the Regulatory Body. This work, on the opposite, briefly reviews the Global Nuclear Safety Regime, and concentrates in detail in the discussion of its impact in Brazil, showing how it has produced some changes, and where the peer pressure regime has failed to produce real results.

Almeida, C.

2004-10-06T23:59:59.000Z

219

Natural Phenomena Hazards (NPH) Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Phenomena Hazards (NPH) Workshop Natural Phenomena Hazards (NPH) Workshop Natural Phenomena Hazards (NPH) Workshop The Energy Department Natural Phenomena Hazards (NPH) Workshop, sponsored by the Chief of Nuclear Safety and the Chief of Defense Nuclear Safety, was held October 25-26, 2011, in Germantown, Maryland. The workshop brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact nuclear facilities. The workshop featured twenty presentations as well as a breakout session devoted to discussing the status of the commonly used structural analysis code SASSI, a System for Analysis of Soil-Structure Interaction. A Method for Evaluating Fire after Earthquake Scenarios for Single Buildings_1.pdf Addressing Uncertainties in Design Inputs - A Case Study of Probabilistic

220

Natural Phenomena Hazards (NPH) Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Phenomena Hazards (NPH) Workshop Natural Phenomena Hazards (NPH) Workshop Natural Phenomena Hazards (NPH) Workshop The Energy Department Natural Phenomena Hazards (NPH) Workshop, sponsored by the Chief of Nuclear Safety and the Chief of Defense Nuclear Safety, was held October 25-26, 2011, in Germantown, Maryland. The workshop brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact nuclear facilities. The workshop featured twenty presentations as well as a breakout session devoted to discussing the status of the commonly used structural analysis code SASSI, a System for Analysis of Soil-Structure Interaction. A Method for Evaluating Fire after Earthquake Scenarios for Single Buildings_1.pdf Addressing Uncertainties in Design Inputs - A Case Study of Probabilistic

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety  

Directives, Delegations, and Requirements

This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O 420.1C. Cancels DOE G 420.1-1.

2012-12-04T23:59:59.000Z

222

Nuclear Safety Research and Development (NSR&D) Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear Safety Research and Nuclear Safety » Nuclear Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program In 2011, the Office of Health, Safety and Security (HSS) created the Nuclear Safety Research and Development (NSR&D) Program within the Office of Nuclear Safety to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program solicits input from the Nuclear Safety Council which includes membership of senior management from each program office. NSR&D Program Objectives: To establish an enduring Departmental commitment and capability to utilize NSR&D in preventing and reducing the hazards and risks posed by DOE/NNSA nuclear facilities;

223

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and

224

Department of Energy Office of Nuclear Safety and Environmental Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Office of Nuclear Safety and Environmental Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS All new construction required to follow the provisions of Department of Energy (DOE) Order 420. lB, Facility Safety, must comply with national consensus industry standards and the model building codes applicable for the state or region in which the facility is located. Certain individuals in the fire community requested

225

Energy Department and Catholic University Improve Safety of Nuclear Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Catholic University Improve Safety of Nuclear Catholic University Improve Safety of Nuclear Waste Energy Department and Catholic University Improve Safety of Nuclear Waste January 30, 2013 - 12:51pm Addthis Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. David Sheeley David Sheeley Editor/Writer What does this project do? Hanford treats and immobilizes significant quantities of legacy nuclear waste left from the manufacture of plutonium during World War II and the Cold War. Secretary Steven Chu recently visited Catholic University's Vitreous

226

Safety - Vulnerability Assessment Team - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Safety VAT Projects Introducing the VAT Adversarial Vulnerability Assessments Safety Tags & Product Counterfeiting Election Security Spoofing GPS Defeating Existing Tamper-Indicating Seals Specialty Field Tools & Sampling Tools Insider Threat Mitigation Drug Testing Security Microprocessor Prototypes The Journal of Physical Security Vulnerability Assessments Vulnerability Assessments Insanely Fast µProcessor Shop Insanely Fast µProcessor Shop Seals About Seals Applications of Seals Common Myths about Tamper Indicating Seals Definitions Findings and Lessons Learned New Seals Types of Seals Seals References Selected VAT Papers Selected VAT Papers Selected Invited Talks Self-Assessment Survey Security Maxims Devil's Dictionary of Security Terms Argonne's VAT (brochure)

227

Nuclear Power - Operation, Safety and Environment  

E-Print Network (OSTI)

as operation, safety, environment and radiation effects. The book is not offering a comprehensive coverage of the material in each area. Instead, selected themes are highlighted by authors of individual chapters representing contemporary interests worldwide...

228

NEET Workshop 2010  

Energy.gov (U.S. Department of Energy (DOE))

The Nuclear Energy Enabling Technologies Workshop Report was held in Rockville, MD on July 29, 2010. DOEs primary purposes in convening the NEET workshop were to:

229

Office of Nuclear Safety | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Security Officer regarding concurrence in the final decision to startup or restart a nuclear facility. Serves as the Standards Executive for the Department of Energy and...

230

March 13-15, 2012 14th Annual Joint DOE/EFCOG Chemical Safety and Worker Safety and Health Program (10 CFR 851) Workshop - Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

/2/12 Page 4 of 11 /2/12 Page 4 of 11 Day 3 - Thursday, March 15, 2012 FORRESTAL MAIN AUDITORIUM (GE-086) 10 CFR 851 Workshop The purpose of this workshop is to foster continuous improvement of the implementation of 10 CFR 851 by sharing implementation experiences and ideas for enhancements gathered over the nearly 5 years since the rule's date for full implementation. 8:00 - 10:00 Registration/Name Tags - Large Auditorium (GE-086) 9:15 - 9:25 Welcome to 10 CFR 851 Workshop Pat Worthington Director, DOE Office of Health and Safety 9:25 - 9 :35 Introduction to HSS Focus Group Bill Eckroade

231

Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facts and Lessons of the Fukushima Nuclear Accident and Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints September 19, 2012 Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company Topics Covered: How Tsunami Struck Fukushima Sites Tsunami Height Estimation How we responded in the Recovery Process Safety Improvement and Further Enhancement of Nuclear Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints More Documents & Publications January2005 NNSANews Meeting Materials: June 15, 2011

232

Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA Tools for Remote-Sensing in Ecology Research NASA Tools for Remote-Sensing in Ecology Research NASA Tools for Remote-Sensing in Ecology Research Ecological Society of America Annual Meeting WK 2 Pittsburgh, PA - July 31, 2010 Abstract Land remote sensing data can be effectively used by ecologists to understand ecosystem dynamics and to expand site measurements to larger scales. These data can be used to improve our understanding of processes occurring on land and in the lower atmosphere, and play a vital role tin the development of global interactive Earth system models used to predict global change. However, most remote sensing products require special knowledge and software packages to extract information useful for ecologists. This workshop will focus on NASA's MODIS (Moderate Resolution Imaging Spectroradiometer) which views the Earth's surface every 2 to 8

233

Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Workshop  

SciTech Connect

Pacific Northwest Laboratory (PNL) evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume II, reports the results of an industry-wide workshop held on May 28 and 29, 1986, to discuss the technical issues associated with aging of nuclear service emergency diesel generators. The technical issues discussed most extensively were: man/machine interfaces, component interfaces, thermal gradients of startup and cooldown and the need for an accurate industry database for trend analysis of the diesel generator system.

Hoopingarner, K.R.; Vause, J.W.

1987-08-01T23:59:59.000Z

234

14th Annual Joint DOE/EFCOG Chemical Safety and Worker Safety and Health  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4th Annual Joint DOE/EFCOG Chemical Safety and Worker Safety and 4th Annual Joint DOE/EFCOG Chemical Safety and Worker Safety and Health Program (10 CFR 851) Workshop 14th Annual Joint DOE/EFCOG Chemical Safety and Worker Safety and Health Program (10 CFR 851) Workshop Workshop Dates: March 13-15, 2012 The workshop served to promote continuous improvement in the implementation of 851 through the shared experiences and enhancements of a variety of DOE stakeholder communities. Panel members from Savannah River Nuclear Solutions, the United Steel Workers, the DOE Offices of Environmental Management and the National Nuclear Security Administration, and the HSS Offices of Worker Safety and Health Policy and Enforcement and Oversight, provided 851 implementation perspectives and an opportunity for interactive discussion and exchange with attendees.

235

Guidance for identifying, reporting and tracking nuclear safety noncompliances  

SciTech Connect

This document provides Department of Energy (DOE) contractors, subcontractors and suppliers with guidance in the effective use of DOE`s Price-Anderson nuclear safety Noncompliance Tracking System (NTS). Prompt contractor identification, reporting to DOE, and correction of nuclear safety noncompliances provides DOE with a basis to exercise enforcement discretion to mitigate civil penalties, and suspend the issuance of Notices of Violation for certain violations. Use of this reporting methodology is elective by contractors; however, this methodology is intended to reflect DOE`s philosophy on effective identification and reporting of nuclear safety noncompliances. To the extent that these expectations are met for particular noncompliances, DOE intends to appropriately exercise its enforcement discretion in considering whether, and to what extent, to undertake enforcement action.

NONE

1995-12-01T23:59:59.000Z

236

Department of Energy Nuclear Safety Policy  

Directives, Delegations, and Requirements

It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

2011-02-08T23:59:59.000Z

237

Nuclear Safety Enforcement Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Letter, NEL-2013-01 - January 7, 2013 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant October 4, 2012 Preliminary Notice of...

238

E-Print Network 3.0 - aerospace nuclear safety Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Nuclear Technologies 2 A Systematic Approach to Safety Case Management Dr Tim Kelly Summary: The concept of the safety case' has already been adopted across many...

239

Proc. 19th Winter Workshop on Nuclear Dynamics (2003) 000000  

E-Print Network (OSTI)

Abstract. I discuss a few of the recent developments in nuclear reactions at very low energies ends of the energy scale for nuclear reactions: (a) the very high and (b) the very low relative. At the other end of the energy scale are the low energy reactions of importance for stellar evolution. A chain

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

240

Processing Exemptions to Nuclear Safety Rules and Approval of Alternative Methods for Documented Safety Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-1083-2009 STD-1083-2009 June 2009 DOE STANDARD PROCESSING EXEMPTIONS TO NUCLEAR SAFETY RULES AND APPROVAL OF ALTERNATIVE METHODS FOR DOCUMENTED SAFETY ANALYSES U.S. Department of Energy AREA SAFT Washington D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web Page at http://www.hss.energy.gov/nuclearsafety/techstds DOE-STD-1083-2009 iii FOREWORD 1. This Department of Energy (DOE) Standard has been prepared by the Office of Quality Assurance Policy and Assistance to provide acceptable processes for: a. requesting and granting exemptions to DOE nuclear safety rules and b. requesting and approving alternate methodologies for documented safety analyses

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Summary Report of the INL-JISEA Workshop on Nuclear Hybrud Energy Systems  

SciTech Connect

Hybrid energy systems utilize two or more energy resources as inputs to two or more physically coupled subsystems to produce one or more energy commodities as outputs. Nuclear hybrid energy systems can be used to provide load-following electrical power to match diurnal to seasonal-scale changes in power demand or to compensate for the variability of renewable wind or solar generation. To maintain economical, full rate operation of the nuclear reactor, its thermal energy available when power demand is low could be diverted into making synthetic vehicle fuels of various types. The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development (R&D) directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions - one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group. The workshop's findings are being used initially by INEST to define topics for a research preproposal solicitation.

Mark Antkowiak; Richard Boardman; Shannon Bragg-Sitton; Robert Cherry; Mark Ruth

2012-07-01T23:59:59.000Z

242

Safety Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US DOE Workshop US DOE Workshop September 19-20, 2012 International perspective on Fukushima accident Miroslav Lipár Head, Operational Safety Section M.Lipar@iaea.org +43 1 2600 22691 2 Content * The IAEA before Fukushima -Severe accidents management * The IAEA actions after Fukushima * The IAEA Action plan on nuclear safety * Measures to improve operational safety * Conclusions THE IAEA BEFORE FUKUSHIMA 4 IAEA Safety Standards IAEA Safety Standards F undamental S afety Principles Safety Fundamentals f o r p ro te c ti n g p e o p l e a n d t h e e n v i ro n m e n t IAEA Safety Standards Regulations for the Safe Transport of Radioactive Material 2005 E dit ion Safety Requirements No. T S-R-1 f o r p ro te c ti n g p e o p l e a n d t h e e n v i ro n m e n t IAEA Safety Standards Design of the Reactor Core for Nuclear Power Plants

243

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Health and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-FuelHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

244

MACCS2/Deposition Velocity Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » MACCS2/Deposition Velocity Workshop MACCS2/Deposition Velocity Workshop The Department of Energy's Chief of Nuclear Safety hosted a MACCS2/Deposition Velocity Workshop on June 5-6, 2012, in Germantown, Maryland. Approximately 70 participants attended. The purpose of the workshop was to: Discuss MACCS2 and atmospheric dispersion models as applied to DOE consequence analysis. Discuss implementation of HSS Safety Bulletin 2011-2, Accident Analysis Parameter Update, at field sites. Develop a consistent Department-wide approach for responding to the HSS Safety Bulletin. Identify areas for improved DOE guidance for ensuring defensible consequence analyses. June Workshop Agenda- Final.docx Atmospheric Dispersion Modeling in Safety Analyses; GENII

245

Improved nuclear safety through international standards  

Science Journals Connector (OSTI)

In this shrinking world what happens in an industry in one country can significantly affect the same industry elsewhere around the globe. In April 1986 a nuclear accident destroyed Unit 4 of Ukraines Chernobyl nuclear power plant focusing worldwide attention on the dozens of Soviet-designed reactors still in operation. The Chemobyl accident led to public concerns about all operating nuclear power plants and in some countries (e.g. Italy and Sweden) to proposals for nationwide plant closures or moratoriums on new construction. However for most former Soviet Union countries plant shutdown was and still is not a viable optionthe plants produce a significant percentage of each nations total electricity and those countries do not have sufficient economic resources to develop alternative power sources. In cooperation with similar programs initiated in Canada Japan and western European countries the U.S. Department of Energy (DOE) is conducting a comprehensive effort to reduce risks at Soviet-designed nuclear power plants until they can be shut down or brought into compliance with international standards. This paper describes DOE-supported initiatives with participating host countries to: improve reliability and accuracy of nondestructive evaluation equipment used for in-service inspection transfer technologies and infrastructure to improve in-service inspections enhance management systems for training and certifying host-country in-service inspection personnel The goal of these initiatives to enhance the use of international standards (ASME ASNT European Standards EN and ISO) in operating and regulatory practices at Soviet-designed nuclear power plants.

S. R. Doctor; R. L. Moffitt; T. T. Taylor; G. Trosman

2000-01-01T23:59:59.000Z

246

Safety system augmentation at Russian nuclear power plants  

SciTech Connect

This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC power supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.

Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.; Reister, R.A. [Burns and Roe, Oradell, NJ (United States); [Department of Energy, Germantown, MD (United States)

1996-12-31T23:59:59.000Z

247

Development of the Nuclear Safety Information Dashboard- September 2012  

Energy.gov (U.S. Department of Energy (DOE))

A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria.

248

SCALE 6: Comprehensive Nuclear Safety Analysis Code System  

SciTech Connect

Version 6 of the Standardized Computer Analyses for Licensing Evaluation (SCALE) computer software system developed at Oak Ridge National Laboratory, released in February 2009, contains significant new capabilities and data for nuclear safety analysis and marks an important update for this software package, which is used worldwide. This paper highlights the capabilities of the SCALE system, including continuous-energy flux calculations for processing multigroup problem-dependent cross sections, ENDF/B-VII continuous-energy and multigroup nuclear cross-section data, continuous-energy Monte Carlo criticality safety calculations, Monte Carlo radiation shielding analyses with automated three-dimensional variance reduction techniques, one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations, two- and three-dimensional lattice physics depletion analyses, fast and accurate source terms and decay heat calculations, automated burnup credit analyses with loading curve search, and integrated three-dimensional criticality accident alarm system analyses using coupled Monte Carlo criticality and shielding calculations.

Bowman, Stephen M [ORNL

2011-01-01T23:59:59.000Z

249

Quadrennial Technology Review's Alternative Generation Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Slides Preliminary Slides for Alternative Generation Workshop including Carbon Capture and Sequestration, Nuclear Power, Wind Power, Water Power, Geothermal...

250

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010  

Energy.gov (U.S. Department of Energy (DOE))

On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

251

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010 Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010 On August 12, 2009, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2009-1, Risk Assessment Methodologies at Defense Nuclear Facilities. This recommendation focused on the need for clear direction on use of quantitative risk assessments in nuclear safety applications at defense nuclear facilities. The Department of Energy (DOE) is presently analyzing directives, standards, training, and other tools that may support more effective development and use of risk assessment. Working with the Chief of Defense Nuclear Safety and the Chief of Nuclear Safety, staff from the Office of Health,

252

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

253

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

254

REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS  

SciTech Connect

Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEAs Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facilitys general character, purpose, capacity, and location; (2) Description of the facilitys layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards in the future. Consequently, the NNSA Office of International Regimes and Agreements (NA-243) sponsored a team of U.S. Department of Energy National Laboratory nuclear safeguards experts and technologists to conduct a workshop on methods and technologies for improving this activity, under the ASA-100 Advanced Safeguards Approaches Project. The workshop focused on reviewing and discussing the fundamental safeguards needs, and presented technology and/or methods that could potentially address those needs more effectively and efficiently. Conclusions and Recommendations for technology to enhance the performance of DIV inspections are presented by the workshop team.

Richard Metcalf; Robert Bean

2009-10-01T23:59:59.000Z

255

Summary Report of the INL-JISEA Workshop on Nuclear Hybrid Energy Systems  

SciTech Connect

The Institute for Nuclear Energy Science and Technology (INEST) and the Joint Institute for Strategic Energy Analysis (JISEA) co-sponsored an international workshop to identify research topics important in advancing the potential use of hybrid systems with a specific focus on nuclear-renewable hybrid systems. The workshop included presentations ranging from energy challenges and research and development directions being pursued by nations to multiple options for hybrid systems. Those options include one that is being commercialized to other opportunities and analysis results quantifying them. The workshop also involved two breakout sessions--one focused on thermal energy management issues especially at unit-operation scale and the second focused on system operations issues including system controls, regulatory issues, technical and economic analysis, and market challenges. A discussion involving the full group focused on more general issues such as societal involvement and participation. Key criteria for selecting hybrid energy system projects and metrics for comparing them were also identified by the full group.

Antkowiak, M.; Ruth, M.; Boardman, R.; Bragg-Sitton, S.; Cherry, R.; Shunn, L.

2012-07-01T23:59:59.000Z

256

JINA Workshop Nuclear Physics in Hot Dense Dynamic Plasmas  

SciTech Connect

Measuring NEET and NEEC is relevant for probing stellar cross-sections and testing atomic models in hot plasmas. Using NEEC and NEET we can excite nuclear levels in laboratory plasmas: (1) NIF: Measure effect of excited nuclear levels on (n,{gamma}) cross-sections, 60% and never been measured; (2) Omega, Test cross-sections for creating these excited levels via NEEC and NEET. Will allow us to test models that estimate resonance overlap of atomic states with the nucleus: (1) Average Atom model (AA) (CEA&LLNL), single average wave-function potential; (2) Super Transition Array (STA) model (LLNL), More realistic individual configuration potentials NEET experimental data is scarce and not in a plasma environment, NEEC has not yet been observed.

Kritcher, A L; Cerjan, C; Landen, O; Libby, S; Chen, M; Wilson, B; Knauer, J; Mcnabb, D; Caggiano, J; Bleauel, D; Weideking, M; Kozhuharov, C; Brandau, C; Stoehlker, T; Meot, V; Gosselin, G; Morel, P; Schneider, D; Bernstein, L A

2011-03-07T23:59:59.000Z

257

Safety assessment of a robotic system handling nuclear material  

SciTech Connect

This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable.

Atcitty, C.B.; Robinson, D.G.

1996-02-01T23:59:59.000Z

258

Nuclear Explosives Safety Study Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

85-2007 85-2007 September 2007 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DRAFT DOE-STD-1185-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DRAFT DOE-STD-1185-2007 iv INTENTIONALLY BLANK DRAFT DOE-STD-1185-2007 v TABLE OF CONTENTS ACKNOWLEDGMENT ................................................................................................................ vii PURPOSE ....................................................................................................................................1

259

History of US nuclear weapon safety assessment: The early years  

SciTech Connect

From the beginnings of the U.S. nuclear weapons program, military and civilian dual- agency judgment has been fundamental to achieving nuclear weapon and weapon system safety. This interaction was initiated by the Atomic Energy Act of 1946, which created the Atomic Energy Commission (AEC). The principle of using dual-agency judgment has been perpetuated in the design and assessment of the weapon and weapon system acceptance process since that time. This fundamental approach is still used today in all phases of the weapon life. In this paper, an overview of the history and philosophy of the approach is described.

Spray, S.D.

1996-06-01T23:59:59.000Z

260

Double-clad nuclear-fuel safety rod  

DOE Patents (OSTI)

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, W.H.; Atcheson, D.B.

1981-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE DOE-STD-1104-2009 May 2009 Superseding DOE-STD-1104-96 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1104-2009 ii Available on the Department of Energy Technical Standards web page at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-1104-2009 iii CONTENTS FOREWORD .................................................................................................................................. v INTRODUCTION ..........................................................................................................................

262

Facility Representative Program: 2007 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

263

CRAD, New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements- December 2, 2014 (EA CRAD 31-07, Rev. 0)  

Energy.gov (U.S. Department of Energy (DOE))

New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements Criteria Review and Approach Document (EA CRAD 31-07, Rev. 0)

264

Nuclear Facility Safety Basis Fundamentals Self-Study Guide - November 2002  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Operations Office Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] November 2002 Nuclear Facility Safety Basis Fundamentals Self-Study Guide TABLE OF CONTENTS Acronyms and Abbreviations ......................................................................................... iii List of Figures ....................................................................................................................iv List of Tables......................................................................................................................iv INTRODUCTION..............................................................................................................1

265

Spent nuclear fuel project - criteria document spent nuclear fuel final safety analysis report  

SciTech Connect

The criteria document provides the criteria and planning guidance for developing the Spent Nuclear Fuel (SNF) Final Safety Analysis Report (FSAR). This FSAR will support the US Department of Energy, Richland Operations Office decision to authorize the procurement, installation, installation acceptance testing, startup, and operation of the SNF Project facilities (K Basins, Cold Vacuum Drying Facility, and Canister Storage Building).

MORGAN, R.G.

1999-02-23T23:59:59.000Z

266

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 PURPOSE: To document the Department of Energy's (DOE) nuclear safety policy. SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility, except the Naval Nuclear Propulsion Program, which is separately covered under Executive Order 12344, Title 50 United States Code, sections 2406 and 2511. This Policy cancels Secretary of Energy Notice 35-91, Nuclear Safety Policy, dated 9-9-91. POLICY: It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

267

Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report  

SciTech Connect

This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV`s) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG and G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin).

NONE

1998-01-01T23:59:59.000Z

268

Implementing 10 CFR 830 at the FEMP Silos: Nuclear Health and Safety Plans as Documented Safety Analysis  

SciTech Connect

The objective of the Silos Project at the Fernald Closure Project (FCP) is to safely remediate high-grade uranium ore residues (Silos 1 and 2) and metal oxide residues (Silo 3). The evolution of Documented Safety Analyses (DSAs) for these facilities has reflected the changes in remediation processes. The final stage in silos DSAs is an interpretation of 10 CFR 830 Safe Harbor Requirements that combines a Health and Safety Plan with nuclear safety requirements. This paper will address the development of a Nuclear Health and Safety Plan, or N-HASP.

Fisk, Patricia; Rutherford, Lavon

2003-06-01T23:59:59.000Z

269

THE RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER: A RESOURCE FOR REACTOR DOSIMETRY SOFTWARE AND NUCLEAR DATA  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC) was established in 1963 to collect and disseminate computational nuclear technology in the form of radiation transport, shielding and safety software and corresponding nuclear cross sections. Approximately 1700 nuclear software and data packages are in the RSICC collection, and the majority are applicable to reactor dosimetry.

Kirk, Bernadette Lugue [ORNL] [ORNL

2009-01-01T23:59:59.000Z

270

ROBERT J. BUDNITZ Occupation: Physicist in Energy/Environmental Research and Nuclear Safety  

E-Print Network (OSTI)

ROBERT J. BUDNITZ Occupation: Physicist in Energy/Environmental Research and Nuclear Safety Birth December 2004 to September 2007 (in Livermore): Leader, Nuclear & Risk Science Group, Energy & Environment Directorate Associate Program Leader for Nuclear Systems Safety and Security, E&E Directorate October 2002

Ajo-Franklin, Jonathan

271

Reliability Engineering and System Safety 92 (2007) 609618 The nuclear industry's transition to risk-informed regulation and  

E-Print Network (OSTI)

Reliability Engineering and System Safety 92 (2007) 609­618 The nuclear industry's transition a Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Nuclear Power Engineering, Quality and Safety Management Department, Tokyo Electric Power

272

Safety culture in the nuclear power industry : attributes for regulatory assessment  

E-Print Network (OSTI)

Safety culture refers to the attitudes, behaviors, and conditions that affect safety performance and often arises in discussions following incidents at nuclear power plants. As it involves both operational and management ...

Alexander, Erin L

2004-01-01T23:59:59.000Z

273

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

274

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

275

Nuclear Explosive Safety Study Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT SENSITIVE DOE-STD-1185-2007 CHANGE NOTICE No.1 April 2010 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1185-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/ns/techstds DOE-STD-1185-2007 iii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is

276

Renovated Korean nuclear safety and security system: A review and suggestions to successful settlement  

SciTech Connect

Questions of whether past nuclear regulatory body of Korea is not a proper system to monitor and check the country's nuclear energy policy and utilization have been raised. Moreover, a feeling of insecurity regarding nuclear safety after the nuclear accident in Japan has spread across the public. This has stimulated a renovation of the nuclear safety regime in Korea. The Nuclear Safety and Security Commission (NSSC) was launched on October 26, 2011 as a regulatory body directly under the President in charge of strengthening independence and nuclear safety. This was a meaningful event as the NSSC it is a much more independent regulatory system for Korea. However, the NSSC itself does not guarantee an enhanced public acceptance of the nuclear policy and stable use nuclear energy. This study introduces the new NSSC system and its details in terms of organization structure, appropriateness of specialty, budget stability, and management system. (authors)

Chung, W. S.; Yun, S. W.; Lee, D. S. [Korea Atomic Energy Research Inst., Dukjin-dong 150, Yusung-gu, Daejon, R.O., 305-353 (Korea, Republic of); Go, D. Y. [Kyung Hee Univ., Kyung Hee daero 26, Dongdaemoon-gu, Seoul, R.O., 130-701 (Korea, Republic of)

2012-07-01T23:59:59.000Z

277

Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant  

SciTech Connect

This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

Sheaffer, M.K.; Keeton, S.C.

1993-09-20T23:59:59.000Z

278

Safety and Security Enforcement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Enforcement Enforcement Enforcement Home Worker Safety and Health Enforcement Office of Nuclear Safety Enforcement Security Enforcement Notices of Violation Consent Orders / Settlement Agreements Compliance Orders Special Report Orders Enforcement Letters Regulatory Assistance Reviews Enforcement Program and Process Guidance and Information Non-Compliance Tracking System (NTS) Non-Compliance Reporting Thresholds Regulations and Directives Enforcement Staff Enforcement Coordinator Contact Information 2013 DOE Safety and Security Enforcement Workshop Request for Investigation or Inspection of Safety or Security Violations Archived Documents HSS Logo Safety and Security Enforcement Program Office of Enforcement and Oversight What's New: » Worker Safety and Health Enforcement Preliminary Notice of Violation issued to Brookhaven Science Associates, LLC

279

Nuclear Safety Basis Program Review Overview and Management Oversight Standard Review Plan  

Energy.gov (U.S. Department of Energy (DOE))

This SRP, Nuclear Safety Basis Program Review, consists of five volumes. It provides information to help strengthen the technical rigor of line management oversight and federal monitoring of DOE nuclear facilities. It provides a primer on the safety basis development and documentation process used by the DOE. It also provides a set of LOIs for the review of safety basis programs and documents of nuclear facilities at various stages of the facility life cycle.

280

Hybrid reliability model for nuclear reactor safety system  

Science Journals Connector (OSTI)

The dependability of critical safety systems needs to be quantitatively determined in order to verify their effectiveness, e.g. with regard to regulatory requirements. Since modular redundant safety systems are not required for normal operation, their reliability is strongly dependent on periodic inspection. Several modeling methods for the quantitative assessment of dependability are described in the literature, with a broad variation in complexity and modeling power. Static modeling techniques such as fault tree analysis (FTA) or reliability block diagrams (RBD) are not capable of capturing redundancy and repair or test activities. Dynamic state space based models such as continuous time Markov chains (CTMC) are more powerful but often result in very large, intractable models. Moreover, exponentially distributed state residence times are not a correct representation of actual residence times associated with repair activities or periodic inspection. In this study, a hybrid model combines a system level RBD with a CTMC to describe the dynamics. The effects of periodic testing are modeled by redistributing state probabilities at deterministic test times. Applying the method to the primary safety shutdown system of the BR2(Belgian Reactor 2)nuclear research reactor, resulted in a quantitative as well as a qualitative assessment of its reliability.

Steven Verlinden; Geert Deconinck; Bernard Coup

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011  

Energy.gov (U.S. Department of Energy (DOE))

PURPOSE: To document the Department of Energys (DOE) nuclear safety policy.SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility,...

282

Fuzzy Failure Rate for Nuclear Power Plant Probabilistic Safety Assessment by Fault Tree Analysis  

Science Journals Connector (OSTI)

Reliability data is essential for a nuclear power plant probabilistic safety assessment by fault tree analysis ... a failure possibility-based reliability algorithm to assess nuclear event reliability data from f...

Julwan Hendry Purba; Jie Lu; Guangquan Zhang

2012-01-01T23:59:59.000Z

283

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1 This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOE's operation of nuclear facilities. In developing the revised Policy and performing this analysis, DOE reviewed the current Nuclear Safety Policy (Secretary of Energy Notice [SEN] 35-91, Nuclear Safety Policy) and safety policies established by other safety

284

Investigation on the Benefits of Safety Margin Improvement in CANDU Nuclear Power Plant Using an FPGA-based Shutdown System.  

E-Print Network (OSTI)

??The relationship between response time and safety margin of CANadian Deuterium Uranium (CANDU) nuclear power plant (NPP) is investigated in this thesis. Implementation of safety (more)

She, Jingke

2012-01-01T23:59:59.000Z

285

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

Health and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel3 of HEALTH AND SAFETY IMPACTS OF FOSSIL-FUEL NUCLEAR,HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

286

Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety Culture 9 2.1 Background 9 2.2 Scope and Methods 10 2.3 ORP (including DOE-WTP) 11 2.4 BNI 11 2.5 WTP Project 12 3.0 ORP Management of Safety Concerns 15 3.1 Corrective Actions for the 2010 HSS Review 15 3.2 Processes for Managing Issues 16

287

Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety Culture 9 2.1 Background 9 2.2 Scope and Methods 10 2.3 ORP (including DOE-WTP) 11 2.4 BNI 11 2.5 WTP Project 12 3.0 ORP Management of Safety Concerns 15 3.1 Corrective Actions for the 2010 HSS Review 15 3.2 Processes for Managing Issues 16

288

China's approach to nuclear safety From the perspective of policy and institutional system  

Science Journals Connector (OSTI)

Abstract Nuclear energy plays an important role in the energy sector in the world. It has achieved a rapid development during the past six decades and contributes to over 11% of the world's electricity supply. On the other side, nuclear accidents have triggered substantial debates with a growing public concern on nuclear facilities. Followed by the Fukushima nuclear accident, some developed countries decided to shut down the existing nuclear power plants or to abandon plans to build new ones. Given this background, accelerating the development of nuclear power on the basis of safety in China will make it a bellwether for other countries. China assigns the top priority to the nuclear safety in nuclear energy development and has maintained a good record in this field. The policy and institutional system provide the necessary guarantee for the nuclear energy development and safety management. Furthermore, China's approach to nuclear safety provides a benchmark for the safe development and utilization of nuclear power. This research draws an overall picture of the nuclear energy development and nuclear safety in China from the policy and institutional perspective.

Ruimin Mu; Jian Zuo; Xueliang Yuan

2015-01-01T23:59:59.000Z

289

The development of regulatory expectations for computer-based safety systems for the UK nuclear programme  

SciTech Connect

The Nuclear Installations Inspectorate (NII) of the UK's Health and Safety Executive (HSE) has completed a review of their Safety Assessment Principles (SAPs) for Nuclear Installations recently. During the period of the SAPs review in 2004-2005 the designers of future UK naval reactor plant were optioneering the control and protection systems that might be implemented. Because there was insufficient regulatory guidance available in the naval sector to support this activity the Defence Nuclear Safety Regulator (DNSR) invited the NII to collaborate with the production of a guidance document that provides clarity of regulatory expectations for the production of safety cases for computer based safety systems. A key part of producing regulatory expectations was identifying the relevant extant standards and sector guidance that reflect good practice. The three principal sources of such good practice were: IAEA Safety Guide NS-G-1.1 (Software for Computer Based Systems Important to Safety in Nuclear Power Plants), European Commission consensus document (Common Position of European Nuclear Regulators for the Licensing of Safety Critical Software for Nuclear Reactors) and IEC nuclear sector standards such as IEC60880. A common understanding has been achieved between the NII and DNSR and regulatory guidance developed which will be used by both NII and DNSR in the assessment of computer-based safety systems and in the further development of more detailed joint technical assessment guidance for both regulatory organisations. (authors)

Hughes, P. J. [HM Nuclear Installations Inspectorate Marine Engineering Submarines Defence Nuclear Safety Regulator Serco Assurance Redgrave Court, Merton Road, Bootle L20 7HS (United Kingdom); Westwood, R.N; Mark, R. T. [FLEET HQ, Leach Building, Whale Island, Portsmouth, PO2 8BY (United Kingdom); Tapping, K. [Serco Assurance,Thomson House, Risley, Warrington, WA3 6GA (United Kingdom)

2006-07-01T23:59:59.000Z

290

Alternative off-site power supply improves nuclear power plant safety  

Science Journals Connector (OSTI)

Abstract A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source.

Blae Gjorgiev; Andrija Volkanovski; Duko Kan?ev; Marko ?epin

2014-01-01T23:59:59.000Z

291

Systems Analysis Workshop Purpose  

NLE Websites -- All DOE Office Websites (Extended Search)

National Renewable Energy Laboratory National Renewable Energy Laboratory DOE Hydrogen Program DOE Hydrogen Program Systems Analysis Workshop Systems Analysis Workshop Systems Integration Production Delivery Conversion Application Education Codes & Standards Safety Tech Validation Storage Systems Integration Production Delivery Conversion Application Education Codes & Standards Safety Tech Validation Storage Washington D.C. 28-29 Jul 04 Dale Gardner Systems Integration Operated for the U.S. Department of Energy by Midwest Research Institute * Battelle 2 Systems Analysis Workshop Topics * Meeting Goals * Systems Integration * Roles/Responsibilities of Analysis Participants * Systems Analysis * From this Workshop * Capability Presentations 3 Systems Analysis Workshop Meeting Goals 1) Understand the roles and activities of the DOE Technology Analyst,

292

Nuclear Safety Regulatory Assistance Reviews | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2002 August 14, 2002 Preliminary Notice of Violation, Fluor Hanford, Incorporated - EA-2002-03 Preliminary Notice of Violation issued to Fluor Hanford, Incorporated, related to Quality Assurance issues at the Hanford Site. June 19, 2002 Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 Enforcement Letter issued to Kaiser-Hill Company, LLC related to Unplanned Radioactive Material Uptakes at the Rocky Flats Environmental Technology Site October 22, 2001 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 Special Report Order issued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site October 9, 2001 Enforcement Letter, LANL - October 9, 2001 Enforcement Letter issued to Los Alamos National Laboratory related to

293

DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis, Roll Out Training  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Nuclear Safety is performing a series of site visits to provide roll-out training and assistance to Program and Site Offices and their contractors on effective implementation of the new revision to DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis.

294

Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities  

SciTech Connect

This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

Not Available

1993-11-01T23:59:59.000Z

295

Enforcement handbook: Enforcement of DOE nuclear safety requirements  

SciTech Connect

This Handbook provides detailed guidance and procedures to implement the General Statement of DOE Enforcement Policy (Enforcement Policy or Policy). A copy of this Enforcement Policy is included for ready reference in Appendix D. The guidance provided in this Handbook is qualified, however, by the admonishment to exercise discretion in determining the proper disposition of each potential enforcement action. As discussed in subsequent chapters, the Enforcement and Investigation Staff will apply a number of factors in assessing each potential enforcement situation. Enforcement sanctions are imposed in accordance with the Enforcement Policy for the purpose of promoting public and worker health and safety in the performance of activities at DOE facilities by DOE contractors (and their subcontractors and suppliers) who are indemnified under the Price-Anderson Amendments Act. These indemnified contractors, and their suppliers and subcontractors, will be referred to in this Handbook collectively as DOE contractors. It should be remembered that the purpose of the Department`s enforcement policy is to improve nuclear safety for the workers and the public, and this goal should be the prime consideration in exercising enforcement discretion.

NONE

1995-06-01T23:59:59.000Z

296

CY 2012 Annual Workforce Analysis and Staffing Plan - Chief of Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Reporting Office: Chief of Nuclear Safety . Section One: Current Mission(s) of the Organization and Potential Changes Revision 2 of U.S. Department of Energy Implementation Plan for DNFSB Recommendation 2004-1 established the seven core CTA responsibilities. The Office of the Chief of Nuclear Safety (CNS) performs to following functions in support of the CTA meeting these responsibilities: 1. Nuclear Safety Requirement Concurrence and Exemption * Concur with the determination of the applicability of DOE directives involving nuclear safety included in Energy and Science contracts pursuant to Department of Energy Acquisition Regulation (DEAR), 48 CFR 970.5204-2, Laws, regulations, and DOE directives, item (b). * Concur with nuclear safety requirements included in Energy and Science contracts pursuant to

297

CY 2011 Annual Workforce Analysis and Staffing Plan - Chief of Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Reporting Office: Chief of Nuclear Safety . Section One: Current Mission(s) of the Organization and Potential Changes Revision 2 of U.S. Department of Energy Implementation Plan for DNFSB Recommendation 2004-1 established the seven core CTA responsibilities. The Office of the Chief of Nuclear Safety (CNS) performs to following functions in support of the CTA meeting these responsibilities: 1. Nuclear Safety Requirement Concurrence and Exemption * Concur with the determination of the applicability of DOE directives involving nuclear safety included in Energy and Science contracts pursuant to Department of Energy Acquisition Regulation (DEAR), 48 CFR 970.5204-2, Laws, regulations, and DOE directives, item (b). * Concur with nuclear safety requirements included in Energy and Science contracts pursuant to

298

Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1  

SciTech Connect

Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

none,

1983-02-01T23:59:59.000Z

299

A probabilistic safety analysis of incidents in nuclear research reactors  

Science Journals Connector (OSTI)

......errors, computational models (software), management, communication, safety culture, plant ageing, maintenance...Energy Power Plants Probability Radiation Monitoring Radiation Protection Radioactive Hazard Release Safety Management...

Valdir Maciel Lopes; Gian Maria Agostinho Angelo Sordi; Mauricio Moralles; Tufic Madi Filho

2012-06-01T23:59:59.000Z

300

Safety Culture in Nuclear Installations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Use in the Enhancement of Safety Culture, International Atomic Energy Agency IAEA, December 2002. Developed for use in the IAEA's Safety Culture Services....

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Teacher Resource Center: Customized Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Customized Workshops Customized Workshops TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources From time to time we receive requests for information about workshops offered through the Fermilab Teacher Resource Center. We have conducted workshops for schools, districts and intermediate service agencies. We work closely with organizers to customize the workshops to their needs—the discussion and collaboration is essential. We receive many requests for

302

2011 Project Management Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Management Workshop Project Management Workshop 2011 Project Management Workshop 2011 DOE Project Management Workshop Paul Bosco, The New DOE O 413.3B Jeff Baker, EERE's Research Support Facility Patrick Ferraro, Contract Management/ Project Management Summit Outbrief Anirban Basu, Construction Economic Forecast John Curran, LED Lighting Michael Deane, Construction and Demolition Debris Recycle Mark Fallon, Leadership & Safety Cost Estimating Panel, The Science and Art of Cost Estimating Tom Fox, Leading in Tough Times Bob Raines, Project Management Update Tony Cannon, Nuclear Quality Assurance Issues Peer Review Panel, Peer Reviews 101 Terry Cooke-Davies, Project Complexity Rod Rimando, EM Project Management Framework PMCDP Panel, PMCDP CRB CRB Panel Questions & Answers Chad Henderson, FPD's Perspective

303

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010  

Energy.gov (U.S. Department of Energy (DOE))

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010

304

2015 Call for Proposals for the Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program  

Energy.gov (U.S. Department of Energy (DOE))

2015 Call for Proposals for the Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program.

305

Report of a workshop on nuclear forces and nonproliferation Woodrow Wilson international center for scholars, Washington, DC October 28, 2010  

SciTech Connect

A workshop sponsored by the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars was held at the Wilson Center in Washington, DC, on October 28, 2010. The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review and the 2010 NPT Review Conference. The discussions reflected the importance of the NPR for defining the role of US nuclear forces in dealing with 21st century threats and providing guidance for National Nuclear Security Administration (NNSA) and Department of Defense (DoD) programs and, for many but not all participants, highlighted its role in the successful outcome of the NPT RevCon. There was widespread support for the NPR and its role in developing the foundations for a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. However, some participants raised concerns about its implementation and its long-term effectiveness and sustainability.

Pilat, Joseph F [Los Alamos National Laboratory

2010-12-08T23:59:59.000Z

306

DOE Standard on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010  

Energy.gov (U.S. Department of Energy (DOE))

There have been significant developments with regard to the risk assessment and risk informed decision making, as it applies to nuclear and other safety areas, since the Department of Energy (DOE) developed its approach to managing nuclear safety. The developments and associated technical insights may be of use to DOE in its efforts to continuously improve safety performance at its nuclear facilities.

307

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, jA.V.

2010-01-01T23:59:59.000Z

308

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

309

International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION  

E-Print Network (OSTI)

International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED;International Symposium on Fusion Nuclear Technology (ISFNT-5) heat from in-vessel systems with high neutron Symposium on Fusion Nuclear Technology (ISFNT-5) A design must adequately transfer heat from plasma

California at Los Angeles, University of

310

Safety System Oversight  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety System Oversight Safety System Oversight Office of Nuclear Safety Home Safety System Oversight Home Annual SSO/FR Workshop DOE Safety Links › ORPS Info › Operating Experience Summary › DOE Lessons Learned › Accident Investigation Program Assessment Tools › SSO CRADS Subject Matter Links General Program Information › Program Mission Statement › SSO Program Description › SSO Annual Award Program › SSO Annual Award › SSO Steering Committee › SSO Program Assessment CRAD SSO Logo Items Site Leads and Steering Committee Archive Facility Representative Contact Us HSS Logo SSO SSO Program News Congratulations to Ronnie L. Alderson of Nevada Field Office, the Winner of the 2012 Safety System Oversight Annual Award! 2012 Safety System Oversight Annual Award Nominees SSO Staffing Analysis

311

Implementation of an Enhanced Measurement Control Program for handling nuclear safety samples at WSRC  

SciTech Connect

In the separation and purification of nuclear material, nuclear criticality safety (NCS) is of primary concern. The primary nuclear criticality safety controls utilized by the Savannah River Site (SRS) Separations Facilities involve administrative and process equipment controls. Additional assurance of NCS is obtained by identifying key process hold points where sampling is used to independently verify the effectiveness of production control. Nuclear safety measurements of samples from these key process locations provide a high degree of assurance that processing conditions are within administrative and procedural nuclear safety controls. An enhanced procedure management system aimed at making improvements in the quality, safety, and conduct of operation was implemented for Nuclear Safety Sample (NSS) receipt, analysis, and reporting. All procedures with nuclear safety implications were reviewed for accuracy and adequate detail to perform the analytical measurements safely, efficiently, and with the utmost quality. Laboratory personnel worked in a Deliberate Operating'' mode (a systematic process requiring continuous expert oversight during all phases of training, testing, and implementation) to initiate the upgrades. Thus, the effort to revise and review nuclear safety sample procedures involved a team comprised of a supervisor, chemist, and two technicians for each procedure. Each NSS procedure was upgraded to a Use Every Time'' (UET) procedure with sign-off steps to ensure compliance with each step for every nuclear safety sample analyzed. The upgrade program met and exceeded both the long and short term customer needs by improving measurement reliability, providing objective evidence of rigid adherence to program principles and requirements, and enhancing the system for independent verification of representative sampling from designated NCS points.

Boler-Melton, C.; Holland, M.K.

1991-01-01T23:59:59.000Z

312

September 10, 2010 HSS Briefing to the Defense Nuclear Facilities Safety Board (DNFSB) on Union Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Labor Union and Stakeholder Labor Union and Stakeholder Outreach and Collaboration Office of Health, Safety and Security Briefing to the Defense Nuclear Facilities Safety Board Briefing to the Defense Nuclear Facilities Safety Board Leadership Commitment Leadership Commitment " h "It is imperative that we communicate and establish relationships with those elements that train manage and elements that train, manage and represent our workforce to improve the safety culture at DOE sites." safety culture at DOE sites. Glenn S. Podonsky Chief Health, Safety and Security Officer 2 History History History History October 2006: Formation of HSS to provide an integrated DOE HQ-level function for health, safety, environment, and security into one unified office. February 2007: Established HSS Focus Group -

313

Facility Representative Program: 2001 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

314

Workshop on environmental assessment. [Regulation of applications of nuclear energy and related ancillary systems  

SciTech Connect

Objectives of the workshop were: to review and evaluate the state-of-the-art of environmental impact assessments as applied to the regulation of applications of nuclear energy and related ancillary systems; to identify areas where existing technology allows establishing acceptable methods or standard practices that will meet the requirements of the NRC regulations, standards and guides for both normal operations and off-standard conditions including accident considerations; to illuminate topics where existing models or analytical methods are deficient because of unverified assumptions, a paucity of empirical data, conflicting results reported in the literature or a need for observation of operation systems; to compile, analyze and synthesize a prioritized set of research needs to advance the state-of-the-art to the level which will meet all of the requirements of the Commission's regulations, standards and guides; and to develop bases for maintaining the core of regulatory guidance at the optimum level balancing technical capabilities with practical considerations of cost and value to the regulatory process. The discussion held in small group sessions on aquatic, atmospheric, and terrestrial pathways are presented. The following research needs were identified as common to all three groups: validation of models; characterization of source terms; development of screening techniques; basis for de minimis levels of contamination; and updating of objectives for environmental monitoring programs.

Watson, E.C. (comp.)

1982-07-01T23:59:59.000Z

315

DOE P 420.1 Department of Energy Nuclear Safety Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

POLICY POLICY Washington, D.C. Approved: 2-08-2011 SUBJECT: DEPARTMENT OF ENERGY NUCLEAR SAFETY POLICY PURPOSE: To document the Department of Energy's (DOE) nuclear safety policy. SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility, except the Naval Nuclear Propulsion Program, which is separately covered under Executive Order 12344, Title 50 United States Code, sections 2406 and 2511. This Policy cancels Secretary of Energy Notice 35-91, Nuclear Safety Policy, dated 9-9-91. POLICY: It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the

316

Office of Nuclear Safety and Environmental Assessments | Department...  

Energy Savers (EERE)

operation, deactivation, decontamination, decommissioning and environmental restoration. Conduct assessments of changes to operations, safety basis and modifications. Conducts...

317

A probabilistic safety analysis of incidents in nuclear research reactors  

Science Journals Connector (OSTI)

......ICRP-64. INTRODUCTION Nuclear research reactors are considered important tools in nuclear science. For more than...as well as prevention policy, have stimulated the development...level 3 in the International Nuclear Events Scale (INES) of......

Valdir Maciel Lopes; Gian Maria Agostinho Angelo Sordi; Mauricio Moralles; Tufic Madi Filho

2012-06-01T23:59:59.000Z

318

Confirmation of 10 CFR Part 830, nuclear safety rule (66 FR 19717), Fed Reg  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Confirmation of 10 CFR Part 830, nuclear safety rule (66 FR 19717), Confirmation of 10 CFR Part 830, nuclear safety rule (66 FR 19717), Fed Reg 4/17/01 Confirmation of 10 CFR Part 830, nuclear safety rule (66 FR 19717), Fed Reg 4/17/01 In accordance with the memorandum of January 20, 2001, from the Assistant to the President and Chief of Staff, entitled ''Regulatory Review Plan,'' published in the Federal Register on January 24, 2001 (66 FR 7702), DOE temporarily delayed for 60 days (66 FR 8746, February 2, 2001) the effective date of the rule entitled ''Nuclear Safety Management'' published in the Federal Register on January 10, 2001 (66 FR 1810). DOE has now completed its review of that regulation, and does not intend to initiate any further rulemaking action to modify its provisions and confirms the effective date of April 10,

319

Nuclear Safety R&D in the Waste Processing Technology Development & Deployment Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D in the Waste Processing R&D in the Waste Processing Technology Development & Deployment Program Presentation to the DOE High Level Waste Corporate Board July 29, 2009 Al Baione Office of Waste Processing DOE-EM Office of Engineering & Technology 2 Outline Nuclear Safety Research & Development Overview Summary of EM- NSR&D Presentations from February 2009 Evaluating Performance of Nuclear Grade HEPA Filters under Fire/Smoke Challenge Conditions Structural Integrity Initiative for HLW Tanks Pipeline Plugging and Prevention Advanced Mixing Models Basic Science Opportunities in HLW Storage and Processing Safety Cementitious Barriers Partnership 3 Nuclear Safety Research & Development Overview DNFSB 2004-1 identified need for renewed DOE attention to nuclear safety R&D

320

6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety 6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety Management, AGENCY: Department of Energy (DOE). 6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety Management, AGENCY: Department of Energy (DOE). The Department of Energy (DOE) has issued Ruling 1995-1 which interprets certain regulatory provisions relating to DOE's nuclear safety requirements. This Ruling is intended to be a generally applicable clarification that addresses questions concerning the applicability and effect of these provisions. Ruling 1995-1; Ruling concerning 10 CFR Parts 830 and 835 More Documents & Publications Appendix A. Notice of Inquiry: Preparation of Report to Congress on Price-Anderson Act. 62 Federal Register 68,272 (December 31, 1997) Report to Congress on the Price-Anderson Act

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear Safety Management, Final Rule; Delay of Effective Date (66 FR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety Management, Final Rule; Delay of Effective Date (66 Nuclear Safety Management, Final Rule; Delay of Effective Date (66 FR 8746), Fed Reg, 2/2/01 Nuclear Safety Management, Final Rule; Delay of Effective Date (66 FR 8746), Fed Reg, 2/2/01 Nuclear Safety Management, Final Rule; Delay of Effective Date (66 FR 8746), Fed Reg, 2/2/01 In accordance with the memorandum of January 20, 2001, from the Assistant to the President and Chief of Staff, entitled ''Regulatory Review Plan,'' published in the Federal Register on January 24, 2001 (66 FR 7702), this action temporarily delays for 60 days the effective date of the rule entitled ''Alternate Fuel Transportation Program; Biodiesel Fuel Use Credit'' published in the Federal Register on January 11, 2001 (66 FR 2207). DATES: The effective date of the rule amending 10 CFR part 490

322

Manual of functions, assignments, and responsibilities for nuclear safety: Revision 2  

SciTech Connect

The FAR Manual is a convenient easy-to-use collection of the functions, assignments, and responsibilities (FARs) of DOE nuclear safety personnel. Current DOE directives, including Orders, Secretary of Energy Notices, and other assorted policy memoranda, are the source of this information and form the basis of the FAR Manual. Today, the majority of FARs for DOE personnel are contained in DOE`s nuclear safety Orders. As these Orders are converted to rules in the Code of Federal Regulations, the FAR Manual will become the sole source for information relating to the functions, assignments, responsibilities of DOE nuclear safety personnel. The FAR Manual identifies DOE directives that relate to nuclear safety and the specific DOE personnel who are responsible for implementing them. The manual includes only FARs that have been extracted from active directives that have been approved in accordance with the procedures contained in DOE Order 1321.1B.

Not Available

1994-10-15T23:59:59.000Z

323

Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most  

E-Print Network (OSTI)

Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards or steel reinforced concrete, these ferromagnetic materials may have an effect on the magnetic field environmental temperature control is required (2) Structural support for heavy equipment and vibration control

Maroncelli, Mark

324

Job Opening Research Associate/Post-Doctoral Fellow for Interdisciplinary Study on Nuclear Safety  

E-Print Network (OSTI)

public opinion surveys; experience in organizing and conducting focus group meetings; good journal to work independently. The appointee will assist in designing public opinion surveys, focusing for Interdisciplinary Study on Nuclear Safety Governance, University of Hong Kong

Leung, Ka-Cheong

325

DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Violating Nuclear Safety Rules for Violating Nuclear Safety Rules DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules March 10, 2005 - 10:44am Addthis Hanford Tank Farm Contractor Faces Fine of more than $300,000 WASHINGTON, DC - The Department of Energy (DOE) today notified the CH2M Hill Hanford Group, Inc. (CH2M Hill) - that it will fine the company $316,250 for violations of the department's nuclear safety requirements. CH2M Hill is the department's contractor responsible for storage of highly radioactive and hazardous liquid waste at the Hanford Tank Farms near Richland, Wash. The Preliminary Notice of Violation (PNOV) issued today, cites four events that took place in 2003 and 2004. These events include the contamination of several workers while removing equipment from a valve pit

326

Nuclear Safety Component and Services Procurement, June 29, 2011 (HSS CRAD 45-12, Rev. 1)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Office of Enforcement and Oversight Criteria Review and Approach Document Subject: Nuclear Safety Component and Services Procurement Inspection Criteria, Inspection Activities, and Lines of Inquiry HS: HSSCRAD 45-12 Rev.: 1 Eff.Date: 06/29/2011 Page 1 of 15 Acting Director, Office of Safety and Emergency Management Evaluations Date: G> |W ^ Criteria Lead, Nuclear Safety Component Procurement Date: G>/z9/z<>// 1.0 PURPOSE Within the Office of Enforcement and Oversight, the Office of Safety and Emergency Management Evaluations' mission is to assess the effectiveness of those environment, safety, and health systems and practices used by line and contractor organizations in implementing Integrated Safety Management; and to provide clear, concise, and independent evaluations of performance in protecting our workers, the public, and the environment from

327

Assessment of Nuclear Safety Culture at the Pantex Plant, November 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pantex Plant Pantex Plant May 2011 November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Pantex Plant Table of Contents 1.0 Introduction........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3 4.0 Recommendations................................................................................................................................. 5

328

Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities  

SciTech Connect

This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

NONE

1998-09-01T23:59:59.000Z

329

PLC-Based Safety Critical Software Development for Nuclear Power Plants  

E-Print Network (OSTI)

PLC-Based Safety Critical Software Development for Nuclear Power Plants Junbeom Yoo1 , Sungdeok Cha}@kaeri.re.kr Abstract. This paper proposes a PLC(Programmable Logic Controller)-based safety critical software(FBD), a widely used PLC programming language. Finally, we manually refine the FBD programs so that redundant

330

U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Oak Ridge Operations Nuclear Facility U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions More Documents & Publications Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1, Conduct of Operations. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility

331

Y-12's 1958 nuclear criticality accident and increased safety...  

NLE Websites -- All DOE Office Websites (Extended Search)

signage, responsibility and programs for increased safety. Signs were required to make workers aware of hazards that had not been used before. Emergency response organizations...

332

CRAD, Nuclear Facility Safety System - September 25, 2009 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Safety System Functionality Inspection Criteria, Inspection Activities, and Lines of Inquiry (HSS CRAD 64-17, Rev 0 ) This document establishes the protocols used by...

333

NEET WORKSHOP REPORT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEET WORKSHOP REPORT Table of Contents Acronyms and Initialisms ................................................................................................... iii 1. Introduction .................................................................................................................... 1 1.1 Key Challenges Facing Nuclear Energy ........................................................................... 1 1.2 DOE Nuclear R&D Objectives ......................................................................................... 2 1.3 NEET Program Workshop Objectives .............................................................................. 3 2. Discussion of Crosscutting Technologies ...................................................................... 5

334

CRAD, Nuclear Safety- Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE))

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

335

The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

Kirk, Bernadette Lugue [ORNL] [ORNL

2009-01-01T23:59:59.000Z

336

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

337

Safety of Department of Energy-Owned Nuclear Reactors  

Directives, Delegations, and Requirements

To establish reactor safety program requirements assure that the safety of each Department of Energy-owned (DOE-owned) reactor is properly analyzed, evaluated, documented, and approved by DOE; and reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate protection for health and safety and will be in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. Cancels Chap. 6 of DOE O 5480.1A. Paragraphs 7b(3), 7e(3) & 8c canceled by DOE O 5480.23 & canceled by DOE N 251.4 of 9-29-95.

1986-09-23T23:59:59.000Z

338

DOE Workshop - Deposition Velocity Status  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivering DOE's Vision for the Delivering DOE's Vision for the East Tennessee Technology Park Mission Safely Delivering the Department of Energy's Vision for the East Tennessee Technology Park Mission DOE Workshop Deposition Velocity Status Mike Hitchler, Manager Nuclear Facility Safety June 5, 2012 Safely Delivering DOE's Vision for the East Tennessee Technology Park Mission Existing UCOR Analyses * UCOR facilities at East Tennessee Technology Park (ETTP) and Oak Ridge National Laboratory (ORNL) use various plume models depending on when they were developed and by whom. - Some use MACCS or MACCS2 for dispersion evaluation. (~5 locations) - LLLW uses ingestion modeling (multiple locations)

339

Independent Oversight Assessment of the Nuclear Safety Culture...  

Office of Environmental Management (EM)

has also been effectively implemented in non-nuclear organizations, such as mining, health care, research, engineering, and transportation. The methodology entails collecting...

340

Facility Representative Program: 2003 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A new DOE standard for transuranic waste nuclear safety analysis  

SciTech Connect

The DOE Office of Environmental Management (EM) observed through onsite assessments and a review of site-specific lessons learned that transuranic (TRU) waste operations could benefit from standardization of assumptions and approaches used to analyze hazards and select controls. EM collected and compared safety analysis information from DOE sites, including a comparison of the type of TRU waste accidents evaluated and controls selected, as well as specific Airborne Release Fractions (ARFs), Respirable Fractions (RFs), and Damage Ratios (DRs) assumed in accident analyses. This paper recounts the efforts by the DOE and its contractors to bring consistency to the safety analysis process supporting TRU waste operations through an integrated re-engineering effort. EM embarked on a process to re-engineer and standardize TRU safety analysis activities complex-wide. The effort involved DOE headquarters, field offices, and contractors. Five teams were formed to analyze and develop the necessary technical basis for a DOE Technical Standard. The teams looked at general issues including Safety Basis (SB), drum integrity and inspection criteria, hazard controls and analysis, safety analysis review and approval process, and implementation of hazard controls. (authors)

Triay, I.; Chung, D. [U.S. Department of Energy, Washington, D.C. (United States); Woody, J. [Atlas Consulting, Knoxville, TN (United States); Foppe, T. [Carlsbad Technical Assistance Contractor, Carlsbad, NM (United States); Mewhinney, C. [Sandia National Laboratories, Carlsbad, NM (United States); Jennings, S. [Los Alamos National Laboratories, Carlsbad, NM (United States)

2007-07-01T23:59:59.000Z

342

Morsleben Nuclear Waste Repository Probabilistic Safety Assessment of the Long-Term Safety  

Science Journals Connector (OSTI)

The probabilistic safety assessment for a radioactive waste repository in a former salt mine is presented. Even with a simplified model, the number of parameters is high. Uncertainties in the parameter values ...

Georg Resele; Matthias Niemeyer

2004-01-01T23:59:59.000Z

343

Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NNSS-2011-001 NNSS-2011-001 Site: Nevada National Security Site Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer William Macon Activity Description/Purpose: The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), visited the Nevada Site Office (NSO) and the Nevada National Security Site (NNSS) from February 14-17, 2011. The purpose of the visit was to observe the Defense Nuclear Facilities Safety Board (DNFSB) review and maintain operational awareness of NNSS activities. Result:

344

Dynamical safety assessment of hydrogen production nuclear power plants using system dynamics method  

Science Journals Connector (OSTI)

Nuclear power plants for hydrogen production are investigated in the aspect of nuclear safety. The non-linear dynamical safety assessment is introduced for the analysis of the high temperature gas cooled reactor (HTGR) which is used for hydrogen production as well as electricity generation. The dynamical algorithm is adjusted for the safety assessment with an easier and reliable output. A feedback of power increase affects to the temperature decrease. The top event of the event is power and temperature stable. It is affected by the human factor, poison, and some other physical variables. There are several factors including the economic and safety factors which are considered for the reliability of the modelling simulations. Using the system dynamics (SD) method, the event quantification is performed for the event flows, stocks, and feedback by the single and double arrow lines.

Taeho Woo; Soonho Lee

2013-01-01T23:59:59.000Z

345

Safety Aspects of Wet Storage of Spent Nuclear Fuel, OAS-L-13-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Aspects of Wet Storage of Safety Aspects of Wet Storage of Spent Nuclear Fuel OAS-L-13-11 July 2013 Department of Energy Washington, DC 20585 July 10, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Daniel M. Weeber Assistant Inspector General for Audits and Administration Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Safety Aspects of Wet Storage of Spent Nuclear Fuel" BACKGROUND The Department of Energy (Department) is responsible for managing and storing spent nuclear fuel (SNF) generated by weapons and research programs and recovered through nonproliferation programs. The SNF consists of irradiated reactor fuel and cut up assemblies containing uranium, thorium and/or plutonium. The Department stores 34 metric tons of heavy metal SNF primarily

346

Nuclear Safety Management, Final Rule amending 10 CFR Part 830 (66 FR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management, Final Rule amending 10 CFR Part 830 (66 Management, Final Rule amending 10 CFR Part 830 (66 FR 1810), Federal Register (Fed Reg), 1/10/2001 Nuclear Safety Management, Final Rule amending 10 CFR Part 830 (66 FR 1810), Federal Register (Fed Reg), 1/10/2001 SUMMARY: The Department of Energy (DOE) adopts, with minor changes, the interim final rule published on October 10, 2000, to amend the DOE Nuclear Safety Management regulations. EFFECTIVE DATE: This final rule is effective on February 9, 2001. FOR FURTHER INFORMATION CONTACT: Richard Black, Director, Office of Nuclear and Facility Safety Policy, 270CC, Department of Energy, 19901 Germantown Road, Germantown, MD 20874; telephone: 301-903-3465; email: Richard.Black@eh.doe.gov SUPPLEMENTARY INFORMATION: I. Introduction and Summary On October 10, 2000, the Department of Energy (DOE) published an

347

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

348

Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)  

SciTech Connect

This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

Cottrell, W.B.; Passiakos, M.

1982-06-01T23:59:59.000Z

349

Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables  

SciTech Connect

This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

Koponen, B.L.; Hampel, V.E.

1982-10-21T23:59:59.000Z

350

THE RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER (RSICC) - A RESOURCE FOR COMPUTATIONAL TOOLS FOR NUCLEAR APPLICATIONS  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC), which has been in existence since 1963, is the principal source and repository in the United States for computational tools for nuclear applications. RSICC collects, organizes, evaluates and distributes nuclear software and data involving the transport of neutral and charged particle radiation, and shielding and protection from radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste. RSICC serves over 12,000 scientists and engineers from 94 countries. RSICC software provides in-depth coverage of radiation related topics: the physics of the interaction of radiation with matter, radiation production and sources, criticality safety, radiation protection and shielding, radiation detectors and measurements, shielding materials properties, radiation waste management, atmospheric dispersion and environmental dose, medical applications, macro- and micro-dosimetry calculations.

Kirk, Bernadette Lugue [ORNL] [ORNL

2009-01-01T23:59:59.000Z

351

Nuclear criticality safety program at the University of Tennessee-Knoxville  

SciTech Connect

This paper presents an overview of the nuclear criticality safety (NCS) educational program at the University of Tennessee-Knoxville. The program is an academic specialization for nuclear engineering graduate students pursuing either the MS or PhD degree and includes special NCS courses and NCS research projects. Both the courses and the research projects serve as partial fulfillment of the requirements for the degree being pursued.

Basoglu, B.; Bentley, C.; Brewer, R.; Dunn, M.; Haught, C.; Plaster, M.; Wilkinson, A.; Dodds, H. (Univ. of Tennessee, Knoxville, TN (United States)); Elliott, E.; Waddell, W. (Martin Marietta Energy Systems Inc., Oak Ridge, TN (United States))

1993-01-01T23:59:59.000Z

352

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1  

Energy.gov (U.S. Department of Energy (DOE))

This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOEs operation of nuclear facilities.

353

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

nuclear tors. for of of These studies can examine safety systems or safety research programsnuclear power plants, and at risk. to reduce population The Light-water Reactor Safety Research Program

Nero, A.V.

2010-01-01T23:59:59.000Z

354

Nuclear criticality safety program development using necessary and sufficient standards  

SciTech Connect

The U.S. Department of Energy`s (DOE`s) Necessary and Sufficient Standards Closure Process has been used to develop a new criticality, safety program manual for the Rocky Flats Environmental Technology Site (RFETS). Standards define and communicate the expectations for performance of work. The purpose of the necessary and sufficient standards closure process is to apply standards determined to be necessary and sufficient for protecting the workers, the public, and the environment. This ensures that the applied standards add value to the performance of the activity; work effectiveness is increased. The purpose of this paper is to briefly describe the process and the results for the selection of national criticality safety standards for use at the Rocky Flats facilities.

Croucher, D.W.; Stachowiak, R.V. [Kaiser-Hill Co., LLC, Golden, CO (United States); Wilson, R.E. [Safe Sites of Colorado, Golden, CO (United States)

1996-12-31T23:59:59.000Z

355

Safety issues in robotic handling of nuclear weapon parts  

SciTech Connect

Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive weapon parts. These systems will reduce the occupational radiation exposure to workers by automating operations that are currently performed manually. The robotic systems at Sandia incorporate several levels of mechanical, electrical, and software safety for handling hazardous materials. For example, tooling used by the robot to handle radioactive parts has been designed with mechanical features that allow the robot to release its payload only at designated locations in the robotic workspace. In addition, software processes check for expected and unexpected situations throughout the operations. Incorporation of features such as these provides multiple levels of safety for handling hazardous or valuable payloads with automated intelligent systems.

Drotning, W.; Wapman, W.; Fahrenholtz, J.

1993-12-31T23:59:59.000Z

356

WORKSHOP ON NUCLEAR DYNAMICS 17-21 MARCH 1980, GRANLIBAKKEN, TAHOE CITY, CALIFORNIA  

E-Print Network (OSTI)

program related to atomic physics nuclear physics elementary particle physics cosmic ray physics astrophysics biomedical research.

Authors, Various

2010-01-01T23:59:59.000Z

357

Workshop and Meeting Proceedings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Safety Sensors Workshop, April 4, 2007. Back to Top Market Transformation Biogas and Fuel Cells Workshop, June 11-13, 2012. Waste-to-Energy using Fuel Cells Webinar,...

358

Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preiminary Documented Safety Analysis Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HIAR-LANL-2013-04-08 HIAR-LANL-2013-04-08 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report Dates of Activity : 04/08/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste

359

Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preiminary Documented Safety Analysis Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIAR-LANL-2013-04-08 HIAR-LANL-2013-04-08 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report Dates of Activity : 04/08/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste

360

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Safety Aspects of Nuclear Desalination with Innovative Systems; the EURODESAL Project  

SciTech Connect

The proposed paper reports the results of a preliminary investigation on safety impact deriving from the coupling of a desalination plant with a 600 MWe Passive Design PWR like the AP600 Nuclear Power Plant. This evaluation was performed in the frame of the EURODESAL Project of the 5. EURATOM Framework Programme. (authors)

Alessandroni, C.; Cinotti, L.; Mini, G. [Ansaldo Nucleare, C.so Perrone, 25 - Genova (Italy); Nisan, S. [CEA-CEN Cadarache, F-13108 Saint Paul-lez-Durance (France)

2002-07-01T23:59:59.000Z

362

Opportunities for improving regulations governing the seismic safety of large nuclear installations  

Energy.gov (U.S. Department of Energy (DOE))

Opportunities for Improving Regulations Governing the Seismic Safety of Large Nuclear Installations Robert J. Budnitz, Ph.D. LBNL University of California, Berkeley, CA 94720 Andrew S. Whittaker, Ph.D., S.E. MCEER University at Buffalo, Buffalo, NY 14260

363

Price-Anderson Nuclear Safety Enforcement Program. 1996 Annual report  

SciTech Connect

This first annual report on DOE`s Price Anderson Amendments Act enforcement program covers the activities, accomplishments, and planning for calendar year 1996. It also includes the infrastructure development activities of 1995. It encompasses the activities of the headquarters` Office of Enforcement in the Office of Environment, Safety and Health (EH) and Investigation and the coordinators and technical advisors in DOE`s Field and Program Offices and other EH Offices. This report includes an overview of the enforcement program; noncompliances, investigations, and enforcement actions; summary of significant enforcement actions; examples where enforcement action was deferred; and changes and improvements to the program.

NONE

1996-01-01T23:59:59.000Z

364

Frequently Asked Questions Regarding DOE-STD-1195-2011, Design of Safety Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Frequently Asked Questions Regarding DOE-STD-1195-2011 which provides requirements and guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of safety instrumented systems (SIS) that may be used at Department of Energy (DOE) nonreactor nuclear facilities for safety significant (SS) functions.

365

Lessons learnt from ITER safety & licensing for DEMO and future nuclear fusion facilities  

E-Print Network (OSTI)

One of the strong motivations for pursuing the development of fusion energy is its potentially low environmental impact and very good safety performance. But this safety and environmental potential can only be fully realized by careful design choices. For DEMO and other fusion facilities that will require nuclear licensing, S&E objectives and criteria should be set at an early stage and taken into account when choosing basic design options and throughout the design process. Studies in recent decades of the safety of fusion power plant concepts give a useful basis on which to build the S&E approach and to assess the impact of design choices. The experience of licensing ITER is of particular value, even though there are some important differences between ITER and DEMO. The ITER project has developed a safety case, produced a preliminary safety report and had it examined by the French nuclear safety authorities, leading to the licence to construct the facility. The key technical issues that arose during ...

Taylor, Neill

2013-01-01T23:59:59.000Z

366

NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations, Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sheet Sheet NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations On August 22, 2011, the National Nuclear Security Administration (NNSA) issued a Preliminary Notice of Violation (PNOV) to National Security Technologies, LLC (NSTec) for violations of Department of Energy's (DOE) nuclear safety regulations. NSTec is the operating contractor of NNSA's Nevada National Security Site (NNSS) located 65 miles northwest of Las Vegas, Nevada. The PNOV cites four violations of DOE regulations governing nuclear safety management. The violations are associated with quality assurance (QA) related deficiencies in the inspection and installation of penetration fire seals and other components at the Criticality Experiments Facility

367

March 7, 2012, USW Health Safety and Environment Conference Presentations - Improving Safety Culture at DOE Sites  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Safety Culture Improving Safety Culture at DOE Sites William Eckroade Principal Deputy Chief for Mission Support Operations Office of Health, Safety and Security U.S. Department of Energy USW Health, Safety and Environment Conference HSS Workshop March 7, 2012 2 BACKGROUND WHAT IS SAFETY CULTURE? * Safety Culture: An organization's values and behaviors modeled by its leaders and internalized by its members, which serve to make safe performance of work the overriding priority to protect workers, the public, and the environment. KEY REGUALTORY DRIVERS: * DOE Policy 420.1, Department of Energy Nuclear Safety Policy * DOE Order 450.2, Integrated Safety Management * DOE Guide 450.4-1C, Integrated Safety Management System

368

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

369

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Rosen, L.C.

2010-01-01T23:59:59.000Z

370

Department of Energy to Co-Sponsor Workshop on Nuclear Power...  

Office of Environmental Management (EM)

Plant Life Extension R&D September 29, 2010 - 11:38am Addthis The U.S. Department of Energy (DOE), U.S. Nuclear Regulatory Commission (NRC), and the Nuclear Energy Institute...

371

Nuclear Explosives Safety Evaluation Process (DOE-STD-3015-2004)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE DOE-STD-3015-2004 November 2004 Superseding DOE-STD-3015-2001 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY EVALUATION PROCESS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techstds/. DOE-STD-3015-2004 iii FOREWORD This Department of Energy (DOE) Technical Standard is approved for use by the Assistant Deputy Administrator for Military Application and Stockpile Operations, National Nuclear Security Administration (NNSA), and is available for use with DOE O 452.1, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, and DOE O 452.2, SAFETY OF

372

Hydrogen Storage Materials Workshop Proceedings Workshop, October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Workshop Proceedings Workshop, October 16th, 2002 Hydrogen Storage Materials Workshop Proceedings Workshop, October 16th, 2002 A workshop on compressed and liquefied...

373

Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program-specific measurements. As a result, ORELA has not received base funding to support major upgrades and significant maintenance operations that are essential to keep the facility in a state of readiness over the long term. As a result, ORELA has operated on a ''sub-bare-minimum'' budget for the past 10 to 15 years, and the facility has not been maintained at a level for continued reliable operation for the long term. During the Workshop, Jerry McKamy (NNSA/NA-117) used a hospital patient metaphor that accurately depicts the facility status. ORELA is currently in the intensive care unit (ICU) on life support, and refurbishment efforts are needed to get the ''patient'' off life support and out to an ordinary hospital room. McKamy further noted that the DOE NCSP is planning to fund immediate refurbishment tasks ($1.5 M over three years) to help reestablish reliable ORELA operation (i.e., move ORELA from ICU to an ordinary hospital room). Furthermore, the NCSP will work to identify and carry out the actions needed to discharge ORELA from the ''hospital'' over the next five to seven years. In accordance with the Workshop objectives, the technical community publicly endorsed the need for a reliable ORELA facility that can meet current and future nuclear data needs. These Workshop proceedings provide the formal documentation of the technical community endorsement for ORELA. Furthermore, the proceedings highlight the past and current contributions that ORELA has made to the nuclear industry. The Workshop further emphasized the operational and funding problems that currently plague the facility, thereby limiting ORELA's operational reliability. Despite the recent operational problems, ORELA is a uniquely capable measurement facility that must be part of the overall U.S. nuclear data measurement portfolio in order to support current and emerging nuclear applications. The Workshop proceedings further emphasize that ORNL, the technical community, and programmatic sponsors are eager to see ORELA reestablish reliable measurement operation and be readily available to address nuclear data challe

Dunn, M.E.

2006-02-27T23:59:59.000Z

374

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

375

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

376

Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-Y-12-2012-10-02 Site: Y-12 UPF Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board (DNFSB) Public Meeting on the Status of Integration of Safety into the Design of the Uranium Processing Facility (UPF) Dates of Activity: October 2, 2012 Report Preparer: Timothy Mengers Activity Description/Purpose: The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12

377

ON THE USE OF SPRAY SYSTEMS: AN EXAMPLE OF R&D WORK IN HYDROGEN SAFETY FOR NUCLEAR APPLICATIONS  

E-Print Network (OSTI)

occurred since the Three Mile Island nuclear accident in 1979 through experimental programs1 ON THE USE OF SPRAY SYSTEMS: AN EXAMPLE OF R&D WORK IN HYDROGEN SAFETY FOR NUCLEAR APPLICATIONS, igniters and spray systems have been designed and installed in modern nuclear power plants. Mitigation

Boyer, Edmond

378

Nuclear Safety Regulatory Assistance Reviews | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 22, 2013 July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic Deficiencies in the Software Quality Assurance Program at the Lawrence Livermore National Laboratory February 12, 2013 Enforcement Letter, NEL-2013-02 Issued to Los Alamos National Security, LLC related to a Radiological Contamination Event at the Los Alamos Neutron Science Center at Los Alamos National Laboratory January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant October 23, 2012 Enforcement Letter, Controlled Power Company - WEL-2012-02 Enforcement Letter issued to Controlled Power Company related to an Electrical Shock Near Miss that occurred in the Radiological Laboratory

379

Workshop Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Registration Workshop Registration Workshop Registration If you had previously registered for the cancelled October 2013 event, you must submit a new registration for the July 2014 event. Registration Form Last Name: First Name: Institution: Position: Mailing Address: Office Phone Number: Fax: Mobile Number: Email Address: Badging: I have a regular DOE Badge I do not have a regular DOE Badge and will need a Visitor Badge If you are a US citizen and do not have a DOE badge, bring a photo ID. If you are not a US citizen, contact Heath Garrison for more information. EFCOG Member: Is your company a member of EFCOG? If you are not sure, check the website. Yes No If you answered No to the above, were you invited by the Electrical Safety Subgroup Chair? Yes No Note: If you were not invited by the Subgroup Chair, do not submit your registration until you contact Greg Christensen, Idaho - Chair (208-526-5380) for approval to attend.

380

Just in Time DSA-The Hanford Nuclear Safety Basis Strategy  

SciTech Connect

The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

Olinger, S. J.; Buhl, A. R.

2002-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

LED Street Lighting Conversion Workshop Presentations  

Energy.gov (U.S. Department of Energy (DOE))

This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

382

Conferences, Workshops, and Meetings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conferences, Workshops, and Meetings Access technical information about hydrogen; fuel cells; and safety, codes, and standards through the following: Annual Merit Review...

383

General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-05-01T23:59:59.000Z

384

Implementation Evaluation Criteria for January 2001 Amended 10 CFR Part 830 Nuclear Safety Management  

SciTech Connect

This document provides criteria for use in performing gap evaluations of processes and documents relative to the requirements of 10 CFR Part 830, Nuclear Safety Management. The criteria and associated objective evidence statements have been approved by the cognizant interpretative authorities. The criteria have been developed for each section of 10 CFR Part 830. The criteria have been divided into two categories. Criteria and objective evidence have been developed for use in assessing Fluor Hanford (FH) programs and procedures at the company level--programmatic requirements and evidence. Criteria and objective evidence statements have also been developed for FH nuclear facilities and projects.

EVANS, C.B.

2001-02-13T23:59:59.000Z

385

Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3009-94 3009-94 July 1994 CHANGE NOTICE NO.1 January 2000 CHANGE NOTICE NO. 2 April 2002 CHANGE NOTICE NO. 3 March 2006 DOE STANDARD PREPARATION GUIDE FOR U.S DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSES U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-3009-94 Page ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. DOE-STD-3009-94 Page iii Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses Table of Changes

386

A case study on effectiveness of structural reliability analysis in nuclear reactor safety assessment  

Science Journals Connector (OSTI)

Problems on reliability of structural integrity occupy an important position in various aspects of nuclear reactor safety. In the present paper, an effective method for quantitative evaluation of structural reliability based on stress strength model is developed with the objectives of taking a larger number of factors into the evaluation than before and giving useful results within moderate computing time. The method is applied to the reliability analysis of PWR pressure vessels. The results show the relative importance of inspection as well as the parameter uncertainty for assuring the reliability of the structure, although analysis is limited within the scope of linear elastic fracture mechanics (LEFM). This case study also shows that the analysis of structural reliability is effective for safety assessment of nuclear power plants in general and possibly for the improvements of the consistency in the design code.

A. Yamaguchi; S. Kondo; Y. Togo

1983-01-01T23:59:59.000Z

387

Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Operations Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions Name: Organization: Directions: This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Questions: 1. What is safety basis (SB)? 2. How does SB fit with integrated safety management (ISM)? 3. In what primary DOE documents can requirements and guidance for SB be found? 4. What are the "graded approach" factors that DOE takes into account in ensuring that the level of analysis and documentation and the actions used to comply with the requirements are

388

Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Operations Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions Name: Organization: Directions: This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Questions: 1. What is safety basis (SB)? 2. How does SB fit with integrated safety management (ISM)? 3. In what primary DOE documents can requirements and guidance for SB be found? 4. What are the "graded approach" factors that DOE takes into account in ensuring that the level of analysis and documentation and the actions used to comply with the requirements are

389

The potential role of new technology for enhanced safety and performance of nuclear power plants through improved service maintenance  

E-Print Network (OSTI)

Refinements in the safety and performance of nuclear power plants must be made to maintain public confidence and ensure competitiveness with other power sources. The aircraft industry, US Navy, and other programs have ...

Achorn, Ted Glen

1991-01-01T23:59:59.000Z

390

Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports  

Directives, Delegations, and Requirements

he purpose of this DOE Standard is to establish guidance for the preparation and review of hazard categorization and accident analyses techniques as required in DOE Order 5480.23, Nuclear Safety Analysis Reports.

1997-12-12T23:59:59.000Z

391

[6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety Management, AGENCY: Department of Energy (DOE).  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) is issuing a final rule regarding Nuclear SafetyManagement. This Part establishes requirements for the safe management of DOE contractor andsubcontractor work at the...

392

Track 6: Integrating Safety Into Security Operations  

Energy.gov (U.S. Department of Energy (DOE))

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 6: Integrating Safety Into Security Operations

393

Track 5: Integration of Safety Into Design  

Energy.gov (U.S. Department of Energy (DOE))

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 5: Integration of Safety Into Design

394

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project Idaho Cleanup Project Sodium Bearing Waste Treatment Project May 2011 November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project Table of Contents 1.0 Introduction........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2

395

Assessment of Nuclear Safety Culture at the Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project, April 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project May 2011 April 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project Table of Contents 1. Introduction ........................................................................................................................................... 1 2. Scope and Methodology ....................................................................................................................... 2

396

2002 DOE/DNFSB Interface Workshop - Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/DNFSB Interface Workshop DOE/DNFSB Interface Workshop PARTICIPANTS Amerine, Dave CH2M HILL Hanford Group, Hanford P. O. Box 1500 MSIN: H6-63 Richland, WA 99352 509-376-5107 509-372-1664 (Fax) David_B_Amerine@rl.gov Bailey, Nolan Board Point of Conact, Nevada Operations Office 232 Energy Way North Las Vegas, NA 89030 702-295-4601 702-295-2261 (Fax) bailey@nv.doe.gov Bartlett, William Carlsbad Technical Assistance Contractor, WIPP 4021 National Parks Hwy Carlsbad, NM 88220 505-234-7160 505-234-7198 (Fax) bill.bartlett@wipp.ws Beck, Dave NNSA Assistant Deputy Administrator for Military Application and Stockpile Operations, NA-12 1000 Independence Ave Washington, DC 20585 202-586-4879 Black, Dick Director, EH Office of Nuclear and Facility Safety Policy, EH-53 1000 Independence Ave

397

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

of the health and safety impact of fossil fuel emissions.to public health and safety, of any fossil fuel plant areHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

398

DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight and Investigations Oversight and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY 10:00 AM September 12, 2012 1 Mr. Chairman and Members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear Security Administration (NNSA) was established under the National Defense Authorization Act of 2000 as a separately organized agency within the Department of Energy. This action was intended to allow NNSA to concentrate on its defense-related mission, free from other Departmental operations. Its creation was, in large measure, a reaction to highly

399

Letter from Nuclear Energy Institute regarding Integrated Safety Analysis: Why it is Appropropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

082 l F: 202.533.0166 l rxm@nei.org l www.nei.org 082 l F: 202.533.0166 l rxm@nei.org l www.nei.org Rod McCullum DIRECTOR FUEL CYCLE PROJECTS NUCLEAR GENERATION DIVISION September 10, 2010 Ms. Catherine Haney Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689 Dear Ms. Haney: Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue.

400

Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE))

In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made.

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VI. Safety and environmental considerations for licensing  

SciTech Connect

This volume of the Nonproliferation Alternative Systems Assessment Program report addresses safety and environmental considerations in licensing the principal alternative nuclear reactors and fuel cycles in the United States for large-scale commercial nuclear power plants. In addition, this volume examines the safety and environmental considerations for licensing fuel service centers. These centers, which have been proposed for controlling sensitive fuel-cycle facilities and special nuclear materials, would contain a combination of such facilities as reprocessing plants, fabrication plants, and reactors. For this analysis, two fuel service center concepts were selected - one with power - generating capability and one without.

Not Available

1980-06-01T23:59:59.000Z

402

Validation of Nuclear Criticality Safety Software and 27 energy group ENDF/B-IV cross sections  

SciTech Connect

The validation documented in this report is based on calculations that were executed during June through August 1992, and was completed in June 1993. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Martin Marietta Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM 3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. When the validation results are treated as a single group, there is 95% confidence that 99.9% of future calculations of similar critical systems will have a calculated K{sub eff} > 0.9616. Based on this result the Portsmouth Nuclear Criticality Safety Department has adopted the calculational acceptance criteria that a k{sub eff} + 2{sigma} {le} 0.95 is safety subcritical. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

Lee, B.L. Jr.

1994-08-01T23:59:59.000Z

403

Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.  

SciTech Connect

As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

Darby, John L.

2011-05-01T23:59:59.000Z

404

Development of a Societal-Risk Goal for Nuclear Power Safety  

SciTech Connect

The safety-goal policy of the Nuclear Regulatory Commission (NRC) has never included a true societal-risk goal. The NRC did acknowledge that the original goal for the risk of latent cancer facilities was an individual risk goal not related to the number of people involved, and stated that a true societal risk goal would place a limit on the aggregate number of people affected. However, this limitation was never satisfactorily addressed. Moreover, the safety goal has historically focused primarily on fatalities and latent health effects, while experience with actual nuclear accidents has shown that societal disruption can be significant even in accidents that yield only small to modest numbers of fatalities. Therefore, we have evaluated the social disruption effects from severe reactor accidents as a basis to develop a societal-risk goal for nuclear power plants, considering both health effects and non-health concerns such as property damage and land interdiction. Our initial analysis considered six different nuclear power plant sites in the U.S. for Boiling Water Reactors and Pressurized Water Reactors. The accident sequences considered for these two reactor types were station blackout sequences (both short-term and long-term SBO) as well as an STSBO with RCIC failure for the BWR and a Steam Generator Tube Rupture for the PWR. The source term release was an input in a RASCAL calculation of the off-site consequences using actual site-based weather data for each of the six plant sites randomly selected over a two-year period. The source term release plumes were then compared to Geographical Information System data for each site to determine the population affected and that would need to be evacuated to meet current emergency preparedness regulations. Our results to date suggest that number of people evacuated to meet current protective action guidelines appears to be a good proxy for disruption -- and, unlike other measures of disruption, has the advantage of being relatively straightforward to calculate for a given accident scenario and a given geographical location and plant site. Revised safety goals taking into account the potential for societal disruption could in principle be applied to the current generation of nuclear plants, but could also be used in evaluating and siting new technologies, such as small modular light water reactors, advanced Gen-IV high-temperature reactors, as well as reactor designs with passive safety features such as filtered vented containments.

Vicki Bier; Michael Corradini; Robert Youngblood; Caleb Roh; Shuji Liu

2014-06-01T23:59:59.000Z

405

International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004.  

E-Print Network (OSTI)

for assuring quality of software. In the area of nuclear power plant control systems, testing on softwareThe 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004. Paper ID. N6P298 Direct Control Flow Testing on Function Block Diagrams

406

Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000  

SciTech Connect

This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2001-03-01T23:59:59.000Z

407

Proceedings of the workshop on nuclear and particle physics at energies up to 31 GeV: new and future aspects  

SciTech Connect

This report contains the proceedings of the LAMPF Workshop on Nuclear and Particle Physics at Energies up to 31 GeV, New and Future Aspects, held in Los Alamos, January 5 to 8, 1981. Included are invited talks and contributed papers covering recent developments in (a) weak and unified interactions (including discussions of neutrino oscillations), (b) the hadronic description of strong interactions, (c) the quark description of strong interactions, (d) hypernuclei, and (e) new facilities and proposed experiments. One of the motivations for the Workshop was to explore physics justifications for a future high-intensity proton accelerator in this energy regime. Separate abstracts were prepared for papers from this meeting. Six papers were previously included in the data base.

Bowman, J.D.; Kisslinger, L.S.; Silbar, R.R. (eds.)

1981-03-01T23:59:59.000Z

408

DOE-STD-1083-95; DOE Standard Requesting and Granting Exemptions to Nuclear Safety Rules  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-95 3-95 February 1995 DOE STANDARD REQUESTING AND GRANTING EXEMPTIONS TO NUCLEAR SAFETY RULES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE95007451 DOE-STD-1083-95 iii FOREWORD 1. This Department of Energy (DOE) standard has been prepared by the Office of Environment, Safety and Health with the assistance of Hank George of Synergy Consultants and

409

DOE-STD-1135-99 Guidance for Nuclear Criticality Safety Engineer Training and Qualification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5-99 5-99 September 1999 DOE STANDARD GUIDANCE FOR NUCLEAR CRITICALITY SAFETY ENGINEER TRAINING AND QUALIFICATION U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1135-99 iii FOREWORD This Department of Energy Standard is required for use by all DOE Contractor criticality safety personnel. It contains guidelines that should be followed for NCS training and qualification

410

DOE-STD-1183-2004; Nuclear Safety Specialist Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1183-2004 April 2004 DOE STANDARD NUCLEAR SAFETY SPECIALIST FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1183-2004 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1183-2004

411

DOE-STD-1185-2004; Nuclear Explosive Safety Study Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-1185-2004 STD-1185-2004 August 2004 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1185-2004 i This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1185-2004

412

Privatization of the gaseous diffusion plants and impacts on nuclear criticality safety administration  

SciTech Connect

The Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) on July 1, 1993. The USEC is a government-owned business that leases those Gaseous Diffusion Plant (GDP) facilities at the Portsmouth, Ohio, and Paducah, Kentucky, sites from the U.S. Department of Energy (DOE) that are required for enriching uranium. Lockheed Martin Utility Services is the operating contractor for the USEC-leased facilities. The DOE has retained use of, and regulation over, some facilities and areas at the Portsmouth and Paducah sites for managing legacy wastes and environmental restoration activities. The USEC is regulated by the DOE, but is currently changing to regulation under the U.S. Nuclear Regulatory Commission (NRC). The USEC is also preparing for privatization of the uranium enrichment enterprise. These changes have significantly affected the nuclear criticality safety (NCS) programs at the sites.

D`Aquila, D.M.; Holliday, R.T. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States); Dean, J.C. [Lockheed Martin Utility Services, Inc., Paducah, KY (United States)

1996-12-31T23:59:59.000Z

413

Nuclear safety procedure upgrade project at USEC/MMUS gaseous diffusion plants  

SciTech Connect

Martin Marietta Utility Services has embarked on a program to upgrade procedures at both of its Gaseous Diffusion Plant sites. The transition from a U.S. Department of Energy government-operated facility to U.S. Nuclear Regulatory Commission (NRC) regulated has necessitated a complete upgrade of plant operating procedures and practices incorporating human factors as well as a philosophy change in their use. This program is designed to meet the requirements of the newly written 10CFR76, {open_quotes}The Certification of Gaseous Diffusion Plants,{close_quotes} and aid in progression toward NRC certification. A procedures upgrade will help ensure increased nuclear safety, enhance plant operation, and eliminate personnel procedure errors/occurrences.

Kocsis, F.J. III

1994-12-31T23:59:59.000Z

414

Active Shooter Training Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The training workshop was based on real-world threats and issues and included a variety of guest lecturers and hands-on practical exercises. Participants utilized both live fire and engagement simulation system weaponry. The exercises were led by NTC instructors at the NTCs Live Fire Range and Integrated Safety and Security Training and Evaluation Complex (ISSTEC).

415

NERSC/DOE NP Requirements Workshop Logistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Hotel Arrangements Large Scale Computing and Storage Requirements for Nuclear Physics May 26-27, 2011 Location The workshop will be held at Hyatt Regency Bethesda One...

416

Safety of interim storage solutions of used nuclear fuel during extended term  

SciTech Connect

In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

Shelton, C.; Bader, S.; Issard, H.; Arslan, M. [AREVA, 7135 Minstrel Way, Suite 300 Columbia, MD 21045 (United States)

2013-07-01T23:59:59.000Z

417

Facility Safety  

Directives, Delegations, and Requirements

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

418

Workshops | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

419

2008 Workshop on The Nation's Needs for Isotopes: Present and...  

Office of Science (SC) Website

Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

420

BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities  

SciTech Connect

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2012 National Trainers' Exchange for Department of Energy Safety and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Trainers' Exchange for Department of Energy Safety National Trainers' Exchange for Department of Energy Safety and Health Trainers 2012 National Trainers' Exchange for Department of Energy Safety and Health Trainers Workshop Dates: May 7-8, 2012 The National Institute of Environmental Health Sciences Worker Education and Training Program (NIEHS WETP) hosted the first National Trainers' Exchange for Department of Energy (DOE) safety and health trainers on May 7-8, 2012 in Knoxville, TN. Over 100 participants attended the Trainers' Exchange to share and exchange best practices and techniques on how to create more effective and empowering training. The Conference was funded under its DOE Nuclear Worker Training Program. A trainers' exchange is designed for trainers to share best practices and new techniques through a series of workshops conducted by the trainers

422

Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10  

Energy.gov (U.S. Department of Energy (DOE))

Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

423

The Application of Risk-Based Cost-Benefit Analysis in the Assessment of Acceptable Public Safety for Nuclear Power Plants  

Science Journals Connector (OSTI)

In 1982, the U.S. Nuclear Regulatory Commission issued, for public comment, proposed safety goals for commercial nuclear power plants. In an effort to quantitatively evaluate these proposed goals, a methodolog...

Thomas A. Morgan; Alfred J. Unione; George Sauter

1985-01-01T23:59:59.000Z

424

DOE-STD-101-92; Compilation of Nuclear Safety Criteria Potential Application to DOE Nonreactor Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-1O1-92 -1O1-92 DE92 011016 COMPILATION OF NUCLEAR SAFETY CRITERIA POTENTIAL APPLICATION TO DOE NONREACTOR FACILITIES Published: March 1992 U.S. Department of Energy Office of Nuclear Energy Office of Nuclear Safety Policy and Standards Washington,DC 20585 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Informa- tion, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92011016 DOE-STD-101-92 CONTENTS FOREWORD 1. INTRODUCTION 1.1 Purpose 1.2 Sources of Criteria and Format 1.3 Safety Analysis Report Criteria

425

Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society  

SciTech Connect

This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

Koponen, B.L.; Hampel, V.E.

1982-10-21T23:59:59.000Z

426

Triangle Universities Nuclear Laboratory : 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Jesse Thaler HIGS2 Machine Ying Wu DOE Nuclear Physics Links Performance Measures NSAC Reports HIGS2 Workshop, June 3-4, 2013 Link to HIGS2 Workshop Site This workshop will bring...

427

Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities, January 2013  

Energy.gov (U.S. Department of Energy (DOE))

In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made. These actions and recommendations were addressed in an August 2011 report to the Secretary of Energy, Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events.

428

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998  

SciTech Connect

This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

NONE

1999-02-01T23:59:59.000Z

429

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999  

SciTech Connect

This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2000-02-01T23:59:59.000Z

430

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

431

Submersion Criticality Safety Analysis of Tungsten-Based Fuel for Nuclear Power and Propulsion Applications  

SciTech Connect

The Center for Space Nuclear Research (CSNR) is developing tungsten-encapsulated fuels for space nuclear applications. Aims to develop NTP fuels that are; Affordable Low impact on production and testing environment Producible on a large scale over suitable time period Higher-performance compared to previous graphite NTP fuel elements Space nuclear reactors remain subcritical before and during launch, and do not go critical until required by its mission. A properly designed reactor will remain subcritical in any launch abort scenario, where the reactor falls back to Earth and becomes submerged in terrestrial material. Submersion increases neutron reflection and thermalizes the neutrons, which typically increases the reactivity of the core. This effect is usually very significant for fast-spectrum reactors. This research provided a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor. Determine the submersion behavior of a reactor fueled by tungsten-based fuel. Considered fuel compositions with varying: Rhenium content (wt% rhenium in tungsten) Fuel loading fractions (UO2 vol%)

A.E. Craft; R. C. O'Brien; S. D. Howe; J. C. King

2014-07-01T23:59:59.000Z

432

Consequence modeling for nuclear weapons probabilistic cost/benefit analyses of safety retrofits  

SciTech Connect

The consequence models used in former studies of costs and benefits of enhanced safety retrofits are considered for (1) fuel fires; (2) non-nuclear detonations; and, (3) unintended nuclear detonations. Estimates of consequences were made using a representative accident location, i.e., an assumed mixed suburban-rural site. We have explicitly quantified land- use impacts and human-health effects (e.g. , prompt fatalities, prompt injuries, latent cancer fatalities, low- levels of radiation exposure, and clean-up areas). Uncertainty in the wind direction is quantified and used in a Monte Carlo calculation to estimate a range of results for a fuel fire with uncertain respirable amounts of released Pu. We define a nuclear source term and discuss damage levels of concern. Ranges of damages are estimated by quantifying health impacts and property damages. We discuss our dispersal and prompt effects models in some detail. The models used to loft the Pu and fission products and their particle sizes are emphasized.

Harvey, T.F.; Peters, L.; Serduke, F.J.D.; Hall, C.; Stephens, D.R.

1998-01-01T23:59:59.000Z

433

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters  

Energy.gov (U.S. Department of Energy (DOE))

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters.

434

DOE Natural Phenomena Hazards (NPH) Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5-26, 2011 5-26, 2011 Germantown, MD S S National Nuclear Security Administration Office of the Chief of Nuclear Safety October 25 Agenda Tuesday, October 25 7:30 a.m. Registration; coffee and bagels will be served 8:00 a.m. Welcome and introductions 8:10 a.m. Workshop Overview - Chip Lagdon, CNS Theme 1: Soil-structure interaction issues 8:30 a.m. SASSI Subtraction Method Effects at Various DOE Projects Greg Mertz, Michael Costantino, Thomas Houston, and Andrew Maham 9:00 a.m. Application of the Computer Program SASSI for Seismic SSI Analysis for DOE Facilities Farhang Ostadan and Raman Venkata 9:30 a.m. BREAK Oct. 25 Agenda (cont'd.) 9:45 a.m. SASSI Analytical Methods Compared with SHAKE Free-Field Results Dennis Niehoff, Jayprakash Amin, Shawn Carey, and J. Bhatt

435

Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-3009-94 July 1994 CHANGE NOTICE NO. 12 January 2000 5 December 24 April 20021 DOE STANDARD PREPARATION GUIDE FOR U.S DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSISANALYSES REPORTS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

436

Preparation Guide for U. S. Department of Energy Nonreator Nuclear Facility Document Safety Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSITIVE DOE-STD-3009-94 July 1994 CHANGE NOTICE NO. 1 January 2000 CHANGE NOTICE NO. 2 April 2002 DOE STANDARD PREPARATION GUIDE FOR U.S DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSES U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS TS This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

437

DOE-STD-0100T; DOE Standard Licensed Reactor Nuclear Safety Criteria Applicable to DOE Reactors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

00T 00T November 1993 Superseding DOE/NE-0100T April 1991 DOE STANDARD LICENSED REACTOR NUCLEAR SAFETY CRITERIA APPLICABLE TO DOE REACTORS U.S. Department of Energy Washington, D.C. 20585 AREA SAFT DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly frorn the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE94005221 CONTENTS

438

Physics Teachers Workshop  

ScienceCinema (OSTI)

INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

Huggins, DaNel; Calhoun, John; Palmer, Alyson; Thorpe, Steve; Vanderveen, Anne;

2013-05-28T23:59:59.000Z

439

Additional Studies of the Criticality Safety of Failed Used Nuclear Fuel  

SciTech Connect

Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for periods potentially greater than 40 years. Extended storage (ES) time and irradiation to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, could result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. Criticality analyses are conducted considering representative UNF designs covering a range of enrichments and burnups in multiple cask systems. Prior work developed a set of failed fuel configuration categories and specific configurations were evaluated to understand trends and quantify the consequences of worst-case potential reconfiguration progressions. These results will be summarized here and indicate that the potential impacts on subcriticality can be rather significant for certain configurations (e.g., >20% keff). It can be concluded that the consequences of credible fuel failure configurations from ES or transportation following ES are manageable (e.g., <5% keff). The current work expands on these efforts and examines some modified scenarios and modified approaches to investigate the effectiveness of some techniques for reducing the calculated increase in keff. The areas included here are more realistic modeling of some assembly types and the effect of reconfiguration of some assemblies in the storage and transportation canister.

Marshall, William BJ J [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2013-01-01T23:59:59.000Z

440

Aging of turbine drives for safety-related pumps in nuclear power plants  

SciTech Connect

This study was performed to examine the relationship between time-dependent degradation and current industry practices in the areas of maintenance, surveillance, and operation of steam turbine drives for safety-related pumps. These pumps are located in the Auxiliary Feedwater (AFW) system for pressurized-water reactor plants and in the Reactor Core Isolation Cooling and High-Pressure Coolant Injection systems for boiling-water reactor plants. This research has been conducted by examination of failure data in the Nuclear Plant Reliability Data System, review of Licensee Event Reports, discussion of problems with operating plant personnel, and personal observation. The reported failure data were reviewed to determine the cause of the event and the method of discovery. Based on the research results, attempts have been made to determine the predictability of failures and possible preventive measures that may be implemented. Findings in a recent study of AFW systems indicate that the turbine drive is the single largest contributor to AFW system degradation. However, examination of the data shows that the turbine itself is a reliable piece of equipment with a good service record. Most of the problems documented are the result of problems with the turbine controls and the mechanical overspeed trip mechanism; these apparently stem from three major causes which are discussed in the text. Recent improvements in maintenance practices and procedures, combined with a stabilization of the design, have led to improved performance resulting in a reliable safety-related component. However, these improvements have not been universally implemented.

Cox, D.F. [Oak Ridge National Lab., TN (United States)

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Track 1: Safety Culture- Taking ISMS to the Next Level  

Energy.gov (U.S. Department of Energy (DOE))

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 1: Safety Culture - Taking ISMS to the Next Level

442

Department of Energy Cites Fluor B&W Portsmouth, LLC for Nuclear Safety and Radiation Protection Violations  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to Fluor B&W Portsmouth (FBP) for violations of the DOEs nuclear safety and radiation protection regulations, and has proposed a $243,750 civil penalty.

443

PKI Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PKI Workshop PKI Workshop PKI Workshop.pdf More Documents & Publications ICAM Workshop Radio and Spectrum Management Ad Hoc Meetings...

444

Conferences and Workshops | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

NRS Workshop: NRS Workshop: Workshop Home Agenda Deadlines Registration Lodging/Site Access Support Organizing Committee Lecture Notes APS | Sector 3 - Workshop on Data Evaluation using CONUSS and PHOENIX Workshop on Data Evaluation using CONUSS and PHOENIX November 2-4, 2012 Argonne National Laboratory, Argonne, IL, USA APS | Sector 3 - Workshop on Data Evaluation using CONUSS and PHOENIX Workshop Home This workshop is organized within the COMPRES infrastructure initiative to promote the application of the state-of-the-art Nuclear Resonant Scattering (NRS) techniques for characterizing the properties of materials under high P-T conditions of planetary interiors. Two NRS techniques, SMS and NRIXS, will be covered. Synchrotron Mössbauer Spectroscopy (SMS) provides information on magnetic

445

Facility Safety  

Directives, Delegations, and Requirements

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

446

General-purpose heat source project and space nuclear safety and fuels program. Progress report  

SciTech Connect

Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

Maraman, W.J.

1980-02-01T23:59:59.000Z

447

Rockwell International's Nuclear Criticality Safety Program at the Rocky Flats Plant  

SciTech Connect

This paper describes the criticality safety program at the Rocky Flats Plant. The groups responsible for safety are named and their functions outlined. (JDH)

McCarthy, J.D.

1987-01-01T23:59:59.000Z

448

WORKSHOP ON NUCLEAR DYNAMICS  

E-Print Network (OSTI)

References 1) P. Danielewicz, Ph.D. Theses, WarsawEvening Session P. Danielewicz, "Quantum Description of the

Myers, W.D.

2010-01-01T23:59:59.000Z

449

2012 National Trainers' Exchange for Department of Energy Safety...  

Office of Environmental Management (EM)

2012 National Trainers' Exchange for Department of Energy Safety and Health Trainers 2012 National Trainers' Exchange for Department of Energy Safety and Health Trainers Workshop...

450

Expectations on Documented Safety Analysis for Deactivated Inactive Nuclear Facilities in a State of Long Term Surveillance & Maintenance or Decommissioning  

SciTech Connect

DOE promulgated 10 CFR 830 ''Nuclear Safety Management'' on October 10, 2000. Section 204 of the Rule requires that contractors at DOE hazard category 1, 2, and 3 nuclear facilities develop a ''Documented Safety Analysis'' (DSA) that summarizes the work to be performed, the associated hazards, and hazard controls necessary to protect workers, the public, and the environment. Table 2 of Appendix A to the rule has been provided to ensure that DSAs are prepared in accordance with one of the available predetermined ''safe harbor'' approaches. The table presents various acceptable safe harbor DSAs for different nuclear facility operations ranging from nuclear reactors to decommissioning activities. The safe harbor permitted for decommissioning of a nuclear facility encompasses methods described in DOE-STD-1 120-98, ''Integration of Environment, Safety and Health into Facility Disposition Activities,'' and provisions in 29 CFR 1910.120 or 29 CFR 1926.65 (HAZWOPER). Additionally, an evaluation of public safety impacts and development of necessary controls is required when the facility being decommissioned contains radiological inventory or contamination exceeding the Rule's definition for low-level residual fixed radioactivity. This document discusses a cost-effective DSA approach that is based on the concepts of DOE-STD-I 120 and meets the 10 CFR 830 safe harbor requirements for both transition surveillance and maintenance as well as decommissioning. This DSA approach provides continuity for inactive Hanford nuclear facilities that will eventually transition into decommissioning. It also uses a graded approach that meets the expectations of DOE-STD-3011 and addresses HAZWOPER requirements to provide a sound basis for worker protection, particularly where intrusive work is being conducted.

JACKSON, M.W.

2002-05-01T23:59:59.000Z

451

A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems  

E-Print Network (OSTI)

Tree Analysis), FMEA (Failure Mode and Effect Analysis), HAZOP (Hazard and Operability study). · Safety

452

Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository--BMT1 of the DECOVALEX III project. Part 1: Conceptualization  

E-Print Network (OSTI)

Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste on the safety of a hypothetical nuclear waste repository at the near-field and are presented in three on the safety of nuclear waste repositories. To achieve the second objective, hypothetical benchmark test

Paris-Sud XI, Université de

453

Distribution Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

454

U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)  

Energy.gov (U.S. Department of Energy (DOE))

"This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak...

455

Roadmap to an Engineering-Scale Nuclear Fuel Performance & Safety Code  

SciTech Connect

Developing new fuels and qualifying them for large-scale deployment in power reactors is a lengthy and expensive process, typically spanning a period of two decades from concept to licensing. Nuclear fuel designers serve an indispensable role in the process, at the initial exploratory phase as well as in analysis of the testing results. In recent years fuel performance capabilities based on first principles have been playing more of a role in what has traditionally been an empirically dominated process. Nonetheless, nuclear fuel behavior is based on the interaction of multiple complex phenomena, and recent evolutionary approaches are being applied more on a phenomenon-by-phenomenon basis, targeting localized problems, as opposed to a systematic approach based on a fundamental understanding of all interacting parameters. Advanced nuclear fuels are generally more complex, and less understood, than the traditional fuels used in existing reactors (ceramic UO{sub 2} with burnable poisons and other minor additives). The added challenges are primarily caused by a less complete empirical database and, in the case of recycled fuel, the inherent variability in fuel compositions. It is clear that using the traditional approach to develop and qualify fuels over the entire range of variables pertinent to the U.S. Department of Energy (DOE) Office of Nuclear Energy on a timely basis with available funds would be very challenging, if not impossible. As a result the DOE Office of Nuclear Energy has launched the Nuclear Energy Advanced Modeling and Simulation (NEAMS) approach to revolutionize fuel development. This new approach is predicated upon transferring the recent advances in computational sciences and computer technologies into the fuel development program. The effort will couple computational science with recent advances in the fundamental understanding of physical phenomena through ab initio modeling and targeted phenomenological testing to leapfrog many fuel-development activities. Realizing the full benefits of this approach will likely take some time. However, it is important that the developmental activities for modeling and simulation be tightly coupled with the experimental activities to maximize feedback effects and accelerate both the experimental and analytical elements of the program toward a common objective. The close integration of modeling and simulation and experimental activities is key to developing a useful fuel performance simulation capability, providing a validated design and analysis tool, and understanding the uncertainties within the models and design process. The efforts of this project are integrally connected to the Transmutation Fuels Campaign (TFC), which maintains as a primary objective to formulate, fabricate, and qualify a transuranic-based fuel with added minor actinides for use in future fast reactors. Additional details of the TFC scope can be found in the Transmutation Fuels Campaign Execution Plan. This project is an integral component of the TFC modeling and simulation effort, and this multiyear plan borrowed liberally from the Transmutation Fuels Campaign Modeling and Simulation Roadmap. This document provides the multiyear staged development plan to develop a continuum-level Integrated Performance and Safety Code (IPSC) to predict the behavior of the fuel and cladding during normal reactor operations and anticipated transients up to the point of clad breach.

Turner, John A [ORNL; Clarno, Kevin T [ORNL; Hansen, Glen A [ORNL

2009-09-01T23:59:59.000Z

456

Materials Research Needs for Near-Term Nuclear Reactors  

Science Journals Connector (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Material

John R. Weeks

457

PROCEEDINGS OF THE RIKEN BNL RESEARCH CENTER WORKSHOP ON LARGE SCALE COMPUTATIONS IN NUCLEAR PHYSICS USING THE QCDOC, SEPTEMBER 26 - 28, 2002.  

SciTech Connect

The massively parallel computer QCDOC (QCD On a Chip) of the RIKEN BNL Research Center (RI3RC) will provide ten-teraflop peak performance for lattice gauge calculations. Lattice groups from both Columbia University and RBRC, along with assistance from IBM, jointly handled the design of the QCDOC. RIKEN has provided $5 million in funding to complete the machine in 2003. Some fraction of this computer (perhaps as much as 10%) might be made available for large-scale computations in areas of theoretical nuclear physics other than lattice gauge theory. The purpose of this workshop was to investigate the feasibility and possibility of using a supercomputer such as the QCDOC for lattice, general nuclear theory, and other calculations. The lattice applications to nuclear physics that can be investigated with the QCDOC are varied: for example, the light hadron spectrum, finite temperature QCD, and kaon ({Delta}I = 1/2 and CP violation), and nucleon (the structure of the proton) matrix elements, to name a few. There are also other topics in theoretical nuclear physics that are currently limited by computer resources. Among these are ab initio calculations of nuclear structure for light nuclei (e.g. up to {approx}A = 8 nuclei), nuclear shell model calculations, nuclear hydrodynamics, heavy ion cascade and other transport calculations for RHIC, and nuclear astrophysics topics such as exploding supernovae. The physics topics were quite varied, ranging from simulations of stellar collapse by Douglas Swesty to detailed shell model calculations by David Dean, Takaharu Otsuka, and Noritaka Shimizu. Going outside traditional nuclear physics, James Davenport discussed molecular dynamics simulations and Shailesh Chandrasekharan presented a class of algorithms for simulating a wide variety of femionic problems. Four speakers addressed various aspects of theory and computational modeling for relativistic heavy ion reactions at RHIC. Scott Pratt and Steffen Bass gave general overviews of how qualitatively different types of physical processes evolve temporally in heavy ion reactions. Denes Molnar concentrated on the application of hydrodynamics, and Alex Krasnitz on a classical Yang-Mills field theory for the initial phase. We were pleasantly surprised by the excellence of the talks and the substantial interest from all parties. The diversity of the audience forced the speakers to give their talks at an understandable level, which was highly appreciated. One particular bonus of the discussions could be the application of highly developed three-dimensional astrophysics hydrodynamics codes to heavy ion reactions.

AOKI,Y.; BALTZ,A.; CREUTZ,M.; GYULASSY,M.; OHTA,S.

2002-09-26T23:59:59.000Z

458

Computer code for space-time diagnostics of nuclear safety parameters  

SciTech Connect

The computer code ECRAN 3D (Experimental and Calculation Reactor Analysis) is designed for continuous monitoring and diagnostics of reactor cores and databases for RBMK-1000 on the basis of analytical methods for the interrelation parameters of nuclear safety. The code algorithms are based on the analysis of deviations between the physically obtained figures and the results of neutron-physical and thermal-hydraulic calculations. Discrepancies between the measured and calculated signals are equivalent to obtaining inadequacy between performance of the physical device and its simulator. The diagnostics system can solve the following problems: identification of facts and time for inconsistent results, localization of failures, identification and quantification of the causes for inconsistencies. These problems can be effectively solved only when the computer code is working in a real-time mode. This leads to increasing requirements for a higher code performance. As false operations can lead to significant economic losses, the diagnostics system must be based on the certified software tools. POLARIS, version 4.2.1 is used for the neutron-physical calculation in the computer code ECRAN 3D. (authors)

Solovyev, D. A.; Semenov, A. A.; Gruzdov, F. V.; Druzhaev, A. A.; Shchukin, N. V.; Dolgenko, S. G.; Solovyeva, I. V.; Ovchinnikova, E. A. [National Research Nuclear Univ. MEPhI, Kashirskoe, 31, 115409, Moscow (Russian Federation)

2012-07-01T23:59:59.000Z

459

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

SciTech Connect

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

460

General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Structural Aging Program to evaluate continued performance of safety-related concrete structures in nuclear power plants  

SciTech Connect

This report discusses the Structural Aging (SAG) Program which is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into three technical tasks: Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented.

Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States)

1994-03-01T23:59:59.000Z

462

Facility Safety  

Directives, Delegations, and Requirements

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

463

Facility Safety  

Directives, Delegations, and Requirements

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

464

Facility Safety  

Directives, Delegations, and Requirements

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

465

October 24, 2003, Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.1 3.1 Revision 3 October 24, 2003 U. S. Department of Energy Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities October 24, 2003 CRAD - 4.2.3.1 Revision 3 October 24, 2003 i TABLE OF CONTENTS ACRONYMS...................................................................................................................................ii GLOSSARY ...................................................................................................................................iii 1.0 INTRODUCTION .....................................................................................................................1 2.0 BACKGROUND .......................................................................................................................2

466

IDAHO STATE UNIVERSITY Chad Pope Department of Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

of nuclear safety, nuclear criticality safety, nuclear facility operations and pyroprocessing. He teaches courses in reactor physics, nuclear criticality safety, Monte Carlo...

467

Nuclear Criticality Safety Evaluation of the 9965, 9968, 9972, 9973, 9974, and 9975 Shipping Casks  

SciTech Connect

A Nuclear Criticality Safety Evaluation (NCSE) has been performed for the 9965, 9968, 9972, 9973, 9974, and 9975 SRS-designed shipping casks. This was done in support of the recertification effort for the 9965 and 9968, and the certification of the newly designed 9972-9975 series. The analysis supports the use of these packages as Fissile Class I for shipment of fissionable material from the SRS FB-Line, HB-Line, and from Lawrence Livermore national Laboratory. six different types of material were analyzed with varying Isotopic composition, of both oxide and metallic form. The mass limits required to support the fissile Class I rating for each of the envelopes are given in the Table below. These mass limits apply if DOE approves an exception as described in 10 CFR 71.55(c), such that water leakage into the primary containment vessel does not need to be considered in the criticality analysis. If this exception is not granted, the mass limits are lower than those shown below. this issue is discussed in detail in sections 5 and 6 of the report.One finding from this work is important enough to highlight in the abstract. The fire tests performed for this family of shipping casks indicates only minimal charring of the Celotex thermal insulation. Analysis of the casks with no Celotex insulation (assuming it has all burned away), results in values of k-eff that exceed 1.0. Therefore, the Celotex insulation must remain intact in order to guarantee sub criticality of the 9972-9975 family of shipping casks.

Frost, R.L.

1999-02-26T23:59:59.000Z

468

First announcement of AFC Workshop (April 2011) - Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

First Announcement First Announcement Events AFC Workshop (Apr. '11) AFC Workshop Home First Announcement Second Announcement Participants Program Hotels & Accomodations Venue Transportation Registration Contact Organizers Nuclear Data Program Nuclear Data Program Overview Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Workshop on "Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics" April 14-16, 2011, Argonne National Laboratory Bookmark and Share Printable Version ( PDF PDF file, 111KB) First Announcement This is the first announcement of the workshop "Decay Spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and

469

Second announcement of AFC Workshop (April 2011) - Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Announcement Second Announcement Events AFC Workshop (Apr. '11) AFC Workshop Home First Announcement Second Announcement Participants Program Hotels & Accomodations Venue Transportation Registration Contact Organizers Nuclear Data Program Nuclear Data Program Overview Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Workshop on "Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics" April 14-16, 2011, Argonne National Laboratory Bookmark and Share Printable Version ( PDF PDF file, 107KB) Second Announcement This is the second announcement of the Workshop on "Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and

470

Cognitive decision errors and organization vulnerabilities in nuclear power plant safety management: Modeling using the TOGA meta-theory framework  

SciTech Connect

In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safety Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff. (authors)

Cappelli, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Gadomski, A. M. [ECONA, Centro Interuniversitario Elaborazione Cognitiva Sistemi Naturali e Artificiali, via dei Marsi 47, Rome (Italy); Sepiellis, M. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Wronikowska, M. W. [UTFISST, ENEA Casaccia, via Anguillarese 301, Rome (Italy); Poznan School of Social Sciences (Poland)

2012-07-01T23:59:59.000Z

471

Microsoft Word - APS_workshop_Final.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

REPORT of the Workshop on the Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems January 27 and 28, 2010 Advanced Photon Source Argonne National Laboratory April 2010 iii CONTENTS EXECUTIVE SUMMARY ......................................................................................................... v INTRODUCTION ....................................................................................................................... 1 Workshop Background .......................................................................................................... 1 Representation from Interest Groups ..................................................................................... 2 BREAKOUT SESSION SUMMARIES...................................................................................... 3

472

2012 Workshop on Isotope Federal Supply and Demand | U.S. DOE...  

Office of Science (SC) Website

Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

473

Gasification Workshop  

Science Journals Connector (OSTI)

The workshop was organised to discuss why so many gasifier projects have failed throughout the world in the last few decades. The reasons offered are economic, technical, institutional and social, but there is st...

T. B. Reed; T. R. Miles Jr.

1988-01-01T23:59:59.000Z

474

Regulatory analysis for the resolution of Generic Safety Issue 29: Bolting degradation or failure in nuclear power plants  

SciTech Connect

Generic Safety Issue (GSI)-29 deals with staff concerns about public risk due to degradation or failure of safety-related bolting in nuclear power plants. The issue was initiated in November 1982. Value-impact studies of a mandatory program on safety-related bolting for operating plants were inconclusive: therefore, additional regulatory requirements for operating plants could not be justified in accordance with provisions of 10 CFR 50.109. In addition, based on operating experience with bolting in both nuclear and conventional power plants, the actions already taken through bulletins, generic letters, and information notices, and the industry-proposed actions, the staff concluded that a sufficient technical basis exists for the resolution of GSI-29. The staff further concluded that leakage of bolted pressure joints is possible but catastrophic failure of a reactor coolant pressure boundary joint that will lead to significant accident sequences is highly unlikely. For future plants, it was concluded that a new Standard Review Plant section should be developed to codify existing bolting requirements and industry-developed initiatives. 9 refs., 1 tab.

Chang, T.Y.

1991-09-01T23:59:59.000Z

475

Chemical Safety Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Home Chemical Safety Topical Committee Library Program Contacts Related Links Site Map Tools 2013 Chemical Safety Workshop Archived Workshops Contact Us Health and Safety HSS Logo Chemical Safety Program logo The Department of Energy's (DOE's) Chemical Safety web pages provide a forum for the exchange of best practices, lessons learned, and guidance in the area of chemical management. This page is supported by the Chemical Safety Topical Committee which was formed to identify chemical safety-related issues of concern to the DOE and pursue solutions to issues identified. Noteworthy products are the Chemical Management Handbooks and the Chemical Lifecycle Cost Analysis Tool, found under the TOOLS menu. Chemical Management Handbook Vol (1) Chemical Management Handbook Vol (2)

476

Safety, Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Security Safety, Security Safety, Security LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 We do not compromise safety for personal, programmatic, or operational reasons. Safety: we integrate safety, security, and environmental concerns into every step of our work Our commitments We conduct our work safely and responsibly to achieve our mission. We ensure a safe and healthful environment for workers, contractors, visitors, and other on-site personnel. We protect the health, safety, and welfare of the general public. We do not compromise safety for personal, programmatic, or

477

Increasing the Work-Safety in Nuclear Power Plants through the Use of Preventive Maintenance Policies  

Science Journals Connector (OSTI)

Nuclear power is being used at an increasing rate as a substitute for scarce and expensive classical energy sources. Controlled nuclear fission generates energy but, at the same time, produces radioactive subs...

Dr. U. Pachow; Prof. Dr. H. Gehring; H. J. Rokohl

1982-01-01T23:59:59.000Z

478

The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis  

SciTech Connect

Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

Johnson, A.E.; Harbour, J.L.

1993-06-01T23:59:59.000Z

479

Safety regulations of food and water implemented in the first year following the Fukushima nuclear accident  

Science Journals Connector (OSTI)

......help improve the nuclear or radiological emergency...Here we describe the policy carried out for the...Measures Concerning Nuclear Emergency Preparedness...2.7. Rice The policy indicated by the...at the Fukushima nuclear power plants 1 and...Japanese). 22 MHLW. Policy on the monitoring......

Nobuyuki Hamada; Haruyuki Ogino; Yuki Fujimichi

2012-09-01T23:59:59.000Z

480

ICAM Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ICAM Workshop ICAM Workshop DOE ICAM Workshop 43.pdf More Documents & Publications Radio and Spectrum Management Ad Hoc Meetings PKI...

Note: This page contains sample records for the topic "nuclear safety workshop" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

DOE-STD-1082-94; DOE Standard Preparation, Review, and Approval of Implementaiton Plans For Nuclear Safety Requirements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82-94 82-94 October 1994 DOE STANDARD PREPARATION, REVIEW, AND APPROVAL OF IMPLEMENTATION PLANS FOR NUCLEAR SAFETY REQUIREMENTS U.S. Department of Energy AREA SAFT Washington D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615)576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE95001461 DOE-STD-1082-94 iii FOREWORD 1. This Department of Energy (DOE) technical standard has been prepared by the Office of Environment, Safety and Health with the assistance of Steve

482

Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components  

SciTech Connect

The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied.

Just, R.A.; Love, A.F.

1997-10-01T23:59:59.000Z

483

Spent nuclear fuel project cold vacuum drying facility safety equipment list  

SciTech Connect

This document provides the safety equipment list (SEL) for the Cold Vacuum Drying Facility (CVDF). The SEL was prepared in accordance with the procedure for safety structures, systems, and components (SSCs) in HNF-PRO-516, ''Safety Structures, Systems, and Components,'' Revision 0 and HNF-PRO-097, Engineering Design and Evaluation, Revision 0. The SEL was developed in conjunction with HNF-SO-SNF-SAR-O02, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998). The SEL identifies the SSCs and their safety functions, the design basis accidents for which they are required to perform, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. This SEL has been developed for the CVDF Phase 2 Safety Analysis Report (SAR) and shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR until the CVDF final SAR is approved.

IRWIN, J.J.

1999-02-24T23:59:59.000Z

484

EM Hosts Used Fuel Management Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hosts Used Fuel Management Workshop Hosts Used Fuel Management Workshop EM Hosts Used Fuel Management Workshop September 30, 2013 - 12:00pm Addthis Participants in EM’s Office of Nuclear Materials Disposition workshop with Swedish executives gather for a photo. Participants in EM's Office of Nuclear Materials Disposition workshop with Swedish executives gather for a photo. WASHINGTON, D.C. - EM's Office of Nuclear Materials Disposition held a workshop with Swedish executives earlier this month to learn about their approaches to designing a national waste management program. EM officials met with representatives from SKB International, the consulting arm of SKB, the Swedish nuclear fuel and waste management company. They examined SKB's integrated waste management system, known as KBS-3, and the potential for efficiencies and lifecycle costs reductions

485

EM Hosts Used Fuel Management Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Hosts Used Fuel Management Workshop EM Hosts Used Fuel Management Workshop EM Hosts Used Fuel Management Workshop September 30, 2013 - 12:00pm Addthis Participants in EM’s Office of Nuclear Materials Disposition workshop with Swedish executives gather for a photo. Participants in EM's Office of Nuclear Materials Disposition workshop with Swedish executives gather for a photo. WASHINGTON, D.C. - EM's Office of Nuclear Materials Disposition held a workshop with Swedish executives earlier this month to learn about their approaches to designing a national waste management program. EM officials met with representatives from SKB International, the consulting arm of SKB, the Swedish nuclear fuel and waste management company. They examined SKB's integrated waste management system, known as KBS-3, and the potential for efficiencies and lifecycle costs reductions

486

Summary and bibliography of safety-related events at pressurized-water nuclear power plants as reported in 1979  

SciTech Connect

This report summarizes the data contained in reports submitted by licensees to the US Nuclear Regulatory Commission concerning safety-related operational events that occurred at pressurized-water-reactor nuclear power plants in 1979. A bibliography containing 100-word abstracts of the event reports is included. The 2064 abstracts included in the bibliography describe incidents, failures, and design or construction deficiencies experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Keyword and permuted-title indexes are provided to facilitate location of the abstracts of interest. Tables summarizing the information contained in the bibliography are also presented and discussed. Information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and time of occurrence (i.e., during refueling, operation, testing, or construction). Some of the more interesting events that occurred during the year are reviewed in detail. 33 refs.

Scott, R.L.; Gallaher, R.B.

1981-07-01T23:59:59.000Z

487

Workshop materials from the 2nd international training course on physical protection of nuclear facilities and materials, Module 13  

SciTech Connect

This course is intended for representatives of countries where nuclear power is being developed and whose responsibilities include the preparation of regulation and the design and evaluation of physical protection systems. This is the second of two volumes; the first volume is SAND-79-1090. (DLC)

Martin, F. P. [ed.

1980-04-01T23:59:59.000Z