Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight  

Broader source: Energy.gov (indexed) [DOE]

Safety Culture in the US Nuclear Regulatory Commission's Reactor Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process September 19, 2012 Presenter: Undine Shoop, Chief, Health Physics and Human Performance Branch, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission Topics covered: Purpose of the Reactor Oversight Process (ROP) ROP Framework Safety Culture within the ROP Safety Culture Assessments Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process More Documents & Publications A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 2/17/11

2

Work for Nuclear Regulatory Commission, Safety Related Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Regulatory Nuclear Regulatory Commission Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Safety-Related Applications Overview DOE Office of Nuclear Energy, Science, and Technology Nuclear Regulatory Commission National Aeronautics and Space Administration (NASA) Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Safety Related Applications Bookmark and Share Nuclear Regulatory Commission International Steam Generator Tube Integrity Program Key objectives of the International Steam Generator Tube Integrity Program

3

Nuclear Regulatory Commission issuances  

SciTech Connect (OSTI)

This thirty-second volume of issuances (1--496) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Appeal Boards, Atomic Safety and Licensing Boards, and Administrative Law Judges it covers the period from July 1, 1990 to December 31, 1990. The hardbound edition of the Nuclear Regulatory commission Issuances is a final compilation of the monthly issuances. It includes all of the legal precedents for the agency within a six-month period. Any opinions, decisions, denials, memoranda and orders of the Commission inadvertently omitted from the monthly softbounds and any corrections submitted by the NRC legal staff to the printed softbound issuances are contained in the hardbound edition. Cross references in the text and indexes are to the NRCI page numbers which are the same as the page numbers in this publication. Issuances are referred to as follows: Commission--CLI, Atomic Safety and Licensing Appeal Boards--ALAB, Atomic Safety and Licensing Boards--LBP, Administrative Law Judges--ALJ, Directors'Decisions--DD, and Denial of Petitions for Rulemaking--DPRM. Specific facilities discussed are: Carroll County Nuclear Station; Palo Verde Nuclear Generating Station; Perry Nuclear Power Plant; Quad Cities Nuclear Power Stations; Seabrook Station; Shoreham Nuclear Generating Plant; Vermont Yankee Nuclear Power Station; and Vogtle Electric Generating Plant.

Not Available

1990-01-01T23:59:59.000Z

4

NUCLEAR REGULATORY COMMISSION  

Broader source: Energy.gov (indexed) [DOE]

December 21, 1999 (Volume 64, Number 244)] December 21, 1999 (Volume 64, Number 244)] [Proposed Rules] [Page 71331-71333] From the Federal Register Online via GPO Access [wais.access.gpo.gov] [DOCID:fr21de99-21] ======================================================================= ----------------------------------------------------------------------- NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Advance notice of proposed rulemaking. ----------------------------------------------------------------------- SUMMARY: The Nuclear Regulatory Commission (NRC) is considering an amendment to its regulations that would require NRC licensees to notify

5

Nuclear Safety Information Agreement Between the U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, and the U.S. Department of Energy, Office of Environment, Health, Safety and Security  

Broader source: Energy.gov [DOE]

On December 15, Matt Moury, Associate Under Secretary, Office of Environment, Health, Safety and Security (EHSS DOE) and EHSS Office of Nuclear Safety staff met with the NRC Executive Director for Operations, the Deputy Executive Director for Operations, and the Director, Office of Nuclear Materials Safety and Safeguards to sign a nuclear safety information exchange agreement between NRC Office of Nuclear Materials Safety and Safeguards and the Office of Environment, Health, Safety and Security.

6

Nuclear Regulatory Commission issuances  

SciTech Connect (OSTI)

This report includes the issuances received during the specified period from the Commission (CLI), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judges (ALJ), the Directors` Decisions (DD), and the Decisions on Petitions for Rulemaking (DPRM). The summaries and headnotes preceding the opinions reported herein are not to be deemed a part of those opinions or have any independent legal significance.

NONE

1997-09-01T23:59:59.000Z

7

Nuclear Regulatory Commission | Department of Energy  

Office of Environmental Management (EM)

Regulatory Commission Nuclear Regulatory Commission Nuclear Regulatory Commission More Documents & Publications What to Expect When Readying to Move Spent Nuclear Fuel from...

8

UNITED STATES NUCLEAR REGULATORY COMMISSION WAWINQTON, 0. C....  

Office of Legacy Management (LM)

of technology, and the economics of improvements in relation to benefits to the public health and safety.' Surface Contamination The Nuclear Regulatory Commission's Division of...

9

Nuclear Regulatory Commission's Integrated Strategy for Spent...  

Office of Environmental Management (EM)

Nuclear Regulatory Commission's Integrated Strategy for Spent Fuel Management Nuclear Regulatory Commission's Integrated Strategy for Spent Fuel Management * 20+ years of...

10

Nuclear Engineering Nuclear Criticality Safety  

E-Print Network [OSTI]

Nuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear, and neutron spectra. The NE nuclear criticality safety (NCS) capabilities are based on a staff with decades

Kemner, Ken

11

Office of Nuclear Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Office of Nuclear Safety (HS-30) Office of Nuclear Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us

12

Nuclear Safety Regulatory Framework  

Energy Savers [EERE]

Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946...

13

Nuclear Regulatory Commission issuances  

SciTech Connect (OSTI)

This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

NONE

1996-03-01T23:59:59.000Z

14

Blue Ribbon Commission on America's Nuclear Future Charter | Department of  

Broader source: Energy.gov (indexed) [DOE]

Blue Ribbon Commission on America's Nuclear Future Charter Blue Ribbon Commission on America's Nuclear Future Charter Blue Ribbon Commission on America's Nuclear Future Charter March 2, 2010 - 12:00am Addthis The Secretary of Energy, acting at the direction of the President, is establishing the Commission to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, including all alternatives for the storage, processing, and disposal of civilian and defense used nuclear fuel, high-level waste, and materials derived from nuclear activities. Specifically, the Commission will provide advice, evaluate alternatives, and make recommendations for a new plan to address these issues, including: Evaluation of existing fuel cycle technologies and R&D programs. Criteria for evaluation should include cost, safety, resource utilization

15

Nuclear criticality safety guide  

SciTech Connect (OSTI)

This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

1996-09-01T23:59:59.000Z

16

United States Nuclear Regulatory Commission  

Broader source: Energy.gov (indexed) [DOE]

qU oSoLTJRC qU oSoLTJRC United States Nuclear Regulatory Commission Protecting People and the Environment NUREG-1872, Vol. 2 HudcD [jE©wftamfsýýpc Wafm(M oran EA Office of New Reactors AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at http:t/www.nrc..ov/reading-rm.html. Publicly released records include, to name a few, NUREG-series publications; Federal Register notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

17

Nuclear Engineer (Criticality Safety)  

Broader source: Energy.gov [DOE]

This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

18

General Engineer (Nuclear Safety)  

Broader source: Energy.gov [DOE]

The Chief of Nuclear Safety (CNS) reports the US/M&P; in serving as the Central Technical Authority (CTA) for M&P; activities, ensuring the Departments nuclear safety policies and...

19

Nuclear Safety Regulatory Framework  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting DOE Directives & Manuals DOE Standards Central Technical Authorities (CTA) Office of Health, Safety, and Security (HSS) Line Management SSO/ FAC Reps 48 CFR 970 48 CFR 952 Federal Acquisition Regulations External Oversight *Defense Nuclear Facility

20

Nuclear Explosive Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

2009-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Engineer (Nuclear Safety Specialist)  

Broader source: Energy.gov [DOE]

A successful candidate of this position will serve as a Nuclear Engineer (Nuclear Safety Specialist) responsible for day-to-day technical monitoring, and evaluation of aspects of authorization...

22

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

2014-07-10T23:59:59.000Z

23

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

2015-01-26T23:59:59.000Z

24

Energy Praises the Nuclear Regulatory Commission Approval of...  

Office of Environmental Management (EM)

Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the...

25

NRC - regulator of nuclear safety  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

NONE

1997-05-01T23:59:59.000Z

26

Management of National Nuclear Power Programs for assured safety  

SciTech Connect (OSTI)

Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

Connolly, T.J. (ed.)

1985-01-01T23:59:59.000Z

27

UNITED STATES NUCLEAR REGULATORY COMMISSION  

Office of Legacy Management (LM)

WASHINGTON, 0. C. 20555 WASHINGTON, 0. C. 20555 AUG i 3 1979 ,,~---Y--*. FCAF:Wi3 )I 70-364 : i: SNM-414,jAmendment No. 3 --A Babcock and Wilcox Company Nuclear Materials Division ATTN: Mr. Michael A. Austin Manager, Technical Control 609 North Warren Avenue Apollo, Pennsylvania 15613 Gentiemen: (1 i' \ (. \ In accordance with your application dated June 18, 1979, and pursuant to Title 10, Code of Federal Regulations, Part 70, Materials License SNM-414 is hereby amended to: 1. Delete the function of the Regulatory Projects Coordinator, and 2. Alter the experience requirements for the function of Licensing and Nuclear Safety Specialist. Replacement pages for the license and condition section of the application are attached. Included are changes to License SNM-414 pages to reflect

28

Promulgating Nuclear Safety Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

1996-05-15T23:59:59.000Z

29

Indexes to Nuclear Regulatory Commission issuances, January--March 1997  

SciTech Connect (OSTI)

This document provides digests and indexes for issuances of the Nuclear Regulatory Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors Decisions, and the Decisions on Petitions for Rulemaking. These indexes and digests are intended to serve as a guide to the issuances.

NONE

1997-08-01T23:59:59.000Z

30

Nuclear Facility Safety Basis  

Broader source: Energy.gov (indexed) [DOE]

Safety Basis Safety Basis FUNCTIONAL AREA GOAL: A fully compliant Nuclear Facility Safety Basis. Program is implemented and maintained across the site. REQUIREMENTS:  10 CFR 830 Subpart B Guidance:  DOE STD 3009  DOE STD 1104  DOE STD  DOE G 421.1-2 Implementation Guide For Use in Developing Documented Safety Analyses To Meet Subpart B Of 10 CFR 830  DOE G 423.1-1 Implementation Guide For Use In Developing Technical Safety Requirements  DOE G 424.1-1 Implementation Guide For Use In Addressing Unreviewed Safety Question Requirements Performance Objective 1: Contractor Program Documentation The site contractor has developed an up-to-date, comprehensive, compliant, documented nuclear facility safety basis and associated implementing mechanisms and procedures for all required nuclear facilities and activities (10 CFR

31

Blue Ribbon Commission on America's Nuclear Future Report to...  

Energy Savers [EERE]

Blue Ribbon Commission on America's Nuclear Future Report to the Secretary of Energy Blue Ribbon Commission on America's Nuclear Future Report to the Secretary of Energy The Blue...

32

Blue Ribbon Commission on Americas Nuclear Future...  

Broader source: Energy.gov (indexed) [DOE]

Future&0; Blue Ribbon Commission on America&8217;s Nuclear Future&0; Blue Ribbon Commission on America&8217;s Nuclear Future&0; More Documents & Publications Document...

33

Nuclear Regulatory Commission issuances, July 1987  

SciTech Connect (OSTI)

This report includes the issuances received during the specified period from the Commission (CLI), the Atomic Safety and Licensing Appeal Boards (ALAB), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judge (ALJ), the Directors' Decisions (DD), and the Denials of Petitions for Rulemaking (DPRM).

Not Available

1987-07-01T23:59:59.000Z

34

Nuclear Regulatory Commission issuances, October 1987  

SciTech Connect (OSTI)

This report includes the issuances received during the specified period from the Commission (CLI), the Atomic Safety and Licensing Appeal Boards (ALAB), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judge (ALJ), the Directors' Decisions (DD), and the Denials of Petitions for Rulemaking (DPRM).

Not Available

1987-10-01T23:59:59.000Z

35

2012 Nuclear Safety Workshop Presentations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations 2012 Nuclear Safety Workshop Presentations Wednesday, September 19 - Plenary Session September 19, 2012 Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company September 19, 2012 A Commissioner's Perspective on USNRC Actions in Response to the Fukushima Nuclear Accident Presenter: Honorable William C. Ostendorff, Commissioner US Nuclear Regulatory Commission September 19, 2012 International Perspective on Fukushima Accident Presenter: Miroslav Lipár, Head, Operational Safety Section, Department of

36

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

2009-04-14T23:59:59.000Z

37

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

2009-04-14T23:59:59.000Z

38

ORISE: U.S. Nuclear Regulatory Commission Radiation Exposure Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information and Reporting System (REIRS) Information and Reporting System (REIRS) ORISE maintains large database of radiation exposure records for the U.S. Nuclear Regulatory Commission U.S. Nuclear Regulatory Commission Radiation Exposure Information and Reporting System (REIRS) The U.S. Nuclear Regulatory Commission (NRC) is required by federal mandate to maintain and evaluate radiation protection data for workers at facilities that it licenses. As part of its mission of safety, the NRC operates the Radiation Exposure Information and Reporting System (REIRS), a database system containing all occupational radiation exposure records that have been submitted to the NRC under 10 CFR Part 20. REIRS encompasses 1,800-plus NRC licensees and contains more than five million records for more than one million monitored individuals.

39

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

2006-06-12T23:59:59.000Z

40

Office of Nuclear Facility Safety Programs  

Broader source: Energy.gov [DOE]

The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Notices Safety Commission, 4330 East West  

Broader source: Energy.gov (indexed) [DOE]

0 Federal Register 0 Federal Register / Vol. 77, No. 8 / Thursday, January 12, 2012 / Notices Safety Commission, 4330 East West Highway, Bethesda, MD 20814, (301) 504-7923. Dated: January 10, 2012. Todd A Stevenson, Secretary. [FR Doc. 2012-625 Filed 1-10-12; 4:15 pm] BILLING CODE 6355-01-P CORPORATION FOR NATIONAL AND COMMUNITY SERVICE Information Collection; Submission for OMB Review, Comment Request AGENCY: Corporation for National and Community Service. ACTION: Notice. SUMMARY: The Corporation for National and Community Service (the Corporation), has submitted a public information collection request (ICR) entitled Day of Service Project Promotion Tool for review and approval in accordance with the Paperwork Reduction Act of 1995, Public Law 104- 13, (44 U.S.C. chapter 35). Copies of this

42

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

2006-06-12T23:59:59.000Z

43

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2  

SciTech Connect (OSTI)

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

Weiss, A. J. [comp.

1988-02-01T23:59:59.000Z

44

Nuclear Safety Workshop Summary  

Broader source: Energy.gov (indexed) [DOE]

Workshop Summary Workshop Summary September 19-20, 2012 1 Nuclear Safety Workshop Summary On September 19-20, 2012, the U.S. Department of Energy (DOE) held a second Nuclear Safety Workshop covering the results of the Department's actions to improve its posture for analyzing and responding to severe accidents in light of lessons learned from the March 2011 nuclear accident in Japan. Sponsored by DOE and championed by Deputy Secretary of Energy Daniel Poneman, the two-day workshop discussed the lessons learned in a national and international context. The workshop's theme

45

CRAD, Nuclear Safety Delegations for Documented Safety Analysis...  

Office of Environmental Management (EM)

Nuclear Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

46

Nuclear Regulatory Commission Handling of Beyond Design Basis Events for Nuclear Power Reactors  

Broader source: Energy.gov [DOE]

Presenter: Bill Reckley, Chief, Policy and Support Branch, Japan Lessons-Learned Project Directorate, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission US Nuclear Regulatory Commission

47

Nuclear Safety Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

[6450-01-P] [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Part 830 Nuclear Safety Management AGENCY: Department of Energy (DOE). ACTION: Final Rule. SUMMARY: The Department of Energy (DOE) is issuing a final rule regarding Nuclear Safety Management. This Part establishes requirements for the safe management of DOE contractor and subcontractor work at the Department's nuclear facilities. Today's rule adopts the sections that will make up the generally applicable provisions for Part 830. It also adopts the specific section on provisions for developing and implementing a formalized quality assurance program. EFFECTIVE DATE: This regulation becomes effective [insert 30 days after publication in the Federal Register.] FOR FURTHER INFORMATION CONTACT: Frank Hawkins, U.S. Department of Energy, Nuclear Safety

48

Nuclear Regulatory Commission issuances, Volume 44, No. 4  

SciTech Connect (OSTI)

This report includes the issuances received in October 1996. Issuances are from the Commission, the Atomic Safety and Licensing Boards, and the Directors` Decisions. 15 issuances were received and are abstracted individually in the database: Louisiana Energy Services, U.S. Enrichment Corporation, Yankee Atomic Electric Company, General Public Utilities Nuclear Corporation, James L. Shelton, Juan Guzman, Northern States Power Company, TESTCO Inc., Washington Public Power Supply System, all nuclear plants, Cleveland Electric Illuminating Company, Duke Power Company, Florida Power Corporation, and Northeast Nuclear Energy Company (2 issuances). No issuances were received from the the Administrative Law Judges or the Decisions on Petitions for Rulemaking.

NONE

1996-10-01T23:59:59.000Z

49

Department of Energy Commends the Nuclear Regulatory Commission...  

Energy Savers [EERE]

Commission's Approval of a Second Early Site Permit in Just One Month Department of Energy Commends the Nuclear Regulatory Commission's Approval of a Second Early Site Permit...

50

Nuclear Safety News | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety News Nuclear Safety News October 4, 2012 Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations The U.S....

51

Nuclear Explosive Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

2009-04-14T23:59:59.000Z

52

Nuclear Explosive Safety Evaluation Processes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

2009-04-14T23:59:59.000Z

53

Nuclear Regulatory Commission issuances. Opinions and decisions of the Nuclear Regulatory Commission with selected orders, July 1, 1990--December 31, 1990: Volume 32  

SciTech Connect (OSTI)

This thirty-second volume of issuances (1--496) of the Nuclear Regulatory Commission and its Atomic Safety and Licensing Appeal Boards, Atomic Safety and Licensing Boards, and Administrative Law Judges it covers the period from July 1, 1990 to December 31, 1990. The hardbound edition of the Nuclear Regulatory commission Issuances is a final compilation of the monthly issuances. It includes all of the legal precedents for the agency within a six-month period. Any opinions, decisions, denials, memoranda and orders of the Commission inadvertently omitted from the monthly softbounds and any corrections submitted by the NRC legal staff to the printed softbound issuances are contained in the hardbound edition. Cross references in the text and indexes are to the NRCI page numbers which are the same as the page numbers in this publication. Issuances are referred to as follows: Commission--CLI, Atomic Safety and Licensing Appeal Boards--ALAB, Atomic Safety and Licensing Boards--LBP, Administrative Law Judges--ALJ, Directors`Decisions--DD, and Denial of Petitions for Rulemaking--DPRM. Specific facilities discussed are: Carroll County Nuclear Station; Palo Verde Nuclear Generating Station; Perry Nuclear Power Plant; Quad Cities Nuclear Power Stations; Seabrook Station; Shoreham Nuclear Generating Plant; Vermont Yankee Nuclear Power Station; and Vogtle Electric Generating Plant.

Not Available

1990-12-31T23:59:59.000Z

54

Application of Risk Assessment and Management to Nuclear Safety |  

Broader source: Energy.gov (indexed) [DOE]

Application of Risk Assessment and Management to Nuclear Safety Application of Risk Assessment and Management to Nuclear Safety Application of Risk Assessment and Management to Nuclear Safety September 20, 2012 Presenter: Commissioner George Apostolakis US Nuclear Regulatory Commission Topics covered: Management of (unquantified at the time) uncertainty was always a concern. Defense-in-depth and safety margins became embedded in the regulations. "Defense-in-Depth is an element of the NRC's safety philosophy that employs successive compensatory measures to prevent accidents or mitigate damage if a malfunction, accident, or naturally caused event occurs at a nuclear facility." [Commission's White Paper, February 1999] Design Basis Accidents are postulated accidents that a nuclear facility must be designed and built to withstand without loss to the

55

Enhancing nuclear power safety  

Science Journals Connector (OSTI)

Through its ClydeUnion Pumps brand, SPX has a long history of providing pumps to the nuclear power industry and is working to help provide solutions that enhance vital safety systems on these plants. Compared with traditional alternatives, its TWL steam turbine driven pump is designed to increase the reliability of systems that provide heat removal from pressurised water reactors and boiling water reactors during extended emergency periods.

2014-01-01T23:59:59.000Z

56

Blue Ribbon Commission on America's Nuclear Future  

Broader source: Energy.gov (indexed) [DOE]

Blue Ribbon Commission on America's Nuclear Future Blue Ribbon Commission on America's Nuclear Future Agenda March 25 - 26, 2010 Willard Intercontinental Hotel, Washington, DC Thursday, March 25, 2010 Open Meeting - Grand Ballroom 11:00 a.m. Open meeting/review agenda Tim Frazier 11:10 a.m. Opening comments from Secretary Chu 11:25 a.m. Opening discussion - Co-chairs Honorable Lee Hamilton General Brent Scowcroft 11:35 a.m. Opening discussion - members Honorable Pete Domenici Honorable Chuck Hagel Honorable Phil Sharp Mr. Mark H. Ayers Honorable Vicky Bailey Dr. Albert Carnesale Ms. Susan Eisenhower Mr. Jonathan Lash Dr. Allison Macfarlane Dr. Richard A. Meserve Dr. Ernie Moniz Mr. John Rowe Dr. Per F. Peterson 12:30 p.m. Lunch

57

Department of Energy and Nuclear Regulatory Commission Increase Cooperation  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Regulatory Commission Increase Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership July 17, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) expanded cooperation for President Bush's Global Nuclear Energy Partnership (GNEP) through a Memorandum of Understanding (MOU) that was signed on Friday by DOE's GNEP Deputy Program Manager Paul Lisowski and NRC Executive Director for Operations Luis Reyes. The MOU establishes the foundation for increased cooperation between DOE and NRC on technological research and engineering studies and marks another important milestone

58

NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555  

Office of Legacy Management (LM)

REGULATORY COMMISSION REGULATORY COMMISSION WASHINGTON, D. C. 20555 JAN 2 2 1982 -/ Departmznt'of Ene,rgy ATTN : Dr. William E. Mott, Director Environmental and Safety Engineering Division (EP-32) Washington, D.C. 20545 Dear Dr. Mott: Enclosed is the list of contaminated'or potentially contaminated sites that I promised to send you during our recent meeting. The sites have been broken down into the followi,ng four categories: 1. Sites with known contamination that have never been 1 icensed. 2. Formerly licensed sites with known contamination. 3. Currently licensed sites that are being decontaminated prior to decoronissioning. 4. A list of formerly licensed sites that need to be visited to determine if they have been properly decontaminated prior to decommissioning.

59

Nuclear Regulatory Commission issuances, Volume 46, No. 4  

SciTech Connect (OSTI)

This report includes the issuances received in October 1997. Issuances are from the Commission, the Atomic Safety and Licensing Boards, and the Directors` Decisions. Five issuances were received on the following subjects: (1) decontamination and decommissioning funding for Sequoyah Fuels Corporation and General Atomics; (2) involvement in NRC-licensed activities by Aharon Ben-Haim; (3) Barnett Industrial X-Ray, Inc.; (4) spent fuel storage installation at Northern States Power Company; and (5) Vermont Yankee Nuclear Power Station. No issuances were received from the the Administrative Law Judges or the Decisions on Petitions for Rulemaking.

NONE

1997-10-01T23:59:59.000Z

60

United States Nuclear Regulatory Commission staff practice and procedure digest  

SciTech Connect (OSTI)

This Revision 9 of the fifth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to September 30, 1990 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 9 replaces in part earlier editions and revisions and includes appropriate changes reflecting the amendments to the Rules of Practice effective through September 30, 1990. This edition of the Digest was prepared by attorneys from Aspen Systems Corporation pursuant to Contract number 18-89-346. Persons using this Digest are placed on notice that it may not be used as an authoritative citation in support of any position before the Commission or any of its adjudicatory tribunals. Persons using this Digest are also placed on notice that it is intended for use only as an initial research tool, that it may, and likely does, contain errors, including errors in analysis and interpretation of decisions, and that the user should not rely on the Digest analyses and interpretations but must read, analyze and rely on the user's own analysis of the actual Commission, Appeal Board and Licensing Board decisions cited. Further, neither the United States, the Nuclear Regulatory Commission, Aspen Systems Corporation, nor any of their employees makes any expressed or implied warranty or assumes liability or responsibility for the accuracy, completeness or usefulness of any material presented in the Digest. The Digest is roughly structured in accordance with the chronological sequence of the nuclear facility licensing process as set forth in Appendix A to 10 CFR Part 2. Those decisions which did not fit into that structure are dealt with in a section on general matters. Where appropriate, particular decisions are indexed under more than one heading. (JF)

Not Available

1991-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Notices Safety Commission, 4330 East West  

National Nuclear Security Administration (NNSA)

SRS, and to irradiate the MOX fuel in commercial nuclear reactors used to generate electricity, thereby rendering the plutonium into a spent fuel form not readily usable in...

62

Report of the State of Nevada Commission on Nuclear Projects  

SciTech Connect (OSTI)

This third biennial Report of the Nevada Commission on Nuclear Projects has been prepared in fulfillment of the requirements of NRS 459.0092, which stipulates that the Commission shall report to the Governor and Legislature on any matter relating to radioactive waste disposal the Commission deems appropriate and advise and make recommendations on the policy of the State concerning nuclear waste disposal projects. Chapter One of the Report presents a brief overview of the Commission`s functions and statutory charges. It also contains a summary of developments which have affected the overall nuclear waste disposl issue since the last Commission Report was published in November, 1988. Chapter Two contains a synthesis of Commission activities and reports on the findings of the Commission relative to the geotechnical, environmental, socioeconomic, transportation, intergovernmental and legal aspects of federal and State nuclear waste program efforts.

NONE

1990-12-01T23:59:59.000Z

63

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

64

Nuclear Safety and Global Cooperation.  

E-Print Network [OSTI]

??The thesis of is to strengthen the capacity building of nuclear safety and disaster prevention all over the world from a preventive perspective, and to (more)

Chang, Yu-shan

2012-01-01T23:59:59.000Z

65

The Environmental Protection Agency's Safety Standards for Disposal of Spent Nuclear Fuel: Potential Path Forward in Response to the Report of the Blue Ribbon Commission on America's Nuclear Future - 13388  

SciTech Connect (OSTI)

Following the decision to withdraw the Yucca Mountain license application, the Department of Energy created a Blue Ribbon Commission (BRC) on America's Nuclear Future, tasked with recommending a national strategy to manage the back end of the nuclear fuel cycle. The BRC issued its final report in January 2012, with recommendations covering transportation, storage and disposal of spent nuclear fuel (SNF); potential reprocessing; and supporting institutional measures. The BRC recommendations on disposal of SNF and high-level waste (HLW) are relevant to the U.S. Environmental Protection Agency (EPA), which shares regulatory responsibility with the Nuclear Regulatory Commission (NRC): EPA issues 'generally applicable' performance standards for disposal repositories, which are then implemented in licensing. For disposal, the BRC endorses developing one or more geological repositories, with siting based on an approach that is adaptive, staged and consent-based. The BRC recommends that EPA and NRC work cooperatively to issue generic disposal standards-applying equally to all sites-early in any siting process. EPA previously issued generic disposal standards that apply to all sites other than Yucca Mountain. However, the BRC concluded that the existing regulations should be revisited and revised. The BRC proposes a number of general principles to guide the development of future regulations. EPA continues to review the BRC report and to assess the implications for Agency action, including potential regulatory issues and considerations if EPA develops new or revised generic disposal standards. This review also involves preparatory activities to define potential process and public engagement approaches. (authors)

Forinash, Betsy; Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Radiation Protection Division (United States)] [U.S. Environmental Protection Agency, Radiation Protection Division (United States)

2013-07-01T23:59:59.000Z

66

Safety Reports Series No. 11, Developing Safety Culture in Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities:...

67

Office of Nuclear Safety - Directives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives The HSS Office of Nuclear Safety is the responsible office for the development, interpretation, and revision of the following Department of Energy (DOE) directives. Go to DOE's Directives Web Page to view these directives. DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

68

Secretary Chu Announces Blue Ribbon Commission on America's Nuclear Future  

Broader source: Energy.gov (indexed) [DOE]

Blue Ribbon Commission on America's Nuclear Blue Ribbon Commission on America's Nuclear Future Secretary Chu Announces Blue Ribbon Commission on America's Nuclear Future January 29, 2010 - 12:00am Addthis Washington, D.C. - As part of the Obama Administration's commitment to restarting America's nuclear industry, U.S. Secretary of Energy Steven Chu today announced the formation of a Blue Ribbon Commission on America's Nuclear Future to provide recommendations for developing a safe, long-term solution to managing the Nation's used nuclear fuel and nuclear waste. The Commission is being co-chaired by former Congressman Lee Hamilton and former National Security Advisor Brent Scowcroft. In light of the Administration's decision not to proceed with the Yucca Mountain nuclear waste repository, President Obama has directed Secretary

69

Office of Nuclear Safety Enforcement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enforcement Office of Nuclear Safety Enforcement Office of Nuclear Safety Enforcement MISSION The Office of Nuclear Safety Enforcement implements the Department's nuclear safety...

70

Nuclear Safety Policy, Guidance & Reports | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety Policy, Guidance & Reports Nuclear Safety Policy, Guidance & Reports The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and...

71

Nuclear Reactor Safety Design Criteria  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

1993-01-19T23:59:59.000Z

72

Nuclear Explosive Safety Evaluation Processes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the nuclear explosive safety (NES) evaluation requirement of Department of Energy (DOE) Order (O) 452.2D, Nuclear Explosive Safety, dated 4/14/09. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-2.

2009-04-14T23:59:59.000Z

73

Secretary Chu Announces Blue Ribbon Commission on America's Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Blue Ribbon Commission on America's Blue Ribbon Commission on America's Nuclear Future Secretary Chu Announces Blue Ribbon Commission on America's Nuclear Future January 29, 2010 - 12:57pm Addthis As part of the Obama Administration's commitment to restarting America's nuclear industry, U.S. Secretary of Energy Steven Chu today announced the formation of a Blue Ribbon Commission on America's Nuclear Future to provide recommendations for developing a safe, long-term solution to managing the Nation's used nuclear fuel and nuclear waste. The Commission is being co-chaired by former Congressman Lee Hamilton and former National Security Advisor Brent Scowcroft. In light of the Administration's decision not to proceed with the Yucca Mountain nuclear waste repository, President Obama has directed Secretary

74

Nuclear safety | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

safety Subscribe to RSS - Nuclear safety Actions taken to prevent nuclear and radiation accidents or to limit their consequences. A farewell to arms? Scientists developing a novel...

75

Nuclear Safety Reporting Criteria | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reporting Criteria Nuclear Safety Reporting Criteria January 1, 2012 Nuclear Safety Noncompliances Associated With Occurrences (DOE Order 232.2) These tables provide the criteria...

76

Independent Activity Report, Defense Nuclear Facilities Safety...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October...

77

Nuclear Safety Regulatory Framework | Department of Energy  

Energy Savers [EERE]

Presentation that outlines the rules, policies and orders that comprise the Department of Energy Nuclear Safety Regulatory Framework. Nuclear Safety Regulatory Framework More...

78

Energy Praises the Nuclear Regulatory Commission Approval of the First  

Broader source: Energy.gov (indexed) [DOE]

Praises the Nuclear Regulatory Commission Approval of the Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years March 8, 2007 - 10:28am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today commended the Nuclear Regulatory Commission's decision to approve the first-ever Early Site Permit (ESP) for the Exelon Generation Company's Clinton site, in central Illinois. This decision marks a major milestone in the President's plan to expand the use of safe and clean nuclear power. As part of President Bush's Advanced Energy Initiative - which seeks to change the way we power this nation - nuclear power will play an increasingly

79

Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory Commission  

Office of Legacy Management (LM)

111989 111989 Mr. John Kinneman, Chief Nuclear Materfals Branch Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia. Pennsylvania 19406 Dear Mr. Kinneman: -;' .-. 'W Enclosed are the copfes of the final ORNL survey reports on the radiologlcal Surveys conducted on three Teterboro, New Jersey properties; Metpath Incorporated, Allied Aerospace Corporatio; and Sumftomo Machinery Corporation. Copies of these reports have &en sent directly to the owners by our survey contractor Oak Ridge National Laboratory. If you have any questions regardfng these reports. please call me at (301) 353-5439. Sfncerely, Enclosure : < I j i Andrew Wallo III, Designation and Certffication Manager Dfvisfon 01 Facility and Site Oeconanlssionfng Projects

80

Safety Related Applications (Sensors and Instrumentation and NDE) - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Office of DOE Office of Nuclear Energy, Science, and Technology Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Safety-Related Applications Overview DOE Office of Nuclear Energy, Science, and Technology Nuclear Regulatory Commission National Aeronautics and Space Administration (NASA) Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Safety Related Applications Bookmark and Share DOE Office of Nuclear Energy, Science, and Technology The objective of this Nuclear Energy Plant Optimization Project is to

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION BEFORE THE COMMISSION  

Broader source: Energy.gov (indexed) [DOE]

COMMISSION COMMISSION ) In the Matter of ) July 19,2010 1 U.S. DEPARTMENT OF ENERGY 1 Docket No. 63-001-HLW 1 (High Level Waste Repository 1 Construction Authorization Application) ) ) U.S. DEPARTMENT OF ENERGY'S REPLY BRIEF IN SUPPORT OF REVIEW AND REVERSAL OF THE BOARD'S RULING ON THE MOTION TO WITHDRAW Scott Blake Harris Donald P. Irwin Sean A. Lev Michael R. Shebelskie James Bennett McRae HUNTON & WILLIAMS LLP U.S. DEPARTMENT OF ENERGY Riverfront Plaza, East Tower Office of General Counsel 95 1 East Byrd Street Department of Energy Richmond, Virginia 232 19-4074 1000 Independence Avenue, S. W. Washington, D.C. 20585 Counsel for the U.S. Department of Energy Table of Contents Page . . ........................................................................................................................ Table of Authorities

82

CRAD, Facility Safety - Nuclear Facility Safety Basis | Department of  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Nuclear Facility Safety Basis More Documents & Publications CRAD, Facility Safety - Unreviewed Safety Question Requirements Site Visit Report, Livermore Site Office - February 2011 FAQS Job Task Analyses - Nuclear Safety Specialist

83

Department of Energy Commends the Nuclear Regulatory Commission's Approval  

Broader source: Energy.gov (indexed) [DOE]

Commends the Nuclear Regulatory Commission's Commends the Nuclear Regulatory Commission's Approval of a Second Early Site Permit in Just One Month Department of Energy Commends the Nuclear Regulatory Commission's Approval of a Second Early Site Permit in Just One Month March 27, 2007 - 12:10pm Addthis The Entergy Corporation's Grand Gulf Site in Mississippi Receives NRC Approval for an ESP WASHINGTON, DC - The U.S. Department of Energy (DOE) today applauded the Nuclear Regulatory Commission's (NRC) decision to approve an Early Site Permit (ESP) for the Entergy Corporation's Grand Gulf Nuclear Station in Mississippi. This approval, the second ESP this month, demonstrates another major milestone in President Bush's Advanced Energy Initiative, which plans to expand the use of safe and clean nuclear power. Earlier this

84

Nuclear Regulatory Commission Regulatory and Licensing Matters | Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory Commission Regulatory and Licensing Matters Regulatory Commission Regulatory and Licensing Matters Nuclear Regulatory Commission Regulatory and Licensing Matters GC-52 provides legal advice to DOE regarding Nuclear Regulatory Commission (NRC) regulatory and licensing matters of interest to DOE, either as an NRC license applicant or in connection with related authorities and responsibilities of DOE and NRC on nuclear material, nuclear waste, and nuclear nonproliferation matters. GC-52 attorneys provide advice and support on a variety of NRC matters including regulation and licensing of DOE independent spent fuel storage facilities (ISFSIs) and a mixed-oxide fuel fabrication facility, consultation with NRC on certain DOE waste determinations, and imports and exports of nuclear materials and radioactive sealed sources.

85

Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions |  

National Nuclear Security Administration (NNSA)

Explores Peaceful Uses of Nuclear Explosions | Explores Peaceful Uses of Nuclear Explosions | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions July 06, 1962

86

Office of Nuclear Facility Safety Programs: Nuclear Facility Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety (HS-30) Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us » Facility Representative Program

87

Nuclear Safety: Software Quality Assurance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Safety: Software Quality Assurance Nuclear Safety: Software Quality Assurance cd Welcome to the Department of Energy's Office of Health, Safety and Security (HSS) Software Quality Assurance (SQA) homepage. The purpose of this Web site is to promote continuous improvement and the sharing of knowledge of safety software quality assurance among interested parties across the DOE complex. It consolidates information and contains links to subject matter experts, procedures, training material, program descriptions, good practices, lessons learned and the Central Registry Toolbox Codes. The Portal also provides capabilities for member collaboration in product development and threaded discussions. Central Registry: The Central Registry provides a library of DOE "Toolbox" Codes covering site boundary accident dose consequences, fire accident source terms, leakpath factors, chemical release/dispersion and consequence, and radiological dispersion and consequence.

88

NUCLEAR REGULATORY,.COMMISSION REGION I  

Office of Legacy Management (LM)

REGULATORY,.COMMISSION REGULATORY,.COMMISSION REGION I lY,.COMMISSION 475 ALLENDALE ROAD KlNG OF PRUSSIA. PENNSYLVANIA 194061415 GION I NOALE ROAD ENNSYLVANlA 194061415 MAY I5 1996 MAY I5 1996 Docket No. 040-07964 License No. SlJ (Rs Heyman Properties Attention: Mr. John S. Russo Facility Manager 333 Post Road West Westport, CT 06881 SUBJECT: INSPECTION NO. 040-07964/96-001 Dear Mr. Russo: On April 15, 1996, Todd J. Jackson of this office conducted a routine inspection at 737 Canal Street, Stamford, Connecticut of activities o Oliver Incorporated, authorized by Atomic Energy Commission (AEC) Lit SUB-00967. The inspection consisted of observations by the inspect0 interviews with personnel, and a radiological survey by the inspector Jackson was accompanied on this inspection by representatives of the

89

Transportation Security Rulemaking Activities at the U.S. Nuclear Regulatory Commission  

Broader source: Energy.gov (indexed) [DOE]

AT THE AT THE U.S. NUCLEAR REGULATORY COMMISSION R. Clyde Ragland, P.E. Office of Nuclear Security and Incident Response 2011 DOE National Transportation Stakeholders Forum May 11, 2011 2 NRC Focus Prior to September 11, 2001 * Historically, NRC Transportation Security Regulations Focused on Highest Risk Radioactive Material, consisted of Special Nuclear Material (SNM) and Spent Nuclear Fuel (SNF) NRC Actions Since September 11, 2001 * Domestically, reviewed materials transported by NRC licensees and re- evaluated security requirements considering: - applicable threats to shipments - material considerations - magnitude of adverse consequences * Internationally, participated in the development of the IAEA Code of Conduct on the Safety and Security of Radioactive

90

Nuclear Safety Information | Department of Energy  

Office of Environmental Management (EM)

Safety Information Nuclear Safety Information Idaho National Laboratory's Advanced Test Reactor (ATR) | April 8, 2009 Idaho National Laboratory's Advanced Test Reactor (ATR) |...

91

Nuclear Energy Institute (NEI) Attachment, Integrated Safety...  

Broader source: Energy.gov (indexed) [DOE]

Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an...

92

Nuclear Safety (Pennsylvania) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) Nuclear Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Safety and Operational Guidelines Provider Pennsylvania Department of Environmental Protection The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the activities associated with management and disposal of a low-level radioactive waste disposal facility in Pennsylvania and provides planning and support for Bureau response to incidents involving nuclear power plants and/or radioactive material in

93

Nuclear Regulatory Commission issuances: Opinions and decisions of the Nuclear Regulatory Commission with selected orders, July 1--December 31, 1996. Volume 44, Pages 1--432  

SciTech Connect (OSTI)

The hardbound edition of the Nuclear Regulatory Commission Issuances is a final compilation of the monthly issuances. It includes all of the legal precedents for the agency within a six-month period. Any opinions, decisions, denials, memoranda and orders of the Commission inadvertently omitted from the monthly softbounds and any corrections submitted by the NRC legal staff to the printed softbound issuances are contained in the hardbound edition. Cross references in the text and indexes are to the NRCI page numbers which are the same as the page numbers in this publication. Issuances are referred to as follows: Commission--CLI, Atomic Safety and Licensing Boards--LBP, Administrative Law Judges--ALJ, Directors` Decisions--DD, and Decisions on Petitions for Rulemaking--DPRM.

NONE

1997-10-01T23:59:59.000Z

94

Safety of Nuclear Explosive Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

2001-08-07T23:59:59.000Z

95

Autoclave nuclear criticality safety analysis  

SciTech Connect (OSTI)

Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

1991-12-31T23:59:59.000Z

96

2012 Nuclear Safety Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety » 2012 Nuclear Safety Workshop Nuclear Safety » 2012 Nuclear Safety Workshop 2012 Nuclear Safety Workshop Glenn Podonsky 1 of 13 Glenn Podonsky Glenn Podonsky (DOE Chief Health, Safety and Security Officer) provides his welcoming remarks. Daniel Poneman 2 of 13 Daniel Poneman DOE Deputy Secretary Daniel Poneman discusses maintaining our focus on nuclear safety. Akira Kawano 3 of 13 Akira Kawano Akira Kawano, Tokyo Electric Power Company, provides lessons learned from the Fukushima nuclear accident. Bill Ostendorff 4 of 13 Bill Ostendorff NRC Commissioner Bill Ostendorff gives his perspective on the NRC's response to the Fukushima nuclear accident. Miroslav Lipar 5 of 13 Miroslav Lipar Miroslav Lipar, IAEA, provides an international perspective on the Fukushima nuclear accident. Dr. Sonja Haber 6 of 13

97

Physics of nuclear reactor safety  

Science Journals Connector (OSTI)

Provides a concise review of the physical aspects of safety of nuclear fission reactors. It covers the developments of roughly the last decade. The introductory chapter contains an analysis of the changes in safety philosophy that are characteristic of the last decade and that have given rise to an increased importance of physical aspects because of the emphasis on passive or natural safety. The second chapter focuses on the basics of reactor safety, identifying the main risk sources and the main principles for a safe design. The third chapter concerns a systematic treatment of the physical processes that are fundamental for the properties of fission chain reacting processes and the control of those processes. Because of the rather specialized nature of the field of reactor physics, each paragraph contains a very concise description of the theory of the phenomenon under consideration, before presenting a review of the developments. Chapter 4 contains a short review of the thermal aspects of reactor safety, restricted to those aspects that are characteristic of the nuclear reactor field, because thermal hydraulics of fission reactors is not principally different from that of other physical systems. In chapter 5 the consequences of the physics treated in the preceding chapters for the dynamics and safety of actual reactors are reviewed. The systematics of the treatment is mainly based on a division of reactors into three categories according to the type of coolant, which to a large extent determines the safety properties of the reactors. The last chapter contains a physical analysis of the Chernobyl accident that occurred in 1986. The reason for an attempt to give a review of this accident, as complete as possible within the space limits set by the editors, is twofold: the Chernobyl accident is the most severe accident in history and physical properties of the reactor played a decisive role, thereby serving as an illustration of the material of the preceding chapters.

H van Dam

1992-01-01T23:59:59.000Z

98

Nuclear Safety Information Dashboard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reporting » Analytical Dashboards » Nuclear Safety Reporting » Analytical Dashboards » Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting and Processing System (ORPS) to easily identify, organize, and analyze nuclear safety-related events reported into ORPS. The NSI Dashboard displays information developed from occurrence information reported into DOE's ORPS database. Events or conditions associated with nuclear safety are reported into ORPS, assigned unique ORPS reporting criteria and used for trending. ORPS reporting criteria are assigned a weighted value to indicate their relative importance to nuclear safety; associated ORPS reporting criteria are combined in key groups and charted over time to index trends in nuclear

99

Nuclear Regulatory Commission issuances: Volume 46, Number 6  

SciTech Connect (OSTI)

This report includes the issuances received during the specified period from the Commission (CLI), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judges (ALJ), the Directors` Decision (DD), and the Decision on Petitions for Rulemaking (DPRM). The summaries and headnotes preceding the opinions reported herein are not to be deemed a part of those opinions or have any independent legal significance.

NONE

1997-12-01T23:59:59.000Z

100

Indexes to Nuclear Regulatory Commission issuances, January--March 1996  

SciTech Connect (OSTI)

This publication is the 1st quarter 1996 index to issuances by the US NRC. These include issuances by the Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking.

NONE

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nuclear Regulatory Commission issuances. Volume 46, Number 1  

SciTech Connect (OSTI)

This report includes the issuances received during the specified period from the Commission (CLI), the Atomic Safety and Licensing Boards (LBP), the Administrative Law Judges (ALJ), the Directors` Decisions (DD), and the Decisions on Petitions for Rulemaking (DPRM). The summaries and headnotes preceding the opinions reported herein are not to be deemed a part of those opinions or have any independent legal significance.

NONE

1997-07-01T23:59:59.000Z

102

Nuclear Criticality Safety | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Criticality Safety Criticality Safety SHARE Criticality Safety Nuclear Criticality Safety ORNL is the lead national laboratory responsible for supporting the National Nuclear Security Administration (NNSA) in managing the US Nuclear Criticality Safety Program. NCSP is chartered to maintain the technical infrastructure (integral experiments, computational tools, training, data, etc.) needed to support safe, efficient fissionable material operations. ORNL has extensive expertise in the area of nuclear criticality safety (NCS) based upon years of experience in the following areas: Operations Support: providing fissionable material operations support for enrichment, fabrication, production, and research; Critical Experiments: performing experiments at the Y-12 Critical Experiment Facility;

103

Special committee review of the Nuclear Regulatory Commission's severe accident risks report (NUREG--1150)  

SciTech Connect (OSTI)

In April 1989, the Nuclear Regulatory Commission's (NRC) Office of Nuclear Regulatory Research (RES) published a draft report Severe Accident Risks: An Assessment for Five US Nuclear Power Plants,'' NUREG-1150. This report updated, extended and improved upon the information presented in the 1974 Reactor Safety Study,'' WASH-1400. Because the information in NUREG-1150 will play a significant role in implementing the NRC's Severe Accident Policy, its quality and credibility are of critical importance. Accordingly, the Commission requested that the RES conduct a peer review of NUREG-1150 to ensure that the methods, safety insights and conclusions presented are appropriate and adequately reflect the current state of knowledge with respect to reactor safety. To this end, RES formed a special committee in June of 1989 under the provisions of the Federal Advisory Committee Act. The Committee, composed of a group of recognized national and international experts in nuclear reactor safety, was charged with preparing a report reflecting their review of NUREG-1150 with respect to the adequacy of the methods, data, analysis and conclusions it set forth. The report which precedes reflects the results of this peer review.

Kouts, H.J.C. (Defense Nuclear Facility Safety Board (USA)); Apostolakis, G.; Kastenberg, W.E. (California Univ., Los Angeles, CA (USA)); Birkhofer, E.H.A. (Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany, F.R.)); Hoegberg, L.G. (Swedish Nuclear Power Inspectorate, Stockholm (Sweden)); LeSage, L.G. (Argonne National Lab., IL (USA)); Rasmussen, N.C. (Massachusetts Inst. of Tech., Camb

1990-08-01T23:59:59.000Z

104

Chapter 30 - Nuclear Energy and Safety  

Science Journals Connector (OSTI)

Safety in nuclear industries is a very serious topic due to its greater accident consequence as seen in Chernobyl, and also due to the pictorial perceptions of nuclear accidents being similar to the Hiroshima and Nagasaki nuclear explosions. This chapter points out some important safety aspects of the nuclear industry. Beginning with the current laws and regulations of nuclear safety, this chapter reviews different types of nuclear reactors, nuclear waste treatment systems, reliability of nuclear system, operations of reactors, incident reporting, and a short review of previous accident history. Finally, historical Rasmussen reports are reviewed.

Sam Mannan

2014-01-01T23:59:59.000Z

105

The Office of Nuclear Energy Announces Central Europe Nuclear Safety  

Broader source: Energy.gov (indexed) [DOE]

The Office of Nuclear Energy Announces Central Europe Nuclear The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague The Office of Nuclear Energy Announces Central Europe Nuclear Safety Workshop in Prague October 3, 2011 - 2:04pm Addthis The Office of Nuclear Energy, in partnership with Czech Republic Ministry of Industry and Trade, Ministry of Foreign Affairs, the State Agency for Nuclear Safety of the Czech Republic, and Argonne National Laboratory, is conducting a regional Nuclear Safety Workshop on Trends in Nuclear Power Plant Safety for Robust Civil Nuclear Programs on Oct. 10-13, 2011 in Prague. U.S. Ambassador Norman Eisen and Department of Energy Assistant Secretary for Nuclear Energy Dr. Pete Lyons will deliver speeches welcoming participants. Representatives from the Czech Republic, Bulgaria, Lithuania,

106

Nuclear safety information sharing agreement between NRC and...  

Office of Environmental Management (EM)

Nuclear safety information sharing agreement between NRC and DOE's Office of Environment, Health, Safety and Security Nuclear safety information sharing agreement between NRC and...

107

CRAD, New Nuclear Facility Documented Safety Analysis and Technical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements - December 2, 2014 (EA CRAD 31-07, Rev. 0) CRAD, New Nuclear Facility Documented Safety Analysis...

108

Nuclear Regulatory Commission issuances. Opinions and decisions of the Nuclear Regulatory Commission with selected orders, July 1, 1994--December 31, 1994. Volume 40, Pages 1--387  

SciTech Connect (OSTI)

The hardbound edition of the Nuclear Regulatory Commission Issuances is a final compilation of the monthly issuances. It includes all of the legal precedents for the agency within a six-month period. Any opinions, decisions, denials, memoranda and orders of the Commission inadvertently omitted from the monthly softbounds and any corrections submitted by the NRC legal staff to the printed softbound issuances are contained in the hardbound edition. Cross references in the text and indexes are to the NRCI page numbers which are the same as the page numbers in this publication. This book covers the following: issuances of the NRC; issuances of the Atomic Safety and Licensing Boards; and issuances of Directors` decisions.

NONE

1994-12-31T23:59:59.000Z

109

Inherent safety concepts in nuclear power reactors  

Science Journals Connector (OSTI)

Different inherent safety concepts being considered in fast and thermal reactors are presented after outlining the basic goals of nuclear reactor safety, the defence in depth philosophy to achieve these goal...

O M Pal Singh; R Shankar Singh

1989-06-01T23:59:59.000Z

110

Nuclear Plant Dynamics and Safety - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis > Nuclear Plant Dynamics and Safety Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Nuclear Plant Dynamics and Safety Bookmark and Share Activities in Nuclear Plant Dynamics and Safety research and development fulfill a primary goal of the Nuclear Engineering (NE) Division to promote improvements in safe and reliable operation of present and future

111

Software Quality Assurance for Nuclear Safety Systems  

SciTech Connect (OSTI)

The US Department of Energy has undertaken an initiative to improve the quality of software used to design and operate their nuclear facilities across the United States. One aspect of this initiative is to revise or create new directives and guides associated with quality practices for the safety software in its nuclear facilities. Safety software includes the safety structures, systems, and components software and firmware, support software and design and analysis software used to ensure the safety of the facility. DOE nuclear facilities are unique when compared to commercial nuclear or other industrial activities in terms of the types and quantities of hazards that must be controlled to protect workers, public and the environment. Because of these differences, DOE must develop an approach to software quality assurance that ensures appropriate risk mitigation by developing a framework of requirements that accomplishes the following goals: {sm_bullet} Ensures the software processes developed to address nuclear safety in design, operation, construction and maintenance of its facilities are safe {sm_bullet} Considers the larger system that uses the software and its impacts {sm_bullet} Ensures that the software failures do not create unsafe conditions Software designers for nuclear systems and processes must reduce risks in software applications by incorporating processes that recognize, detect, and mitigate software failure in safety related systems. It must also ensure that fail safe modes and component testing are incorporated into software design. For nuclear facilities, the consideration of risk is not necessarily sufficient to ensure safety. Systematic evaluation, independent verification and system safety analysis must be considered for software design, implementation, and operation. The software industry primarily uses risk analysis to determine the appropriate level of rigor applied to software practices. This risk-based approach distinguishes safety-critical software and applies the highest level of rigor for those systems. DOE has further defined a risk approach to nuclear safety system software consistent with the analyses required for operation of nuclear facilities. This requires the grading of software in terms of safety class and safety significant structures, systems and components (SSCs). Safety-class SSCs are related to public safety where as safety-significant SSCs are identified for specific aspects of defense-in-depth and worker safety. Industry standards do not directly categorize nuclear safety software and DOE sites are not consistent in their approach to nuclear safety software quality assurance. DOE is establishing a more detailed graded approach for software associated with safety class and safety significant systems. This paper presents the process and results that DOE utilized to develop a detailed classification scheme for nuclear safety software.

Sparkman, D R; Lagdon, R

2004-05-16T23:59:59.000Z

112

Nuclear Regulatory Commission's Integrated Strategy for Spent Fuel Management  

Broader source: Energy.gov (indexed) [DOE]

NRC's NRC's Integrated Strategy for NRC s Integrated Strategy for Spent Fuel Management Earl Easton 1 U.S. Nuclear Regulatory Commission May 25, 2010 Road to Yucca Mountain * 20+ years of preparation for the licensing i review * DOE application received in June 2008 and accepted for review in September 2008 * President Obama pursues alternatives to Yucca Mountain * DOE motion to withdraw in March 2010 2 * DOE motion to withdraw in March 2010 * Blue Ribbon Commission on America's Nuclear Future 2 Growing Spent Fuel Inventory Cumulative Used Nuclear Fuel Scenarios 50,000 100,000 150,000 200,000 250,000 Metric Tons 3 - 50,000 2010 2015 2020 2025 2030 2035 2040 2045 2050 Year Reference: Crozat, March 2010 Integrated Strategy * In response to the evolving national debate on spent fuel management strategy, NRC initiated a number of actions:

113

Indexes to Nuclear Regulatory Commission Issuances, January 1996--June 1996  

SciTech Connect (OSTI)

Digests and indexes for issuances of the Commission, the Atomic Safety and Licensing Board Panel, The Administrative Law Judges, the Director`s Decisions, and the Decisions on Petitions for Rulemaking are presented in this document. The digests and indexes are intended to serve as a guide to the issuances. Information elements common the cases hear and ruled upon are displayed in one or more of five formats: case name index, headers and digests, legal citations index, subject index, and facility index.

NONE

1996-09-01T23:59:59.000Z

114

DOE Nuclear Criticality Safety Program - Nuclear Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Nuclear Criticality Safety Program DOE Nuclear Criticality Safety Program Nuclear Criticality Safety Overview Experience Analysis Tools Current NCS Activities Current R&D Activities DOE Criticality Safety Support Group (CSSG) Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr The DOE Nuclear Criticality Safety Program Bookmark and Share J. Morman and R. Bucher load J. Morman and R. Bucher load samples into the ZPR-6 critical assembly for material worth measurements. Click on image to view larger image. The DOE Nuclear Criticality Safety Program (NCSP) is focused on maintaining fundamental infrastructure that enables retention of DOE capabilities and expertise in nuclear criticality safety necessary to support line

115

Nuclear Regulatory Commission Issuances: February 1995. Volume 41, Number 2  

SciTech Connect (OSTI)

This book contains an issuance of the Nuclear Regulatory Commission and a Director`s Decision. The issuance concerns consideration by the Commission of appeals from both the Initial Decision and a Reconsideration Order issued by the Presiding Officer involving two materials license amendment applications filed by the University of Missouri. The Director`s Decision from the Office of Enforcement denies petitions filed by Northeast Utilities employees requesting that accelerated enforcement action be taken against Northeast Utilities for activities concerned with NU`s fitness-for-duty program.

NONE

1995-02-01T23:59:59.000Z

116

Nuclear Safety Research and Development Committee Charter  

Broader source: Energy.gov [DOE]

This Nuclear Safety Research & Development (NSR&D) Committee Charter provides the membership, roles, and responsibilities of the NSR&D Committee.

117

NUCLEAR SAFETY SPECIALIST QUALIFICATION STANDARD REFERENCE GUIDE  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Nuclear Safety Specialist Qualification Standard Reference Guide AUGUST 2008 This page is intentionally blank. i Table of Contents LIST OF FIGURES ..................................................................................................................... iv LIST OF TABLES ........................................................................................................................ v ACRONYMS ................................................................................................................................ vi PURPOSE...................................................................................................................................... 1 SCOPE ...........................................................................................................................................

118

Renovated Korean nuclear safety and security system: A review and suggestions to successful settlement  

SciTech Connect (OSTI)

Questions of whether past nuclear regulatory body of Korea is not a proper system to monitor and check the country's nuclear energy policy and utilization have been raised. Moreover, a feeling of insecurity regarding nuclear safety after the nuclear accident in Japan has spread across the public. This has stimulated a renovation of the nuclear safety regime in Korea. The Nuclear Safety and Security Commission (NSSC) was launched on October 26, 2011 as a regulatory body directly under the President in charge of strengthening independence and nuclear safety. This was a meaningful event as the NSSC it is a much more independent regulatory system for Korea. However, the NSSC itself does not guarantee an enhanced public acceptance of the nuclear policy and stable use nuclear energy. This study introduces the new NSSC system and its details in terms of organization structure, appropriateness of specialty, budget stability, and management system. (authors)

Chung, W. S.; Yun, S. W.; Lee, D. S. [Korea Atomic Energy Research Inst., Dukjin-dong 150, Yusung-gu, Daejon, R.O., 305-353 (Korea, Republic of); Go, D. Y. [Kyung Hee Univ., Kyung Hee daero 26, Dongdaemoon-gu, Seoul, R.O., 130-701 (Korea, Republic of)

2012-07-01T23:59:59.000Z

119

Public Service Commission and Natural Gas Safety Standards (Missouri)  

Broader source: Energy.gov [DOE]

This legislation establishes the state Public Service Commission, which has regulatory authority over the electric, gas, water, and telecommunications utilities. Section 386.572 of this legislation...

120

History of US nuclear weapon safety assessment: The early years  

SciTech Connect (OSTI)

From the beginnings of the U.S. nuclear weapons program, military and civilian dual- agency judgment has been fundamental to achieving nuclear weapon and weapon system safety. This interaction was initiated by the Atomic Energy Act of 1946, which created the Atomic Energy Commission (AEC). The principle of using dual-agency judgment has been perpetuated in the design and assessment of the weapon and weapon system acceptance process since that time. This fundamental approach is still used today in all phases of the weapon life. In this paper, an overview of the history and philosophy of the approach is described.

Spray, S.D.

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear Safety Information Agreement Between the U.S. Nuclear...  

Office of Environmental Management (EM)

Operations (NRC)), Jim O'Brien, Director, Office of Nuclear Safety (EHSS DOE), Robert Johnson (Chief, Fuel Manufacturing Branch (NRC)) Front Row: Matt Moury, Associate Under...

122

Nuclear Explosive Safety Study Process  

Broader source: Energy.gov (indexed) [DOE]

3015-2001 3015-2001 February 2001 Superseding DOE-STD-3015-97 January 1997 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY PROCESS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3015-2001 iii CONTENTS FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1. PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. SCOPE . . . . . . . . . . . . . . . . . . . . . . .

123

The history of nuclear weapon safety devices  

SciTech Connect (OSTI)

The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

Plummer, D.W.; Greenwood, W.H.

1998-06-01T23:59:59.000Z

124

CRAD, Nuclear Safety Component - June 29, 2011 | Department of...  

Office of Environmental Management (EM)

CRAD, Nuclear Safety Component - June 29, 2011 CRAD, Nuclear Safety Component - June 29, 2011 June 29, 2011 Nuclear Safety Component and Services Procurement (HSS CRAD 45-12, Rev....

125

Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10  

Broader source: Energy.gov [DOE]

Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

126

The Application of Risk-Based Cost-Benefit Analysis in the Assessment of Acceptable Public Safety for Nuclear Power Plants  

Science Journals Connector (OSTI)

In 1982, the U.S. Nuclear Regulatory Commission issued, for public comment, proposed safety goals for commercial nuclear power plants. In an effort to quantitatively evaluate these proposed goals, a methodolog...

Thomas A. Morgan; Alfred J. Unione; George Sauter

1985-01-01T23:59:59.000Z

127

Nuclear Regulatory Commission issuances, January 1995. Volume 41, Number 1  

SciTech Connect (OSTI)

This book contains issuances of the Atomic Safety and Licensing Boards for January 1995. The issuances include Babcock and Wilcox Company materials license; Hydro Resources, Inc. application for uranium mining; low-level waste storage in Utah; communication of emerging and existing generic, technical issues with PWR owners groups; and radioactive waste management by Sierra Nuclear Corporation.

NONE

1995-01-01T23:59:59.000Z

128

Improvements needed in the Nuclear Regulatory Commission's Office of Inspector and Auditor  

SciTech Connect (OSTI)

This report discusses the improvements needed in the Nuclear Regulatory Commission's Office of Inspector and Auditor. Also, we raise the possibility of Congress establishing an Office of Inspector General at the Commission. Such an office will ensure that the Congress and the Commissioners receive objective information on problems within the Commission and enhance public trust in the regulation of commercial nuclear power.

Not Available

1981-07-09T23:59:59.000Z

129

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of...

130

Nuclear Safety Enforcement Letter issued to Sandia Corporation...  

Energy Savers [EERE]

Nuclear Safety Enforcement Letter issued to Sandia Corporation Nuclear Safety Enforcement Letter issued to Sandia Corporation 9222014 Enforcement Letter, Sandia Corporation,...

131

Summary Pamphlet, Nuclear Safety at the Department of Energy...  

Office of Environmental Management (EM)

Summary Pamphlet, Nuclear Safety at the Department of Energy Summary Pamphlet, Nuclear Safety at the Department of Energy September 2010 This pamphlet is developed as part of the...

132

Nuclear Safety Research and Development Program Operating Plan...  

Broader source: Energy.gov (indexed) [DOE]

Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating...

133

Nuclear Safety Research and Development Annual Report, December...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Annual Report, December 2014 Nuclear Safety Research and Development Annual Report, December 2014 December 8, 2014 - 1:22pm Addthis Nuclear Safety Research...

134

Nuclear Navy United States Atomic Energy Commission Historical Advisory  

Broader source: Energy.gov (indexed) [DOE]

Navy Navy United States Atomic Energy Commission Historical Advisory Committee Chairman, Alfred D. Chandler, Jr. Harvard University John T. Conway Consolidated Edison Company Lauchlin M. Currie Carmel, California A. Hunter Dupree Brown University Ernest R. May Harvard University Robert P. Multhauf Smithsonian Institution Nuclear Navy 1946-1962 Richard G. Hewlett and Francis Duncan The University of Chicago Press Chicago and London The University of Chicago Press Chicago 60637 The University of Chicago Press Ltd., London Published 1974 Printed in the United States of America International Standard Book Number: 0-226-33219-5 Library of Congress Catalog Card Number: 74-5726 RICHARD G. HEWLETT is chief historian of the U. S. Atomic Energy Commission. He is coauthor, with Oscar E.

135

Comparison of radiation safety and nuclear explosive safety disciplines  

SciTech Connect (OSTI)

In August 1945, U.S. Navy Captain William Parsons served as the weaponeer aboard the Enola Gay for the mission to Hiroshima (Shelton 1988). In view of the fact that four B-29s had crashed and burned on takeoff from Tinian the night before, Captain Parsons made the decision to arm the gun-type weapon after takeoff for safety reasons (15 kilotons of TNT equivalent). Although he had no control over the success of the takeoff, he could prevent the possibility of a nuclear detonation on Tinian by controlling what we now call the nuclear explosive. As head of the Ordnance Division at Los Alamos and a former gunnery officer, Captain Parsons clearly understood the role of safety in his work. The advent of the pre-assembled implosion weapon where the high explosive and nuclear materials are always in an intimate configuration meant that nuclear explosive safety became a reality at a certain point in development and production not just at the time of delivery by the military. This is the only industry where nuclear materials are intentionally put in contact with high explosives. The agency of the U.S. Government responsible for development and production of U.S. nuclear weapons is the Department of Energy (DOE) (and its predecessor agencies). This paper will be limited to nuclear explosive safety as it is currently practiced within the DOE nuclear weapons

Winstanley, J. L.

1998-10-10T23:59:59.000Z

136

Report to the US Nuclear Regulatory Commission on Analysis and Evaluation of Operational Data, 1986  

SciTech Connect (OSTI)

This annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during calendar year 1986. Comments and observations are provided on operating experience at nuclear power plants and other NRC licensees, including results from selected AEOD studies; summaries of abnormal occurrences involving US nuclear plants; reviews of licensee event reports and their quality, reactor scram experience from 1984 to 1986, engineered safety features actuations, and the trends and patterns analysis program; and assessments of nonreactor and medical misadministration events. In addition, the report provides the year-end status of all recommendations included in AEOD studies, and listings of all AEOD reports issued from 1980 through 1986.

none,

1987-05-01T23:59:59.000Z

137

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 1, Plenary sessions, reactor licensing topics, NUREG-1150, risk analysis/PRA applications, innovative concepts for increased safety of advanced power reactors, severe accident modeling and analysis  

SciTech Connect (OSTI)

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 1, discusses the following: plenary sessions; reactor licensing; NUREG-1150; risk analysis; innovative concepts for increased safety of advanced power reactors; and severe accident modeling and analysis. Thirty-two reports have been cataloged separately.

Weiss, A.J. (comp.)

1988-02-01T23:59:59.000Z

138

Nuclear Safety Workshop Summary | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Workshop Summary Workshop Summary Nuclear Safety Workshop Summary September 19-20, 2012 Nuclear Safety Workshop Summary On September 19-20, 2012, the U.S. Department of Energy (DOE) held a second Nuclear Safety Workshop covering the results of the Department's actions to improve its posture for analyzing and responding to severe accidents in light of lessons learned from the March 2011 nuclear accident in Japan. Sponsored by DOE and championed by Deputy Secretary of Energy Daniel Poneman, the two-day workshop discussed the lessons learned in a national and international context. The workshop's theme was Post Fukushima Initiatives and Results, and included technical breakout sessions focused on beyond design basis events (BDBEs) analysis and response, safety culture, and risk assessment and management.

139

Code of Federal Regulations NUCLEAR SAFETY MANAGEMENT  

Broader source: Energy.gov [DOE]

This part governs the conduct of DOE contractors, DOE personnel, and other persons conducting activities (including providing items and services) that affect, or may affect, the safety of DOE nuclear facilities.

140

FAQS Reference Guide Nuclear Safety Specialist  

Broader source: Energy.gov [DOE]

This reference guide has been developed to address the competency statements in the November 2007 edition of DOE Standard DOE-STD-1183-2007, Nuclear Safety Specialist Functional Area Qualification Standard.

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear Safety Enforcement Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2001 Issued to CH2M Hill Hanford Group, Inc., related to Nuclear Safety Management at the Hanford Site Tank Farms March 19, 2001 Preliminary Notice of Violation, BNFL, Inc -...

142

Safety system augmentation at Russian nuclear power plants  

SciTech Connect (OSTI)

This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC power supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.

Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.; Reister, R.A. [Burns and Roe, Oradell, NJ (United States); [Department of Energy, Germantown, MD (United States)

1996-12-31T23:59:59.000Z

143

FAQS Qualification Card - Nuclear Safety Specialist | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety Specialist Nuclear Safety Specialist FAQS Qualification Card - Nuclear Safety Specialist A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-NuclearSafetySpecialist-2007.docx Description Nuclear Safety Specialist Qualification Card - 2007 FAQC-NuclearSafetySpecialist-2004.docx

144

The use of probabilistic risk assessment to satisfy the Nuclear Regulatory Commission`s maintenance rule  

SciTech Connect (OSTI)

Maintenance and inspection at nuclear power plants consumes a large portion of a utility`s resources, making resource allocation for such procedures vital. The NRC Maintenance Rule, due to be implemented in July of 1996, requires utilities to select systems, structures, and components (SSCS) important to safety and to develop a monitoring program to ensure that these SSCs are capable of fulfilling their intended functions. In light of these concerns, two ratios were developed to compare the risk significance of individual components with the amount of plant staff time, or burden, associated with inspecting the component. These risk/burden ratios point out existing disparities between current inspection practices and safety concerns. These ratios can be used to develop new inspection schedules constituting a more equitable risk to burden distribution.

Dubord, R.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering

1993-05-01T23:59:59.000Z

145

Nuclear and Facility Safety Policy Rules | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear and Facility Safety Policy Rules Nuclear and Facility Safety Policy Rules DOE provides safety requirements and guidance in a number of forms. One form in which we publish...

146

Nuclear Safety Research and Development (NSR&D) Program | Department...  

Office of Environmental Management (EM)

Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program The Nuclear Safety Research and Development (NSR&D) Program is managed by...

147

Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions...  

National Nuclear Security Administration (NNSA)

Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful...

148

Indexes to Nuclear Regulatory Commission issuances, July-December 1997  

SciTech Connect (OSTI)

Digests and indexes for issuances of the Commission, the Atomic Safety and Licensing Board Panel, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking are presented in this document. These digests and indexes are intended to serve as a guide to the issuances. Information elements common to the cases heard and ruled upon are: Case name (owner(s) of facility); Full text reference (volume and pagination); Issuance number Issues raised by appellants; Legal citations (cases, regulations, and statutes); Name of facility, Docket number; Subject matter of issues and/or rulings; Type of hearing (operating license, operating license amendment, etc); Type of issuance (memorandum, order, decision, etc.). These information elements are displayed in one or more of five separate formats: Case Name Index, Headers and Digests, Legal Citations Index, Subject Index, and Facility Index.

NONE

1998-05-01T23:59:59.000Z

149

Blue Ribbon Commission on America's Nuclear Future to Hold First Meeting |  

Broader source: Energy.gov (indexed) [DOE]

Blue Ribbon Commission on America's Nuclear Future to Hold First Blue Ribbon Commission on America's Nuclear Future to Hold First Meeting Blue Ribbon Commission on America's Nuclear Future to Hold First Meeting March 3, 2010 - 12:00am Addthis Washington, D.C. - On Thursday, March 25th and Friday, March 26th, the Blue Ribbon Commission on America's Nuclear Future, co-chaired by former Congressman Lee Hamilton and former National Security Advisor General Brent Scowcroft, will hold its first meeting in Washington, D.C. At the direction of President Obama, Secretary of Energy Steven Chu established the Blue Ribbon Commission to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and to provide recommendations for developing a safe, long-term solution to managing the Nation's used nuclear fuel and nuclear waste.

150

Nuclear Explosive Safety Study Functional Area Qualification Standard  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

A Nuclear Explosive Safety Study (NESS) is performed on all DOE Nuclear Explosive Operations (NEOs) in accordance with DOE O 452.1D, Nuclear Explosive and Weapon Surety Program; DOE O 452.2D, Nuclear Explosive Safety; and DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes.

2010-05-27T23:59:59.000Z

151

Nuclear Safety Enforcement Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enforcement » Nuclear Safety Enforcement Documents Enforcement » Nuclear Safety Enforcement Documents Nuclear Safety Enforcement Documents Documents Available for Download July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic Deficiencies in the Software Quality Assurance Program at the Lawrence Livermore National Laboratory February 12, 2013 Enforcement Letter, NEL-2013-02 Issued to Los Alamos National Security, LLC related to a Radiological Contamination Event at the Los Alamos Neutron Science Center at Los Alamos National Laboratory January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant October 23, 2012 Enforcement Letter, Controlled Power Company - WEL-2012-02

152

Office of Nuclear Safety Basis and Facility Design  

Broader source: Energy.gov [DOE]

The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

153

The development of regulatory expectations for computer-based safety systems for the UK nuclear programme  

SciTech Connect (OSTI)

The Nuclear Installations Inspectorate (NII) of the UK's Health and Safety Executive (HSE) has completed a review of their Safety Assessment Principles (SAPs) for Nuclear Installations recently. During the period of the SAPs review in 2004-2005 the designers of future UK naval reactor plant were optioneering the control and protection systems that might be implemented. Because there was insufficient regulatory guidance available in the naval sector to support this activity the Defence Nuclear Safety Regulator (DNSR) invited the NII to collaborate with the production of a guidance document that provides clarity of regulatory expectations for the production of safety cases for computer based safety systems. A key part of producing regulatory expectations was identifying the relevant extant standards and sector guidance that reflect good practice. The three principal sources of such good practice were: IAEA Safety Guide NS-G-1.1 (Software for Computer Based Systems Important to Safety in Nuclear Power Plants), European Commission consensus document (Common Position of European Nuclear Regulators for the Licensing of Safety Critical Software for Nuclear Reactors) and IEC nuclear sector standards such as IEC60880. A common understanding has been achieved between the NII and DNSR and regulatory guidance developed which will be used by both NII and DNSR in the assessment of computer-based safety systems and in the further development of more detailed joint technical assessment guidance for both regulatory organisations. (authors)

Hughes, P. J. [HM Nuclear Installations Inspectorate Marine Engineering Submarines Defence Nuclear Safety Regulator Serco Assurance Redgrave Court, Merton Road, Bootle L20 7HS (United Kingdom); Westwood, R.N; Mark, R. T. [FLEET HQ, Leach Building, Whale Island, Portsmouth, PO2 8BY (United Kingdom); Tapping, K. [Serco Assurance,Thomson House, Risley, Warrington, WA3 6GA (United Kingdom)

2006-07-01T23:59:59.000Z

154

Nuclear Nonproliferation and Arms Control Primer Prepared for the Blue Ribbon Commission on Americas Nuclear Future  

SciTech Connect (OSTI)

To provide a brief overview of key arms control and nonproliferation arrangements for the layperson that may be relevant to the Commission's comprehensive review of policies for managing the back end of the nuclear fuel cycle. Primer would be published by the Commission and made publicly available, probably as an appendix to a larger Commission report.

Williams, Laura S.

2011-05-25T23:59:59.000Z

155

Nuclear Safety Research and Development Annual Report, December 2014  

Broader source: Energy.gov [DOE]

This document is the first annual report of DOEs Nuclear Safety Research and Development (NSR&D) Program, managed by the Office of Nuclear Safety in the Office of Environment, Health, Safety and Security. The report includes a description of the program and summaries of R&D projects related to DOE (including NNSA) nuclear facility and operational safety.

156

US Nuclear Regulatory Commission Input to DOE Request for Information Smart  

Broader source: Energy.gov (indexed) [DOE]

US Nuclear Regulatory Commission Input to DOE Request for US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input. Comments relevant to the following two sections of the RFI: "Long Term Issues: Managing a Grid with High Penetration of New Technologies" and "Reliability and Cyber-Security," US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input More Documents & Publications Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Reply Comments of Entergy Services, Inc. Progress Energy draft regarding Smart Grid RFI: Addressing Policy and

157

FAQS Qualification Card - Nuclear Explosive Safety Study | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Explosive Safety Study Nuclear Explosive Safety Study FAQS Qualification Card - Nuclear Explosive Safety Study A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-NuclearExplosiveSafetyStudy.docx Description Nuclear Explosive Safety Study Qualification Card More Documents & Publications

158

DOE's Approach to Nuclear Facility Safety Analysis and Management  

Broader source: Energy.gov [DOE]

Presenter: Dr. James O'Brien, Director, Office of Nuclear Safety, Office of Health, Safety and Security, US Department of Energy

159

Chapter 6 - Nuclear-Powered Payload Safety  

Science Journals Connector (OSTI)

Abstract This chapter introduces the concepts of Space Nuclear Power Systems (SNPSs), describes the history and nature of these ingenious energy-generating machines. The basic principles of the Radioisotope Thermoelectric Generator (RTG) and the recently developed Stirling Radioisotope Generator (SRG) are explored and an account of their application in several extra-terrestrial missions is presented. Nuclear fission power as a promising alternative for future outer planet and extra-solar explorations is discussed. The flight safety review and launch approval processes for U.S., as well as the failures and accidents for U.S. and U.S.S.R. (Russian) nuclear powered space missions since 1961 are presented chronologically. A comprehensive probabilistic consequence analysis of all conceivable potential hazards associated with nuclear powered space flights is set out. The chapter concludes with how \\{SNPSs\\} must be designed with the built-in safety features to minimize accidents and to prevent radiation exposure.

Firooz A. Allahdadi; Sayavur I. Bakhtiyarov; Gregory D. Wyss; Gary F. Polansky; Joseph A. Sholtis; Curt D. Botts

2013-01-01T23:59:59.000Z

160

Office of Nuclear Safety and Environmental Assessments  

Broader source: Energy.gov [DOE]

The Office of Nuclear Safety and Environmental Assessments conducts assessments to provide critical feedback and objective information on programs and performance in protecting our workers, the public and environment from radiological hazards with a focus on hazardous nuclear facilities and operations. This information provides assurance to our stakeholders and identifies areas for improvement to our leadership to support the safe performance of the Departments mission.

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

June 2010, Risk Assessment in Support of DOE Nuclear Safety  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Safety Policy and Assistance Office of Nuclear Safety Policy and Assistance Nuclear Safety, Quality Assurance and Environment Information Notice June 2010 1 BACKGROUND & PURPOSE: On August 12, 2009, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2009-1, Risk Assessment Methodologies at Defense Nuclear Facilities. This recommendation focused on the need for clear direction on use of quantitative risk assessments in nuclear safety applications at defense nuclear facilities. The Department of Energy (DOE) is presently analyzing directives, standards, training, and other tools that may support more effective development and use of

162

September 10, 2003, Board Public Meeting - Nuclear Regulatory Commission Approach to Oversight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 25 63 carefully, also. In fact, I would like to put in the r e c o r d at this point a letter that the Board sent to Admiral Bowman complimenting him on those reports , because we find them very helpful. Thank you. Any other questions? DR. MANSFIELD: I second that: especially the radiological safety reports and environmental reports. CHAIFWAN CONWAY: Yes , very important , and we thank you. We thank you for your assistance here today . Thank you very much. Now we have the experienced representatives from the Nuclear Regulatory Commission, Ms. Cynthia Carpenter and Dr. Edwin Hackett. If you would each introduce yourselves for the record. MS. CARPENTER: Good morning. My name is Cynthia Carpenter. I'm the Deputy Director of the Division of Inspection Program Management from the

163

Nuclear safety lies in greater transparency  

Science Journals Connector (OSTI)

... Chinas nuclear expansion relies on generation III reactors, such as the Westinghouse AP1000 and the Areva European Pressurized Reactor (EPR). The industry promises that these models ... work and cost-cutting often flourish, will sacrifice safety for speed. To date, the AP1000 reactors in the Zhejiang and Shandong provinces are the only commercial units worldwide. Of ...

Qiang Wang

2013-02-26T23:59:59.000Z

164

SAFETY AND RELIABILITY ANALYSIS OF NUCLEAR REACTORS  

Science Journals Connector (OSTI)

Abstract A survey of the various aspects of safety and reliability analysis of nuclear reactors is presented with particular emphasis on the interrelation between structural reliability and systems reliability. In reactor design this interrelation is of overriding importance since it is the task of the control, protective and containment systems to protect the mechanical system and the structure from accidental overloading.

T.A. JAEGER

1972-01-01T23:59:59.000Z

165

Nuclear Safety Research and Development Status Workshop Summary  

Broader source: Energy.gov (indexed) [DOE]

NSR&D STATUS WORKSHOP SUMMARIES Caroline Garzon Chief of Nuclear Safety Staff NUCLEAR SAFETY R&D Perform a peer review of Risk Assessment Corporation WTP analysis by a team and...

166

DOE Cites Fluor Fernald Inc. for Nuclear Safety Violations |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Cites Fluor Fernald Inc. for Nuclear Safety Violations DOE Cites Fluor Fernald Inc. for Nuclear Safety Violations August 25, 2005 - 2:43pm Addthis Washington, D.C. - The...

167

Nuclear Safety Research and Development Annual Report, December...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

This document is the first annual report of DOE's Nuclear Safety Research and Development (NSR&D) Program, managed by the Office of Nuclear Safety in the Office of Environment,...

168

Nuclear Safety Research and Development Committee Charter  

Broader source: Energy.gov (indexed) [DOE]

Research and Development Committee Charter Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have any authority to direct DOE and/or NNSA program

169

Proceedings of the US Nuclear Regulatory Commission fourteenth water reactor safety information meeting: Volume 1, Plenary session, Severe accident sequence analysis, Risk analysis/PRA applications, Reference plant risk analysis - NUREG-1150, Innovative concepts for increased safety of advanced power reactors  

SciTech Connect (OSTI)

This six-volume report contains 156 papers out of the 175 that were presented at the Fourteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 27-31, 1986. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included thirty-four different papers presented by researchers from Canada, Czechoslovakia, Finland, Germany, Italy, Japan, Mexico, Spain, Sweden, Switzerland and the United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

Weiss, A.J. (comp.)

1987-02-01T23:59:59.000Z

170

Safety of Decommissioning of Nuclear Facilities  

SciTech Connect (OSTI)

Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

171

ATTN: Document Control Desk U.S. Nuclear Regulatory Commission  

E-Print Network [OSTI]

Vermont Yankee Nuclear Power Station as indicated by Reference (1). In Reference (2), Entergy provided the analysis for the reactor pressure vessel feedwater nozzles. In Reference (3), the NRC, in License Condition 4, established the requirement for Entergy to submit the confirmatory analyses for the recirculation outlet nozzle and core spray nozzle at least two years prior to the period of extended operation. In Reference (4), the Atomic Safety and Licensing Board (ASLB) ordered Entergy to submit the results of the analysis for the core spray and recirculation outlet nozzles prior to a final ruling of Contentions 2A and 2B. Confirmatory analysis for the recirculation outlet and core spray nozzles was submitted to the NRC and ASLB in Reference (5) on January 15, 2009. Based on recent revisions to the recirculation outlet and core spray nozzle confirmatory

Vermont Yankee

2009-01-01T23:59:59.000Z

172

Central Technical Authority Responsibilities Regarding Nuclear Safety Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes Central Technical Authority and Chief of Nuclear Safety/Chief of Defense Nuclear Safety responsibilities and requirements directed by the Secretary of Energy in the development and issuance of Department of Energy regulations and directives that affect nuclear safety. No cancellations.

2007-08-28T23:59:59.000Z

173

Blue Ribbon Commission on America's Nuclear Future Report to the Secretary  

Broader source: Energy.gov (indexed) [DOE]

Blue Ribbon Commission on America's Nuclear Future Report to the Blue Ribbon Commission on America's Nuclear Future Report to the Secretary of Energy Blue Ribbon Commission on America's Nuclear Future Report to the Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed by the Secretary of Energy at the request of the President to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new strategy. It was cochaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other Commissioners were Mr. Mark H. Ayers, the Hon. Vicky A. Bailey, Dr. Albert Carnesale, Sen. Pete Domenici, Ms. Susan Eisenhower, Sen. Chuck Hagel, Mr. Jonathan Lash, Dr. Allison M. Macfarlane, Dr. Richard A. Meserve, Dr. Ernest J. Moniz, Dr. Per Peterson, Mr. John Rowe, and Rep. Phil Sharp.

174

Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

2000-03-28T23:59:59.000Z

175

Letter from Nuclear Energy Institute regarding Integrated Safety Analysis: Why it is Appropropriate for Fuel Recycling Facilities  

Broader source: Energy.gov (indexed) [DOE]

082 l F: 202.533.0166 l rxm@nei.org l www.nei.org 082 l F: 202.533.0166 l rxm@nei.org l www.nei.org Rod McCullum DIRECTOR FUEL CYCLE PROJECTS NUCLEAR GENERATION DIVISION September 10, 2010 Ms. Catherine Haney Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689 Dear Ms. Haney: Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue.

176

Nuclear and Facility Safety Directives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety » Nuclear and Facility Safety Nuclear Safety » Nuclear and Facility Safety Directives Nuclear and Facility Safety Directives DOE Order (O) 252.1A, Technical Standards Program DOE O 252.1A promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. HS-30 Contact: Jeff Feit DOE Policy (P) 420.1, Department of Energy Nuclear Safety Policy DOE P 420.1, documents the Department's nuclear safety policy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. HS-30 Contact: James O'Brien

177

Nuclear Safety Specialist Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

83-2007 83-2007 November 2007 DOE STANDARD NUCLEAR SAFETY SPECIALIST FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1183-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1183-2007 iv INTENTIONALLY BLANK DOE-STD-1183-2007 v TABLE OF CONTENTS ACKNOWLEDGMENT ................................................................................................................ vii PURPOSE ....................................................................................................................................9

178

Double-clad nuclear fuel safety rod  

DOE Patents [OSTI]

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, William H. (Los Altos, CA); Atcheson, Donald B. (Cupertino, CA); Vaidyanathan, Swaminathan (San Jose, CA)

1984-01-01T23:59:59.000Z

179

DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules |  

Broader source: Energy.gov (indexed) [DOE]

Safety and Ecology Corp. for Violating Nuclear Safety Safety and Ecology Corp. for Violating Nuclear Safety Rules DOE Cites Safety and Ecology Corp. for Violating Nuclear Safety Rules June 14, 2005 - 4:53pm Addthis WASHINGTON, D.C. -- The Department of Energy (DOE) today notified Safety and Ecology Corporation, the contractor responsible for radiological safety at the Portsmouth Gaseous Diffusion Project in Portsmouth, Ohio, that it will fine the company $55,000 for violating the department's regulations prohibiting retaliation against employees who raise nuclear safety concerns. "We take safety very seriously at the Department of Energy," said Assistant Secretary for Environment, Safety and Health John Shaw. "Today's action illustrates the department's commitment to ensuring that any and all valid

180

Nuclear power's threat to health, safety, and freedom  

Science Journals Connector (OSTI)

Nuclear power's threat to health, safety, and freedom ... In particular, they may differ on whether the nuclear power plants that are the result of the 1953 Atoms for Peace movement help or hinder the control of nuclear weapons. ...

1980-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency  

Broader source: Energy.gov [DOE]

Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

182

Nuclear safety information sharing agreement between NRC and DOEs Office of Environment, Health, Safety and Security  

Broader source: Energy.gov [DOE]

Nuclear safety information sharing agreement between NRC and DOEs Office of Environment, Health, Safety and Security.

183

CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval January 8, 2015 (EA CRAD 31-09, Rev. 0)  

Broader source: Energy.gov [DOE]

CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval January 8, 2015 (EA CRAD 31-09, Rev. 0)

184

Enforcement Regulations and Directives - Nuclear Safety | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety Nuclear Safety Enforcement Regulations and Directives - Nuclear Safety 10 C.F.R. Part 820 and Amendments 10 C.F.R. Part 820 - Procedural Rules for DOE Nuclear Activities 10 C.F.R. Part 820 - Procedural Rules for DOE Nuclear Activities; General Statement of Enforcement Policy; Final rule; amendment of enforcement policy statement and confirmation of interim rule 10 C.F.R. Part 830 10 C.F.R. Part 830 - Nuclear Safety Management; Final Rule Office of General Counsel Interpretation regarding the Application of DOE Technical Standard 1027-92 under 10 C.F.R. Part 830 Office of General Counsel Interpretation regarding Noncompliant Documented Safety Analyses and Exemption Relief (9/28/2011) Related Guidance DOE-STD-1083-2009, Processing Exemptions to Nuclear Safety Rules and

185

Princeton Plasma Physics Lab - Nuclear safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

safety Actions taken to safety Actions taken to prevent nuclear and radiation accidents or to limit their consequences. en Celebrating the 20th anniversary of the tritium shot heard around the world http://www.pppl.gov/news/2013/12/celebrating-20th-anniversary-tritium-shot-heard-around-world-2

Tensions rose in the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) as the seconds counted down. At stake was the first crucial test of a high-powered mixture of fuel for producing fusion energy. As the control-room clock reached "zero," a flash of light on a closed-circuit television monitor marked a historic achievement:

186

Ris-R-679(EN) Nuclear Safety Research  

E-Print Network [OSTI]

of the nuclear facilities at Risø. The activities include personnel dosimetry, maintenance and calibra- tionRisø-R-679(EN) mil Nuclear Safety Research Department Annual Progress Report 1992 Edited by B March 1993 #12;Nuclear Safety Research K«*«i Department Annual Progress Report 1992 Edited by B

187

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Broader source: Energy.gov (indexed) [DOE]

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

188

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Broader source: Energy.gov (indexed) [DOE]

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

189

Independent Activity Report, Defense Nuclear Facilities Safety Board Public  

Broader source: Energy.gov (indexed) [DOE]

Defense Nuclear Facilities Safety Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October 2012 Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility [HIAR-Y-12-2012-10-02] The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12 Technical Services, LLC (B&W Y-12) design project team leadership; and an open public

190

Microsoft Word - Nuclear Safety Pamphlet Final September 1 2010...  

Energy Savers [EERE]

A Basic Overview of NUCLEAR SAFETY AT THE DEPARTMENT OF ENERGY Outreach & Awareness Series Office of Health, Safety and Security (HSS) U.S. Department of Energy September 2010...

191

KWOC (Key-Word-Out-of-Context) Index of US Nuclear Regulatory Commission Regulatory Guide Series  

SciTech Connect (OSTI)

To meet the objectives of the program funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a Performance Assurance Information Program that collects, compiles, and distributes program-related information, reports, and publications for the benefit of the DOE-NE program participants. THE KWOC Index of US Nuclear Regulatory Commission Regulatory Guide Series'' is prepared as an aid in searching for specific topics in the US Nuclear Regulatory Commission, Regulatory Guide Series.

Jennings, S.D.

1990-04-01T23:59:59.000Z

192

US Nuclear Regulatory Commission organization charts and functional statements  

SciTech Connect (OSTI)

This document is the organizational chart for the US NRC. It contains organizational structure and functional statements for the following: (1) the Commission, (2) committees and boards, (3) staff offices, (4) office of the Inspector General, (5) executive director for operations, (6) program offices, and (7) regional offices.

NONE

1996-08-19T23:59:59.000Z

193

Nuclear Regulatory Commission Proceedings: A Guide for Intervenors  

E-Print Network [OSTI]

U.S. 396 (1961); Vermont Yankee, 435 U.S. 519; Morningsidein two 2. See, e.g. , Vermont Yankee Nuclear Power Corp. v.8th Cir. 1971); and Vermont Yankee Nuclear Power Corp. v.

Hansell, Dean

1982-01-01T23:59:59.000Z

194

Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency  

Broader source: Energy.gov [DOE]

Safety Series No. 75-INSAG-4, Safety Culture: A report by the International Nuclear Safety Advisory Group, International Atomic Energy Agency, IAEA, 1991

195

Tutorial on nuclear thermal propulsion safety for Mars  

SciTech Connect (OSTI)

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-01-01T23:59:59.000Z

196

Tutorial on nuclear thermal propulsion safety for Mars  

SciTech Connect (OSTI)

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-08-01T23:59:59.000Z

197

Nuclear Safety Component and Services Procurement, June 29, 2011...  

Office of Environmental Management (EM)

Office of Enforcement and Oversight Criteria Review and Approach Document Subject: Nuclear Safety Component and Services Procurement Inspection Criteria, Inspection Activities, and...

198

10 CFR Part 830 Nuclear Safety Technical Positions  

Broader source: Energy.gov [DOE]

Technical Positions to directives issued by Nuclear and Facility Safety Policy provide clarification for specific applications of the requirements in DOE orders, rules, and other directives.

199

Development of Probabilistic Risk Assessments for Nuclear Safety...  

Office of Environmental Management (EM)

OF PROBABILISTIC RISK ASSESSMENTS FOR NUCLEAR SAFETY APPLICATIONS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release;...

200

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Senior Technical Safety Manager Qualification Program Self-Assessment- Chief of Nuclear Safety  

Broader source: Energy.gov [DOE]

This Chief of Nuclear Safety (CNS) Report was prepared to summarize the results of the July 2013 CNS self-assessment of the Senior Technical Safety Manager Qualification Program.

202

UNITED STATES NUCLEAR REGULATORY COMMISSION WAWINGTON. D. C....  

Office of Legacy Management (LM)

WAWINGTON. D. C. 20555 kpartmnt of Energy Al7N: Dr. W illiam E. Mott. Director Environmental and Safety Engineering Division (EP-32) Washington, D.C. 20545 Dear Dr. kbtt: Enclosed...

203

Nuclear Safety Information Dashboard QuickStart Guide  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard QuickStart Guide September 2012 Office of Analysis (HS-24) Office of Environmental Protection, Sustainability Support and Corporate Safety Analysis Office of Health, Safety and Security (HSS) Purpose of Nuclear Safety Information (NSI) Dashboard * The NSI Dashboard provides a new user interface to the Occurrence Reporting and Processing System (ORPS) to easily identify, organize, and analyze nuclear safety-related events reported into ORPS. * ORPS reporting criteria associated with events at nuclear facilities have pre-assigned weighting factors according to their relative importance and are placed into groups. * This information can be evaluated to identify trends and, using insights from current events and nature of operations, enable

204

Opinions and decisions of the Nuclear Regulatory Commission with selected orders, July 1, 1995--December 31, 1995. Volume 42, Pages 1-258  

SciTech Connect (OSTI)

This is the 42nd volume of issuances of the U.S. Nuclear Regulatory Commission (NRC) and its Atomic Safety and Licensing Boards, Administrative Law Judges, and Office Directors. This book is a reprinting, containing corrections of numerous printing errors in a previously distributed book. It covers the period from July 1, 1995 to December 31, 1995. Atomic Safety and Licensing Boards conduct adjudicatory hearings on applications to construct and operate nuclear power plants and related facilities, and issue initial decisions which, subject to internal review and appellate procedures, become the final Commission action with respect to those applications. The hardbound edition of the Nuclear Regulatory Commission Issuances is a final compilation of the monthly issuances. It includes all of the legal precedents for the agency within a 6-month period. Any opinions, decisions, denials, memoranda and orders of the Commission inadvertently omitted from the monthly editions and any corrections submitted by the NRC legal staff to the printed softbound issuances are contained in the hardbound edition.

NONE

1996-11-01T23:59:59.000Z

205

Commission. The Nuclear Materials Management and Safeguards System...  

National Nuclear Security Administration (NNSA)

Revision 7, ''Instructions for Completing Nuclear Material Transaction Reports (DOENRC Forms 741 and 740M).'' Page 3 April 2014 April 2014 Topics Needed for the Industry...

206

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Nuclear Regulatory Commission Standard Review Plan for LightRegulatory Commission. Office of Nuclear Reactor Licens- ing. Standard Review Plan.

Nero, jA.V.

2010-01-01T23:59:59.000Z

207

U.S. Nuclear Regulatory Commission Certifies HalfPACT Transportation Container  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Nuclear Regulatory Commission Certifies U.S. Nuclear Regulatory Commission Certifies HalfPACT Transportation Container CARLSBAD, N.M., November 20, 2000 - The U.S. Nuclear Regulatory Commission (NRC) issued a Certificate of Compliance November 2 for the HalfPACT transportation container. The HalfPACT will be used to supplement the Transuranic Package Transporter Model 2 (TRUPACT-II) for transportation of waste to the Waste Isolation Pilot Plant. The TRUPACT-II is currently used for transportation of waste to the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). The new container is approximately 30 inches shorter than the TRUPACT-II. The HalfPACT is designed to carry seven 55-gallon drums weighing up to 1,000 pounds each, but is also capable of carrying one standard waste box or four 85-gallon drums.

208

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

209

Chief of Nuclear Safety (CNS) Senior Technical Safety Manager (STSM) Qualification Program Self-Assessment Report - August 2013  

Broader source: Energy.gov (indexed) [DOE]

Chief of Nuclear Safety (CNS) Chief of Nuclear Safety (CNS) Self-Assessment Report Senior Technical Safety Manager Qualification Program CONTENTS Background ................................................................................................................................ 1 Results ....................................................................................................................................... 1 Assessment Criteria ................................................................................................................... 1 Finding ....................................................................................................................................... 2 Observation ............................................................................................................................... 2

210

E-Print Network 3.0 - atomic energy commission Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: (1974 - 1978) Member, Subpanel on Energy, U.S. Atomic Energy Commission High Energy Physics Advisory... - 1998) Consultant, to Division of Nuclear Safety,...

211

Nuclear Safety Enforcement Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

14, 2002 14, 2002 Preliminary Notice of Violation, Fluor Hanford, Incorporated - EA-2002-03 Preliminary Notice of Violation issued to Fluor Hanford, Incorporated, related to Quality Assurance issues at the Hanford Site. June 19, 2002 Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 Enforcement Letter issued to Kaiser-Hill Company, LLC related to Unplanned Radioactive Material Uptakes at the Rocky Flats Environmental Technology Site October 22, 2001 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 Special Report Order issued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site October 9, 2001 Enforcement Letter, LANL - October 9, 2001 Enforcement Letter issued to Los Alamos National Laboratory related to

212

FAQS Job Task Analyses - Nuclear Safety Specialist  

Broader source: Energy.gov (indexed) [DOE]

JOB / TASK ANALYSIS for JOB / TASK ANALYSIS for Nuclear Safety Specialist (NSS) Functional Area Qualification Standard (FAQS) DOE-STD-1183-2007 Instructions for Step 1: Step 1 Identify and evaluate tasks - Develop a comprehensive list of tasks that define the job. o A great starting point is the list of Duties and Responsibilities from the FAQS. o Give careful thought to additional tasks that could be considered. o Don't worry about deleting tasks at this point - that is a part of the process further down. - List the tasks (and their sources, e.g., Duties and Responsibilities #1) in the chart below. - Discuss each task as a group and come to a consensus pertaining to Importance and Frequency of the task (i.e., each team member can consent to the assigned value, even

213

Defense Nuclear Facilities Safety Board's enabling legislation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENABLING STATUTE OF THE ENABLING STATUTE OF THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD 42 U.S.C. § 2286 et seq. NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1989 (Pub. L. No. 100-456, September 29, 1988), AS AMENDED BY NATIONAL DEFENSE AUTHORIZATION ACT, FISCAL YEAR 1991 (Pub. L. No. 101-510, November 5, 1990), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEARS 1992 AND 1993 (Pub. L. No. 102-190, December 5, 1991), ENERGY POLICY ACT OF 1992 (Pub. L. No. 102-486, October 24, 1992), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 1994 (Pub. L. No. 103-160, November 30, 1993), FEDERAL REPORTS ELIMINATION ACT OF 1998 (Pub. L. No. 105-362, November 10, 1998), NATIONAL DEFENSE AUTHORIZATION ACT FISCAL YEAR 2001 (Pub. L. No. 106-398, October 30, 2000), AND

214

NUCLEAR SAFETY WORKSHOP AGENDA Post Fukushima Initiatives and Results  

Broader source: Energy.gov (indexed) [DOE]

NUCLEAR SAFETY WORKSHOP AGENDA NUCLEAR SAFETY WORKSHOP AGENDA Post Fukushima Initiatives and Results September 19-20, 2012 - Bethesda North Marriott TUESDAY, SEPTEMBER 18 - Grand Ballroom, Salons F/G/H 1 9/14/12 6:00 - 8:00 pm Registration WEDNESDAY, SEPTEMBER 19 - Grand Ballroom, Salons F/G/H 7:00 - 8:00 am Registration 8:00 - 8:05 am Logistics Stephen A. Kirchhoff, Office of Health, Safety and Security US Department of Energy 8:05 - 8:15 am Welcoming Remarks and Workshop Objectives Glenn S. Podonsky, Chief Health, Safety and Security Officer US Department of Energy 8:15 - 8:45 am Maintaining Our Focus on Nuclear Safety Daniel B. Poneman, Deputy Secretary US Department of Energy 8:45 - 9:30 am Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - the

215

DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations | Department  

Broader source: Energy.gov (indexed) [DOE]

Jacobs Company for Nuclear Safety Violations Jacobs Company for Nuclear Safety Violations DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations August 4, 2005 - 2:36pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) today notified the Bechtel Jacobs Company (BJC) that it will fine the company $247,500 for violations of the department's nuclear safety requirements. The company is the department's contractor responsible for environmental cleanup and waste management at its Oak Ridge Reservation in Tennessee. "One of our top safety priorities is to improve the performance of subcontractors, and to do that we need to hold prime contractors responsible," said John Shaw, Assistant Secretary for Environment, Safety and Health. "Our goal is to have work conducted in a manner that protects

216

Department of Energy and Nuclear Regulatory Commission Increase...  

Office of Environmental Management (EM)

hosted a GNEP Ministerial in Washington, DC, where leaders from China, France, Japan, Russia and the United States agreed to work together to bring the benefits of nuclear energy...

217

Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analyses and Technical Safety Requirements)  

Broader source: Energy.gov (indexed) [DOE]

February 1996 February 1996 CHANGE NOTICE NO. 2 Date November 2005 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS DOCUMENTS (DOCUMENTED SAFETY ANALYSES AND TECHNICAL SAFETY REQUIREMENTS) U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, Fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Adminis tration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

218

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

219

2012 Nuclear Safety Workshop Photos | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » 2012 Nuclear Safety Workshop Photos 2012 Nuclear Safety Workshop Photos Addthis Glenn Podonsky 1 of 13 Glenn Podonsky Glenn Podonsky (DOE Chief Health, Safety and Security Officer) provides his welcoming remarks. Daniel Poneman 2 of 13 Daniel Poneman DOE Deputy Secretary Daniel Poneman discusses maintaining our focus on nuclear safety. Akira Kawano 3 of 13 Akira Kawano Akira Kawano, Tokyo Electric Power Company, provides lessons learned from the Fukushima nuclear accident. Bill Ostendorff 4 of 13 Bill Ostendorff NRC Commissioner Bill Ostendorff gives his perspective on the NRC's response to the Fukushima nuclear accident. Miroslav Lipar 5 of 13 Miroslav Lipar Miroslav Lipar, IAEA, provides an international perspective on the Fukushima nuclear accident.

220

Microsoft Word - Nuclear Safety Reporting Criteria.docx  

Broader source: Energy.gov (indexed) [DOE]

Safety Noncompliance Reporting Criteria (as of January 1, 2012) Safety Noncompliance Reporting Criteria (as of January 1, 2012) Nuclear Safety Noncompliances Associated With Occurrences (DOE Order 232.2) Consult the DOE Order for the full text of each occurrence criterion 1 Reporting Criteria Group Subgroup Occurrence Category and Summary Description 2 1. Operational Emergencies 3 N/A (1) Operational Emergency (2) Alert (3) Site Area Emergency (4) General Emergency 2. Personnel Safety and Health C. Fires (1) Fire within primary confinement/containment (2d) Self-extinguishing fires D. Explosions (1) Unplanned explosion within primary confinement/containment 3. Nuclear Safety Basis A. Technical Safety Requirement (TSR) Violations (1) Violation of TSR/Operational Safety Requirement (OSR) Safety Limit (2) Violation of other TSR/OSR requirement

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems  

SciTech Connect (OSTI)

The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated toolkit consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

Timothy J. Leahy

2010-06-01T23:59:59.000Z

222

Nuclear Safety Reserch and Development Program Operating Plan  

Broader source: Energy.gov (indexed) [DOE]

Safety Research and Development Safety Research and Development Program Operating Plan Office of Nuclear Safety Office of Health, Safety and Security U.S. Department of Energy June 2012 INTENTIONALLY BLANK NSR&D Program Operating Plan June 2012 Table of Contents 1.0 INTRODUCTION................................................................................................................. 1 2.0 BACKGROUND ................................................................................................................... 1 3.0 OBJECTIVES ....................................................................................................................... 2 4.0 NSR&D PROGRAM PROCESSES .................................................................................... 3

223

Energy Department Issues Draft Request For Proposal for Nuclear Regulatory Commission Licensed Facilities Procurement  

Broader source: Energy.gov [DOE]

Cincinnati The U.S. Department of Energy (DOE) today issued a Draft Request for Proposal (DRFP) for the Nuclear Regulatory Commission (NRC) Licensed Facilities procurement. The NRC Licensed Facilities procurement is one of the four procurements that resulted from the Idaho Site Office of Environmental Management Post FY 2015 Acquisition Planning.

224

Indexes to Nuclear Regulatory Commission issuances, July--December 1995  

SciTech Connect (OSTI)

Digests and indexes for issuances of the NRC, the Atomic Safety and Licensing Board, the Administrative Law Judges, the Directors` Decisions, and the Decisions on Petitions for Rulemaking are presented in this document. These digests and indexes are intended to serve as a guide to the issuances. Information elements common to the cases heard and ruled upon are: (1) case name, (2) full text reference, (3) issuance number, (4) issued raised by appellants, (5) legal citations, (6) name of facility and Docket number, (7) subject matter, (8) type of hearing, and (9) type of issuance.

NONE

1996-04-01T23:59:59.000Z

225

Pantex sets safety record | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

sets safety record | National Nuclear Security Administration sets safety record | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex sets safety record Pantex sets safety record Posted By Office of Public Affairs Pantex has set a new safety record with the lowest recordable case rate in the plant's history. The record total recordable case rate of 0.26 is a fitting end to an

226

Pantex receives two safety awards | National Nuclear Security  

National Nuclear Security Administration (NNSA)

two safety awards | National Nuclear Security two safety awards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Pantex receives two safety awards Pantex receives two safety awards Posted By Office of Public Affairs B&W Pantex was honored last week with a pair of awards for its exemplary safety record. The President's Award for Best Performing Business Unit and the Target

227

The Defense Nuclear Facilities Safety Board's first decade  

Science Journals Connector (OSTI)

Concern over the safety of the United States' defense nuclear reactors in the late 1980s led to congressional creation of an independent oversight board. The Defense Nuclear Facility Safeties Board (DNFSB) is responsible for overseeing safety issues at the U.S. Department of Energy's nuclear facilities and issuing recommendations on operations and safety at these facilities, which include South Carolina's Savannah River Site, Texas' Pantex facility, Colorado's Rocky Flats Depot, and others. This article provides an historical overview of the DNFSB's first decade and discusses its relationship and interaction with the Department of Energy and congressional oversight committees as well as the recommendations it has issued on nuclear safety. An assessment of DNFSB's future prospects concludes the article.

Bert Chapman

2000-01-01T23:59:59.000Z

228

DOE Cites University of Chicago for Nuclear Safety Violations | Department  

Broader source: Energy.gov (indexed) [DOE]

University of Chicago for Nuclear Safety Violations University of Chicago for Nuclear Safety Violations DOE Cites University of Chicago for Nuclear Safety Violations March 7, 2006 - 11:42am Addthis WASHINGTON , DC - The Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to the University of Chicago (University), the Management and Operating contractor for DOE's Argonne National Laboratory (ANL), for nuclear safety violations identified through several safety reviews and inspections conducted by DOE. A series of reviews and inspections, the most recent of which occurred in 2005, identified breakdowns in the contractor's quality improvement, radiation protection, work process, and independent and management assessment programs. Prior to 2005, senior contractor management at ANL

229

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...  

Energy Savers [EERE]

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste...

230

Deputy Secretary Poneman Discusses Nuclear Safety at the IAEA | Department  

Broader source: Energy.gov (indexed) [DOE]

Discusses Nuclear Safety at the IAEA Discusses Nuclear Safety at the IAEA Deputy Secretary Poneman Discusses Nuclear Safety at the IAEA June 20, 2011 - 12:00am Addthis Washington, D.C. - U.S. Deputy Secretary of Energy Daniel Poneman today addressed the plenary session at the International Atomic Energy Agency's Ministerial Conference on Nuclear Safety. Deputy Secretary Poneman emphasized the importance of international cooperation and information sharing for developing lessons learned from the Fukushima accident. The IAEA is leading the process to develop these international best practices, which will help strengthen the international nuclear regulatory regime. Remarks as prepared for delivery are below. Thank you, Mr. Ambassador, for your work in organizing this important Conference and to Director General Amano and his staff for convening it.

231

Nuclear Safety Research and Development Program Operating Plan | Department  

Broader source: Energy.gov (indexed) [DOE]

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

232

Nuclear Safety Research and Development Committee Charter | Department of  

Broader source: Energy.gov (indexed) [DOE]

Research and Development Committee Charter Research and Development Committee Charter Nuclear Safety Research and Development Committee Charter July 5, 2012 Nuclear Safety Research and Development Committee Charter The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have

233

Nuclear knowledge portal for supporting licensing and controlling nuclear activities in the Brazilian Nuclear Energy Commission  

Science Journals Connector (OSTI)

The knowledge economy is pivotal for moving the wealth and development of traditional industrial sectors ?? abundant in manual labour, raw materials and capital ?? to areas whose products, processes and services are rich in technology and knowledge. Even in research areas such as nuclear energy, where goods are based on high technology, the ability to transform information into knowledge, and knowledge into decisions and actions, is extremely important. Therefore, the value of products from these areas depends more and more on the degree of innovation, technology and intelligence incorporated by them. Thus, it has become increasingly important and relevant to acquire strategic knowledge and make it available to the organisation. Therefore, the objective of this paper is to present the construction of a Nuclear Knowledge Portal for aiding and streamlining the Licensing and Management activities of the CNEN.

E. Gomes; F. Braga

2005-01-01T23:59:59.000Z

234

Blue Ribbon Commission on America's Nuclear Future: Report to the Secretary of Energy  

SciTech Connect (OSTI)

Preamble The Blue Ribbon Commission on Americas Nuclear Future (BRC) was formed by the Secretary of Energy at the request of the President to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new strategy. It was co-chaired by Rep. Lee H. Hamilton and Gen. Brent Scowcroft. Other Commissioners are Mr. Mark H. Ayers, the Hon. Vicky A. Bailey, Dr. Albert Carnesale, Sen. Pete Domenici, Ms. Susan Eisenhower, Sen. Chuck Hagel, Mr. Jonathan Lash, Dr. Allison M. Macfarlane, Dr. Richard A. Meserve, Dr. Ernest J. Moniz, Dr. Per Peterson, Mr. John Rowe, and Rep. Phil Sharp. The Commission and its subcommittees met more than two dozen times between March 2010 and January 2012 to hear testimony from experts and stakeholders, to visit nuclear waste management facilities in the United States and abroad, and to discuss the issues identified in its Charter. Additionally, in September and October 2011, the Commission held five public meetings, in different regions of the country, to hear feedback on its draft report. A wide variety of organizations, interest groups, and individuals provided input to the Commission at these meetings and through the submission of written materials. Copies of all of these submissions, along with records and transcripts of past meetings, are available at the BRC website (www.brc.gov). This report highlights the Commissions findings and conclusions and presents recommendations for consideration by the Administration and Congress, as well as interested state, tribal and local governments, other stakeholders, and the public.

none,

2012-01-01T23:59:59.000Z

235

Supplemnental Volume - Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Broader source: Energy.gov (indexed) [DOE]

Volume Volume Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS i Independent Oversight Assessment of Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant Supplemental Volume Table of Contents Foreword ...................................................................................................................................................... iii Acronyms ...................................................................................................................................................... v

236

Development of the Nuclear Safety Information Dashboard - September 2012 |  

Broader source: Energy.gov (indexed) [DOE]

Development of the Nuclear Safety Information Dashboard - September Development of the Nuclear Safety Information Dashboard - September 2012 Development of the Nuclear Safety Information Dashboard - September 2012 September 2012 A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria. The sum of the severity-weighted factors for the sixty-five ORPS Reporting Criteria equals 100%. Paired pairing is an analytical tool used to determine weighted factors. A team evaluated pairs of ORPS reporting criteria and concurred on the relative importance of each pair. Each ORPS reporting criterion in a group was compared with one other ORPS reporting

237

Development of the Nuclear Safety Information Dashboard - September 2012 |  

Broader source: Energy.gov (indexed) [DOE]

Development of the Nuclear Safety Information Dashboard - September Development of the Nuclear Safety Information Dashboard - September 2012 Development of the Nuclear Safety Information Dashboard - September 2012 September 2012 A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria. The sum of the severity-weighted factors for the sixty-five ORPS Reporting Criteria equals 100%. Paired pairing is an analytical tool used to determine weighted factors. A team evaluated pairs of ORPS reporting criteria and concurred on the relative importance of each pair. Each ORPS reporting criterion in a group was compared with one other ORPS reporting

238

FAQS Job Task Analyses - Nuclear Explosive Safety Study  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Explosive Safety Study FAQS Nuclear Explosive Safety Study FAQS STEP 1: Job Task Analysis for Tasks Task (and Number) Source Importance Frequency (1) Serves as a member or chair of the NESSG. FAQS Duties and Responsibilities Paragraph A 5 3 (2) Provides guidance on and interpretation of nuclear explosive safety (NES) requirements and policy. FAQS Duties and Responsibilities Paragraph B 5 4 (3) Drafts policy directives for the DOE/NNSA, Nuclear Explosive Safety Operations Branch (NESB) and reviews DOE/NNSA policies on NES. FAQS Duties and Responsibilities Paragraph D 5 3 (4) Provides instruction and guidance regarding NES to individuals assigned NES responsibilities. FAQS Duties and Responsibilities Paragraph E 5 3-4 (5) Monitors ongoing NEOs to ensure compliance with NES standards and

239

DOE Cites Washington TRU Solutions for Nuclear Safety Violations |  

Broader source: Energy.gov (indexed) [DOE]

Washington TRU Solutions for Nuclear Safety Violations Washington TRU Solutions for Nuclear Safety Violations DOE Cites Washington TRU Solutions for Nuclear Safety Violations December 22, 2005 - 4:53pm Addthis WASHINGTON, D.C. -- The Department of Energy (DOE) today notified Washington TRU Solutions (WTS) that it will fine the company $192,500 for violations of the department's nuclear safety requirements. The Preliminary Notice of Violation (PNOV) issued today cites a number of deficiencies that led to a series of low-level plutonium uptakes by workers at a WTS mobile facility (MOVER) stationed at the Lawrence Livermore National Laboratory (LLNL) in Livermore, Calif. The violations reflected WTS' limited understanding of the design and operational limitations of the MOVER facility, a portable waste processing facility designed to be

240

Exelon Statement Regarding Nuclear Safety and 10 CFR 810  

Broader source: Energy.gov [DOE]

Exelon respectfully submits that the existing 810 rule, as currently interpreted, and the proposed revised rule, both work as deterrents to improving safety in nuclear operations around the world.

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A probabilistic safety analysis of incidents in nuclear research reactors  

Science Journals Connector (OSTI)

......System for Research Reactor (IRSRR). Available...System for Research Reactor (IRSRR). Available...76. 7 Manual on reliability data collection for research reactor PSAs. (1992) IAEA...probabilistic safety analysis of incidents in nuclear......

Valdir Maciel Lopes; Gian Maria Agostinho Angelo Sordi; Mauricio Moralles; Tufic Madi Filho

2012-06-01T23:59:59.000Z

242

Interface with the Defense Nuclear Facilities Safety Board  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1A.

2001-03-30T23:59:59.000Z

243

Interface with the Defense Nuclear Facilities Safety Board  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual defines the process DOE will use to interface with the Defense Nuclear Facilities Safety Board and its staff. Canceled by DOE M 140.1-1A. Does not cancel other directives.

1996-12-30T23:59:59.000Z

244

Interface with the Defense Nuclear Facilities Safety Board  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1.

1999-01-26T23:59:59.000Z

245

The unique signal concept for detonation safety in nuclear weapons  

SciTech Connect (OSTI)

The purpose of a unique signal (UQS) in a nuclear weapon system is to provide an unambiguous communication of intent to detonate from the UQS information input source device to a stronglink safety device in the weapon in a manner that is highly unlikely to be duplicated or simulated in normal environments and in a broad range of ill-defined abnormal environments. This report presents safety considerations for the design and implementation of UQSs in the context of the overall safety system.

Spray, S.D.; Cooper, J.A.

1993-06-01T23:59:59.000Z

246

THE IMPACT OF THE GLOBAL NUCLEAR SAFETY REGIME IN BRAZIL  

SciTech Connect (OSTI)

A turning point of the world nuclear industry with respect to safety occurred due to the accident at Chernobyl, in 1986. A side from the tragic personal losses and the enormous financial damage, the Chernobyl accident has literally demonstrated that ''a nuclear accident anywhere is an accident everywhere''. The impact was felt immediately by the nuclear industry, with plant cancellations (e.g. Austria), elimination of national programs (e.g. Italy) and general construction delays. However, the reaction of the nuclear industry was equally immediate, which led to the proposal and establishment of a Global Nuclear Safety Regime. This regime is composed of biding international safety conventions, globally accepted safety standard, and a voluntary peer review system. In a previous work, the author has presented in detail the components of this Regime, and briefly discussed its impact in the Brazilian nuclear power organizations, including the Regulatory Body. This work, on the opposite, briefly reviews the Global Nuclear Safety Regime, and concentrates in detail in the discussion of its impact in Brazil, showing how it has produced some changes, and where the peer pressure regime has failed to produce real results.

Almeida, C.

2004-10-06T23:59:59.000Z

247

Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O 420.1C. Cancels DOE G 420.1-1.

2012-12-04T23:59:59.000Z

248

A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)  

SciTech Connect (OSTI)

Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

Morris, Tommy J. [Los Alamos National Laboratory

2012-07-05T23:59:59.000Z

249

Nuclear Safety Research and Development (NSR&D) Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety » Nuclear Safety Research and Nuclear Safety » Nuclear Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program In 2011, the Office of Health, Safety and Security (HSS) created the Nuclear Safety Research and Development (NSR&D) Program within the Office of Nuclear Safety to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program solicits input from the Nuclear Safety Council which includes membership of senior management from each program office. NSR&D Program Objectives: To establish an enduring Departmental commitment and capability to utilize NSR&D in preventing and reducing the hazards and risks posed by DOE/NNSA nuclear facilities;

250

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis |  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and

251

Department of Energy Office of Nuclear Safety and Environmental Policy  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Office of Nuclear Safety and Environmental Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS All new construction required to follow the provisions of Department of Energy (DOE) Order 420. lB, Facility Safety, must comply with national consensus industry standards and the model building codes applicable for the state or region in which the facility is located. Certain individuals in the fire community requested

252

Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect (OSTI)

This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

Carl Wharton; Kent Norris

2009-12-01T23:59:59.000Z

253

Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect (OSTI)

This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

Carl Wharton

2009-10-01T23:59:59.000Z

254

Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect (OSTI)

This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

Carl Wharton; Kent Norris

2010-03-01T23:59:59.000Z

255

Energy Department and Catholic University Improve Safety of Nuclear Waste |  

Broader source: Energy.gov (indexed) [DOE]

Catholic University Improve Safety of Nuclear Catholic University Improve Safety of Nuclear Waste Energy Department and Catholic University Improve Safety of Nuclear Waste January 30, 2013 - 12:51pm Addthis Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. David Sheeley David Sheeley Editor/Writer What does this project do? Hanford treats and immobilizes significant quantities of legacy nuclear waste left from the manufacture of plutonium during World War II and the Cold War. Secretary Steven Chu recently visited Catholic University's Vitreous

256

Safety - Vulnerability Assessment Team - Nuclear Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Safety VAT Projects Introducing the VAT Adversarial Vulnerability Assessments Safety Tags & Product Counterfeiting Election Security Spoofing GPS Defeating Existing Tamper-Indicating Seals Specialty Field Tools & Sampling Tools Insider Threat Mitigation Drug Testing Security Microprocessor Prototypes The Journal of Physical Security Vulnerability Assessments Vulnerability Assessments Insanely Fast µProcessor Shop Insanely Fast µProcessor Shop Seals About Seals Applications of Seals Common Myths about Tamper Indicating Seals Definitions Findings and Lessons Learned New Seals Types of Seals Seals References Selected VAT Papers Selected VAT Papers Selected Invited Talks Self-Assessment Survey Security Maxims Devil's Dictionary of Security Terms Argonne's VAT (brochure)

257

Nuclear Power - Operation, Safety and Environment  

E-Print Network [OSTI]

as operation, safety, environment and radiation effects. The book is not offering a comprehensive coverage of the material in each area. Instead, selected themes are highlighted by authors of individual chapters representing contemporary interests worldwide...

258

Office of Nuclear Safety | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Security Officer regarding concurrence in the final decision to startup or restart a nuclear facility. Serves as the Standards Executive for the Department of Energy and...

259

Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement  

Broader source: Energy.gov (indexed) [DOE]

Facts and Lessons of the Fukushima Nuclear Accident and Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints September 19, 2012 Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company Topics Covered: How Tsunami Struck Fukushima Sites Tsunami Height Estimation How we responded in the Recovery Process Safety Improvement and Further Enhancement of Nuclear Safety Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement - The Operator Viewpoints More Documents & Publications January2005 NNSANews Meeting Materials: June 15, 2011

260

Guidance for identifying, reporting and tracking nuclear safety noncompliances  

SciTech Connect (OSTI)

This document provides Department of Energy (DOE) contractors, subcontractors and suppliers with guidance in the effective use of DOE`s Price-Anderson nuclear safety Noncompliance Tracking System (NTS). Prompt contractor identification, reporting to DOE, and correction of nuclear safety noncompliances provides DOE with a basis to exercise enforcement discretion to mitigate civil penalties, and suspend the issuance of Notices of Violation for certain violations. Use of this reporting methodology is elective by contractors; however, this methodology is intended to reflect DOE`s philosophy on effective identification and reporting of nuclear safety noncompliances. To the extent that these expectations are met for particular noncompliances, DOE intends to appropriately exercise its enforcement discretion in considering whether, and to what extent, to undertake enforcement action.

NONE

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Privatization of the gaseous diffusion plants and impacts on nuclear criticality safety administration  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) on July 1, 1993. The USEC is a government-owned business that leases those Gaseous Diffusion Plant (GDP) facilities at the Portsmouth, Ohio, and Paducah, Kentucky, sites from the U.S. Department of Energy (DOE) that are required for enriching uranium. Lockheed Martin Utility Services is the operating contractor for the USEC-leased facilities. The DOE has retained use of, and regulation over, some facilities and areas at the Portsmouth and Paducah sites for managing legacy wastes and environmental restoration activities. The USEC is regulated by the DOE, but is currently changing to regulation under the U.S. Nuclear Regulatory Commission (NRC). The USEC is also preparing for privatization of the uranium enrichment enterprise. These changes have significantly affected the nuclear criticality safety (NCS) programs at the sites.

D`Aquila, D.M.; Holliday, R.T. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States); Dean, J.C. [Lockheed Martin Utility Services, Inc., Paducah, KY (United States)

1996-12-31T23:59:59.000Z

262

Nuclear safety procedure upgrade project at USEC/MMUS gaseous diffusion plants  

SciTech Connect (OSTI)

Martin Marietta Utility Services has embarked on a program to upgrade procedures at both of its Gaseous Diffusion Plant sites. The transition from a U.S. Department of Energy government-operated facility to U.S. Nuclear Regulatory Commission (NRC) regulated has necessitated a complete upgrade of plant operating procedures and practices incorporating human factors as well as a philosophy change in their use. This program is designed to meet the requirements of the newly written 10CFR76, {open_quotes}The Certification of Gaseous Diffusion Plants,{close_quotes} and aid in progression toward NRC certification. A procedures upgrade will help ensure increased nuclear safety, enhance plant operation, and eliminate personnel procedure errors/occurrences.

Kocsis, F.J. III

1994-12-31T23:59:59.000Z

263

Department of Energy Nuclear Safety Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment. Cancels SEN-35-91.

2011-02-08T23:59:59.000Z

264

Nuclear Safety Enforcement Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Letter, NEL-2013-01 - January 7, 2013 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant October 4, 2012 Preliminary Notice of...

265

E-Print Network 3.0 - aerospace nuclear safety Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Nuclear Technologies 2 A Systematic Approach to Safety Case Management Dr Tim Kelly Summary: The concept of the safety case' has already been adopted across many...

266

Structural Aging Program to evaluate continued performance of safety-related concrete structures in nuclear power plants  

SciTech Connect (OSTI)

This report discusses the Structural Aging (SAG) Program which is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into three technical tasks: Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented.

Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States)

1994-03-01T23:59:59.000Z

267

Processing Exemptions to Nuclear Safety Rules and Approval of Alternative Methods for Documented Safety Analysis  

Broader source: Energy.gov (indexed) [DOE]

STD-1083-2009 STD-1083-2009 June 2009 DOE STANDARD PROCESSING EXEMPTIONS TO NUCLEAR SAFETY RULES AND APPROVAL OF ALTERNATIVE METHODS FOR DOCUMENTED SAFETY ANALYSES U.S. Department of Energy AREA SAFT Washington D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document is available on the Department of Energy Technical Standards Program Web Page at http://www.hss.energy.gov/nuclearsafety/techstds DOE-STD-1083-2009 iii FOREWORD 1. This Department of Energy (DOE) Standard has been prepared by the Office of Quality Assurance Policy and Assistance to provide acceptable processes for: a. requesting and granting exemptions to DOE nuclear safety rules and b. requesting and approving alternate methodologies for documented safety analyses

268

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-FuelHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

269

Improved nuclear safety through international standards  

Science Journals Connector (OSTI)

In this shrinking world what happens in an industry in one country can significantly affect the same industry elsewhere around the globe. In April 1986 a nuclear accident destroyed Unit 4 of Ukraines Chernobyl nuclear power plant focusing worldwide attention on the dozens of Soviet-designed reactors still in operation. The Chemobyl accident led to public concerns about all operating nuclear power plants and in some countries (e.g. Italy and Sweden) to proposals for nationwide plant closures or moratoriums on new construction. However for most former Soviet Union countries plant shutdown was and still is not a viable optionthe plants produce a significant percentage of each nations total electricity and those countries do not have sufficient economic resources to develop alternative power sources. In cooperation with similar programs initiated in Canada Japan and western European countries the U.S. Department of Energy (DOE) is conducting a comprehensive effort to reduce risks at Soviet-designed nuclear power plants until they can be shut down or brought into compliance with international standards. This paper describes DOE-supported initiatives with participating host countries to: improve reliability and accuracy of nondestructive evaluation equipment used for in-service inspection transfer technologies and infrastructure to improve in-service inspections enhance management systems for training and certifying host-country in-service inspection personnel The goal of these initiatives to enhance the use of international standards (ASME ASNT European Standards EN and ISO) in operating and regulatory practices at Soviet-designed nuclear power plants.

S. R. Doctor; R. L. Moffitt; T. T. Taylor; G. Trosman

2000-01-01T23:59:59.000Z

270

UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL LlCENSE  

Office of Legacy Management (LM)

' ' ,' ' .:,: ' ,' ,,.. : .-: .: .A,.. :. .:,: ' .' :l:. ,:.:,. ,. ."i i..' ./. ' . : :, *:..: ,.a~ :.. ,::;: ;#j ,,. .,.' ' : 8:;) ,,> ,' UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL LlCENSE pp.o-o\ 43 Licensee 1. Name spm%r ch+ti (hlqay 3. 2. Address i%si&t Building Kansas cay 5, ifissouri ~..--. 3. License No. .m4-329 I 4. Exp/rotion Date Sepikmber 30, I.962 -6. Special Nuclear:Material ~~~~SnrichedtoS~ I under this license ia the a-235 i.soto~p. one thoti (1ooo) kgs u-235 Contab$i in mani- etiched ta s$in ths U23.5 / isotope. -- 8. Authorized useFor i&e C' nwiC&. professing Of +ZXlXX enriohd IQ t0 s$-tifie u-235 isoi;ope bn, accordanoe 6th the procedures desczibed ii the, J.ic3x1m3~s ag@kations of Jme 22 andduly 28; 19%

271

Development of the Nuclear Safety Information Dashboard- September 2012  

Broader source: Energy.gov [DOE]

A working group with nuclear safety expertise used paired pairing computer software to develop first, a severity-weighted factor for the 17 Groups of ORPS Reporting Criteria and then, a severity-weighted factor for the sixty-five ORPS reporting criteria.

272

Proceedings of the Nuclear Criticality Technology and Safety Project Workshop  

SciTech Connect (OSTI)

This report is the proceedings of the annual Nuclear Criticality Technology and Safety Project (NCTSP) Workshop held in Monterey, California, on April 16--28, 1993. The NCTSP was sponsored by the Department of Energy and organized by the Los Alamos Critical Experiments Facility. The report is divided into six sections reflecting the sessions outlined on the workshop agenda.

Sanchez, R.G. [comp.

1994-01-01T23:59:59.000Z

273

SCALE 6: Comprehensive Nuclear Safety Analysis Code System  

SciTech Connect (OSTI)

Version 6 of the Standardized Computer Analyses for Licensing Evaluation (SCALE) computer software system developed at Oak Ridge National Laboratory, released in February 2009, contains significant new capabilities and data for nuclear safety analysis and marks an important update for this software package, which is used worldwide. This paper highlights the capabilities of the SCALE system, including continuous-energy flux calculations for processing multigroup problem-dependent cross sections, ENDF/B-VII continuous-energy and multigroup nuclear cross-section data, continuous-energy Monte Carlo criticality safety calculations, Monte Carlo radiation shielding analyses with automated three-dimensional variance reduction techniques, one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations, two- and three-dimensional lattice physics depletion analyses, fast and accurate source terms and decay heat calculations, automated burnup credit analyses with loading curve search, and integrated three-dimensional criticality accident alarm system analyses using coupled Monte Carlo criticality and shielding calculations.

Bowman, Stephen M [ORNL

2011-01-01T23:59:59.000Z

274

The United States Nuclear Regulatory Commission and the United States Department Of Energy Public Meeting  

Broader source: Energy.gov (indexed) [DOE]

2 The UNITED STATES 3 NUCLEAR REGULATORY COMMISSION and 4 the UNITED STATES 5 DEPARTMENT OF ENERGY 6 7 PUBLIC MEETING 8 9 DISCUSSION OF THE IMPLEMENTATION OF SECTION 3116 OF 10 THE NATIONAL DEFENSE AUTHORIZATION ACT 11 12 Commencing at 9:10 a.m., November 16, 2006 13 at the L'Enfant Plaza Hotel 14 480 L'Enfant Plaza, SW 15 Washington DC 20024 16 17 Public meeting organized by: 18 Advanced Technologies and Laboratories International, Inc. 19 20010 Century Boulevard, Suite 500 20 Germantown, Maryland 20874 21 (301) 972-4430 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 P R O C E E D I N G S MR. CAMERON: Good morning everyone. My name is Chip Cameron. I'm an assistant general counsel in the office of General Counsel at the Nuclear Regulatory Commission. And I would like to

275

Improvements needed in the Nuclear Regulatory Commission's Office of Inspector and Auditor. Report to the Congress  

SciTech Connect (OSTI)

To help the Nuclear Regulatory Commission (NRC) carry out its responsibilities, a special office of Inspector and Auditor was created in April 1975 to independently review and appraise all NRC operations. This office, in essence, was to provide the Commissioners with oversight over NRC programs and activities and recommend corrective actions. GAO found that the Office of Inspector and Auditor has not been using proven management techniques in scheduling and carrying out its work. These techniques range from systematic planning and prioritization to timely and consistent followup on work. If such techniques were used, it would result in a more orderly management approach and lead to higher quality reports and a better use of staff resources. The independence of the Office of Inspector and Auditor needs to be strengthened. In GAO's view, this only may be possible if NRC accepts and implements the recommendations contained in this report. GAO also suggests that Congress consider establishing a statutory Inspector General office at the NRC. Such an office could help ensure that the Congress and the Commissioners receive objective information on problems within the Commission and enhance public trust in the regulation of commercial nuclear power.

Not Available

1981-07-09T23:59:59.000Z

276

EMI/RFI and Power Surge Withstand Guidance for the U.S. Nuclear Regulatory Commission  

SciTech Connect (OSTI)

This paper discusses the regulatory guidance implemented by U.S. NRC for minimizing malfunctions and upsets in safety-related instrumentation and control (I and C) systems in nuclear power plants caused by electromagnetic interference (EMI), radio-frequency interference (RFI), and power surges. The engineering design, installation, and testing practices deemed acceptable to U.S. NRC are described in Regulatory Guide (RG) 1.180, ''Guidelines for Evaluating Electromagnetic and Radio-Frequency in Safety-Related Instrumentation and Control Systems'' (January 2000) and in a Safety Evaluation Report (SER) endorsing EPRI TR-102323, ''Guidelines for Electromagnetic Interference Testing in Power Plants,'' (April 1996). These engineering practices provide a well-established, systematic approach for ensuring electromagnetic compatibility (EMC) and surge withstand capability (SWC).

Ewing, PD

2001-09-07T23:59:59.000Z

277

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010  

Broader source: Energy.gov [DOE]

On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

278

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice,  

Broader source: Energy.gov (indexed) [DOE]

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010 Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010 On August 12, 2009, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2009-1, Risk Assessment Methodologies at Defense Nuclear Facilities. This recommendation focused on the need for clear direction on use of quantitative risk assessments in nuclear safety applications at defense nuclear facilities. The Department of Energy (DOE) is presently analyzing directives, standards, training, and other tools that may support more effective development and use of risk assessment. Working with the Chief of Defense Nuclear Safety and the Chief of Nuclear Safety, staff from the Office of Health,

279

Indexes to Nuclear Regulatory Commission issuances, July--December 1996. Volume 44, Index 2  

SciTech Connect (OSTI)

Digests and indexes for issuances of the Commission (CLI), the Atomic Safety and Licensing Board Panel (LBP), the Administrative Law Judges (ALJ), the Directors` Decisions (DD), and the Decision on Petitions for Rulemaking (DPRM) are presented in this document. These digests and indexes are intended to serve as a guide to the issuances. Information elements common to the cases heard and ruled upon are: case name (owner(s) of facility); full text reference (volume and pagination); issuance number; issues raised by apellants; legal citations (cases, regulations, and statutes); name of facility, docket number; subject matter of issues and/or rulings; type of hearing (operating license, operating license amendment, etc.); type of issuance (memorandum, order, decision, etc.).

NONE

1997-04-01T23:59:59.000Z

280

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project  

Broader source: Energy.gov (indexed) [DOE]

Oversight Assessment of Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project

282

Safety assessment of a robotic system handling nuclear material  

SciTech Connect (OSTI)

This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable.

Atcitty, C.B.; Robinson, D.G.

1996-02-01T23:59:59.000Z

283

Safety Bulletin  

Broader source: Energy.gov (indexed) [DOE]

Bulletin Bulletin Offtce 01 Health. Safety and Sa<:urtty Events Beyond Design Safety Basis Analysis No. 2011-01 PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the subsequent tsunami. While there is still a lot to be learned from the accident · about the adequacy of design specifications and the equipment failure modes, reports from the Nuclear Regulatory Commission (NRC) have identified some key aspects of the operational emergency at the Fukushima Daiichi nuclear power station.

284

Nuclear Explosives Safety Study Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

85-2007 85-2007 September 2007 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DRAFT DOE-STD-1185-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DRAFT DOE-STD-1185-2007 iv INTENTIONALLY BLANK DRAFT DOE-STD-1185-2007 v TABLE OF CONTENTS ACKNOWLEDGMENT ................................................................................................................ vii PURPOSE ....................................................................................................................................1

285

Double-clad nuclear-fuel safety rod  

DOE Patents [OSTI]

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, W.H.; Atcheson, D.B.

1981-12-30T23:59:59.000Z

286

Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents  

Broader source: Energy.gov (indexed) [DOE]

SENSITIVE DOE-STD-1104-2009 May 2009 Superseding DOE-STD-1104-96 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1104-2009 ii Available on the Department of Energy Technical Standards web page at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-1104-2009 iii CONTENTS FOREWORD .................................................................................................................................. v INTRODUCTION ..........................................................................................................................

287

Independent Verification and Validation Of SAPHIRE 8 Risk Management Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect (OSTI)

This report provides an evaluation of the risk management. Risk management is intended to ensure a methodology for conducting risk management planning, identification, analysis, responses, and monitoring and control activities associated with the SAPHIRE project work, and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

Kent Norris

2009-11-01T23:59:59.000Z

288

Division of Occupational Health & Safety/ORS NIH Safety Programs in Support of the  

E-Print Network [OSTI]

Protection (DEP) Emergency Response Handbook Division of Radiation Safety (DRS) Nuclear Regulatory Commission Care and Use Program Occupational Safety and Health Protection for Federal Employees Poster NIH Safety Policies PM 1340 Occupational Safety and Health Management PM 1430 NIH Occupant Evacuation Plan PM 3015

Bandettini, Peter A.

289

Development of a Societal-Risk Goal for Nuclear Power Safety  

SciTech Connect (OSTI)

The safety-goal policy of the Nuclear Regulatory Commission (NRC) has never included a true societal-risk goal. The NRC did acknowledge that the original goal for the risk of latent cancer facilities was an individual risk goal not related to the number of people involved, and stated that a true societal risk goal would place a limit on the aggregate number of people affected. However, this limitation was never satisfactorily addressed. Moreover, the safety goal has historically focused primarily on fatalities and latent health effects, while experience with actual nuclear accidents has shown that societal disruption can be significant even in accidents that yield only small to modest numbers of fatalities. Therefore, we have evaluated the social disruption effects from severe reactor accidents as a basis to develop a societal-risk goal for nuclear power plants, considering both health effects and non-health concerns such as property damage and land interdiction. Our initial analysis considered six different nuclear power plant sites in the U.S. for Boiling Water Reactors and Pressurized Water Reactors. The accident sequences considered for these two reactor types were station blackout sequences (both short-term and long-term SBO) as well as an STSBO with RCIC failure for the BWR and a Steam Generator Tube Rupture for the PWR. The source term release was an input in a RASCAL calculation of the off-site consequences using actual site-based weather data for each of the six plant sites randomly selected over a two-year period. The source term release plumes were then compared to Geographical Information System data for each site to determine the population affected and that would need to be evacuated to meet current emergency preparedness regulations. Our results to date suggest that number of people evacuated to meet current protective action guidelines appears to be a good proxy for disruption -- and, unlike other measures of disruption, has the advantage of being relatively straightforward to calculate for a given accident scenario and a given geographical location and plant site. Revised safety goals taking into account the potential for societal disruption could in principle be applied to the current generation of nuclear plants, but could also be used in evaluating and siting new technologies, such as small modular light water reactors, advanced Gen-IV high-temperature reactors, as well as reactor designs with passive safety features such as filtered vented containments.

Vicki Bier; Michael Corradini; Robert Youngblood; Caleb Roh; Shuji Liu

2014-06-01T23:59:59.000Z

290

Site-specific parameter values for the Nuclear Regulatory Commission's food pathway dose model  

SciTech Connect (OSTI)

Routine operations at the Savannah River Site (SRS) in Western South Carolina result in radionuclide releases to the atmosphere and to the Savannah River. The resulting radiation doses to the off-site maximum individual and the off-site population within 80 km of the SRS are estimated on a yearly basis. These estimates are currently generated using dose models prescribed for the commercial nuclear power industry by the Nuclear Regulatory Commission (NRC). The NRC provides default values for dose-model parameters for facilities without resources to develop site-specific values. A survey of land- and water-use characteristics for the Savannah River area has been conducted to determine site-specific values for water recreation, consumption, and agricultural parameters used in the NRC Regulatory Guide 1.109 (1977) dosimetric models. These site parameters include local characteristics of meat, milk, and vegetable production; recreational and commercial activities on the Savannah River; and meat, milk, vegetable, and seafood consumption rates. This paper describes how parameter data were obtained at the Savannah River Site and the impacts of such data on off-site dose. Dose estimates using site-specific parameter values are compared to estimates using the NRC default values.

Hamby, D.M. (Westinghouse Savannah River Company, Savannah River Laboratory, Aiken, SC (United States))

1992-02-01T23:59:59.000Z

291

CRAD, New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements- December 2, 2014 (EA CRAD 31-07, Rev. 0)  

Broader source: Energy.gov [DOE]

New Nuclear Facility Documented Safety Analysis and Technical Safety Requirements Criteria Review and Approach Document (EA CRAD 31-07, Rev. 0)

292

Nuclear Facility Safety Basis Fundamentals Self-Study Guide - November 2002  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Operations Office Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)] November 2002 Nuclear Facility Safety Basis Fundamentals Self-Study Guide TABLE OF CONTENTS Acronyms and Abbreviations ......................................................................................... iii List of Figures ....................................................................................................................iv List of Tables......................................................................................................................iv INTRODUCTION..............................................................................................................1

293

Simulations of Doppler Effects in Nuclear Reactions for AGATA Commissioning Experiments  

E-Print Network [OSTI]

The purpose of this master thesis is to simulate suitable nuclear reactions for a commissioning experiment, to be performed with the AGATA gamma-ray tracking spectrometer. The main aim of the work is to find a reaction, which gives large Doppler effects of the emitted gamma rays, with as small contribution as possible due to the energy and angular spread of the nuclei emitting the gamma rays. Inverse kinematics heavy-ion (HI) fusion reactions of the type (HI,gamma), (HI, n) on proton and deuteron targets have been studied. Target effects were investigated using the program TRIM in order to determine the impact on the Doppler effects caused by energy and angular straggling in the target material. The cross sections of a large number of reactions of protons and deuterons on nuclei with mass numbers in the range A=20-100 have been evaluated using the TALYS reaction code. The fusion-evaporation reactions, d(V-51,n)Cr-52 and d(Cl-37,n)Ar-38 were simulated in detail using the Monte Carlo code evapOR. The interactions in AGATA of the gamma rays emitted in these reactions were simulated using Geant4. The energy resolution of the gamma rays after gamma-ray tracking and Doppler correction were determined as a function of the interaction position resolution of the germanium detectors. The conclusion of this work is that of the two reactions d(V-51,n)Cr-52 is more suitable for an AGATA commissioning experiment.

Ali Al-Adili

2009-09-25T23:59:59.000Z

294

SPOTLIGHT ON NUCLEAR POWER  

Science Journals Connector (OSTI)

SPOTLIGHT ON NUCLEAR POWER ... TOUGHER RULES are needed to improve the safety of U.S. nuclear power facilities and to better protect the public from the type of disaster that occurred this spring at Japans Fukushima Daiichi nuclear energy plant, says a preliminary report released by the Nuclear Regulatory Commission (NRC) on July 12. ...

GLENN HESS

2011-07-18T23:59:59.000Z

295

Spent nuclear fuel project - criteria document spent nuclear fuel final safety analysis report  

SciTech Connect (OSTI)

The criteria document provides the criteria and planning guidance for developing the Spent Nuclear Fuel (SNF) Final Safety Analysis Report (FSAR). This FSAR will support the US Department of Energy, Richland Operations Office decision to authorize the procurement, installation, installation acceptance testing, startup, and operation of the SNF Project facilities (K Basins, Cold Vacuum Drying Facility, and Canister Storage Building).

MORGAN, R.G.

1999-02-23T23:59:59.000Z

296

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011  

Broader source: Energy.gov (indexed) [DOE]

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011 PURPOSE: To document the Department of Energy's (DOE) nuclear safety policy. SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility, except the Naval Nuclear Propulsion Program, which is separately covered under Executive Order 12344, Title 50 United States Code, sections 2406 and 2511. This Policy cancels Secretary of Energy Notice 35-91, Nuclear Safety Policy, dated 9-9-91. POLICY: It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the public, and the environment.

297

Price-Anderson Nuclear Safety Enforcement Program. 1997 annual report  

SciTech Connect (OSTI)

This report summarizes activities in the Department of Energy's Price-Anderson Amendments Act (PAAA) Enforcement Program in calendar year 1997 and highlights improvements planned for 1998. The DOE Enforcement Program involves the Office of Enforcement and Investigation in the DOE Headquarters Office of Environment, Safety and Health, as well as numerous PAAA Coordinators and technical advisors in DOE Field and Program Offices. The DOE Enforcement Program issued 13 Notices of Violation (NOV`s) in 1997 for cases involving significant or potentially significant nuclear safety violations. Six of these included civil penalties totaling $440,000. Highlights of these actions include: (1) Brookhaven National Laboratory Radiological Control Violations / Associated Universities, Inc.; (2) Bioassay Program Violations at Mound / EG and G, Inc.; (3) Savannah River Crane Operator Uptake / Westinghouse Savannah River Company; (4) Waste Calciner Worker Uptake / Lockheed-Martin Idaho Technologies Company; and (5) Reactor Scram and Records Destruction at Sandia / Sandia Corporation (Lockheed-Martin).

NONE

1998-01-01T23:59:59.000Z

298

Implementing 10 CFR 830 at the FEMP Silos: Nuclear Health and Safety Plans as Documented Safety Analysis  

SciTech Connect (OSTI)

The objective of the Silos Project at the Fernald Closure Project (FCP) is to safely remediate high-grade uranium ore residues (Silos 1 and 2) and metal oxide residues (Silo 3). The evolution of Documented Safety Analyses (DSAs) for these facilities has reflected the changes in remediation processes. The final stage in silos DSAs is an interpretation of 10 CFR 830 Safe Harbor Requirements that combines a Health and Safety Plan with nuclear safety requirements. This paper will address the development of a Nuclear Health and Safety Plan, or N-HASP.

Fisk, Patricia; Rutherford, Lavon

2003-06-01T23:59:59.000Z

299

THE RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER: A RESOURCE FOR REACTOR DOSIMETRY SOFTWARE AND NUCLEAR DATA  

SciTech Connect (OSTI)

The Radiation Safety Information Computational Center (RSICC) was established in 1963 to collect and disseminate computational nuclear technology in the form of radiation transport, shielding and safety software and corresponding nuclear cross sections. Approximately 1700 nuclear software and data packages are in the RSICC collection, and the majority are applicable to reactor dosimetry.

Kirk, Bernadette Lugue [ORNL] [ORNL

2009-01-01T23:59:59.000Z

300

ROBERT J. BUDNITZ Occupation: Physicist in Energy/Environmental Research and Nuclear Safety  

E-Print Network [OSTI]

ROBERT J. BUDNITZ Occupation: Physicist in Energy/Environmental Research and Nuclear Safety Birth December 2004 to September 2007 (in Livermore): Leader, Nuclear & Risk Science Group, Energy & Environment Directorate Associate Program Leader for Nuclear Systems Safety and Security, E&E Directorate October 2002

Ajo-Franklin, Jonathan

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reliability Engineering and System Safety 92 (2007) 609618 The nuclear industry's transition to risk-informed regulation and  

E-Print Network [OSTI]

Reliability Engineering and System Safety 92 (2007) 609­618 The nuclear industry's transition a Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Nuclear Power Engineering, Quality and Safety Management Department, Tokyo Electric Power

302

Safety culture in the nuclear power industry : attributes for regulatory assessment  

E-Print Network [OSTI]

Safety culture refers to the attitudes, behaviors, and conditions that affect safety performance and often arises in discussions following incidents at nuclear power plants. As it involves both operational and management ...

Alexander, Erin L

2004-01-01T23:59:59.000Z

303

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

304

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

305

Nuclear Explosive Safety Study Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

NOT MEASUREMENT SENSITIVE DOE-STD-1185-2007 CHANGE NOTICE No.1 April 2010 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1185-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/ns/techstds DOE-STD-1185-2007 iii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is

306

Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

Sheaffer, M.K.; Keeton, S.C.

1993-09-20T23:59:59.000Z

307

Nuclear Safety Basis Program Review Overview and Management Oversight Standard Review Plan  

Broader source: Energy.gov [DOE]

This SRP, Nuclear Safety Basis Program Review, consists of five volumes. It provides information to help strengthen the technical rigor of line management oversight and federal monitoring of DOE nuclear facilities. It provides a primer on the safety basis development and documentation process used by the DOE. It also provides a set of LOIs for the review of safety basis programs and documents of nuclear facilities at various stages of the facility life cycle.

308

Hybrid reliability model for nuclear reactor safety system  

Science Journals Connector (OSTI)

The dependability of critical safety systems needs to be quantitatively determined in order to verify their effectiveness, e.g. with regard to regulatory requirements. Since modular redundant safety systems are not required for normal operation, their reliability is strongly dependent on periodic inspection. Several modeling methods for the quantitative assessment of dependability are described in the literature, with a broad variation in complexity and modeling power. Static modeling techniques such as fault tree analysis (FTA) or reliability block diagrams (RBD) are not capable of capturing redundancy and repair or test activities. Dynamic state space based models such as continuous time Markov chains (CTMC) are more powerful but often result in very large, intractable models. Moreover, exponentially distributed state residence times are not a correct representation of actual residence times associated with repair activities or periodic inspection. In this study, a hybrid model combines a system level RBD with a CTMC to describe the dynamics. The effects of periodic testing are modeled by redistributing state probabilities at deterministic test times. Applying the method to the primary safety shutdown system of the BR2(Belgian Reactor 2)nuclear research reactor, resulted in a quantitative as well as a qualitative assessment of its reliability.

Steven Verlinden; Geert Deconinck; Bernard Coup

2012-01-01T23:59:59.000Z

309

DOE P 420.1 Department of Energy Nuclear Safety Policy, Approved: 2-08-2011  

Broader source: Energy.gov [DOE]

PURPOSE: To document the Department of Energys (DOE) nuclear safety policy.SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility,...

310

Fuzzy Failure Rate for Nuclear Power Plant Probabilistic Safety Assessment by Fault Tree Analysis  

Science Journals Connector (OSTI)

Reliability data is essential for a nuclear power plant probabilistic safety assessment by fault tree analysis ... a failure possibility-based reliability algorithm to assess nuclear event reliability data from f...

Julwan Hendry Purba; Jie Lu; Guangquan Zhang

2012-01-01T23:59:59.000Z

311

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE  

Broader source: Energy.gov (indexed) [DOE]

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1 This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOE's operation of nuclear facilities. In developing the revised Policy and performing this analysis, DOE reviewed the current Nuclear Safety Policy (Secretary of Energy Notice [SEN] 35-91, Nuclear Safety Policy) and safety policies established by other safety

312

Summary and bibliography of safety-related events at pressurized-water nuclear power plants as reported in 1979  

SciTech Connect (OSTI)

This report summarizes the data contained in reports submitted by licensees to the US Nuclear Regulatory Commission concerning safety-related operational events that occurred at pressurized-water-reactor nuclear power plants in 1979. A bibliography containing 100-word abstracts of the event reports is included. The 2064 abstracts included in the bibliography describe incidents, failures, and design or construction deficiencies experienced at the facilities. They are arranged alphabetically by reactor name and then chronologically for each reactor. Keyword and permuted-title indexes are provided to facilitate location of the abstracts of interest. Tables summarizing the information contained in the bibliography are also presented and discussed. Information listed in the tables includes instrument failures, equipment failures, system failures, causes of failures, deficiencies noted, and time of occurrence (i.e., during refueling, operation, testing, or construction). Some of the more interesting events that occurred during the year are reviewed in detail. 33 refs.

Scott, R.L.; Gallaher, R.B.

1981-07-01T23:59:59.000Z

313

Investigation on the Benefits of Safety Margin Improvement in CANDU Nuclear Power Plant Using an FPGA-based Shutdown System.  

E-Print Network [OSTI]

??The relationship between response time and safety margin of CANadian Deuterium Uranium (CANDU) nuclear power plant (NPP) is investigated in this thesis. Implementation of safety (more)

She, Jingke

2012-01-01T23:59:59.000Z

314

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel3 of HEALTH AND SAFETY IMPACTS OF FOSSIL-FUEL NUCLEAR,HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

315

Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety Culture 9 2.1 Background 9 2.2 Scope and Methods 10 2.3 ORP (including DOE-WTP) 11 2.4 BNI 11 2.5 WTP Project 12 3.0 ORP Management of Safety Concerns 15 3.1 Corrective Actions for the 2010 HSS Review 15 3.2 Processes for Managing Issues 16

316

Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Broader source: Energy.gov (indexed) [DOE]

Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety Culture 9 2.1 Background 9 2.2 Scope and Methods 10 2.3 ORP (including DOE-WTP) 11 2.4 BNI 11 2.5 WTP Project 12 3.0 ORP Management of Safety Concerns 15 3.1 Corrective Actions for the 2010 HSS Review 15 3.2 Processes for Managing Issues 16

317

China's approach to nuclear safety From the perspective of policy and institutional system  

Science Journals Connector (OSTI)

Abstract Nuclear energy plays an important role in the energy sector in the world. It has achieved a rapid development during the past six decades and contributes to over 11% of the world's electricity supply. On the other side, nuclear accidents have triggered substantial debates with a growing public concern on nuclear facilities. Followed by the Fukushima nuclear accident, some developed countries decided to shut down the existing nuclear power plants or to abandon plans to build new ones. Given this background, accelerating the development of nuclear power on the basis of safety in China will make it a bellwether for other countries. China assigns the top priority to the nuclear safety in nuclear energy development and has maintained a good record in this field. The policy and institutional system provide the necessary guarantee for the nuclear energy development and safety management. Furthermore, China's approach to nuclear safety provides a benchmark for the safe development and utilization of nuclear power. This research draws an overall picture of the nuclear energy development and nuclear safety in China from the policy and institutional perspective.

Ruimin Mu; Jian Zuo; Xueliang Yuan

2015-01-01T23:59:59.000Z

318

Alternative off-site power supply improves nuclear power plant safety  

Science Journals Connector (OSTI)

Abstract A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source.

Blae Gjorgiev; Andrija Volkanovski; Duko Kan?ev; Marko ?epin

2014-01-01T23:59:59.000Z

319

Nuclear Safety Regulatory Assistance Reviews | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 14, 2002 August 14, 2002 Preliminary Notice of Violation, Fluor Hanford, Incorporated - EA-2002-03 Preliminary Notice of Violation issued to Fluor Hanford, Incorporated, related to Quality Assurance issues at the Hanford Site. June 19, 2002 Enforcement Letter, Kaiser-Hill Company, L.L.C. - June 19, 2002 Enforcement Letter issued to Kaiser-Hill Company, LLC related to Unplanned Radioactive Material Uptakes at the Rocky Flats Environmental Technology Site October 22, 2001 Special Report Order, CH2M Hill Hanford Group, Inc. - October 22, 2001 Special Report Order issued to CH2M Hill Hanford Group, Inc., related to Multiple Nuclear Safety Issues at the Hanford Site October 9, 2001 Enforcement Letter, LANL - October 9, 2001 Enforcement Letter issued to Los Alamos National Laboratory related to

320

DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis, Roll Out Training  

Broader source: Energy.gov [DOE]

The Office of Nuclear Safety is performing a series of site visits to provide roll-out training and assistance to Program and Site Offices and their contractors on effective implementation of the new revision to DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis.

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities  

SciTech Connect (OSTI)

This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

Not Available

1993-11-01T23:59:59.000Z

322

Enforcement handbook: Enforcement of DOE nuclear safety requirements  

SciTech Connect (OSTI)

This Handbook provides detailed guidance and procedures to implement the General Statement of DOE Enforcement Policy (Enforcement Policy or Policy). A copy of this Enforcement Policy is included for ready reference in Appendix D. The guidance provided in this Handbook is qualified, however, by the admonishment to exercise discretion in determining the proper disposition of each potential enforcement action. As discussed in subsequent chapters, the Enforcement and Investigation Staff will apply a number of factors in assessing each potential enforcement situation. Enforcement sanctions are imposed in accordance with the Enforcement Policy for the purpose of promoting public and worker health and safety in the performance of activities at DOE facilities by DOE contractors (and their subcontractors and suppliers) who are indemnified under the Price-Anderson Amendments Act. These indemnified contractors, and their suppliers and subcontractors, will be referred to in this Handbook collectively as DOE contractors. It should be remembered that the purpose of the Department`s enforcement policy is to improve nuclear safety for the workers and the public, and this goal should be the prime consideration in exercising enforcement discretion.

NONE

1995-06-01T23:59:59.000Z

323

CY 2012 Annual Workforce Analysis and Staffing Plan - Chief of Nuclear Safety  

Broader source: Energy.gov (indexed) [DOE]

2 2 Reporting Office: Chief of Nuclear Safety . Section One: Current Mission(s) of the Organization and Potential Changes Revision 2 of U.S. Department of Energy Implementation Plan for DNFSB Recommendation 2004-1 established the seven core CTA responsibilities. The Office of the Chief of Nuclear Safety (CNS) performs to following functions in support of the CTA meeting these responsibilities: 1. Nuclear Safety Requirement Concurrence and Exemption * Concur with the determination of the applicability of DOE directives involving nuclear safety included in Energy and Science contracts pursuant to Department of Energy Acquisition Regulation (DEAR), 48 CFR 970.5204-2, Laws, regulations, and DOE directives, item (b). * Concur with nuclear safety requirements included in Energy and Science contracts pursuant to

324

CY 2011 Annual Workforce Analysis and Staffing Plan - Chief of Nuclear Safety  

Broader source: Energy.gov (indexed) [DOE]

1 1 Reporting Office: Chief of Nuclear Safety . Section One: Current Mission(s) of the Organization and Potential Changes Revision 2 of U.S. Department of Energy Implementation Plan for DNFSB Recommendation 2004-1 established the seven core CTA responsibilities. The Office of the Chief of Nuclear Safety (CNS) performs to following functions in support of the CTA meeting these responsibilities: 1. Nuclear Safety Requirement Concurrence and Exemption * Concur with the determination of the applicability of DOE directives involving nuclear safety included in Energy and Science contracts pursuant to Department of Energy Acquisition Regulation (DEAR), 48 CFR 970.5204-2, Laws, regulations, and DOE directives, item (b). * Concur with nuclear safety requirements included in Energy and Science contracts pursuant to

325

Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1  

SciTech Connect (OSTI)

Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

none,

1983-02-01T23:59:59.000Z

326

Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249  

SciTech Connect (OSTI)

Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)] [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)

2013-07-01T23:59:59.000Z

327

A probabilistic safety analysis of incidents in nuclear research reactors  

Science Journals Connector (OSTI)

......errors, computational models (software), management, communication, safety culture, plant ageing, maintenance...Energy Power Plants Probability Radiation Monitoring Radiation Protection Radioactive Hazard Release Safety Management...

Valdir Maciel Lopes; Gian Maria Agostinho Angelo Sordi; Mauricio Moralles; Tufic Madi Filho

2012-06-01T23:59:59.000Z

328

Safety Culture in Nuclear Installations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guidance for Use in the Enhancement of Safety Culture, International Atomic Energy Agency IAEA, December 2002. Developed for use in the IAEA's Safety Culture Services....

329

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010  

Broader source: Energy.gov [DOE]

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010

330

2015 Call for Proposals for the Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program  

Broader source: Energy.gov [DOE]

2015 Call for Proposals for the Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program.

331

DOE Standard on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010  

Broader source: Energy.gov [DOE]

There have been significant developments with regard to the risk assessment and risk informed decision making, as it applies to nuclear and other safety areas, since the Department of Energy (DOE) developed its approach to managing nuclear safety. The developments and associated technical insights may be of use to DOE in its efforts to continuously improve safety performance at its nuclear facilities.

332

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, jA.V.

2010-01-01T23:59:59.000Z

333

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

334

International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION  

E-Print Network [OSTI]

International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED;International Symposium on Fusion Nuclear Technology (ISFNT-5) heat from in-vessel systems with high neutron Symposium on Fusion Nuclear Technology (ISFNT-5) A design must adequately transfer heat from plasma

California at Los Angeles, University of

335

Implementation of an Enhanced Measurement Control Program for handling nuclear safety samples at WSRC  

SciTech Connect (OSTI)

In the separation and purification of nuclear material, nuclear criticality safety (NCS) is of primary concern. The primary nuclear criticality safety controls utilized by the Savannah River Site (SRS) Separations Facilities involve administrative and process equipment controls. Additional assurance of NCS is obtained by identifying key process hold points where sampling is used to independently verify the effectiveness of production control. Nuclear safety measurements of samples from these key process locations provide a high degree of assurance that processing conditions are within administrative and procedural nuclear safety controls. An enhanced procedure management system aimed at making improvements in the quality, safety, and conduct of operation was implemented for Nuclear Safety Sample (NSS) receipt, analysis, and reporting. All procedures with nuclear safety implications were reviewed for accuracy and adequate detail to perform the analytical measurements safely, efficiently, and with the utmost quality. Laboratory personnel worked in a Deliberate Operating'' mode (a systematic process requiring continuous expert oversight during all phases of training, testing, and implementation) to initiate the upgrades. Thus, the effort to revise and review nuclear safety sample procedures involved a team comprised of a supervisor, chemist, and two technicians for each procedure. Each NSS procedure was upgraded to a Use Every Time'' (UET) procedure with sign-off steps to ensure compliance with each step for every nuclear safety sample analyzed. The upgrade program met and exceeded both the long and short term customer needs by improving measurement reliability, providing objective evidence of rigid adherence to program principles and requirements, and enhancing the system for independent verification of representative sampling from designated NCS points.

Boler-Melton, C.; Holland, M.K.

1991-01-01T23:59:59.000Z

336

September 10, 2010 HSS Briefing to the Defense Nuclear Facilities Safety Board (DNFSB) on Union Activities  

Broader source: Energy.gov (indexed) [DOE]

Labor Union and Stakeholder Labor Union and Stakeholder Outreach and Collaboration Office of Health, Safety and Security Briefing to the Defense Nuclear Facilities Safety Board Briefing to the Defense Nuclear Facilities Safety Board Leadership Commitment Leadership Commitment " h "It is imperative that we communicate and establish relationships with those elements that train manage and elements that train, manage and represent our workforce to improve the safety culture at DOE sites." safety culture at DOE sites. Glenn S. Podonsky Chief Health, Safety and Security Officer 2 History History History History October 2006: Formation of HSS to provide an integrated DOE HQ-level function for health, safety, environment, and security into one unified office. February 2007: Established HSS Focus Group -

337

UNITED STATES NUCLEAR REGUtiTORY COMMISSION REGION I C31 PARK...  

Office of Legacy Management (LM)

REGUtiTORY COMMISSION REGION I C31 PARK AVENUE KlNt OF PRUSSIC. PENNSYLVANIA 1P4D6 z,: P -. : &J L . . : ; .; 3 Do:ket No. 40-2286 Westinqhouse Electric Company Lamp D1vis-i ons...

338

Report to the US Nuclear Regulatory Commission on analysis and evaluation of operational data - 1987: Power reactors  

SciTech Connect (OSTI)

This annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during 1987. The report is published in two volumes. NUREG-1272, Vol. 2, No. 1, covers Power Reactors and presents an overview of the operating experience of the nuclear power industry, with comments regarding the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year, and summarizes information from Licensee Event Reports, the NRC's Operations Center, and Diagnostic Evaluations. NUREG-1272, Vol. 2, No. 2, covers Nonreactors and presents a review of the nonreactors events and misadministration reports that were reported in 1987 and a brief synopsis of AEOD studies published in 1987. Each volume contains a list of the AEOD Reports issued for 1980-1987.

none,

1988-10-01T23:59:59.000Z

339

ENERGY COMMISSION PUBLIC UTILITIES COMMISSION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA PUBLIC UTILITIES COMMISSION FOR IMMEDIATE RELEASE Prosper, California Public Utilities Commission, 415.703.2160 GREENHOUSE GAS STRATEGIES OPINION RELEASED SACRAMENTO -- The California Energy Commission and the California Public Utilities Commission today released

340

Some radiochemical separations employed at the Institute of Nuclear and Energy Research-Brazilian Nuclear Energy Commission  

Science Journals Connector (OSTI)

Several radiochemical separations have been employed at the Radiochemistry Division of the Institute of Nuclear and Energy Research-Brazilian Nuclear Energy Commision, for the analysis of a number...

M. B. A. Vasconcellos

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE P 420.1 Department of Energy Nuclear Safety Policy  

Broader source: Energy.gov (indexed) [DOE]

POLICY POLICY Washington, D.C. Approved: 2-08-2011 SUBJECT: DEPARTMENT OF ENERGY NUCLEAR SAFETY POLICY PURPOSE: To document the Department of Energy's (DOE) nuclear safety policy. SCOPE: The provisions of this policy apply to all Departmental elements with responsibility for a nuclear facility, except the Naval Nuclear Propulsion Program, which is separately covered under Executive Order 12344, Title 50 United States Code, sections 2406 and 2511. This Policy cancels Secretary of Energy Notice 35-91, Nuclear Safety Policy, dated 9-9-91. POLICY: It is the policy of the Department of Energy to design, construct, operate, and decommission its nuclear facilities in a manner that ensures adequate protection of workers, the

342

Office of Nuclear Safety and Environmental Assessments | Department...  

Energy Savers [EERE]

operation, deactivation, decontamination, decommissioning and environmental restoration. Conduct assessments of changes to operations, safety basis and modifications. Conducts...

343

A probabilistic safety analysis of incidents in nuclear research reactors  

Science Journals Connector (OSTI)

......ICRP-64. INTRODUCTION Nuclear research reactors are considered important tools in nuclear science. For more than...as well as prevention policy, have stimulated the development...level 3 in the International Nuclear Events Scale (INES) of......

Valdir Maciel Lopes; Gian Maria Agostinho Angelo Sordi; Mauricio Moralles; Tufic Madi Filho

2012-06-01T23:59:59.000Z

344

Gas Pipeline Safety (Indiana)  

Broader source: Energy.gov [DOE]

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

345

Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components  

SciTech Connect (OSTI)

The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied.

Just, R.A.; Love, A.F.

1997-10-01T23:59:59.000Z

346

Confirmation of 10 CFR Part 830, nuclear safety rule (66 FR 19717), Fed Reg  

Broader source: Energy.gov (indexed) [DOE]

Confirmation of 10 CFR Part 830, nuclear safety rule (66 FR 19717), Confirmation of 10 CFR Part 830, nuclear safety rule (66 FR 19717), Fed Reg 4/17/01 Confirmation of 10 CFR Part 830, nuclear safety rule (66 FR 19717), Fed Reg 4/17/01 In accordance with the memorandum of January 20, 2001, from the Assistant to the President and Chief of Staff, entitled ''Regulatory Review Plan,'' published in the Federal Register on January 24, 2001 (66 FR 7702), DOE temporarily delayed for 60 days (66 FR 8746, February 2, 2001) the effective date of the rule entitled ''Nuclear Safety Management'' published in the Federal Register on January 10, 2001 (66 FR 1810). DOE has now completed its review of that regulation, and does not intend to initiate any further rulemaking action to modify its provisions and confirms the effective date of April 10,

347

Nuclear Safety R&D in the Waste Processing Technology Development & Deployment Program  

Broader source: Energy.gov (indexed) [DOE]

R&D in the Waste Processing R&D in the Waste Processing Technology Development & Deployment Program Presentation to the DOE High Level Waste Corporate Board July 29, 2009 Al Baione Office of Waste Processing DOE-EM Office of Engineering & Technology 2 Outline Nuclear Safety Research & Development Overview Summary of EM- NSR&D Presentations from February 2009 Evaluating Performance of Nuclear Grade HEPA Filters under Fire/Smoke Challenge Conditions Structural Integrity Initiative for HLW Tanks Pipeline Plugging and Prevention Advanced Mixing Models Basic Science Opportunities in HLW Storage and Processing Safety Cementitious Barriers Partnership 3 Nuclear Safety Research & Development Overview DNFSB 2004-1 identified need for renewed DOE attention to nuclear safety R&D

348

6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety  

Broader source: Energy.gov (indexed) [DOE]

6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety 6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety Management, AGENCY: Department of Energy (DOE). 6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety Management, AGENCY: Department of Energy (DOE). The Department of Energy (DOE) has issued Ruling 1995-1 which interprets certain regulatory provisions relating to DOE's nuclear safety requirements. This Ruling is intended to be a generally applicable clarification that addresses questions concerning the applicability and effect of these provisions. Ruling 1995-1; Ruling concerning 10 CFR Parts 830 and 835 More Documents & Publications Appendix A. Notice of Inquiry: Preparation of Report to Congress on Price-Anderson Act. 62 Federal Register 68,272 (December 31, 1997) Report to Congress on the Price-Anderson Act

349

Nuclear Safety Management, Final Rule; Delay of Effective Date (66 FR  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety Management, Final Rule; Delay of Effective Date (66 Nuclear Safety Management, Final Rule; Delay of Effective Date (66 FR 8746), Fed Reg, 2/2/01 Nuclear Safety Management, Final Rule; Delay of Effective Date (66 FR 8746), Fed Reg, 2/2/01 Nuclear Safety Management, Final Rule; Delay of Effective Date (66 FR 8746), Fed Reg, 2/2/01 In accordance with the memorandum of January 20, 2001, from the Assistant to the President and Chief of Staff, entitled ''Regulatory Review Plan,'' published in the Federal Register on January 24, 2001 (66 FR 7702), this action temporarily delays for 60 days the effective date of the rule entitled ''Alternate Fuel Transportation Program; Biodiesel Fuel Use Credit'' published in the Federal Register on January 11, 2001 (66 FR 2207). DATES: The effective date of the rule amending 10 CFR part 490

350

Manual of functions, assignments, and responsibilities for nuclear safety: Revision 2  

SciTech Connect (OSTI)

The FAR Manual is a convenient easy-to-use collection of the functions, assignments, and responsibilities (FARs) of DOE nuclear safety personnel. Current DOE directives, including Orders, Secretary of Energy Notices, and other assorted policy memoranda, are the source of this information and form the basis of the FAR Manual. Today, the majority of FARs for DOE personnel are contained in DOE`s nuclear safety Orders. As these Orders are converted to rules in the Code of Federal Regulations, the FAR Manual will become the sole source for information relating to the functions, assignments, responsibilities of DOE nuclear safety personnel. The FAR Manual identifies DOE directives that relate to nuclear safety and the specific DOE personnel who are responsible for implementing them. The manual includes only FARs that have been extracted from active directives that have been approved in accordance with the procedures contained in DOE Order 1321.1B.

Not Available

1994-10-15T23:59:59.000Z

351

Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most  

E-Print Network [OSTI]

Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards or steel reinforced concrete, these ferromagnetic materials may have an effect on the magnetic field environmental temperature control is required (2) Structural support for heavy equipment and vibration control

Maroncelli, Mark

352

Job Opening Research Associate/Post-Doctoral Fellow for Interdisciplinary Study on Nuclear Safety  

E-Print Network [OSTI]

public opinion surveys; experience in organizing and conducting focus group meetings; good journal to work independently. The appointee will assist in designing public opinion surveys, focusing for Interdisciplinary Study on Nuclear Safety Governance, University of Hong Kong

Leung, Ka-Cheong

353

DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules | Department  

Broader source: Energy.gov (indexed) [DOE]

for Violating Nuclear Safety Rules for Violating Nuclear Safety Rules DOE Cites CH2M Hill Hanford for Violating Nuclear Safety Rules March 10, 2005 - 10:44am Addthis Hanford Tank Farm Contractor Faces Fine of more than $300,000 WASHINGTON, DC - The Department of Energy (DOE) today notified the CH2M Hill Hanford Group, Inc. (CH2M Hill) - that it will fine the company $316,250 for violations of the department's nuclear safety requirements. CH2M Hill is the department's contractor responsible for storage of highly radioactive and hazardous liquid waste at the Hanford Tank Farms near Richland, Wash. The Preliminary Notice of Violation (PNOV) issued today, cites four events that took place in 2003 and 2004. These events include the contamination of several workers while removing equipment from a valve pit

354

Nuclear Safety Component and Services Procurement, June 29, 2011 (HSS CRAD 45-12, Rev. 1)  

Broader source: Energy.gov (indexed) [DOE]

Office Office of Enforcement and Oversight Criteria Review and Approach Document Subject: Nuclear Safety Component and Services Procurement Inspection Criteria, Inspection Activities, and Lines of Inquiry HS: HSSCRAD 45-12 Rev.: 1 Eff.Date: 06/29/2011 Page 1 of 15 Acting Director, Office of Safety and Emergency Management Evaluations Date: G> |W ^ Criteria Lead, Nuclear Safety Component Procurement Date: G>/z9/z<>// 1.0 PURPOSE Within the Office of Enforcement and Oversight, the Office of Safety and Emergency Management Evaluations' mission is to assess the effectiveness of those environment, safety, and health systems and practices used by line and contractor organizations in implementing Integrated Safety Management; and to provide clear, concise, and independent evaluations of performance in protecting our workers, the public, and the environment from

355

Assessment of Nuclear Safety Culture at the Pantex Plant, November 2012  

Broader source: Energy.gov (indexed) [DOE]

Pantex Plant Pantex Plant May 2011 November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Pantex Plant Table of Contents 1.0 Introduction........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3 4.0 Recommendations................................................................................................................................. 5

356

Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities  

SciTech Connect (OSTI)

This Department of Energy (DOE) is approved for use by all components of DOE. It contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE Non-Reactor Nuclear Facilities. Adherence with these guidelines will provide consistency and uniformity in Criticality Safety Evaluations (CSEs) across the complex and will document compliance with DOE Order 5480.24 requirements as they pertain to CSEs.

NONE

1998-09-01T23:59:59.000Z

357

PLC-Based Safety Critical Software Development for Nuclear Power Plants  

E-Print Network [OSTI]

PLC-Based Safety Critical Software Development for Nuclear Power Plants Junbeom Yoo1 , Sungdeok Cha}@kaeri.re.kr Abstract. This paper proposes a PLC(Programmable Logic Controller)-based safety critical software(FBD), a widely used PLC programming language. Finally, we manually refine the FBD programs so that redundant

358

U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy Oak Ridge Operations Nuclear Facility U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide U.S. Department of Energy Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals, Self-Study Guide This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions More Documents & Publications Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1, Conduct of Operations. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility

359

Y-12 hosts safety workshop | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

and Knoxville Building and Construction Trades Council. NNSA Blog About the photo Advisor Rizwan Shah and CNS Safety Culture Program Manager Paul Wasilko welcome participants...

360

Y-12's 1958 nuclear criticality accident and increased safety...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

signage, responsibility and programs for increased safety. Signs were required to make workers aware of hazards that had not been used before. Emergency response organizations...

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CRAD, Nuclear Facility Safety System - September 25, 2009 | Department...  

Broader source: Energy.gov (indexed) [DOE]

Facility Safety System Functionality Inspection Criteria, Inspection Activities, and Lines of Inquiry (HSS CRAD 64-17, Rev 0 ) This document establishes the protocols used by...

362

September 10, 2003, Board Public Meeting Presentations - Lessons Learned from Nuclear Power Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NUCLEAR REGULATORY COMMISSION NUCLEAR REGULATORY COMMISSION UNITED STATES NUCLEAR REGULATORY COMMISSION DAVIS DAVIS - - BESSE REACTOR VESSEL HEAD DEGRADATION BESSE REACTOR VESSEL HEAD DEGRADATION LESSONS LEARNED TASK FORCE LESSONS LEARNED TASK FORCE DEFENSE NUCLEAR FACILITIES SAFETY BOARD DEFENSE NUCLEAR FACILITIES SAFETY BOARD PUBLIC MEETING PUBLIC MEETING September 10, 2003 September 10, 2003 Ed Hackett, Project Director Ed Hackett, Project Director Project Directorate II Project Directorate II Office of Nuclear Reactor Regulation Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission U.S. Nuclear Regulatory Commission EMH1@NRC.GOV EMH1@NRC.GOV DAVIS DAVIS - - BESSE RACTOR VESSEL HEAD DEGRADATION BESSE RACTOR VESSEL HEAD DEGRADATION BACKGROUND BACKGROUND FEBRUARY, 2002 FEBRUARY, 2002 -

363

CRAD, Nuclear Safety- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

364

The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications  

SciTech Connect (OSTI)

The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

Kirk, Bernadette Lugue [ORNL] [ORNL

2009-01-01T23:59:59.000Z

365

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Broader source: Energy.gov (indexed) [DOE]

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

366

Safety of Department of Energy-Owned Nuclear Reactors  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish reactor safety program requirements assure that the safety of each Department of Energy-owned (DOE-owned) reactor is properly analyzed, evaluated, documented, and approved by DOE; and reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate protection for health and safety and will be in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. Cancels Chap. 6 of DOE O 5480.1A. Paragraphs 7b(3), 7e(3) & 8c canceled by DOE O 5480.23 & canceled by DOE N 251.4 of 9-29-95.

1986-09-23T23:59:59.000Z

367

Independent Oversight Assessment of the Nuclear Safety Culture...  

Office of Environmental Management (EM)

has also been effectively implemented in non-nuclear organizations, such as mining, health care, research, engineering, and transportation. The methodology entails collecting...

368

Proceedings of the Advisory Committee on Reactor Safeguards Safety Culture Workshop  

Broader source: Energy.gov [DOE]

NUREG/CP-0183, Proceedings of the Advisory Committee on Reactor Safeguards Safety Culture Workshop, June 12, 2003 U.S. Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards Washington, DC 20555-0001.

369

A new DOE standard for transuranic waste nuclear safety analysis  

SciTech Connect (OSTI)

The DOE Office of Environmental Management (EM) observed through onsite assessments and a review of site-specific lessons learned that transuranic (TRU) waste operations could benefit from standardization of assumptions and approaches used to analyze hazards and select controls. EM collected and compared safety analysis information from DOE sites, including a comparison of the type of TRU waste accidents evaluated and controls selected, as well as specific Airborne Release Fractions (ARFs), Respirable Fractions (RFs), and Damage Ratios (DRs) assumed in accident analyses. This paper recounts the efforts by the DOE and its contractors to bring consistency to the safety analysis process supporting TRU waste operations through an integrated re-engineering effort. EM embarked on a process to re-engineer and standardize TRU safety analysis activities complex-wide. The effort involved DOE headquarters, field offices, and contractors. Five teams were formed to analyze and develop the necessary technical basis for a DOE Technical Standard. The teams looked at general issues including Safety Basis (SB), drum integrity and inspection criteria, hazard controls and analysis, safety analysis review and approval process, and implementation of hazard controls. (authors)

Triay, I.; Chung, D. [U.S. Department of Energy, Washington, D.C. (United States); Woody, J. [Atlas Consulting, Knoxville, TN (United States); Foppe, T. [Carlsbad Technical Assistance Contractor, Carlsbad, NM (United States); Mewhinney, C. [Sandia National Laboratories, Carlsbad, NM (United States); Jennings, S. [Los Alamos National Laboratories, Carlsbad, NM (United States)

2007-07-01T23:59:59.000Z

370

Morsleben Nuclear Waste Repository Probabilistic Safety Assessment of the Long-Term Safety  

Science Journals Connector (OSTI)

The probabilistic safety assessment for a radioactive waste repository in a former salt mine is presented. Even with a simplified model, the number of parameters is high. Uncertainties in the parameter values ...

Georg Resele; Matthias Niemeyer

2004-01-01T23:59:59.000Z

371

Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site  

Broader source: Energy.gov (indexed) [DOE]

NNSS-2011-001 NNSS-2011-001 Site: Nevada National Security Site Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer William Macon Activity Description/Purpose: The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), visited the Nevada Site Office (NSO) and the Nevada National Security Site (NNSS) from February 14-17, 2011. The purpose of the visit was to observe the Defense Nuclear Facilities Safety Board (DNFSB) review and maintain operational awareness of NNSS activities. Result:

372

Dynamical safety assessment of hydrogen production nuclear power plants using system dynamics method  

Science Journals Connector (OSTI)

Nuclear power plants for hydrogen production are investigated in the aspect of nuclear safety. The non-linear dynamical safety assessment is introduced for the analysis of the high temperature gas cooled reactor (HTGR) which is used for hydrogen production as well as electricity generation. The dynamical algorithm is adjusted for the safety assessment with an easier and reliable output. A feedback of power increase affects to the temperature decrease. The top event of the event is power and temperature stable. It is affected by the human factor, poison, and some other physical variables. There are several factors including the economic and safety factors which are considered for the reliability of the modelling simulations. Using the system dynamics (SD) method, the event quantification is performed for the event flows, stocks, and feedback by the single and double arrow lines.

Taeho Woo; Soonho Lee

2013-01-01T23:59:59.000Z

373

Safety Aspects of Wet Storage of Spent Nuclear Fuel, OAS-L-13-11  

Broader source: Energy.gov (indexed) [DOE]

Safety Aspects of Wet Storage of Safety Aspects of Wet Storage of Spent Nuclear Fuel OAS-L-13-11 July 2013 Department of Energy Washington, DC 20585 July 10, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Daniel M. Weeber Assistant Inspector General for Audits and Administration Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Safety Aspects of Wet Storage of Spent Nuclear Fuel" BACKGROUND The Department of Energy (Department) is responsible for managing and storing spent nuclear fuel (SNF) generated by weapons and research programs and recovered through nonproliferation programs. The SNF consists of irradiated reactor fuel and cut up assemblies containing uranium, thorium and/or plutonium. The Department stores 34 metric tons of heavy metal SNF primarily

374

Nuclear Safety Management, Final Rule amending 10 CFR Part 830 (66 FR  

Broader source: Energy.gov (indexed) [DOE]

Management, Final Rule amending 10 CFR Part 830 (66 Management, Final Rule amending 10 CFR Part 830 (66 FR 1810), Federal Register (Fed Reg), 1/10/2001 Nuclear Safety Management, Final Rule amending 10 CFR Part 830 (66 FR 1810), Federal Register (Fed Reg), 1/10/2001 SUMMARY: The Department of Energy (DOE) adopts, with minor changes, the interim final rule published on October 10, 2000, to amend the DOE Nuclear Safety Management regulations. EFFECTIVE DATE: This final rule is effective on February 9, 2001. FOR FURTHER INFORMATION CONTACT: Richard Black, Director, Office of Nuclear and Facility Safety Policy, 270CC, Department of Energy, 19901 Germantown Road, Germantown, MD 20874; telephone: 301-903-3465; email: Richard.Black@eh.doe.gov SUPPLEMENTARY INFORMATION: I. Introduction and Summary On October 10, 2000, the Department of Energy (DOE) published an

375

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect (OSTI)

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

376

RADIATION DOSE ASPECTS IN THE HANDLING OF EMERGING NUCLEAR FUELS  

Science Journals Connector (OSTI)

......Prot. (2008) 28:161. 15 NUREG. Standard review plan for the review of an application for a Mixed Oxide (MOX) fuel...fabrication facility. (2000) NUREG-1718, US Nuclear Regulatory Commission. 16 IAEA. Safety of uranium fuel fabrication......

G. Nicolaou

2014-02-01T23:59:59.000Z

377

Index to Nuclear Safety: a technical progress review by chronology, permuted title, and author, Volume 18 (1) through Volume 22 (6)  

SciTech Connect (OSTI)

This index to Nuclear Safety covers articles published in Nuclear Safety, Volume 18, Number 1 (January-February 1977) through Volume 22, Number 6 (November-December 1981). The index is divided into three section: a chronological list of articles (including abstracts), a permuted-title (KWIC) index, and an author index. Nuclear Safety, a bimonthly technical progress review prepared by the Nuclear Safety Information Center, covers all safety aspects of nuclear power reactors and associated facilities. Over 300 technical articles published in Nuclear Safety in the last 5 years are listed in this index.

Cottrell, W.B.; Passiakos, M.

1982-06-01T23:59:59.000Z

378

Nuclear criticality safety experiments, calculations, and analyses: 1958 to 1982. Volume 1. Lookup tables  

SciTech Connect (OSTI)

This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains - in chronological order - the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

Koponen, B.L.; Hampel, V.E.

1982-10-21T23:59:59.000Z

379

THE RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER (RSICC) - A RESOURCE FOR COMPUTATIONAL TOOLS FOR NUCLEAR APPLICATIONS  

SciTech Connect (OSTI)

The Radiation Safety Information Computational Center (RSICC), which has been in existence since 1963, is the principal source and repository in the United States for computational tools for nuclear applications. RSICC collects, organizes, evaluates and distributes nuclear software and data involving the transport of neutral and charged particle radiation, and shielding and protection from radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste. RSICC serves over 12,000 scientists and engineers from 94 countries. RSICC software provides in-depth coverage of radiation related topics: the physics of the interaction of radiation with matter, radiation production and sources, criticality safety, radiation protection and shielding, radiation detectors and measurements, shielding materials properties, radiation waste management, atmospheric dispersion and environmental dose, medical applications, macro- and micro-dosimetry calculations.

Kirk, Bernadette Lugue [ORNL] [ORNL

2009-01-01T23:59:59.000Z

380

September 10, 2003, Board Public Meeting - Nuclear Regulatory Commission - Davis-Besse Lessons Learned  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 6 7 8 9 10 11 12 13 14 15 16 I 17 18 19 20 21 22 24 25 101 inspector to a senior, and then they'll move to another facility, but seven years is the maximum, and that's written in our policy. CHAIRMAN CONWAY: Thank you. Dr. Hackett. DR. HACKETT: Thank you, Mr. Chairman. I have a different challenge today, which is to try and help walk you through a story that's very important to us in the nuclear industry. In general, it dovetails with what Russ and Cindy had been talking about. The thing I'll add on this slide is that during the timeframe from May to October 2002, I was Assistant Team Leader for the NRC's Davis-Besse Lessons Learned Task Force. That's the role in which I'll be presenting this information to you. As you've been doing, I think I found that these work most

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nuclear criticality safety program at the University of Tennessee-Knoxville  

SciTech Connect (OSTI)

This paper presents an overview of the nuclear criticality safety (NCS) educational program at the University of Tennessee-Knoxville. The program is an academic specialization for nuclear engineering graduate students pursuing either the MS or PhD degree and includes special NCS courses and NCS research projects. Both the courses and the research projects serve as partial fulfillment of the requirements for the degree being pursued.

Basoglu, B.; Bentley, C.; Brewer, R.; Dunn, M.; Haught, C.; Plaster, M.; Wilkinson, A.; Dodds, H. (Univ. of Tennessee, Knoxville, TN (United States)); Elliott, E.; Waddell, W. (Martin Marietta Energy Systems Inc., Oak Ridge, TN (United States))

1993-01-01T23:59:59.000Z

382

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1  

Broader source: Energy.gov [DOE]

This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOEs operation of nuclear facilities.

383

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear tors. for of of These studies can examine safety systems or safety research programsnuclear power plants, and at risk. to reduce population The Light-water Reactor Safety Research Program

Nero, A.V.

2010-01-01T23:59:59.000Z

384

Nuclear criticality safety program development using necessary and sufficient standards  

SciTech Connect (OSTI)

The U.S. Department of Energy`s (DOE`s) Necessary and Sufficient Standards Closure Process has been used to develop a new criticality, safety program manual for the Rocky Flats Environmental Technology Site (RFETS). Standards define and communicate the expectations for performance of work. The purpose of the necessary and sufficient standards closure process is to apply standards determined to be necessary and sufficient for protecting the workers, the public, and the environment. This ensures that the applied standards add value to the performance of the activity; work effectiveness is increased. The purpose of this paper is to briefly describe the process and the results for the selection of national criticality safety standards for use at the Rocky Flats facilities.

Croucher, D.W.; Stachowiak, R.V. [Kaiser-Hill Co., LLC, Golden, CO (United States); Wilson, R.E. [Safe Sites of Colorado, Golden, CO (United States)

1996-12-31T23:59:59.000Z

385

Safety issues in robotic handling of nuclear weapon parts  

SciTech Connect (OSTI)

Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive weapon parts. These systems will reduce the occupational radiation exposure to workers by automating operations that are currently performed manually. The robotic systems at Sandia incorporate several levels of mechanical, electrical, and software safety for handling hazardous materials. For example, tooling used by the robot to handle radioactive parts has been designed with mechanical features that allow the robot to release its payload only at designated locations in the robotic workspace. In addition, software processes check for expected and unexpected situations throughout the operations. Incorporation of features such as these provides multiple levels of safety for handling hazardous or valuable payloads with automated intelligent systems.

Drotning, W.; Wapman, W.; Fahrenholtz, J.

1993-12-31T23:59:59.000Z

386

Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preiminary Documented Safety Analysis Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HIAR-LANL-2013-04-08 HIAR-LANL-2013-04-08 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report Dates of Activity : 04/08/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste

387

Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preiminary Documented Safety Analysis Report  

Broader source: Energy.gov (indexed) [DOE]

HIAR-LANL-2013-04-08 HIAR-LANL-2013-04-08 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report Dates of Activity : 04/08/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste

388

Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who  

SciTech Connect (OSTI)

The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

Forsberg, C.W.; Reich, W.J.

1991-09-01T23:59:59.000Z

389

Safety Aspects of Nuclear Desalination with Innovative Systems; the EURODESAL Project  

SciTech Connect (OSTI)

The proposed paper reports the results of a preliminary investigation on safety impact deriving from the coupling of a desalination plant with a 600 MWe Passive Design PWR like the AP600 Nuclear Power Plant. This evaluation was performed in the frame of the EURODESAL Project of the 5. EURATOM Framework Programme. (authors)

Alessandroni, C.; Cinotti, L.; Mini, G. [Ansaldo Nucleare, C.so Perrone, 25 - Genova (Italy); Nisan, S. [CEA-CEN Cadarache, F-13108 Saint Paul-lez-Durance (France)

2002-07-01T23:59:59.000Z

390

Opportunities for improving regulations governing the seismic safety of large nuclear installations  

Broader source: Energy.gov [DOE]

Opportunities for Improving Regulations Governing the Seismic Safety of Large Nuclear Installations Robert J. Budnitz, Ph.D. LBNL University of California, Berkeley, CA 94720 Andrew S. Whittaker, Ph.D., S.E. MCEER University at Buffalo, Buffalo, NY 14260

391

Price-Anderson Nuclear Safety Enforcement Program. 1996 Annual report  

SciTech Connect (OSTI)

This first annual report on DOE`s Price Anderson Amendments Act enforcement program covers the activities, accomplishments, and planning for calendar year 1996. It also includes the infrastructure development activities of 1995. It encompasses the activities of the headquarters` Office of Enforcement in the Office of Environment, Safety and Health (EH) and Investigation and the coordinators and technical advisors in DOE`s Field and Program Offices and other EH Offices. This report includes an overview of the enforcement program; noncompliances, investigations, and enforcement actions; summary of significant enforcement actions; examples where enforcement action was deferred; and changes and improvements to the program.

NONE

1996-01-01T23:59:59.000Z

392

Frequently Asked Questions Regarding DOE-STD-1195-2011, Design of Safety Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities  

Broader source: Energy.gov [DOE]

Frequently Asked Questions Regarding DOE-STD-1195-2011 which provides requirements and guidance for the design, procurement, installation, testing, maintenance, operation, and quality assurance of safety instrumented systems (SIS) that may be used at Department of Energy (DOE) nonreactor nuclear facilities for safety significant (SS) functions.

393

Lessons learnt from ITER safety & licensing for DEMO and future nuclear fusion facilities  

E-Print Network [OSTI]

One of the strong motivations for pursuing the development of fusion energy is its potentially low environmental impact and very good safety performance. But this safety and environmental potential can only be fully realized by careful design choices. For DEMO and other fusion facilities that will require nuclear licensing, S&E objectives and criteria should be set at an early stage and taken into account when choosing basic design options and throughout the design process. Studies in recent decades of the safety of fusion power plant concepts give a useful basis on which to build the S&E approach and to assess the impact of design choices. The experience of licensing ITER is of particular value, even though there are some important differences between ITER and DEMO. The ITER project has developed a safety case, produced a preliminary safety report and had it examined by the French nuclear safety authorities, leading to the licence to construct the facility. The key technical issues that arose during ...

Taylor, Neill

2013-01-01T23:59:59.000Z

394

NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations, Fact Sheet  

Broader source: Energy.gov (indexed) [DOE]

Sheet Sheet NNSA issues Preliminary Notice of Violation to National Security Technologies, LLC, for Nuclear Safety Violations On August 22, 2011, the National Nuclear Security Administration (NNSA) issued a Preliminary Notice of Violation (PNOV) to National Security Technologies, LLC (NSTec) for violations of Department of Energy's (DOE) nuclear safety regulations. NSTec is the operating contractor of NNSA's Nevada National Security Site (NNSS) located 65 miles northwest of Las Vegas, Nevada. The PNOV cites four violations of DOE regulations governing nuclear safety management. The violations are associated with quality assurance (QA) related deficiencies in the inspection and installation of penetration fire seals and other components at the Criticality Experiments Facility

395

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

396

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Rosen, L.C.

2010-01-01T23:59:59.000Z

397

Nuclear Explosives Safety Evaluation Process (DOE-STD-3015-2004)  

Broader source: Energy.gov (indexed) [DOE]

SENSITIVE DOE-STD-3015-2004 November 2004 Superseding DOE-STD-3015-2001 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY EVALUATION PROCESS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Available on the Department of Energy Technical Standards Program Web site at http://tis.eh.doe.gov/techstds/. DOE-STD-3015-2004 iii FOREWORD This Department of Energy (DOE) Technical Standard is approved for use by the Assistant Deputy Administrator for Military Application and Stockpile Operations, National Nuclear Security Administration (NNSA), and is available for use with DOE O 452.1, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, and DOE O 452.2, SAFETY OF

398

Safety Bulletin 2011-01, Events Beyond Design Safety Basis Analysis |  

Broader source: Energy.gov (indexed) [DOE]

Bulletin 2011-01, Events Beyond Design Safety Basis Analysis Bulletin 2011-01, Events Beyond Design Safety Basis Analysis Safety Bulletin 2011-01, Events Beyond Design Safety Basis Analysis PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the subsequent tsunami. While there is still a lot to be learned from the accident · about the adequacy of design specifications and the equipment failure modes, reports from the Nuclear Regulatory Commission (NRC) have identified some key aspects of the operational emergency at the Fukushima Daiichi nuclear power station.

400

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Defense Nuclear Facilitiets Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 1 Report Number: HIAR LANL-2012-08-16 Site: Los Alamos National Laboratory (LANL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Visit and Site Lead Planning Activities at the Los Alamos National Laboratory Dates of Activity : 08/14/2012 - 08/16/2012 Report Preparer: Robert Freeman Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to maintain site operational awareness of key nuclear safety performance areas of interest to the Defense Nuclear Facilities Safety Board (DNFSB), monitor ongoing site oversight and planning activities for Los Alamos National Laboratory (LANL) nuclear facilities, and identify and initiate

402

Defense Nuclear Facilities Safety Board Public Meeting on the Status of Integration of Safety Into the Design of the Uranium Processing Facility, October 2012  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-Y-12-2012-10-02 Site: Y-12 UPF Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Defense Nuclear Facilities Safety Board (DNFSB) Public Meeting on the Status of Integration of Safety into the Design of the Uranium Processing Facility (UPF) Dates of Activity: October 2, 2012 Report Preparer: Timothy Mengers Activity Description/Purpose: The Office of Health, Safety and Security (HSS) observed the public hearing of the DNFSB review of the UPF project status for integrating safety into design. The meeting was broken into three parts: a panel discussion and questioning of National Nuclear Security Administration (NNSA) oversight and execution; a panel discussion and questioning of the B&W Y-12

403

ON THE USE OF SPRAY SYSTEMS: AN EXAMPLE OF R&D WORK IN HYDROGEN SAFETY FOR NUCLEAR APPLICATIONS  

E-Print Network [OSTI]

occurred since the Three Mile Island nuclear accident in 1979 through experimental programs1 ON THE USE OF SPRAY SYSTEMS: AN EXAMPLE OF R&D WORK IN HYDROGEN SAFETY FOR NUCLEAR APPLICATIONS, igniters and spray systems have been designed and installed in modern nuclear power plants. Mitigation

Boyer, Edmond

404

Nuclear Safety Regulatory Assistance Reviews | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 22, 2013 July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic Deficiencies in the Software Quality Assurance Program at the Lawrence Livermore National Laboratory February 12, 2013 Enforcement Letter, NEL-2013-02 Issued to Los Alamos National Security, LLC related to a Radiological Contamination Event at the Los Alamos Neutron Science Center at Los Alamos National Laboratory January 7, 2013 Enforcement Letter, NEL-2013-01 Issued to B&W Pantex, LLC related to the Conduct of Nuclear Explosive Operations at the Pantex Plant October 23, 2012 Enforcement Letter, Controlled Power Company - WEL-2012-02 Enforcement Letter issued to Controlled Power Company related to an Electrical Shock Near Miss that occurred in the Radiological Laboratory

405

Just in Time DSA-The Hanford Nuclear Safety Basis Strategy  

SciTech Connect (OSTI)

The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

Olinger, S. J.; Buhl, A. R.

2002-02-26T23:59:59.000Z

406

Continuous Commissioning  

E-Print Network [OSTI]

Continuous Commissioning? for Existing Buildings D. E. Claridge, P.E., Ph.D., FASHRAE Professor, Department of Mechanical Engineering Director, Energy Systems Laboratory Continuous Commissioning? and CC? are registered trademarks of the Texas... Commissioning Building Has ? Satisfied Occupants ? Comfortable Conditions ? Operational Issues Resolved ? Operating Staff Trained ? Reduced Operating Cost ? Saving from 10% to 20%+ over baseline total cost ? ROI of 40%+ ? Breakeven investment...

Culp, C.; Claridge, D. E.

2011-01-01T23:59:59.000Z

407

General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980  

SciTech Connect (OSTI)

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-05-01T23:59:59.000Z

408

Implementation Evaluation Criteria for January 2001 Amended 10 CFR Part 830 Nuclear Safety Management  

SciTech Connect (OSTI)

This document provides criteria for use in performing gap evaluations of processes and documents relative to the requirements of 10 CFR Part 830, Nuclear Safety Management. The criteria and associated objective evidence statements have been approved by the cognizant interpretative authorities. The criteria have been developed for each section of 10 CFR Part 830. The criteria have been divided into two categories. Criteria and objective evidence have been developed for use in assessing Fluor Hanford (FH) programs and procedures at the company level--programmatic requirements and evidence. Criteria and objective evidence statements have also been developed for FH nuclear facilities and projects.

EVANS, C.B.

2001-02-13T23:59:59.000Z

409

Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses  

Broader source: Energy.gov (indexed) [DOE]

3009-94 3009-94 July 1994 CHANGE NOTICE NO.1 January 2000 CHANGE NOTICE NO. 2 April 2002 CHANGE NOTICE NO. 3 March 2006 DOE STANDARD PREPARATION GUIDE FOR U.S DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSES U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-3009-94 Page ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. DOE-STD-3009-94 Page iii Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses Table of Changes

410

A case study on effectiveness of structural reliability analysis in nuclear reactor safety assessment  

Science Journals Connector (OSTI)

Problems on reliability of structural integrity occupy an important position in various aspects of nuclear reactor safety. In the present paper, an effective method for quantitative evaluation of structural reliability based on stress strength model is developed with the objectives of taking a larger number of factors into the evaluation than before and giving useful results within moderate computing time. The method is applied to the reliability analysis of PWR pressure vessels. The results show the relative importance of inspection as well as the parameter uncertainty for assuring the reliability of the structure, although analysis is limited within the scope of linear elastic fracture mechanics (LEFM). This case study also shows that the analysis of structural reliability is effective for safety assessment of nuclear power plants in general and possibly for the improvements of the consistency in the design code.

A. Yamaguchi; S. Kondo; Y. Togo

1983-01-01T23:59:59.000Z

411

Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Operations Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions Name: Organization: Directions: This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Questions: 1. What is safety basis (SB)? 2. How does SB fit with integrated safety management (ISM)? 3. In what primary DOE documents can requirements and guidance for SB be found? 4. What are the "graded approach" factors that DOE takes into account in ensuring that the level of analysis and documentation and the actions used to comply with the requirements are

412

Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Operations Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions Name: Organization: Directions: This is an open-book evaluation. Complete the questions, and submit your answers (hand-written or electronically) to the Training Center. Someone will check and grade your answers. If you achieve a score of at least 80%, you will receive a completion certificate. Questions: 1. What is safety basis (SB)? 2. How does SB fit with integrated safety management (ISM)? 3. In what primary DOE documents can requirements and guidance for SB be found? 4. What are the "graded approach" factors that DOE takes into account in ensuring that the level of analysis and documentation and the actions used to comply with the requirements are

413

The potential role of new technology for enhanced safety and performance of nuclear power plants through improved service maintenance  

E-Print Network [OSTI]

Refinements in the safety and performance of nuclear power plants must be made to maintain public confidence and ensure competitiveness with other power sources. The aircraft industry, US Navy, and other programs have ...

Achorn, Ted Glen

1991-01-01T23:59:59.000Z

414

Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

he purpose of this DOE Standard is to establish guidance for the preparation and review of hazard categorization and accident analyses techniques as required in DOE Order 5480.23, Nuclear Safety Analysis Reports.

1997-12-12T23:59:59.000Z

415

[6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety Management, AGENCY: Department of Energy (DOE).  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) is issuing a final rule regarding Nuclear SafetyManagement. This Part establishes requirements for the safe management of DOE contractor andsubcontractor work at the...

416

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012  

Broader source: Energy.gov (indexed) [DOE]

Idaho Cleanup Project Idaho Cleanup Project Sodium Bearing Waste Treatment Project May 2011 November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project Table of Contents 1.0 Introduction........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2

417

Assessment of Nuclear Safety Culture at the Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project, April 2012  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Laboratory Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project May 2011 April 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Los Alamos National Laboratory Chemistry and Metallurgy Research Replacement Project Table of Contents 1. Introduction ........................................................................................................................................... 1 2. Scope and Methodology ....................................................................................................................... 2

418

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

of the health and safety impact of fossil fuel emissions.to public health and safety, of any fossil fuel plant areHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL

Nero, A.V.

2010-01-01T23:59:59.000Z

419

DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship  

Broader source: Energy.gov (indexed) [DOE]

Oversight and Investigations Oversight and Investigations Committee on Energy and Commerce U.S. House of Representatives "DOE's Nuclear Weapons Complex: Challenges to Safety, Security, and Taxpayer Stewardship" FOR RELEASE ON DELIVERY 10:00 AM September 12, 2012 1 Mr. Chairman and Members of the Subcommittee, I am pleased to be here at your request to testify on matters relating to the Department of Energy's oversight of the nuclear weapons complex. 1 The National Nuclear Security Administration (NNSA) was established under the National Defense Authorization Act of 2000 as a separately organized agency within the Department of Energy. This action was intended to allow NNSA to concentrate on its defense-related mission, free from other Departmental operations. Its creation was, in large measure, a reaction to highly

420

Blue Ribbon Commission Tour of Hanford Site  

SciTech Connect (OSTI)

The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

Paul Saueressig

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Blue Ribbon Commission Tour of Hanford Site  

ScienceCinema (OSTI)

The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

Paul Saueressig

2010-09-01T23:59:59.000Z

422

Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities  

Broader source: Energy.gov [DOE]

In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made.

423

Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect (OSTI)

This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

Kent Norris

2010-02-01T23:59:59.000Z

424

Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect (OSTI)

This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

Kent Norris

2010-03-01T23:59:59.000Z

425

Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Numbers 50-390 and 50-391). Supplement Number 13  

SciTech Connect (OSTI)

This report supplements the Safety Evaluation Report (SER), NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), Supplement No. 3 (January 1985), Supplement No. 4 (March 1985), Supplement No. 5 (November 1990), Supplement No. 6 (April 1991), Supplement No. 7 (September 1991), Supplement No. 8 (January 1992), Supplement No. 9 (June 1992), Supplement No. 10 (October 1992), Supplement No. 11 (April 1993), and Supplement No. 12 (October 1993), issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the outstanding and confirmatory items, and proposed license conditions identified in the SER. These issues relate to: Design criteria -- structures, components, equipment, and systems; Reactor; Instrumentation and controls; Electrical power systems; Auxiliary systems; Conduct of operations; Accident analysis; and Quality assurance.

Not Available

1994-04-01T23:59:59.000Z

426

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VI. Safety and environmental considerations for licensing  

SciTech Connect (OSTI)

This volume of the Nonproliferation Alternative Systems Assessment Program report addresses safety and environmental considerations in licensing the principal alternative nuclear reactors and fuel cycles in the United States for large-scale commercial nuclear power plants. In addition, this volume examines the safety and environmental considerations for licensing fuel service centers. These centers, which have been proposed for controlling sensitive fuel-cycle facilities and special nuclear materials, would contain a combination of such facilities as reprocessing plants, fabrication plants, and reactors. For this analysis, two fuel service center concepts were selected - one with power - generating capability and one without.

Not Available

1980-06-01T23:59:59.000Z

427

Validation of Nuclear Criticality Safety Software and 27 energy group ENDF/B-IV cross sections  

SciTech Connect (OSTI)

The validation documented in this report is based on calculations that were executed during June through August 1992, and was completed in June 1993. The statistical analyses in Appendix C and Appendix D were completed in October 1993. This validation gives Portsmouth NCS personnel a basis for performing computerized KENO V.a calculations using the Martin Marietta Nuclear Criticality Safety Software. The first portion of the document outlines basic information in regard to validation of NCSS using ENDF/B-IV 27-group cross sections on the IBM 3090 at ORNL. A basic discussion of the NCSS system is provided, some discussion on the validation database and validation in general. Then follows a detailed description of the statistical analysis which was applied. The results of this validation indicate that the NCSS software may be used with confidence for criticality calculations at the Portsmouth Gaseous Diffusion Plant. When the validation results are treated as a single group, there is 95% confidence that 99.9% of future calculations of similar critical systems will have a calculated K{sub eff} > 0.9616. Based on this result the Portsmouth Nuclear Criticality Safety Department has adopted the calculational acceptance criteria that a k{sub eff} + 2{sigma} {le} 0.95 is safety subcritical. The validation of NCSS on the IBM 3090 at ORNL was extended to include NCSS on the IBM 3090 at K-25.

Lee, B.L. Jr.

1994-08-01T23:59:59.000Z

428

Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.  

SciTech Connect (OSTI)

As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

Darby, John L.

2011-05-01T23:59:59.000Z

429

International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004.  

E-Print Network [OSTI]

for assuring quality of software. In the area of nuclear power plant control systems, testing on softwareThe 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004. Paper ID. N6P298 Direct Control Flow Testing on Function Block Diagrams

430

USING TECHNOLOGY TO SUPPORT PROACTIVE MANAGEMENT OF MATERIALS DEGRADATION FOR THE U.S. NUCLEAR REGULATORY COMMISSION  

SciTech Connect (OSTI)

The majority of the U.S. reactor fleet is applying for license renewal to extend the operating life from the current 40 years to 60 years, and there is now active interest in extending the operating life to beyond 60 years. Many plants are also applying for increases in power rating and both of these changes increases the need for an improved understanding of materials degradation. Many materials degrade over time and much is known about the degradation of materials under normal environmental conditions; however, less is known about the characteristics of materials degradation when the environment is subject to higher than normal radiological conditions over extended periods of time. Significant efforts are being made by industrial, academic and regulatory groups worldwide to identify, classify and mitigate potential problems arising from degradation of components in this context. From a regulatory perspective, the U.S. Nuclear Regulatory Commission (USNRC) is very interested in being able to identify ways to insure their licensees proactively manage the identification of materials degradation and the mitigation of its effects. To date, the USNRC has consolidated generic programs for mitigating aging issues in the two volume Generic Aging Lessons Learned (GALL) Report (NUREG-1801) [1][2], and have encouraged applicants for license renewal to use these programs where applicable in their plant when applying for renew of their reactors license. The USNRC has also published a comprehensive report entitled Expert Panel Report on Proactive Materials Degradation (NUREG/CR-6923) [3] that inventories the types of degradation mechanisms that could exist in each component of a Light Water Reactor (LWR) and each degradation mechanism is assessed regarding how much is known about mitigating its effects. Since the number of plant designs and materials used varies greatly within the U.S. fleet, there are many variations to implementing aging management programs (AMPs), requiring significant dialogs between the Licensee and the USNRC. These discussions are part of the licensing basis and as such are documented with up to multi-hundred page responses that are loosely coupled through the USNRC Agency-wide Document Access and Management System (ADAMS), which serves as an electronic records repository for the USNRC . These discussions have supported revisions to the GALL, including the revision that is being prepared as this paper is being written. The USNRC has sought the help of the Pacific Northwest National Laboratory to improve the staffs ability to navigate the significant numbers of documents that are generated in this process and to provide a forum for regulators, licensees and researchers to share knowledge in the efforts to improve the cyclic process for defining, applying, validating and re-defining AMPs. Work to date in this area is publicly accessible and this paper will describe that work and outline a potential path forward. The presenter will also demonstrate the capabilities of the PMMD information tools (http://pmmd.pnl.gov).

Taylor, W Boyd; Knobbs, Katherine J.; Carpenter, C. E. (Gene) [Gene; Malik, Shah

2010-07-19T23:59:59.000Z

431

Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000  

SciTech Connect (OSTI)

This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2001-03-01T23:59:59.000Z

432

DOE-STD-1083-95; DOE Standard Requesting and Granting Exemptions to Nuclear Safety Rules  

Broader source: Energy.gov (indexed) [DOE]

3-95 3-95 February 1995 DOE STANDARD REQUESTING AND GRANTING EXEMPTIONS TO NUCLEAR SAFETY RULES U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE95007451 DOE-STD-1083-95 iii FOREWORD 1. This Department of Energy (DOE) standard has been prepared by the Office of Environment, Safety and Health with the assistance of Hank George of Synergy Consultants and

433

DOE-STD-1135-99 Guidance for Nuclear Criticality Safety Engineer Training and Qualification  

Broader source: Energy.gov (indexed) [DOE]

5-99 5-99 September 1999 DOE STANDARD GUIDANCE FOR NUCLEAR CRITICALITY SAFETY ENGINEER TRAINING AND QUALIFICATION U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1135-99 iii FOREWORD This Department of Energy Standard is required for use by all DOE Contractor criticality safety personnel. It contains guidelines that should be followed for NCS training and qualification

434

In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268  

SciTech Connect (OSTI)

Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

2012-07-01T23:59:59.000Z

435

DOE-STD-1183-2004; Nuclear Safety Specialist Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1183-2004 April 2004 DOE STANDARD NUCLEAR SAFETY SPECIALIST FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1183-2004 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1183-2004

436

DOE-STD-1185-2004; Nuclear Explosive Safety Study Functional Area Qualification Standard  

Broader source: Energy.gov (indexed) [DOE]

STD-1185-2004 STD-1185-2004 August 2004 DOE STANDARD NUCLEAR EXPLOSIVE SAFETY STUDY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1185-2004 i This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1185-2004

437

United States Atomic Energy Commission formed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

formed As the United Nations Atomic Energy Commission failed to come to grips with the growing nuclear weapons problem, the United States worked to establish its own formal...

438

Safety of interim storage solutions of used nuclear fuel during extended term  

SciTech Connect (OSTI)

In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

Shelton, C.; Bader, S.; Issard, H.; Arslan, M. [AREVA, 7135 Minstrel Way, Suite 300 Columbia, MD 21045 (United States)

2013-07-01T23:59:59.000Z

439

E-Print Network 3.0 - armed forces commission Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is not just about power plants. Nuclear engineers design, build and Summary: of Energy, Nuclear Regulatory Commission, etc.); nuclear utilities; reactor and nuclear fuel...

440

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities  

SciTech Connect (OSTI)

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

2012-03-01T23:59:59.000Z

442

Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel  

Broader source: Energy.gov (indexed) [DOE]

Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10 Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue. This paper concludes that an ISA is a risk-informed, performance-based way of achieving and maintaining safety at fuel recycling facilities. As

443

Energy Commission staff reviewed the petition and assessed the impacts of this proposal on environmental quality, public health and safety. Staff proposes revisions to  

E-Print Network [OSTI]

on environmental quality, public health and safety. Staff proposes revisions to existing Air Quality, Biological Resources, Public Heath, Water, Soils, Civil Engineering, Waste and Transmission Line Safety and Nuisance................................................................................................................5 AIR QUALITY

444

DOE-STD-101-92; Compilation of Nuclear Safety Criteria Potential Application to DOE Nonreactor Facilities  

Broader source: Energy.gov (indexed) [DOE]

-1O1-92 -1O1-92 DE92 011016 COMPILATION OF NUCLEAR SAFETY CRITERIA POTENTIAL APPLICATION TO DOE NONREACTOR FACILITIES Published: March 1992 U.S. Department of Energy Office of Nuclear Energy Office of Nuclear Safety Policy and Standards Washington,DC 20585 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Informa- tion, P.O. Box 62, Oak Ridge, TN 37831; prices available from (423) 576-8401. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE92011016 DOE-STD-101-92 CONTENTS FOREWORD 1. INTRODUCTION 1.1 Purpose 1.2 Sources of Criteria and Format 1.3 Safety Analysis Report Criteria

445

Nuclear criticality safety experiments, calculations, and analyses - 1958 to 1982. Volume 2. Summaries. Complilation of papers from the Transactions of the American Nuclear Society  

SciTech Connect (OSTI)

This compilation contains 688 complete summaries of papers on nuclear criticality safety as presented at meetings of the American Nuclear Society (ANS). The selected papers contain criticality parameters for fissile materials derived from experiments and calculations, as well as criticality safety analyses for fissile material processing, transport, and storage. The compilation was developed as a component of the Nuclear Criticality Information System (NCIS) now under development at the Lawrence Livermore National Laboratory. The compilation is presented in two volumes: Volume 1 contains a directory to the ANS Transaction volume and page number where each summary was originally published, the author concordance, and the subject concordance derived from the keyphrases in titles. Volume 2 contains-in chronological order-the full-text summaries, reproduced here by permission of the American Nuclear Society from their Transactions, volumes 1-41.

Koponen, B.L.; Hampel, V.E.

1982-10-21T23:59:59.000Z

446

Report to the Secretary of Energy on Beyond Design Basis Event Pilot Evaluations, Results and Recommendations for Improvements to Enhance Nuclear Safety at DOE Nuclear Facilities, January 2013  

Broader source: Energy.gov [DOE]

In the six months after the March 2011 Fukushima Daiichi nuclear power plant accident in Japan, the U.S. Department of Energy (DOE) took several actions to review the safety of its nuclear facilities and identify situations where near-term improvements could be made. These actions and recommendations were addressed in an August 2011 report to the Secretary of Energy, Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events.

447

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998  

SciTech Connect (OSTI)

This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

NONE

1999-02-01T23:59:59.000Z

448

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999  

SciTech Connect (OSTI)

This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2000-02-01T23:59:59.000Z

449

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect (OSTI)

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

450

Nuclear Debate  

Science Journals Connector (OSTI)

Nuclear Debate ... This month, the Senate will consider the nominations of two women to serve on the Nuclear Regulatory Commission. ... Svinicki is a nuclear engineer with experience in the Department of Energys nuclear energy programs. ...

JEFF JOHNSON

2012-06-11T23:59:59.000Z

451

Submersion Criticality Safety Analysis of Tungsten-Based Fuel for Nuclear Power and Propulsion Applications  

SciTech Connect (OSTI)

The Center for Space Nuclear Research (CSNR) is developing tungsten-encapsulated fuels for space nuclear applications. Aims to develop NTP fuels that are; Affordable Low impact on production and testing environment Producible on a large scale over suitable time period Higher-performance compared to previous graphite NTP fuel elements Space nuclear reactors remain subcritical before and during launch, and do not go critical until required by its mission. A properly designed reactor will remain subcritical in any launch abort scenario, where the reactor falls back to Earth and becomes submerged in terrestrial material. Submersion increases neutron reflection and thermalizes the neutrons, which typically increases the reactivity of the core. This effect is usually very significant for fast-spectrum reactors. This research provided a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor. Determine the submersion behavior of a reactor fueled by tungsten-based fuel. Considered fuel compositions with varying: Rhenium content (wt% rhenium in tungsten) Fuel loading fractions (UO2 vol%)

A.E. Craft; R. C. O'Brien; S. D. Howe; J. C. King

2014-07-01T23:59:59.000Z

452

Consequence modeling for nuclear weapons probabilistic cost/benefit analyses of safety retrofits  

SciTech Connect (OSTI)

The consequence models used in former studies of costs and benefits of enhanced safety retrofits are considered for (1) fuel fires; (2) non-nuclear detonations; and, (3) unintended nuclear detonations. Estimates of consequences were made using a representative accident location, i.e., an assumed mixed suburban-rural site. We have explicitly quantified land- use impacts and human-health effects (e.g. , prompt fatalities, prompt injuries, latent cancer fatalities, low- levels of radiation exposure, and clean-up areas). Uncertainty in the wind direction is quantified and used in a Monte Carlo calculation to estimate a range of results for a fuel fire with uncertain respirable amounts of released Pu. We define a nuclear source term and discuss damage levels of concern. Ranges of damages are estimated by quantifying health impacts and property damages. We discuss our dispersal and prompt effects models in some detail. The models used to loft the Pu and fission products and their particle sizes are emphasized.

Harvey, T.F.; Peters, L.; Serduke, F.J.D.; Hall, C.; Stephens, D.R.

1998-01-01T23:59:59.000Z

453

Pipeline Safety (South Dakota)  

Broader source: Energy.gov [DOE]

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

454

Pipeline Safety (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

455

Commissioning for Federal Facilities  

Broader source: Energy.gov [DOE]

Guide describes building commissioning, recommissioning, retrocommissioning, and continuous commissioning for federal facilities.

456

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters  

Broader source: Energy.gov [DOE]

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters.

457

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards...

458

Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analysis  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-3009-94 July 1994 CHANGE NOTICE NO. 12 January 2000 5 December 24 April 20021 DOE STANDARD PREPARATION GUIDE FOR U.S DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSISANALYSES REPORTS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

459

Preparation Guide for U. S. Department of Energy Nonreator Nuclear Facility Document Safety Analysis  

Broader source: Energy.gov (indexed) [DOE]

SENSITIVE DOE-STD-3009-94 July 1994 CHANGE NOTICE NO. 1 January 2000 CHANGE NOTICE NO. 2 April 2002 DOE STANDARD PREPARATION GUIDE FOR U.S DEPARTMENT OF ENERGY NONREACTOR NUCLEAR FACILITY DOCUMENTED SAFETY ANALYSES U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS TS This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161;

460

DOE-STD-0100T; DOE Standard Licensed Reactor Nuclear Safety Criteria Applicable to DOE Reactors  

Broader source: Energy.gov (indexed) [DOE]

00T 00T November 1993 Superseding DOE/NE-0100T April 1991 DOE STANDARD LICENSED REACTOR NUCLEAR SAFETY CRITERIA APPLICABLE TO DOE REACTORS U.S. Department of Energy Washington, D.C. 20585 AREA SAFT DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly frorn the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE94005221 CONTENTS

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

On Line Beamline Commissioning Activity Approval Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commissioning Activity Approval Form Commissioning Activity Approval Form This form is to be filled by the Commissioning Activity Team Leader. No beamline commissioning activities will be allowed to run without a properly completed, approved, and posting of this commissioning approval form. You will be notified by e-mail upon approval. Sector Beamline Expected Start Date Expected Duration 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 BM ID ( Give a Unit) Activity Description( Give only a brief description) Commissioning Team Members First and Last Name Affiliation Phone Number 1. 2. 3. 4. 5. 6. Special Safety Concerns Commissioning Activity Team Leader Name E-Mail Address Submit Commissioning Activity Approval Form Clear all Fields and start All over again!!!

462

Additional Studies of the Criticality Safety of Failed Used Nuclear Fuel  

SciTech Connect (OSTI)

Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for periods potentially greater than 40 years. Extended storage (ES) time and irradiation to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, could result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. Criticality analyses are conducted considering representative UNF designs covering a range of enrichments and burnups in multiple cask systems. Prior work developed a set of failed fuel configuration categories and specific configurations were evaluated to understand trends and quantify the consequences of worst-case potential reconfiguration progressions. These results will be summarized here and indicate that the potential impacts on subcriticality can be rather significant for certain configurations (e.g., >20% keff). It can be concluded that the consequences of credible fuel failure configurations from ES or transportation following ES are manageable (e.g., <5% keff). The current work expands on these efforts and examines some modified scenarios and modified approaches to investigate the effectiveness of some techniques for reducing the calculated increase in keff. The areas included here are more realistic modeling of some assembly types and the effect of reconfiguration of some assemblies in the storage and transportation canister.

Marshall, William BJ J [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2013-01-01T23:59:59.000Z

463

Aging of turbine drives for safety-related pumps in nuclear power plants  

SciTech Connect (OSTI)

This study was performed to examine the relationship between time-dependent degradation and current industry practices in the areas of maintenance, surveillance, and operation of steam turbine drives for safety-related pumps. These pumps are located in the Auxiliary Feedwater (AFW) system for pressurized-water reactor plants and in the Reactor Core Isolation Cooling and High-Pressure Coolant Injection systems for boiling-water reactor plants. This research has been conducted by examination of failure data in the Nuclear Plant Reliability Data System, review of Licensee Event Reports, discussion of problems with operating plant personnel, and personal observation. The reported failure data were reviewed to determine the cause of the event and the method of discovery. Based on the research results, attempts have been made to determine the predictability of failures and possible preventive measures that may be implemented. Findings in a recent study of AFW systems indicate that the turbine drive is the single largest contributor to AFW system degradation. However, examination of the data shows that the turbine itself is a reliable piece of equipment with a good service record. Most of the problems documented are the result of problems with the turbine controls and the mechanical overspeed trip mechanism; these apparently stem from three major causes which are discussed in the text. Recent improvements in maintenance practices and procedures, combined with a stabilization of the design, have led to improved performance resulting in a reliable safety-related component. However, these improvements have not been universally implemented.

Cox, D.F. [Oak Ridge National Lab., TN (United States)

1995-06-01T23:59:59.000Z

464

Department of Energy Cites Fluor B&W Portsmouth, LLC for Nuclear Safety and Radiation Protection Violations  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to Fluor B&W Portsmouth (FBP) for violations of the DOEs nuclear safety and radiation protection regulations, and has proposed a $243,750 civil penalty.

465

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

466

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

467

General-purpose heat source project and space nuclear safety and fuels program. Progress report  

SciTech Connect (OSTI)

Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

Maraman, W.J.

1980-02-01T23:59:59.000Z

468

CPSC, EPA, CDC/ATSDR, HUD PRESS STATEMENT ON DRYWALL AIR SAMPLING The U.S. Consumer Product Safety Commission (CPSC), the U.S. Environmental Protection  

E-Print Network [OSTI]

, EPA, CDC/ATSDR, HUD PRESS STATEMENT ON DRYWALL AIR SAMPLING The U.S. Consumer Product Safety odors into the air and whether identified substances found in the air pose a safety or health hazard, in support of CPSC, EPA has performed limited air sampling and monitoring in six homes in Florida

469

Rockwell International's Nuclear Criticality Safety Program at the Rocky Flats Plant  

SciTech Connect (OSTI)

This paper describes the criticality safety program at the Rocky Flats Plant. The groups responsible for safety are named and their functions outlined. (JDH)

McCarthy, J.D.

1987-01-01T23:59:59.000Z

470

Public Meeting on Oversight of Complex, High Hazard Nuclear Operations - NNSA Lines of Inquiry, November 24, 2009  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Written Reponse to DNFSB Lines of Inquiry Garrett Harencak, BRIG GEN, USAF Principal Assistant Deputy Administrator for Military Application DNFSB Public Meeting Oversight of Complex, High-Hazard Nuclear Operations 1. Expectations of the senior Department leadership with respect to safety philosophy and safety management approach. LOI 1.1, What are your nuclear safety goals? Secretary of Energy Notice 35-91, Nuclear Safety Policy, established nuclear safety goals for DOE. The goals in this notice have not been updated or revised since its publication. The notice states: DOE has adopted two quantitative safety goals to limit the risks of fatalities associated with its nuclear operations. These goals are the same as those established for nuclear power plants by the Nuclear Regulatory Commission

471

Expectations on Documented Safety Analysis for Deactivated Inactive Nuclear Facilities in a State of Long Term Surveillance & Maintenance or Decommissioning  

SciTech Connect (OSTI)

DOE promulgated 10 CFR 830 ''Nuclear Safety Management'' on October 10, 2000. Section 204 of the Rule requires that contractors at DOE hazard category 1, 2, and 3 nuclear facilities develop a ''Documented Safety Analysis'' (DSA) that summarizes the work to be performed, the associated hazards, and hazard controls necessary to protect workers, the public, and the environment. Table 2 of Appendix A to the rule has been provided to ensure that DSAs are prepared in accordance with one of the available predetermined ''safe harbor'' approaches. The table presents various acceptable safe harbor DSAs for different nuclear facility operations ranging from nuclear reactors to decommissioning activities. The safe harbor permitted for decommissioning of a nuclear facility encompasses methods described in DOE-STD-1 120-98, ''Integration of Environment, Safety and Health into Facility Disposition Activities,'' and provisions in 29 CFR 1910.120 or 29 CFR 1926.65 (HAZWOPER). Additionally, an evaluation of public safety impacts and development of necessary controls is required when the facility being decommissioned contains radiological inventory or contamination exceeding the Rule's definition for low-level residual fixed radioactivity. This document discusses a cost-effective DSA approach that is based on the concepts of DOE-STD-I 120 and meets the 10 CFR 830 safe harbor requirements for both transition surveillance and maintenance as well as decommissioning. This DSA approach provides continuity for inactive Hanford nuclear facilities that will eventually transition into decommissioning. It also uses a graded approach that meets the expectations of DOE-STD-3011 and addresses HAZWOPER requirements to provide a sound basis for worker protection, particularly where intrusive work is being conducted.

JACKSON, M.W.

2002-05-01T23:59:59.000Z

472

California Energy Commission COMMISSION REPORT  

E-Print Network [OSTI]

emissions, reduce petroleum use, improve air quality, and stimulate the sustainable production and use measurable transition from the nearly exclusive use of petroleum fuels to a diverse portfolio of alternative fuels that meet petroleum reduction goals and alternative fuel use goals." The Energy Commission has

473

California Energy Commission COMMISSION REPORT  

E-Print Network [OSTI]

petroleum use, improve air quality, and stimulate the sustainable production and use of biofuels within measurable transition from the nearly exclusive use of petroleum fuels to a diverse portfolio of alternative fuels that meet petroleum reduction goals and alternative fuel use goals." The Energy Commission has

474

A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems  

E-Print Network [OSTI]

Tree Analysis), FMEA (Failure Mode and Effect Analysis), HAZOP (Hazard and Operability study). · Safety

475

European Commission  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

European Commission European Commission Directorate-General for Energy & Transport Ministry of Industry an Energy of the State of Qatar Gulf Co-operation Council Secretariat General EU-GCC Seminar: "Natural Gas Technologies - Realities & Prospects" Doha, Qatar, 7-8 February 2005 STREAM B: "Advanced Technologies for Power Generation through Natural Gas & Desalination" SESSION B.3: STATE OF THE ART OF COMBINED CYCLE PLANT Michael VOLLMER, Head of Combined Cycle Power Plant Development, ALSTOM Power Turbo-Systems February 2005 February 2005 Power Turbo-Systems State Of The Art Combined Cycle Power Plants Michael Vollmer 2 ALSTOM (Switzerland)Ltd© 2005. Preliminary/for discussion purposes only. We reserve all rights in this document and in the information

476

Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository--BMT1 of the DECOVALEX III project. Part 1: Conceptualization  

E-Print Network [OSTI]

Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste on the safety of a hypothetical nuclear waste repository at the near-field and are presented in three on the safety of nuclear waste repositories. To achieve the second objective, hypothetical benchmark test

Paris-Sud XI, Université de

477

U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)  

Broader source: Energy.gov [DOE]

"This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak...

478

Surrogate Spent Nuclear Fuel Vibration Integrity Investigation  

SciTech Connect (OSTI)

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL

2014-01-01T23:59:59.000Z

479

Roadmap to an Engineering-Scale Nuclear Fuel Performance & Safety Code  

SciTech Connect (OSTI)

Developing new fuels and qualifying them for large-scale deployment in power reactors is a lengthy and expensive process, typically spanning a period of two decades from concept to licensing. Nuclear fuel designers serve an indispensable role in the process, at the initial exploratory phase as well as in analysis of the testing results. In recent years fuel performance capabilities based on first principles have been playing more of a role in what has traditionally been an empirically dominated process. Nonetheless, nuclear fuel behavior is based on the interaction of multiple complex phenomena, and recent evolutionary approaches are being applied more on a phenomenon-by-phenomenon basis, targeting localized problems, as opposed to a systematic approach based on a fundamental understanding of all interacting parameters. Advanced nuclear fuels are generally more complex, and less understood, than the traditional fuels used in existing reactors (ceramic UO{sub 2} with burnable poisons and other minor additives). The added challenges are primarily caused by a less complete empirical database and, in the case of recycled fuel, the inherent variability in fuel compositions. It is clear that using the traditional approach to develop and qualify fuels over the entire range of variables pertinent to the U.S. Department of Energy (DOE) Office of Nuclear Energy on a timely basis with available funds would be very challenging, if not impossible. As a result the DOE Office of Nuclear Energy has launched the Nuclear Energy Advanced Modeling and Simulation (NEAMS) approach to revolutionize fuel development. This new approach is predicated upon transferring the recent advances in computational sciences and computer technologies into the fuel development program. The effort will couple computational science with recent advances in the fundamental understanding of physical phenomena through ab initio modeling and targeted phenomenological testing to leapfrog many fuel-development activities. Realizing the full benefits of this approach will likely take some time. However, it is important that the developmental activities for modeling and simulation be tightly coupled with the experimental activities to maximize feedback effects and accelerate both the experimental and analytical elements of the program toward a common objective. The close integration of modeling and simulation and experimental activities is key to developing a useful fuel performance simulation capability, providing a validated design and analysis tool, and understanding the uncertainties within the models and design process. The efforts of this project are integrally connected to the Transmutation Fuels Campaign (TFC), which maintains as a primary objective to formulate, fabricate, and qualify a transuranic-based fuel with added minor actinides for use in future fast reactors. Additional details of the TFC scope can be found in the Transmutation Fuels Campaign Execution Plan. This project is an integral component of the TFC modeling and simulation effort, and this multiyear plan borrowed liberally from the Transmutation Fuels Campaign Modeling and Simulation Roadmap. This document provides the multiyear staged development plan to develop a continuum-level Integrated Performance and Safety Code (IPSC) to predict the behavior of the fuel and cladding during normal reactor operations and anticipated transients up to the point of clad breach.

Turner, John A [ORNL; Clarno, Kevin T [ORNL; Hansen, Glen A [ORNL

2009-09-01T23:59:59.000Z

480

Computer code for space-time diagnostics of nuclear safety parameters  

SciTech Connect (OSTI)

The computer code ECRAN 3D (Experimental and Calculation Reactor Analysis) is designed for continuous monitoring and diagnostics of reactor cores and databases for RBMK-1000 on the basis of analytical methods for the interrelation parameters of nuclear safety. The code algorithms are based on the analysis of deviations between the physically obtained figures and the results of neutron-physical and thermal-hydraulic calculations. Discrepancies between the measured and calculated signals are equivalent to obtaining inadequacy between performance of the physical device and its simulator. The diagnostics system can solve the following problems: identification of facts and time for inconsistent results, localization of failures, identification and quantification of the causes for inconsistencies. These problems can be effectively solved only when the computer code is working in a real-time mode. This leads to increasing requirements for a higher code performance. As false operations can lead to significant economic losses, the diagnostics system must be based on the certified software tools. POLARIS, version 4.2.1 is used for the neutron-physical calculation in the computer code ECRAN 3D. (authors)

Solovyev, D. A.; Semenov, A. A.; Gruzdov, F. V.; Druzhaev, A. A.; Shchukin, N. V.; Dolgenko, S. G.; Solovyeva, I. V.; Ovchinnikova, E. A. [National Research Nuclear Univ. MEPhI, Kashirskoe, 31, 115409, Moscow (Russian Federation)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear safety commission" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

SciTech Connect (OSTI)

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

482

Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980  

SciTech Connect (OSTI)

This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

McCormack, K.E.; Gallaher, R.B.

1982-03-01T23:59:59.000Z

483

General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980  

SciTech Connect (OSTI)

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-04-01T23:59:59.000Z

484

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

485

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

486

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

487

October 24, 2003, Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities  

Broader source: Energy.gov (indexed) [DOE]

3.1 3.1 Revision 3 October 24, 2003 U. S. Department of Energy Criteria and Guidelines For the Assessment of Safety System Software and Firmware at Defense Nuclear Facilities October 24, 2003 CRAD - 4.2.3.1 Revision 3 October 24, 2003 i TABLE OF CONTENTS ACRONYMS...................................................................................................................................ii GLOSSARY ...................................................................................................................................iii 1.0 INTRODUCTION .....................................................................................................................1 2.0 BACKGROUND .......................................................................................................................2

488

IDAHO STATE UNIVERSITY Chad Pope Department of Nuclear Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nuclear safety, nuclear criticality safety, nuclear facility operations and pyroprocessing. He teaches courses in reactor physics, nuclear criticality safety, Monte Carlo...

489

Pipeline Safety (Pennsylvania) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) Pipeline Safety (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Pennsylvania Program Type Safety and Operational Guidelines Provider Pennsylvania Public Utilities Commission The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities engaged in the transportation of natural gas and other gas by pipeline. The Commission is authorized to enforce federal safety standards as an agent for the U.S. Department of Transportation's Office of Pipeline Safety. The safety standards apply to the design, installation, operation,

490