Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Institutional Research & Development Reports | National Nuclear...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Reports Home > About Us > Our...

2

Institutional Research & Development | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Home > About Us > Our...

3

Institutional Research & Development | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development Institutional Research & Development...

4

Institutional Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

5

NNSA, Philippine Nuclear Research Institute to Prevent Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Philippine Nuclear Research Institute to Prevent Radiological Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

6

Institutional Research & Development Reports | National Nuclear...  

National Nuclear Security Administration (NNSA)

Development Reports Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

7

Institutional Research & Development News | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Development News Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

8

SNERDI Shanghai Nuclear Engineering Research and Design Institute | Open  

Open Energy Info (EERE)

SNERDI Shanghai Nuclear Engineering Research and Design Institute SNERDI Shanghai Nuclear Engineering Research and Design Institute Jump to: navigation, search Name SNERDI (Shanghai Nuclear Engineering Research and Design Institute) Place Shanghai, China Product The Shanghai Nuclear Engineering Research and Design Institute was established on July 28th, 1970, as a key research and design institute under direct administration of China National Nuclear Corporation (CNNC). Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Institutional Research & Development Reports | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Reports | National Nuclear Security Reports | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Institutional Research & Development Reports Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

10

NNSA, Philippine Nuclear Research Institute to Prevent Radiological...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

11

Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH  

E-Print Network (OSTI)

role increasing the ``cold fusion'' probability in electronic molecules whose nuclear constituents have. Therefore, widths of such resonances giving a probability of a fusion of the nu­ clear constituents for the molecules LiD and H 2 O. There exists also a well­known exam­ ple [?] of muon catalyzed fusion of deuteron

12

Research and Development in Tritium Technology at the Institute of Radiochemistry, Nuclear Research Center Karlsruhe  

Science Conference Proceedings (OSTI)

Research and Development / Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985)

Prof. Dr. H. J. Ache

13

DEVELOPMENT, INSTALLATION AND OPERATION OF THE MPC&A OPERATIONS MONITORING (MOM) SYSTEM AT THE JOINT INSTITUTE FOR NUCLEAR RESEARCH (JINR) DUBNA, RUSSIA  

Science Conference Proceedings (OSTI)

The Material Protection, Control and Accounting (MPC&A) Operations Monitoring (MOM) systems handling at the International Intergovernmental Organization - Joint Institute for Nuclear Research (JINR) is described in this paper. Category I nuclear material (plutonium and uranium) is used in JINR research reactors, facilities and for scientific and research activities. A monitoring system (MOM) was installed at JINR in April 2003. The system design was based on a vulnerability analysis, which took into account the specifics of the Institute. The design and installation of the MOM system was a collaborative effort between JINR, Brookhaven National Laboratory (BNL) and the U.S. Department of Energy (DOE). Financial support was provided by DOE through BNL. The installed MOM system provides facility management with additional assurance that operations involving nuclear material (NM) are correctly followed by the facility personnel. The MOM system also provides additional confidence that the MPC&A systems continue to perform effectively.

Kartashov,V.V.; Pratt,W.; Romanov, Y.A.; Samoilov, V.N.; Shestakov, B.A.; Duncan, C.; Brownell, L.; Carbonaro, J.; White, R.M.; Coffing, J.A.

2009-07-12T23:59:59.000Z

14

Form:Research Institution | Open Energy Information  

Open Energy Info (EERE)

Research Institution Jump to: navigation, search Add a Research or Development Institution Input your research or development institution name below to add to the registry. If your...

15

Honda Research Institute | Open Energy Information  

Open Energy Info (EERE)

Name Honda Research Institute Place Mountain View, California Sector Biofuels, Solar Product California-based research institute of Honda. The institute conducts research into...

16

Institute for Plasma Research - TMS  

Science Conference Proceedings (OSTI)

VISIT THE JOM COVER GALLERY. BACK TO RESULTS. SEARCH AGAIN. Institute for Plasma Research. Division - FCIPT, B-15-17/P, GIDC, Electronics zone,...

17

Low Dose Radiation Research Program: Research Institutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Institutions Institutions Lovelace Respiratory Research Institute Biological Bases for Radiation Adaptive Responses in the Lung-Lovelace Respiratory Research Institute, Albuquerque, NM USA Contact: Dr. Bobby R. Scott Program Objective Our research focuses on elucidating the biological bases for radiation adaptive responses in the lung and for suppressing lung cancer, and to use the knowledge gained to produce an improved systems-biology-based, risk model for lung cancer induction by low-dose, low linear-energy-transfer (LET) radiation. Research was initiated in October 2009. This research should help foster a new era of low-dose radiation risk/benefit assessment. It will have important implications for possible use of low-dose diagnostic radiation (e.g., X-rays) in cancer therapy. It

18

Energy Department - Electric Power Research Institute Cooperation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy...

19

Minority Serving Institutions Internship Program | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Institutions Internship Program | National Nuclear Institutions Internship Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Minority Serving Institutions Internship Program Home > Federal Employment > Apply for Our Jobs > How to Apply > Student Jobs > Minority Serving Institutions Internship Program Minority Serving Institutions Internship Program

20

Minority Serving Institutions Internship Program | National Nuclear  

National Nuclear Security Administration (NNSA)

Institutions Internship Program | National Nuclear Institutions Internship Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Minority Serving Institutions Internship Program Home > Federal Employment > Apply for Our Jobs > How to Apply > Student Jobs > Minority Serving Institutions Internship Program Minority Serving Institutions Internship Program

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Durham Energy Institute 107 Researchers  

E-Print Network (OSTI)

Challenges in Energy Networks Project (Total £3.3M) Supergen wind £4.85M ­ working on reliability FlexNet (flexible networks) 2003- 2011. Wind and energy markets, power system dynamics Dong EnergyDurham Energy Institute 107 Researchers Focus on society and key technologies World leading

Wirosoetisno, Djoko

22

Letter from the Nuclear Energy Institute to DOE GC | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

from the Nuclear Energy Institute to DOE GC Letter from the Nuclear Energy Institute to DOE GC Convention on Supplementary Compensation for Nuclear Damage Contingent Cost...

23

Institutional plan -- Institute of Nuclear Power Operations, 1993  

Science Conference Proceedings (OSTI)

The US nuclear electric utility industry established the Institute of Nuclear Power Operations (INPO) in 1979 to promote the highest levels of safety and reliability -- to promote excellence -- in the operation of its nuclear plants. After its formation, the Institute grew from a handful of on-loan personnel in late 1979 to an established work force of more than 400 permanent and on-loan personnel. INPO`s early years were marked by growth and evolution of its programs and organization. The Institute now focuses primarily on the effectiveness and enhancement of established programs and activities. For INPO to carry out its role, it must have the support of its members and participants and a cooperative but independent relationship with the NRC. A basis for that support and cooperation is an understanding of INPO`s role. This Institutional Plan is intended to provide that understanding by defining the Institute`s role and its major programs. This plan considers the existing and projected needs of the industry and the overall environment in which INPO and its members and participants operate.

Not Available

1993-12-31T23:59:59.000Z

24

SOUTHWEST RESEARCH INSTITUTE San Antonio, Texas  

E-Print Network (OSTI)

SOUTHWEST RESEARCH INSTITUTE San Antonio, Texas July 2010 ii #12;SOUTHWEST RESEARCH INSTITUTE San Antonio, Texas July 2010 iii Abstracts of Test Procedures FUELS FUEL ADDITIVES & FUEL ECONOMY Performed by The Office of Automotive Engineering Southwest Research Institute® San Antonio, Texas July 2010 #12;SOUTHWEST

Chapman, Clark R.

25

Gas Research Institute wetland research program  

SciTech Connect

As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry`s impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables.

Wilkey, P.L.; Zimmerman, R.E. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Inst., Chicago, IL (United States)

1992-12-01T23:59:59.000Z

26

Gas Research Institute wetland research program  

SciTech Connect

As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables.

Wilkey, P.L.; Zimmerman, R.E. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Inst., Chicago, IL (United States))

1992-01-01T23:59:59.000Z

27

Nanyang Technological University's New Energy Research Institute...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanyang Technological University's New Energy Research Institute: Grids, Energy Systems and Sustainable Building Technologies Programs Speaker(s): King Jet Tseng Subodh Mhaisalkar...

28

(Nuclear theory). [Research in nuclear physics  

SciTech Connect

This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

Haxton, W.

1990-01-01T23:59:59.000Z

29

Energy Crossroads: Research Institutions | Environmental Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Institutions Research Institutions Suggest a Listing American Council for an Energy-Efficient Economy (ACEEE) The ACEEE is a nonprofit organization dedicated to advancing energy efficiency as a means of promoting both economic prosperity and environmental protection. California Institute for Energy Efficiency (CIEE) CIEE plans, coordinates, and implements applied research to advance productivity and competitiveness through energy efficiency. As a University of California research unit administered by the Lawrence Berkeley Laboratory, CIEE was established in 1988 in cooperation with the California utilities, the California Public Utilities Commission, the California Energy Commission, and the U.S. Department of Energy.

30

Institutional research and development, FY 1987  

SciTech Connect

The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

1987-01-01T23:59:59.000Z

31

Hitachi Research Institute | Open Energy Information  

Open Energy Info (EERE)

Research Institute Research Institute Jump to: navigation, search Name Hitachi Research Institute Place Tokyo, Japan Zip 101-8010 Product Hitachi Research Institute is the think tank of the Hitachi Group. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Energy Department - Electric Power Research Institute Cooperation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooperation to Increase Energy Efficiency March 6, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI)...

33

DOE - Office of Legacy Management -- Southern Research Institute - AL 03  

NLE Websites -- All DOE Office Websites (Extended Search)

Southern Research Institute - AL 03 Southern Research Institute - AL 03 FUSRAP Considered Sites Site: SOUTHERN RESEARCH INSTITUTE (AL.03) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 917 South 20th Street , Birmingham , Alabama AL.03-1 AL.03-2 Evaluation Year: 1993 AL.03-3 Site Operations: Licensed for the period 11/10/55 - 6/1/58. Basic license and three amendments for possession and title to up to 140# of refined source material for research on properties of Uranium-liquid metal fuel elements; conducted research on Uranium in the early 1960's. AL.03-4 AL.03-1 AL.03-5 Site Disposition: Eliminated - No Authority - AEC license to handle nuclear materials AL.03-3 AL.03-6 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium AL.03-1

34

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 6 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS Lead Organization Project Title Collaborators Advanced Fuel Cycle Initiative Massachusetts Institute of Technology The Development and Production of Functionally Graded Composite for Pb-Bi Service Los Alamos National Laboratory Massachusetts Institute of Technology Flexible Conversion Ratio Fast Reactor Systems Evaluation None North Carolina State University Development and Utilization of Mathematical Optimization in Advanced Fuel Cycle Systems Analysis Argonne National Laboratory Purdue University Engineered Materials for Cesium and Strontium Storage None University of California- Berkeley Feasibility of Recycling Plutonium and Minor Actinides in Light Water Reactors Using Hydride Fuel Massachusetts Institute of

35

POTSDAM INSTITUTE CLIMATE IMPACT RESEARCH (PIK)  

E-Print Network (OSTI)

Conservation and Nuclear Safety (BMU), research grant no. 904 17 348. Authors: Dr. Fritz Reusswig* Dipl. Soz these and other questions. In six German cities a total of 1118 cinema visitors were asked before and after

Calov, Reinhard

36

Low Carbon Research Institute | Open Energy Information  

Open Energy Info (EERE)

Low Carbon Research Institute Low Carbon Research Institute Name Low Carbon Research Institute Address King Edward VII Avenue CF10 3NB Place Cardiff, United Kingdom Phone number 029 20870003 Website http://www.lcri.org.uk/ Coordinates 51.4865872°, -3.1817252° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.4865872,"lon":-3.1817252,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Category:Research Institutions | Open Energy Information  

Open Energy Info (EERE)

Research Institutions Research Institutions Jump to: navigation, search Add a new Research or Development Institution Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

38

Electric Power Research Institute EPRI | Open Energy Information  

Open Energy Info (EERE)

Research Institute EPRI Jump to: navigation, search Name Electric Power Research Institute (EPRI) Place Palo Alto, California Zip 94304 Product EPRI is an independent, non-profit...

39

University of Dayton Research Institute | Open Energy Information  

Open Energy Info (EERE)

Dayton Research Institute Jump to: navigation, search Name University of Dayton Research Institute Address 300 College Park Place Dayton, Ohio Zip 45469-0101 Website http:...

40

Proceedings: 2012 EPRI Groundwater Protection Workshop, In Collaboration with the Nuclear Energy Institute  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) organized the 2012 EPRI Groundwater Protection Workshop in collaboration with the Nuclear Energy Institute (NEI). The workshop focused on nuclear plant leak prevention, groundwater monitoring and remediation techniques, and industry experience.BackgroundEPRI has conducted 13 such topical workshops over the past decade. In 2005, EPRI conducted a decommissioning topical workshop on groundwater contamination ...

2013-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Institute for Energy Research | Open Energy Information  

Open Energy Info (EERE)

Energy Research Energy Research Jump to: navigation, search Logo: Institute for Energy Research Name Institute for Energy Research Address 1415 S. Voss Rd. Place Houston, Texas Zip 77057 Region Texas Area Notes Completely funded by tax-deductible contributions. Public. Coordinates 29.7515335°, -95.5009716° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7515335,"lon":-95.5009716,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Minority Serving Institution Internship Program | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Institution Internship Program | National Nuclear Security Institution Internship Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Minority Serving Institution Internship Program Home > Federal Employment > Our Jobs > Opportunities for Students > Minority Serving Institution Internship Program Minority Serving Institution Internship Program

43

Minority Serving Institution Internship Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Institution Internship Program | National Nuclear Security Institution Internship Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Minority Serving Institution Internship Program Home > Federal Employment > Our Jobs > Opportunities for Students > Minority Serving Institution Internship Program Minority Serving Institution Internship Program

44

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Joint Global Change Research Institute | Open Energy Information  

Open Energy Info (EERE)

Global Change Research Institute Global Change Research Institute Jump to: navigation, search Logo: Joint Global Change Research Institute Name Joint Global Change Research Institute Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy, Land Focus Area Energy Efficiency Topics Policies/deployment programs, Resource assessment, Pathways analysis Website http://www.globalchange.umd.ed References Global Change Research Institute [1] Abstract The Joint Global Change Research Institute (JGCRI) houses an interdisciplinary team dedicated to understanding the problems of global climate change and their potential solutions. Joint Institute staff bring decades of experience and expertise to bear in science, technology, economics, and policy. "The Joint Global Change Research Institute (JGCRI) houses an

46

Laboratory Directed Research & Development | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > Laboratory Directed Research &...

47

Research Areas | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation & Validation Nuclear Systems Technology Reactor Technology Research Highlights Facilities and Capabilities Educational Outreach Publications and Reports News and Awards...

48

National Environmental Research Institute | Open Energy Information  

Open Energy Info (EERE)

Name National Environmental Research Institute Name National Environmental Research Institute Address Box. 358 Frederiksborgvej 399 DK 4000 Place Roskilde, Denmark Phone number +45 46 30 12 00 Coordinates 55.6932396°, 12.1039227° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.6932396,"lon":12.1039227,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Sustainable Europe Research Institute | Open Energy Information  

Open Energy Info (EERE)

Logo: Sustainable Europe Research Institute Name Sustainable Europe Research Institute Address Garnisongasse 7/21 A -1090 Place Vienna, Austria Year founded 1999 Phone number +43-1-969 07 28 - 0 Coordinates 48.215941°, 16.356562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.215941,"lon":16.356562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Assessing the Institution of the Nuclear Nonproliferation Regime  

Science Conference Proceedings (OSTI)

The nuclear nonproliferation regime is facing a crisis of effectiveness. During the Cold War, the regime was relatively effective in stemming the proliferation of nuclear weapons and building an institutional structure that could, under certain conditions, ensure continued success. However, in the evolving global context, the traditional approaches are becoming less appropriate. Globalization has introduced new sets of stresses on the nonproliferation regime, such as the rise of non-state actors, broadening extensity and intensity of supply chains, and the multipolarization of power. This evolving global context demands an analytical and political flexibility in order to meet future threats. Current institutional capabilities established during the Cold War are now insufficient to meet the nonproliferation regimes current and future needs. The research was based on information gathered through interviews and reviews of the relevant literature, and two dominant themes emerged. First, that human security should be integrated into the regime to account for the rise of non-state actors and networked violence. Second, confidence in the regimes overall effectiveness has eroded at a time where verification-based confidence is becoming more essential. The research postulates that a critical analysis of the regime that fully utilizes institutional theory, with its focus on rules, normative structures, and procedures will be essential to adapting the regime to the current global context, building mechanisms for generating trust, creating better enforcement, and providing flexibility for the future.

Toomey, Christopher

2010-05-14T23:59:59.000Z

51

Institutional research and development, FY 1988  

SciTech Connect

The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

1988-01-01T23:59:59.000Z

52

Institutional research and development, FY 1988  

SciTech Connect

The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

Not Available

1988-01-01T23:59:59.000Z

53

World Institute for Nuclear Security Launch | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World Institute for Nuclear Security Launch World Institute for Nuclear Security Launch World Institute for Nuclear Security Launch September 29, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you. My thanks to Director General El Baradei and Senator Nunn for their opening remarks. I am pleased to be here with you this afternoon. Each nation has the responsibility to assist in the effort to make nuclear materials and facilities secure. This means we need cooperation at every level and every stage of the process: from government, to industry, to non-governmental organizations. As such, the World Institute for Nuclear Security will make an important contribution to the cause of nuclear nonproliferation and nuclear security. By bringing the private, public, and non-governmental sectors together,

54

World Institute for Nuclear Security Launch | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institute for Nuclear Security Launch Institute for Nuclear Security Launch World Institute for Nuclear Security Launch September 29, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you. My thanks to Director General El Baradei and Senator Nunn for their opening remarks. I am pleased to be here with you this afternoon. Each nation has the responsibility to assist in the effort to make nuclear materials and facilities secure. This means we need cooperation at every level and every stage of the process: from government, to industry, to non-governmental organizations. As such, the World Institute for Nuclear Security will make an important contribution to the cause of nuclear nonproliferation and nuclear security. By bringing the private, public, and non-governmental sectors together,

55

Beijing Solar Energy Research Institute BSERI | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Research Institute BSERI Solar Energy Research Institute BSERI Jump to: navigation, search Name Beijing Solar Energy Research Institute (BSERI) Place Beijing, Beijing Municipality, China Zip 100083 Sector Solar Product Founded in 1979, this institute is known as one of the biggest solar energy R&D institutions in China. References Beijing Solar Energy Research Institute (BSERI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Solar Energy Research Institute (BSERI) is a company located in Beijing, Beijing Municipality, China . References ↑ "Beijing Solar Energy Research Institute (BSERI)" Retrieved from "http://en.openei.org/w/index.php?title=Beijing_Solar_Energy_Research_Institute_BSERI&oldid=342636"

56

Shenzhen Institute of Building Research SIBR | Open Energy Information  

Open Energy Info (EERE)

Institute of Building Research SIBR Institute of Building Research SIBR Jump to: navigation, search Name Shenzhen Institute of Building Research (SIBR) Place Guangdong Province, China Sector Buildings, Solar Product Shenzhen-based science and technology research institute for buildings and urban development. The body is working on solar panel design and installation in China. References Shenzhen Institute of Building Research (SIBR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shenzhen Institute of Building Research (SIBR) is a company located in Guangdong Province, China . References ↑ "[ Shenzhen Institute of Building Research (SIBR)]" Retrieved from "http://en.openei.org/w/index.php?title=Shenzhen_Institute_of_Building_Research_SIBR&oldid=350941

57

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES PERCENT STUDENTS 1,643 4.4% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL.0% INTERNATIONAL STUDENTS 82 1.7% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL

de Lijser, Peter

58

Mexican Electric Research Institute IIE | Open Energy Information  

Open Energy Info (EERE)

Mexican Electric Research Institute IIE Mexican Electric Research Institute IIE Jump to: navigation, search Name Mexican Electric Research Institute (IIE) Place Mexico Sector Services Product General Financial & Legal Services ( Academic / Research foundation ) References Mexican Electric Research Institute (IIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mexican Electric Research Institute (IIE) is a company located in Mexico . References ↑ "Mexican Electric Research Institute (IIE)" Retrieved from "http://en.openei.org/w/index.php?title=Mexican_Electric_Research_Institute_IIE&oldid=348756" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

59

International Crops Research Institute for the Semi Arid Tropics | Open  

Open Energy Info (EERE)

Crops Research Institute for the Semi Arid Tropics Crops Research Institute for the Semi Arid Tropics Jump to: navigation, search Name International Crops Research Institute for the Semi-Arid Tropics Place India Sector Biofuels Product Biofuels ( Academic / Research foundation ) References International Crops Research Institute for the Semi-Arid Tropics[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. International Crops Research Institute for the Semi-Arid Tropics is a company located in India . References ↑ "International Crops Research Institute for the Semi-Arid Tropics" Retrieved from "http://en.openei.org/w/index.php?title=International_Crops_Research_Institute_for_the_Semi_Arid_Tropics&oldid=347036

60

Nuclear Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and environmental security. Full development of a science-based approach for nuclear reactor and fuel cycle technology and systems is a "grand challenge" well suited to...

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

IREC Catalan Institute for Energy Research | Open Energy Information  

Open Energy Info (EERE)

IREC Catalan Institute for Energy Research IREC Catalan Institute for Energy Research Jump to: navigation, search Name IREC (Catalan Institute for Energy Research) Place Barcelona, Spain Sector Renewable Energy, Wind energy Product String representation "The Catalonia I ... Mediterranean." is too long. References IREC (Catalan Institute for Energy Research)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. IREC (Catalan Institute for Energy Research) is a company located in Barcelona, Spain . References ↑ "IREC (Catalan Institute for Energy Research)" Retrieved from "http://en.openei.org/w/index.php?title=IREC_Catalan_Institute_for_Energy_Research&oldid=347119" Categories:

62

CSR Zhuzhou Electric Locomotive Research Institute | Open Energy  

Open Energy Info (EERE)

CSR Zhuzhou Electric Locomotive Research Institute CSR Zhuzhou Electric Locomotive Research Institute Jump to: navigation, search Name CSR Zhuzhou Electric Locomotive Research Institute Place Zhuzhou, Hunan Province, China Zip 412001 Product String representation "Times Electric ... new industries." is too long. References CSR Zhuzhou Electric Locomotive Research Institute[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CSR Zhuzhou Electric Locomotive Research Institute is a company located in Zhuzhou, Hunan Province, China . References ↑ "CSR Zhuzhou Electric Locomotive Research Institute" Retrieved from "http://en.openei.org/w/index.php?title=CSR_Zhuzhou_Electric_Locomotive_Research_Institute&oldid=343995

63

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and...

64

Solar Energy Research Institute of Singapore | Open Energy Information  

Open Energy Info (EERE)

Institute of Singapore Institute of Singapore Jump to: navigation, search Name Solar Energy Research Institute of Singapore Place Singapore, Singapore Zip 117574 Sector Solar Product The research institute focuses on advanced technologies that specifically address the needs of the solar industry. It is run jointly by the National University of Singapore in partnership with the multi-agency Clean Energy Programme Office. References Solar Energy Research Institute of Singapore[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Energy Research Institute of Singapore is a company located in Singapore, Singapore . References ↑ "Solar Energy Research Institute of Singapore"

65

International Nuclear Energy Research Initiative: Annual Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sitesallmodulescontribredisredis.autoload.inc). You are here Home International Nuclear Energy Research Initiative: Annual Report 2005 International Nuclear Energy...

66

Nuclear methods in environmental and energy research  

SciTech Connect

The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

Vogt, J.R. (ed.)

1977-01-01T23:59:59.000Z

67

Advanced Nuclear Research Reactor  

SciTech Connect

This report describes technical modifications implemented by INVAP to improve the safety of the Research Reactors the company designs and builds.

Lolich, J.V.

2004-10-06T23:59:59.000Z

68

Electric Power Research Institute (EPRI) Hydrogen Briefing to...  

NLE Websites -- All DOE Office Websites (Extended Search)

and in the coming years. * Detailed business case analysis were done for: Entergy, Xcel, and Southern Company 4 Copyright 2008 Electric Power Research Institute,Inc All...

69

INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION  

E-Print Network (OSTI)

* Laboratory: Research, Development and Services ** reports to the Director of the Centre ADMINISTRATIVE. Pantelias** HEALTH PHYSICS & ENVIRONMENTAL HEALTH LABORATORY G. Pantelias Operation & Maintenance. The Health Physics & Environmental Health Laboratory has developed state of the art methodol

70

Nuclear Energy Research and Development Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

71

New institute promotes nuclear security | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

New institute promotes ... New institute promotes ... New institute promotes nuclear security Posted: February 11, 2013 - 3:27pm | Y-12 Report | Volume 9, Issue 2 | 2013 Disquieting headlines from recent news reports prompt an important question: Who has the breadth of knowledge and experience to help solve international nuclear challenges? "A lot of the keys for national nuclear security are right here in Oak Ridge - from processing uranium at Y-12 to developing medical isotopes at Oak Ridge National Laboratory to educating the populace through Oak Ridge Associated Universities," said Chris Clark, senior director of Y-12's Strategic Program Development. "But we were missing the policy side, which is what drives ORNL to develop new ideas, Y-12 to perform real-world missions and Oak Ridge Associated Universities to develop best

72

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Institute (NEI) Attachment, Integrated Safety Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis Nuclear Energy Institute (NEI) Attachment, Integrated Safety Analysis This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and

73

Electric Power Research Institute Cooperation to Increase Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Institute Cooperation to Increase Energy Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008 Electric Power Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008 The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods. Electric Power Research Institute Cooperation to Increase Energy

74

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,452 4.5% #12;California State University, Fullerton Institutional Research.5% Unknown 319 9.3% Non-Resident Alien (International) 95 2.8% #12;California State University, Fullerton

de Lijser, Peter

75

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES PERCENT 1,660 4.7% MULTIPLE RACE 841 2.4% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH 125 3.2% INTERNATIONAL STUDENTS 74 1.9% MULTIPLE RACE 150 3.8% #12;CALIFORNIA STATE UNIVERSITY

de Lijser, Peter

76

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,666 4.5% #12;California State University, Fullerton Institutional Research.7% Unknown 282 6.8% Non-Resident Alien (International) 109 2.6% #12;California State University, Fullerton

de Lijser, Peter

77

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,265 4.5% #12;California State University, Fullerton Institutional Research 276 10.0% Non-Resident Alien (International) 46 1.7% #12;California State University, Fullerton

de Lijser, Peter

78

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,523 4.3% #12;California State University, Fullerton Institutional Research.3% Unknown 261 6.6% Non-Resident Alien (International) 92 2.3% #12;California State University, Fullerton

de Lijser, Peter

79

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,465 4.5% #12;California State University, Fullerton Institutional Research.4% Unknown 263 7.3% Non-Resident Alien (International) 97 2.7% #12;California State University, Fullerton

de Lijser, Peter

80

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,528 4.3% #12;California State University, Fullerton Institutional Research.7% Unknown 255 6.6% Non-Resident Alien (International) 107 2.8% #12;California State University, Fullerton

de Lijser, Peter

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,421 4.4% #12;California State University, Fullerton Institutional Research.3% Unknown 247 7.6% Non-Resident Alien (International) 62 1.9% #12;California State University, Fullerton

de Lijser, Peter

82

California State University, Fullerton Institutional Research and Analytical Studies  

E-Print Network (OSTI)

California State University, Fullerton Institutional Research and Analytical Studies Percent-Resident Alien (International) 1,367 4.5% #12;California State University, Fullerton Institutional Research 335 11.6% Non-Resident Alien (International) 63 2.2% #12;California State University, Fullerton

de Lijser, Peter

83

Institutional Research & Development News | National Nuclear...  

National Nuclear Security Administration (NNSA)

News Above Images: On the left, the "Sandia Cooler" - also known as the "Air Bearing Heat Exchanger" will significantly reduce the energy needed to cool the processor chips in...

84

United Nations Institute for Training and Research (UNITAR) | Open Energy  

Open Energy Info (EERE)

Institute for Training and Research (UNITAR) Institute for Training and Research (UNITAR) Jump to: navigation, search Logo: United Nations Institute for Training and Research (UNITAR) Name United Nations Institute for Training and Research (UNITAR) Address International Environment House Chemin des Anémones 11-13 CH-1219 Châtelaine Place Geneva, Switzerland Phone number +41 22 917 8400 Website http://www.unitar.org/ References http://www.unitar.org/ No information has been entered for this organization. Add Organization "The United Nations Institute for Training and Research (UNITAR) is making concrete contributions to developing the capacities of tens of thousands of people around the world. Since its inception in 1965, UNITAR has built sustainable partnerships acquiring unique expertise and accumulating

85

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

86

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

87

Applications from Universities and Other Research Institutions...  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policies EFRCs FOA Applications from Universities and Other Research...

88

Institute of Nuclear Power Operations 1994 annual report  

SciTech Connect

This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

NONE

1994-12-31T23:59:59.000Z

89

Institute of Nuclear Power Operations annual report, 1993  

SciTech Connect

This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

NONE

1993-12-31T23:59:59.000Z

90

NICCR - National Institute for Climate Change Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us For research in the Coastal Center: Torbjörn Törnqvist Tulane University (504) 314-2221 tor@tulane.edu For research in the Northeastern Region: Ken Davis Pennsylvania State University (814) 863-8601 davis@met.psu.edu For research in the Southeastern Region: Rob Jackson Duke University (919) 660-7408 jackson@duke.edu For research in the Midwestern Region: Andy Burton Michigan Technological University (906) 487-2396 ajburton@mtu.edu For research in the Western Region: Bruce Hungate Northern Arizona University (928) 523-0925 bruce.hungate@nau.edu For general information and eligibility: Jeff Amthor U.S. Department of Energy (301) 903-2507 jeff.amthor@science.doe.gov For proposal and grant related questions: Sally Evans NICCR National Office POB 6077 Northern Arizona University

91

Energy Department - Electric Power Research Institute Cooperation to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department - Electric Power Research Institute Cooperation Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency March 6, 2008 - 11:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy

92

Electric Power Research Institute Cooperation to Increase Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Research Institute Cooperation to Increase Energy Electric Power Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008 Electric Power Research Institute Cooperation to Increase Energy Efficiency, March 6, 2008 The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy use during peak periods.

93

Energy Department - Electric Power Research Institute Cooperation to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Electric Power Research Institute Cooperation - Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency March 6, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy

94

Energy Department - Electric Power Research Institute Cooperation to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department - Electric Power Research Institute Cooperation Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency Energy Department - Electric Power Research Institute Cooperation to Increase Energy Efficiency March 6, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) and the Electric Power Research Institute (EPRI) strengthened cooperation for research, development and deployment of energy technologies aimed at promoting increased energy efficiency. DOE and EPRI yesterday signed a Memorandum of Understanding (MOU) establishing a framework for close coordination to advance the common goal of satisfying the nation's growing electricity needs by improving energy efficiency and promoting the widespread adoption of electric energy demand response programs in an effort to curtail energy

95

Researcher, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Paul Dodd Researcher, Sandia National Laboratories Paul Dodd Paul Dodd Role: Researcher, Sandia National Laboratories Award: Fellow of the Institute of Electrical & Electronics...

96

Nuclear methods in environmental and energy research  

SciTech Connect

A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

Vogt, J R [ed.

1980-01-01T23:59:59.000Z

97

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES PERCENT STUDENTS 1,722 4.7% MULTIPLE RACE 579 1.6% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL.6% UNKNOWN 162 4.0% INTERNATIONAL STUDENTS 84 2.1% MULTIPLE RACE 190 4.7% #12;CALIFORNIA STATE UNIVERSITY

de Lijser, Peter

98

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH AND ANALYTICAL STUDIES PERCENT 1,611 4.5% MULTIPLE RACE 1,145 3.2% #12;CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL.9% UNKNOWN 95 2.3% INTERNATIONAL STUDENTS 101 2.4% MULTIPLE RACE 216 5.1% #12;CALIFORNIA STATE UNIVERSITY

de Lijser, Peter

99

Strategic Nuclear Research Collaboration - FY99 Annual Report  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

T. J. Leahy

1999-07-01T23:59:59.000Z

100

Research Highlights | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

News and Awards News and Awards Nuclear Science Home | Science & Discovery | Nuclear Science | Research Highlights SHARE Research Highlights 1-3 of 3 Results Neutron scattering continues as a vital tool in superconductivity studies January 01, 2011 - In 2008, the totally unexpected discovery of a New class of superconductors, the iron pnictides, set off A Feverish international effort to understand them. Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 - The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. Light Water Reactor Fuel Cladding Research June 01, 2013 - ORNL is the focus point for Light Water Reactor (LWR)

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NICCR - National Institute for Climate Change Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Shuur Abstract Shuur Abstract The Effect of Moisture and Temperature Manipulation on Plant Allocation and Soil Carbon Dynamics in Black Spruce Forests: Using Radiocarbon to Detect Multiple Climate Change Impacts on Boreal Ecosystem Carbon Cycling Principle Investigator: Dr. Edward A.G. Schuur, University of Florida Co-Investigators: Dr. Jason G. Vogel, University of Florida Dr. Stith T. Gower, University of Wisconsin Abstract: Our primary research objective is to understand how the carbon (C) cycle of black spruce (Picea mariana) forests, the largest boreal forest type in North America, will respond to climate change. A second objective is to provide an explicit link between the extensive research conducted on this forest type in Alaska to ongoing international research conducted in Canada where climate and substrates can differ. These objectives will be achieved by connecting observational and experimental field measurements to a common modeling framework.

102

Chemistry and Metallurgy Research Replacement - Nuclear Facility...  

National Nuclear Security Administration (NNSA)

Chemistry and Metallurgy Research Replacement - Nuclear Facility (CMRR-NF SEIS) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing...

103

Southwest Research Institute San Antonio, Texas  

E-Print Network (OSTI)

- ments of radar backscatter and passive microwave emissions. In the Amundsen Sea, the Oden cruise between for sequester- ing CO2 emitted from new power cycles, including integrated gasification com- bined cycle (IGCC. His current research focuses on spaceborne imagery to understand the turbulent, dynamic plasma

Chapman, Clark R.

104

Environmental Research Institute Tokyo ERIT | Open Energy Information  

Open Energy Info (EERE)

Research Institute Tokyo ERIT Research Institute Tokyo ERIT Jump to: navigation, search Name Environmental Research Institute Tokyo (ERIT) Place Tokyo, Japan Product Japanese research institute analysing the country's energy and environmental policy. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

American Institute of Chemical Engineers Honors DOE Researcher | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher August 6, 2009 - 1:00pm Addthis Washington, DC - For his efforts in modeling and simulating fluid-particle flows, a researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been selected to receive the American Institute of Chemical Engineers' (AIChE) Fluidized Processing Recognition Award. AIChE presents the award every two years to an AIChE member "who has made significant contribution to the science and technology of fluidization or fluidized processes and who has shown leadership in the engineering community." This year the award goes to Dr. Madhava Syamlal, Focus Area Leader for Computational and Basic Sciences at NETL. Dr. Syamlal will

106

American Institute of Chemical Engineers Honors DOE Researcher | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher American Institute of Chemical Engineers Honors DOE Researcher August 6, 2009 - 1:00pm Addthis Washington, DC - For his efforts in modeling and simulating fluid-particle flows, a researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been selected to receive the American Institute of Chemical Engineers' (AIChE) Fluidized Processing Recognition Award. AIChE presents the award every two years to an AIChE member "who has made significant contribution to the science and technology of fluidization or fluidized processes and who has shown leadership in the engineering community." This year the award goes to Dr. Madhava Syamlal, Focus Area Leader for Computational and Basic Sciences at NETL. Dr. Syamlal will

107

Solar Energy Research Institute Validation Test House Site Handbook  

DOE Green Energy (OSTI)

The Validation Test House at the Solar Energy Research Institute in Golden, Colorado, is being used to collect performance data for analysis/design tool validation as part of the DOE Passive Solar Class A Performance Evaluation Program.

Burch, J.; Wortman, D.; Judkoff, R.; Hunn, B.

1985-05-01T23:59:59.000Z

108

Korea Electrotechnology Research Institute and Berkeley Lab Will...  

NLE Websites -- All DOE Office Websites (Extended Search)

Korea Electrotechnology Research Institute and Berkeley Lab Will Work Together on Smart Grid R&D NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are...

109

Education program at the Massachusetts Institute of Technology research reactor for pre-college science teachers  

Science Conference Proceedings (OSTI)

A Pre-College Science Teacher (PCST) Seminar program has been in place at the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory for 4 yr. The purpose of the PCST program is to educate teachers in nuclear technology and to show teachers, and through them the community, the types of activities performed at research reactors. This paper describes the background, content, and results of the MIT PCST program.

Hopkins, G.R.; Fecych, W.; Harling, O.K.

1989-01-01T23:59:59.000Z

110

NICCR - National Institute for Climate Change Research  

NLE Websites -- All DOE Office Websites (Extended Search)

News News November 5, 2007. The NICCR National office will release the 2008/2009 RFP on March 1st, 2008. Other important dates will be announced in the near future. July 17, 2006. The selection of the new NICCR Coastal Center has been completed. Seven competitive applications were submitted in April, and reviewed by a panel of technical experts shortly thereafter. As a result of the competitive review, the application from Tulane University was selected by DOE. It is expected that a cooperative agreement between Tulane University and the DOE will be in place to manage the new Coastal Center by September 1, 2006. The next NICCR request for proposals is expected to include a research focus on potential effects of climatic change and/or sea level rise on the structure and functioning of coastal terrestrial ecosystems. All coastal ecosystem research to be supported by NICCR will be in the United States.

111

NICCR - National Institute for Climate Change Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Loik Abstract Loik Abstract Climate Change Impacts on Shrub-Forest Ecotones in the Western US Principle Investigator: Michael E. Loik, University of California, Santa Cruz Co-PI: Daniel F. Doak, University of California, Santa Cruz (after Aug. 2007: University of Wyoming) Unfunded collaborator: Ronald P. Neilson, Pacific Northwest Forest Service Research Laboratory Abstract:: This research is motivated by (i) the importance of snow as a dominant form of precipitation for a large portion of arid and semi-arid regions of the western United States, (ii) uncertainty in how changes in snow climate will affect ecotones between terrestrial ecosystems of the West, and (iii) the need to better understand how climate change impacts recruitment of dominant organisms of range and forest lands of the West, in order to better predict climate change effects on distributions of terrestrial ecosystems.

112

Nuclear Science Research Facilities Nuclear Science User Guide  

E-Print Network (OSTI)

LANSCE User Guide Nuclear Science Research Facilities #12;#12;Nuclear Science User Guide Table of Contents Introduction 3 Nuclear Science Research Facilities 3 The LANSCE Accelerator 4 Time structure techniques 8 Nuclear Science User Program 11 Proposal Process 13 Information for Prospective Users 14

113

Gas Research Institute environment and safety research program. Status report  

SciTech Connect

The 1992 status report describes ongoing planned activities in the Environment and Safety Research Program. The objectives and goals, accomplishments, and strategies are discussed for the supply, end use, and gas operations subprograms. Contract status summaries are presented for the following project areas: Gas Supply Environmental and Safety Research, Air Quality Research, Combustion Systems Emissions Control, End Use Equipment Safety Research, Gas Operations Safety Research, Liquefied Natural Gas (LNG) Safety Research, Gas Operations Environmental Research, and End Use Bioengineering.

Not Available

1992-03-01T23:59:59.000Z

114

Research at the Institute for Environmental Science & Policy - University  

NLE Websites -- All DOE Office Websites (Extended Search)

Research at the Institute for Environmental Science & Policy - University Research at the Institute for Environmental Science & Policy - University of Illinois at Chicago August 8, 2013 Speakers: Thomas L. Theis Director, Institute for Environmental Science & Policy (IESP) University of Illinois at Chicago David H. Wise Associate Director, IESP University of Illinois at Chicago Date: Thursday, August 8, 2013 Time: 2:00-3:00 pm Location: Argonne National Laboratory TCS Building 240 Room 1404/1405 The Institute for Environmental Science and Policy (IESP) at the University of Illinois at Chicago was created in 1999 to catalyze interdisciplinary research addressing the increasingly complex environmental problems of the 21st century. IESP envisions an academy in which the constraints and limitations imposed by disciplinary perspectives are eased, while their

115

NICCR - National Institute for Climate Change Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Williams Abstract Williams Abstract Direct and indirect effects of warming, elevated CO2 and non-native plant invasion on carbon and water cycling in semiarid grassland Principle Investigator: David G. Williams, University of Wyoming Co-Investigators: Elise Pendall, University of Wyoming Abstract:: Our proposed work builds on the Prairie Heating and CO2 Enrichment (PHACE) experiment underway in semiarid grassland of Wyoming. We will evaluate relative sensitivities of carbon and water cycles to elevated CO2 and temperature, and non-native plant invasion, separately and in combination, and distinguish direct from indirect effects of these factors on ecosystem physiology. Location: The PHACE experiment is being conducted at the USDA-ARS High Plains Grasslands Research Station, located near Cheyenne, WY. The ecosystem is a northern mixed-grass prairie consisting of C3 and C4 grasses, C3 forbs and C3 sub-shrubs. Laboratory analyses will be conducted at the University of Wyoming in Laramie.

116

NICCR - National Institute for Climate Change Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Monson Abstract Monson Abstract The Response of a Subalpine Forest Ecosystem to Earlier Spring Warm-up Principle Investigator: Russell K. Monson, University of Colorado, Boulder Abstract: Recent analyses have shown widespread declines in the winter snow pack of mountain ecosystemsin the Western U.S. that are coupled to early-spring temperature anomalies. We hypothesize that early spring warm-up in western forests causes increased water stress and reduces the capacity for the forest to assimilate carbon, while at the same time accelerating the loss of carbon due to soil respiration. We will test this hypothesis using observations and modeling. Our research contains elements of three different NICCR foci, including eddy covariance measurements, modeling and manipulative experiments; however, it is principally intended to fulfill Focus 3, with an emphasis on "the use of measurements and analyses to evaluate mechanisms that might be included in climate and carbon models".

117

NICCR - National Institute for Climate Change Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Pre-proposal Information Pre-proposal Information Preproposals are REQUIRED. Submission of preproposals is now closed. Notice: The 2010 RFP was updated on March 21st, 2009 to remove any reference to out-year funding. This year's program is for one-year grants only. Download the RFP for 2009/2010 in MS Word format Download the RFP for 2009/2010 in Adobe PDF format You will need Adobe Acobat Reader or Microsoft Word to read the RFP. Preproposals are due 5:00 PM Pacific Standard Time, May 15th, 2009. If your preproposal is accepted, full proposals will be due 5:00 PM Pacific Standard Time, August 14st, 2009. Research project start date is April 1, 2010. Preproposals must be submitted electronically to the NICCR web site (click "Submit Preproposal" below) using the official NICCR Preproposal Template which is a Microsoft Word document.

118

Research and Institutional Integrity Office at Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Responsible Conduct of Research Resources Authorship Collaborations ORI Responsible Conduct of Research Educational Resources Mentoring Best Practices Complied by UCSD LBNL Policy on Research Misconduct - RPM 2.05I Research Integrity All persons engaged in research at the Laboratory are responsible for adhering to the highest standards of research integrity. Activities that fall short of the basic ethical principles inherent in the research process undermine the scientific enterprise. Our office is here to assist you in learning about responsible conduct of research and to address questions, concerns, and allegations of possible research misconduct. Under the Laboratory's research misconduct policy (RPM 2.05I) the Head of the Research and Institutional Integrity Office is the Research Integrity

119

MIT Nuclear Space Research Andrew C. Kadak  

E-Print Network (OSTI)

SELENE MIT Nuclear Space Research Andrew C. Kadak Professor of the Practice Nuclear Science with Nuclear Energy ­ Selene - Sodium-Cooled Epithermal Long-term Exploration Nuclear Engine (MS thesis) ­ The Martian Surface Reactor: An Advanced Nuclear Power Station for Manned Extraterrestrial Exploration

120

ASHRAE Transactions: Research 107 Commercial buildings and institutions are generally  

E-Print Network (OSTI)

ASHRAE Transactions: Research 107 ABSTRACT Commercial buildings and institutions are generally. Chiasson Jeffrey D. Spitler, Ph.D., P.E. Student Member ASHRAE Member ASHRAE Simon J. Rees, Ph.D. Marvin D. Smith, P.E. Member ASHRAE Andrew D. Chiasson is a research assistant, Jeffrey D. Spitler is a professor

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gansu Natural Energy Research Institute GNERI | Open Energy Information  

Open Energy Info (EERE)

Research Institute GNERI Research Institute GNERI Jump to: navigation, search Name Gansu Natural Energy Research Institute (GNERI) Place Lanzhou, Gansu Province, China Zip 730000 Sector Renewable Energy, Solar Product Involved in the research for renewable energy, especially in solar. Coordinates 36.059299°, 103.756279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.059299,"lon":103.756279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Boise State University, CAES Energy Efficiency Research Institute | Open  

Open Energy Info (EERE)

Boise State University, CAES Energy Efficiency Research Institute Boise State University, CAES Energy Efficiency Research Institute Jump to: navigation, search Name Boise State University, CAES Energy Efficiency Research Institute Address 1910 University Drive Place Boise, Idaho Zip 83725 Coordinates 43.6056603°, -116.2059975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6056603,"lon":-116.2059975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Colorado School of Mines - Colorado Energy Research Institute | Open Energy  

Open Energy Info (EERE)

School of Mines - Colorado Energy Research Institute School of Mines - Colorado Energy Research Institute Jump to: navigation, search Name Colorado School of Mines - Colorado Energy Research Institute Address 1500 Illinois Street Place Golden, Colorado Zip 80401 Region Rockies Area Coordinates 39.751116°, -105.222315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.751116,"lon":-105.222315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Center for Intelligent Systems Research GW Transportation Research Institute  

E-Print Network (OSTI)

Driving Simulator Laboratory Center for Intelligent Systems Research GW Transportation Research be employed in a number of other studies, such as: · Measuring the distraction potential of future in-vehicle intelligent transportation systems, · Determining the impact of road design on driver behavior

Vertes, Akos

125

2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS 2006 NUCLEAR ENERGY RESEARCH INITIATIVE AWARDS A chart listing the recipients of the 2006 Nuclear Energy Research Initiative Awards. 2006...

126

2006 Nuclear Energy Research Initiative Awards | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Initiative Awards 2006 Nuclear Energy Research Initiative Awards This is the list of winners from the 2006 Nuclear Energy Research Initiative Awards. 2006...

127

REACLIB Database from the Joint Institute for Nuclear Astrophysics (JINA)  

DOE Data Explorer (OSTI)

The Joint Institute for Nuclear Astrophysics is NSF-funded, but four of DOE's National Laboratories are involved in the REACLIB database. The database is a large and important resource for nuclear reaction rates used in astrophysical model calculations. It contains multiple versions of each rate with one recommended rate and is continuously updated. Public REACLIB releases are available as libraries and represent snapshots of the database on a particular date. Users can also define their own libraries and make them public to document the rates they used. Users are not required to have an account to browse and download data. You will need an account only if you wish to create and manage your own libraries.

128

New Nuclear Energy Awards Give Students Hands-On Research Experience |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Nuclear Energy Awards Give Students Hands-On Research New Nuclear Energy Awards Give Students Hands-On Research Experience New Nuclear Energy Awards Give Students Hands-On Research Experience September 28, 2012 - 9:33am Addthis Bojan Petrovic, a senior researcher at Georgia Institute of Technology, will lead an IRP team in developing a high-power light water reactor design with inherent safety features. | Photo courtesy of Georgia Institute of Technology Bojan Petrovic, a senior researcher at Georgia Institute of Technology, will lead an IRP team in developing a high-power light water reactor design with inherent safety features. | Photo courtesy of Georgia Institute of Technology Bradley Williams Team Lead, Nuclear Energy University Programs What Colleges Received The Awards? Georgia Institute of Technology

129

TransForum v7n1 - Electric Power Research Institute and Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Power Research Institute and Argonne Agree to Collaboratively Assess Commerical Viability of Plug-In Hybrid Electric Vehicles The Electric Power Research Institute (EPRI)...

130

The Energy Research and Modernization Institute ICEMENERG | Open Energy  

Open Energy Info (EERE)

Research and Modernization Institute ICEMENERG Research and Modernization Institute ICEMENERG Jump to: navigation, search Name The Energy Research and Modernization Institute (ICEMENERG) Place Bucharest, Romania Sector Biofuels, Biomass, Efficiency, Geothermal energy, Hydro, Wind energy Product Research institute that covers many sectors including wind, PV, STEG, biomass, biofuels, mini-hydro, geothermal and energy efficiency. Coordinates 44.434295°, 26.102965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.434295,"lon":26.102965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

International Food Policy Research Institute | Open Energy Information  

Open Energy Info (EERE)

Food Policy Research Institute Food Policy Research Institute Jump to: navigation, search Logo: International Food Policy Research Institute Name International Food Policy Research Institute Address 2033 K St, NW Place Washington, DC Zip 20006-1002 Region Northeast - NY NJ CT PA Area Phone number +1 202-862-5600 Website http://www.ifpri.org/contact Coordinates 38.902873°, -77.046518° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.902873,"lon":-77.046518,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH & ANALYTICAL STUDIES  

E-Print Network (OSTI)

CALIFORNIA STATE UNIVERSITY, FULLERTON INSTITUTIONAL RESEARCH & ANALYTICAL STUDIES NUMBER OF CALIFORNIA HIGH SCHOOL GRADUATES IN SELECTED COUNTIES/REGIONS Data from the State of California, Department,741 46% 171,201 45% 171,029 46% California Total 298,602 100% 382,924 100% 368,011 100% #12;CALIFORNIA

de Lijser, Peter

133

America's Clinical Research Hospital National Institutes of Health Clinical Center  

E-Print Network (OSTI)

of Contents · Governance Structure, page 3 · Clinical Center Planning/Budget Review Process, page 3 · Clinical/Budget Review Process [Chart: Clinical Center Planning/Budget Review Process] September/October · Institute This is provided to the NIH Director February/March · NIH Advisory Board for Clinical Research (Reviews) June

134

Summer Research Institute Interfacial and Condensed Phase Chemical Physics  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

Barlow, Stephan E.

2004-10-01T23:59:59.000Z

135

The Cooperative Institute for Research in Environmental Sciences (CIRES)  

E-Print Network (OSTI)

competition of the National Ocean Sciences Bowl and is closely interacting with NOAA and CU public affairsThe Cooperative Institute for Research in Environmental Sciences (CIRES) Annual Report on NOAA Dynamics Cryospheric and Polar Processes Environmental Chemistry and Biology Solid Earth Sciences The five

Colorado at Boulder, University of

136

James M. Coughlan Smith-Kettlewell Eye Research Institute  

E-Print Network (OSTI)

of the Problem 3-D lines in Manhattan scene project to lines on uv image plane. cr ar fu rr rr = cr br fv rr rrJames M. Coughlan Smith-Kettlewell Eye Research Institute Manhattan World: Orientation and Outlier Detection by Bayesian Inference #12;Application of the statistics of edges: Manhattan World Many scenes

Coughlan, James M.

137

Research in theoretical nuclear physics  

SciTech Connect

This report discusses topics in the following areas: Low energy nuclear reactions induced by light and heavy ions; medium energy physics; and nuclear structure. (LSP)

Udagawa, T.

1992-09-01T23:59:59.000Z

138

DOE/NV/10845 IT U S VECAS LIBRARY UC-703 I?. DESERT RESEARCH INSTITUTE  

Office of Legacy Management (LM)

0845 0845 IT U S VECAS LIBRARY UC-703 I?. DESERT RESEARCH INSTITUTE 3 I 'UNIVERSITY OF . ? .NEVADA SYSTEM Jenny B. Chapman Sam L. Hokett EVALUATION OF GROUNDWATER MONITORING AT O F F S m NUCLEAR TEST AREAS March 1991 WATER RESOURCES CENTER Publication #45085 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. EVALUATION OF GROUNDWATER MONITORING AT OFFSITE NUCLEAR TEST AREAS b-r Jenny B. Chapman Sam L Hokett Water Resources Center Desett Research Institute University of Nevada System Publication X45085 prepared for Nevada Operations Office U . S . :Department of Energy IAS Vegas, Nevada March 1991 The work upon which this report is based was supported by the U . S

139

Research and Development | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Research and Development Home > About Us > Our Programs >...

140

Mitsuru Uesaka Nuclear Engineering Research Laboratory ,  

NLE Websites -- All DOE Office Websites (Extended Search)

plasma cathode by 12 TW, 50 fs laser and its application to radiation chemistry Mitsuru Uesaka Nuclear Engineering Research Laboratory , University of Tokyo June 26, 2004...

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal studies at the University of Utah Research Institute  

SciTech Connect

The University of Utah Research Institute (WRI) is a self-supporting corporation organized in December 1972 under the Utah Non-Profit Corporation Association Act. Under its charter, the Institute is separate in its operations and receives no direct financial support from either the University of Utah or the State of Utah. The charter includes provisions for WRI to conduct both public and proprietary scientific work for governmental agencies, academic institutions, private industry, and individuals. WRI is composed of five divisions, shown in Figure 1: the Earth Science Laboratory (ESL), the Environmental Studies Laboratory (EVSL), the Center for Remote Sensing and Cartography (CRSC), the Engineering Technology Laboratory (ETL) and the Atmospheric Physics Laboratory (APL). The Earth Science Laboratory has a staff of geologists, geochemists and geophysicists who have a broad range of experience in geothermal research and field projects as well as in mineral and petroleum exploration. The Environmental Studies Laboratory offers a variety of technical services and research capabilities in the areas of air quality and visibility, acid precipitation, surface and groundwater contamination, and environmentally caused stress in vegetation. The Center for Remote Sensing and Cartography offers applied research and services with a full range of remote sensing and mapping capability, including satellite and airborne imagery processing and interpretation. The Engineering Technology Laboratory is currently studying the interaction of the human body with electromagnetic radiation. The Atmospheric Physics Laboratory is developing hygroscopic droplet growth theory and orographic seeding models for dispersal of fog.

None

1988-07-01T23:59:59.000Z

142

Research in theoretical nuclear physics  

SciTech Connect

The work done during the past year covers three separate areas, low energy nuclear reactions intermediate energy physics, and nuclear structure studies. This manuscript summarizes our achievements made in these three areas.

Udagawa, T.

1991-10-01T23:59:59.000Z

143

University Research Reactor Task Force to the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

144

48th Research Institute of China Electronics Technology Group Corporation |  

Open Energy Info (EERE)

Research Institute of China Electronics Technology Group Corporation Research Institute of China Electronics Technology Group Corporation Jump to: navigation, search Name 48th Research Institute of China Electronics Technology Group Corporation Place Changsha, Hunan Province, China Zip 410111 Sector Solar Product A microelectronic equipment producer and also a solar cell and equipment manufacturer. Coordinates 28.1975°, 112.968307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.1975,"lon":112.968307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Computer Science Research Institute 2005 annual report of activities.  

SciTech Connect

This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2005 to December 31, 2005. During this period, the CSRI hosted 182 visitors representing 83 universities, companies and laboratories. Of these, 60 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 105 participants, 78 from universities, companies and laboratories, and 27 from Sandia. Finally, the CSRI sponsored 12 long-term collaborative research projects and 3 Sabbaticals.

Watts, Bernadette M.; Collis, Samuel Scott; Ceballos, Deanna Rose; Womble, David Eugene

2008-04-01T23:59:59.000Z

146

Computer Science Research Institute 2004 annual report of activities.  

Science Conference Proceedings (OSTI)

This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2004 to December 31, 2004. During this period the CSRI hosted 166 visitors representing 81 universities, companies and laboratories. Of these 65 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 4 workshops. These 4 CSRI sponsored workshops had 140 participants--74 from universities, companies and laboratories, and 66 from Sandia. Finally, the CSRI sponsored 14 long-term collaborative research projects and 5 Sabbaticals.

DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

2006-03-01T23:59:59.000Z

147

Computer Science Research Institute 2003 annual report of activities.  

SciTech Connect

This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2003 to December 31, 2003. During this period the CSRI hosted 164 visitors representing 78 universities, companies and laboratories. Of these 78 were summer students or faculty members. The CSRI partially sponsored 5 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 178 participants--137 from universities, companies and laboratories, and 41 from Sandia. Finally, the CSRI sponsored 18 long-term collaborative research projects and 5 Sabbaticals.

DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

2006-03-01T23:59:59.000Z

148

Iowa State Mining and Mineral Resources Research Institute  

SciTech Connect

During 1990--1991, the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) has worked diligently to further the objectives of the Mineral Institute Program. About 70% of our Allotment Grant funding goes toward research and education of graduate students within the participating departments of the university. It is our goal to encourage graduate students in diverse fields such as agronomy, engineering, geology, landscape architecture, and many others to pursue a career in mining- and mineral-related fields by preparing them to either enter the private or public sectors. During the 1990 calendar year, ISMMRRI granted research assistantships to 17 graduate students to perform research in topics relating to mineral exploration, characterization and processing, extractive metallurgy, mining engineering, fuel science, mineral waste management, and mined-land reclamation. Research areas include the following: Fluid-inclusion studies on fluorspar mineral deposits in an actively mined region; Geochemical modeling of gold and gold-telluride deposits; Characterization of coal particles for surface-based beneficiation; Impact of surface mining and reclamation of a gypsum deposit area on the surrounding community; Stress-strain response of fine coal particles during transport and storage; Recovery of metal values from mining wastes using bioleaching; Coal beneficiation utilizing triboelectric charging in a fast fluidized bed; and Mathematical modeling of breakage for optimum sizing during crushing of rock.

Not Available

1991-08-01T23:59:59.000Z

149

CERN-INTC-2011-053/INTC-P-317 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH  

E-Print Network (OSTI)

an exacting test for nuclear models. Binding energies offer a clear signature for the presence (or disCERN-INTC-2011-053/INTC-P-317 06/10/2011 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Proposal. N. Wolf8 , K. Zuber9 1Max Planck Institute for Nuclear Physics, Heidelberg, Germany 2GSI

150

National Institute for Petroleum and Energy Research status report  

SciTech Connect

On October 1, 1983, the US Department of Energy awarded a cost-shared, cooperative agreement for the management of its Bartlesville Energy Technology Center. At the time of the transition, the laboratory was renamed the National Institute for Petroleum and Energy Research, (NIPER), to better reflect its expanding capabilities and research scope. The 65-year-old energy center was historically the government's lead petroleum research laboratory, excelling in the development of technology for secondary and enhanced oil recovery, the composition and chemistry of petroleum and substitute liquid fuels, thermodynamics, automotive engine efficiency and emission control, and the use of alternate synthetic fuels. As NIPER, the research thrust continues to be in the field of petroleum and unconventional hydrocarbon technology with an emphasis on enhanced oil recovery. NIPER's areas of technology are: secondary and enhanced oil recovery, composition and chemistry of petroleum and substitute liquid fuels, thermodynamics, automotive engine efficiency and emission control, and use of alternate synthetic fuels.

Browne, L.W.

1984-06-01T23:59:59.000Z

151

Meeting Between the Department of Energy and the Nuclear Energy Institute  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Between the Department of Energy and the Nuclear Energy Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Pursuant to DOE's Guidance on Ex Parte Communications (74 Fed. Reg. 52,795; Oct. 14, 2009), this letter is to memorialize the meeting between the Department of Energy (DOE) and the Nuclear Energy Institute (NEI), held on March 13, 2012. NEI_Ltr_03_20_2012.pdf More Documents & Publications Meeting between Department of Energy Contractor and the Nuclear Energy Institute Regarding Proposed Revision of 10 CFR 810 Ex Parte Meeting Between the Department of Energy and the Nuclear Energy Institute Regarding Section 934 of the Energy Independence and Security Act

152

Research in theoretical nuclear physics  

SciTech Connect

The work done during the past year or so may be divided into three separate areas, low energy nuclear reactions, intermediate energy physics and nuclear structure studies. In this paper, we shall separately summarize our achievements made in these three areas.

Udagawa, Takeshi.

1990-10-01T23:59:59.000Z

153

Iowa State Mining and Mineral Resources Research Institute  

SciTech Connect

This final report describes the activities of the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) at Iowa State University for the period July 1, 1989, to June 30, 1990. Activities include research in mining- and mineral-related areas, education and training of scientists and engineers in these fields, administration of the Institute, and cooperative interactions with industry, government agencies, and other research centers. During this period, ISMMRRI has supported research efforts to: (1) Investigate methods of leaching zinc from sphalerite-containing ores. (2) Study the geochemistry and geology of an Archean gold deposit and of a gold-telluride deposit. (3) Enchance how-quality aggregates for use in construction. (4) Pre-clean coal by triboelectric charging in a fluidized-bed. (5) Characterize the crystal/grain alignment during processing of yttrium-barium-copper-perovskite (1-2-3) superconductors. (5) Study the fluid inclusion properties of a fluorite district. (6) Study the impacts of surface mining on community planning. (7) Assess the hydrophobicity of coal and pyrite for beneficiation. (8) Investigate the use of photoacoustic absorption spectroscopy for monitoring unburnt carbon in the exhaust gas from coal-fired boilers. The education and training program continued within the interdepartmental graduate minor in mineral resources includes courses in such areas as mining methods, mineral processing, industrial minerals, extractive metallurgy, coal science and technology, and reclamation of mined land. In addition, ISMMRRI hosted the 3rd International Conference on Processing and Utilization of High-Sulfur Coals in Ames, Iowa. The Institute continues to interact with industry in order to foster increased cooperation between academia and the mining and mineral community.

Not Available

1990-08-01T23:59:59.000Z

154

The University of Texas at Arlington Research Institute Lieutenant General, US Army (Retired)  

E-Print Network (OSTI)

The University of Texas at Arlington Research Institute UTARI Rick Lynch Lieutenant General, US of Texas at Arlington Research Institute Vision Statement By 2017, UTARI becomes a global leader of Texas at Arlington Research Institute Mission Statement UTARI bridges the gap between academic research

Texas at Arlington, University of

155

Nuclear Energy Research Advisory Subcommittee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Minutes for the to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting September 30 to October 1, 2002 MEMORANDUM To: Chairman, Nuclear Energy Research Advisory Committee (NERAC) From: Thomas B. Cochran, Member of NERAC Date: October 16, 2002 Subject: "A Technology Roadmap on Generation IV Nuclear Energy Systems," a report of the NERAC Subcommittee on Generation IV Technology Planning Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon- usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by

156

Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these joint projects are given.

Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

2000-05-05T23:59:59.000Z

157

Institute for Scientific Computing Research Fiscal Year 2002 Annual Report  

SciTech Connect

The Institute for Scientific Computing Research (ISCR) at Lawrence Livermore National Laboratory is jointly administered by the Computing Applications and Research Department (CAR) and the University Relations Program (URP), and this joint relationship expresses its mission. An extensively externally networked ISCR cost-effectively expands the level and scope of national computational science expertise available to the Laboratory through CAR. The URP, with its infrastructure for managing six institutes and numerous educational programs at LLNL, assumes much of the logistical burden that is unavoidable in bridging the Laboratory's internal computational research environment with that of the academic community. As large-scale simulations on the parallel platforms of DOE's Advanced Simulation and Computing (ASCI) become increasingly important to the overall mission of LLNL, the role of the ISCR expands in importance, accordingly. Relying primarily on non-permanent staffing, the ISCR complements Laboratory research in areas of the computer and information sciences that are needed at the frontier of Laboratory missions. The ISCR strives to be the ''eyes and ears'' of the Laboratory in the computer and information sciences, in keeping the Laboratory aware of and connected to important external advances. It also attempts to be ''feet and hands, in carrying those advances into the Laboratory and incorporating them into practice. In addition to conducting research, the ISCR provides continuing education opportunities to Laboratory personnel, in the form of on-site workshops taught by experts on novel software or hardware technologies. The ISCR also seeks to influence the research community external to the Laboratory to pursue Laboratory-related interests and to train the workforce that will be required by the Laboratory. Part of the performance of this function is interpreting to the external community appropriate (unclassified) aspects of the Laboratory's own contributions to the computer and information sciences--contributions that its unique mission and unique resources give it a unique opportunity and responsibility to make. Of the three principal means of packaging scientific ideas for transfer--people, papers, and software--experience suggests that the most effective means is people. The programs of the ISCR are therefore people-intensive. Finally, the ISCR, together with CAR, confers an organizational identity on the burgeoning computer and information sciences research activity at LLNL and serves as a point of contact within the Laboratory for computer and information scientists from outside.

Keyes, D E; McGraw, J R; Bodtker, L K

2003-03-11T23:59:59.000Z

158

Plant Support Engineering: Degradation Research for Nuclear Service Level I Coatings  

Science Conference Proceedings (OSTI)

Nuclear power plants have experienced degradation of the protective coating systems (nuclear Service Level I coatings) inside reactor containment. The degradation is a matter of concern, but the history of degradation and its causes have not been thoroughly documented. In response, the Electric Power Research Institute (EPRI) and the Nuclear Utilities Coating Council (NUCC) began a research project designed to gain an understanding of the degradation and the potential influence of aging on the qualified ...

2007-09-24T23:59:59.000Z

159

Nuclear Energy Research Advisory Committee (NERAC) agenda 11...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

agenda 11303 Nuclear Energy Research Advisory Committee (NERAC) agenda 11303 This is an agenda of the 110303 and 110403 Nuclear Energy Research Advisory Committee (NERAC)...

160

Environmental Survey preliminary report, Solar Energy Research Institute, Golden, Colorado  

Science Conference Proceedings (OSTI)

This report presents the preliminary findings of the first phase of the Environmental Survey of the US Department of Energy's (DOE) Solar Energy Research Institute (SERI), conducted December 14 through 18, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with SERI. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at SERI, and interviews with site personnel. 33 refs., 22 figs., 21 tabs.

Not Available

1988-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Safety Research and Development Committee Charter  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter I. Purpose The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have any authority to direct DOE and/or NNSA program

162

Advanced research workshop: nuclear materials safety  

SciTech Connect

The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectivethe safe and secure storage and disposition of excess fissile nuclear materials.

Jardine, L J; Moshkov, M M

1999-01-28T23:59:59.000Z

163

Nuclear Energy Research Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10/03/02 10/03/02 Appendix A to the Minutes for the Nuclear Energy Research Advisory Committee Meeting September 30 to October 1, 2002 Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report October 3, 2002 The Roadmap Context The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV

164

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

165

NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

Not Available

1994-08-01T23:59:59.000Z

166

(National Institute for Petroleum and Energy Research): 1986 annual report  

SciTech Connect

Significant research accomplishments were made by the National Institute for Petroleum and Energy Research (NIPER) during its third year of operation. Some of the achievements of the FY86 program are: (1) extrapolation of energy supply trends was used to develop a research plan for improving the energy capability of the United States; (2) the finding of correlations between outcrop core samples and reservoir core samples will enable better predictions of heterogeneity in the reservoir and the application of these properties to prediction and planning of EOR projects; (3) the development of hydrocarbon reaction paths under hydrotreating or catalytic cracking is being approached by calculation of thermodynamic functions (Gibbs Energy); (4) micromodel studies were used to elucidate the mechanisms of oil mobilization by microbes and results were found to correlate with coreflooding results; (5) degradation and compatibility problems have been identified in utility fuel oils, jet fuels, and diesel fuels; (6) a new surfactant-enhanced alkaline flooding method that results in less reaction with reservoir minerals has been developed; (7) the effect on farm equipment of the phase-out of lead in gasoline was studied; (8) a thermophysical property prediction package has been developed for gas injection EOR projects using nitrogen; (9) a survey of applicable information on groundwater pollution by refinery operations was made; (10) the construction and testing of an apparatus to measure three-phase relative permeabilities based on x-ray and microwave measurements were completed. These reports on ten of NIPER's 35 projects serve to show some of the more important achievements. A more complete discussion of these and the other projects is given in this annual report. These reports have been processed for inclusion in the Energy Data Base.

Not Available

1987-03-01T23:59:59.000Z

167

INSTITUTE OF NUCLEAR ENERGY RADIATION ANNUAL REPORT 2003  

E-Print Network (OSTI)

of Environment and Public Works and the Greek Atomic Energy Commission). Taking into account that the nuclear fuel of the Experimental Nuclear Reactor suffices for a considerable number of years, the continuing with the pertroleum industry), R&D in issues of porous material - and especially nano-material ­ structure

168

IllInoIs InstItute of technology's WInd energy research consortIum  

E-Print Network (OSTI)

IllInoIs InstItute of technology's WInd energy research consortIum Wanger Institute for Sustainable Energy Research (WISER) Illinois Institute of Technology On-campus wind turbine [OVER] The U.S. Department of Energy has invested $8 Million in the IIT-led Wind Energy Consortium to improve wind generation

Heller, Barbara

169

Georgia Tech is an equal employment/education opportunity institution. Office of Institutional Research and Planning  

E-Print Network (OSTI)

Accreditation Board Royal Institution of Chartered Surveyors · Georgia Tech operates on the semester system.................................................................................................................. University System of Georgia................................................................................................................................ Table 2.2 University System Office Administrative Staff

Li, Mo

170

Materials Research Needs for Near-Term Nuclear Reactors  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Material

John R. Weeks

171

National Institute for Petroleum and Energy Research: FY89 annual research plan  

SciTech Connect

This is the sixth Annual Research Plan for the National Institute for Petroleum and Energy Research (NIPER). In its program of long-range research, NIPER is preparing for the time when petroleum scarcities again plague the United States. Two general study areas are addressed: (1) The consolidation and extension of enhanced oil recovery (EOR) technology. This includes reservoir characterization, chemical flooding, gas injection, steam injection, microbial EOR, and environmental concerns. (2) The development and improvement of knowledge concerning the manufacture and use of fuels from less desirable feedstocks. This includes the study of heavy petroleum, heavy ends of petroleum, tar sands, shale oil, and coal liquids. 2 refs., 2 figs., 3 tabs.

Not Available

1988-11-01T23:59:59.000Z

172

National Institute for Petroleum and Energy Research: FY88 annual research plan  

Science Conference Proceedings (OSTI)

This is the fifth Annual Research Plan for the National Institute for Petroleum and Energy Research (NIPER). In its program of long-range research, NIPER is preparing for the time when petroleum scarcities again plague the United States. Two general study areas are addressed: (1) The consolidation and extension of enhanced oil recovery (EOR) technology. This includes reservoir characteriztion, chemical flooding, gas injection, steam injection, and microbial EOR. (2) The development and improvement of knowledge concerning the manufacture and use of fuels from less desirable feedstocks. This includes the study of heavy petroleum, heavy ends of petroleum, tar sands, shale oil, and coal liquids.

Not Available

1987-10-01T23:59:59.000Z

173

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Research Advisory Committee, Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

174

International Institute for Carbon-Neutral Energy Research Outline...  

NLE Websites -- All DOE Office Websites (Extended Search)

College, ETH, Gottingen, Max-Planck-Institute in Dusseldorf, University of Thessaly (Greece) JAPAN z Fukuoka Strategy Conference on Hydrogen Energy Mr. Aso, Governor of...

175

The AMS Measurements and Its Applications in Nuclear Physics at China Institute of Atomic Energy (CIAE)  

SciTech Connect

Accelerator Mass Spectrometry (AMS), initiated in late 1970s at McMaster university based on the accelerator and detector technique, has long been applied in the studies on archaeology, geology, and cosmology, as a powerful tool for isotope dating. The advantages of AMS in the analysis of rare nuclides by direct counting of the atoms, small sample size and relatively free from the interferences of molecular ions have been well documented. This paper emphasizes that AMS can not only be used for archaeology, geology, environment, biology and so on, but also served as a unique tool for nuclear physics research. In this paper, the determination of the half-lives of {sup 79}Se, the measurements of the cross-sections of {sup 93}Nb(n,2n){sup 92g}Nb and {sup 238}U(n,3n){sup 236}U reactions, the detection and determination of ultratrace impurities in neutrino detector materials, and the measurement of the fission product nuclide {sup 126}Sn, are to be introduced, as some of examples of AMS applications in nuclear research conducted in AMS lab of China Institute of Atomic Energy. Searching for superheavy nuclides by using AMS is being planned.

Jiang Shan; Shen Hongtao; He Ming; Dong Kejun; He Guozhu; Wang Xianggao; Yuan Jian; Wang Wei; Wu Shaoyong [China Institute of Atomic Energy, P.O.Box 275-80, Beijing 102413 (China); Ruan Xiangdong; Wu Weimin [College of Physics, Guangxi University, Nanning 530004 (China)

2010-05-12T23:59:59.000Z

176

LongBaseline Neutrino Physics and Astrophysics Institute for Nuclear Theory Summer Program 2010  

E-Print Network (OSTI)

LongBaseline Neutrino Physics and Astrophysics Institute for Nuclear Theory Summer Program 2010 for Nuclear Theory Summer Program 2010 Robert J. Wilson 8/11/2010Page 2 Wednesday August 11th Session 6 PWG C520 14:00 Solar, Geo, and Reactor Neutrinos N. Tolich (Washington) 14:30 Q&A Guests/PWG Session 8

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

177

THE LAUNDRY OF A NUCLEAR RESEARCH CENTRE  

SciTech Connect

The special demands on the laundry of a nuclear research center are described. By the example of cleaning and ironing in two days the radioactive contaminated work clothing of a staff of 1200 coworkers, a detailed plan is given for the construction of a serviceable laundry and an exact description of the flow sheet is added. (auth)

Meixner, A.

1962-09-01T23:59:59.000Z

178

Associations between respiratory illnesses and secondhand smoke exposure in flight attendants: a cross-sectional analysis of the Flight Attendant Medical Research Institute Survey  

E-Print Network (OSTI)

of the Flight Attendant Medical Research Institute Survey.of the Flight Attendant Medical Research Institute Surveyto the Flight Attendant Medical Research Institute (FAMRI)

Beatty, Alexis L; Haight, Thaddeus J; Redberg, Rita F

2011-01-01T23:59:59.000Z

179

Safer nuclear reactors could result from Los Alamos research  

NLE Websites -- All DOE Office Websites (Extended Search)

Calendar Video Newsroom News Releases News Releases - 2010 March Safer nuclear reactors could result from research Safer nuclear reactors could result from Los...

180

National Institute for Petroleum and Energy Research: FY87 annual research plan  

SciTech Connect

The National Institute for Petroleum and Energy Research (NIPER) will enter its fourth year of operation October 1, 1986, and this Annual Research Plan describes the work envisioned for that year. NIPER's program of research encompasses three different thrusts. The DOE funds a $5 million Base Program designed to undertake long-range, high-risk research on petroleum and similar materials that companies are generally unwilling to do. A second program, the Optional Program, cost-shares research on petroleum and substitute fossil fuels between DOE and contributing participants. For FY 87, the DOE maximum share will be $1 million and the remainder will be sponsored by other government agencies and industrial participants. The third program is a Work for Others Program which allows NIPER to solicit work from the private sector and others. This Annual Research Plan covers only the Base and Optional Programs. NIPER is organized into two research departments - Energy Production Research (EPR) and Fuels Research (FR). Projects in EPR deal with various aspects of enhanced oil recovery and include chemical flooding, gas injection processes, steam injection, and microbial enhanced oil recovery. Projects in FR are concerned with the impact of heavy oil and alternate fuels on processing and use of fuels. For Fiscal Year 1987, the Base Program will have 13 projects, eight in EPR and five in FR.

Not Available

1986-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

RECIPIENT:Desert Research Institute STATE:NV PROJECT Tall Tower...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Institute STATE:NV PROJECT Tall Tower Wind Energy Monitoring and Numerical Model Validation in Southern Nevada; NREl Tracking TITLE: No. 11-012 Funding Opportunity...

182

DIVERSITY MATTERS: New Directions for Institutional Research on Undergraduate Racial/Ethnic and Economic Diversity  

E-Print Network (OSTI)

Racial and Ethnic Diversity. Association for Institutional2000). The benefits of diversity: What the research tellsBlack students perceptions of diversity at UC Berkeley.

Gregg Thomson

2011-01-01T23:59:59.000Z

183

Applied Health Technology a New Research Discipline at Blekinge Institute of Technology.  

E-Print Network (OSTI)

??Since spring 2008 is Applied Health Technology a new research discipline at Blekinge Institute of Technology. The discipline has been developed in collaboration between the (more)

Olander, Ewy

2009-01-01T23:59:59.000Z

184

2009 Annual Reports Issued for Nuclear Energy Research Initiative and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2009 Annual Reports Issued for Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative 2009 Annual Reports Issued for Nuclear Energy Research Initiative and International Nuclear Energy Research Initiative July 2, 2010 - 11:49am Addthis On July 2, 2010, the Department of Energy's (DOE) Office of Nuclear Energy (NE) issued annual reports for its Nuclear Energy Research Initiative (NERI) andInternational Nuclear Energy Research Initiative (I-NERI), describing accomplishments achieved in 2009. The NERI and I-NERI programs have furthered DOE goals for the past decade, conducting research into many of the key technical issues that impact the expanded use of advanced nuclear energy systems. Researchers have fostered innovative ideas

185

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

186

Institution  

E-Print Network (OSTI)

Equational reasoning and combination methods: from programs to proofs 20 years of research in automated deduction, equational reasoning and combination

Christophe Ringeissen; Poincar Nancy; Christophe Ringeissen

2009-01-01T23:59:59.000Z

187

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network (OSTI)

and hybrid electric vehicle test platforms. Relevant HHVRL project history includes: · Combined BatteryPenn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI) The Hybrid and Hydrogen Vehicle Research Laboratory (HHVRL) at the Larson Transportation Institute (LTI

Lee, Dongwon

188

Massachusetts Institute of Technology Department of Nuclear Engineering  

E-Print Network (OSTI)

) pebble thermal conduction model based on core average power · Thermal conductivity depends on temperature Researchers · Fuel Performance - Heather MacLean - Jing Wang · Core Physics - Julian Lebenhaft · Thermal Develop a sufficient technical and economic basis for this type of reactor plant to determine whether

189

Department of Energy Announces 24 Nuclear Energy Research Awards...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis 12...

190

Poster Gallery of the Microproducts Breakthrough Institute (MBI), an Oregon Nanoscience and Microtechnologies Institute Signature Research Facility  

DOE Data Explorer (OSTI)

The Microproducts Breakthrough Institute, collaboratively managed by Oregon State University and the Pacific Northwest National Laboratory, is committed to the development of micro- and nano-technologies for sustainable energy, healthy environments and improved lives. The institute houses laboratories for research and development, fabrication facilities and office space. Ideas in the micro and nano area are developed and matured from concept to commercialization. Core competencies include microchannel heat and mass transfer processes, energy systems, microreactor technologies, nanoparticle synthesis, and fabrication of microchannel components. [copied from http://mbi-online.org/

191

Research helps safeguard nuclear workers worldwide - Argonne's Historical  

NLE Websites -- All DOE Office Websites (Extended Search)

Research helps safeguard nuclear workers Research helps safeguard nuclear workers worldwide About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

192

Basic Research for Evaluating Nuclear Waste Form Performance  

Science Conference Proceedings (OSTI)

Technical Paper / Argonne National Laboratory Specialists Workshop on Basic Research Needs for Nuclear Waste Management / Radioactive Waste

Don J. Bradley

193

Solar Energy Research - National Institute of Standards and ...  

Science Conference Proceedings (OSTI)

NIST Photo Gallery / Solar Energy Research. NBS embarked on a program of developing standard test methods for solar ...

2013-11-25T23:59:59.000Z

194

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

195

FY 2014 Consolidated Innovative Nuclear Research FOA | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA FY 2014 Consolidated Innovative Nuclear Research FOA The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE strives to promote integrated and collaborative research conducted by national laboratory, university, industry, and international partners under the direction of NE's programs. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of

196

Nuclear Energy Research Advisory Committee (NERAC) Meeting of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting of November 3 and 4, 2003 Nuclear Energy Research Advisory Committee (NERAC) Meeting of November 3 and 4, 2003 The agenda for the National Energy Research Advisory...

197

Background Long history of research and education in "nuclear  

E-Print Network (OSTI)

). #12;Master Programme in Nuclear Engineering · Coupling education ­ research (reactor physics#12;Background · Long history of research and education in "nuclear engineering" at Chalmers. · "Nuclear engineering" = multi-disciplinary research area. #12;Background Establishment of the Sustainable

Lemurell, Stefan

198

Research Report 2012 Max Planck Institute for Molecular Genetics, Berlin  

E-Print Network (OSTI)

J.C. and Pouchard M., Solid State Comm., 91 (1994) 501-505. [4] WattiauvA., GrenierJ.C., Pouchard M. and Hagenmuller:~,A. Wattiaux, A. Demourgues,P. Bezdicka, J.C. Grenier, M. Pouchard and J. Etourneau Institut de Chimie de la measured at H = 2 T. References [I] Wattiaux A,, Fournks L., DemourguesA., Bernaben N., Grenier J

Spang, Rainer

199

R. Shane Johnson, Associate Director Office of Advanced Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Nuclear Research Advanced Nuclear Research September 30, 2002 Generation IV International Forum Generation IV International Forum Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Generation IV International Forum Generation IV International Forum 6 Government-sanctioned organization working together to plan the future of nuclear energy * Chartered in July 2002 * Conduct joint R&D on next-generation nuclear energy systems * Voluntary member participation in specific projects 6 Observer Organizations * OECD-NEA * IAEA * Euratom South Korea U.S.A. Argentina Brazil Canada France Japan South Africa United Kingdom Switzerland Office of Nuclear Energy, Science and Technology

200

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Research and Development | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

202

Research Reactor Conversion | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

203

"NIMBioS: a National Institute fostering Research and Education...  

NLE Websites -- All DOE Office Websites (Extended Search)

research that applies mathematics and computational science to diverse problems in the life sciences. The National Science Foundation, US Department of Homeland Security and US...

204

Advanced Resources for Catalysis Science; Recommendations for a National Catalysis Research Institute  

DOE Green Energy (OSTI)

Catalysis is one of the most valuable contributors to our economy and historically an area where the United States has enjoyed, but is now losing, international leadership. While other countries are stepping up their work in this area, support for advanced catalysis research and development in the U.S. has diminished. Yet, more than ever, innovative and improved catalyst technologies are imperative for new energy production processes to ease our dependence on imported resources, for new energy-efficient and environmentally benign chemical production processes, and for new emission reduction technologies to minimize the environmental impact of an active and growing economy. Addressing growing concerns about the future direction of U.S. catalysis science, experts from the catalysis community met at a workshop to determine and recommend advanced resources needed to address the grand challenges for catalysis research and development. The workshop's primary conclusion: To recapture our position as the leader in catalysis innovation and practice, and promote crucial breakthroughs, the U.S. must establish one or more well-funded and well-equipped National Catalysis Research Institutes competitively selected, centered in the national laboratories and, by charter, networked to other national laboratories, universities, and industry. The Institute(s) will be the center of a national collaboratory that gives catalysis researchers access to the most advanced techniques available in the scientific enterprise. The importance of catalysis to our energy, economic, and environmental security cannot be overemphasized. Catalysis is a vital part of our core industrial infrastructure, as it is integral to chemical processing and petroleum refining, and is critical to proposed advances needed to secure a sustainable energy future. Advances in catalysis could reduce our need for foreign oil by making better use of domestic carbon resources, for example, allowing cost-effective and zero emission conversion of coal into transportation fuels. No matter what energy sources are being considered (oil, natural gas, coal, biomass, solar, or nuclear based), a clean, sustainable energy future will involve catalysis to improve energy efficiency and storage and use options, and to mitigate environmental impacts. Recent revolutionary advances in nanotechnology and high-performance computing are enabling the breakthroughs in catalysis science and technology essential for a secure energy future. Thus, the time is right for substantially increased investments in catalysis science and technology.

Peden, Charles HF.; Ray, Douglas

2005-10-05T23:59:59.000Z

205

A Technical Review of Non-Destructive Assay Research for the Characterization of Spent Nuclear Fuel Assemblies Being Conducted Under the US DOE NGSI - 11544  

E-Print Network (OSTI)

03715, Institute of Nuclear Materials Management 50th Annual04602, Institute of Nuclear Materials Management 51st AnnualInstitute of Nuclear Materials Management 51st Annual

Croft, S.

2012-01-01T23:59:59.000Z

206

International Nuclear Energy Research Initiative: 2007 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2007 Annual International Nuclear Energy Research Initiative: 2007 Annual Report International Nuclear Energy Research Initiative: 2007 Annual Report The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by pursuing international collaborations to conduct research that will advance the state of nuclear science and technology in the United States. I-NERI promotes bilateral and multilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. Information on the program

207

Oceanographic Data at the Monterey Bay Aquarium Research Institute (MBARI)  

DOE Data Explorer (OSTI)

Areas of research at MBARI include marine biology, geology, and chemistry; physical oceanography, and marine technology. Numeric data, images and video, GIS maps, and sensor data are all available from various projects.

208

UNLV Information Science Research Institute quarterly progress report  

SciTech Connect

Sections of this report include: symposium activity, staff activity, document analysis program, text-retrieval program, institute activity, etc. It is believed that as large, complete collections of documents become available in digital libraries, users will demand complete interaction with the information; document access mechanisms will have to grow beyond keywords and full-text searches to include browsing, searching of images, and searching on basis of abstract concepts. It is proposed to study the microform document conversion process, including image preprocessing, recognition, postprocessing for extracting information, and natural language techniques. Characterization of algorithms will allow generation of a system that automatically adapts to a wide range of image quality, thereby allowing large-scale conversion efforts. It is proposed to focus first on the NSF Antarctic database (approx. 55,000 documents).

Nartker, T.A.

1994-03-31T23:59:59.000Z

209

Report, Long-Term Nuclear Technology Research and Development Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are not limited to, R&D related to power reactors and the responsibility for the waste management system for final disposition of the spent fuel resulting from nuclear power reactors. Although a major use of nuclear technology is to supply energy for electricity production, the DOE has far broader roles regarding nuclear

210

International Nuclear Energy Research Initiative (I-NERI) Annual Reports |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Policy and Cooperation International Nuclear Energy Policy and Cooperation » Bilateral Cooperation » International Nuclear Energy Research Initiative (I-NERI) Annual Reports International Nuclear Energy Research Initiative (I-NERI) Annual Reports August 13, 2013 International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the

211

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Nuclear Energy Research Advisory Committee, of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research Advisory Committee (NERAC) to establish a Subcommittee on Nuclear Laboratory Requirements. The Subcommittee was charged with identifying the "characteristics, capabilities, and attributes a world-class nuclear laboratory would possess". It was also asked "to become familiar with the practices, culture, and facilities of other world-class laboratories - not

212

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Nuclear Energy Research Initiative: 2012 Annual International Nuclear Energy Research Initiative: 2012 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs,

213

International Nuclear Energy Research Initiative: 2010 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual 10 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and Development Roadmap issued by the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), identifies these issues as high capital costs, safety, high-level nuclear waste management, and non-proliferation. Projects under the I-NERI program investigate ways to address these challenges and support future nuclear

214

1. Medical College of Wisconsin (MCW) 2. BloodCenter Research Institute  

E-Print Network (OSTI)

1. Medical College of Wisconsin (MCW) 2. BloodCenter Research Institute 3. Children's Hospital Medical Center Corporate Offices 6. Curative Care Network 7. Eye Institute* 8. Fitness Center* 9. Froedtert Hospital* 10. Froedtert & The Medical College of Wisconsin Specialty Clinics Building Entrance* 11

215

National Institute for Petroleum and Energy Research 1989 annual report  

Science Conference Proceedings (OSTI)

Research programs on reservoir rocks petroleum, and enhanced recovery are briefly presented. Topics include: Geotechnology; reservoir assessment and characterization; TORIS Research Support; three phase relative permeability; static pore structure analysis of reservoir rocks; effects of pore structure on oil/contaminants ganglia distribution; development of improved microbial flooding methods; development of improved surfactant flooding systems; development of improved alkaline flooding methods; development of improved mobility-control methods; gas miscible displacement; development of improved immiscible gas displacement methodology; thermal processes for light oil recovery; thermal processes for heavy oil recovery; an application of natural isotopes in groundwater for solving environmental problems; processing and thermodynamics research; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds; in situ hydrogenation; and fuel chemistry.

Not Available

1990-11-01T23:59:59.000Z

216

Office of Research, Development, Test, and Evaluation | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development, Test, and Evaluation | National Nuclear Research, Development, Test, and Evaluation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Research, Development, Test, and Evaluation Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation

217

Solar and nuclear energy expertise to be enhanced by research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy frontier research centers Solar and nuclear energy expertise to be enhanced by research centers Los Alamos will be home to two new Energy Frontier Research Centers through a...

218

National Environmental Research Institute Ministry of the Environment . Denmark  

E-Print Network (OSTI)

COWI is leading a research project named `Valuation of External costs of Air Pollution' under objective of the project is to improve the existing Danish monetary estimates of the costs of air pollution that established damage costs for transport emissions. The ExternE Tranport project was EU funded and

219

(National Institute for Petroleum and Energy Research) 1988 annual report  

Science Conference Proceedings (OSTI)

The following research programs from NIPER are described: jet fuel stability, entrainers in carbon dioxide floods, differential scanning calorimetry simulation of crosslinking in a chemical flood, analytical methods reservoir characterization, strategic petroleum reserve support, microbial EOR, marine diesel fuel requirements, oil mining, hydrodenitrogenation of indole and petrographic image analysis. Individual projects are processed separately for the data bases. (CBS)

Not Available

1989-09-01T23:59:59.000Z

220

Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs  

SciTech Connect

A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Optimization of chemical reagent storage and distribution at Novartis Institutes for BioMedical Research  

E-Print Network (OSTI)

The Novartis Institutes for BioMedical Research is the drug discovery arm of Novartis Pharmaceuticals. Drug discovery is generally considered to be the primary driver for success in the pharmaceutical industry. Success in ...

Bedford, Jordan M. (Jordan Mark)

2007-01-01T23:59:59.000Z

222

at the National Institutes of Health Office of Research onWomen's Health  

E-Print Network (OSTI)

Institute for Occupational Safety and Health (NIOSH), National Occupational Research Agenda (NORA and Health (NIOSH), National Occupational Research Agenda (NORA), Healthcare and Social Assistance Sector not nec- essarily be considered evidence-based because of the limited amount of rigorous research

Bandettini, Peter A.

223

Institute for Scientific Computing Research Annual Report for Fiscal Year 2003  

SciTech Connect

The University Relations Program (URP) encourages collaborative research between Lawrence Livermore National Laboratory (LLNL) and the University of California campuses. The Institute for Scientific Computing Research (ISCR) actively participates in such collaborative research, and this report details the Fiscal Year 2003 projects jointly served by URP and ISCR.

Keyes, D; McGraw, J

2004-02-12T23:59:59.000Z

224

SRNL Project Supports Nuclear Energy Research  

will provide necessary data and analyses to further U.S. nuclear fuel cycle technology development, meet the need for advanced nuclear energy

225

The implementation research institute: training mental health implementation researchers in the United States  

E-Print Network (OSTI)

contribution to IRI training; administrative support frommethodological, and training challenges. Adm Policy Mentresearch institute: training mental health implementation

2013-01-01T23:59:59.000Z

226

Summary, Long-Term Nuclear Technology Research and Development Plan  

Energy.gov (U.S. Department of Energy (DOE))

In 1998, DOE established the Nuclear Energy Research Advisory Committee (NERAC) to provide advice to the Secretary and to the Director, Office of Nuclear Energy, Science, and Technology (NE), on...

227

Joint Actinide Shock Physics Experimental Research | National Nuclear  

National Nuclear Security Administration (NNSA)

Actinide Shock Physics Experimental Research | National Nuclear Actinide Shock Physics Experimental Research | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Jasper Joint Actinide Shock Physics Experimental Research Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development >

228

Laboratory Directed Research & Development | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Laboratory Directed Research & Development | National Nuclear Security Laboratory Directed Research & Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Laboratory Directed Research & Development Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

229

Collaborative research helps Alexis Kaplan pursue her interest in nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborative research helps Alexis Kaplan pursue her interest in Collaborative research helps Alexis Kaplan pursue her interest in nuclear engineering Collaborative research helps Alexis Kaplan pursue her interest in nuclear engineering Nuclear Engineering graduate research assistant designs a prototype for a system that will measure the used fuel that comes out of nuclear reactors. August 22, 2013 Alexis Kaplan Alexis Kaplan, a graduate research assistant, relocates to the small town of Los Alamos to finish her PhD thesis research with the Safeguards Science and Technology group. Alexis and her team of nuclear, mechanical, and electrical engineers are designing and building a prototype for a system that will measure the used fuel that comes out of nuclear reactors. "I feel like I have 4 or 5 mentors. That is one of my favorite things

230

Inhalation Toxicology Research Institute. Annual report, October 1, 1995--September 30, 1996  

SciTech Connect

The Inhalation Toxicology Research Institute (ITRI) is a Government-owned facility leased and operated by the Lovelace Biomedical and Environmental Research Institute (LBERI) as a private, nonprofit research and testing laboratory. LBERI is an operating subsidiary of the Lovelace Respiratory Research Institute. Through September 30, 1996, ITRI was a Federally Funded Research and Development Center operated by Lovelace for the US Department of Energy (DOE) as a {open_quotes}Single Program Laboratory{close_quotes} within the DOE Office of Health and Environmental Research, Office of Energy Research. Work for DOE continues in the privatized ITRI facility under a Cooperative Agreement. At the time of publication, approximately 70% of the Institute`s research is funded by DOE, and the remainder is funded by a variety of Federal agency, trade association, individual industry, and university customers. The principal mission of ITRI is to conduct basic and applied research to improve our understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the country`s largest facility dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry.

Bice, D.E.; Hahn, F.F.; Henderson, R.F. [eds.] [and others

1996-12-01T23:59:59.000Z

231

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility...

232

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility...

233

EXPERIMENTAL AND CALCULATED RESEARCHES OF NUCLEAR-PHYSICS CHARACTERIST...  

National Nuclear Security Administration (NNSA)

1 Session 12: Engineering and Criticality Experimental And Calculated Researches of Nuclear-Physics Characteristics Of Assemblies Containing 237 Np + 239 Pu(98%) in The Core...

234

Basic Research Needs for Advanced Nuclear Energy Systems - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Summarizes current status...

235

International Nuclear Energy Research Initiative: 2008 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual 8 Annual Report International Nuclear Energy Research Initiative: 2008 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented initiative that supports the advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) website:

236

International Nuclear Energy Research Initiative: 2009 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Annual 9 Annual Report International Nuclear Energy Research Initiative: 2009 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is an international, research-oriented collaboration that supports advancement of nuclear science and technology in the United States and the world. I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment by improving cost performance, enhancing safety, and increasing proliferation resistance of future nuclear energy systems. A link to the program can be found at the U.S. Department of Energy Office of Nuclear Energy website.

237

National Institute for Petroleum and Energy Research monthly progress report for December 1990  

Science Conference Proceedings (OSTI)

Research programs from the National Institute for Petroleum and Energy Research (NIPER) are briefly described. Topics include enhanced recovery, studies on reservoir rock, microbial EOR, development of analytical techniques for petroleum analysis, and imaging techniques applied to fluids study in porous media. (CBS)

Not Available

1991-01-22T23:59:59.000Z

238

National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1991  

Science Conference Proceedings (OSTI)

This report presents research from the National Institute for Petroleum and Energy Research. Topics include: Department of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen and diheteroatom-containing compounds. 34 refs., 11 figs., 10 tabs.

Not Available

1991-07-01T23:59:59.000Z

239

Research in the nuclear sciences: summaries of FY 1978  

SciTech Connect

Programs funded in fiscal year 1978 by the Division of Nuclear Sciences/Office of Basic Energy Sciences are summarized. Each summary is preceded by a heading that includes institution, title, principal investigators, budget reporting category, and operating funds provided in FY 1978. The summaries are presented in alphabetical order by institution. Indexes are appended to facilitate the location of a summary according to an investigator's name or a budget reporting category. (RWR)

1978-06-01T23:59:59.000Z

240

Nuclear Safety Research and Development Committee Charter | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Committee Charter Research and Development Committee Charter Nuclear Safety Research and Development Committee Charter July 5, 2012 Nuclear Safety Research and Development Committee Charter The intent of the Nuclear Safety Research and Development (NSR&D) Committee is to identify nuclear safety research needs and opportunities within the Department of Energy (DOE) and National Nuclear Security Administration (NNSA) and their program offices. The Committee promotes communication and coordination among DOE and NNSA program offices to enhance synergy on NSR&D efforts that can benefit the Department. The Committee will foster and facilitate networking and information exchange on NSR&D needs and activities across DOE/NNSA programs and with external national and international organizations. The Committee should not be construed to have

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

International Nuclear Energy Research Initiative: Annual Report 2005 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 International Nuclear Energy Research Initiative: Annual Report 2005 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses the key issues affecting the future of nuclear energy and its global deployment. I-NERI research is directed towards improving cost performance, increasing proliferation resistance, enhancing safety, and improving the waste management of future nuclear energy systems. This I-NERI 2005 Annual Report serves to inform interested parties about

242

Nuclear Energy Protocol for Research Isotopes Owen Lowe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protocol for Protocol for Research Isotopes Owen Lowe Office of Isotopes for Medicine and Science Office of Nuclear Energy, Science and Technology April 16, 2002 Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology Lowe/April16_02 NEPRI to NERAC.ppt (2) Nuclear Energy Protocol For Research Isotopes Nuclear Energy Protocol For Research Isotopes Why NEPRI? 6 NEPRI implements DOE funding priorities for fiscal year 2003 6 NEPRI will * Bring order to DOE's responses to requests for research isotopes * Introduce a high-quality peer review to the selection of research isotopes * Enable DOE to concentrate on operating its unique isotope production facilities Isotopes for Life Isotopes for Life Isotopes for Life Office of Nuclear Energy, Science and Technology

243

Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria  

SciTech Connect

The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

K. J. Allen; T. G. Apostolov; I. S. Dimitrov

2009-03-01T23:59:59.000Z

244

NIMBioS: a National Institute fostering Research and Education at the  

NLE Websites -- All DOE Office Websites (Extended Search)

NIMBioS: a National Institute fostering Research and Education at the NIMBioS: a National Institute fostering Research and Education at the interface of Mathematics and Biology Louis J. Gross University of Tennessee Abstract A unique collaboration of federal agencies is sponsoring a national center that is fostering new research that applies mathematics and computational science to diverse problems in the life sciences. The National Science Foundation, US Department of Homeland Security and US Department of Agriculture are formal sponsoring agencies, with additional support from the National Center for Medical Intelligence. I will describe the variety of methods used at NIMBioS to foster interdisciplinary research to address fundamental as well as applied questions in biology, with a particular focus on efforts in animal infectious diseases. Research activities at

245

Sixty Years of the Tata Institute of Fundamental Research 1945-2005 (The Role of Young Men in the Creation and Development of this Institute)  

E-Print Network (OSTI)

interests were in solid-state physics, reactor physics and multi- particle production in nuclear of Mathematics (>1973) ­ continuing 2. Theoretical Physics: Particle Physics, Nuclear physics, Solid State Theory to fundamental research, especially in the newest branches of physics, namely, nuclear physics and high energy

Udgaonkar, Jayant B.

246

International Nuclear Energy Research Initiative: 2012 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Annual 2 Annual Report International Nuclear Energy Research Initiative: 2012 Annual Report Nuclear energy represents the single largest carbon-free baseload source of energy in the United States, accounting for nearly 20 percent of the electricity generated and over 60 percent of our low-carbon production. Worldwide, nuclear power generates 14 percent of global electricity. Continually increasing demand for clean energy both domestically and across the globe, combined with research designed to make nuclear power ever-safer and more cost-effective, will keep nuclear in the energy mix for the foreseeable future. U.S. researchers are collaborating with nuclear scientists and engineers around the world to develop new technologies that will lower costs, maximize safety, minimize proliferation risk, and handle used fuel and

247

International Nuclear Energy Research Initiative: Annual Report 2006 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 International Nuclear Energy Research Initiative: Annual Report 2006 The International Nuclear Energy Research Initiative (I-NERI) supports the National Energy Policy by conducting research to advance the state of nuclear science and technology in the United States. I-NERI sponsors innovative scientific and engineering research and development (R&D) in cooperation with participating countries. The research performed under the I-NERI umbrella addresses key issues affecting the future of nuclear energy and its global deployment. A link to the program can be found at the NE website. This I-NERI 2006 Annual Report serves to inform interested parties about the program's organization, progress of collaborative research projects undertaken since FY 2003, and future plans for the program. Following is an

248

International Nuclear Energy Research Initiative 2010 Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 I-NERI Annual Report 2010 I-NERI Annual Report  | i Foreword The U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), established the International Nuclear Energy Research Initiative (I-NERI) in fiscal year (FY) 2001 to conduct advanced nuclear energy systems research in collaboration with international partners. This annual report provides an update on research and development (R&D) accomplishments which the I-NERI program achieved during FY 2010. I-NERI supports bilateral scientific and engineering collaboration in advanced reactor systems and the nuclear fuel cycle and is linked to two of DOE-NE's primary research programs: Reactor Concepts Research, Development and Demonstration and the Fuel Cycle Research and Development program. I-NERI is designed to foster international partnerships to address key issues

249

Contact Us | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

National Laboratories Press Release 62912). Institutional Research & Development National Nuclear Security Administration Office of Advanced Simulation and Computing and...

250

International Nuclear Energy Research Initiative: 2010 Annual...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I-NERI promotes bilateral scientific and engineering research and development (R&D) with other nations. U.S. researchers partner with international organizations,...

251

2008 Summer Research Institute Interfacial and Condensed Phase Chemical Physics Annual Report  

SciTech Connect

For the fifth year, the Pacific Northwest National Laboratory in Richland, Washington, invited graduate students, postdoctoral fellows, university faculty, and students entering graduate students from around the world to participate in the Summer Research Institute in Interfacial and Condensed Phase Chemical Physics. The institute offers participants the opportunity to gain hands-on experience in top-notch research laboratories while working along internationally respected mentors. Of the 38 applicants, 20 were accepted for the 8- to 10-week program. The participants came from universities as close as Seattle and Portland and as far away as Germany and Singapore. At Pacific Northwest National Laboratory, the 20 participants were mentored by 13 scientists. These mentors help tailor the participants experience to the needs of that person. Further, the mentors provide guidance on experimental and theoretical techniques, research design and completion, and other aspects of scientific careers in interfacial and condensed phase chemical physics. The research conducted at the institute can result in tangible benefits for the participants. For example, many have co-authored papers that have been published in peer-reviewed journals, including top-rated journals such as Science. Also, they have presented their research at conferences, such as the Gordon Research Conference on Dynamics at Surfaces and the AVS national meeting. Beyond that, many of the participants have started building professional connections with researchers at Pacific Northwest National Laboratory, connections that will serve them well during their careers.

Garrett, Bruce C.; Tonkyn, Russell G.; Avery, Nachael B.

2008-11-01T23:59:59.000Z

252

26 ASHRAE Transactions: Research Cooling-dominated commercial and institutional build-  

E-Print Network (OSTI)

26 ASHRAE Transactions: Research ABSTRACT Cooling-dominated commercial and institutional build Simulation Approach Mahadevan Ramamoorthy Hui Jin Student Member ASHRAE Student Member ASHRAE Andrew D. Chiasson Jeffrey D. Spitler, Ph.D., P.E. Associate Member ASHRAE Member ASHRAE Mahadevan Ramamoorthy

253

Oregon Wine Research Institute Terms of office for Policy Board members  

E-Print Network (OSTI)

Oregon Wine Research Institute Terms of office for Policy Board members Drawn by lottery October 16, 2008 Oregon State University Member Effective Jan 1, 2009, is in this year of Board term Term expires 2010 2 Note: Other members of the board are ex officio and, thus, do not have specified terms

Tullos, Desiree

254

Heavy Oil Database from the National Institute for Petroleum and Energy Research (NIPER)  

DOE Data Explorer (OSTI)

The Heavy Oil Database resulted from work funded by DOE and performed at the National Institute for Petroleum and Energy Research (NIPER). It contains information on more than 500 resevoirs in a Microsoft Excel spreadsheet. The information was collected in 1992 and updated periodically through 2003. Save the zipped file to your PC, then open to access the data.

255

20Fact Book 2011-2012 Office of Institutional Research (Source: Iowa State University Library)  

E-Print Network (OSTI)

20Fact Book 2011-2012 Library Office of Institutional Research (Source: Iowa State University journals and books, local collections, online indexes, electronic course reserves and guides, and a broad in Library 2,856,787 Books purchased annually 23,148 Journal titles received annually 117,559 Microform units

Beresnev, Igor

256

Reserach activities of the institute of plasma research forschungsbericht 1976. Annual report, 1976  

SciTech Connect

The activities of the Plasma Research Institute of the University of Stuttgart during 1976 are described. Topics discussed, with emphasis on waves and plasma heating, are high voltage-belt-pinch plasmas, laser diagnostics, development of short duration pulse lasers, and plasma focus techniques.

1976-01-01T23:59:59.000Z

257

www.energy.psu.edu The EMS Energy Institute at Penn State is a leading research  

E-Print Network (OSTI)

www.energy.psu.edu The EMS Energy Institute at Penn State is a leading research and development organization focused on energy science and engineering. We are committed to: -- Providing academic and technical leadership in the development and assessment of energy technologies, -- Providing Penn State

Lee, Dongwon

258

2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics  

Science Conference Proceedings (OSTI)

The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

Barlow, Stephan E.

2005-11-15T23:59:59.000Z

259

Physicians -The CAMC Health Education and Research Institute's CME program is accredited by the Accreditation  

E-Print Network (OSTI)

education by the West Virginia Board of Social Work Examiners. The program has been approved for 10.5 contact hours of social work credit. Approval number #490045. Dieticians - This program has been approvedPhysicians - The CAMC Health Education and Research Institute's CME program is accredited

Mohaghegh, Shahab

260

The institute for cyber-enabled research: regional organization to promote computation in science  

Science Conference Proceedings (OSTI)

The Institute for Cyber-Enabled Research (iCER) at Michigan State University (MSU) was established in 2009 to coordinate and support multidisciplinary resources for computation and computational sciences. iCER is the home of MSU's centralized High Performance ...

Dirk Colbry, Bill Punch, Wolfgang Bauer

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

2007 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) hosted its fourth annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from April through September 2007. During this time, 21 PNNL scientists hosted 23 participants from 20 different universities. Of the 23 participants, 20 were graduate students, 1 was a postdoctoral fellow, and 2 were university faculty members. This report covers the essense of the program and the research the participants performed.

Beck, Kenneth M.

2007-10-31T23:59:59.000Z

262

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear  

National Nuclear Security Administration (NNSA)

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Maria Research Reactor loaded with LEU - ... Maria Research Reactor loaded with LEU - Otwock, Poland Maria Research Reactor loaded with LEU - Otwock, Poland

263

LANL researchers use computer modeling to study HIV | National Nuclear  

National Nuclear Security Administration (NNSA)

researchers use computer modeling to study HIV | National Nuclear researchers use computer modeling to study HIV | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL researchers use computer modeling to study HIV LANL researchers use computer modeling to study HIV Posted By Office of Public Affairs Los Alamos National Laboratory researchers are investigating the complex

264

Nuclear Safety Research and Development Program Operating Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Operating Plan Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating plan outlines the mission, goals, and processes for the Department of Energy's (DOE) Nuclear Safety Research & Development (NSR&D) Program. This first version of the operating plan also discusses the startup phase of the program. NSR&D involves a systematic search for knowledge to advance the fundamental understanding of nuclear safety science and technology through scientific study, analysis, modeling, and experiments. Maintaining an effective NSR&D program will support DOE and the National Nuclear Security Administration (NNSA) in standards development, validation of analytical models and

265

Research Areas | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances > National...

266

Technologies development for environmental restoration and waste management: International university and research institution and industry partnerships  

SciTech Connect

The Institute for Central and Eastern European Cooperative Environmental Research (ICEECER) at Florida State University was formed in 1990 soon after the end of the Cold War. ICEECER consists of a number of joint centers which link FSU, and US as well as international funding agencies, to academic and research institutions in Hungary, Poland, the Czech Republic, Russia, and the other countries of Central and Eastern Europe and the Newly Independent States. Areas of interest include risk assessment, toxicology, contaminated site remediation/characterization, waste management, emergency response, environmental technology development/demonstration/transfer, and some specialized areas of research (e.g., advanced chemical separations). Through ICEECER, numerous international conferences, symposia, training courses, and workshops have also been conducted on a variety of environmental topics. This paper summarizes the mission, structure, and administration of ICEECER and provides information on the projects conducted through this program at FSU.

Herndon, R.C.; Moerlins, J.E.; Kuperberg, J.M.

1996-12-31T23:59:59.000Z

267

Future challenges for nuclear data research in fission (u)  

Science Conference Proceedings (OSTI)

I describe some high priority research areas in nuclear fission, where applications in nuclear reactor technologies and in modeling criticality in general are demanding higher accuracies in our databases. We focus on fission cross sections, fission neutron spectra, and fission product data.

Chadwick, Mark B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

268

Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986  

Science Conference Proceedings (OSTI)

Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals.

Not Available

1987-05-11T23:59:59.000Z

269

Nuclear Instruments and Methods in Physics Research A 598 (2009  

NLE Websites -- All DOE Office Websites (Extended Search)

8,19; short X-ray pulse generation for light sources l'l|2-23 J. Shi et al. Nuclear lnstruments and Methods n Physics Research A 598 (2009) 388-393 '1.2. Emttance...

270

DOE, State of Idaho Sign Agreement on Nuclear Research  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE, State of Idaho Sign Agreement on Nuclear Research The State of Idaho and the U.S. Department of Energy signed an agreement on Jan. 6, 2011 that streamlines the process used by...

271

Publications and geothermal sample library facilities of the Earth Science Laboratory, University of Utah Research Institute  

DOE Green Energy (OSTI)

The Earth Science Laboratory of the University of Utah Research Institute has been involved in research in geothermal exploration and development for the past eleven years. Our work has resulted in the publication of nearly 500 reports, which are listed in this document. Over the years, we have collected drill chip and core samples from more than 180 drill holes in geothermal areas, and most of these samples are available to others for research, exploration and similar purposes. We hope that scientists and engineers involved in industrial geothermal development will find our technology transfer and service efforts helpful.

Wright, Phillip M.; Ruth, Kathryn A.; Langton, David R.; Bullett, Michael J.

1990-03-30T23:59:59.000Z

272

(National Institute for Petroleum and Energy Research) quarterly technical report for January 1-March 31, 1988  

SciTech Connect

The Quarterly Technical Report, NIPER-353, covers the period January 1 to March 31, 1988, and reports on the research program outlined in the ''FY87 Annual Research Plan.'' It is submitted in accordance with the provisions of Cooperative Agreement FC22-83FE60149 between the Department of Energy and the IIT Research Institute. Thirty-seven individual projects are described. They involve enhanced oil recovery by several methods, oil mining, oil storage, quantitative analysis of petroleum and petroleum products, additives to improve storage behavior of fuels, and minimization of solid, liquid and gaseous wastes.

Not Available

1988-06-24T23:59:59.000Z

273

Researcher, Sandia National Laboratories | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Laboratories Award: Fellows of the American Association for the Advancement of Science Profile: Sandia researchers David Haaland and David Myers have been elected Fellows...

274

Refractory Research Group - U.S. DOE, Albany Research Center [Institution Profile  

Science Conference Proceedings (OSTI)

The refractory research group at the Albany Research Center (ARC) has a long history of conducting materials research within the U.S. Bureau of Mines, and more recently, within the U.S. Dept. of Energy. When under the U.S. Bureau of Mines, research was driven by national needs to develop substitute materials and to conserve raw materials. This mission was accomplished by improving refractory material properties and/or by recycling refractories using critical and strategic materials. Currently, as a U.S. Dept of Energy Fossil Energy field site, research is driven primarily by the need to assist DOE in meeting its vision to develop economically and environmentally viable technologies for the production of electricity from fossil fuels. Research at ARC impacts this vision by: Providing information on the performance characteristics of materials being specified for the current generation of power systems; Developing cost-effective, high performance materials for inclusion in the next generation of fossil power systems; and Solving environmental emission and waste problems related to fossil energy systems. A brief history of past refractory research within the U.S. Bureau of Mines, the current refractory research at ARC, and the equipment and capabilities used to conduct refractory research at ARC will be discussed.

Bennett, James P.

2004-09-01T23:59:59.000Z

275

Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges  

Science Conference Proceedings (OSTI)

The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

Snoj, L. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Sklenka, L.; Rataj, J. [Dept. of Nuclear Reactor, Czech Technical Univ. in Prague, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Boeck, H. [Vienna Univ. of Technology/Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

2012-07-01T23:59:59.000Z

276

[Climate implications of terrestrial paleoclimate]. Quaternary Sciences Center, Desert Research Institute annual report, fiscal year 1994/1995  

Science Conference Proceedings (OSTI)

The objective of this study is to collect terrestrial climate indicators for paleoclimate synthesis. The paleobiotic and geomorphic records are being examined for the local and regional impact of past climates to assess Yucca Mountain`s suitability as a high-level nuclear waste repository. In particular these data are being used to provide estimates of the timing, duration and extremes of past periods of moister climate for use in hydrological models of local and regional recharge that are being formulated by USGS and other hydrologists for the Yucca Mountain area. The project includes botanical, faunal, and geomorphic components that will be integrated to accomplish this goal. To this end personnel at the Quaternary Sciences Center of the Desert Research Institute in Reno, Nevada are conducting the following activities: Analyses of packrat middens; Analysis of pollen samples; and Determination of vegetation climate relationships.

Wigand, P.E.

1995-12-31T23:59:59.000Z

277

Conceptual Nuclear Decommissioning Knowledge Management System Design  

Science Conference Proceedings (OSTI)

Taiwan Research Reactor (TRR) was shut down in January 1988, along with the termination of a few nuclear facilities within Institute of Nuclear Energy Research (INER). In the past few years, INER has continually dismantled its related nuclear facilities. ...

I-Hsin Chou; Chin-Feng Fan; Yen-Chang Tzeng

2005-07-01T23:59:59.000Z

278

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications...

279

Nuclear Analytical Chemistry News  

Science Conference Proceedings (OSTI)

... a Nuclear Spotlight on Illegal Weapons Material Release Date: 10/26/2006 Researchers at the National Institute of Standards and Technology ( ...

2010-10-20T23:59:59.000Z

280

2006 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics  

Science Conference Proceedings (OSTI)

The Pacific Northwest National Laboratory (PNNL) hosted its third annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2006. During this period, twenty PNNL scientists hosted twenty-seven scientists from twenty-five different universities. Of the twenty-seven participants, one was a graduating senior; twenty-one were graduate students; one was a postdoctoral fellow; and four were university faculty members.

Avery, Nikki B.; Barlow, Stephan E.

2006-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National Institute for Petroleum and Energy Research monthly progress report for March 1990  

Science Conference Proceedings (OSTI)

The Monthly Progress Report for March 1990, NIPER-471, is submitted in accordance with the provisions of Cooperative Agreement FC22-83FE60149 between the Department of Energy and the IIT Research Institute. Various programs in enhanced recovery of petroleum and reservoir characterization of fields in Wyoming are briefly discussed. Topics include mobility control, sweep efficiency, heterogeneity, thermal processes, and microbial EOR. (CBS)

Not Available

1990-04-26T23:59:59.000Z

282

FY86 Annual research plan, National Institute for Petroleum and Energy Research  

SciTech Connect

NIPER's program of research encompasses three different thrusts. The DOE funds a five-million-dollar Base Program designed to undertake long-range, high-risk research on petroleum and similar materials that companies are generally unwilling to do. A second five-million-dollar program, the Optional Program, cost-shares research on petroleum and substitute fossil fuels between DOE and contributing participants. For FY86, the DOE share will be two million dollars and three million dollars will be contributed by other government agencies and industrial participants. The third program is a Work for Others Program which allows NIPER to solicit work from the private sector and others. This Annual Research Plan only covers the Base and Optional Programs. NIPER is organized into two research departments - Energy Production Research (EPR) and Fuels Research (FR). Projects in EPR deal with various aspects of enhanced oil recovery and include chemical flooding, gas injection processes, steam injection, and microbial enhanced oil recovery. Projects in FR are concerned with the impact of heavy oil and alternate fuels on processing and use of fuels. This breadth of interest assures that NIPER's work will be significant in advancing petroleum technology and that NIPER will be a viable place for research by other government agencies and industrial clients. For Fiscal Year 1986, the Base Program will have 14 projects and the Optional Program will have 16. EPR has nine projects in the Base Program and six in the Optional Program while FR has five in the Base Program and ten in the Optional Program. These projects are described.

Not Available

1985-10-01T23:59:59.000Z

283

Livermore energy policy model and projections of energy futures for the Gas Research Institute  

Science Conference Proceedings (OSTI)

The Energy and Resource Planning Group at the Lawrence Livermore National Laboratory (LLNL) was asked by the Gas Research Institute to evaluate ten of their research projects relative to proposed funding levels for 1982. These energy technology projects included gas from unconventional and synthetic sources as well as utilization technologies. The primary tool used in the evaluation was the LLNL Energy Policy Model (EPM). The report gives background information about the study, the basic assumptions used in the study, and some conclusions, and presents selected supporting results from the EPM runs.

Castleton, R.

1981-06-01T23:59:59.000Z

284

Nuclear Energy RenaissanceNuclear Energy Renaissance National Research Council andNational Research Council and  

E-Print Network (OSTI)

. 1. HISTORY 1.1 Decommissioning of the Reactor The Gentilly-I nuclear power plant, located satisfactory for safe operation, and AECL decided to decommission it in 1978. The nuclear fuel was removedSP·215-18 FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure by M. Demers. A

285

Researcher, Lawrence Livermore National Laboratory | National Nuclear  

National Nuclear Security Administration (NNSA)

Bruce Macintosh Bruce Macintosh Researcher, Lawrence Livermore National Laboratory Bruce Macintosh Bruce Macintosh Role: Researcher, Lawrence Livermore National Laboratory Award: AAAS Newcomb Cleveland Prize Profile: A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce Macintosh of the Physics and Life Science Directorate was one of the lead authors of the paper titled, "Direct Imaging of Multiple Planets orbiting the Star HR 8799," which appeared in the Nov. 28, 2008 edition of Science. Christian Marois, a former LLNL postdoc now at NRC Herzberg

286

Iowa State Mining and Mineral Resources Research Institute. Final report, July 1, 1990--June 30, 1991  

SciTech Connect

During 1990--1991, the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) has worked diligently to further the objectives of the Mineral Institute Program. About 70% of our Allotment Grant funding goes toward research and education of graduate students within the participating departments of the university. It is our goal to encourage graduate students in diverse fields such as agronomy, engineering, geology, landscape architecture, and many others to pursue a career in mining- and mineral-related fields by preparing them to either enter the private or public sectors. During the 1990 calendar year, ISMMRRI granted research assistantships to 17 graduate students to perform research in topics relating to mineral exploration, characterization and processing, extractive metallurgy, mining engineering, fuel science, mineral waste management, and mined-land reclamation. Research areas include the following: Fluid-inclusion studies on fluorspar mineral deposits in an actively mined region; Geochemical modeling of gold and gold-telluride deposits; Characterization of coal particles for surface-based beneficiation; Impact of surface mining and reclamation of a gypsum deposit area on the surrounding community; Stress-strain response of fine coal particles during transport and storage; Recovery of metal values from mining wastes using bioleaching; Coal beneficiation utilizing triboelectric charging in a fast fluidized bed; and Mathematical modeling of breakage for optimum sizing during crushing of rock.

Not Available

1991-08-01T23:59:59.000Z

287

Nuclear Energy Research Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30-May 1, 2001, Crystal City Marriott, Arlington, Virginia 30-May 1, 2001, Crystal City Marriott, Arlington, Virginia NERAC members present: John Ahearne Benjamin F. Montoya Joseph Comfort Sekazi Mtingwa Michael L. Corradini Lura Powell Jose Luis Cortez Richard Reba Maureen S. Crandall Joy Rempe James Duderstadt (Chair) Allen Sessoms (Monday only) Marvin Fertel Daniel C. Sullivan (Monday only) Steve Fetter John Taylor Beverly Hartline Ashok Thadani (ad hoc) Leslie Hartz Charles E. Till Andrew Klein Neil Todreas Dale Klein Joan Woodard Robert Long NERAC members absent: Thomas Cochran Linda C. Knight Allen Croff Warren F. Miller, Jr. J. Bennett Johnston C. Bruce Tarter Also present: Ralph Bennet, Director, Advanced Nuclear Energy, Idaho National Engineering and Environmental Laboratory Nancy Carder, NERAC Staff Yoon I. Chang, Associate Laboratory Director, Argonne National Laboratory

288

Making the World Safe for Nuclear Energy 65 John Deutch, Institute Professor at the Massachusetts Institute of Technology, served as  

E-Print Network (OSTI)

such as the NPT (Treaty on Non Proliferation of NuclearWeapons) and its review process. 2. These are therefore climate of mainstream activity on these international security issues ('non-proliferation' and disarmament back-tracking from that forthright position on the disarmament-non- proliferation link (and pleading

Deutch, John

289

Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers  

SciTech Connect

The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project.

Bougaenko, S.E.; Kraev, A.E. [International Nuclear Safety Center of the Russian MINATOM, Moscow (Russian Federation); Hill, D.L.; Braun, J.C.; Klickman, A.E. [Argonne National Lab., IL (United States). International Nuclear Safety Center

1998-08-01T23:59:59.000Z

290

International Nuclear Energy Research Initiative: 2011 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual 1 Annual Report International Nuclear Energy Research Initiative: 2011 Annual Report Fiscal year (FY) 2011 marks the ten-year anniversary of the founding of the International Nuclear Energy Research Initiative, or I-NERI. Designed to foster international partnerships that address key issues affecting the future global use of nuclear energy, I-NERI is perhaps even more relevant today than at its establishment. In the face of increasing energy demands coupled with clean energy imperatives, we must clear the hurdles to expanding the role of nuclear power in our energy portfolio. And in an increasingly global society, the importance of international cooperation in these efforts has escalated. For ten years, I-NERI has been a vehicle for establishing bilateral

291

Nuclear Power Plant Containment Pressure Boundary Research  

SciTech Connect

Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

1999-09-15T23:59:59.000Z

292

Nuclear materials research progress reports for 1979  

DOE Green Energy (OSTI)

Research is presented concerning iodide stress corrosion cracking of zircaloy, self-diffusion of oxygen in hypostoichiometric urania, surface chemistry of epitaxial silicon deposition by thermal cracking of silane, kinetics of laser pulse vaporization of UO/sub 2/, gas laser model for laser induced evaporation, solubility of hydrogen in uranium dioxide, thermal gradient migration of metallic inclusions in UO/sub 2/, molecular beam studies of atomic hydrogen reduction of oxides, and thermal gradient brine-inclusion migration in salt. (FS)

Olander, D.R.

1979-12-01T23:59:59.000Z

293

Electric Power Research Institute, Environmental Control Technology Center report to the Steering Committee. Final technical report  

Science Conference Proceedings (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block, and a simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). At the end of the month, a series of Duct Injection tests began in a study to determine the efficiencies of alkaline injection for removing trace elements (mercury). On the Cold-Side Selective Catalytic Reduction (SCR) unit, low temperature performance testing continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the catalysts installed in the SCR reactor. This report describes the status of the facilities and test activities at the pilot and mini-pilot plants.

NONE

1995-07-01T23:59:59.000Z

294

EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

310: Accomplishing Expanded Civilian Nuclear Energy Research 310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility Summary This PEIS will evaluate the potential environmental impacts of the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at DOE's Hanford Site near Richland, Washington. This PEIS will analyze the potential environmental impacts of alternative ways to meet the projected irradiation needs for the next 35 years. Public Comment Opportunities

295

Nuclear materials research progress reports for 1977  

DOE Green Energy (OSTI)

Research is reported concerning radiation enhancement of stress corrosion cracking of Zircaloy, surface chemistry of epitaxial Si deposited by thermal cracking of silane, thermal gradient migration of metallic inclusions in UO/sub 2/, molecular beam studies of atomic H and reduction of oxides, mass transfer and reduction of UO/sub 2/, kinetics of laser pulse vaporization of UO/sub 2/, retention and release of water by UO/sub 2/ pellets, and solubility of H in UO/sub 2/. (FS)

Olander, D.R.

1977-12-01T23:59:59.000Z

296

Advanced Institute for Computational Science (AICS): Japanese National High-Performance Computing Research Institute and its 10-petaflops supercomputer "K"  

Science Conference Proceedings (OSTI)

Advanced Institute for Computational Science (AICS) was created in July 2010 at RIKEN under the supervision of Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in order to establish the national center of excellence (COE) ... Keywords: AICS, K computer, center of excellence, supercomputer

Akinori Yonezawa; Tadashi Watanabe; Mitsuo Yokokawa; Mitsuhisa Sato; Kimihiko Hirao

2011-11-01T23:59:59.000Z

297

A Strategy for Nuclear Energy Research and Development  

Science Conference Proceedings (OSTI)

The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce the transportation sectors dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energys share will require a coordinated research effortcombining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.

Ralph G. Bennett

2008-12-01T23:59:59.000Z

298

RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS  

DOE Green Energy (OSTI)

Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

Robert C. O'Brien

2001-09-01T23:59:59.000Z

299

Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research  

SciTech Connect

Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

2012-09-01T23:59:59.000Z

300

Executive Summary: Research in Nuclear PowerWorkshop on the Needs of the Next Generation of Nuclear Power Technology  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Fission Reactor

A. David Rossin; Kunmo Chung; K. L. Peddicord

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Monte Carlo simulation of the Massachusetts Institute of Technology Research Reactor  

SciTech Connect

The three-dimensional continuous-energy MCNP Monte Carlo code is used to develop a versatile and accurate reactor physics model of the Massachusetts Institute of Technology Research Reactor 2 (MITR-2). The validation of the model against existing experimental data is presented. Core multiplication factors as well as fast neutron in-core flux measurements were used in the validation process. The agreement between the MCNP predictions and the experimentally determined values is very good, which indicates that the Monte Carlo model is correctly simulating the MITR-2.

Redmond, E.L. II; Yanch, J.C.; Harling, O.K. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Engineering Dept.)

1994-04-01T23:59:59.000Z

302

Letter from Nuclear Energy Institute regarding Integrated Safety Analysis: Why it is Appropropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

082 l F: 202.533.0166 l rxm@nei.org l www.nei.org 082 l F: 202.533.0166 l rxm@nei.org l www.nei.org Rod McCullum DIRECTOR FUEL CYCLE PROJECTS NUCLEAR GENERATION DIVISION September 10, 2010 Ms. Catherine Haney Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689 Dear Ms. Haney: Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue.

303

Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear  

E-Print Network (OSTI)

in Nuclear Science & Engineering ­ Development of novel techniques/tools using particle transport theory including reactors, nuclear security and safeguards systems and medical devices. His work is recognized methodologies with Alireza Haghighat, Nuclear Engineering Program, Mechanical Engineering Department Virginia

Beex, A. A. "Louis"

304

Failure to engage : the Breasted-Rockefeller gift of a new Egyptian Museum and Research Institute at Cairo (1926)  

E-Print Network (OSTI)

In 1926, the United States' first Egyptologist James Henry Breasted and the philanthropist John D. Rockefeller Jr., proposed to build a New Egyptian Museum and Research Institute in Cairo. The Egyptian government ultimately ...

Dawood, Azra

2010-01-01T23:59:59.000Z

305

NIPER (National Institute for Petroleum and Energy Research): Quarterly technical report for July 1--September 30, 1988  

Science Conference Proceedings (OSTI)

The Quarterly Technical Report, NIPER-398, covers the period July 1 to September 30, 1988, and reports on the research program outlined in the ''FY88 Annual Research Plan.'' It is submitted in accordance with the provisions of Cooperative Agreement FC22-83FE60149 between the Department of Energy and the IIT Research Institute.

Not Available

1989-01-04T23:59:59.000Z

306

National Institute for Petroleum and Energy Research quarterly technical report for January 1--March 31, 1991  

Science Conference Proceedings (OSTI)

This report briefly describes research from the National Institute of Petroleum and Energy Research on enhanced recovery of petroleum. Topics include: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved surfactant flooding methods; development of improved alkaline flooding methods; development of improved mobility control methods; gas-miscible displacement; development of improved immiscible gas displacement metholodgy; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; imaging techniques applied to the study of fluids in porous media; microbial enhanced waterflooding field project; technical analysis for underground injection control; developing a reservoir data base: phase 1; EOR incentive projects survey; feasibility study of heavy oil recovery in the mid-continent region (Oklahoma, Kansas, Missouri); IPRs for slanted and horizontal wells producing from heterogeneous reservoirs; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; identification of cross-formational flow in multi-reservoir systems using isotopic techniques (phase 1); summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; and research needs to maximize economic producibility of the domestic oil resource.

Not Available

1991-05-01T23:59:59.000Z

307

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

308

Nuclear Safety Research and Development (NSR&D) Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety (HS-30) Office of Nuclear Safety Home Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search ...

309

EXPERIMENTAL AND CALCULATED RESEARCHES OF NUCLEAR-PHYSICS CHARACTERISTICS OF ASSEMBLIES CONTAINING [237Np + 239Pu(98%)] IN TH  

National Nuclear Security Administration (NNSA)

And Calculated Researches of Nuclear-Physics Characteristics And Calculated Researches of Nuclear-Physics Characteristics Of Assemblies Containing [ 237 Np + 239 Pu(98%)] in The Core and Reflector of Natural Uranium V.I.Gavrilov, I.Yu.Drozdov, N.V.Zavialov, V.I.Il'in, A.A.Kajgorodov, M.I.Kuvshinov, A.V.Panin Russian Federal Nuclear Center All-Russia Scientific Research Institute of Experimental Physics Neptunium 237 seems to be a promising material as a core component of such systems as pulsed reactors [2] and cascade blankets for electronuclear facilities [1]. To realize calculated simulation of such facilities it is required to know neutron-physics data for the materials included. In this respect 237 Np is a little-studied material. Thus, the rated values of critical mass for a "bare" sphere of

310

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Threat Reduction Initiative: Global Threat Reduction Initiative: U.S. Nuclear Remove Program Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance 2007 DOE TEC Meeting Chuck Messick DOE/NNSA/SRS 2 Contents * Program Objective and Policy * Program implementation status * Shipment Information * Operational Logistics * Lessons Learned * Conclusion 3 U.S. Nuclear Remove Program Objective * To play a key role in the Global Threat Reduction Remove Program supporting permanent threat reduction by accepting program eligible material. * Works in conjunction with the Global Threat Reduction Convert Program to accept program eligible material as an incentive to core conversion providing a disposition path for HEU and LEU during the life of the Acceptance Program. 4 Reasons for the Policy

311

Atmospheric performance of the special-purpose Solar Energy Research Institute (SERI) thin-airfoil family  

DOE Green Energy (OSTI)

The Solar Energy Research Institute (SERI), in cooperation with SeaWest Energy Group, has completed extensive atmospheric testing of the special-purpose SERI thin-airfoil family during the 1990 wind season. The purpose of this test program was to experimentally verify the predicted performance characteristics of the thin-airfoil family on a geometrically optimized blade, and to compare it to original-equipment blades under atmospheric wind conditions. The tests were run on two identical Micon 65/13 horizontal-axis wind turbines installed side-by-side in a wind farm. The thin-airfoil family 7.96 m blades were installed on one turbine, and AeroStar 7.41 m blades were installed on the other. This paper presents final performance results of the side-by-side comparative field test for both clean and dirty blade conditions. 7 refs., 11 figs., 1 tab.

Tangler, J; Smith, B; Jager, D; Olsen, T

1990-09-01T23:59:59.000Z

312

Environmental Survey preliminary report, National Institute for Petroleum and Energy Research, Bartlesville, Oklahoma  

SciTech Connect

This report presents the preliminary findings of the first phase of the Environmental Survey of the US Department of Energy's (DOE) National Institute for Petroleum and Energy Research (NIPER), conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team members are being provided by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NIPER. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NIPER and interviews with site personnel. 35 refs., 8 figs., 15 tabs.

Not Available

1989-01-01T23:59:59.000Z

313

Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee  

Science Conference Proceedings (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI?s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

None

1997-11-01T23:59:59.000Z

314

National Institute for Petroleum and Energy Research quarterly technical report for October 1--December 31, 1990  

Science Conference Proceedings (OSTI)

The following research programs from the National Institute for Petroleum and Energy Research (NIPER) are briefly reported on: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved surfactant flooding methods; development of improved alkaline flooding methods; development of improved mobility control methods; gas-miscible displacement; development of improved immiscible gas displacement methodology; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; imaging techniques applied to the study of fluids in porous media; microbial enhanced waterflooding field project; technical analysis for underground injection control; developing a reservoir data base: Phase 1; EOR incentive projects survey; feasibility study of heavy oil recovery in the mid-continent region (Oklahoma, Kansas, Missouri); IPRs for slanted and horizontal wells producing from heterogeneous reservoirs; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; identification of cross-formational flow in multi-reservoir systems using isotopic techniques (Phase 1); and summary of geological and production characteristics of Class 1, unstructured, deltaic reservoirs.

Not Available

1991-02-01T23:59:59.000Z

315

National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1990  

Science Conference Proceedings (OSTI)

Research programs from NIPER (National Institute for Petroleum and Energy Research) are briefly described. Topics include: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved surfactant flooding methods; development of improved alkaline flooding methods; development of improved mobility control methods; gas-miscible displacement; development of improved immiscible gas displacement methodology; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recover; imaging techniques applied to the study of fluids in porous media; microbial enhanced waterflooding field project; developing a reservoir data base: Phase 1; EOR incentive projects survey; feasibility study of heavy oil recovery in the Mid-Continent Region (Oklahoma, Kansas, Missouri); IPRs for slanted and horizontal wells producing from heterogeneous reservoirs; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; and identification of cross-formational flow in multi-reservoir system using isotopic techniques (Phase 1). References, figures, and tables are included in each separate section.

Not Available

1990-10-01T23:59:59.000Z

316

M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo  

NLE Websites -- All DOE Office Websites (Extended Search)

width measurement and control width measurement and control M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo H. Tomizawa, N. Kumagai SPring-8, Japan Synchrotron Radiation Institute June 26, 2004 International Symposium on Ultrafast Accelerators for Pulse Radiolysis Femtosecond Electron Bunch Diagnostics Incoherent Radiation Coherent Radiation Streak Camera or Single-shot Acquisition of Spectrum Bunch Form Factor Bunch Shape Fluctuation Method 2nd Order Correlation Bunch Form Factor

317

Nuclear decay data files of the Dosimetry Research Group  

Science Conference Proceedings (OSTI)

This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission on Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ``MIRD: Radionuclide Data and Decay Schemes.`` The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

1993-12-01T23:59:59.000Z

318

Joint Theory Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Program General Info Program General Info Registration Info Directions to Argonne Dynamics of Symmetry Breaking A Workshop sponsored by the ANL/UChicago Joint Theory Institute April 13-17, 2009 Argonne National Laboratory, IL The Joint Theory Institute (JTI) is a multi-disciplinary research institution jointly supported at the University of Chicago and Argonne National Laboratory to enhance collaborative research between both institutions in the broad area of theory. This year JTI sponsors a workshop the aim of which is to explore the dynamics of symmetry breaking in a broad range of systems from nuclear physics to string theory, using theoretical insights such as Dyson-Schwinger equations formalism, gauge/gravity duality and lattice QCD. We will focus on systems which exhibit dynamical symmetry breaking and will cover topics essential for understanding nonperturbative QCD and physics of quark-gluon plasma.

319

Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)  

Science Conference Proceedings (OSTI)

The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

Eipeldauer, Mary D [ORNL; Shelander Jr, Bruce R [ORNL

2012-01-01T23:59:59.000Z

320

Nuclear Safety Research and Development (NSR&D) Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Safety » Nuclear Safety Research and Nuclear Safety » Nuclear Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program In 2011, the Office of Health, Safety and Security (HSS) created the Nuclear Safety Research and Development (NSR&D) Program within the Office of Nuclear Safety to provide corporate-level leadership supporting nuclear safety research and development throughout the Department of Energy (DOE). The NSR&D Program solicits input from the Nuclear Safety Council which includes membership of senior management from each program office. NSR&D Program Objectives: To establish an enduring Departmental commitment and capability to utilize NSR&D in preventing and reducing the hazards and risks posed by DOE/NNSA nuclear facilities;

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

(National Institute for Petroleum and Energy Research) quarterly technical report for April 1, 1991--June 30, 1991: Volume 1, Fuels research  

Science Conference Proceedings (OSTI)

Fuels research from the National Institute for Petroleum and Energy Research is presented. Programs include: Department of Analytical Methodology for analysis of heavy crudes, and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. 5 refs., 7 figs., 10 tabs.

Not Available

1991-08-01T23:59:59.000Z

322

Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

Not Available

1992-07-01T23:59:59.000Z

323

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

324

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

325

Nuclear power and the public: an update of collected survey research on nuclear power  

SciTech Connect

The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

1981-12-01T23:59:59.000Z

326

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network (OSTI)

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors configurations will contribute to an improved design, safety, and operation of nuclear reactors. In relation

Lindken, Ralph

327

Comprehensive Baseline Environmental Audit of the Inhalation Toxicology Research Institute, Albuquerque, New Mexico  

SciTech Connect

This report documents the results of the Comprehensive Baseline Environmental Audit conducted at the Inhalation Toxicology Research Institute (ITRI) in Albuquerque, New Mexico. The scope of the audit at the ITRI was comprehensive, addressing environmental activities in the technical areas of air; soils, sediments, and biota; surface water/drinking water; groundwater; waste management; toxic and chemical materials; quality assurance; radiation; inactive waste sites; environmental management; and environmental monitoring programs. Specifically assessed was the compliance of ITRI operations and activities with Federal, state, and local regulations; DOE Orders; internal operating standards; and best management practices. Onsite activities included inspection of ITRI facilities and operations; review of site documents; interviews with DOE and contractor personnel, as well as representatives from state regulatory agencies; and reviews of previous appraisals. Using these sources of information, the environmental audit team developed findings, which fell into two general categories: compliance findings and best management practice findings. Each finding also identifies apparent causal factor(s) that contributed to the finding and will assist line management in developing ``root causes`` for implementing corrective actions.

1993-06-01T23:59:59.000Z

328

Geothermal resource base of the world: a revision of the Electric Power Research Institute's estimate  

DOE Green Energy (OSTI)

Review of the Electric Power Research Institute's (EPRI) method for calculating the geothermal resource base of a country shows that modifications are needed for several of the assumptions used in the calculation. These modifications include: (1) separating geothermal belts into volcanic types with a geothermal gradient of 50{sup 0}C/km and complex types in which 80% of the area has a temperature gradient of 30{sup 0}C/km and 20% has a gradient of 45{sup 0}C/km, (2) using the actual mean annual temperature of a country rather than an assumed 15{sup 0}C average ambient temperature, and (3) making separate calculations for the resource stored in water/brine and that stored in rock. Comparison of this method (Revised EPRI) for calculating a geothermal resource base with other resource base estimates made from a heat flow map of Europe indicates that the technique yields reasonable values. The calculated geothermal resource bases, stored in water and rock to a depth of 5 km, for each country in the world are given. Approximately five times as much energy is stored in rock as is stored in water.

Aldrich, M.J.; Laughlin, A.W.; Gambill, D.T.

1981-04-01T23:59:59.000Z

329

Tiger Team Assessment of the National Institute for Petroleum and Energy Research  

SciTech Connect

This report documents the Tiger Team Assessment of the National Institute for Petroleum and Energy Research (NIPER) and the Bartlesville Project Office (BPO) of the Department of Energy (DOE), co-located in Bartlesville, Oklahoma. The assessment investigated the status of the environmental, safety, and health (ES&H) programs of the two organizations. The Tiger Team Assessment was conducted from April 6 to May 1, 1992, under the auspices of DOE`s Office of Special Projects (OSP) in the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health issues; management practices; quality assurance; and NIPER and BPO self-assessments. Compliance with Federal, state, and local regulations; DOE Orders; best management practices; and internal IITRI requirements was assessed. In addition, an evaluation was conducted of the adequacy and effectiveness of BPO and IITRI management of the ES&H and self-assessment processes. The NIPER/BPO Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES&H requirements, root causes for noncompliance, adequacy of DOE and contractor ES&H management programs, response actions to address the identified problem areas, and DOE-wide ES&H compliance trends and root causes.

Not Available

1992-05-01T23:59:59.000Z

330

Environmental management assessment of the National Institute for Petroleum and Energy Research  

Science Conference Proceedings (OSTI)

This report documents the results of the environmental management assessment of the National Institute for Petroleum and Energy Research (NIPER), located in Bartlesville, Oklahoma. The assessment was conducted August 15-26, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health. The assessment included reviews of documents and reports, as well as inspections and observations of selected facilities and operations. Further, the team conducted interviews with management and staff from the Bartlesville Project Office (BPO), the Office of Fossil Energy (FE), the Pittsburgh Energy Technology Center (PETC), state and local regulatory agencies, and BDM Oklahoma (BDM-OK), which is the management and operating (M&O) contractor for NIPER. Because of the transition from a cooperative agreement to an M&O contract in January 1994, the scope of the assessment was to evaluate (1) the effectiveness of BDM-OK management systems being developed and BPO systems in place and under development to address environmental requirements; (2) the status of compliance with DOE Orders, guidance, and directives; and (3) conformance with accepted industry management practices. An environmental management assessment was deemed appropriate at this time in order to identify any systems modifications that would provide enhanced effectiveness of the management systems currently under development.

NONE

1994-08-01T23:59:59.000Z

331

Tiger Team Assessment of the National Institute for Petroleum and Energy Research  

SciTech Connect

This report documents the Tiger Team Assessment of the National Institute for Petroleum and Energy Research (NIPER) and the Bartlesville Project Office (BPO) of the Department of Energy (DOE), co-located in Bartlesville, Oklahoma. The assessment investigated the status of the environmental, safety, and health (ES H) programs of the two organizations. The Tiger Team Assessment was conducted from April 6 to May 1, 1992, under the auspices of DOE's Office of Special Projects (OSP) in the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health issues; management practices; quality assurance; and NIPER and BPO self-assessments. Compliance with Federal, state, and local regulations; DOE Orders; best management practices; and internal IITRI requirements was assessed. In addition, an evaluation was conducted of the adequacy and effectiveness of BPO and IITRI management of the ES H and self-assessment processes. The NIPER/BPO Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

Not Available

1992-05-01T23:59:59.000Z

332

Research and institutional dimensions of environmental justice: Implications for NEPA documentation  

SciTech Connect

Satisfying the environmental justice requirements imposed on the NEPA process is a challenging imperative. Among the challenges for NEPA documentation are: (1) adapting existing disciplinary methodologies that address distributional effects to the dictates of the executive order; (2) determining operational and, perhaps, threshold values for policy directives (e.g., disproportionately high and adverse effects); (3) identifying and involving representatives of minority, Native American, and low-income communities and populations in the NEPA process without jeopardizing their independence and integrity; (4) developing strategies, approaches, and methodologies that are more responsive to the consideration of multiple and cumulative exposures; and (5) developing professional standards for environmental justice assessment that are consistent with the letter and intent of the executive order, protective of the environments of minority, Native American, and low-income populations and communities, and useful to decision makers. This report will address current research and institutional activities associated with these issues, present alternative approaches available for their resolution, and identify the implications of those alternative approaches.

Carnes, S.A.; Wolfe, A.K.

1995-07-01T23:59:59.000Z

333

SUPPLEMENT ANALYSIS OF FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL FOREIGN RESEARCH REACTOR srENT NUCLEAR FUEL TRANSPORTATION ALONG OTHER THAN~. PRESENTATIVE ROUTE FROM CONCORD NAVAL WEAPO~~ STATION TO IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LADORA TORY Introduction The Department of Energy is planning to transport foreign research reactor spent nuclear fuel by rail from the Concord Naval Weapons Station (CNWS), Concord, California, to the Idaho National Engineering and Environmental Laboratory (INEEL). The environmental analysis supporting the decision to transport, by rail or truck, foreign research reactor spent nuclear fuel from CNWS to the INEEL is contained in +he Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliftration Policy Concerning Foreign Research Reactor

334

Hydrogen Research and Development Initiative - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Research and Development Initiative Hydrogen Research and Development Initiative International Safety Projects Overview Hydrogen as an Energy Carrier Global access to energy and fresh water International cooperation on safety of nuclear plants Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Major Programs The Use of Hydrogen as an Energy Carrier Bookmark and Share President Bush initiated a major program to accelerate the development of a national hydrogen economy. The goal is to reverse America's growing dependence on foreign oil by developing science and technology for commercially viable fuel cells that use hydrogen to power cars, trucks, homes, and businesses without directly emitting pollution or greenhouse

335

Home | Glenn T. Seaborg Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

T. Seaborg Institute T. Seaborg Institute Home Research Nuclear Forensics & Attribution Environmental Radiochemistry Super Heavy Element Discovery Scientific Staff Jobs: Internships & Postdocs Facilities Dr. Seaborg Publications & Links Mission Established in 1991, the LLNL branch of the Glenn T. Seaborg Institute conducts collaborative research between LLNL and the academic community in radiochemistry and nuclear forensics. The Seaborg Institute serves as a national center for the education and training of undergraduate and graduate students, postdocs and faculty in transactinium science. Seaborg Staff Contacts Annie Kersting Director kersting1@llnl.gov 925-423-3338 Ian Hutcheon Deputy Director hutcheon1@llnl.gov 925-422-4481 Dawn Shaughnessy Deputy Director shaughnessy2@llnl.gov

336

ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE NUCLEAR FUEL CYCLES RESEARCH AND DEVELOPMENT PROGRAMS  

SciTech Connect

The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ?all things nuclear? as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scaletechnology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE?s critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.

Murray, A.; Marra, J.; Wilmarth, B.; Mcguire, P.; Wheeler, V.

2013-07-03T23:59:59.000Z

337

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Basic Research for an Era of Nuclear Energy Developed at: Lawrence Berkeley National Laboratory, Lawrence Livermore National

338

Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 INSTRUMENTS  

E-Print Network (OSTI)

ELSEVIER Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 NUCLEAR INSTRUMENTS 8 METHODS IN PHYSICS REgtR?n Thermodynamics of dynamic nuclear polarization W.Th. Wenckebach Faculty ofApplied Physics, Delfr Unicersity of Technology, P.O.B. 5046, 2600 GA De& The Netherlands Abstract Dynamic nuclear

Dutz, Hartmut

339

Engineering Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Institute Engineering Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing, and experimental model analysis. Contact Leader, LANL Charles Farrar Email Leader, UCSD Michael Todd Email LANL Program Administrator Jutta Kayser (505) 663-5649 Email Collaboration for conducting mission-driven, multidisciplinary engineering research and recruiting, revitalization, and retention of current & future staff The Engineering Institute is a collaboration between LANL and the University of California at San Diego (UCSD) Jacobs School of Engineering, whose mission is to develop a comprehensive approach for conducting mission-driven, multidisciplinary engineering research

340

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOEs Office of Advanced Scientific Computing Research (ASCR) and DOEs Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSCs continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called case studies, of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

33Research Horizons Above: The Sustainable Facilities and Infrastructure Branch at the Georgia Tech Research Institute recently hosted a "green" building  

E-Print Network (OSTI)

a park in Colorado where buildings had been outfitted with a solar water-heating system.The operations Research Institute recently hosted a "green" building seminar to help participants learn to apply sustainable materials and methods to construction and renovation projects. S ustainable building isn

Sherrill, David

342

Report, Long-Term Nuclear Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

safeguards and nonproliferation, environmental management and waste cleanup, and Navy nuclear propulsion systems development resides outside the Office of Nuclear Energy, Science...

343

From the Ground Up: UCSC Professor Gary Griggs as Researcher, Teacher, and Institution Builder  

E-Print Network (OSTI)

if somebody wanted to put a wind farm or a wave generator ina nuclear plant or a wind energy farm, the process is the

Griggs, Gary; Rabkin, Sarah

2012-01-01T23:59:59.000Z

344

[National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992. Volume 2, Energy production research  

Science Conference Proceedings (OSTI)

Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

Not Available

1993-04-01T23:59:59.000Z

345

National Institute for Petroleum and Energy Research quarterly technical report, April 1--June 30, 1992. Volume 2, Energy production research  

Science Conference Proceedings (OSTI)

Progress reports are presented for: chemical flooding--supporting research; gas displacement-supporting research; thermal recovery-supporting research; geoscience technology; resource assessment technology; and microbial technology. (AT)

Not Available

1992-09-01T23:59:59.000Z

346

Secretary Chu Announces Funding for 71 University-Led Nuclear Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces Funding for 71 University-Led Nuclear Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects May 6, 2009 - 1:49pm Addthis U.S. Energy Secretary Steven Chu today announced the selection of 71 university research project awards as part of the Department of Energy's investments in cutting-edge nuclear energy research and development (R&D). Under the Nuclear Energy University Program (NEUP), these 71 projects will receive approximately $44 million over three years to advance new nuclear technologies in support of the nation's energy goals. By helping to develop the next generation of advanced nuclear technologies, the Nuclear Energy University Program will play a key role in addressing the global climate

347

Appendix B to the Minutes for the Nuclear Energy Research Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix B to the Minutes for the Nuclear Energy Research Advisory Appendix B to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting Appendix B to the Minutes for the Nuclear Energy Research Advisory Subcommittee Meeting Please include these additional remarks in your transmittal of the subject report to DOE's Office of Nuclear Energy, Science and Technology. Perhaps the greatest security threat to the United States today, and of paramount concern to American citizens since September 11, 2001, is that nuclear weapon-usable materials will be stolen, seized, or secretly diverted from nuclear facilities and then used by terrorists to develop and deliver a crude nuclear explosive device, or by a hostile proliferant state to develop more sophisticated nuclear weapons. This is not the time for the United States to be launching an international research effort to develop

348

Secretary Chu Announces Funding for 71 University-Led Nuclear Research and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Announces Funding for 71 University-Led Nuclear Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects May 6, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced the selection of 71 university research project awards as part of the Department of Energy's investments in cutting-edge nuclear energy research and development (R&D). Under the Nuclear Energy University Program (NEUP), these 71 projects will receive approximately $44 million over three years to advance new nuclear technologies in support of the nation's energy goals. By helping to develop the next generation of advanced nuclear technologies, the Nuclear Energy University Program will play a key role in

349

FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Innovative Nuclear Research FOA Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of NE. These efforts are essential to balancing NE's R&D portfolio and encouraging new nuclear power deployment with creative solutions to the universe of nuclear energy

350

Department of Energy Announces 24 Nuclear Energy Research Awards to U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Nuclear Energy Research Awards to 4 Nuclear Energy Research Awards to U.S. Universities Department of Energy Announces 24 Nuclear Energy Research Awards to U.S. Universities December 15, 2005 - 4:46pm Addthis $12 Million in Support to Be Provided for Innovative R&D Projects WASHINGTON, D.C. - The U.S. Department of Energy (DOE) today announced 24 research awards totaling $12 million over three years to U.S. universities to engage students and professors in DOE's advanced nuclear energy research and development programs, including the Advanced Fuel Cycle Initiative, Generation IV Nuclear Energy Systems Initiative and Nuclear Hydrogen Initiative. "These awards support the department's advanced nuclear technology development efforts and foster the education and training of the next generation of scientists and engineers needed to move this vital industry

351

FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2013 Consolidated Innovative Nuclear Research FOA FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799) The Department of Energy's (DOE) Office of Nuclear Energy (NE) conducts crosscutting nuclear energy research and development (R&D) and associated infrastructure support activities to develop innovative technologies that offer the promise of dramatically improved performance for advanced reactors and fuel cycle concepts while maximizing the impact of DOE resources. NE funds research activities through both competitive and direct mechanisms, as required to best meet the needs of NE. These efforts are essential to balancing NE's R&D portfolio and encouraging new nuclear power deployment with creative solutions to the universe of nuclear energy

352

Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation  

SciTech Connect

On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Re, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

2008-07-01T23:59:59.000Z

353

[National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992  

Science Conference Proceedings (OSTI)

Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

Not Available

1993-04-01T23:59:59.000Z

354

National Institute for Petroleum and Energy Research quarterly technical report, April 1--June 30, 1992  

SciTech Connect

Progress reports are presented for: chemical flooding--supporting research; gas displacement-supporting research; thermal recovery-supporting research; geoscience technology; resource assessment technology; and microbial technology. (AT)

Not Available

1992-09-01T23:59:59.000Z

355

Bibliography of reports on research sponsored by the NRC Office of Nuclear Regulatory Research, November 1975--June 1976  

SciTech Connect

A bibliography of 152 reports published by contractors of the NRC Office of Nuclear Regulatory Research during the period November 1975 through June 1976 is presented along with abstracts from the Nuclear Safety Information Center computer file. The bibliography has been sorted into the subject categories used by NRC to organize the research program. Within the subject categories, the reports are sorted by contractor organization and then chronologically. A brief description of the NRC research program precedes the bibliography.

Buchanan, J.R.

1976-09-30T23:59:59.000Z

356

Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Million for 42 University-Led Nuclear 8 Million for 42 University-Led Nuclear Research and Development Projects Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects May 20, 2010 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million. These projects, funded over three to four years through the Department's Nuclear Energy University Program, will help advance nuclear education and develop the next generation of nuclear technologies. "We are taking action to restart the nuclear industry as part of a broad approach to cut carbon pollution and create new clean energy jobs," said Secretary Chu. "These projects will help us develop the nuclear

357

Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$38 Million for 42 University-Led Nuclear $38 Million for 42 University-Led Nuclear Research and Development Projects Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects May 20, 2010 - 12:05pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million. These projects, funded over three to four years through the Department's Nuclear Energy University Program, will help advance nuclear education and develop the next generation of nuclear technologies. "We are taking action to restart the nuclear industry as part of a broad approach to cut carbon pollution and create new clean energy jobs," said Secretary Chu. "These projects will help us develop the nuclear

358

New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology.

359

Atomic and nuclear research with accelerators. Interim progress report, 1 October 1972--1 October 1973  

SciTech Connect

Research on ion-atom collisions and heavy-ion nuclear reactions is summarized. A list of publications is included. (JFP)

1973-10-01T23:59:59.000Z

360

Report of the Infrastructure Task Force of the Nuclear Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Infrastructure Task Force of the Nuclear Energy of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee Report of the Infrastructure Task Force of the Nuclear Energy Research Advisory Committee On October 1, 2002 the DOE Nuclear Energy Research Advisory Committee was asked to provide specific, focused updates to its Nuclear Science and Technology Infrastructure Roadmap and review the specific issues at the DOE key nuclear energy research and development (R&D) laboratories. This activity was assigned to a five-member Infrastructure Task Force (ITF). After receiving extensive written materials from DOE, the Idaho Nuclear Engineering and Environmental Laboratory (INEEL) and Argonne National Laboratory-West (ANL-W), on November 6-8, 2002 the ITF visited the Idaho site and received briefings and tours of the INEEL and ANL-W facilities.

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The newsletter of the Institute for Systems Research Volume 15 No. 1 Winter 2000 Systems Signals  

E-Print Network (OSTI)

the amount of radiation exposure and computations. More de- ISR is a permanent institute of the University because it provides a more de- tailed analysis of internal body parts than conventional X-rays, it offers requires a larger dose of radiation than conventional X-rays. This patent is a new data processing method

Shapiro, Benjamin

362

Nuclear Safety Research and Development Status Workshop Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NSR&D STATUS WORKSHOP SUMMARIES Caroline Garzon Chief of Nuclear Safety Staff NUCLEAR SAFETY R&D Perform a peer review of Risk Assessment Corporation WTP analysis by a team...

363

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

None

2005-01-01T23:59:59.000Z

364

Research of IPE Solution Applied to EPR Nuclear Power Project  

Science Conference Proceedings (OSTI)

A nuclear power company is currently in the process of constructing the advanced 3rd generation of EPR Nuclear Power Plant, and its corresponding information system is an overall integrated information management system based on the new concept design. ... Keywords: digital nuclear power plant, IPE solutions, comprehensive application

Daqiao Wang; Fangneng Hu; Yi Luo; Yi Ma

2012-07-01T23:59:59.000Z

365

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Collaboration Fermilab Collaboration Lee Teng Scholarship Program Useful Links The Argonne Accelerator Institute Historical Document Collection Document Access Guide The documents in this collection are held in several repositories, some of which have restricted access. This guide explains the different types of access, and specifies the access levels for each repository. Repositories Name Access Argonne National Laboratory Document Open Access Argonne Research Library Hard Copy Only Beam Dynamics Newsletter Open Access DOE Information Bridge Open Access IEEE Xplore Library Subscription Required JACoW Open Access Journal of Applied Physics Subscription Required Nuclear Instruments & Methods in Physics Research, Section A Subscription Required Physical Review A Subscription Required

366

National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1989  

Science Conference Proceedings (OSTI)

Research programs from NIPER, on enhanced recovery are briefly described. Topics include: reservoir characterization, microbial EOR, surfactant research, miscible-phase displacement, thermal processes, identification of environmental R D needs, and mobility control methods. (CBS)

Not Available

1989-10-01T23:59:59.000Z

367

M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo  

NLE Websites -- All DOE Office Websites (Extended Search)

status of status of photocathodes in Japan M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo H. Tomizawa, N. Kumagai SPring-8, Japan Synchrotron Radiation Institute June 26, 2004 International Symposium on Ultrafast Accelerators for Pulse Radiolysis Network and Collaboration under National Project on Advanced Compact Accelerator for Medical Use hosted by National Institute for Radiological Science 1. Mg (QE~10 -3 ) photoinjector : U.Tokyo/SPring8 2. Cs 2 Te(QE~10 -2 ) load-lock-type photoinjector : KEK/Nagoya Univ.. 3. Cs2Te/Diamond (QE~10 -1 ) cartridge-type photoinjector : SPring8/U.Tokyo/Hamamatsu Photonics Cathode Surface CCD Image of the cathode surface 8 mm 6 mm Apr. 2003 2cm Aug. 2002 Craters due to the RF discharge on the cathode surface

368

Development of Technical Nuclear Forensics for Spent Research Reactor Fuel  

E-Print Network (OSTI)

Pre-detonation technical nuclear forensics techniques for research reactor spent fuel were developed in a collaborative project with Savannah River National Lab ratory. An inverse analysis method was employed to reconstruct reactor parameters from a spent fuel sample using results from a radiochemical analysis. In the inverse analysis, a reactor physics code is used as a forward model. Verification and validation of different reactor physics codes was performed for usage in the inverse analysis. The verification and validation process consisted of two parts. The first is a variance analysis of Monte Carlo reactor physics burnup simulation results. The codes used in this work are MONTEBURNS and MCNPX/CINDER. Both utilize Monte Carlo transport calculations for reaction rate and flux results. Neither code has a variance analysis that will propagate through depletion steps, so a method to quantify and understand the variance propagation through these depletion calculations was developed. The second verification and validation process consisted of comparing reactor physics code output isotopic compositions to radiochemical analysis results. A sample from an Oak Ridge Research Reactor spent fuel assembly was acquired through a drilling process. This sample was then dissolved in nitric acid and diluted in three different quantities, creating three separate samples. A radiochemical analysis was completed and the results were compared to simulation outputs at different levels ofdetail. After establishing a forward model, an inverse analysis was developed to re-construct the burnup, initial uranium isotopic compositions, and cooling time of a research reactor spent fuel sample. A convergence acceleration technique was used that consisted of an analytical calculation to predict burnup, initial 235U, and 236U enrichments. The analytic calculation results may also be used stand alone or in a database search algorithm. In this work, a reactor physics code is used as a for- ward model with the analytic results as initial conditions in a numerical optimization algorithm. In the numerical analysis, the burnup and initial uranium isotopic com- positions are reconstructed until the iterative spent fuel characteristics converge with the measured data. Upon convergence of the samples burnup and initial uranium isotopic composition, the cooling time can be reconstructed. To reconstruct cooling time, the standard decay equation is inverted and solved for time. Two methods were developed. One method uses the converged burnup and initial uranium isotopic compositions along in a reactor depletion simulation. The second method uses an isotopic signature that does not decay out of its mass bin and has a simple production chain. An example would be 137Cs which decays into the stable 137Ba. Similar results are achieved with both methods, but extended shutdown time or time away from power results in over prediction of the cooling time. The over prediction of cooling time and comparison of different burnup reconstruction isotope results are indicator signatures of extended shutdown or time away from power. Due to dynamic operation in time and function, detailed power history reconstruction for research reactors is very challenging. Frequent variations in power, repeated variable shutdown time length, and experimentation history affect the spectrum an individual assembly is burned with such that full reactor parameter reconstruction is difficult. The results from this technical nuclear forensic analysis may be used with law enforcement, intelligence data, macroscopic and microscopic sample characteristics in a process called attribution to suggest or exclude possible sources of origin for a sample.

Sternat, Matthew 1982-

2012-12-01T23:59:59.000Z

369

Next Generation Nuclear Plant Materials Research and Development Program Plan  

SciTech Connect

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

G.O. Hayner; R.L. Bratton; R.N. Wright

2005-09-01T23:59:59.000Z

370

[National Institute for Petroleum and Energy Research] quarterly technical report, July 1--September 30, 1991. Volume 2, Energy production research  

Science Conference Proceedings (OSTI)

The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

Not Available

1992-01-01T23:59:59.000Z

371

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

of Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, FacilitiesNP) Office of Advanced Scientific Computing Research (ASCR)

Gerber, Richard A.

2012-01-01T23:59:59.000Z

372

Creating a Pathway to Sustainability IIT Wanger Institute for Sustainable Energy Research  

E-Print Network (OSTI)

with Coordinated Wind/Hydro/Gas Energy Recognizing the Potential of Small Hydro WISER Outreach and Education with such high-tech renewables as photovoltaics, solar-thermal and wind energy, and the use of non, nuclear energy, and biofuels. The longer-term resource strategy includes renewable energy from solar, wind

Heller, Barbara

373

Safety research programs sponsored by Office of Nuclear Regulatory Research: Progress report, January 1--March 31, 1989  

SciTech Connect

This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through December 31, 1988.

Weiss, A.J. (comp.)

1989-08-01T23:59:59.000Z

374

Record of Decision for the Final EIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5091 5091 Friday May 17, 1996 Part IV Department of Energy Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel; Notice 25092 Federal Register / Vol. 61, No. 97 / Friday, May 17, 1996 / Notices DEPARTMENT OF ENERGY Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: DOE, in consultation with the Department of State, has decided to implement a new foreign research reactor spent fuel acceptance policy as specified in the Preferred Alternative contained in the Final Environmental Impact Statement on a Proposed

375

Western Research Institute: Annual technical progress report, October 1986--September 1987  

DOE Green Energy (OSTI)

Accomplishments for the year are presented for the following five areas of research: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuel research. Oil shale research covers: chemical and physical characterization of reference shales; oil shale retorting studies; and environmental base studies for oil shale. Tar sand covers: reference resource (tar sand deposits) evaluation; chemical and physical propeerties of reference tar sand; recovery processes; mathematical modeling; product evaluation; and environmental base studies. Underground coal gasification covers environmental impact assessment and groundwater impact mitigation. Advanced process technology includes advanced process analysis (contaminant control and new technology) and advanced mitigation concepts. Advanced fuels research is on jet fuels from coal. (AT).

Not Available

1987-10-01T23:59:59.000Z

376

Next Generation Nuclear Plant Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

P. E. MacDonald

2005-01-01T23:59:59.000Z

377

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

National Nuclear Security Administration (NNSA)

rod system. * Note: Does not include the steam turbine generator portion of the power plant. - Sensitive nuclear technology: Any information (including information...

378

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

outlined in the 2011 DOE Strategic Plan. U.S. Departmentstrategic plans. Large Scale Computing and Storage Requirements for Nuclear Physics DOE

Gerber, Richard A.

2012-01-01T23:59:59.000Z

379

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

day experimental fusion devices and in nuclear reactors thatnuclear energy both for next-generation fission reactors and for fusion reactors

Gerber, Richard A.

2012-01-01T23:59:59.000Z

380

Summary, Long-Term Nuclear Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and nonproliferation activities, environmental management and waste cleanup, and Navy nuclear propulsion systems development.1 The department has a lead role in insuring that...

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nuclear Energy Research and Development in the Department of...  

NLE Websites -- All DOE Office Websites (Extended Search)

used nuclear fuel disposition, effective utilization and deployment of advanced reactor concepts, and eventual development of a permanent geologic repository(s). This should...

382

(National Institute for Petroleum and Energy Research) quarterly technical report, July 1--September 30, 1991  

Science Conference Proceedings (OSTI)

The report is submitted in two volumes, Volume I representing the work accomplished under Fuels Research and Volume II the work for Energy Production Research during the period July 1--Sept. 30, 1991. Topics covered include: chemical flooding, gas displacement, thermal recovery, geoscience technology, resource assessment technology, microbial technology, environmental technology.

Not Available

1992-01-01T23:59:59.000Z

383

Review of Used Nuclear Fuel Storage and Transportation Technical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the U.S. Nuclear Regulatory Commission (NRC), the Electric Power Research Institute (EPRI), and the International Atomic Energy Agency (IAEA). The documents reviewed are:...

384

[National Institute for Petroleum and Energy Research] 1991 annual report, October 1, 1990--September 30, 1991  

Science Conference Proceedings (OSTI)

This Annual Report provides research accomplishments, publications, and presentations resulting from the FY91 research conducted under the following Base Program projects: reservoir assessment and characterization; TORIS research support; three-phase relative permeability; imaging techniques applied to the study of fluids in porous media; development of improved microbial flooding methods; development of improved surfactant flooding methods; development of improved alkaline flooding methods; development of improved mobility- control methods; gas flooding; mobility control and sweep improvement in gas flooding; thermal processes for light oil recovery; thermal processes for heavy oil recovery; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom- containing compounds; and development of analytical methodology for analysis of heavy crudes.

Not Available

1993-05-01T23:59:59.000Z

385

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 45 (2005) 271275 doi:10.1088/0029-5515/45/4/008  

E-Print Network (OSTI)

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion, 52.55.H 1. Introduction An economically viable fusion reactor must sustain high- pressure, stable discrepancy between theory and experiment is that slight variations in the boundary geometry can sufficiently

Hudson, Stuart

386

National Institute for Petroleum and Energy Research quarterly technical report, July 1--September 30, 1990  

SciTech Connect

Research programs from NIPER are briefly summarized. Topics include: Development of Analytical Methodology for Analysis of Heavy Crudes, and Thermochemistry and Thermophysical Properties of Organic Nitrogen- and Diheteroatom-Containing Compounds. 1 ref.

Not Available

1990-10-12T23:59:59.000Z

387

National Institute for Petroleum and Energy Research monthly progress report for November 1989  

Science Conference Proceedings (OSTI)

Research programs from NIPER, on enhanced recovery are briefly described. Topics include reservoir characterization, improvement on sweep efficiency, mobility control, computer program development, surfactant studies, and miscible-phase displacement. (CBS)

Not Available

1989-12-20T23:59:59.000Z

388

Research Institute for Environment, Energy and Economics Annual Report, 2009 2010  

E-Print Network (OSTI)

to investigate the impact of biochar on soil properties. Biochar has been shown by other researchers to increase impact of biochar on soil proper- ties may depend upon the texture of the recipient soil. The outcomes

Rose, Annkatrin

389

Research activities of the Institute of Plasma Physics. Annual report, 1972  

SciTech Connect

A survey of scientific work carried out during the year 1972 is presented. The research program was narrowed down to some main problem areas, such as plasma waves, plasma focusing, transient diagnostics, and laser applications. (GRA)

1973-01-01T23:59:59.000Z

390

TATA INSTITUTE OF FUNDAMENTAL RESEARCH National Centre of the Government of India for Nuclear Science & Mathematics  

E-Print Network (OSTI)

); Consolidated Salary : Rs.30,000/- + 30% HRA ; HQ : Mumbai. Qualification : Candidate should be a Ph with details of organization, post held, scale of pay, basic pay (attach photocopies of certificates). (14

Udgaonkar, Jayant B.

391

National Institute for Petroleum and Energy Research 1990 annual report, October 1, 1989--September 30, 1990  

SciTech Connect

Research programs at NIPER cover a wide spectrum of specific technical tasks, all of which relate to three broad technology areas: (1) Enhanced oil recovery and all of the associated technical activities such as reservoir characterization and imaging techniques; (2) Alternative fuels evaluation and testing, including the supporting technologies of thermodynamics research and fuels characterization; (3) Environmentally technology related to production, transportation, and utilization of oil and gas.

Not Available

1992-05-01T23:59:59.000Z

392

National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1993. Volume 2, Energy production research  

Science Conference Proceedings (OSTI)

Accomplishments for the past quarter are briefly described for the following tasks: chemical flooding -- supporting research; gas displacement -- supporting research; thermal recovery -- supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding covers: surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement covers: gas flooding performance prediction improvement; and mobility control, profile modification and sweep improvement in gas flooding. Thermal recovery includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; and feasibility study of heavy oil recovery in the mid-continent region -- Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and field application of foams for oil production symposium. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO crude oil analysis data base; and compilation and analysis of outcrop data from the Muddy and Almond Formations. Microbial technology covers development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

Not Available

1993-06-01T23:59:59.000Z

393

EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Urgent-Relief Acceptance of Foreign Research Reactor Spent 2: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel SUMMARY This EA evaluates the environmental impacts of a proposal to accept 409 spent fuel elements from eight foreign research reactors in seven European countries. The spent fuel would be shipped across the ocean in spent fuel transportation casks from the country of origin to one or more United States eastern seaboard ports. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 22, 1994 EA-0912: Finding of No Significant Impact Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel April 22, 1994 EA-0912: Final Environmental Assessment Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

394

Western Research Institute quarterly technical progress report, July--September 1993  

SciTech Connect

Accomplishments for the quarter are described briefly for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers process studies. Tar sand research is on recycle oil pyrolysis and extraction (ROPE{sup TM}) Process. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: CROW{sup TM} field demonstration with Bell Lumber and Pole; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid state NMR analysis of Mowry formation shale from different sedimentary basins; solid state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

1993-12-31T23:59:59.000Z

395

[National Institute for Petroleum and Energy Research] monthly progress report for June 1992  

Science Conference Proceedings (OSTI)

Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

Not Available

1992-08-01T23:59:59.000Z

396

National Institute for Petroleum and Energy Research monthly progress report for August 1993  

Science Conference Proceedings (OSTI)

Brief progress reports are presented under the following tasks: energy production research; fuels research; and supplemental Government programs. Energy production research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels research covers; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government program includes: feasibility study of heavy oil recovery in the Midcontinent region: Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade PBO crude oil database; simulation analysis of steam-foam projects; DOE education initiative project; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; chemical EOR workshop; and organization of UNITAR 6th International conference of Heavy Crude and Tar Sands.

Not Available

1993-09-01T23:59:59.000Z

397

[National Institute for Petroleum and Energy Research] monthly progress report for July 1993  

Science Conference Proceedings (OSTI)

Brief progress reports are presented under the following tasks: energy production research; fuels research; and supplemental Government programs. Energy production research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved chemical flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuels research covers; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the Midcontinent region: Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade PBO crude oil database; simulation analysis of steam-foam projects; DOE education initiative project; technology transfer to independent producers; compilation and analysis of outcrop data from the Muddy and Almond formations; implementation of oil and gas technology transfer initiative; horizontal well production from fractured reservoirs; chemical EOR workshop; and organization of UNITAR 6th International conference of Heavy Crude and Tar Sands.

Not Available

1993-08-01T23:59:59.000Z

398

(National Institute for Petroleum and Energy Research) monthly progress report for June 1992  

SciTech Connect

Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability research; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluid in porous media. Fuels research includes; development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Program includes: microbial-enhanced waterflooding field project; feasibility study of heavy oil recovery in the midcontinent region--Oklahoma, Kansas, and Missouri; surfactant-enhanced alkaline flooding field project; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; third international reservoir characterization technical conference; process-engineering property measurements on heavy petroleum components; development and application of petroleum production technologies; upgrade BPO crude oil data base; simulation analysis of steam-foam projects; and analysis of the U. S. oil resource base and estimate of future recoverable oil.

Not Available

1992-08-01T23:59:59.000Z

399

Office of Research and Development | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Jobs Working at NNSA Blog Office of Defense Science Office of Research and Development Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test,...

400

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network (OSTI)

of the Institute of Nuclear Material Management, Tucson, AZ,Assay, Institute of Nuclear Materials Management 51st Annual

Quiter, Brian

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

[National Institute for Petroleum and Energy Research] monthly progress report for April 1992  

SciTech Connect

Accomplishments for this period are described briefly under tasks for: Energy Production Research; Fuels Research; and Supplemental Government Program. Energy Production Research includes: reservoir assessment and characterization; TORIS research support; development of improved alkaline flooding methods, surfactant flooding methods; mobility control and sweep improvement in chemical flooding; gas flood performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; and imaging techniques applied to the study of fluids in porous media. Fuel Research includes: development of analytical methodology for analysis of heavy crudes; and thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds. Supplemental Government Programs covers; field projects in microbial-enhanced waterflooding and surfactant-enhanced alkaline flooding; feasibility study of heavy oil recovery in the midcontinent region -- Oklahoma, Kansas, and Missouri; development of methods for mapping distribution of clays in petroleum reservoirs; summary of geological and production characteristics of class 1, unstructured, deltaic reservoirs; and process-engineering property measurements on heavy petroleum components.

Not Available

1992-06-01T23:59:59.000Z

402

National Institute for Petroleum and Energy Research annual report for October 1, 1991--September 30, 1992  

SciTech Connect

This Annual Report provides research accomplishments, publications, resulting from the FY92 research conducted under the following Base Program projects: reservoir assessment and characterization; TORIS research support; three-phase relative permeability; imaging techniques applied to the study of fluids in porous media; surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; development of improved microbial flooding methods; gas flooding performance prediction improvement; mobility control, profile modification, and sweep improvement in gas flooding; thermal processes for light oil recovery; thermal processes for heavy oil recovery; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds; and development of analytical methodology for analysis of heavy crudes.

Not Available

1993-10-01T23:59:59.000Z

403

Staff exchange with Spokane Intercollegiate Research and Technology Institute (SIRTI), final project report  

SciTech Connect

Staff exchanges, such as the one described in this report, are intended to facilitate communication and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in U.S. industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective on industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms.

Alexander, G.M.

1994-12-01T23:59:59.000Z

404

Applied nuclear data research and development. Progress report, January 1--March 31, 1976. [Activities of LASL Nuclear Data Group  

SciTech Connect

This report describes the activities of the Los Alamos Nuclear Data Group for the period January 1 to March 31, 1976. The following areas are discussed: Theory and evaluation of nuclear cross sections, including calculations of neutron cross sections; Nuclear cross-section processing, including developments concerning the computer codes used; Cross sections for HTGR safety research; Effect of dispersion matrix structure on a data adjustment and consistency analysis; Fission product and decay data studies; and Medium-energy library. 20 figures, 18 tables. (RWR)

Baxman, C.I.; Hale, G.M.; Young, P.G. (comps.)

1976-08-01T23:59:59.000Z

405

Summary of EPRI Research Applicable to Nuclear Accident Scenarios  

Science Conference Proceedings (OSTI)

The events at Fukushima Daiichi Nuclear Power Plant following the March 11, 2011, earthquake and the subsequent tsunami have heightened the need for widespread dissemination of information available within the nuclear industry that addresses subjects pertinent to the on-going situation at the plant. These subjects include, but are not necessarily limited to: Hydrogen generation Loss of off-site power Reactor core performance following a loss of coolant Iodine removal Emergency response planning Emergency...

2011-06-28T23:59:59.000Z

406

American Institute of Aeronautics and Astronautics Wave Rotor Research Program at Michigan State University  

E-Print Network (OSTI)

turbines, and water refrigeration systems. In collaboration with the research team at Warsaw University, and other design and analysis tools are discussed. I. Introduction here is a continual demand to increase, propulsion, refrigeration, and car engine supercharging. References 4-7 have comprehensively reviewed

Müller, Norbert

407

National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1993  

Science Conference Proceedings (OSTI)

Accomplishments for the past quarter are briefly described for the following tasks: chemical flooding -- supporting research; gas displacement -- supporting research; thermal recovery -- supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding covers: surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement covers: gas flooding performance prediction improvement; and mobility control, profile modification and sweep improvement in gas flooding. Thermal recovery includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; and feasibility study of heavy oil recovery in the mid-continent region -- Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and field application of foams for oil production symposium. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO crude oil analysis data base; and compilation and analysis of outcrop data from the Muddy and Almond Formations. Microbial technology covers development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

Not Available

1993-06-01T23:59:59.000Z

408

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

409

National Institute for Petroleum and Energy Research monthly progress report for May 1990  

SciTech Connect

Progress is reported from research at NIPER in the following areas: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved surfactant flooding methods; development of improved alkaline flooding methods; development of improved mobility-control methods; gas miscible displacement; development of methods to improve mobility control and sweep efficiency in gas flooding; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; imaging techniques applied to the study of fluids in porous media; development of analytical methodology for analysis of heavy crudes; thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds; microbial-enhanced waterflooding field project; technical analysis for underground injection control; phase 1 -- reservoir data base development; EOR incentive projects survey; and feasibility study of heavy oil recovery in the Midcontinent Region (Oklahoma, Kansas, Missouri).

Not Available

1990-06-26T23:59:59.000Z

410

National Institute for Petroleum and Energy Research monthly progress report for July 1990  

Science Conference Proceedings (OSTI)

Research programs from NIPER are briefly described in the following areas: Reservoir Assessment and Characterization, TORIS Research Support, Development of Improved Microbial Flooding Methods, Development of Improved Surfactant Flooding Methods, Development of Improved Alkaline Flooding Methods, Development of Improved Mobility-Control Methods, Gas Miscible Displacement, Development of Methods To Improve Mobility Control and Sweep Efficiency in Gas Flooding, Three-Phase Relative Permeability, Thermal Processes for Light Oil Recovery, Thermal Processes for Heavy Oil Recovery, Imaging Techniques Applied to the Study of Fluids in Porous Media, Development of Analytical Methodology for Analysis of Heavy Crudes, Thermochemistry and Thermophysical Properties of Organic Nitrogen- and Diheteroatom-Containing Compounds, Microbial-Enhanced Waterflooding Field Project, Technical Analysis for Underground Injection Control, Phase 1- Reservoir Data Base Development, EOR Incentive Projects Survey, Feasibility Study of Heavy Oil Recovery in the Midcontinent Region, and IPRs for Slanted and Horizontal Wells Producing From Heterogeneous Reservoirs.

Not Available

1990-08-20T23:59:59.000Z

411

National Institute for Petroleum and Energy Research quarterly technical report, April 1--June 30, 1990  

SciTech Connect

Research programs from NIPER are presented in the following areas: reservoir assessment and characterization, TORIS research support, development of improved microbial flooding methods, development of improved surfactant flooding methods, development of improved alkaline flooding methods, development of improved mobility-control methods, gas-miscible displacement, development of improved immiscible gas displacement methodology, three-phase relative permeability, thermal processes for light oil recovery, thermal processes for heavy oil recovery, imaging techniques applied to the study of fluids in porous media, microbial enhanced waterflooding field project, technical analysis for underground injection control, development of an inflow performance relationship (IPR) for a slanted/horizontal well under solution gas drive, Phase 1 -- developing a reservoir data base, EOR incentive projects survey, and feasibility study of heavy oil recovery in the midcontinent region.

Not Available

1990-07-01T23:59:59.000Z

412

National Institute for Petroleum and Energy Research: Quarterly technical report, January 1--March 31, 1989: Volume 2, Energy production research  

SciTech Connect

The following projects from NIPER are briefly described: reservoir assessment and characterization; TORIS research support; development of improved microbial flooding methods; development of improved surfactant flooding systems; development of improved alkaline flooding methods; development of improved mobility control methods; gas-miscible displacement; development of improved immiscible gas displacement methodology; three-phase relative permeability; thermal processes for light oil recovery; thermal processes for heavy oil recovery; static pore structure analysis of reservoir rocks; effects of pore structure on oil/contaminants ganglia distribution; evaluation of petroleum technology and its environmental impacts; underground storage tank economic analysis; microbial-enhanced waterflooding field project; identification of environmental RD and D needs; and technical analysis for underground injection control.

Not Available

1989-05-08T23:59:59.000Z

413

National Institute for Petroleum and Energy Research quarterly technical report for April 1--June 30, 1993. Volume 1, Fuels research  

SciTech Connect

Progress reports are presented for the following fuels researches: Development of analytical methodology for analysis of heave crudes; and thermochemistry and thermophysical properties of organic nitrogen and diheteroatom-containing compounds. Some of the accomplishments are: Topical reports summarizing GC/MS methodology for determination of amines in petroleum and catalytic cracking behavior of compound type in Wilmington 650{degrees} F+ resid were completed; density measurements between 320 K and 550 K were completed for 8-methylquinoline; high-temperature heat-capacities and critical temperature (near 800 K) for 8-methylquinoline were determined; vapor-pressure measurements were completed for 2,6-dimethylpyridine; and a series of enthalpy-of-combustion measurement was completed for 1,10-phenanthroline, phenazine, 2-methylquinoline, and 8-methylquinoline.

Not Available

1993-08-01T23:59:59.000Z

414

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network (OSTI)

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors: Better prediction of the flow and heat transfer in liquid metal cooled nuclear reactors will contribute

Lindken, Ralph

415

Nuclear excitations and reaction mechanisms. Progress report, November 1, 1975--October 31, 1976. [Summaries of research activities at Brown University  

SciTech Connect

Theoretical research on nuclear excitation and reaction mechanisms is summarized. A list of publications is included. (JFP)

1975-11-01T23:59:59.000Z

416

Next Generation Nuclear Plant Materials Research and Development Program Plan  

DOE Green Energy (OSTI)

The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

G. O. Hayner; E.L. Shaber

2004-09-01T23:59:59.000Z

417

LANL highlights cutting-edge research at annual LDRD Day | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

cutting-edge research at annual LDRD Day | National Nuclear cutting-edge research at annual LDRD Day | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL highlights cutting-edge research at annual LDRD Day LANL highlights cutting-edge research at annual LDRD Day Posted By Office of Public Affairs Los Alamos National Laboratory recently showcased some of its cutting-edge

418

LANL highlights cutting-edge research at annual LDRD Day | National Nuclear  

National Nuclear Security Administration (NNSA)

cutting-edge research at annual LDRD Day | National Nuclear cutting-edge research at annual LDRD Day | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL highlights cutting-edge research at annual LDRD Day LANL highlights cutting-edge research at annual LDRD Day Posted By Office of Public Affairs Los Alamos National Laboratory recently showcased some of its cutting-edge

419

The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

Science Conference Proceedings (OSTI)

'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

2011-05-01T23:59:59.000Z

420

Distributed and Asynchronous Bees Algorithm Applied to Nuclear Fusion Research  

Science Conference Proceedings (OSTI)

Recently, there have been several developments in the scientific community to model and solve complex optimization problems by employing natural metaphors. In some cases, due to their distributed schema, these algorithms can be adapted to distributed ... Keywords: Metaheuristics, Distributed Computing, Nuclear Fusion

Antonio Gomez-Iglesias; Miguel A. Vega-Rodriguez; Francisco Castejon; Miguel Cardenas-Montes

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Department of Energy to Co-Sponsor Workshop on Nuclear Power Plant Life Extension R&D  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE), U.S. Nuclear Regulatory Commission (NRC), and the Nuclear Energy Institute (NEI) will co-sponsor a Second Workshop on U.S. Nuclear Power Plant Life Extension Research and Development.

422

National Institute for Petroleum and Energy Research quarterly technical report for October 1--December 31, 1990  

DOE Green Energy (OSTI)

Progress on two fuels research programs is described. The objectives for the development of analytical methodology for analysis of heavy crudes are generally, to identify compounds or classes of compounds with significant positive or negative effects on crude oil and/or product properties and characteristics and to develop methods for their determination in conventional or low grade petroleum and syncrudes. Specific objectives for FY91 are: (1) to determine relative carbon forming (coking) tendencies of compound classes in petroleum and to relate coke yield and heteroatom content to chemical structure, (2) to develop procedures for breaking associates formed between metal- and nonmetal-containing compounds which will ultimately lead to methods for isolation and identification of metal-containing compounds in petroleum, and (3) to further develop mass spectrometric methods for analysis of nitrogen and sulfur compounds in petroleum. The objectives of the second program, thermochemistry and thermophysical properties of organic nitrogen- and diheteroatom-containing compounds, are to provide, interpret, and correlate with molecular structure and polarity of molecules, precise and accurate values of thermodynamic properties of organic nitrogen and diheteroatom-containing compounds that occur in or are readily derivable from heavy petroleum and oil shale. The results will enable the prediction of chemical equilibria for conceptual as well as current processes. Results to data on both studies are discussed. 7 refs., 9 figs., 11 tabs.

Not Available

1990-03-01T23:59:59.000Z

423

Development of the JAERI (Japan Atomic Energy Research Institute) fuel cleanup system for tests at the Tritium Systems Test Assembly  

Science Conference Proceedings (OSTI)

Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI) has developed the Fuel Cleanup System (FCU) which accepts simulated fusion reactor exhaust and produces pure hydrogen isotopes and tritium-free waste. The major components are: a palladium diffuser, a catalytic reactor, cold traps, a ceramic electrolysis cell, and zirconium-cobalt beds. In 1988, an integrated loop of the FCU process was installed in the TPL and a number of hot'' runs were performed to study the system characteristics and improve system performance. Under the US-Japan collaboration program, the JAERI Fuel Cleanup System'' (JFCU) was designed and fabricated by JAERI/TPL for testing at the Tritium Systems Test Assembly (TSTA) in Los Alamos National Laboratory as a major subsystem of the simulated fusion fuel cycle. The JFCU was installed in the TSTA in early 1990.

Konishi, S.; Inoue, M.; Hayashi, T.; Okuno, K.; Naruse, Y. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Barnes, J.W.; Anderson, J.L. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

424

The NIH Almanac -National Institutes of Health (NIH) Page 1 of 1 Begun as a one-room Laboratory of Hygiene in 1887, the National Institutes of Health (NIH) today is one of the world's foremost medical research centers. An  

E-Print Network (OSTI)

The NIH Almanac - National Institutes of Health (NIH) Page 1 of 1 Begun as a one-room Laboratory research centers. An agency of the Department of Health and Human Services, the NIH is the Federal focal...Turning Discovery into Health" is a trademark of the U.S. Department of Health and Human Services. The NIH Almanac

Levin, Judith G.

425

Reactor physics teaching and research in the Swiss nuclear engineering master  

Science Conference Proceedings (OSTI)

Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

Chawla, R. [Swiss Federal Inst. of Technology EPFL, CH-1015 Lausanne (Switzerland); Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland)

2012-07-01T23:59:59.000Z

426

Researcher, Los Alamos National Laboratory | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Turab Lookman Turab Lookman Researcher, Los Alamos National Laboratory Turab Lookman Turab Lookman Role: Researcher, Los Alamos National Laboratory Award: 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering Profile: Turab Lookman has received the 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering, which commends individuals for exemplary research performed at the Laboratory within the past 10 years that has had a significant impact on a scientific discipline or program. The committee selected Lookman for "his wide ranging contributions to the understanding of intrinsic inhomogeneity in functional materials." Lookman's work has described for the first time the coupling of elasticity to material functionality such as magnetism and charge polarization. His

427

Researcher, Los Alamos National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Turab Lookman Turab Lookman Researcher, Los Alamos National Laboratory Turab Lookman Turab Lookman Role: Researcher, Los Alamos National Laboratory Award: 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering Profile: Turab Lookman has received the 2009 LANL Fellows Prize for Outstanding Research in Science or Engineering, which commends individuals for exemplary research performed at the Laboratory within the past 10 years that has had a significant impact on a scientific discipline or program. The committee selected Lookman for "his wide ranging contributions to the understanding of intrinsic inhomogeneity in functional materials." Lookman's work has described for the first time the coupling of elasticity to material functionality such as magnetism and charge polarization. His

428

Annual Report Nucelar Energy Research and Development Program Nuclear Energy Research Initiative  

Science Conference Proceedings (OSTI)

NERI Project No.2000-0109 began in August 2000 and has three tasks. The first project year addressed Task 1, namely development of nonlinear prognostication for critical equipment in nuclear power facilities. That work is described in the first year's annual report (ORNLTM-2001/195). The current (second) project year (FY02) addresses Task 2, while the third project year will address Tasks 2-3. This report describes the work for the second project year, spanning August 2001 through August 2002, including status of the tasks, issues and concerns, cost performance, and status summary of tasks. The objective of the second project year's work is a compelling demonstration of the nonlinear prognostication algorithm using much more data. The guidance from Dr. Madeline Feltus (DOE/NE-20) is that it would be preferable to show forewarning of failure for different kinds of nuclear-grade equipment, as opposed to many different failure modes from one piece of equipment. Long-term monitoring of operational utility equipment is possible in principle, but is not practically feasible for the following reason. Time and funding constraints for this project do not allow us to monitor the many machines (thousands) that will be necessary to obtain even a few failure sequences, due to low failure rates (ORNL) to contact other researchers for additional data from other test equipment. Consequently, we have revised the work plan for Tasks 2.1-2.2, with corresponding changes to the work plan as shown in the Status Summary of NERI Tasks. The revised tasks are as follows: Task 2.1--ORNL will obtain test data from a subcontractor and other researchers for various test equipment. This task includes development of a test plan or a description of the historical testing, as appropriate: test facility, equipment to be tested, choice of failure mode(s), testing protocol, data acquisition equipment, and resulting data from the test sequence. ORNL will analyze this data for quality, and subsequently via the nonlinear paradigm for prognostication. Task 2.2--ORNL will evaluate the prognostication capability of the nonlinear paradigm. The comparison metrics for reliability of the predictions will include the true positives, true negatives, and the forewarning times. Task 2.3--ORNL will improve the nonlinear paradigm as appropriate, in accord with the results of Tasks 2.1-2.2, to maximize the rate of true positive and true negative indications of failure. Maximal forewarning time is also highly desirable. Task 2.4--ORNL will develop advanced algorithms for the phase-space distribution function (PS-DF) pattern change recognition, based on the results of Task 2.3. This implementation will provide a capability for automated prognostication, as part of the maintenance decision-making. Appendix A provides a detailed description of the analysis methods, which include conventional statistics, traditional nonlinear measures, and ORNL's patented nonlinear PSDM. The body of this report focuses on results of this analysis.

Hively, LM

2003-02-13T23:59:59.000Z

429

Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report  

Science Conference Proceedings (OSTI)

The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

Ritterbusch, S.E.

2000-08-01T23:59:59.000Z

430

Researcher, Los Alamos National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

David Moore David Moore Researcher, Los Alamos National Laboratory David Moore David Moore Role: Researcher, Los Alamos National Laboratory Award: 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering Profile: David S. Moore has received the 2009 LANL Fellows Prize for Outstanding Leadership in Science or Engineering, which commends individuals who stimulate the research interests of talented younger Laboratory staff members and who encourage junior researchers to make the personal sacrifices necessary to become effective leaders. The committee selected Moore for "his inspirational technical leadership in the fields of shock physics and the science of explosives detection." Moore has worked to develop the next generation of scientists in this field by mentoring

431

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

432

M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature control for systems Temperature control for systems M. Uesaka, H. Iijima, Y. Muroya, T. Ueda, A. Sakumi, Nuclear Engineering Research Laboratory, University of Tokyo H. Tomizawa, N. Kumagai SPring-8, Japan Synchrotron Radiation Institute June 26, 2004 International Symposium on Ultrafast Accelerators for Pulse Radiolysis Requirement of stable synchronization 0.4 psec (FWHM) 0.8 psec (FWHM) Profile of electron Profile of laser Time Difference "Synchronization" Typical Femtosecond Streak Camera Image of Synchronization * The S-band linac with Mg photocathode RF injector has been developed for radiation chemistry. * The radiation chemistry experiment requires a time resolution in a range of sub-picosecond. * The time resolution is defined by... pulse duration of pump-beam, and probe-laser, synchronization between

433

Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2007-09-25T23:59:59.000Z

434

Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring  

SciTech Connect

These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

2008-09-23T23:59:59.000Z

435

Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor

2010-09-21T23:59:59.000Z

436

Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

2011-09-13T23:59:59.000Z

437

Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2006-09-19T23:59:59.000Z

438

U.S. DEPARTMENT OF ENERGY NUCLEAR ENGINEERING EDUCATION RESEARCH: HIGHLIGHTS  

E-Print Network (OSTI)

U.S. DEPARTMENT OF ENERGY NUCLEAR ENGINEERING EDUCATION RESEARCH: HIGHLIGHTS OF RECENT AND CURRENT RESEARCH--III Sponsored by the Education and Training Division Cosponsored by the Fusion Energy Division! emitted with various energies at different positions with respect to the crystal. These PXR have several

Danon, Yaron

439

ELSEVIER Nuclear Instruments and Methods in Physics Research A 403 (1998) 43 l-441 INSTRUMENTS  

E-Print Network (OSTI)

ELSEVIER Nuclear Instruments and Methods in Physics Research A 403 (1998) 43 l-441 INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A Theory of neutron fluctuations in source-driven subcritical systems I. P&At*, Y. Yamane' Department of Reactor Ph>aics, Chalmers Unicrrsi[\\' oj Technolo~~~. S-41-7 96

Pázsit, Imre

440

Workshop on the Role of the Nuclear Physics Research Community in Combating Terrorism: Scientific Posters  

DOE Data Explorer (OSTI)

This 2002 workshop brought together members of the nation's nuclear physics research community with expertise in nuclear physics, detector development, and accelerator development from DOE and NSF laboratories and universities, with terrorism experts from government agencies familiar with technologies, strategies and policy for the combat of terrorism. The focus of the workshop included conventional explosive and weapon detection and radiological and nuclear threats. Each of these topics included research for field applications, detector and accelerator research in transportation (air, surface, maritime), detector and accelerator research in laboratory forensic detection and preventive measures against clandestine activities [Copied, with editing, from http://www.sc.doe.gov/np/homeland/descript.html]. Of the 45 posters presented at the workshop, 35 have been made available in PDF format on this webpage. The 62 page report from the workshop is also available at http://www.sc.doe.gov/np/homeland/index.html.

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cable Polymer Aging and Condition Monitoring Research at Sandia National Laboratories Under the Nuclear Energy Plant Optimization (NEPO) Program  

Science Conference Proceedings (OSTI)

This report describes cable polymer aging and condition monitoring research performed at Sandia National Laboratories under the Nuclear Energy Plant Optimization (NEPO) Program from 2000 to 2005. The research results apply to low-voltage cable insulation and jacket materials that are commonly used in U.S. nuclear power plants. The research builds upon and is linked to research performed at Sandia from 1977 through 1986, sponsored by the U.S. Nuclear Regulatory Commission. Aged and unaged specimens from t...

2005-12-20T23:59:59.000Z

442

Quantum Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Institute Quantum Institute Quantum Institute A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Contact Leader Malcolm Boshier (505) 665-8892 Email Two of LANL's most successful quantum technology initiatives: quantum cryptography and the race for quantum computer The area of quantum information, science, and technology is rapidly evolving, with important applications in the areas of quantum cryptography, quantum computing, quantum metrology, and advanced quantum-based sensors, some of which are directly relevant to the Laboratory's national security mission. Mission Foster a vigorous intellectual environment at LANL Define and develop strategic thrusts Target and pursue funding opportunities

443

[The National Institute for Nano-Engineering : a public-private partnership for research, education, and innovation].  

Science Conference Proceedings (OSTI)

The National Institute for Nano-Engineering (NINE) is a government/university/industry collaboration formed to help develop the next generation of nano-engineering innovation leaders for the United States. NINE involves students in large scale multi-disciplinary research projects focused on developing nano-enabled solutions to important national problems. The NINE program is based on the growing understanding that science and engineering education and innovation can be strengthened by involvement of university students and faculty with the world-class capabilities and facilities of government laboratories supplemented by guidance and support from industry collaborators. A number of recent reports have highlighted global competitiveness issues that the Unites States faces in the coming decades. Technology innovation, the ability to progress from emerging technologies to products that change the way people live, is a key to global leadership and economic prosperity for nations and their people. One of the top technology and economic drivers for the coming decades will the spectrum of emerging capabilities that fall into the category of nanotechnologies. NINE was established as a national innovation hub in the exciting and rapidly developing field of nano-engineering. It is intended to be a model of a novel partnership between universities and companies throughout the nation and the Department of Energy, with Sandia National Laboratories as the host lab for NINE. Successful technology innovation requires the integration of technical research and development with additional expertise from other areas including manufacturing, business, marketing, intellectual property, and the interface between technology and society. NINE was created to address this need for a new integrated approach to science and engineering research, education and innovation in a way that takes advantage of the nation's investment in facilities and capabilities at the national laboratories.

Stinnett, Regan White

2010-10-01T23:59:59.000Z

444

Nuclear reactor and materials science research: Final technical report, May 1, 1985-September 30, 1986. [Academic and research utilization of reactor  

SciTech Connect

Throughout the 17-month period of the grant, May 1, 1985 - September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The period encompassed MIT's fiscal year utilization of the reactor during that period may be classified as follows: neutron beam tube research, nuclear materials research and development, radiochemistry and trace analysis, nuclear medicine, radiation health physics, computer control of reactors, dose reduction in nuclear power reactors, reactor irradiations and services for groups outside MIT, and MIT research reactor. This paper provides detailed information on this research academic utilization.

Harling, O.K.

1987-05-11T23:59:59.000Z

445

DESERT RESEARCH INSTITUTE  

Office of Legacy Management (LM)

CIRCULAR 1 CIRCULAR 1 2 CENTER FOR WATER R E S ~ U R C E ~ REHiARCH GROUND-WATER SERIES C - 1 GEOHYDROLOGIC DATA FROM THE PICEANCE CREEK B A S I N BETWEEN THE WHITE AND COLQRAD.0 RIVERS, NORTHWESTERN COLORADO D . L. C o f f i n , F . A. W e l d e r , R . K. G l a n z m a n , and X. W. D u t t o n U n i t e d S t a t e s G e o l o g i c a l Survey Prepared by T h e U n i t e d S t a t e s G e o l o g i c a l Survey i n c o o p e r a t i o n w i t h . 1 he C o l o r a . d o W a . t e r C o n s e r v a t i o n B o a r d D e n v e r , C o l o r a d o . 1 9 6 8 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. CONTENTS Page I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Well-numbering s y s t e m . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . Aqui'fer t e s t of t h d a l l u v i u m a l o n g P i c e a n c e Creek 6 . . . . . . . . . . . . Geology o f t h e pumping-test s

446

Proceedings of the 23rd Seismic Research Symposium: Worldwide Monitoring of Nuclear Explosions  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the 23rd Seismic Research Review: Worldwide Monitoring of Nuclear Explosions, held 2-5 October, 2001 in Jackson Hole, Wyoming. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor; Chavez, Francesca C. [Editor

2001-10-02T23:59:59.000Z

447

Department of Energy Awards $3.8 Million in Funding to 38 U.S. Universities for Nuclear Research Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON, DC - The U.S. Department of Energy (DOE) today strengthened its commitment to advancing nuclear power by awarding $100,000 to 38 universities to enhance nuclear research and development...

448

Nuclear Instruments and Methods in Physics Research A 533 (2004) 612 Erratum to ``Dead time and pileup in pulsed parametric  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 533 (2004) 612 Erratum Erratum to ``Dead time Danon?, Bryndol Sones, Robert Block Department of Mechanical Aerospace and Nuclear Engineering

Danon, Yaron

449

Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base  

SciTech Connect

These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

2003-09-23T23:59:59.000Z

450

Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect

These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2005-09-20T23:59:59.000Z

451

Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring  

SciTech Connect

These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Chavez, Francesca C. [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A. [Editor

2004-09-21T23:59:59.000Z

452

Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

2009-09-21T23:59:59.000Z

453

YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).  

SciTech Connect

The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

2010-04-28T23:59:59.000Z

454

Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration  

Science Conference Proceedings (OSTI)

These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor

2002-09-17T23:59:59.000Z

455

REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS  

SciTech Connect

Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.

Nichols, T.; Beals, D.; Sternat, M.

2011-07-18T23:59:59.000Z

456

Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 4Q99  

SciTech Connect

OAK B188 Nuclear Energy Research Initiative Cooperative Agreement DE-FC03-99SF21902 Technical Progress Report 4Q99.

Stanley E. Ritterbusch

2001-11-12T23:59:59.000Z

457

Fusion Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research...

458

Institute for Advanced Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Institute for Advanced Studies Institute for Advanced Studies Institute for Advanced Studies NMC leverages the strengths of three research universities to build joint programs, develop strategic partnerships, provide common organization and facilities. Contact Leader TBD LANL Program Administrator Pam Hundley (505) 663-5453 Email Building regional partnerships in education, leveraging strengths of three research universities The Institute for Advanced Studies (IAS) works with the three New Mexico research universities (University of New Mexico, New Mexico Tech, and New Mexico State University) to develop research and educational collaborations and partnerships. To facilitate interactions between the universities and LANL, the three New Mexico schools established the New Mexico Consortium (NMC), a nonprofit

459

Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry  

E-Print Network (OSTI)

1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

460

Low Dose Radiation Research Program: Radiation-Induced Nuclear Factor kB  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation-Induced Nuclear Factor kB mediates survival advantage by Radiation-Induced Nuclear Factor kB mediates survival advantage by Telomerase Activation. Authors: Natarajan M.,1 Mohan S.,2 Pandeswara, S.L.,1 and Herman T.S.1 Institutions: Departments of 1Radiation Oncology and 2Pathology, The University of Texas Health Science Center, San Antonio, Texas Activation of NF-kB in response to low doses of ionizing radiation was first shown in our laboratory. Although studies have shown that NF-kB plays an important role in anti-apoptotic function, little has been done to understand the molecular link between the activation of NF-kB and cellular outcome such as enhanced cell survival after low dose low-linear transfer (LET) radiation. Because upregulation of telomerase activity is associated with longevity and allows cells to escape from senescence, we hypothesize

Note: This page contains sample records for the topic "nuclear research institute" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.