National Library of Energy BETA

Sample records for nuclear reactor design

  1. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Supersedes DOE 5480.1, dated 1-19-93. Certified 11-18-10.

  2. Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2004-01-01

    Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

  3. Neutron transport analysis for nuclear reactor design

    DOE Patents [OSTI]

    Vujic, Jasmina L. (Lisle, IL)

    1993-01-01

    Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.

  4. Neutron transport analysis for nuclear reactor design

    DOE Patents [OSTI]

    Vujic, J.L.

    1993-11-30

    Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values. 28 figures.

  5. Improved Design of Nuclear Reactor Control System | U.S. DOE...

    Office of Science (SC) Website

    Improved Design of Nuclear Reactor Control System Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  6. Nuclear Design of the HOMER-15 Mars Surface Fission Reactor

    SciTech Connect (OSTI)

    Poston, David I.

    2002-07-01

    The next generation of robotic missions to Mars will most likely require robust power sources in the range of 3 to 20 kWe. Fission systems are well suited to provide safe, reliable, and economic power within this range. The goal of this study is to design a compact, low-mass fission system that meets Mars surface power requirements, while maintaining a high level of safety and reliability at a relatively low cost. The Heat pipe Power System (HPS) is one possible approach for producing near-term, low-cost, space fission power. The goal of the HPS project is to devise an attractive space fission system that can be developed quickly and affordably. The primary ways of doing this are by using existing technology and by designing the system for inexpensive testing. If the system can be designed to allow highly prototypic testing with electrical heating, then an exhaustive test program can be carried out quickly and inexpensively, and thorough testing of the actual flight unit can be performed - which is a major benefit to reliability. Over the past 4 years, three small HPS proof-of-concept technology demonstrations have been conducted, and each has been highly successful. The Heat pipe-Operated Mars Exploration Reactor (HOMER) is a derivative of the HPS designed especially for producing power on the surface of Mars. The HOMER-15 is a 15-kWt reactor that couples with a 3-kWe Stirling engine power system. The reactor contains stainless-steel (SS)-clad uranium nitride (UN) fuel pins that are structurally and thermally bonded to SS/sodium heat pipes. Fission energy is conducted from the fuel pins to the heat pipes, which then carry the heat to the Stirling engine. This paper describes conceptual design and nuclear performance the HOMER-15 reactor. (author)

  7. Reactor and shielding design implications of clustering nuclear thermal rockets

    SciTech Connect (OSTI)

    Buksa, J.J.; Houts, M.G. (Los Alamos National Laboratory, NM (United States))

    1992-07-01

    This paper examines design considerations in the context of engine-out accidents in clustered nuclear-thermal rocket stages, and an accident-management protocol is devised. Safety and performance issues are considered in the light of designs for the reactor and shielding elements of ROVER/NERVA-type engines. The engine-out management process involves: phase one, in which sufficient propulsive power is guaranteed for mission completion; and phase two, in which engine failure is isolated and not allowed to propagate to other engines or to the spacecraft. Phase-one designs can employ spare engines, throttled engines, and/or long-burning engines. Phase-two safety concepts can include techniques for cooling or jettisoning the failed engines. Engine-out management philosophies are shown to be shaped by a combination of safety and mission-trajectory requirements. 6 refs.

  8. A brief history of design studies on innovative nuclear reactors

    SciTech Connect (OSTI)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com [Emeritus Professor, Tokyo Institute of Technology (Japan)

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  9. Nuclear Regulatory Commission Handling of Beyond Design Basis Events for Nuclear Power Reactors

    Broader source: Energy.gov [DOE]

    Presenter: Bill Reckley, Chief, Policy and Support Branch, Japan Lessons-Learned Project Directorate, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission US Nuclear Regulatory Commission

  10. Designing a Component-Based Architecture for the Modeling and Simulation of Nuclear Fuels and Reactors

    E-Print Network [OSTI]

    Pennycook, Steve

    interest in nuclear energy in the U. S. Applications for 26 new reactors have been sub- mitted to the U. S. The NEAMS program is organized around four technical areas of the nuclear fuel cycle: fuels, reactorsDesigning a Component-Based Architecture for the Modeling and Simulation of Nuclear Fuels

  11. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    L. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,R. J. Neuhold, Introductury Nuclear Reactor Dynamics. ANSL. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,

  12. OECD NEA Benchmark Database of Spent Nuclear Fuel Isotopic Compositions for World Reactor Designs

    SciTech Connect (OSTI)

    Gauld, Ian C; Sly, Nicholas C; Michel-Sendis, Franco

    2014-01-01

    Experimental data on the isotopic concentrations in irradiated nuclear fuel represent one of the primary methods for validating computational methods and nuclear data used for reactor and spent fuel depletion simulations that support nuclear fuel cycle safety and safeguards programs. Measurement data have previously not been available to users in a centralized or searchable format, and the majority of accessible information has been, for the most part, limited to light-water-reactor designs. This paper describes a recent initiative to compile spent fuel benchmark data for additional reactor designs used throughout the world that can be used to validate computer model simulations that support nuclear energy and nuclear safeguards missions. Experimental benchmark data have been expanded to include VVER-440, VVER-1000, RBMK, graphite moderated MAGNOX, gas cooled AGR, and several heavy-water moderated CANDU reactor designs. Additional experimental data for pressurized light water and boiling water reactor fuels has also been compiled for modern assembly designs and more extensive isotopic measurements. These data are being compiled and uploaded to a recently revised structured and searchable database, SFCOMPO, to provide the nuclear analysis community with a centrally-accessible resource of spent fuel compositions that can be used to benchmark computer codes, models, and nuclear data. The current version of SFCOMPO contains data for eight reactor designs, 20 fuel assembly designs, more than 550 spent fuel samples, and measured isotopic data for about 80 nuclides.

  13. Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2008-01-01

    The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

  14. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    SciTech Connect (OSTI)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations.

  15. Evaluation of a Business Case for Safeguards by Design in Nuclear Power Reactors

    SciTech Connect (OSTI)

    Wood, Thomas W.; Seward, Amy M.; Lewis, Valerie A.; Gitau, Ernest TN; Zentner, Michael D.

    2012-12-01

    Safeguards by Design (SbD) is a well-known paradigm for consideration and incorporation of safeguards approaches and associated design features early in the nuclear facility development process. This paradigm has been developed as part of the Next Generation Safeguards Initiative (NGSI), and has been accepted as beneficial in many discussions and papers on NGSI or specific technologies under development within NGSI. The Office of Nuclear Safeguards and Security funded the Pacific Northwest National Laboratory to examine the business case justification of SbD for nuclear power reactors. Ultimately, the implementation of SbD will rely on the designers of nuclear facilities. Therefore, it is important to assess the incentives which will lead designers to adopt SbD as a standard practice for nuclear facility design. This report details the extent to which designers will have compelling economic incentives to adopt SbD.

  16. Spring design for use in the core of a nuclear reactor

    DOE Patents [OSTI]

    Willard, Jr., H. James (Bethel Park, PA)

    1993-01-01

    A spring design particularly suitable for use in the core of a nuclear reactor includes one surface having a first material oriented in a longitudinal direction, and another surface having a second material oriented in a transverse direction. The respective surfaces exhibit different amounts of irraditation induced strain.

  17. Reactor Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Technology Advanced Reactor Concepts Advanced Instrumentation & Controls Light Water Reactor Sustainability Safety and Regulatory Technology Small Modular Reactors Nuclear...

  18. Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for designing a surveillance program for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in light-water moderated nuclear power reactor vessels. This practice includes the minimum requirements for the design of a surveillance program, selection of vessel material to be included, and the initial schedule for evaluation of materials. 1.2 This practice was developed for all light-water moderated nuclear power reactor vessels for which the predicted maximum fast neutron fluence (E > 1 MeV) at the end of license (EOL) exceeds 1 × 1021 neutrons/m2 (1 × 1017 n/cm2) at the inside surface of the reactor vessel. 1.3 This practice applies only to the planning and design of surveillance programs for reactor vessels designed and built after the effective date of this practice. Previous versions of Practice E185 apply to earlier reactor vessels. 1.4 This practice does not provide specific procedures for monitoring the radiation induced cha...

  19. Nuclear reactor

    DOE Patents [OSTI]

    Thomson, Wallace B. (Severna Park, MD)

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  20. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    SciTech Connect (OSTI)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team indicates that the proposed solutions to the investigated operating cycle length barriers are both feasible and consistent with sound design practice.

  1. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  2. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    SciTech Connect (OSTI)

    Bruce G. Schnitzler

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.

  3. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.

  4. Nuclear reactor apparatus

    DOE Patents [OSTI]

    Wade, Elman E. (Ruffs Dale, PA)

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  5. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, Ronald J. (Pensacola, FL); Land, John T. (Pensacola, FL); Misvel, Michael C. (Pensacola, FL)

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  6. Nuclear reactor reflector

    DOE Patents [OSTI]

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  7. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Plum Borough, PA)

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  8. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    DOE Patents [OSTI]

    Crawford, Douglas C. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Hayes, Steven L. (Idaho Falls, ID); Hill, Robert N. (Bolingbrook, IL)

    1999-01-01

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both.

  9. Fuel element design for the enhanced destruction of plutonium in a nuclear reactor

    DOE Patents [OSTI]

    Crawford, D.C.; Porter, D.L.; Hayes, S.L.; Hill, R.N.

    1999-03-23

    A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both. 7 figs.

  10. Nuclear Power Plant Design Project

    E-Print Network [OSTI]

    Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global) .................................................................... 14 4.4 High Temperature Gas Reactor

  11. ME 361E Nuclear Reactor Engineering ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 361E ­ Nuclear Reactor Engineering Page 1 ABET EC2000 syllabus ME 361E ­ Nuclear Reactor; neutron diffusion and moderation; reactor equations; Fermi Age theory; multigroup and multiregional students should be able to: · Compare and contrast numerous nuclear reactor designs · Calculate the effects

  12. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  13. Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel

    SciTech Connect (OSTI)

    Rearden, B.T. [Oak Ridge National Laboratory (United States); Anderson, W.J. [Framatome ANP, Inc. (France); Harms, G.A. [Sandia National Laboratories (United States)

    2005-08-15

    Framatome ANP, Sandia National Laboratories (SNL), Oak Ridge National Laboratory (ORNL), and the University of Florida are cooperating on the U.S. Department of Energy Nuclear Energy Research Initiative (NERI) project 2001-0124 to design, assemble, execute, analyze, and document a series of critical experiments to validate reactor physics and criticality safety codes for the analysis of commercial power reactor fuels consisting of UO{sub 2} with {sup 235}U enrichments {>=}5 wt%. The experiments will be conducted at the SNL Pulsed Reactor Facility.Framatome ANP and SNL produced two series of conceptual experiment designs based on typical parameters, such as fuel-to-moderator ratios, that meet the programmatic requirements of this project within the given restraints on available materials and facilities. ORNL used the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) to assess, from a detailed physics-based perspective, the similarity of the experiment designs to the commercial systems they are intended to validate. Based on the results of the TSUNAMI analysis, one series of experiments was found to be preferable to the other and will provide significant new data for the validation of reactor physics and criticality safety codes.

  14. Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750°C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Michael G. McKellar; Edwin A. Harvego

    2010-05-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

  15. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

  16. Heat dissipating nuclear reactor

    DOE Patents [OSTI]

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  17. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  18. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

    1994-01-01

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

  19. Nuclear reactor building

    DOE Patents [OSTI]

    Gou, P.F.; Townsend, H.E.; Barbanti, G.

    1994-04-05

    A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

  20. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  1. Slurry reactor design studies

    SciTech Connect (OSTI)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  2. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N. (Cupertino, CA)

    1983-11-01

    Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

  3. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    heat transfer. Nuclear Technology 163 (2008) 344- [18] V.and Electricity . Nuclear Technology 144 [5] D. F. Williams,Vessel Technology . Nuclear Technology, 78 (1987) 245- [5

  4. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    high temperature reactors (VHTR), 3) supercritical waterup to 760 ° C. The DOE VHTR program is also sponsoring a

  5. Nuclear power reactor instrumentation systems handbook. Volume...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You...

  6. Nuclear reactor control

    DOE Patents [OSTI]

    Cawley, William E. (Phoenix, AZ); Warnick, Robert F. (Pasco, WA)

    1982-01-01

    1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

  7. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N. (Cupertino, CA)

    1983-10-25

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

  8. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

  9. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  10. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    SciTech Connect (OSTI)

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  11. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01

    Potential Safety Issues – Regulatory Design Criteria3-3 Regulatory design criteria for safety Table 3-4 Input3-4 Regulatory Design Criteria for safety The DRACS system

  12. Design change management in regulation of nuclear fleets: World nuclear association's working groups on Cooperation in Reactor Design Evaluation and Licensing (CORDEL)

    SciTech Connect (OSTI)

    Swinburn, R. [CORDEL DCM Task Force, Rolls-Royce Plc (United Kingdom); Borysova, I. [CORDEL, WNA, 22a St.James Sq., London SW1Y 4JH (United Kingdom); Waddington, J. [CORDEL Group (United Kingdom); Head, J. G. [CORDEL Group, GE-Hitachi Nuclear Energy (United Kingdom); Raidis, Z. [CORDEL Group, Candu Energy (United Kingdom)

    2012-07-01

    The 60 year life of a reactor means that a plant will undergo change during its life. To ensure continuing safety, changes must be made with a full understanding of the design intent. With this aim, regulators require that each operating organisation should have a formally designated entity responsible for complete design knowledge in regard to plant safety. INSAG-19 calls such an entity 'Design Authority'. This requirement is difficult to achieve, especially as the number of countries and utilities operating plants increases. Some of these operating organisations will be new, and some will be small. For Gen III plants sold on a turnkey basis, it is even more challenging for the operating company to develop and retain the full knowledge needed for this role. CORDEL's Task Force entitled 'Design Change Management' is investigating options for effective design change management with the aim to support design standardization throughout a fleet's lifetime by means of enhanced international cooperation within industry and regulators. This paper starts with considering the causes of design change and identifies reasons for the increased beneficial involvement of the plant's original vendor in the design change process. A key central theme running through the paper is the definition of responsibilities for design change. Various existing mechanisms of vendor-operator interfaces over design change and how they are managed in different organisational and regulatory environments around the world are considered, with the functionality of Owners Groups and Design Authority being central. The roles played in the design change process by vendors, utilities, regulators, owners' groups and other organisations such as WANO are considered The aerospace industry approach to Design Authority has been assessed to consider what lessons might be learned. (authors)

  13. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect (OSTI)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

  14. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Djurcic, Zelimir

    2009-01-01

    neutrino Production at Nuclear Reactors Z. Djurcic 1 , ?emission rates from nuclear reactors are determined fromlarge commercial nuclear reactors are playing an important

  15. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  16. Reactor- Nuclear Science Center 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    A neutronic evaluation of two reactor benchmark problems was performed. The benchmark problems describe typical PWR uranium and plutonium (mixed oxide) fueled lattices. WIMSd4m, a neutron transport lattice code, was used to evaluate multigroup...

  17. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    safety design criteria separate effects test steam generators small modular reactor San Onofre Nuclear

  18. Nuclear reactor downcomer flow deflector

    DOE Patents [OSTI]

    Gilmore, Charles B. (Greensburg, PA); Altman, David A. (Pittsburgh, PA); Singleton, Norman R. (Murrysville, PA)

    2011-02-15

    A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.

  19. Innovative design of uranium startup fast reactors

    E-Print Network [OSTI]

    Fei, Tingzhou

    2012-01-01

    Sodium Fast Reactors are one of the three candidates of GEN-IV fast reactors. Fast reactors play an important role in saving uranium resources and reducing nuclear wastes. Conventional fast reactors rely on transuranic ...

  20. Reactor and Nuclear Systems Division (RNSD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation...

  1. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  2. Aerial of Nuclear Science Reactor 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Small graphite-moderated and gas-cooled reactors have been around since the beginning of the atomic age. Though their existence in the past has been associated with nuclear weapons programs, they are capable of being used in civilian power programs...

  3. Computer aided nuclear reactor modeling 

    E-Print Network [OSTI]

    Warraich, Khalid Sarwar

    1995-01-01

    Nuclear reactor modeling is an important activity that lets us analyze existing as well as proposed systems for safety, correct operation, etc. The quality of a analysis is directly proportional to the quality of the model used. In this work we look...

  4. Generic small modular reactor plant design.

    SciTech Connect (OSTI)

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  5. Horizontal baffle for nuclear reactors

    DOE Patents [OSTI]

    Rylatt, John A. (Monroeville, PA)

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  6. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C. (San Jose, CA); Knepp, John B. (San Jose, CA); Skoda, George I. (Santa Clara, CA)

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  7. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect (OSTI)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  8. PEBBLE-BED NUCLEAR REACTOR SYSTEM PHYSICS AND FUEL UTILIZATION 

    E-Print Network [OSTI]

    Kelly, Ryan 1989-

    2011-04-20

    The Generation IV Pebble Bed Modular Reactor (PMBR) design may be used for electricity production, co-generation applications (industrial heat, hydrogen production, desalination, etc.), and could potentially eliminate some high level nuclear wastes...

  9. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Engineering Design The Reactor Engineering Design Key Technology will focus on control of chemical reactions with unprecedented precision in increasingly modular and...

  10. Flow duct for nuclear reactors

    DOE Patents [OSTI]

    Straalsund, Jerry L. (Richland, WA)

    1978-01-01

    Improved liquid sodium flow ducts for nuclear reactors are described wherein the improvement comprises varying the wall thickness of each of the walls of a polygonal tubular duct structure so that each of the walls is of reduced cross-section along the longitudinal center line and of a greater cross-section along wall junctions with the other walls to form the polygonal tubular configuration.

  11. Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 11, p. 11691181 (November 2002) Conceptual Design of a Modular Island Core Fast Breeder Reactor "RAPID-M"

    E-Print Network [OSTI]

    Laughlin, Robert B.

    and accepted September 10, 2002) A metal fueled modular island core sodium cooled fast breeder reactor concept Design of a Modular Island Core Fast Breeder Reactor "RAPID-M" Mitsuru KAMBE Central Research Institute type reactors, performance, sodium cooled reactor, modular island core, inherent safety, in- tegrated

  12. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and...

  13. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  14. Nuclear reactor multiphysics via bond graph formalism

    E-Print Network [OSTI]

    Sosnovsky, Eugeny

    2014-01-01

    This work proposes a simple and effective approach to modeling nuclear reactor multiphysics problems using bond graphs. Conventional multiphysics simulation paradigms normally use operator splitting, which treats the ...

  15. Innovative fuel designs for high power density pressurized water reactor

    E-Print Network [OSTI]

    Feng, Dandong, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    One of the ways to lower the cost of nuclear energy is to increase the power density of the reactor core. Features of fuel design that enhance the potential for high power density are derived based on characteristics of ...

  16. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, Victor T. (Idaho Falls, ID)

    1993-01-01

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  17. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, V.T.

    1993-04-06

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  18. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  19. APPLICATION OF DATA ANALYSIS TECHNIQUES TO NUCLEAR REACTOR

    E-Print Network [OSTI]

    Kunz, Robert Francis

    1 APPLICATION OF DATA ANALYSIS TECHNIQUES TO NUCLEAR REACTOR SYSTEMS CODE ACCURACY ASSESSMENT) has been developed by the authors to provide quantitative comparisons between nuclear reactor systems. 1. INTRODUCTION In recent years, the commercial nuclear reactor industry has focused significant

  20. The behavior of fission products during nuclear rocket reactor tests

    SciTech Connect (OSTI)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    The experience base regarding fission product behavior developed during the Rover program, the nuclear rocket development program of 1955--1972, will be useful in planning a renewed nuclear rocket program. During the Rover program, 20 reactors were tested at the Nuclear Rocket Development Station in Nevada. Nineteen of these discharged effluent directly into the atmosphere; the last reactor tested, a non-flight-prototypic, fuel-element-testing reactor called the Nuclear Furnace (NF-1) was connected to an effluent cleanup system that removed fission products before the hydrogen coolant (propellant) was discharged to the atmosphere. In general, we are able to increase both test duration and fuel temperature during the test series. Therefore fission product data from the later part of the program are more interesting and more applicable to future reactors. We have collected fission product retention (and release) data reported in both formal and informal publications for six of the later reactor tests; five of these were Los Alamos reactors that were firsts of a kind in configuration or operating conditions. We have also, with the cooperation of Westinghouse, included fission product data from the NRX-A6 reactor, the final member of series of developmental reactors with the same basic geometry, but with significant design and fabrication improvements as the series continued. Table 1 lists the six selected reactors and the test parameters for each.

  1. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  2. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  3. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, Robert W. (Richland, WA)

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  4. Physics-based multiscale coupling for full core nuclear reactor...

    Office of Scientific and Technical Information (OSTI)

    multiscale coupling for full core nuclear reactor simulation Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety,...

  5. Fundamental aspects of nuclear reactor fuel elements (Technical...

    Office of Scientific and Technical Information (OSTI)

    Fundamental aspects of nuclear reactor fuel elements Citation Details In-Document Search Title: Fundamental aspects of nuclear reactor fuel elements You are accessing a document...

  6. Nuclear reactor internals alignment configuration

    DOE Patents [OSTI]

    Gilmore, Charles B. (Greensburg, PA); Singleton, Norman R. (Murrysville, PA)

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  7. Nuclear reactor composite fuel assembly

    DOE Patents [OSTI]

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  8. Shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Groh, E.F.; Olson, A.P.; Wade, D.C.; Robinson, B.W.

    1984-06-05

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion. 8 figs.

  9. Fast-acting nuclear reactor control device

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (Idaho Falls, ID); West, Phillip B. (Idaho Falls, ID)

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  10. Shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Groh, Edward F. (Naperville, IL); Olson, Arne P. (Western Springs, IL); Wade, David C. (Naperville, IL); Robinson, Bryan W. (Oak Lawn, IL)

    1984-01-01

    An ultimate shutdown system is provided for termination of neutronic activity in a nuclear reactor. The shutdown system includes bead chains comprising spherical containers suspended on a flexible cable. The containers are comprised of mating hemispherical shells which provide a ruggedized enclosure for reactor poison material. The bead chains, normally suspended above the reactor core on storage spools, are released for downward travel upon command from an external reactor monitor. The chains are capable of horizontal movement, so as to flow around obstructions in the reactor during their downward motion.

  11. CONFERENCES AND SYMPOSIA FUSION REACTOR DESIGN IV

    E-Print Network [OSTI]

    Abdou, Mohamed

    in the physics of laser-target interactions, target design and implosion experiments; 5.3. New ICF reactorCONFERENCES AND SYMPOSIA FUSION REACTOR DESIGN IV Report on the Fourth IAEA Technical Committee Reactor Design and Technology at Yalta, USSR, from 26 May -- 6 June 1986. This report contains all

  12. Gas-cooled nuclear reactor

    DOE Patents [OSTI]

    Peinado, Charles O. (La Jolla, CA); Koutz, Stanley L. (San Diego, CA)

    1985-01-01

    A gas-cooled nuclear reactor includes a central core located in the lower portion of a prestressed concrete reactor vessel. Primary coolant gas flows upward through the core and into four overlying heat-exchangers wherein stream is generated. During normal operation, the return flow of coolant is between the core and the vessel sidewall to a pair of motor-driven circulators located at about the bottom of the concrete pressure vessel. The circulators repressurize the gas coolant and return it back to the core through passageways in the underlying core structure. If during emergency conditions the primary circulators are no longer functioning, the decay heat is effectively removed from the core by means of natural convection circulation. The hot gas rising through the core exits the top of the shroud of the heat-exchangers and flows radially outward to the sidewall of the concrete pressure vessel. A metal liner covers the entire inside concrete surfaces of the concrete pressure vessel, and cooling tubes are welded to the exterior or concrete side of the metal liner. The gas coolant is in direct contact with the interior surface of the metal liner and transfers its heat through the metal liner to the liquid coolant flowing through the cooling tubes. The cooler gas is more dense and creates a downward convection flow in the region between the core and the sidewall until it reaches the bottom of the concrete pressure vessel when it flows radially inward and up into the core for another pass. Water is forced to flow through the cooling tubes to absorb heat from the core at a sufficient rate to remove enough of the decay heat created in the core to prevent overheating of the core or the vessel.

  13. Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina)

    E-Print Network [OSTI]

    Gratta, Giorgio

    Nuclear reactor safeguards and monitoring with antineutrino detectors A. Bernsteina) Sandia of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being

  14. The design of a functionally graded composite for service in high temperature lead and lead-bismuth cooled nuclear reactors

    E-Print Network [OSTI]

    Short, Michael Philip

    2010-01-01

    A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required ...

  15. Today and Future Neutrino Experiments at Krasnoyarsk Nuclear Reactor

    E-Print Network [OSTI]

    Yu. V. Kozlov; S. V. Khalturtsev; I. N. Machulin; A. V. Martemyanov; V. P. Martemyanov; A. A. Sabelnikov; V. G. Tarasenkov; E. V. Turbin; V. N. Vyrodov; L. A. Popeko; A. V. Cherny; G. A. Shishkina

    1999-12-22

    The results of undergoing experiments and new experiment propositions at Krasnoyarsk underground nuclear reactor are presented

  16. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  17. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Moninder Singh Modgil

    2002-10-02

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  18. Large Scale Weather Control Using Nuclear Reactors

    E-Print Network [OSTI]

    Singh-Modgil, M

    2002-01-01

    It is pointed out that controlled release of thermal energy from fission type nuclear reactors can be used to alter weather patterns over significantly large geographical regions. (1) Nuclear heat creates a low pressure region, which can be used to draw moist air from oceans, onto deserts. (2) Creation of low pressure zones over oceans using Nuclear heat can lead to Controlled Cyclone Creation (CCC).(3) Nuclear heat can also be used to melt glaciers and control water flow in rivers.

  19. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  20. Spent nuclear fuel discharges from US reactors 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  1. Nuclear reactor construction with bottom supported reactor vessel

    DOE Patents [OSTI]

    Sharbaugh, John E. (Bullskin Township, Fayette County, PA)

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core within the pool. The reactor vessel has an open top end, a closed flat bottom end wall and a continuous cylindrical closed side wall interconnecting the top end and bottom end wall. The reactor also has a generally cylindrical concrete containment structure surrounding the reactor vessel and being formed by a cylindrical side wall spaced outwardly from the reactor vessel side wall and a flat base mat spaced below the reactor vessel bottom end wall. A central support pedestal is anchored to the containment structure base mat and extends upwardly therefrom to the reactor vessel and upwardly therefrom to the reactor core so as to support the bottom end wall of the reactor vessel and the lower end of the reactor core in spaced apart relationship above the containment structure base mat. Also, an annular reinforced support structure is disposed in the reactor vessel on the bottom end wall thereof and extends about the lower end of the core so as to support the periphery thereof. In addition, an annular support ring having a plurality of inward radially extending linear members is disposed between the containment structure base mat and the bottom end of the reactor vessel wall and is connected to and supports the reactor vessel at its bottom end on the containment structure base mat so as to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event. The reactor construction also includes a bed of insulating material in sand-like granular form, preferably being high density magnesium oxide particles, disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall on the containment structure base mat so as to insulate the reactor vessel bottom end wall from the containment structure base mat and allow the reactor vessel bottom end wall to freely expand as it heats up while providing continuous support thereof. Further, a deck is supported upon the side wall of the containment structure above the top open end of the reactor vessel, and a plurality of serially connected extendible and retractable annular bellows extend between the deck and the top open end of the reactor vessel and flexibly and sealably interconnect the reactor vessel at its top end to the deck. An annular guide ring is disposed on the containment structure and extends between its side wall and the top open end of the reactor vessel for providing lateral support of the reactor vessel top open end by limiting imposition of lateral loads on the annular bellows by the occurrence of a lateral seismic event.

  2. NRC policy on future reactor designs

    SciTech Connect (OSTI)

    none,

    1985-07-01

    On April 13, 1983, the US Nuclear Regulatory Commission issued for public comment a ''Proposed Commission Policy Statement on Severe Accidents and Related Views on Nuclear Reactor Regulation'' (48 FR 16014). This report presents and discusses the Commission's final version of that policy statement now entitled, ''Policy Statement on Severe Reactor Accidents Regarding Future Designs and Existing Plants.'' It provides an overview of comments received from the public and the Advisory Committee on Reactor Safeguards and the staff response to these. In addition to the Policy Statement, the report discusses how the policies of this statement relate to other NRC programs including the Severe Accident Research Program; the implementation of safety measures resulting from lessons learned in the accident at Three Mile Island; safety goal development; the resolution of Unresolved Safety Issues and other Generic Safety Issues; and possible revisions of rules or regulatory requirements resulting from the Severe Accident Source Term Program. Also discussed are the main features of a generic decision strategy for resolving Regulatory Questions and Technical Issues relating to severe accidents; the development and regulatory use of new safety information; the treatment of uncertainty in severe accident decision making; and the development and implementation of a Systems Reliability Program for both existing and future plants to ensure that the realized level of safety is commensurate with the safety analyses used in regulatory decisions.

  3. NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944

    E-Print Network [OSTI]

    #12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20, naval reactors, and nuclear power plants. Oak Ridge experiments byArt Snell in 1944 showed that 10 tons

  4. Heat dissipating nuclear reactor with metal liner

    DOE Patents [OSTI]

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  5. Heat dissipating nuclear reactor with metal liner

    DOE Patents [OSTI]

    Gluekler, Emil L. (San Jose, CA); Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

    1987-01-01

    Disclosed is a nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  6. Reactivity control assembly for nuclear reactor. [LMFBR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  7. Optimally moderated nuclear fission reactor and fuel source therefor

    DOE Patents [OSTI]

    Ougouag, Abderrafi M. (Idaho Falls, ID); Terry, William K. (Shelley, ID); Gougar, Hans D. (Idaho Falls, ID)

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  8. NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS...

    Office of Scientific and Technical Information (OSTI)

    Limit analysis of pipe clamps Flanders, H.E. Jr. 22 GENERAL STUDIES OF NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS; HEAT TRANSFER; HYDRAULICS; REACTOR SAFETY;...

  9. White paper report on using nuclear reactors to search for a value of theta13

    E-Print Network [OSTI]

    2004-01-01

    PAPER REPORT on Using Nuclear Reactors to Search for a valuetimely new experiment at a nuclear reactor sensitive to theand judicious choice of a nuclear reactor. The dominant

  10. 22.39 Integration of Reactor Design, Operations, and Safety, Fall 2005

    E-Print Network [OSTI]

    Todreas, Neil E.

    This course integrates studies of reactor physics and engineering sciences into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and ...

  11. Metallic Fast Reactor Fuel Fabrication for Global Nuclear Energy Partnership

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter

    2009-07-01

    Fast reactors are once again being considered for nuclear power generation, in addition to transmutation of long-lived fission products resident in spent nuclear fuels. This re-consideration follows with intense developmental programs for both fuel and reactor design. One of the two leading candidates for next generation fast reactor fuel is metal alloys, resulting primarily from the successes achieved in the 1960s to early 1990s with both the experimental breeding reactor-II and the fast flux test facility. The goal of the current program is to develop and qualify a nuclear fuel system that performs all of the functions of a conventional, fast-spectrum nuclear fuel while destroying recycled actinides, thereby closing the nuclear fuel cycle. In order to meet this goal, the program must develop efficient and safe fuel fabrication processes designed for remote operation. This paper provides an overview of advanced casting processes investigated in the past, and the development of a gaseous diffusion calculation that demonstrates how straightforward process parameter modification can mitigate the loss of volatile minor actinides in the metal alloy melt.

  12. Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes 

    E-Print Network [OSTI]

    Reza, S.M. Mohsin

    2009-05-15

    Approved by: Chair of Committee, Kenneth L. Peddicord Committee Members, Marvin L. Adams William H. Marlow Karl T. Hartwig Edwin A. Harvego Head of Department, William E. Burchill May 2007 Major Subject: Nuclear... with the Idaho National Laboratory and General Atomics for my research. It was a great learning experience for me to work on this project with Dr. Peddicord and under the arrangements he made for me. I would like to thank Marvin L. Adams, William H. Marlow...

  13. Cooling system for a nuclear reactor

    DOE Patents [OSTI]

    Amtmann, Hans H. (Rancho Santa Fe, CA)

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  14. Nuclear reactor fissile isotopes antineutrino spectra

    E-Print Network [OSTI]

    V. Sinev

    2012-07-30

    Positron spectrum from inverse beta decay reaction on proton was measured in 1988-1990 as a result of neutrino exploration experiment. The measured spectrum has the largest statistics and lowest energy threshold between other neutrino experiments made that time at nuclear reactors. On base of the positron spectrum the standard antineutrino spectrum for typical reactor fuel composition was restored. In presented analysis the partial spectra forming this standard spectrum were extracted using specific method. They could be used for neutrino experiments data analysis made at any fuel composition of reactor core.

  15. Reactor protection system design alternatives for sodium fast reactors

    E-Print Network [OSTI]

    DeWitte, Jacob D. (Jacob Dominic)

    2011-01-01

    Historically, unprotected transients have been viewed as design basis events that can significantly challenge sodium-cooled fast reactors. The perceived potential consequences of a severe unprotected transient in a ...

  16. Reactor physics design of supercritical CO?-cooled fast reactors

    E-Print Network [OSTI]

    Pope, Michael A. (Michael Alexander)

    2004-01-01

    Gas-Cooled Fast Reactors (GFRs) are among the GEN-IV designs proposed for future deployment. Driven by anticipated plant cost reduction, the use of supercritical CO? (S-CO?) as a Brayton cycle working fluid in a direct ...

  17. Theta 13 Determination with Nuclear Reactors

    E-Print Network [OSTI]

    F. Dalnoki-Veress

    2004-06-24

    Recently there has been a lot of interest around the world in the use of nuclear reactors to measure theta 13, the last undetermined angle in the 3-neutrino mixing scenario. In this paper the motivations for theta 13 measurement using short baseline nuclear reactor experiments are discussed. The features of such an experiment are described in the context of Double Chooz, which is a new project planned to start data-taking in 2008, and to reach a sensitivity of sinsq(2 theta 13) < 0.03.

  18. 22.312 Engineering of Nuclear Reactors, Fall 2004

    E-Print Network [OSTI]

    Buongiorno, Jacopo, 1971-

    Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

  19. 22.312 Engineering of Nuclear Reactors, Fall 2002

    E-Print Network [OSTI]

    Todreas, Neil E.

    Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural ...

  20. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect (OSTI)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

  1. CRAD, Nuclear Reactor Facility Operations - December 4, 2014...

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) Nuclear Reactor Faclity Operations Criteria Review and Approach Document (EA CRAD 31-08, Rev....

  2. Nuclear reactor alignment plate configuration

    DOE Patents [OSTI]

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  3. Nuclear reactor shutdown control rod assembly

    DOE Patents [OSTI]

    Bilibin, Konstantin (North Hollywood, CA)

    1988-01-01

    A temperature responsive, self-actuated nuclear reactor shutdown control rod assembly 10. The upper end 18 of a lower drive line 17 fits within the lower end of an upper drive line 12. The lower end (not shown) of the lower drive line 17 is connected to a neutron absorber. During normal temperature conditions the lower drive line 17 is supported by detent means 22,26. When an overtemperature condition occurs thermal actuation means 34 urges ring 26 upwardly sufficiently to allow balls 22 to move radially outwardly thereby allowing lower drive line 17 to move downwardly toward the core of the nuclear reactor resulting in automatic reduction of the reactor powder.

  4. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  5. Passive heat transfer means for nuclear reactors

    DOE Patents [OSTI]

    Burelbach, James P. (Glen Ellyn, IL)

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  6. MA50177: Scientific Computing Nuclear Reactor Simulation Generalised Eigenvalue Problems

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    MA50177: Scientific Computing Case Study Nuclear Reactor Simulation ­ Generalised Eigenvalue of a malfunction or of an accident experimentally, the numerical simulation of nuclear reactors is of utmost balance in a nuclear reactor are the two-group neutron diffusion equations -div (K1 u1) + (a,1 + s) u1 = 1

  7. ARTIGO INTERNET Professores visitam o maior reactor de Fuso Nuclear

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    ARTIGO INTERNET Professores visitam o maior reactor de Fusão Nuclear in http reactor de Fusão Nuclear Experiência aproxima investigação das futuras gerações Doze professores do ensino secundário visitaram o maior reactor de fusão nuclear da Terra (JET), no Reino Unido, na semana passada

  8. THE ECONOMICS OF NUCLEAR REACTORS: RENAISSANCE OR RELAPSE?

    E-Print Network [OSTI]

    Laughlin, Robert B.

    THE ECONOMICS OF NUCLEAR REACTORS: RENAISSANCE OR RELAPSE? MARK COOPER SENIOR FELLOW FOR ECONOMIC Findings Approach Hope and Hype vs. Reality in Nuclear Reactor Costs The Economic Cost of Low Carbon. INTRODUCTION 10 A. The Troubling History of Nuclear Reactor Costs B. Purpose and Outline II. THE STRUCTURE

  9. Nuclear Thermal Rockets: The Physics of the Fission Reactor

    E-Print Network [OSTI]

    Ross, Shane

    Nuclear Thermal Rockets: The Physics of the Fission Reactor Shane D. Ross Control and Dynamical heats up when it passes through a nuclear reactor, where controlled fission of some fissionable material, with the nuclear fission reactor as a heat source [Lawrence, Witter, and Humble, 1992]. it works essentially

  10. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect (OSTI)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  11. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect (OSTI)

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  12. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; G. Ricco; B. Caiffi; F. Pompili; M. Pillon; M. Angelone; G. Verona-Rinati; R. Cardarelli; G. Mila; S. Argiro

    2015-05-25

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  13. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  14. Design of a sodium-cooled epithermal long-term exploration nuclear engine

    E-Print Network [OSTI]

    Yarsky, Peter

    2004-01-01

    To facilitate the mission to Mars initiative, the current work has focused on conceptual designs for transformational and enabling space nuclear reactor technologies. A matrix of design alternatives for both the reactor ...

  15. Rodded shutdown system for a nuclear reactor

    DOE Patents [OSTI]

    Golden, Martin P. (Penn Township, Allegheny County, PA); Govi, Aldo R. (Greensburg, PA)

    1978-01-01

    A top mounted nuclear reactor diverse rodded shutdown system utilizing gas fed into a pressure bearing bellows region sealed at the upper extremity to an armature. The armature is attached to a neutron absorber assembly by a series of shafts and connecting means. The armature is held in an uppermost position by an electromagnet assembly or by pressurized gas in a second embodiment. Deenergizing the electromagnet assembly, or venting the pressurized gas, causes the armature to fall by the force of gravity, thereby lowering the attached absorber assembly into the reactor core.

  16. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, Robert C. (Pittsburgh, PA); Orr, Richard (Pittsburgh, PA)

    1993-01-01

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  17. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, R.C.; Orr, R.

    1993-11-16

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  18. A BEHAVIOR-PRESERVING TRANSLATION FROM FBD DESIGN TO C IMPLEMENTATION FOR REACTOR

    E-Print Network [OSTI]

    of power plant construction technology. As the nuclear reactor protec- tion system (RPS) makes decisions- lator into C programs. KNICS (Korea Nuclear Instrumentation and Control System R&D Center) project [9A BEHAVIOR-PRESERVING TRANSLATION FROM FBD DESIGN TO C IMPLEMENTATION FOR REACTOR PROTECTION SYSTEM

  19. DOE fundamentals handbook: Nuclear physics and reactor theory

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  20. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  1. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  2. Method for automatically scramming a nuclear reactor

    DOE Patents [OSTI]

    Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.

    2005-12-27

    An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.

  3. The development of a remote monitoring system for the Nuclear Science Center reactor 

    E-Print Network [OSTI]

    Jiltchenkov, Dmitri Victorovich

    2002-01-01

    With funding provided by Nuclear Energy Research Initiative (NERI), design of Secure, Transportable, Autonomous Reactors (STAR) to aid countries with insufficient energy supplies is underway. The development of a new monitoring system that allows...

  4. Oklo reactors and implications for nuclear science

    E-Print Network [OSTI]

    E. D. Davis; C. R. Gould; E. I. Sharapov

    2014-04-19

    We summarize the nuclear physics interests in the Oklo natural nuclear reactors, focusing particularly on developments over the past two decades. Modeling of the reactors has become increasingly sophisticated, employing Monte Carlo simulations with realistic geometries and materials that can generate both the thermal and epithermal fractions. The water content and the temperatures of the reactors have been uncertain parameters. We discuss recent work pointing to lower temperatures than earlier assumed. Nuclear cross sections are input to all Oklo modeling and we discuss a parameter, the $^{175}$Lu ground state cross section for thermal neutron capture leading to the isomer $^{176\\mathrm{m}}$ Lu, that warrants further investigation. Studies of the time dependence of dimensionless fundamental constants have been a driver for much of the recent work on Oklo. We critically review neutron resonance energy shifts and their dependence on the fine structure constant $\\alpha$ and the ratio $X_q=m_q/\\Lambda$ (where $m_q$ is the average of the $u$ and $d$ current quark masses and $\\Lambda$ is the mass scale of quantum chromodynamics). We suggest a formula for the combined sensitivity to $\\alpha$ and $X_q$ that exhibits the dependence on proton number $Z$ and mass number $A$, potentially allowing quantum electrodynamic and quantum chromodynamic effects to be disentangled if a broader range of isotopic abundance data becomes available.

  5. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    SciTech Connect (OSTI)

    Ruger, C.J.; Higgins, J.C.

    1993-11-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970`s and early 1980`s raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants.

  6. Advances in ICF power reactor design

    SciTech Connect (OSTI)

    Hogan, W.J.; Kulcinski, G.L.

    1985-07-01

    Fifteen ICF power reactor design studies published since 1980 are reviewed to illuminate the design trends they represent. There is a clear, continuing trend toward making ICF reactors inherently safer and environmentally benign. Since this trend accentuates inherent advantages of ICF reactors, we expect it to be further emphasized in the future. An emphasis on economic competitiveness appears to be a somewhat newer trend. Lower cost of electricity, smaller initial size (and capital cost), and more affordable development paths are three of the issues being addressed with new studies.

  7. Thermoacoustic Thermometry for Nuclear Reactor Monitoring

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-06-01

    On Friday, March 11, 2011, at 2:46pm (Japan Standard Trme), the Tohoku region on the east coast of northern Japan experi­enced what would become known as the largest earthquake in the country's history at magnitude 9.0 on the Richter scale. The Fukushima Daiichi nuclear power plant suffered exten­sive and irreversible damage. Six operating units were at the site, each with a boiling water reactor. When the earthquake struck, three of the six reactors were operating and the others were in a periodic inspection outage phase. In one reactor, all of the fuel had been relocated to a spent fuel pool in the reactor building. The seismic acceleration caused by the earthquake brought the three operating units to an automatic shutdown. Since there was damage to the power transmission lines, the emergency diesel generators (EDG) were automat­ically started to ensure continued cooling of the reactors and spent fuel pools. The situation was under control until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 meters, which was three times taller than the sea wall of 5m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to five of the six reactors. The flooding also resulted in the loss of instrumentation that would have other­ wise been used to monitor and control the emergency. The ugly aftermath included high radiation exposure to operators at the nuclear power plants and early contamina­tion of food supplies and water within several restricted areas in Japan, where high radiation levels have rendered them un­safe for human habitation. While the rest of the story will remain a tragic history, it is this part of the series of unfortunate events that has inspired our research. It has indubitably highlighted the need for a novel sensor and instrumentation system that can withstand similar or worse conditions to avoid future catastrophe and assume damage prevention as quickly as possible. This is the question which we are attempting to answer: Is it possible to implement a self-powered sensor that could transmit data independently of electronic networks while taking advantage of the harsh operating environment of the nuclear reactor?

  8. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  9. LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS

    E-Print Network [OSTI]

    Bazhenov, Maxim

    LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC employed for analyzing reactor dynamics. Equations of this type are used for analyzing the stability of the reactor power, etc. Among these problems the question of the boundedness of reactor power bursts

  10. ASSESSMENT OF SMALL AND MODULAR REACTOR NUCLEAR FUEL COST 

    E-Print Network [OSTI]

    Pannier, Christopher 1992-

    2012-05-03

    INCAS INtegrated model for the Competitiveness Analysis of Small modular reactors LWR Light Water Reactor NEI Nuclear Energy Institute PWR Pressurized Water Reactor PHWR Pressurized Heavy Water Reactor SEMER Système d’Évaluation et de Modélisation... ...................................................... 27 8 LWR Fuel Cost ..................................................................................................... 28 9 SMR Fuel Cost ..................................................................................................... 29...

  11. Mirror Advanced Reactor Study interim design report

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  12. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Djurcic, Zelimir

    2009-01-01

    CALCULATIONS During the power cycle of a nuclear reactor,depleted. At the end of the power cycle, some frac- tion offuel throughout the power cycle is of interest to reactor

  13. Advanced nuclear reactor public opinion project

    SciTech Connect (OSTI)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  14. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Nuclear Power Reactors PROTECTION AGAINST SABOTAGE Protection Against Industrial Sabotage I1C-4 Decominarion and Decommissioning of Reactors a Design Features to Control

  15. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect (OSTI)

    Cooke, Conrad; Spann, Holger

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

  16. A comparison of nuclear reactor control room display panels 

    E-Print Network [OSTI]

    Bowers, Frances Renae

    1988-01-01

    . PAGE 38 79 CHAPTER I INTRODUCTION At approximately 4:00 am on March 28, 1979, several reactor coolant feedwater pumps malfunctioned in the Three Mile Island Unit 2 nuclear power plant. Thus began the worst accident to date in the U. S. nuclear...: Dr. Rodger S. Koppa A study was conducted to investigate the use of computer generated displays to operate nuclear reactor power plants. The AGN-201 reactor at Texas A&M university was the reactor studied. After observing several licensed reactor...

  17. Nuclear reactor flow control method and apparatus

    DOE Patents [OSTI]

    Church, J.P.

    1993-03-30

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  18. Neutrino Oscillation Experiments at Nuclear Reactors

    E-Print Network [OSTI]

    Giorgio Gratta

    1999-05-06

    In this paper I give an overview of the status of neutrino oscillation experiments performed using nuclear reactors as sources of neutrinos. I review the present generation of experiments (Chooz and Palo Verde) with baselines of about 1 km as well as the next generation that will search for oscillations with a baseline of about 100 km. While the present detectors provide essential input towards the understanding of the atmospheric neutrino anomaly, in the future, the KamLAND reactor experiment represents our best opportunity to study very small mass neutrino mixing in laboratory conditions. In addition KamLAND with its very large fiducial mass and low energy threshold, will also be sensitive to a broad range of different physics.

  19. Nuclear reactor flow control method and apparatus

    DOE Patents [OSTI]

    Church, John P. (1204 Woodbine Rd., Aiken, SC 29803)

    1993-01-01

    Method and apparatus for improving coolant flow in a nuclear reactor during accident as well as nominal conditions. The reactor has a plurality of fuel elements in sleeves and a plenum above the fuel and through which the sleeves penetrate. Holes are provided in the sleeve so that coolant from the plenum can enter the sleeve and cool the fuel. The number and size of the holes are varied from sleeve to sleeve with the number and size of holes being greater for sleeves toward the center of the core and less for sleeves toward the periphery of the core. Preferably the holes are all the same diameter and arranged in rows and columns, the rows starting from the bottom of every sleeve and fewer rows in peripheral sleeves and more rows in the central sleeves.

  20. Fuel handling system for a nuclear reactor

    DOE Patents [OSTI]

    Saiveau, James G. (Hickory Hills, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  1. Design options for a bunsen reactor.

    SciTech Connect (OSTI)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  2. Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An innovative idea for cleaning up sodium in a decommissioned nuclear reactor at EM’s Idaho site grew from a carpool discussion.

  3. Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    National Nuclear Security Administration (NNSA)

    * Complete reactor control rod system. * Note: Does not include the steam turbine generator portion of the power plant. - Sensitive nuclear technology: Any information...

  4. Modeling and Simulation for Nuclear Reactors Hub | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to help the nuclear industry make reactors more efficient through computer modeling and simulation. The Department's Energy Innovation Hubs are helping to advance promising areas...

  5. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    SciTech Connect (OSTI)

    Pan, Paul Y

    2010-12-10

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  6. Nuclear Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind CareerEnergy Nuclear FuelsReactor

  7. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  8. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  9. PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-10

    E-Print Network [OSTI]

    Danon, Yaron

    PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-10 10 11 12 13 14 15 16 17 18 19 neutron wavelength, D is given by: cE mM Mm 2 + = h D , (1.22) 1 Bell and Glasstone, Nuclear Reactor Theory, p. 392, 1970. #12;PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-11 Where m

  10. Minimizing or eliminating refueling of nuclear reactor

    DOE Patents [OSTI]

    Doncals, Richard A. (Washington, PA); Paik, Nam-Chin (Pittsburgh, PA); Andre, Sandra V. (Hempfield Township, Westmoreland County, PA); Porter, Charles A. (Rostraver Township, Westmoreland County, PA); Rathbun, Roy W. (Greensburg, PA); Schwallie, Ambrose L. (Greensburg, PA); Petras, Diane S. (Penn Township, Westmoreland County, PA)

    1989-01-01

    Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

  11. A New Nuclear Reactor Neutrino Experiment to Measure theta 13

    E-Print Network [OSTI]

    K. Anderson

    2004-02-26

    An International Working Group has been meeting to discuss ideas for a new Nuclear Reactor Neutrino Experiment at meetings in May 2003 (Alabama), October 2003 (Munich) and plans for March 2004 (Niigata). This White Paper Report on the Motivation and Feasibility of such an experiment is the result of these meetings. After a discussion of the context and opportunity for such an experiment, there are sections on detector design, calibration, overburden and backgrounds, systematic errors, other physics, tunneling issues, safety and outreach. There are 7 appendices describing specific site opportunities.

  12. Nuclear reactors built, being built, or planned 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Nuclear Reactors Built, Being Built, or Planned contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1993. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: civilian, production, military, export, and critical assembly.

  13. Thermal barrier and support for nuclear reactor fuel core

    DOE Patents [OSTI]

    Betts, Jr., William S. (Del Mar, CA); Pickering, J. Larry (Del Mar, CA); Black, William E. (San Diego, CA)

    1987-01-01

    A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.

  14. Design tool needs for space nuclear propulsion systems

    SciTech Connect (OSTI)

    Klein, A.C. (Oregon State Univ., Corvallis (United States)); Lewis, B.R. (Atom Analysis, Inc., Portland, OR (United States))

    1992-01-01

    The interest in a return trip for humans to the moon and a pioneering voyage to Mars has rekindled interest in the use of nuclear reactors to provide propulsion for both piloted and robotic space vehicles. Two types of nuclear reactor-based propulsion systems are currently envisioned: nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The former relies on the direct heating and exhaust of a propellant within the core of the reactor, while the latter utilizes ion thruster engines for propulsion, and the nuclear reactor supplies the large amount of electrical power required to drive the engines. Another direct contrast between the NTP and NEP concepts is the length of reactor operation. The NTP nuclear rocket core is required to produce large amounts of thermal power for relatively short bursts (on the order of minutes to hours), and the NEP reactor core operates for a much longer period of time (on the order of days to months) with a steady-state electrical power output. The design of these types of nuclear reactor systems requires the use of specific analysis tools, some of which already exist and others that need considerable development. The general areas in which design tools are needed in the development of systems for space nuclear propulsion include the following: (1) neutronics design - both steady-state and transient applications including thermal feedback effects; (2) thermal-hydraulics design - again, both steady-state and transient applications with coupling to and from the neutronics design codes; (3) materials analysis tools - due to the high temperatures and high stresses required for efficient propulsion operation, increased importance will be placed on understanding the material responses; and (4) systems analysis - these codes allow optimizaiton of the entire propulsion system.

  15. C Produced by Nuclear Power Reactors Generation and Characterization of

    E-Print Network [OSTI]

    Haviland, David

    14 C Produced by Nuclear Power Reactors ­ Generation and Characterization of Gaseous, Liquid in the terrestrial environment in the vicinity of two European nuclear power plants. Radiocarbon 46(2)863­868. III levels in the vicinity of the Lithuanian nuclear power plant Ignalina. Nuclear Instruments and Methods

  16. Modular stellarator reactor conceptual design study

    SciTech Connect (OSTI)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.

    1983-01-01

    A conceptual design study of the Modular Stellarator Reactor is summarized. The physics basis of the approach is elucidated with emphasis on magnetics performance optimization. Key engineering features of the fusion power core are described. Comparisons with an analogous continuous-helical-coil (torsatron) system are made as the basis of a technical and economic assessment.

  17. Spent nuclear fuel discharges from U.S. reactors 1994

    SciTech Connect (OSTI)

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  18. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect (OSTI)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  19. Weld monitor and failure detector for nuclear reactor system

    DOE Patents [OSTI]

    Sutton, Jr., Harry G. (Mt. Lebanon, PA)

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  20. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    SciTech Connect (OSTI)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  1. Can Next-Generation Reactors Power a Safe Nuclear Futur By Clay Dillow Posted 03.17.2011 at 12:18 pm

    E-Print Network [OSTI]

    Danon, Yaron

    Can Next-Generation Reactors Power a Safe Nuclear Futur By Clay Dillow Posted 03.17.2011 at 12 of nuclear reactors are designed to prevent exactly what we old Fukushima Daiichi plant. Which is good the world rush to reconsider their nuclear plans, nuclear experts look toward a future of smaller, safer

  2. P.C. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; BWR...

    Office of Scientific and Technical Information (OSTI)

    Erosioncorrosion-induced pipe wall thinning in US Nuclear Power Plants Wu, P.C. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; BWR TYPE REACTORS; PIPES; CORROSION; EROSION;...

  3. MOOSE simulating nuclear reactor CRUD buildup

    SciTech Connect (OSTI)

    2014-02-06

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  4. MOOSE simulating nuclear reactor CRUD buildup

    ScienceCinema (OSTI)

    None

    2014-07-21

    This simulation uses multiple physical models to show how the buildup of boron deposits on reactor fuel can affect performance and the reactor's power profile.

  5. Nuclear reactor cooling system decontamination reagent regeneration

    DOE Patents [OSTI]

    Anstine, Larry D. (San Jose, CA); James, Dean B. (Saratoga, CA); Melaika, Edward A. (Berkeley, CA); Peterson, Jr., John P. (Livermore, CA)

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  6. CONSTRUCTION OF WEB-ACCESSIBLE MATERIALS HANDBOOK FORGENERATION IV NUCLEAR REACTORS

    SciTech Connect (OSTI)

    Ren, Weiju

    2005-01-01

    The development of a web-accessible materials handbook in support of the materials selection and structural design for the Generation IV nuclear reactors is being planned. Background of the reactor program is briefly introduced. Evolution of materials handbooks for nuclear reactors over years is reviewed in light of the trends brought forth by the rapid advancement in information technologies. The framework, major features, contents, and construction considerations of the web-accessible Gen IV Materials Handbook are discussed. Potential further developments and applications of the handbook are also elucidated.

  7. Nuclear reactors built, being built, or planned, 1991

    SciTech Connect (OSTI)

    Simpson, B.

    1992-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1991. The book is divided into three major sections: Section 1 consists of a reactor locator map and reactor tables; Section 2 includes nuclear reactors that are operating, being built, or planned; and Section 3 includes reactors that have been shut down permanently or dismantled. Sections 2 and 3 contain the following classification of reactors: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is an American company -- working either independently or in cooperation with a foreign company (Part 4, in each section). Critical assembly refers to an assembly of fuel and assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  8. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect (OSTI)

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  9. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    ScienceCinema (OSTI)

    None

    2014-03-11

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  10. SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary

    SciTech Connect (OSTI)

    2013-09-25

    U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.

  11. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect (OSTI)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  12. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    SciTech Connect (OSTI)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  13. Effects of an Advanced Reactor’s Design, Use of Automation, and Mission on Human Operators

    SciTech Connect (OSTI)

    Jeffrey C. Joe; Johanna H. Oxstrand

    2014-06-01

    The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plant’s conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operator’s roles, functions, and tasks. We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.

  14. Nuclear Data for Criticality Safety and Reactor Applications at the Gaerttner LINAC Center Y. Danon, R.M. Bahran, E.J. Blain, A.M. Daskalakis, B.J. McDermott, D.G. Williams

    E-Print Network [OSTI]

    Danon, Yaron

    Nuclear Data for Criticality Safety and Reactor Applications at the Gaerttner LINAC Center Y. Danon used in reactor and nuclear criticality safety applications. The goal of this program is to provide to nuclear criticality, neutron shielding applications, nuclear reactor design, and to better understand

  15. Nuclear Graphite -Fission Reactor Brief Outline of Experience and

    E-Print Network [OSTI]

    McDonald, Kirk

    Nuclear Graphite - Fission Reactor Brief Outline of Experience and Understanding Professor Barry J Marsden and Dr. Graham N Hall Nuclear Graphite Research Group The University of Manchester 20 March 201313 9PL Tel: +44 (0) 161 275 4399, barry.marsden@manchester.ac.uk #12;Overview · Nuclear Graphite

  16. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  17. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  18. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    SciTech Connect (OSTI)

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

  19. Nuclear reactors built, being built, or planned 1996

    SciTech Connect (OSTI)

    1997-08-01

    This publication contains unclassified information about facilities, built, being built, or planned in the United States for domestic use or export as of December 31, 1996. The Office of Scientific and Technical Information, U.S. Department of Energy, gathers this information annually from Washington headquarters, and field offices of DOE; from the U.S. Nuclear Regulatory Commission (NRC); from the U. S. reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from U.S. and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled.

  20. Preliminary design studies on a nuclear seawater desalination system

    SciTech Connect (OSTI)

    Wibisono, A. F.; Jung, Y. H.; Choi, J.; Kim, H. S.; Lee, J. I.; Jeong, Y. H.; No, H. C.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclear heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)

  1. Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

  2. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    SciTech Connect (OSTI)

    Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States); Laraia, Michele [private consultant, formerly from IAEA, Kolonitzgasse 10/2, 1030, Vienna (Austria); Pescatore, Claudio [OECD, Nuclear Energy Agency, Issy-les-Moulineaux, Paris (France); Dinner, Paul [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria)

    2012-07-01

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed sufficiently for that experience to be reliably interpreted, the development of structured on-li

  3. Discovery sheds light on nuclear reactor fuel behavior during...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery sheds light on nuclear reactor fuel behavior during a severe event By Angela Hardin * November 20, 2014 Tweet EmailPrint A new discovery about the atomic structure of...

  4. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

    1991-01-01

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  5. Observer-based fault detection for nuclear reactors

    E-Print Network [OSTI]

    Li, Qing, 1972-

    2001-01-01

    This is a study of fault detection for nuclear reactor systems. Basic concepts are derived from fundamental theories on system observers. Different types of fault- actuator fault, sensor fault, and system dynamics fault ...

  6. Development of Technical Nuclear Forensics for Spent Research Reactor Fuel 

    E-Print Network [OSTI]

    Sternat, Matthew Ryan 1982-

    2012-11-20

    Pre-detonation technical nuclear forensics techniques for research reactor spent fuel were developed in a collaborative project with Savannah River National Lab ratory. An inverse analysis method was employed to reconstruct ...

  7. Liquid metal cooled nuclear reactors with passive cooling system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  8. Nuclear reactors built, being built, or planned, 1994

    SciTech Connect (OSTI)

    1995-07-01

    This document contains unclassified information about facilities built, being built, or planned in the United States for domestic use or export as of December 31, 1994. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; tables of data for reactors operating, being built, or planned; and tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company -- working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  9. Nuclear reactors built, being built, or planned: 1995

    SciTech Connect (OSTI)

    1996-08-01

    This report contains unclassified information about facilities built, being built, or planned in the US for domestic use or export as of December 31, 1995. The Office of Scientific and Technical Information, US Department of Energy, gathers this information annually from Washington headquarters and field offices of DOE; from the US Nuclear Regulatory Commission (NRC); from the US reactor manufacturers who are the principal nuclear contractors for foreign reactor locations; from US and foreign embassies; and from foreign governmental nuclear departments. The book consists of three divisions, as follows: (1) a commercial reactor locator map and tables of the characteristic and statistical data that follow; a table of abbreviations; (2) tables of data for reactors operating, being built, or planned; and (3) tables of data for reactors that have been shut down permanently or dismantled. The reactors are subdivided into the following parts: Civilian, Production, Military, Export, and Critical Assembly. Export reactor refers to a reactor for which the principal nuclear contractor is a US company--working either independently or in cooperation with a foreign company (Part 4). Critical assembly refers to an assembly of fuel and moderator that requires an external source of neutrons to initiate and maintain fission. A critical assembly is used for experimental measurements (Part 5).

  10. Vital area identification for U.S. Nuclear Regulatory Commission nuclear power reactor licensees and new reactor applicants.

    SciTech Connect (OSTI)

    Whitehead, Donnie Wayne; Varnado, G. Bruce

    2008-09-01

    U.S. Nuclear Regulatory Commission nuclear power plant licensees and new reactor applicants are required to provide protection of their plants against radiological sabotage, including the placement of vital equipment in vital areas. This document describes a systematic process for the identification of the minimum set of areas that must be designated as vital areas in order to ensure that all radiological sabotage scenarios are prevented. Vital area identification involves the use of logic models to systematically identify all of the malicious acts or combinations of malicious acts that could lead to radiological sabotage. The models available in the plant probabilistic risk assessment and other safety analyses provide a great deal of the information and basic model structure needed for the sabotage logic model. Once the sabotage logic model is developed, the events (or malicious acts) in the model are replaced with the areas in which the events can be accomplished. This sabotage area logic model is then analyzed to identify the target sets (combinations of areas the adversary must visit to cause radiological sabotage) and the candidate vital area sets (combinations of areas that must be protected against adversary access to prevent radiological sabotage). Any one of the candidate vital area sets can be selected for protection. Appropriate selection criteria will allow the licensee or new reactor applicant to minimize the impacts of vital area protection measures on plant safety, cost, operations, or other factors of concern.

  11. A Wide Range Neutron Detector for Space Nuclear Reactor Applications

    SciTech Connect (OSTI)

    Nassif, Eduardo; Sismonda, Miguel; Matatagui, Emilio; Pretorius, Stephan

    2007-01-30

    We propose here a versatile and innovative solution for monitoring and controlling a space-based nuclear reactor that is based on technology already proved in ground based reactors. A Wide Range Neutron Detector (WRND) allows for a reduction in the complexity of space based nuclear instrumentation and control systems. A ground model, predecessor of the proposed system, has been installed and is operating at the OPAL (Open Pool Advanced Light Water Research Reactor) in Australia, providing long term functional data. A space compatible Engineering Qualification Model of the WRND has been developed, manufactured and verified satisfactorily by analysis, and is currently under environmental testing.

  12. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

  13. Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor System

    E-Print Network [OSTI]

    Design, Analysis and Optimization of the Power Conversion System for the Modular Pebble Bed Reactor August 31, 2003 Certified by Ronald G. Ballinger Professor of Nuclear Engineering and Materials Science;2 #12;Design, Analysis, and Optimization of the Power Conversion System for the Modular Pebble Bed

  14. Generating unstructured nuclear reactor core meshes in parallel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore »examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  15. Generating unstructured nuclear reactor core meshes in parallel

    SciTech Connect (OSTI)

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.

  16. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect (OSTI)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

  17. Nuclear Engineeringand Design/Fusion 2 (1985) 19-27 North-Holland, Amsterdam

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    1985-01-01

    Nuclear Engineeringand Design/Fusion 2 (1985) 19-27 North-Holland, Amsterdam 19 INELASTIC for blankets that will give maximum nuclear and thermodynamic performance in a given reactor concept. Fusion STRUCTURAL ANALYSIS OF THE MARS TANDEM MIRROR REACTOR J.P. BLANCHARD and N.M. GHONIEM Fusion Engineering

  18. Nuclear Reactor Safeguards and Monitoring with Antineutrino Detectors

    E-Print Network [OSTI]

    Adam Bernstein; Yifang Wang; Giorgio Gratta; Todd West

    2001-08-01

    Cubic-meter-sized antineutrino detectors can be used to non-intrusively, robustly and automatically monitor and safeguard a wide variety of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors. Since the antineutrino spectra and relative yields of fissioning isotopes depend on the isotopic composition of the core, changes in composition can be observed without ever directly accessing the core itself. Information from a modest-sized antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. A group at Sandia is currently constructing a one cubic meter antineutrino detector at the San Onofre reactor site in California to demonstrate these principles.

  19. Spent nuclear fuel discharges from US reactors 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  20. SNIF: A Futuristic Neutrino Probe for Undeclared Nuclear Fission Reactors

    E-Print Network [OSTI]

    Lasserre, Thierry; Mention, Guillaume; Reboulleau, Romain; Cribier, Michel; Letourneau, Alain; Lhuillier, David

    2010-01-01

    Today reactor neutrino experiments are at the cutting edge of fundamental research in particle physics. Understanding the neutrino is far from complete, but thanks to the impressive progress in this field over the last 15 years, a few research groups are seriously considering that neutrinos could be useful for society. The International Atomic Energy Agency (IAEA) works with its Member States to promote safe, secure and peaceful nuclear technologies. In a context of international tension and nuclear renaissance, neutrino detectors could help IAEA to enforce the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). In this article we discuss a futuristic neutrino application to detect and localize an undeclared nuclear reactor from across borders. The SNIF (Secret Neutrino Interactions Finder) concept proposes to use a few hundred thousand tons neutrino detectors to unveil clandestine fission reactors. Beyond previous studies we provide estimates of all known background sources as a function of the detecto...

  1. http://arXiv.org/physics/0507088 Teaching About Nature's Nuclear Reactors

    E-Print Network [OSTI]

    Learned, John

    http://arXiv.org/physics/0507088 Teaching About Nature's Nuclear Reactors J. Marvin Herndon reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating

  2. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    SciTech Connect (OSTI)

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  3. TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

    E-Print Network [OSTI]

    California at Los Angeles, University of

    GA­A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH or reflect those of the United States Government or any agency thereof. #12;GA­A23168 TOKAMAK REACTOR DESIGNS JULY 1999 #12;C.P.C. WONG AND R.D. STAMBAUGH TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

  4. An American company thinks it can have a commercial reactor ready and working within a decade ONE of the clichs of nuclear-power research is that a commercial fusion reactor is only 30 years away, and always1

    E-Print Network [OSTI]

    South Bohemia, University of

    of the clichés of nuclear-power research is that a commercial fusion reactor is only 30 years away, and always1An American company thinks it can have a commercial reactor ready and working within a decade ONE that Lockheed Martin,2 a big American engineering and defence company, has a new design for a fusion reactor

  5. Nuclear data requirements for fission reactor neutronics calculations.

    SciTech Connect (OSTI)

    Finck, P.

    1998-06-29

    The paper discusses current European nuclear data measurement and evaluation requirements for fission reactor technology applications and problems involved in meeting the requirements. Reference is made to the NEA High Priority Nuclear Data Request List and to the production of the new JEFF-3 library of evaluated nuclear data. There are requirements for both differential (or basic) nuclear data measurements and for different types of integral measurement critical facility measurements and isotopic sample irradiation measurements. Cross-section adjustment procedures are being used to take into account the simpler types of integral measurement, and to define accuracy needs for evaluated nuclear data.

  6. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    SciTech Connect (OSTI)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  7. Liquefaction Reactor Design: April 5, 2013 Knorr, D.; Lukas,...

    Office of Scientific and Technical Information (OSTI)

    Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013 Knorr, D.; Lukas, J.; Schoen, P. 09 BIOMASS FUELS BIOFUELS CONVERSION;...

  8. Space Reactor Radiation Shield Design Summary, for Information

    SciTech Connect (OSTI)

    EC Pheil

    2006-02-17

    The purpose of this letter is to provide a summary of the Prometheus space reactor radiation shield design status at the time of program restructuring.

  9. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  10. Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL

    SciTech Connect (OSTI)

    Freels, James D; Jain, Prashant K; Hobbs, Randy W

    2012-01-01

    The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

  11. June 28, 2005 France to Be Site of World's First Nuclear Fusion Reactor

    E-Print Network [OSTI]

    June 28, 2005 France to Be Site of World's First Nuclear Fusion Reactor By CRAIG S. SMITH PARIS the reactor in the southern French city of Cadarache. Nuclear fusion is the process by which the atomic nuclei than burning fossil fuels or even nuclear fission, which is used in nuclear reactors today but produces

  12. Decision-support tool for assessing future nuclear reactor generation portfolios.

    E-Print Network [OSTI]

    Oosterlee, Cornelis W. "Kees"

    Decision-support tool for assessing future nuclear reactor generation portfolios. Shashi Jain, where especially capital costs are known to be highly uncertain. Differ- ent nuclear reactor types uncertainties in the cost elements of a nuclear power plant, to provide an optimal portfolio of nuclear reactors

  13. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOE Patents [OSTI]

    Jacox, Michael G. (Idaho Falls, ID); Drexler, Robert L. (Idaho Falls, ID); Hunt, Robert N. M. (Idaho Falls, ID); Lake, James A. (Idaho Falls, ID)

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  14. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    SciTech Connect (OSTI)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  15. A Compact Nuclear Fusion Reactor for Space Flights

    SciTech Connect (OSTI)

    Nastoyashchiy, Anatoly F. [SRC Troitsk Institute for Innovation and Fusion Research, TRINITI 142190 Troitsk Moscow Reg. (Russian Federation)

    2006-05-02

    A small-scale nuclear fusion reactor is suggested based on the concepts of plasma confinement (with a high pressure gas) which have been patented by the author. The reactor considered can be used as a power setup in space flights. Among the advantages of this reactor is the use of a D3He fuel mixture which at burning gives main reactor products -- charged particles. The energy balance considerably improves, as synchrotron radiation turn out 'captured' in the plasma volume, and dangerous, in the case of classical magnetic confinement, instabilities in the direct current magnetic field configuration proposed do not exist. As a result, the reactor sizes are quite suitable (of the order of several meters). A possibility of making reactive thrust due to employment of ejection of multiply charged ions formed at injection of pellets from some adequate substance into the hot plasma center is considered.

  16. Safety of Department of Energy-Owned Nuclear Reactors

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-23

    To establish reactor safety program requirements assure that the safety of each Department of Energy-owned (DOE-owned) reactor is properly analyzed, evaluated, documented, and approved by DOE; and reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate protection for health and safety and will be in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. Cancels Chap. 6 of DOE O 5480.1A. Paragraphs 7b(3), 7e(3) & 8c canceled by DOE O 5480.23 & canceled by DOE N 251.4 of 9-29-95.

  17. Spectral Structure of Electron Antineutrinos from Nuclear Reactors

    E-Print Network [OSTI]

    D. A. Dwyer; T. J. Langford

    2014-07-04

    Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principle calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructure in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of this substructure can constrain nuclear reactor physics. The substructure can be a systematic uncertainty for measurements utilizing the detailed spectral shape.

  18. 288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors

    E-Print Network [OSTI]

    Demazière, Christophe

    of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics of nuclear reactors are based on the use of different solvers for resolving the different physical fields and the corresponding approximations. Keywords: nuclear reactors; multi-physics; multi-scale; modelling; deterministic

  19. Fusion reactor design | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunities Nuclear Physics (NP) NP HomeSciencesreactor design

  20. United States Department of Energy`s reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    SciTech Connect (OSTI)

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage.

  1. Low exchange element for nuclear reactor

    DOE Patents [OSTI]

    Brogli, Rudolf H. (Aarau, CH); Shamasunder, Bangalore I. (Encinitas, CA); Seth, Shivaji S. (Encinitas, CA)

    1985-01-01

    A flow exchange element is presented which lowers temperature gradients in fuel elements and reduces maximum local temperature within high temperature gas-cooled reactors. The flow exchange element is inserted within a column of fuel elements where it serves to redirect coolant flow. Coolant which has been flowing in a hotter region of the column is redirected to a cooler region, and coolant which has been flowing in the cooler region of the column is redirected to the hotter region. The safety, efficiency, and longevity of the high temperature gas-cooled reactor is thereby enhanced.

  2. Exploratory Nuclear Reactor Safety Analysis and Visualization...

    Office of Scientific and Technical Information (OSTI)

    via Integrated Topological and Geometric Techniques A recent trend in the nuclear power engineering field is the implementation of heavily computational and time consuming...

  3. Systems Issues in Nuclear Reactor Safety

    E-Print Network [OSTI]

    de Weck, Olivier L.

    postulated Loss-of-Coolant Accident (LOCA): 9 (LOCA): a double-ended break of the largest reactor coolant line, the concurrent loss of offsite power, and a single failure of an active ECCS component Loss Of Offsite Power Initiating Event 51,940 Steam Generator Tube Rupture Initiating Event 41,200 12

  4. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect (OSTI)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  5. Reactor control system upgrade for the McClellan Nuclear Radiation Center

    E-Print Network [OSTI]

    Power, Michael A.

    1999-01-01

    a new reactor control system for the McClellan NuclearI REACTOR CONTROL SYSTEM UPGRADE FOR THE McCLELLAN NUCLEARReactor Control System Upgrade for the McClellan Nuclear

  6. Novel Approach to Plasma Facing Materials in Nuclear Fusion Reactors

    SciTech Connect (OSTI)

    Livramento, V.; Correia, J. B.; Shohoji, N.; Osawa, E.; Nunes, D.

    2008-04-07

    A novel material design in nuclear fusion reactors is proposed based on W-nDiamond nanostructured composites. Generally, a microstructure refined to the nanometer scale improves the mechanical strength due to modification of plasticity mechanisms. Moreover, highly specific grain-boundary area raises the number of sites for annihilation of radiation induced defects. However, the low thermal stability of fine-grained and nanostructured materials demands the presence of particles at the grain boundaries that can delay coarsening by a pinning effect. As a result, the concept of a composite is promising in the field of nanostructured materials. The hardness of diamond renders nanodiamond dispersions excellent reinforcing and stabilization candidates and, in addition, diamond has extremely high thermal conductivity. Consequently, W-nDiamond nanocomposites are promising candidates for thermally stable first-wall materials. The proposed design involves the production of W/W-nDiamond/W-Cu/Cu layered castellations. The W, W-nDiamond and W-Cu layers are produced by mechanical alloying followed by a consolidation route that combines hot rolling with spark plasma sintering (SPS). Layer welding is achieved by spark plasma sintering. The present work describes the mechanical alloying processsing and consolidation route used to produce W-nDiamond composites, as well as microstructural features and mechanical properties of the material produced Long term plasma exposure experiments are planned at ISTTOK and at FTU (Frascati)

  7. Experimental Validation of Passive Safety System Models: Application to Design and Optimization of Fluoride-Salt-Cooled, High-Temperature Reactors

    E-Print Network [OSTI]

    Zweibaum, Nicolas

    2015-01-01

    Systems for Advanced Nuclear Reactors,” Ph.D. Dissertation,Handbook for Nuclear Reactor Safety,” Luxembourg: Commissiondevelopment of advanced nuclear reactor technology requires

  8. Multi-reactor power system configurations for multimegawatt nuclear electric propulsion

    SciTech Connect (OSTI)

    George, J.A.

    1991-09-01

    A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.

  9. Civilian nuclear power on the drawing board: the development of Experimental Breeder Reactor-II.

    SciTech Connect (OSTI)

    Westfall, C.

    2003-02-20

    On September 28, 2001 a symposium was held at Argonne National Laboratory as part of the festivities to mark the 100th birthday of Enrico Fermi. The symposium celebrated Fermi's ''contribution to the development of nuclear power'' and focused on one particular ''line of development'' resulting from Fermi's interest in power reactors: Argonne's fast reactor program. Symposium participants made many references to the ways in which the program was linked to Fermi, who led the team which created the world's first self-sustaining nuclear chain reaction. For example, one presentation featured an April, 1944 memo that described a meeting attended by Fermi and others. The memo came from the time when research on plutonium and the nuclear chain reaction at Chicago's WWII Metallurgical Laboratory was nearing its end. Even as other parts of the Manhattan Engineering Project were building on this effort to create the bombs that would end the war, Fermi and his colleagues were taking the first steps to plan the use of nuclear energy in the postwar era. After noting that Fermi ''viewed the use of [nuclear] power for the heating of cities with sympathy,'' the group outlined several power reactor designs. In the course of discussion, Fermi and his colleagues took the first steps in conjuring the vision that would later be brought to life with Experimental Breeder Reactor I (EBR-I) and Experimental Breeder Reactor II (EBR-II), the celebrated achievements of the Argonne fast reactor program. Group members considered various schemes for a breeder reactor in which the relatively abundant U-238 would be placed near a core of fissionable material. The reactor would be a fast reactor; that is, neutrons would not be moderated, as were most wartime reactors. Thus, the large number of neutrons emitted in fast neutron fission would hit the U-238 and create ''extra'' fissionable material, that is, more than ''invested,'' and at the same time produce power. The group identified the problem of removing heat in such a reactor and presaged the eventual solution by suggesting the use of sodium coolant, which has minimal interaction with neutrons.

  10. Secondary heat exchanger design and comparison for advanced high temperature reactor

    SciTech Connect (OSTI)

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-07-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  11. Structural Design Challenges in Design Certification Applications for New Reactors

    SciTech Connect (OSTI)

    Miranda, M.; Braverman, J.; Wei, X.; Hofmayer, C.; Xu, J.

    2011-07-17

    The licensing framework established by the U.S. Nuclear Regulatory Commission under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” provides requirements for standard design certifications (DCs) and combined license (COL) applications. The intent of this process is the early reso- lution of safety issues at the DC application stage. Subsequent COL applications may incorporate a DC by reference. Thus, the COL review will not reconsider safety issues resolved during the DC process. However, a COL application that incorporates a DC by reference must demonstrate that relevant site-specific de- sign parameters are confined within the bounds postulated by the DC, and any departures from the DC need to be justified. This paper provides an overview of structural design chal- lenges encountered in recent DC applications under the 10 CFR Part 52 process, in which the authors have participated as part of the safety review effort.

  12. Advanced Modularity Design for The MIT Pebble Bed Reactor

    E-Print Network [OSTI]

    be economically built and operated. One of the major impediments to new nuclear construction is the capital costs small size the capital cost per kilowatt is likely to be large if traditional construction approaches Reactor 1. Introduction The capital cost of new nuclear plants is the most significant reason for the lack

  13. Synergistic Smart Fuel For In-pile Nuclear Reactor Measurements

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Ali; Steven L . Garrett

    2013-10-01

    In March 2011, an earthquake of magnitude 9.0 on the Richter scale struck Japan with its epicenter on the northeast coast, near the Tohoku region. In addition to the immense physical destruction and casualties across the country, several nuclear power plants (NPP) were affected. It was the Fukushima Daiichi NPP that experienced the most severe and irreversible damage. The earthquake brought the reactors at Fukushima to an automatic shutdown and because the power transmission lines were damaged, emergency diesel generators (EDGs) were activated to ensure that there was continued cooling of the reactors and spent fuel pools. The situation was being successfully managed until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to the reactors.2 At this point, the situation became critical. There was a loss of the sensors and instrumentation within the reactor that could have provided valuable information to guide the operators to make informed decisions and avoid the unfortunate events that followed. In the light of these events, we have developed and tested a potential self-powered thermoacoustic system, which will have the ability to serve as a temperature sensor and can transmit data independently of electronic networks. Such a device is synergistic with the harsh environment of the nuclear reactor as it utilizes the heat from the nuclear fuel to provide the input power.

  14. Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process

    Broader source: Energy.gov [DOE]

    Presenter: Undine Shoop, Chief, Health Physics and Human Performance Branch, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission

  15. Neutron capture and the antineutrino yield from nuclear reactors

    E-Print Network [OSTI]

    Patrick Huber; Patrick Jaffke

    2015-10-30

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low-energies below 3.2MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach 0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the non-equilibrium correction. For naval reactors the nonlinear correction may reach the 10% level.

  16. Passive and inherent safety technologies for light-water nuclear reactors

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1990-07-01

    Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs.

  17. Passive cooling system for nuclear reactor containment structure

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  18. Natural circulating passive cooling system for nuclear reactor containment structure

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Wade, Gentry E. (Saratoga, CA)

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  19. Method of controlling crystallite size in nuclear-reactor fuels

    DOE Patents [OSTI]

    Lloyd, Milton H. (Oak Ridge, TN); Collins, Jack L. (Knoxville, TN); Shell, Sam E. (Oak Ridge, TN)

    1985-01-01

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  20. Automatic coolant flow control device for a nuclear reactor assembly

    DOE Patents [OSTI]

    Hutter, E.

    1984-01-27

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  1. Automatic coolant flow control device for a nuclear reactor assembly

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  2. Material Control and Accounting Design Considerations for High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Trond Bjornard; John Hockert

    2011-08-01

    The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactor types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.

  3. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  4. Operating strategy generators for nuclear reactors

    SciTech Connect (OSTI)

    Solovyev, D. A., E-mail: and@est.mephi.ru; Semenov, A. A.; Shchukin, N. V. [National Research Nuclear University MEPhI (Russian Federation)

    2011-12-15

    Operating strategy generators, i.e., the software intended for increasing the efficiency of work of nuclear power plant operators, are discussed. The possibilities provided by the domestic and foreign operating-strategy generators are analyzed.

  5. Identification and localization of absorbers of variable strength in nuclear reactors

    E-Print Network [OSTI]

    Demazière, Christophe

    Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie evenly distrib- uted throughout the core of a commercial nuclear reactor. The novelty and ergodic in time, can be used for many diagnostic purposes in nuclear reactors. Many examples can be found

  6. Walking and Climbing Service Robots for Safety Inspection of Nuclear Reactor Pressure Vessels

    E-Print Network [OSTI]

    Chen, Sheng

    Walking and Climbing Service Robots for Safety Inspection of Nuclear Reactor Pressure Vessels B of Electronics and Computer Science, University of Southampton, Southampton, UK Abstract: Nuclear reactor and the usefulness of these robots for improving safety inspection of nuclear reactors in general are discussed

  7. FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure

    E-Print Network [OSTI]

    SP·215-18 FRP Retrofit of the Ring-Beam of a Nuclear Reactor Containment Structure by M. Demers. A for the storage of the moderately contaminated nuclear reactor. The enforcement of more rigorous environmental. 1. HISTORY 1.1 Decommissioning of the Reactor The Gentilly-I nuclear power plant, located

  8. Analysis of granular flow in a pebble-bed nuclear reactor Chris H. Rycroft,1

    E-Print Network [OSTI]

    Bazant, Martin Z.

    Analysis of granular flow in a pebble-bed nuclear reactor Chris H. Rycroft,1 Gary S. Grest,2 James February 2006; published 24 August 2006 Pebble-bed nuclear reactor technology, which is currently being States, the Modular Pebble Bed Reactor MPBR 4,8 is a candidate for the next generation nuclear plant

  9. Japanese set to direct `sun-power' nuclear reactor in France September 16, 2005

    E-Print Network [OSTI]

    Japanese set to direct `sun-power' nuclear reactor in France September 16, 2005 Japan has been develop three generations of nuclear reactors and includes six low-capacity experimental reactors and a 17 asked to nominate the chief of an international project to build a multi- billion-dollar nuclear fusion

  10. Core design studies for advanced burner test reactor.

    SciTech Connect (OSTI)

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating TRU-based fuels. Preliminary design studies showed that it is feasible to design the ABTR to accommodate a wide range of conversion ratio (CR) by employing different assembly designs. The TRU enrichments required for various conversion ratios and the irradiation database suggested a phased approach with initial startup using conventional enrichment plutonium-based fuel and gradual transitioning to full core loading of transmutation fuel after its qualification phase (resulting in {approx}0.6 CR). The low CR transmutation fuel tests can be accommodated in the designated test assemblies, and if fully developed, core conversion to low CR fuel can be envisioned. Reference ABTR core designs with a rated power of 250 MWt were developed for ternary metal alloy and mixed oxide fuels based on WG-Pu feed. The reference core contains 54 driver, 6 test fuel, and 3 test material assemblies. For the startup core designs, the calculated TRU conversion ratio is 0.65 for the metal fuel core and 0.64 for the oxide fuel core. Both the metal and oxide cores show good performances. The metal fuel core requires an average TRU enrichment of 18.8% and yields a reactivity swing of 1.2 %{Delta}k over the 4-month cycle. The core average flux level is {approx}2.4 x 10{sup 15} n/cm{sup 2}s, and test assembly flux level is {approx}2.8 x 10{sup 15} n/cm{sup 2}s. Compared to the metal fuel core, the lower density oxide fuel core requires an average TRU enrichment of 21.8%, which results in a 780 kg TRU loading (as compared to 732 kg for metal) despite a {approx}9% smaller heavy metal inventory. The lower heavy metal inventory increases the burnup reactivity swing by {approx}10% and reduces the flux levels by {approx}8%. Alternative designs were also studied for a LWR-SF TRU feed and a low conversion ratio, including the recycle of the ABTR spent fuel TRU. The lower fissile contents of the LWR-SF TRU relative to the WG-Pu TRU significantly increase the required TRU enrichment of the startup cores to maintain the same cycle length. The even lower fissile fraction of the ABTR spent fuel TRU furt

  11. Blue Ribbon Commission, Yucca Mountain Closure, Court Actions - Future of Decommissioned Reactors, Operating Reactors and Nuclear Power - 13249

    SciTech Connect (OSTI)

    Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)] [Nuclear Power Technologies, Sargent and Lundy LLC1, Chicago, IL (United States)

    2013-07-01

    Issues related to back-end of the nuclear fuel cycle continue to be difficult for the commercial nuclear power industry and for the decision makers at the national and international level. In the US, the 1982 NWPA required DOE to develop geological repositories for SNF and HLW but in spite of extensive site characterization efforts and over ten billion dollars spent, a repository opening is nowhere in sight. There has been constant litigation against the DOE by the nuclear utilities for breach of the 'standard contract' they signed with the DOE under the NWPA. The SNF inventory continues to rise both in the US and globally and the nuclear industry has turned to dry storage facilities at reactor locations. In US, the Blue Ribbon Commission on America's Nuclear Future issued its report in January 2012 and among other items, it recommends a new, consent-based approach to siting of facilities, prompt efforts to develop one or more geologic disposal facilities, and prompt efforts to develop one or more consolidated storage facilities. In addition, the March 2011 Fukushima Daiichi accident had a severe impact on the future growth of nuclear power. The nuclear industry is focusing on mitigation strategies for beyond design basis events and in the US, the industry is in the process of implementing the recommendations from NRC's Near Term Task Force. (authors)

  12. Nuclear Reactor Technology Subcommittee of NEAC

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e OfficeResearch andFacts:Reactor

  13. Pebble bed modular reactor safeguards: developing new approaches and implementing safeguards by design

    SciTech Connect (OSTI)

    Beyer, Brian David [Los Alamos National Laboratory; Beddingfield, David H [Los Alamos National Laboratory; Durst, Philip [INL; Bean, Robert [INL

    2010-01-01

    The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguards criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.

  14. Neutron capture and the antineutrino yield from nuclear reactors

    E-Print Network [OSTI]

    Huber, Patrick

    2015-01-01

    We identify a new, flux-dependent correction to the antineutrino spectrum as produced in nuclear reactors. The abundance of certain nuclides, whose decay chains produce antineutrinos above the threshold for inverse beta decay, has a nonlinear dependence on the neutron flux, unlike the vast majority of antineutrino producing nuclides, whose decay rate is directly related to the fission rate. We have identified four of these so-called nonlinear nuclides and determined that they result in an antineutrino excess at low-energies below 3.2MeV, dependent on the reactor thermal neutron flux. We develop an analytic model for the size of the correction and compare it to the results of detailed reactor simulations for various real existing reactors, spanning 3 orders of magnitude in neutron flux. In a typical pressurized water reactor the resulting correction can reach 0.9% of the low energy flux which is comparable in size to other, known low-energy corrections from spent nuclear fuel and the non-equilibrium correction...

  15. Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...

  16. Nuclear plant-aging research on reactor protection systems

    SciTech Connect (OSTI)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  17. Heat barrier for use in a nuclear reactor facility

    DOE Patents [OSTI]

    Keegan, Charles P. (South Huntingdon Twp., Westmoreland County, PA)

    1988-01-01

    A thermal barrier for use in a nuclear reactor facility is disclosed herein. Generally, the thermal barrier comprises a flexible, heat-resistant web mounted over the annular space between the reactor vessel and the guard vessel in order to prevent convection currents generated in the nitrogen atmosphere in this space from entering the relatively cooler atmosphere of the reactor cavity which surrounds these vessels. Preferably, the flexible web includes a blanket of heat-insulating material formed from fibers of a refractory material, such as alumina and silica, sandwiched between a heat-resistant, metallic cloth made from stainless steel wire. In use, the web is mounted between the upper edges of the guard vessel and the flange of a sealing ring which surrounds the reactor vessel with a sufficient enough slack to avoid being pulled taut as a result of thermal differential expansion between the two vessels. The flexible web replaces the rigid and relatively complicated structures employed in the prior art for insulating the reactor cavity from the convection currents generated between the reactor vessel and the guard vessel.

  18. Safety and core design of large liquid-metal cooled fast breeder reactors

    E-Print Network [OSTI]

    Qvist, Staffan Alexander

    2013-01-01

    reactor pas- sive reactivity control systems: LEM and LIM”. In: Nuclearnuclear reactor. Also it did not feature oxygen content controlControl Rods Reactor Concept and Plant Dynamics Analyses”. In: Journal of Nuclear

  19. SNIF: A Futuristic Neutrino Probe for Undeclared Nuclear Fission Reactors

    E-Print Network [OSTI]

    Thierry Lasserre; Maximilien Fechner; Guillaume Mention; Romain Reboulleau; Michel Cribier; Alain Letourneau; David Lhuillier

    2010-11-16

    Today reactor neutrino experiments are at the cutting edge of fundamental research in particle physics. Understanding the neutrino is far from complete, but thanks to the impressive progress in this field over the last 15 years, a few research groups are seriously considering that neutrinos could be useful for society. The International Atomic Energy Agency (IAEA) works with its Member States to promote safe, secure and peaceful nuclear technologies. In a context of international tension and nuclear renaissance, neutrino detectors could help IAEA to enforce the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). In this article we discuss a futuristic neutrino application to detect and localize an undeclared nuclear reactor from across borders. The SNIF (Secret Neutrino Interactions Finder) concept proposes to use a few hundred thousand tons neutrino detectors to unveil clandestine fission reactors. Beyond previous studies we provide estimates of all known background sources as a function of the detector's longitude, latitude and depth, and we discuss how they impact the detectability.

  20. Nuclear reactor spacer grid and ductless core component

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

    1989-01-01

    The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.

  1. Advanced Test Reactor Design Basis Reconstitution Project Issue Resolution Process

    SciTech Connect (OSTI)

    Steven D. Winter; Gregg L. Sharp; William E. Kohn; Richard T. McCracken

    2007-05-01

    The Advanced Test Reactor (ATR) Design Basis Reconstitution Program (DBRP) is a structured assessment and reconstitution of the design basis for the ATR. The DBRP is designed to establish and document the ties between the Document Safety Analysis (DSA), design basis, and actual system configurations. Where the DBRP assessment team cannot establish a link between these three major elements, a gap is identified. Resolutions to identified gaps represent configuration management and design basis recovery actions. The proposed paper discusses the process being applied to define, evaluate, report, and address gaps that are identified through the ATR DBRP. Design basis verification may be performed or required for a nuclear facility safety basis on various levels. The process is applicable to large-scale design basis reconstitution efforts, such as the ATR DBRP, or may be scaled for application on smaller projects. The concepts are applicable to long-term maintenance of a nuclear facility safety basis and recovery of degraded safety basis components. The ATR DBRP assessment team has observed numerous examples where a clear and accurate link between the DSA, design basis, and actual system configuration was not immediately identifiable in supporting documentation. As a result, a systematic approach to effectively document, prioritize, and evaluate each observation is required. The DBRP issue resolution process provides direction for consistent identification, documentation, categorization, and evaluation, and where applicable, entry into the determination process for a potential inadequacy in the safety analysis (PISA). The issue resolution process is a key element for execution of the DBRP. Application of the process facilitates collection, assessment, and reporting of issues identified by the DBRP team. Application of the process results in an organized database of safety basis gaps and prioritized corrective action planning and resolution. The DBRP team follows the ATR DBRP issue resolution process which provides a method for the team to promptly sort and prioritize questions and issues between those that can be addressed as a normal part of the reconstitution project and those that are to be handle as PISAs. Presentation of the DBRP issue resolution process provides an example for similar activities that may be required at other facilities within the Department of Energy complex.

  2. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2010-10-01

    The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The first experiment was inserted in the ATR in August 2009 and started its irradiation in September 2009. It is anticipated to complete its irradiation in early calendar 2011. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and the irradiation experience to date.

  3. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

  4. Removable check valve for use in a nuclear reactor

    DOE Patents [OSTI]

    Dunn, Charlton (Calabasas, CA); Gutzmann, Edward A. (Simi Valley, CA)

    1988-01-01

    A removable check valve for interconnecting the discharge duct of a pump and an inlet coolant duct of a reactor core in a pool-type nuclear reactor. A manifold assembly is provided having an outer periphery affixed to and in fluid communication with the discharge duct of the pump and has an inner periphery having at least one opening therethrough. A housing containing a check valve is located within the inner periphery of the manifold. The upper end of the housing has an opening in alignment with the opening in the manifold assembly, and seals are provided above and below the openings. The lower end of the housing is adapted for fluid communication with the inlet duct of the reactor core.

  5. Collecting and recirculating condensate in a nuclear reactor containment

    DOE Patents [OSTI]

    Schultz, T.L.

    1993-10-19

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures.

  6. Passive heat-transfer means for nuclear reactors. [LMFBR

    DOE Patents [OSTI]

    Burelbach, J.P.

    1982-06-10

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  7. Support arrangement for core modules of nuclear reactors

    DOE Patents [OSTI]

    Bollinger, Lawrence R. (Schenectady, NY)

    1987-01-01

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  8. Support arrangements for core modules of nuclear reactors. [PWR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1983-11-03

    A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.

  9. Collecting and recirculating condensate in a nuclear reactor containment

    DOE Patents [OSTI]

    Schultz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  10. Nuclear reactor characteristics and operational history

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb MarthroughFeet)Feet) YearThousand81Nuclear > U.S.

  11. Multiphysics Simulation of Nuclear Reactors F

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof Energy Moving Forward to Address Nuclear3-000MSGPSolarNo.

  12. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01

    the previous year. NUCLEAR TECHNOLOGY AND FUEL CYCLES China’third-generation nuclear technology and reactor design, withs own third-generation nuclear technology. Westing- house,

  13. DESIGN OF A MICROCHANNEL BASED SOLAR RECEIVER/REACTOR FOR

    E-Print Network [OSTI]

    Apte, Sourabh V.

    DESIGN OF A MICROCHANNEL BASED SOLAR RECEIVER/REACTOR FOR METHANE-STEAM REFORMING Drost, K. J designs that permit increase in the overall solar to chemical conversion efficiency are needed of fuels is needed. Solar re- ceivers based on a volumetric or cavity receiver design are common [8, 9, 10

  14. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have concluded, however, that with adequate engineered cooling of the vessel, the A508/533 steels are also acceptable.

  15. Temperature measuring analysis of the nuclear reactor fuel assembly

    SciTech Connect (OSTI)

    Urban, F. E-mail: zdenko.zavodny@stuba.sk; Ku?ák, L. E-mail: zdenko.zavodny@stuba.sk; Bereznai, J. E-mail: zdenko.zavodny@stuba.sk; Závodný, Z. E-mail: zdenko.zavodny@stuba.sk; Muškát, P. E-mail: zdenko.zavodny@stuba.sk

    2014-08-06

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  16. Systems and methods for dismantling a nuclear reactor

    SciTech Connect (OSTI)

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon

    2014-10-28

    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  17. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  18. DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT

    E-Print Network [OSTI]

    Myers, Richard Allen

    2011-01-01

    et. a1. , "A Conceptual Tokamak Reactor Design, umtAK-II,"et. al.. "A Non-Circular Tokamak 'Power Reactor Design,"Contt'ol in Near Term Tokamak Reactors," Proceedings of the

  19. Detachable connection for a nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.

    1983-08-29

    A locking connection for releasably attaching a handling socket to the duct tube of a fuel assembly for a nuclear reactor. The connection comprises a load pad housing mechanically attached to the duct tube and a handling socket threadably secured within the housing. A retaining ring is interposed between the housing and the handling socket and is formed with a projection and depression engagable within a cavity and groove of the housing and handling socket, respectively, to form a detachable interlocked connection assembly.

  20. Search for Neutrino Oscillations at the Palo Verde Nuclear Reactors

    E-Print Network [OSTI]

    F. Boehm; J. Busenitz; B. Cook; G. Gratta; H. Henrikson; J. Kornis; D. Lawrence; K. B. Lee; K. McKinny; L. Miller; V. Novikov; A. Piepke; B. Ritchie; D. Tracy; P. Vogel; Y-F. Wang; J. Wolf

    1999-12-22

    We report on the initial results from a measurement of the anti-neutrino flux and spectrum at a distance of about 800 m from the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium-loaded scintillation detector. We find that the anti-neutrino flux agrees with that predicted in the absence of oscillations to better than 5%, excluding at 90% CL $\\rm\\bar\

  1. Expert system for online surveillance of nuclear reactor coolant pumps

    DOE Patents [OSTI]

    Gross, Kenny C. (Bolingbrook, IL); Singer, Ralph M. (Naperville, IL); Humenik, Keith E. (Columbia, MD)

    1993-01-01

    An expert system for online surveillance of nuclear reactor coolant pumps. This system provides a means for early detection of pump or sensor degradation. Degradation is determined through the use of a statistical analysis technique, sequential probability ratio test, applied to information from several sensors which are responsive to differing physical parameters. The results of sequential testing of the data provide the operator with an early warning of possible sensor or pump failure.

  2. Revised paper Leak NED 1997.doc 8:53 25.10.2002 1 Submitted to Nuclear Engineering and Design

    E-Print Network [OSTI]

    Cizelj, Leon

    Revised paper Leak NED 1997.doc 8:53 25.10.2002 1 Submitted to Nuclear Engineering and Design in nuclear power plants with pressurized water reactors comprise most of the reactor coolant pressure and fitness-for-service criteria for degraded steam generator tubes are being implemented on a worldwide basis

  3. Applicability of GALE-86 Codes to Integral Pressurized Water Reactor designs

    SciTech Connect (OSTI)

    Geelhood, Kenneth J.; Rishel, Jeremy P.

    2012-06-01

    This report describes work that Pacific Northwest National Laboratory is doing to assist the U.S. Nuclear Regulatory Commission (NRC) Office of New Reactors (NRO) staff in their reviews of applications for nuclear power plants using new reactor core designs. These designs include small integral PWRs (IRIS, mPower, and NuScale reactor designs), HTGRs, (pebble-bed and prismatic-block modular reactor designs) and SFRs (4S and PRISM reactor designs). Under this specific task, PNNL will assist the NRC staff in reviewing the current versions of the GALE codes and identify features and limitations that would need to be modified to accommodate the technical review of iPWR and mPower® license applications and recommend specific changes to the code, NUREG-0017, and associated NRC guidance. This contract is necessary to support the licensing of iPWRs with a near-term focus on the B&W mPower® reactor design. While the focus of this review is on the mPower® reactor design, the review of the code and the scope of recommended changes consider a revision of the GALE codes that would make them universally applicable for other types of integral PWR designs. The results of a detailed comparison between PWR and iPWR designs are reported here. Also included is an investigation of the GALE code and its basis and a determination as to the applicability of each of the bases to an iPWR design. The issues investigated come from a list provided by NRC staff, the results of comparing the PWR and iPWR designs, the parameters identified as having a large impact on the code outputs from a recent sensitivity study and the main bases identified in NUREG-0017. This report will provide a summary of the gaps in the GALE codes as they relate to iPWR designs and for each gap will propose what work could be performed to fill that gap and create a version of GALE that is applicable to integral PWR designs.

  4. Thermal-hydraulic analysis of advanced reactor concepts: The Gas Core Nuclear Rocket

    SciTech Connect (OSTI)

    Banjac, V.; Heger, A.S.

    1995-12-31

    The Gas Core Nuclear Rocket (GCNR), a design first proposed in the 1960s for fast round-trip missions to Mars and the outer planets, is generally considered to be the most advanced, and therefore the most complex, iteration of the fission reactor concept. The GCNR technology involves the extraction of fission energy, by means of thermal radiation, from a high-temperature plasma core to a working fluid. A specific derivative of GCNR technology is the nuclear fight bulb (NLB) rocket engine, first proposed by the then United Aircraft Research Laboratories (UARL) in the early 1960s. The potential operating parameters provided the motivation for a detailed thermal hydraulics analysis.

  5. Integral Validation of Minor Actinide Nuclear Data by using Samples Irradiated at Dounreay Prototype Fast Reactor

    SciTech Connect (OSTI)

    Tsujimoto, Kazufumi; Oigawa, Hiroyuki; Shinohara, Nobuo [Japan Atomic Energy Research Institute, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan)

    2005-05-24

    The reliability of nuclear data for minor actinides was evaluated by using the results of the post-irradiation experiment for actinide samples irradiated at the Dounreay Prototype Fast Reactor. The burnup calculations with JENDL-3.3, ENDF/B-VI.8, and JEFF-3.0 were performed. From the comparison between the experimental data and the calculational results, in general, the reliability of nuclear data for the minor actinides are at an adequate level for the conceptual design study of transmutation systems. It is, however, found that improvement of the accuracy is necessary for some nuclides, such as 238Pu, 242Pu, and 241Am.

  6. INVESTIGATIONS ON NUCLEAR SPECTROSCOPY AT THE REACTOR AND THEIR APPLICATIONS1

    E-Print Network [OSTI]

    Titov, Anatoly

    1 INVESTIGATIONS ON NUCLEAR SPECTROSCOPY AT THE REACTOR AND THEIR APPLICATIONS1 I.A. Kondurov , E. However the first work on nuclear spectroscopy was carried out before the reactor was launched; namely.M. Korotkikh, Yu.E. Loginov, V.V. Martynov Introduction Physical launch of the WWR-M reactor in the branch

  7. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  8. Validation of FSP Reactor Design with Sensitivity Studies of Beryllium-Reflected Critical Assemblies

    SciTech Connect (OSTI)

    John D. Bess; Margaret A. Marshall

    2013-02-01

    The baseline design for space nuclear power is a fission surface power (FSP) system: sodium-potassium (NaK) cooled, fast spectrum reactor with highly-enriched-uranium (HEU)-O2 fuel, stainless steel (SS) cladding, and beryllium reflectors with B4C control drums. Previous studies were performed to evaluate modeling capabilities and quantify uncertainties and biases associated with analysis methods and nuclear data. Comparison of Zero Power Plutonium Reactor (ZPPR)-20 benchmark experiments with the FSP design indicated that further reduction of the total design model uncertainty requires the reduction in uncertainties pertaining to beryllium and uranium cross-section data. Further comparison with three beryllium-reflected HEU-metal benchmark experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) concluded the requirement that experimental validation data have similar cross section sensitivities to those found in the FSP design. A series of critical experiments was performed at ORCEF in the 1960s to support the Medium Power Reactor Experiment (MPRE) space reactor design. The small, compact critical assembly (SCCA) experiments were graphite- or beryllium-reflected assemblies of SS-clad, HEU-O2 fuel on a vertical lift machine. All five configurations were evaluated as benchmarks. Two of the five configurations were beryllium reflected, and further evaluated using the sensitivity and uncertainty analysis capabilities of SCALE 6.1. Validation of the example FSP design model was successful in reducing the primary uncertainty constituent, the Be(n,n) reaction, from 0.28 %dk/k to 0.0004 %dk/k. Further assessment of additional reactor physics measurements performed on the SCCA experiments may serve to further validate FSP design and operation.

  9. Woo, H.H.; Chou, C.K. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED...

    Office of Scientific and Technical Information (OSTI)

    Piping-reliability analysis for pressurized-water-reactor feedwater lines Woo, H.H.; Chou, C.K. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; PIPES; CRACKS; RELIABILITY; PWR...

  10. A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect (OSTI)

    Erighin, M. A. [Babcock and Wilcox Company, 109 Ramsey Place, Lynchburg, VA 24502 (United States)

    2012-07-01

    The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

  11. Design Studies for a Multiple Application Thermal Reactor for Irradiation Experiments (MATRIX)

    SciTech Connect (OSTI)

    Pope, Michael A.; Gougar, Hans D.; Ryskamp, J. M.

    2015-03-01

    The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Should unforeseen circumstances lead to the decommissioning of ATR, the U.S. Government would be left without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. A survey was conducted in order to catalogue the anticipated needs of potential customers. Then, concepts were evaluated to fill the role for this reactor, dubbed the Multi-Application Thermal Reactor Irradiation eXperiments (MATRIX). The baseline MATRIX design is expected to be capable of longer cycle lengths than ATR given a particular batch scheme. The volume of test space in In-Pile-Tubes (IPTs) is larger in MATRIX than in ATR with comparable magnitude of neutron flux. Furthermore, MATRIX has more locations of greater volume having high fast neutron flux than ATR. From the analyses performed in this work, it appears that the lead MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design is developed further.

  12. Advanced nuclear reactor public opinion project. Interim report

    SciTech Connect (OSTI)

    Benson, B.

    1991-07-25

    This Interim Report summarizes the findings of our first twenty in-depth interviews in the Advanced Nuclear Reactor Public Opinion Project. We interviewed 6 industry trade association officials, 3 industry attorneys, 6 environmentalists/nuclear critics, 3 state officials, and 3 independent analysts. In addition, we have had numerous shorter discussions with various individuals concerned about nuclear power. The report is organized into the four categories proposed at our April, 1991, Advisory Group meeting: safety, cost-benefit analysis, science education, and communications. Within each category, some change of focus from that of the Advisory Group has been required, to reflect the findings of our interviews. This report limits itself to describing our findings. An accompanying memo draws some tentative conclusions.

  13. Print this article Close This Window EU OKs India joining ITER nuclear reactor project

    E-Print Network [OSTI]

    Print this article Close This Window EU OKs India joining ITER nuclear reactor project Fri Dec 2-billion-euro project to build an experimental nuclear fusion reactor that in the long-run could provide virtually unlimited, cheap and clean energy. The EU's willingness to work with India on a civil nuclear

  14. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect (OSTI)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  15. Electric Power Produced from Nuclear Reactor | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroic Electric FieldAdministration

  16. Monitoring system for a liquid-cooled nuclear fission reactor

    DOE Patents [OSTI]

    DeVolpi, Alexander (Bolingbrook, IL)

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  17. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel2RateCaseElementsOxide Fuel CellsReactor

  18. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S. (Monroeville, PA)

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  19. Retrievable fuel pin end member for a nuclear reactor

    DOE Patents [OSTI]

    Rosa, Jerry M. (Los Gatos, CA)

    1982-01-01

    A bottom end member (17b) on a retrievable fuel pin (13b) secures the pin (13b) within a nuclear reactor (12) by engaging on a transverse attachment rail (18) with a spring clip type of action. Removal and reinstallation if facilitated as only axial movement of the fuel pin (13b) is required for either operation. A pair of resilient axially extending blades (31) are spaced apart to define a slot (24) having a seat region (34) which receives the rail (18) and having a land region (37), closer to the tips (39) of the blades (31) which is normally of less width than the rail (18). Thus an axially directed force sufficient to wedge the resilient blades (31) apart is required to emplace or release the fuel pin (13b) such force being greater than the axial forces on the fuel pins (13b) which occur during operation of the reactor (12).

  20. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    SciTech Connect (OSTI)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  1. Basis for NGNP Reactor Design Down-Selection

    SciTech Connect (OSTI)

    L.E. Demick

    2011-11-01

    The purpose of this paper is to identify the extent of technology development, design and licensing maturity anticipated to be required to credibly identify differences that could make a technical choice practical between the prismatic and pebble bed reactor designs. This paper does not address a business decision based on the economics, business model and resulting business case since these will vary based on the reactor application. The selection of the type of reactor, the module ratings, the number of modules, the configuration of the balance of plant and other design selections will be made on the basis of optimizing the Business Case for the application. These are not decisions that can be made on a generic basis.

  2. Basis for NGNP Reactor Design Down-Selection

    SciTech Connect (OSTI)

    L.E. Demick

    2010-08-01

    The purpose of this paper is to identify the extent of technology development, design and licensing maturity anticipated to be required to credibly identify differences that could make a technical choice practical between the prismatic and pebble bed reactor designs. This paper does not address a business decision based on the economics, business model and resulting business case since these will vary based on the reactor application. The selection of the type of reactor, the module ratings, the number of modules, the configuration of the balance of plant and other design selections will be made on the basis of optimizing the Business Case for the application. These are not decisions that can be made on a generic basis.

  3. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  4. Design of slurry reactor for indirect liquefaction applications

    SciTech Connect (OSTI)

    Prakash, A.; Bendale, P.G.

    1991-01-01

    The objective of this project is to design and model a conceptual slurry reactor for two indirect liquefaction applications; (1) production of methanol and (2) production of hydrocarbon fuels via Fischer-Tropsch route. A slurry reactor is defined here as a three-phase bubble column reactor using a fine catalyst particle suspension in a high molecular weight liquid. The feed gas is introduced through spargers. It then bubbles through the column providing the agitation necessary for catalyst suspension and mass transfer. The reactor models for the two processes have been formulated using computer simulation. Process data, kinetic and thermodynamic data, heat and mass transfer data and hydrodynamic data have been used in the mathematical models to describe the slurry reactor for each of the two processes. Available data from process development units and demonstration units were used to test and validate the models. Commercial size slurry reactors for methanol and Fischer-Tropsch synthesis were sized using reactor models developed in this report.

  5. Design of slurry reactor for indirect liquefaction applications. Final report

    SciTech Connect (OSTI)

    Prakash, A.; Bendale, P.G.

    1991-12-31

    The objective of this project is to design and model a conceptual slurry reactor for two indirect liquefaction applications; (1) production of methanol and (2) production of hydrocarbon fuels via Fischer-Tropsch route. A slurry reactor is defined here as a three-phase bubble column reactor using a fine catalyst particle suspension in a high molecular weight liquid. The feed gas is introduced through spargers. It then bubbles through the column providing the agitation necessary for catalyst suspension and mass transfer. The reactor models for the two processes have been formulated using computer simulation. Process data, kinetic and thermodynamic data, heat and mass transfer data and hydrodynamic data have been used in the mathematical models to describe the slurry reactor for each of the two processes. Available data from process development units and demonstration units were used to test and validate the models. Commercial size slurry reactors for methanol and Fischer-Tropsch synthesis were sized using reactor models developed in this report.

  6. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  7. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Charges Relating to Nuclear Reactor Safety," 1976, availablestudies of light-water nuclear reactor safety, emphasizingstudies of overall nuclear reactor safety have been

  8. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    re- actor (PWR) and boiling-water reactor (BWR) designsin integral boiling water super heat reactors. Technical

  9. 309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR MATERIALS"

    E-Print Network [OSTI]

    Motta, Arthur T.

    309NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.37 NO.4, AUGUST 2005 A NEW BOOK: "LIGHT-WATER REACTOR review; it is a book preview. Thirty years ago, "Fundamental Aspects of Nuclear Reactor Fuel Elements of nuclear fuels among other topics pertinent to the materials in the ensemble of the nuclear reactor

  10. W.B.; Allison, G.S. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED...

    Office of Scientific and Technical Information (OSTI)

    nuclear fuel bundle data for use in fuel bundle handling Weihermiller, W.B.; Allison, G.S. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; FUEL ELEMENT CLUSTERS; REMOTE...

  11. Hadlock, R.K.; Abbey, O.B. 22 GENERAL STUDIES OF NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    on ultimate heat sinks--cooling ponds Hadlock, R.K.; Abbey, O.B. 22 GENERAL STUDIES OF NUCLEAR REACTORS; 20 FOSSIL-FUELED POWER PLANTS; COOLING PONDS; PERFORMANCE TESTING; NUCLEAR...

  12. Gas tagging and cover gas combination for nuclear reactor

    DOE Patents [OSTI]

    Gross, Kenny C. (Lemont, IL); Laug, Matthew T. (Idaho Falls, ID)

    1985-01-01

    The invention discloses the use of stable isotopes of neon and argon, that are grouped in preselected different ratios one to the other and are then sealed as tags in different cladded nuclear fuel elements to be used in a liquid metal fast breeder reactor. Failure of the cladding of any fuel element allows fission gases generated in the reaction and these tag isotopes to escape and to combine with the cover gas held in the reactor over the fuel elements. The isotopes specifically are Ne.sup.20, Ne.sup.21 and Ne.sup.22 of neon and Ar.sup.36, Ar.sup.38 and Ar.sup.40 of argon, and the cover gas is helium. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between approximately 0.degree. and -25.degree. C. operable to remove the fission gases from the cover gas and tags and the second or tag recovery system bed is held between approximately -170.degree. and -185.degree. C. operable to isolate the tags from the cover gas. Spectrometric analysis further is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be specifically determined.

  13. Monitoring nuclear reactor systems using neural networks and fuzzy logic

    SciTech Connect (OSTI)

    Ikonomopoulos, A.; Tsoukalas, L.H.; Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States); Mullens, J.A. [Tennessee Univ., Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

    1991-12-01

    A new approach is presented that demonstrates the potential of trained artificial neural networks (ANNs) as generators of membership functions for the purpose of monitoring nuclear reactor systems. ANN`s provide a complex-to-simple mapping of reactor parameters in a process analogous to that of measurement. Through such ``virtual measurements`` the value of parameters with operational significance, e.g., control-valve-disk-position, valve-line-up or performance can be determined. In the methodology presented the output of a virtual measuring device is a set of membership functions which independently represent different states of the system. Utilizing a fuzzy logic representation offers the advantage of describing the state of the system in a condensed form, developed through linguistic descriptions and convenient for application in monitoring, diagnostics and generally control algorithms. The developed methodology is applied to the problem of measuring the disk position of the secondary flow control valve of an experimental reactor using data obtained during a start-up. The enhanced noise tolerance of the methodology is clearly demonstrated as well as a method for selecting the actual output. The results suggest that it is possible to construct virtual measuring devices through artificial neural networks mapping dynamic time series to a set of membership functions and thus enhance the capability of monitoring systems. 8 refs., 11 figs., 1 tab.

  14. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Ioffe, B. L.; Kochurov, B. P. [Institute of Theoretical and Experimental Physics (Russian Federation)

    2012-02-15

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  15. Selecting a radiation tolerant piezoelectric material for nuclear reactor applications

    SciTech Connect (OSTI)

    Parks, D. A.; Reinhardt, B. T.; Tittmann, B. R. [Department of Engineering Science and Mechanics, Penn State, University Park, PA 16803 (United States)

    2013-01-25

    Bringing systems for online monitoring of nuclear reactors to fruition has been delayed by the lack of suitable ultrasonic sensors. Recent work has demonstrated the capability of an AlN sensor to perform ultrasonic evaluation in an actual nuclear reactor. Although the AlN demonstrated sustainability, no loss in signal amplitude and d{sub 33} up to a fast and thermal neutron fluence of 1.85 Multiplication-Sign 1018 n/cm{sup 2} and 5.8 Multiplication-Sign 1018 n/cm{sup 2} respectively, no formal process to selecting a suitable sensor material was made. It would be ideal to use first principles approaches to somehow reduce each candidate piezoelectric material to a simple ranking showing directly which materials one should expect to be most radiation tolerant. However, the complexity of the problem makes such a ranking impractical and one must appeal to experimental observations. This should not be of any surprise to one whom is familiar with material science as most material properties are obtained in this manner. Therefore, this work adopts a similar approach, the mechanisms affecting radiation tolerance are discussed and a good engineering sense is used for material qualification of the candidate piezoelectric materials.

  16. Nuclear Engineering and Design/Fusion 2 (1985) 97-110 97 North-Holland, Amsterdam

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    1985-01-01

    Nuclear Engineering and Design/Fusion 2 (1985) 97-110 97 North-Holland, Amsterdam DEVELOPMENT OF DESIGN EQUATIONS FOR FERRITIC ALLOYS IN FUSION REACTORS Robert J. AMODEO and Nasr M. GHONIEM Fusion in determining the lifetime of materials in the fusion environment [1]. Equations which describe the swelling

  17. Core design and reactor physics of a breed and burn gas-cooled fast reactor

    E-Print Network [OSTI]

    Yarsky, Peter

    2005-01-01

    In order to fulfill the goals set forth by the Generation IV International Forum, the current NERI funded research has focused on the design of a Gas-cooled Fast Reactor (GFR) operating in a Breed and Burnm (B&B) fuel cycle ...

  18. Critical technologies for reactors used in nuclear electric propulsion

    SciTech Connect (OSTI)

    Bhattacharyya, S.K. (Argonne National Lab., IL (United States))

    1993-01-01

    Nuclear electric Propulsion (NEP) systems are expected to play a significant role in the exploration and exploitation of space. Unlike nuclear thermal propulsion (NTP) systems in which the hot reactor coolant is directly discharged from nozzles to provide the required thrust, NEP systems include electric power generation and conditioning units that in turn are used to drive electric thrusters. These thrusters accelerate sub atomic particles to produce thrust. The major advantage of NEP systems is the ability to provide very high specific impulses ([approximately]5000 s) that minimize the requirement for propellants. In addition, the power systems used in NEP could pro vide the dual purpose of also providing power for the missions at the destination. This synergism can be exploited in shared development costs. The NEP systems produce significantly lower thrust that NTP systems and are generally more massive. Both systems have their appropriate roles in a balanced space program. The technology development needs of NEP systems differ in many important ways from the development needs for NTP systems because of the significant differences in the operating conditions of the systems. The NEP systems require long-life reactor power systems operating at power levels that are considerably lower than those for NTP systems. In contrast, the operational lifetime of an NEP system (years) is orders of magnitude longer than the operational lifetime of NTP systems (thousands of second). Thus, the critical issue of NEP is survivability and reliable operability for very long times at temperatures that are considerably more modest than the temperatures required for effective NTP operations but generally much higher than those experienced in terrestrial reactors.

  19. Constructal method to optimize solar thermochemical reactor design

    SciTech Connect (OSTI)

    Tescari, S.; Mazet, N.; Neveu, P.

    2010-09-15

    The objective of this study is the geometrical optimization of a thermochemical reactor, which works simultaneously as solar collector and reactor. The heat (concentrated solar radiation) is supplied on a small peripheral surface and has to be dispersed in the entire reactive volume in order to activate the reaction all over the material. A similarity between this study and the point to volume problem analyzed by the constructal approach (Bejan, 2000) is evident. This approach was successfully applied to several domains, for example for the coupled mass and conductive heat transfer (Azoumah et al., 2004). Focusing on solar reactors, this work aims to apply constructal analysis to coupled conductive and radiative heat transfer. As a first step, the chemical reaction is represented by a uniform heat sink inside the material. The objective is to optimize the reactor geometry in order to maximize its efficiency. By using some hypothesis, a simplified solution is found. A parametric study provides the influence of different technical and operating parameters on the maximal efficiency and on the optimal shape. Different reactor designs (filled cylinder, cavity and honeycomb reactors) are compared, in order to determine the most efficient structure according to the operating conditions. Finally, these results are compared with a CFD model in order to validate the assumptions. (author)

  20. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  1. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOE Patents [OSTI]

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  2. Nuclear processes in magnetic fusion reactors with polarized fuel

    E-Print Network [OSTI]

    Michail P. Rekalo; Egle Tomasi-Gustafsson

    2000-10-16

    We consider the processes $d +d \\to n +{^3He}$, $d +{^3He} \\to p +{^4He}$, $d +{^3H} \\to n +{^4He}$, ${^3He} +{^3He}\\to p+p +{^4He}$, ${^3H} +{^3He}\\to d +{^4He}$, with particular attention for applications in fusion reactors. After a model independent parametrization of the spin structure of the matrix elements for these processes at thermal colliding energies, in terms of partial amplitudes, we study polarization phenomena in the framework of a formalism of helicity amplitudes. The strong angular dependence of the final nuclei and of the polarization observables on the polarizations of the fuel components can be helpful in the design of the reactor shielding, blanket arrangement etc..We analyze also the angular dependence of the neutron polarization for the processes $\\vec d +\\vec d \\to n +{^3He}$ and $\\vec d +\\vec {^3H} \\to n +{^4He}$.

  3. Modularity in design of the MIT Pebble Bed Reactor

    E-Print Network [OSTI]

    Berte, Marc Vincent, 1977-

    2004-01-01

    The future of new nuclear power plant construction will depend in large part on the ability of designers to reduce capital, operations, and maintenance costs. One of the methods proposed, is to enhance the modularity of ...

  4. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    SciTech Connect (OSTI)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal tube film evaporation design used successfully with the BN-350 nuclear plant in Aktau, Kazakhstan. Parametric studies have been performed to optimize the balance of plant design. Also, an economic analysis has been performed, which shows that IRIS-D should be able to provide electricity and clean water at highly competitive costs.

  5. ChBE 4300 Kinetics and Reactor Design (required course) Credit: 3-0-3

    E-Print Network [OSTI]

    Sherrill, David

    , and (ii) reactor design for the homogeneous reaction systems. The design principles for ideal homogeneousChBE 4300 Kinetics and Reactor Design (required course) Credit: 3-0-3 Prerequisite in terms of reaction mechanisms, kinetics, and reactor design. Both homogeneous and heterogeneous reactions

  6. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 1, Final report

    SciTech Connect (OSTI)

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for inertial confinement reactors. The first of three volumes briefly discusses the following: Introduction; Key objectives, requirements, and assumptions; Systems modeling and trade studies; Prometheus-L reactor plant design overview; Prometheus-H reactor plant design overview; Key technical issues and R&D requirements; Comparison of IFE designs; and study conclusions.

  7. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    SciTech Connect (OSTI)

    Powell, J.R.; Ludewig, H.; Horn, F.L.; Araj, K.; Benenati, R.; Lazareth, O.; Slovik, G.; Solon, M.; Tappe, W.; Belisle, J.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ..delta..V missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined.

  8. Physics of Nuclear Reactors, March,21 2011 What do we know ?

    E-Print Network [OSTI]

    Danon, Yaron

    Dr. Danon Physics of Nuclear Reactors, March,21 2011 #12;What do we know ? All the information we have is from the media. More reliable; nuclear related information: www.nei.org www.iaea.org THE REST IS INTERPRETATION OF THIS DATA #12;BWR Reactor (Mark I containment) #12;BWR containment in more

  9. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  10. Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor

    E-Print Network [OSTI]

    V. V. Sinev

    2009-02-22

    The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

  11. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    DOE Patents [OSTI]

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  12. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pacoima, CA); Benander, Robert E. (Pacoima, CA)

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  13. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pocoima, CA); Benander, Robert E. (Pacoima, CA)

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  14. Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor

    E-Print Network [OSTI]

    Chris H. Rycroft; Gary S. Grest; James W. Landry; Martin Z. Bazant

    2006-02-16

    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.

  15. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; et al

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore »exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  16. System Upgrades at the Advanced Test Reactor Help Ensure that Nuclear Energy Research Continues at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Craig Wise

    2011-12-01

    Fully operational in 1967, the Advanced Test Reactor (ATR) is a first-of-its-kind materials test reactor. Located on the Idaho National Laboratory’s desert site, this reactor remains at the forefront of nuclear science, producing extremely high neutron irradiation in a relatively short time span. The Advanced Test Reactor is also the only U.S. reactor that can replicate multiple reactor environments concurrently. The Idaho National Laboratory and the Department of Energy recently invested over 13 million dollars to replace three of ATR’s instrumentation and control systems. The new systems offer the latest software and technology advancements, ensuring the availability of the reactor for future energy research. Engineers and project managers successfully completed the four year project in March while the ATR was in a scheduled maintenance outage. “These new systems represent state-of-the-art monitoring and annunciation capabilities,” said Don Feldman, ATR Station Manager. “They are comparable to systems currently used for advanced reactor designs planned for construction in the U.S. and in operation in some foreign countries.”

  17. Design of passive decay heat removal system for the lead cooled flexible conversion ratio fast reactor

    E-Print Network [OSTI]

    Whitman, Joshua (Joshua J.)

    2007-01-01

    The lead-cooled flexible conversion ratio fast reactor shows many benefits over other fast-reactor designs; however, the higher power rating and denser primary coolant present difficulties for the design of a passive decay ...

  18. Thermal hydraulic design of a salt-cooled highly efficient environmentally friendly reactor

    E-Print Network [OSTI]

    Whitman, Joshua (Joshua J.)

    2009-01-01

    A 1 OOOMWth liquid-salt cooled thermal spectrum reactor was designed with a long fuel cycle, and high core exit temperature. These features are desirable in a reactor designed to provide process heat applications such as ...

  19. Design and Fabrication of In-Reactor Experiment to Measure Tritium...

    Office of Environmental Management (EM)

    Design and Fabrication of In-Reactor Experiment to Measure Tritium Release and Speciation from LiAlO2 and LiAlO2Zr Cermets Design and Fabrication of In-Reactor Experiment to...

  20. Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR

    Office of Energy Efficiency and Renewable Energy (EERE)

    Assigning Seismic Design Category to Large Reactors: A Case Study of the ATR Stuart Jensen October 21, 2014

  1. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Programmer's guide

    SciTech Connect (OSTI)

    Call, O. J.; Jacobson, J. A.

    1988-09-01

    The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) is an automated data base management system for processing and storing human error probability and hardware component failure data. The NUCLARR system software resides on an IBM (or compatible) personal micro-computer and can be used to furnish data inputs for both human and hardware reliability analysis in support of a variety of risk assessment activities. The NUCLARR system is documented in a five-volume series of reports. Volume 2 of this series is the Programmer's Guide for maintaining the NUCLARR system software. This Programmer's Guide provides, for the software engineer, an orientation to the software elements involved, discusses maintenance methods, and presents useful aids and examples. 4 refs., 75 figs., 1 tab.

  2. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, Roger B. (Penn Twp., PA); Fero, Arnold H. (New Kensington, PA); Sejvar, James (Murrysville, PA)

    1997-01-01

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor.

  3. Thermal insulating barrier and neutron shield providing integrated protection for a nuclear reactor vessel

    DOE Patents [OSTI]

    Schreiber, R.B.; Fero, A.H.; Sejvar, J.

    1997-12-16

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel to form a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive valving also includes bistable vents at the upper end of the thermal insulating barrier for releasing steam. A removable, modular neutron shield extending around the upper end of the reactor cavity below the nozzles forms with the upwardly and outwardly tapered transition on the outer surface of the reactor vessel, a labyrinthine channel which reduces neutron streaming while providing a passage for the escape of steam during a severe accident, and for the cooling air which is circulated along the reactor cavity walls outside the thermal insulating barrier during normal operation of the reactor. 8 figs.

  4. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOE Patents [OSTI]

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  5. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; Kiff, Scott D.; Reyna, David; Throckmorton, Daniel J.

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore »by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less

  6. Self-actuating and locking control for nuclear reactor

    DOE Patents [OSTI]

    Chung, Dong K. (Chatsworth, CA)

    1982-01-01

    A self-actuating, self-locking flow cutoff valve particularly suited for use in a nuclear reactor of the type which utilizes a plurality of fluid support neutron absorber elements to provide for the safe shutdown of the reactor. The valve comprises a substantially vertical elongated housing and an aperture plate located in the housing for the flow of fluid therethrough, a substantially vertical elongated nozzle member located in the housing and affixed to the housing with an opening in the bottom for receiving fluid and apertures adjacent a top end for discharging fluid. The nozzle further includes two sealing means, one located above and the other below the apertures. Also located in the housing and having walls surrounding the nozzle is a flow cutoff sleeve having a fluid opening adjacent an upper end of the sleeve, the sleeve being moveable between an upper open position wherein the nozzle apertures are substantially unobstructed and a closed position wherein the sleeve and nozzle sealing surfaces are mated such that the flow of fluid through the apertures is obstructed. It is a particular feature of the present invention that the valve further includes a means for utilizing any increase in fluid pressure to maintain the cutoff sleeve in a closed position. It is another feature of the invention that there is provided a means for automatically closing the valve whenever the flow of fluid drops below a predetermined level.

  7. Improved gas tagging and cover gas combination for nuclear reactor

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1983-09-26

    The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.

  8. Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon

    E-Print Network [OSTI]

    Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon A billion yr old Oklo natural nuclear reactor. In addition to elevated abundances of fission-produced Zr, Ce nuclear chain reaction was predicted by Kuroda [1] 20 years before the remnants of the natural reactor

  9. Exploration of High-Dimensional Scalar Function for Nuclear Reactor Safety Analysis and Visualization

    SciTech Connect (OSTI)

    Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Michael Pernice; Robert Nourgaliev

    2013-05-01

    The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA) explicitly accounts for the time element in modeling the probabilistic system evolution and uses numerical simulation tools to account for possible dependencies between failure events. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce which may be difficult to visualize and analyze in order to extract useful information. We present a software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations. We provide a user’s guide to our software tool by highlighting its analysis and visualization capabilities, along with a use case involving dataset from a nuclear reactor safety simulation.

  10. Influence of modeling and simulation on the maturation of plasma technology: Feature evolution and reactor design

    E-Print Network [OSTI]

    Kushner, Mark

    requires fluxes from reactor scale phenom- ena. To achieve the goal of using MS for first principles design and reactor design David B. Gravesa) Department of Chemical Engineering, University of California, Berkeley and future potential of MS for feature evolution and plasma reactor design. © 2003 American Vacuum Society

  11. Thermal hydraulic design and analysis of a large lead-cooled reactor with flexible conversion ratio

    E-Print Network [OSTI]

    Nikiforova, Anna S., S.M. Massachusetts Institute of Technology

    2008-01-01

    This thesis contributes to the Flexible Conversion Ratio Fast Reactor Systems Evaluation Project, a part of the Nuclear Cycle Technology and Policy Program funded by the Department of Energy through the Nuclear Energy ...

  12. Design of an Alternative Coolant Inlet Flow Configuaration for the Modular Helium Reactor

    SciTech Connect (OSTI)

    SM Mohsin Reza; E. A. Harvego; Matt Richards; Arkal Shenoy; Kenneth Lee Peddicord

    2006-06-01

    The coolant outlet temperature for the Modular Helium Reactor (MHR) was increased to improve the overall efficiency of nuclear hydrogen production using either thermochemical or high temperature electrolysis (HTE) processes. The inlet temperature was also increased to keep about the same _T across the reactor core. Thermal hydraulic analyses of the current MHR design were performed with these updated temperatures to determine the impact of these highter temperatures on pressure drops, coolant flow rates and temperature profiles within the vessel and core regions. Due to these increased operating temperatures, the overall efficiency of hydrogen production processes increases but the steady state reactor vessel temperature is found to be well above the ASME code limits for current vessel materials. Using the RELAP5-3D/ATHENA computer code, an alternative configuration for the MHR coolant inlet flow path was evaluated in an attempt to reduce the reactor vessel temperatures. The coolant inlet flow was shifted from channel boxes located in the annular region between the reactor core barrel and the inner wall of the reactor vessel to a flow path through the outer permanent reflector. Considering the available thickness of graphite in the permanent outer reflector, the total flow area, the number of coolant holes and the coolant-hole diameter were varied to optimize the pressure drop, the coolant inlet velocity and the percentage of graphite removed from the core. The resulting thermal hydraulic analyses of the optimized design showed that peak vessel and fuel temperatures were within acceptable limits for both steady-state and transient operating conditions.

  13. Worldwide advanced nuclear power reactors with passive and inherent safety: What, why, how, and who

    SciTech Connect (OSTI)

    Forsberg, C.W.; Reich, W.J.

    1991-09-01

    The political controversy over nuclear power, the accidents at Three Mile Island (TMI) and Chernobyl, international competition, concerns about the carbon dioxide greenhouse effect and technical breakthroughs have resulted in a segment of the nuclear industry examining power reactor concepts with PRIME safety characteristics. PRIME is an acronym for Passive safety, Resilience, Inherent safety, Malevolence resistance, and Extended time after initiation of an accident for external help. The basic ideal of PRIME is to develop power reactors in which operator error, internal sabotage, or external assault do not cause a significant release of radioactivity to the environment. Several PRIME reactor concepts are being considered. In each case, an existing, proven power reactor technology is combined with radical innovations in selected plant components and in the safety philosophy. The Process Inherent Ultimate Safety (PIUS) reactor is a modified pressurized-water reactor, the Modular High Temperature Gas-Cooled Reactor (MHTGR) is a modified gas-cooled reactor, and the Advanced CANDU Project is a modified heavy-water reactor. In addition to the reactor concepts, there is parallel work on super containments. The objective is the development of a passive box'' that can contain radioactivity in the event of any type of accident. This report briefly examines: why a segment of the nuclear power community is taking this new direction, how it differs from earlier directions, and what technical options are being considered. A more detailed description of which countries and reactor vendors have undertaken activities follows. 41 refs.

  14. Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Pebble Fuel

    SciTech Connect (OSTI)

    Philip Casey Durst; Mark Schanfein

    2012-08-01

    The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on pebble fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC.

  15. US ITER (International Thermonuclear Experimental Reactor) shield and blanket design activities

    SciTech Connect (OSTI)

    Baker, C.C.

    1988-08-01

    This paper summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. Primary tasks carried out during the past year include design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components, and issues regarding structural materials for an ITER device. The blanket concepts considered are the aqueous/Li salt solution, a water-cooled, solid breeder blanket, a helium-cooled, solid-breeder blanket, a blanket cooled by helium containing lithium-bearing particulates, and a blanket concept based on breeding tritium from He/sup 3/. 1 ref., 2 tabs.

  16. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

    2008-01-01

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  17. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    SciTech Connect (OSTI)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

  18. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bartel, N.; Chen, M.; Utgikar, V. P.; Sun, X.; Kim, I. -H.; Christensen, R.; Sabharwall, P.

    2015-04-04

    A comparative evaluation of alternative compact heat exchanger designs for use as the intermediate heat exchanger in advanced nuclear reactor systems is presented in this article. Candidate heat exchangers investigated included the Printed circuit heat exchanger (PCHE) and offset strip-fin heat exchanger (OSFHE). Both these heat exchangers offer high surface area to volume ratio (a measure of compactness [m2/m3]), high thermal effectiveness, and overall low pressure drop. Helium–helium heat exchanger designs for different heat exchanger types were developed for a 600 MW thermal advanced nuclear reactor. The wavy channel PCHE with a 15° pitch angle was found to offer optimummore »combination of heat transfer coefficient, compactness and pressure drop as compared to other alternatives. The principles of the comparative analysis presented here will be useful for heat exchanger evaluations in other applications as well.« less

  19. A Preliminary Report on Static Analysis of C Code for Nuclear Reactor Protection System

    E-Print Network [OSTI]

    A Preliminary Report on Static Analysis of C Code for Nuclear Reactor Protection System Jong: Cybersecurity regulations require new I&C (Instrumentation & Control) systems in nuclear power plants to develop if the C code is produced mechanically. Keywords: Nuclear Plant Protection System , I&C , PLC software

  20. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, Viktor E. (Pleasanton, CA)

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  1. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  2. System and method for the analysis of one or more compounds and/or species produced by a solution-based nuclear reactor

    DOE Patents [OSTI]

    Policke, Timothy A; Nygaard, Eric T

    2014-05-06

    The present invention relates generally to both a system and method for determining the composition of an off-gas from a solution nuclear reactor (e.g., an Aqueous Homogeneous Reactor (AHR)) and the composition of the fissioning solution from those measurements. In one embodiment, the present invention utilizes at least one quadrupole mass spectrometer (QMS) in a system and/or method designed to determine at least one or more of: (i) the rate of production of at least one gas and/or gas species from a nuclear reactor; (ii) the effect on pH by one or more nitrogen species; (iii) the rate of production of one or more fission gases; and/or (iv) the effect on pH of at least one gas and/or gas species other than one or more nitrogen species from a nuclear reactor.

  3. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  4. OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR

    E-Print Network [OSTI]

    OPTIMAL DESIGN OF A HIGH PRESSURE ORGANOMETALLIC CHEMICAL VAPOR DEPOSITION REACTOR K.J. BACHMANN simulations as a fundamental design tool in developing a new prototype high pressure organometallic chemical vapor deposition (HPOMCVD) reactor for use in thin film crystal growth. The advantages of such a reactor

  5. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  6. Development of Nuclear Reactor remote Monitoring software (NRM) for the Star project 

    E-Print Network [OSTI]

    Gautier, Vincent Charles

    2002-01-01

    As a response to the needs of developing countries to meet their rapidly growing energy requirements, the Safe, Transportable, Autonomous Reactor (STAR) program originated. This concept relies on small, passively safe, and highly autonomous nuclear...

  7. Examination of offsite radiological emergency protective measures for nuclear reactor accidents involving core melt

    E-Print Network [OSTI]

    Aldrich, David C.

    1979-01-01

    Evacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted ...

  8. EU in push for support on nuclear fusion reactor September 26, 2004

    E-Print Network [OSTI]

    to obtain power through nuclear fusion, a clean energy source. But views are split on where the ITER reactor the green light to the project at the end of November, with or without Washington. In a bid to end

  9. Assessment of innovative fuel designs for high performance light water reactors

    E-Print Network [OSTI]

    Carpenter, David Michael

    2006-01-01

    To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

  10. Proceedings of the 1984 DOE nuclear reactor and facility safety conference. Volume II

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    This report is a collection of papers on reactor safety. The report takes the form of proceedings from the 1984 DOE Nuclear Reactor and Facility Safety Conference, Volume II of two. These proceedings cover Safety, Accidents, Training, Task/Job Analysis, Robotics and the Engineering Aspects of Man/Safety interfaces.

  11. Integrating Safety, Operations, Security, and Safeguards (ISOSS) into the design of small modular reactors : a handbook.

    SciTech Connect (OSTI)

    Middleton, Bobby D.; Mendez, Carmen Margarita [Sociotecnia Solutions] [Sociotecnia Solutions

    2013-10-01

    The existing regulatory environment for nuclear reactors impacts both the facility design and the cost of operations once the facility is built. Delaying the consideration of regulatory requirements until late in the facility design - or worse, until after construction has begun - can result in costly retrofitting as well as increased operational costs to fulfill safety, security, safeguards, and emergency readiness requirements. Considering the scale and scope, as well as the latest design trends in the next generation of nuclear facilities, there is an opportunity to evaluate the regulatory requirements and optimize the design process for Small Modular Reactors (SMRs), as compared to current Light Water Reactors (LWRs). To this end, Sandia has embarked on an initiative to evaluate the interactions of regulations and operations as an approach to optimizing the design of SMR facilities, supporting operational efficiencies, as well as regulatory requirements. The early stages of this initiative consider two focus areas. The first focus area, reported by LaChance, et al. (2007), identifies the regulatory requirements established for the current fleet of LWR facilities regarding Safety, Security, Operations, Safeguards, and Emergency Planning, and evaluates the technical bases for these requirements. The second focus area, developed in this report, documents the foundations for an innovative approach that supports a design framework for SMR facilities that incorporates the regulatory environment, as well as the continued operation of the facility, into the early design stages, eliminating the need for costly retrofitting and additional operating personnel to fulfill regulatory requirements. The work considers a technique known as Integrated Safety, Operations, Security and Safeguards (ISOSS) (Darby, et al., 2007). In coordination with the best practices of industrial operations, the goal of this effort is to develop a design framework that outlines how ISOSS requirements can be incorporated into the pre-conceptual through early facility design stages, seeking a cost-effective design that meets both operational efficiencies and the regulatory environment. The larger scope of the project, i.e., in future stages, includes the identification of potentially conflicting requirements identified by the ISOSS framework, including an analysis of how regulatory requirements may be changed to account for the intrinsic features of SMRs.

  12. Hybrid nuclear reactor grey rod to obtain required reactivity worth

    DOE Patents [OSTI]

    Miller, John V. (Munhall, PA); Carlson, William R. (Scott Township, Allegheny County, PA); Yarbrough, Michael B. (Hempfield Township, Westmoreland County, PA)

    1991-01-01

    Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.

  13. Thermomechanical analysis of innovative nuclear fuel pin designs

    E-Print Network [OSTI]

    Lerch Andrew (Andrew J.)

    2010-01-01

    One way to increase the power of a nuclear reactor is to change the solid cylindrical fuel to Internally and Externally Cooled (I&EC) annular fuel, and adjust the flow and the core inlet coolant temperature. The switch to ...

  14. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    SciTech Connect (OSTI)

    Snoj, L.; Sklenka, L.; Rataj, J.; Boeck, H.

    2012-07-01

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

  15. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  16. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  17. Advanced Core Design And Fuel Management For Pebble-Bed Reactors

    SciTech Connect (OSTI)

    Hans D. Gougar; Abderrafi M. Ougouag; William K. Terry

    2004-10-01

    A method for designing and optimizing recirculating pebble-bed reactor cores is presented. At the heart of the method is a new reactor physics computer code, PEBBED, which accurately and efficiently computes the neutronic and material properties of the asymptotic (equilibrium) fuel cycle. This core state is shown to be unique for a given core geometry, power level, discharge burnup, and fuel circulation policy. Fuel circulation in the pebble-bed can be described in terms of a few well?defined parameters and expressed as a recirculation matrix. The implementation of a few heat?transfer relations suitable for high-temperature gas-cooled reactors allows for the rapid estimation of thermal properties critical for safe operation. Thus, modeling and design optimization of a given pebble-bed core can be performed quickly and efficiently via the manipulation of a limited number key parameters. Automation of the optimization process is achieved by manipulation of these parameters using a genetic algorithm. The end result is an economical, passively safe, proliferation-resistant nuclear power plant.

  18. Westinghouse Small Modular Reactor balance of plant and supporting systems design

    SciTech Connect (OSTI)

    Memmott, M. J.; Stansbury, C.; Taylor, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

  19. NRC (Nuclear Regulatory Commission) staff evaluation of the General Electric Company Nuclear Reactor Study (''Reed Report'')

    SciTech Connect (OSTI)

    1987-07-01

    In 1975, the General Electric Company (GE) published a Nuclear Reactor Study, also referred to as ''the Reed Report,'' an internal product-improvement study. GE considered the document ''proprietary'' and thus, under the regulations of the Nuclear Regulatory Commission (NRC), exempt from mandatory public disclosure. Nonetheless, members of the NRC staff reviewed the document in 1976 and determined that it did not raise any significant new safety issues. The staff also reached the same conclusion in subsequent reviews. However, in response to recent inquiries about the report, the staff reevaluated the Reed Report from a 1987 perspective. This re-evaluation, documented in this staff report, concluded that: (1) there are no issues raised in the Reed Report that support a need to curtail the operation of any GE boiling water reactor (BWR); (2) there are no new safety issues raised in the Reed Report of which the staff was unaware; and (3) although certain issues addressed by the Reed Report are still being studied by the NRC and the industry, there is no basis for suspending licensing and operation of GE BWR plants while these issues are being resolved.

  20. The Future of Nuclear Energy: Facts and Fiction Chapter IV: Energy from Breeder Reactors and from Fusion?

    E-Print Network [OSTI]

    Dittmar, Michael

    2009-01-01

    The accumulated knowledge and the prospects for commercial energy production from fission breeder and fusion reactors are analyzed in this report. The publicly available data from past experimental breeder reactors indicate that a large number of unsolved technological problems exist and that the amount of "created" fissile material, either from the U238 --> Pu239 or from the Th232 --> U233 cycle, is still far below the breeder requirements and optimistic theoretical expectations. Thus huge efforts, including many basic research questions with an uncertain outcome, are needed before a large commercial breeder prototype can be designed. Even if such efforts are undertaken by the technologically most advanced countries, it will take several decades before such a prototype can be constructed. We conclude therefore, that ideas about near-future commercial fission breeder reactors are nothing but wishful thinking. We further conclude that, no matter how far into the future we may look, nuclear fusion as an energy ...

  1. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara; Peters, Curtis [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an early prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.

  2. Granular Dynamics in Pebble Bed Reactor Cores

    E-Print Network [OSTI]

    Laufer, Michael Robert

    2013-01-01

    Design Criteria for Nucler Power Plants,” U.S. NuclearDesign Criteria GRECO Granular Recirculation Code HDPE High-Density Polyethylene HTR High-Temperature Reactor NRC Nuclear

  3. The design of a reduced diameter Pebble Bed Modular Reactor for reactor pressure vessel transport by railcar

    E-Print Network [OSTI]

    Everson, Matthew S

    2009-01-01

    Many desirable locations for Pebble Bed Modular Reactors are currently out of consideration as construction sites for current designs due to limitations on the mode of transportation for large RPVs. In particular, the ...

  4. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    SciTech Connect (OSTI)

    NONE

    2000-08-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  5. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    SciTech Connect (OSTI)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  6. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    discussed, between the Nuclear safety assurance and riskCharges Relating to Nuclear Reactor Safety," 1976, availableof light-water nuclear reactor safety, emphasizing the

  7. Relative Movements for Design of Commodities in Nuclear Power Plants

    Broader source: Energy.gov [DOE]

    Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

  8. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    SciTech Connect (OSTI)

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb/sub 3/Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  9. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOE Patents [OSTI]

    Ekeroth, D.E.; Orr, R.

    1993-12-07

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel. 5 figures.

  10. Nuclear reactor having a polyhedral primary shield and removable vessel insulation

    DOE Patents [OSTI]

    Ekeroth, Douglas E. (Delmont, PA); Orr, Richard (Pittsburgh, PA)

    1993-01-01

    A nuclear reactor is provided having a generally cylindrical reactor vessel disposed within an opening in a primary shield. The opening in the primary shield is defined by a plurality of generally planar side walls forming a generally polyhedral-shaped opening. The reactor vessel is supported within the opening in the primary shield by reactor vessel supports which are in communication and aligned with central portions of some of the side walls. The reactor vessel is connected to the central portions of the reactor vessel supports. A thermal insulation polyhedron formed from a plurality of slidably insertable and removable generally planar insulation panels substantially surrounds at least a portion of the reactor vessel and is disposed between the reactor vessel and the side walls of the primary shield. The shape of the insulation polyhedron generally corresponds to the shape of the opening in the primary shield. Reactor monitoring instrumentation may be mounted in the corners of the opening in the primary shield between the side walls and the reactor vessel such that insulation is not disposed between the instrumentation and the reactor vessel.

  11. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Djurcic, Zelimir

    2009-01-01

    1996. [41] US Nuclear Regulatory Commission, “NRC Sta? Posi-by the US Nuclear Regulatory Commission in a discus- sion on

  12. CRAD, Nuclear Safety- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  14. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  15. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    SciTech Connect (OSTI)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  16. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  17. Design Windows for a He Cooled Fusion Reactor* Dai-Kai Sze and Ahmed Hassanein

    E-Print Network [OSTI]

    Harilal, S. S.

    Design Windows for a He Cooled Fusion Reactor* Dai-Kai Sze and Ahmed Hassanein Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 EQUATIONDERIVATION ABSTRACT A design window concept is developed for a He-cooled fusion reactor blanket and divertor design. This concept allows study

  18. Hanging core support system for a nuclear reactor. [LMFBR

    DOE Patents [OSTI]

    Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

    1984-04-26

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.

  19. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    SciTech Connect (OSTI)

    Boyer, Brian D

    2012-08-15

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  20. One pass core design of a super fast reactor

    SciTech Connect (OSTI)

    Liu, Qingjie; Oka, Yoshiaki

    2013-07-01

    One pass core design for Supercritical-pressure light water-cooled fast reactor (Super FR) is proposed. The whole core is cooled with upward flow in one through flow pattern like PWR. Compared with the previous two pass core design; this new flow pattern can significantly simplify the core concept. Upper core structure, coolant flow scheme as well as refueling procedure are as simple as in PWR. In one pass core design, supercritical-pressure water is at approximately 25.0 MPa and enters the core at 280 C. degrees and is heated up in one through flow pattern upwardly to the average outlet temperature of 500 C. degrees. Great density change in vertical direction can cause significant axial power offset during the cycle. Meanwhile, Pu accumulated in the UO{sub 2} fuel blanket assemblies also introduces great power increase during cycle, which requires large amount of flow for heat removal and makes the outlet temperature of blanket low at the beginning of equilibrium cycle (BOEC). To deal with these issues, some MOX fuel is applied in the bottom region of the blanket assembly. This can help to mitigate the power change in blanket due to Pu accumulation and to increase the outlet temperature of the blanket during cycle. Neutron transport and thermohydraulics coupled calculation shows that this design can satisfy the requirement in the Super FR principle for both 500 C. degrees outlet temperature and negative coolant void reactivity. (authors)

  1. NGNP Nuclear-Industrial Facility and Design Certification Boundaries White Paper

    SciTech Connect (OSTI)

    Thomas E. Hicks

    2011-07-01

    The Next Generation Nuclear Plant (NGNP) Project was initiated at Idaho National Laboratory by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act and based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is helium cooled and graphite moderated and can operate at reactor outlet temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, in addition to producing electricity, which is the principal application of current LWRs. These varied industrial applications may involve a standard HTGR modular design using different Energy Conversion Systems. Additionally, some of these process heat applications will require process heat delivery systems to lie partially outside the HTGR operator’s facility.

  2. Initial Requirements for Gas-Cooled Fast Reactor (GFR) System Design, Performance, and Safety Analysis Models

    SciTech Connect (OSTI)

    Kevan D. Weaver; Thomas Y. C. Wei

    2004-08-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radio toxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. Nevertheless, the GFR was chosen as one of only six Generation IV systems to be pursued based on its ability to meet the Generation IV goals in sustainability, economics, safety and reliability, proliferation resistance and physical protection.

  3. Design, analysis and optimization of the power conversion system for the Modular Pebble Bed Reactor System

    E-Print Network [OSTI]

    Wang, Chunyun, 1968-

    2003-01-01

    The Modular Pebble Bed Reactor system (MPBR) requires a gas turbine cycle (Brayton cycle) as the power conversion system for it to achieve economic competitiveness as a GenIV nuclear system. The availability of controllable ...

  4. Optimized core design of a supercritical carbon dioxide-cooled fast reactor

    E-Print Network [OSTI]

    Handwerk, Christopher S. (Christopher Stanley), 1974-

    2007-01-01

    Spurred by the renewed interest in nuclear power, Gas-cooled Fast Reactors (GFRs) have received increasing attention in the past decade. Motivated by the goals of the Generation-IV International Forum (GIF), a GFR cooled ...

  5. High Flux Isotope Reactor cold neutron source reference design concept

    SciTech Connect (OSTI)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R.

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  6. Nuclear reactor with low-level core coolant intake

    DOE Patents [OSTI]

    Challberg, Roy C. (Livermore, CA); Townsend, Harold E. (Campbell, CA)

    1993-01-01

    A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

  7. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    SciTech Connect (OSTI)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re-evaluate thermophysical properties of flibe and flinak. Pacific Northwest National Laboratories has focused on evaluating the fluorinating gas nitrogen trifluoride as a potential salt purification agent. Work there was performed on removing hydroxides and oxides from flinak salt under controlled conditions. Lastly, the University of California Berkeley has spent considerable time designing and simulating reactor components with fluoride salts at high temperatures. Despite the hurdles presented by the innate chemical hazards, considerable progress has been made. The stage has been set to perform new research on salt chemical control which could advance the fluoride salt cooled reactor concept towards commercialization. What were previously thought of as chemical undesirable, but nuclear certified, alloys have been shown to be theoretically compatible with fluoride salts at high temperatures. This preliminary report has been prepared to communicate the construction of the basic infrastructure required for flibe, as well as suggest original research to performed at the University of Wisconsin. Simultaneously, the contents of this report can serve as a detailed, but introductory guide to allow anyone to learn the fundamentals of chemistry, engineering, and safety required to work with flibe salt.

  8. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.; Lambert, J.B.; Herzog, J.P.

    1997-02-11

    A method and system are disclosed for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod. 12 figs.

  9. Neural net controlled tag gas sampling system for nuclear reactors

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Fall, ID); Lambert, John D. B. (Wheaton, IL); Herzog, James P. (Downers Grove, IL)

    1997-01-01

    A method and system for providing a tag gas identifier to a nuclear fuel rod and analyze escaped tag gas to identify a particular failed nuclear fuel rod. The method and system include disposing a unique tag gas composition into a plenum of a nuclear fuel rod, monitoring gamma ray activity, analyzing gamma ray signals to assess whether a nuclear fuel rod has failed and is emitting tag gas, activating a tag gas sampling and analysis system upon sensing tag gas emission from a failed nuclear rod and evaluating the escaped tag gas to identify the particular failed nuclear fuel rod.

  10. Seismic Analysis Issues in Design Certification Applications for New Reactors

    SciTech Connect (OSTI)

    Miranda, M.; Morante, R.; Xu, J.

    2011-07-17

    The licensing framework established by the U.S. Nuclear Regulatory Commission under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” provides requirements for standard design certifications (DCs) and combined license (COL) applications. The intent of this process is the early reso- lution of safety issues at the DC application stage. Subsequent COL applications may incorporate a DC by reference. Thus, the COL review will not reconsider safety issues resolved during the DC process. However, a COL application that incorporates a DC by reference must demonstrate that relevant site-specific de- sign parameters are within the bounds postulated by the DC, and any departures from the DC need to be justified. This paper provides an overview of several seismic analysis issues encountered during a review of recent DC applications under the 10 CFR Part 52 process, in which the authors have participated as part of the safety review effort.

  11. Initial Design of a Dual Fluidized Bed Reactor

    E-Print Network [OSTI]

    Yun, Minyoung

    2014-01-01

    the gasification processes in a BFB coal gasifier, chemicalby a partition wall in the BFB reactor. Solid and gas mixingand right compartment in the BFB reactor. A larger space is

  12. The Neutrino Mass Hierarchy from Nuclear Reactor Experiments

    E-Print Network [OSTI]

    Emilio Ciuffoli; Jarah Evslin; Xinmin Zhang

    2013-08-14

    10 years from now reactor neutrino experiments will attempt to determine which neutrino mass eigenstate is the most massive. In this letter we present the results of more than seven million detailed simulations of such experiments, studying the dependence of the probability of successfully determining the mass hierarchy upon the analysis method, the neutrino mass matrix parameters, reactor flux models, geoneutrinos and, in particular, combinations of baselines. We show that a recently reported spurious dependence of the data analysis upon the high energy tail of the reactor spectrum can be removed by using a weighted Fourier transform. We determine the optimal baselines and corresponding detector locations. For most values of the CP-violating, leptonic Dirac phase delta, a degeneracy prevents NOvA and T2K from determining either delta or the hierarchy. We determine the confidence with which a reactor experiment can determine the hierarchy, breaking the degeneracy.

  13. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Annual Report FY14 Year End Report Semi Annual Report FY12 Semi Annual Report FY11 Year End Report NX 3 - Naval Reactors Laboratory Field Office FY11 NX3 Year End Report FY10 NX3...

  14. Applicability of reactor code WIMS for nuclear criticality safety studies

    SciTech Connect (OSTI)

    Matausek, M.V.; Marinkovic, N.

    1995-12-31

    The purpose of this paper is to examine applicability of the reactor code WIMS for calculating criticality parameters of nonreactor configurations containing fissile materials. Results are given and discussed for some typical configurations containing {sup 235}U.

  15. A U. S. Perspective on Fast Reactor Fuel Fabrication Technology and Experience Part I: Metal Fuels and Assembly Design

    SciTech Connect (OSTI)

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter; Douglas C. Crawford; Mitchell K. Meyer

    2009-06-01

    This paper is Part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II and the Fast Flux Test Facility, and it also refers to the impact of development in other nations. Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated into a foundation of research and resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  16. Containment building : architecture between the city and advanced nuclear reactors

    E-Print Network [OSTI]

    Pauli, Lisa M

    2011-01-01

    Since the inception of nuclear energy research, the element thorium (Th) has been considered the superior fuel for nuclear reactions because of its potency, safety, abundance and reduced waste. Cold War agendas broke from ...

  17. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect (OSTI)

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  18. The Japan Times Printer Friendly Articles France has won the competition to host the International Thermonuclear Experimental Reactor (ITER), the world's first nuclear-

    E-Print Network [OSTI]

    the International Thermonuclear Experimental Reactor (ITER), the world's first nuclear- fusion reactor. Japan fought for nuclear energy in Japan. The controversies surrounding the Monju fast-breeder-reactor project -- nuclear-fusion reactions -- to produce energy. Scientists at the ITER plant will create nuclear

  19. Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system

    DOE Patents [OSTI]

    Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.

    1994-03-29

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.

  20. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOE Patents [OSTI]

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  1. Passive cooling system for top entry liquid metal cooled nuclear reactors

    DOE Patents [OSTI]

    Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

    1992-01-01

    A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

  2. Systems and methods for managing shared-path instrumentation and irradiation targets in a nuclear reactor

    DOE Patents [OSTI]

    Heinold, Mark R.; Berger, John F.; Loper, Milton H.; Runkle, Gary A.

    2015-12-29

    Systems and methods permit discriminate access to nuclear reactors. Systems provide penetration pathways to irradiation target loading and offloading systems, instrumentation systems, and other external systems at desired times, while limiting such access during undesired times. Systems use selection mechanisms that can be strategically positioned for space sharing to connect only desired systems to a reactor. Selection mechanisms include distinct paths, forks, diverters, turntables, and other types of selectors. Management methods with such systems permits use of the nuclear reactor and penetration pathways between different systems and functions, simultaneously and at only distinct desired times. Existing TIP drives and other known instrumentation and plant systems are useable with access management systems and methods, which can be used in any nuclear plant with access restrictions.

  3. Detecting a Nuclear Fission Reactor at the Center of the Earth

    E-Print Network [OSTI]

    R. S. Raghavan

    2002-08-24

    A natural nuclear fission reactor with a power output of 3- 10 terawatt at the center of the earth has been proposed as the energy source of the earth's magnetic field. The proposal can be directly tested by a massive liquid scintillation detector that can detect the signature spectrum of antineutrinos from the geo-reactor as well as the direction of the antineutrino source. Such detectors are now in operation or under construction in Japan/Europe. However, the clarity of both types of measurements may be limited by background from antineutrinos from surface power reactors. Future U. S. detectors, relatively more remote from power reactors, may be more suitable for achieving unambiguous spectral and directional evidence for a 3TW geo-reactor.

  4. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, Charles W. (Kingston, TN)

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  5. Boiling water neutronic reactor incorporating a process inherent safety design

    DOE Patents [OSTI]

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  6. Conceptual design of an annular-fueled superheat boiling water reactor

    E-Print Network [OSTI]

    Ko, Yu-Chih, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    The conceptual design of an annular-fueled superheat boiling water reactor (ASBWR) is outlined. The proposed design, ASBWR, combines the boiler and superheater regions into one fuel assembly. This ensures good neutron ...

  7. Design Basis Threat | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a CConversion| National NuclearDesign

  8. Hanging core support system for a nuclear reactor

    DOE Patents [OSTI]

    Burelbach, James P. (Glen Ellyn, IL); Kann, William J. (Park Ridge, IL); Pan, Yen-Cheng (Naperville, IL); Saiveau, James G. (Hickory Hills, IL); Seidensticker, Ralph W. (Wheaton, IL)

    1987-01-01

    For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform. Motion or radiation sensing detectors can be provide at the lower ends of the tension rods for obtaining pertinent readings proximate the core.

  9. Russian-Designed Reactors. Hearing before the Subcommittee on Energy and Power of the Committee on Energy and Commerce, House of Representatives, One Hundred Third Congress, First Session, October 28, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This hearing focuses on the USA's effort to upgrade the safety of Soviety-designed nuclear power reactors including development of energy alternatives, and effective assistance, addressing the most serious problems. Testifying are Hazel O'Leary, US DOE; I. Selin, NRC, and Elizabeth Verville, coordinator of Reactor Safety and International Science and Technology Center, DOS.

  10. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  11. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  12. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  13. France gets nuclear fusion plant France will get to host the project to build a 10bn-euro (6.6bn) nuclear fusion reactor, in

    E-Print Network [OSTI]

    ) nuclear fusion reactor, in the face of strong competition from Japan. The International ThermonuclearFrance gets nuclear fusion plant France will get to host the project to build a 10bn-euro (£6.6bn Experimental Reactor (Iter) will be the most expensive joint scientific project after the International Space

  14. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    SciTech Connect (OSTI)

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  15. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  16. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01

    1.2.1 PWRs . . . . . . . . . . . . . . . . . . . . 1.2.2Actinides Multi-Recycling in PWR Using Hydride Fuels. InRecycling in Hydride Fueled PWR Cores. Nuclear Engineering

  17. Nuclear breeder reactor fuel element with silicon carbide getter

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  18. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  19. The Programmable Logic Controller and its application in nuclear reactor systems

    SciTech Connect (OSTI)

    Palomar, J.; Wyman, R. [Lawrence Livermore National Lab., CA (United States)

    1993-09-01

    This document provides recommendations to guide reviewers in the application of Programmable Logic Controllers (PLCS) to the control, monitoring and protection of nuclear reactors. The first topics addressed are system-level design issues, specifically including safety. The document then discusses concerns about the PLC manufacturing organization and the protection system engineering organization. Supplementing this document are two appendices. Appendix A summarizes PLC characteristics. Specifically addressed are those characteristics that make the PLC more suitable for emergency shutdown systems than other electrical/electronic-based systems, as well as characteristics that improve reliability of a system. Also covered are PLC characteristics that may create an unsafe operating environment. Appendix B provides an overview of the use of programmable logic controllers in emergency shutdown systems. The intent is to familiarize the reader with the design, development, test, and maintenance phases of applying a PLC to an ESD system. Each phase is described in detail and information pertinent to the application of a PLC is pointed out.

  20. Terracentric Nuclear Fission Reactor: Background, Basis, Feasibility, Structure, Evidence, and Geophysical Implications

    E-Print Network [OSTI]

    J. Marvin Herndon

    2013-12-31

    The background, basis, feasibility, structure, evidence, and geophysical implications of a naturally occurring Terracentric nuclear fission georeactor are reviewed. For a nuclear fission reactor to exist at the center of the Earth, all of the following conditions must be met: (1) There must originally have been a substantial quantity of uranium within Earth's core; (2) There must be a natural mechanism for concentrating the uranium; (3) The isotopic composition of the uranium at the onset of fission must be appropriate to sustain a nuclear fission chain reaction; (4) The reactor must be able to breed a sufficient quantity of fissile nuclides to permit operation over the lifetime of Earth to the present; (5) There must be a natural mechanism for the removal of fission products; (6) There must be a natural mechanism for removing heat from the reactor; (7) There must be a natural mechanism to regulate reactor power level, and; (8) The location of the reactor or must be such as to provide containment and prevent meltdown. Herndon's georeactor alone is shown to meet those conditions. Georeactor existence evidence based upon helium measurements and upon antineutrino measurements is described. Geophysical implications discussed include georeactor origin of the geomagnetic field, geomagnetic reversals from intense solar outbursts and severe Earth trauma, as well as georeactor heat contributions to global dynamics.

  1. A Basic LEGO Reactor Design for the Provision of Lunar Surface Power

    SciTech Connect (OSTI)

    John Darrell Bess

    2008-06-01

    A final design has been established for a basic Lunar Evolutionary Growth-Optimized (LEGO) Reactor using current and near-term technologies. The LEGO Reactor is a modular, fast-fission, heatpipe-cooled, clustered-reactor system for lunar-surface power generation. The reactor is divided into subcritical units that can be safely launched with lunar shipments from Earth, and then emplaced directly into holes drilled into the lunar regolith to form a critical reactor assembly. The regolith would not just provide radiation shielding, but serve as neutron-reflector material as well. The reactor subunits are to be manufactured using proven and tested materials for use in radiation environments, such as uranium-dioxide fuel, stainless-steel cladding and structural support, and liquid-sodium heatpipes. The LEGO Reactor system promotes reliability, safety, and ease of manufacture and testing at the cost of an increase in launch mass per overall rated power level and a reduction in neutron economy when compared to a single-reactor system. A single unshielded LEGO Reactor subunit has an estimated mass of approximately 448 kg and provides approximately 5 kWe. The overall envelope for a single subunit with fully extended radiator panels has a height of 8.77 m and a diameter of 0.50 m. Six subunits could provide sufficient power generation throughout the initial stages of establishing a lunar outpost. Portions of the reactor may be neutronically decoupled to allow for reduced power production during unmanned periods of base operations. During later stages of lunar-base development, additional subunits may be emplaced and coupled into the existing LEGO Reactor network, subject to lunar base power demand. Improvements in reactor control methods, fuel form and matrix, shielding, as well as power conversion and heat rejection techniques can help generate an even more competitive LEGO Reactor design. Further modifications in the design could provide power generative opportunities for use on other extraterrestrial surfaces.

  2. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    the reactor shut- down control rod system of a nuclear powernuclear core (and its interaction with the reactor coolant system) and reactivity controlnuclear design, thermal and hydraulic design, reactor materials, and the design of the reactivity control

  3. FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL

    SciTech Connect (OSTI)

    Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

    2012-10-30

    This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

  4. Engineering analysis of a power upgrade for the Texas A&M Nuclear Science Center Reactor 

    E-Print Network [OSTI]

    Rearden, Bradley Thomas

    1995-01-01

    Heat transfer, neutronics, and accident analyses are presented to support an increase of the power level of the Texas A&M University Nuclear Science Center Reactor. The upgraded steady state power level is to be 1.49 MW, from the current level of 1...

  5. Investigation of Neutrino Properties in Experiments at Nuclear Reactors: Present Status and Prospects

    E-Print Network [OSTI]

    L. A. Mikaelyan

    2002-10-07

    This paper was submitted in Russian edition of Journal Physics of Atomic Nuclei in 2001. The present status of experiments that are being performed at nuclear reactors in order to seek the neutrino masses, mixing, and magnetic moments, whose discovery would be a signal of the existence of physics beyond the Standard Model, is considered, along with their future prospects.

  6. Passive decay heat removal system for water-cooled nuclear reactors

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  7. Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel

    SciTech Connect (OSTI)

    Yoo, C.; Km, B.; Chang, K.; Leeand, S.; Park, J.

    2006-07-01

    The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)

  8. Japan hopes for rapid accord with EU on nuclear reactor Japanese Prime Minister Junichiro Koizumi said Monday that he hopes to resolve a dispute with the

    E-Print Network [OSTI]

    Japan hopes for rapid accord with EU on nuclear reactor 02/05/2005 Japanese Prime Minister nuclear reactor as soon as possible. Koizumi discussed the row over plans for the International Terms and Conditions 5/2/05 8:59 AMEUbusiness - Japan hopes for rapid accord with EU on nuclear reactor

  9. For more information, contact Michele Boyd at mboyd@psr.org. Updated July 13, 2009. Existing Subsidies and Incentives for New Nuclear Reactors

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Subsidies and Incentives for New Nuclear Reactors Research and Development · Generation IV program in construction and operation licensing for 6 new reactors, including delays due to the Nuclear Regulatory-hour paid by ratepayers receiving electricity from nuclear reactors to pay for a geologic repository

  10. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    SciTech Connect (OSTI)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed integral system scaling analysis, design parameters were obtained and designs of the compact modular 200 MWe SBWR and the full size 1200 MWe SBWR were developed. These reactors are provided with passive safety systems. A new passive vacuum breaker check valve was designed to replace the mechanical vacuum beaker check valve. The new vacuum breaker check valve was based on a hydrostatic head, and was fail safe. The performance of this new valve was evaluated both by the thermal-hydraulic code RELAP5 and by the experiments in a scaled SBWR facility, PUMA. In the core neutronic design a core depletion model was implemented to PARCS code. A lattice design for the SBWR fuel assemblies was performed. Design improvements were made to the neutronics/thermal-hydraulics models of SBWR-200 and SBWR-1200, and design analyses of these reactors were performed. The design base accident analysis and evaluation of all the passive safety systems were completed as scheduled in tasks 4 and 5. Initial conditions for the small break loss of coolant accidents (LOCA) and large break LOCA using REALP5 code were obtained. Small and large break LOCA tests were performed and the data was analyzed. An anticipated transient with scram was simulated using the RELAP5 code for SBWR-200. The transient considered was an accidental closure of the main steam isolation valve (MSIV), which was considered to be the most significant transient. The evaluation of the RELAP5 code against experimental data for SBWR-1200 was completed. In task 6, the instability analysis for the three SBWR designs (SBWR-1200, SBWR-600 and SBWR-200) were simulated for start-up transients and the results were similar. Neither the geysering instability, nor the loop type instability was predicted by RAMONA-4B in the startup simulation following the recommended procedure by GE. The density wave oscillation was not observed at all because the power level used in the simulation was not high enough. A study was made of the potential instabilities by imposing an unrealistically high power ramp in a short time period, as suggested by GE. RAMON

  11. Conceptual design of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production

    SciTech Connect (OSTI)

    Liem, Peng Hong [Nippon Advanced Information Service (NAIS Co., Inc.) Scientific Computational Division, 416 Muramatsu, Tokaimura, Ibaraki (Japan); Tran, Hoai Nam [Chalmers University of Technology, Dept. of Applied Physics, Div. of Nuclear Engineering, SE-412 96 Gothenburg (Sweden); Sembiring, Tagor Malem [National Nuclear Energy Agency (BATAN), Center for Reactor Technology and Nuclear Safety, Kawasan Puspiptek, Serpong, Tangerang Selatan, Banten (Indonesia); Arbie, Bakri [PT MOTAB Technology, Kedoya Elok Plaza Blok DA 12, Jl. Panjang, Kebun Jeruk, Jakarta Barat (Indonesia)

    2014-09-30

    To partly solve the global and regional shortages of Mo-99 supply, a conceptual design of a nitrate-fuel-solution based homogeneous reactor dedicated for Mo-99/Tc-99m medical radioisotope production is proposed. The modified LEU Cintichem process for Mo-99 extraction which has been licensed and demonstrated commercially for decades by BATAN is taken into account as a key design consideration. The design characteristics and main parameters are identified and the advantageous aspects are shown by comparing with the BATAN's existing Mo-99 supply chain which uses a heterogeneous reactor (RSG GAS multipurpose reactor)

  12. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    E-Print Network [OSTI]

    Scarlat, Raluca Olga

    2012-01-01

    Design. (U.S. Nuclear Regulatory Commission, NUREG-1793,analysis. (U.S. Nuclear Regulatory Commission, 1991, NUREG/Main Report. (Nuclear Regulatory Commission, 2007, NUREG/CR-

  13. Modeling of the Reactor Core Isolation Cooling Reposnse to Beyond Design Basis Operations - Interim Report

    SciTech Connect (OSTI)

    Ross, Kyle; Cardoni, Jeffrey N.; Wilson, Chisom Shawn; Morrow, Charles; Osborn, Douglas; Gauntt, Randall O.

    2015-12-01

    Efforts are being pursued to develop and qualify a system-level model of a reactor core isolation (RCIC) steam-turbine-driven pump. The model is being developed with the intent of employing it to inform the design of experimental configurations for full-scale RCIC testing. The model is expected to be especially valuable in sizing equipment needed in the testing. An additional intent is to use the model in understanding more fully how RCIC apparently managed to operate far removed from its design envelope in the Fukushima Daiichi Unit 2 accident. RCIC modeling is proceeding along two avenues that are expected to complement each other well. The first avenue is the continued development of the system-level RCIC model that will serve in simulating a full reactor system or full experimental configuration of which a RCIC system is part. The model reasonably represents a RCIC system today, especially given design operating conditions, but lacks specifics that are likely important in representing the off-design conditions a RCIC system might experience in an emergency situation such as a loss of all electrical power. A known specific lacking in the system model, for example, is the efficiency at which a flashing slug of water (as opposed to a concentrated jet of steam) could propel the rotating drive wheel of a RCIC turbine. To address this specific, the second avenue is being pursued wherein computational fluid dynamics (CFD) analyses of such a jet are being carried out. The results of the CFD analyses will thus complement and inform the system modeling. The system modeling will, in turn, complement the CFD analysis by providing the system information needed to impose appropriate boundary conditions on the CFD simulations. The system model will be used to inform the selection of configurations and equipment best suitable of supporting planned RCIC experimental testing. Preliminary investigations with the RCIC model indicate that liquid water ingestion by the turbine decreases the developed turbine torque; the RCIC speed then slows, and thus the pump flow rate to the RPV decreases. Subsequently, RPV water level decreases due to continued boiling and the liquid fraction flowing to the RCIC decreases, thereby accelerating the RCIC and refilling the RPV. The feedback cycle then repeats itself and/or reaches a quasi-steady equilibrium condition. In other words, the water carry-over is limited by cyclic RCIC performance degradation, and hence the system becomes self-regulating. The indications achieved to date with the system model are more qualitative than quantitative. The avenues being pursued to increase the fidelity of the model are expected to add quantitative realism. The end product will be generic in the sense that the RCIC model will be incorporable within the larger reactor coolant system model of any nuclear power plant or experimental configuration. ACKNOWLEDGEMENTS This work is funded through the U.S. Department of Energy - Office of Nuclear Energy's Light Water Reactor Sustainability Program. Clinton Smith of Phoenix Analysis & Design Technologies (PADT) is acknowledged for providing assistance on the FLUENT efforts in this report, as well as modifying the geometry model of the Terry turbine to make it more amenable for FLUENT analysis with rotating reference frames.

  14. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect (OSTI)

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  15. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  16. Reactivity worth measurements at the IPEN/MB-01 nuclear reactor

    SciTech Connect (OSTI)

    Pinto, Leticia Negrao; Santos, Adimir dos [Nuclear Engineering Center, Nuclear and Energy Research Institute- IPEN/CNEN-SP (Brazil)

    2013-05-06

    Researches that aim to improve the performance of neutron transport codes and quality of nuclear cross section databases are very important to increase the accuracy of simulations and the quality of the analysis and prediction of phenomena in the nuclear field. In this context, relevant experimental data such as reactivity worth measurements are needed. The objective of this work was to perform a series of experiments of reactivity worth measurements, using a digital reactivity meter developed at IPEN. The experiments employed small metallic and ceramic samples inserted in the central region of the core of the experimental IPEN/MB-01 reactor. The theoretical analysis was performed by the MCNP-5 reactor physics code, developed and maintained by Los Alamos National Laboratory, and the ENDF/B-VII.0 nuclear data library.

  17. Method for removing cesium from a nuclear reactor coolant

    DOE Patents [OSTI]

    Colburn, Richard P. (Pasco, WA)

    1986-01-01

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium

  18. DESIGN INFORMATION VERIFICATION FOR NUCLEAR SAFEGUARDS

    SciTech Connect (OSTI)

    Robert S. Bean; Richard R. M. Metcalf; Phillip C. Durst

    2009-07-01

    A critical aspect of international safeguards activities performed by the International Atomic Energy Agency (IAEA) is the verification that facility design and construction (including upgrades and modifications) do not create opportunities for nuclear proliferation. These Design Information Verification activities require that IAEA inspectors compare current and past information about the facility to verify the operator’s declaration of proper use. The actual practice of DIV presents challenges to the inspectors due to the large amount of data generated, concerns about sensitive or proprietary data, the overall complexity of the facility, and the effort required to extract just the safeguards relevant information. Planned and anticipated facilities will (especially in the case of reprocessing plants) be ever larger and increasingly complex, thus exacerbating the challenges. This paper reports the results of a workshop held at the Idaho National Laboratory in March 2009, which considered technologies and methods to address these challenges. The use of 3D Laser Range Finding, Outdoor Visualization System, Gamma-LIDAR, and virtual facility modeling, as well as methods to handle the facility data issues (quantity, sensitivity, and accessibility and portability for the inspector) were presented. The workshop attendees drew conclusions about the use of these techniques with respect to successfully employing them in an operating environment, using a Fuel Conditioning Facility walk-through as a baseline for discussion.

  19. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  20. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  1. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOE Patents [OSTI]

    Gabor, John D. (Western Springs, IL); Cassulo, John C. (Stickney, IL); Pedersen, Dean R. (Naperville, IL); Baker, Jr., Louis (Downers Grove, IL)

    1986-01-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  2. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  3. Argonne nuclear pioneer: Leonard Koch

    SciTech Connect (OSTI)

    Koch, Leonard

    2012-01-01

    Leonard Koch joined Argonne National Laboratory in 1948. He helped design and build Experimental Breeder Reactor-1 (EBR-1), the first reactor to generate useable amounts of electricity from nuclear energy.

  4. Design, construction and evaluation of a facility for the simulation of fast reactor blankets

    E-Print Network [OSTI]

    Forbes, Ian Alexander

    1970-01-01

    A facility has been designed and constructed at the MIT Reactor for the experimental investigation of typical LMFBR breeding blankets. A large converter assembly, consisting of a 20-cm-thick layer of graphite followed by ...

  5. Conceptual Design of Molten Salt Loop Experiment for MIT Research Reactor

    E-Print Network [OSTI]

    Bean, Malcolm K.

    2011-08-01

    Molten salt is a promising coolant candidate for Advanced High Temperature Reactor (AHTR) Gen-IV designs. The low neutron absorption, high thermal capacity, chemical inertness, and high boiling point at low pressure of ...

  6. Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications

    E-Print Network [OSTI]

    Heljanko, Keijo

    and control (I&C) systems play a crucial role in the operation of nuclear power plants (NPP) and other safety of the environment is covered. The reactor emergency cooling system is in use in an operating nuclear power plant is a reactor emergency cooling system in an operating nuclear power plant. 2. MODEL CHECKING METHODOLOGY

  7. Monitoring system for a liquid-cooled nuclear fission reactor. [PWR

    DOE Patents [OSTI]

    DeVolpi, A.

    1984-07-20

    The invention provides improved means for detecting the water levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting the density of the water in these regions. The invention utilizes a plurality of exterior gamma radiation detectors and a collimator technique operable to sense separate regions of the reactor vessel to give respectively, unique signals for these regions, whereby comparative analysis of these signals can be used to advise of the presence and density of cooling water in the vessel.

  8. Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 Nuclear Reactor

    SciTech Connect (OSTI)

    Hutton, P.H.; Dawson, J.F.; Friesel, M.A.; Harris, J.C.; Pappas, R.A.

    1984-06-01

    Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Power Plant during hot functional preservice testing is described in this report. The report deals with background, methodology, and results. The work discussed here is a major milestone in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing toward AE monitoring during reactor operation.

  9. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    SciTech Connect (OSTI)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  10. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  11. Nuclear reactor melt-retention structure to mitigate direct containment heating

    DOE Patents [OSTI]

    Tutu, Narinder K. (Manorville, NY); Ginsberg, Theodore (East Setauket, NY); Klages, John R. (Mattituck, NY)

    1991-01-01

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  12. Method for removing cesium from a nuclear reactor coolant

    DOE Patents [OSTI]

    Colburn, R.P.

    1983-08-10

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium inventory thereof further into the carbon matrix while simultaneously redispersing a portion into the regeneration system for absorption at a reduced temperature by the secondary trap.

  13. Nuclear reactor heat transport system component low friction support system

    DOE Patents [OSTI]

    Wade, Elman E. (Ruffs Dale, PA)

    1980-01-01

    A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.

  14. Evaluation of the economic simplified boiling water reactor human reliability analysis using the SHARP framework

    E-Print Network [OSTI]

    Dawson, Phillip Eng

    2007-01-01

    General Electric plans to complete a design certification document for the Economic Simplified Boiling Water Reactor to have the new reactor design certified by the United States Nuclear Regulatory Commission. As part of ...

  15. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 2, Final report

    SciTech Connect (OSTI)

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for Inertial Confinement reactor. This second of three volumes discussions is some detail the following: Objectives, requirements, and assumptions; rationale for design option selection; key technical issues and R&D requirements; and conceptual design selection and description.

  16. Standard Guide for Conducting Supplemental Surveillance Tests for Nuclear Power Reactor Vessels, E 706 (IH)

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide discusses test procedures that can be used in conjunction with, but not as alternatives to, those required by Practices E185 and E2215 for the surveillance of nuclear reactor vessels. The supplemental mechanical property tests outlined permit the acquisition of additional information on radiation-induced changes in fracture toughness, notch ductility, and yield strength properties of the reactor vessel steels. 1.2 This guide provides recommendations for the preparation of test specimens for irradiation, and identifies special precautions and requirements for reactor surveillance operations and postirradiation test planning. Guidance on data reduction and computational procedures is also given. Reference is made to other ASTM test methods for the physical conduct of specimen tests and for raw data acquisition.

  17. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance for HighNational Nuclear

  18. University Research Reactor Task Force to the Nuclear Energy Research

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear Energy Research andofRod BeeverDataAdvisory

  19. Design of a boiling water reactor equilibrium core using thorium-uranium fuel

    SciTech Connect (OSTI)

    Francois, J-L.; Nunez-Carrera, A.; Espinosa-Paredes, G.; Martin-del-Campo, C.

    2004-10-06

    In this paper the design of a Boiling Water Reactor (BWR) equilibrium core using thorium is presented; a heterogeneous blanket-seed core arrangement concept was adopted. The design was developed in three steps: in the first step two different assemblies were designed based on the integrated blanket-seed concept, they are the blanket-dummy assembly and the blanket-seed assembly. The integrated blanketseed concept comes from the fact that the blanket and the seed rods are located in the same assembly, and are burned-out in a once-through cycle. In the second step, a core design was developed to achieve an equilibrium cycle of 365 effective full power days in a standard BWR with a reload of 104 fuel assemblies designed with an average 235U enrichment of 7.5 w/o in the seed sub-lattice. The main operating parameters, like power, linear heat generation rate and void distributions were obtained as well as the shutdown margin. It was observed that the analyzed parameters behave like those obtained in a standard BWR. The shutdown margin design criterion was fulfilled by addition of a burnable poison region in the assembly. In the third step an in-house code was developed to evaluate the thorium equilibrium core under transient conditions. A stability analysis was also performed. Regarding the stability analysis, five operational states were analyzed; four of them define the traditional instability region corner of the power-flow map and the fifth one is the operational state for the full power condition. The frequency and the boiling length were calculated for each operational state. The frequency of the analyzed operational states was similar to that reported for BWRs; these are close to the unstable region that occurs due to the density wave oscillation phenomena in some nuclear power plants. Four transient analyses were also performed: manual SCRAM, recirculation pumps trip, main steam isolation valves closure and loss of feed water. The results of these transients are similar to those obtained with the traditional UO2 nuclear fuel.

  20. NEAC Nuclear Reactor Technology (NRT) Subcommittee Advanced Test and/or Demonstration Reactor Planning Study

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW YORKFuel Cycle TechnologiesNuclear