National Library of Energy BETA

Sample records for nuclear power units

  1. Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent Fuel Pool Citation Details In-Document Search Title: Study of Fukushima Dai-ichi Nuclear Power...

  2. Yonggwang nuclear power plant units 3 and 4; Bridging the gap to the next generation

    SciTech Connect (OSTI)

    Heider, R.C.; Daley, T.J.; Green, K.J. )

    1991-01-01

    This paper reports on the use of nuclear energy since the oil embargo of 1973 has displaced the use of 4.3 billion barrels of imported oil, which helped conserve 1 billion tons of coal and 6.5 trillion cubic feet of natural gas for future generations, and helped protect the environment by reducing utility emissions of carbon dioxide by 20% a year. The current 112 operating nuclear energy plants generate more electricity than those of France, Japan, and the Soviet Union-nations that have made a national commitment to nuclear energy-combined. Yet it has been over 10 years since the last construction permit was issued for a nuclear power plant in the United States. Considering a projected shortfall in baseload electric generation capacity in the mid-1990s, new requirements for costly air pollution controls on coal plants, the concern over increased dependence on oil imports from the unstable Middle East region, and the increased concern over the possible long-term effects of greenhouse gas emissions, the Nuclear Power Oversight Committee (NPOC), the governing organization for the commercial nuclear energy industry, has developed a strategic plan with the goal of being able to order new nuclear power plants by the mid-1990s. The strategic plan, which contains 14 enabling conditions or building blocks, outlines an integrated effort to address the range of institutional and technical issues on which significant progress must be achieved to make nuclear power attractive in the United States for the 1990s.

  3. Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nuclear power plants in the United States currently produce about 20 percent of the nation’s electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit...

  4. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    SciTech Connect (OSTI)

    Giachetti, R.T. (Giachetti (Richard T.), Ann Arbor, MI (USA))

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs.

  5. U.S. Job Creation Due to Nuclear Power Resurgence in The United States — Volumes 1 and 2

    SciTech Connect (OSTI)

    Catherine M. Plowman

    2004-11-01

    The recent revival of interest in nuclear power is causing a reexamination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current U.S. industries to support a renewal of nuclear power plant deployment. This study was conducted to provide an initial estimate of jobs to be gained in the U.S. through the repatriation of the nuclear manufacturing industry. In the course of the study, related job categories were also modeled to provide an additional estimate of the potential expansion of existing industries (i.e., plant construction and operations) in conjunction with the repatriation of manufacturing jobs.

  6. EIS No. 20100312 EIS Comanche Peak Nuclear Power Plant Units 3 and 4

    SciTech Connect (OSTI)

    Bjornstad, David J

    2010-08-01

    In accordance with Section 309(a) of the Clean Air Act, EPA is required to make its comments on EISs issued by other Federal agencies public. Historically, EPA has met this mandate by publishing weekly notices of availability of EPA comments, which includes a brief summary of EPA's comment letters, in the Federal Register. Since February 2008, EPA has been including its comment letters on EISs on its Web site at: http://www.epa.gov/compliance/nepa/eisdata.html. Including the entire EIS comment letters on the Web site satisfies the Section 309(a) requirement to make EPA's comments on EISs available to the public. Accordingly, on March 31, 2010, EPA discontinued the publication of the notice of availability of EPA comments in the Federal Register. EIS No. 20100312, Draft EIS, NRC, TX, Comanche Peak Nuclear Power Plant Units 3 and 4, Application for Combined Licenses (COLs) for Construction Permits and Operating Licenses, (NUREG-1943), Hood and Somervell Counties, TX, Comment Period Ends: 10/26/2010.

  7. Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

  8. Risk-based inspection guide for Crystal River Unit 3 Nuclear Power Plant

    SciTech Connect (OSTI)

    Smith, B.W.; Dukelow, J.S.; Vo, T.V.; Harris, M.S.; Gore, B.F.; Hunt, S.T. )

    1991-06-01

    The Level 1 probabilistic risk assessment (PRA) for Crystal River Unit 3 (CR-3) has been analyzed to identify plant systems and components important to minimizing public risk, as measured by system contributions to plant core damage frequency, and to identify the primary failure modes for these components. The report presents a series of tables, organized by system and prioritized by risk importance, which identify components associated with 98% of the inspectable risk due to plant operation. The systems addressed, in descending order to risk importance are: Low Pressure Injection, AC Power, Service Water, Demineralized Water, High Pressure Injection, DC Power, Emergency Feedwater, Reactor Coolant Pressure Control, and Power Conversion. This ranking is based on the Fussell-Vesely measure of risk importance, i.e., the fraction of the total core damage frequency which involves failures of the system of interest. 3 refs., 9 figs., 13 tabs.

  9. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Edwin I Hatch Unit 1, Unit 2","1,759","13,902",41.5,"Georgia Power Co" "Vogtle Unit 1, Unit 2","2,302","19,610",58.5,"Georgia Power Co" "2 Plants 4

  10. Labor and nuclear power

    SciTech Connect (OSTI)

    Logan, R.; Nelkin, D.

    1980-03-01

    The AFL-CIO is officially pro-nuclear, but tensions within unions are taking issue over ideological differences. The Labor movement, having looked to nuclear power development as an economic necessity to avoid unemployment, has opposed efforts to delay construction or close plants. As many as 42% of union members or relatives of members, however, were found to oppose new power plants, some actively working against specific construction projects. The United Mine Workers and Teamsters actively challenged the nuclear industry while the auto workers have been ambivalent. The differences between union orientation reflects the history of unionism in the US and explains the emergence of social unionism with its emphasis on safety and working conditions as well as economic benefits. Business union orientation trends to prevail during periods of prosperity; social unions during recessions. The labor unions and the environmentalists are examined in this conext and found to be hopeful. 35 references. (DCK)

  11. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  12. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to independent ...

  13. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2 Reactors","1,705","13,994",100.0 "Note: Totals

  14. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Monticello Unit 1",554,"4,695",34.8,"Northern States Power Co - Minnesota" "Prairie Island Unit 1, Unit 2","1,040","8,783",65.2,"Northern States Power Co -

  15. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Donald C Cook Unit 1, Unit 2","2,069","15,646",52.8,"Indiana Michigan Power Co" "Fermi Unit 2","1,085","7,738",26.1,"Detroit Edison Co" "Palisades Unit

  16. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon

  17. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Diablo Canyon Unit 1, Unit 2","2,240","18,430",57.2,"Pacific Gas & Electric Co" "San Onofre Nuclear Generating Station Unit 2, Unit

  18. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon

  19. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Comanche Peak Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear

  20. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Crystal River Unit 3",860,0,"--","Progress Energy Florida Inc" "St Lucie Unit 1, Unit 2","1,678","12,630",52.8,"Florida Power & Light Co" "Turkey Point

  1. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Sequoyah Unit 1, Unit 2","2,278","18,001",64.9,"Tennessee Valley Authority" "Watts Bar Nuclear Plant Unit 1","1,123","9,738",35.1,"Tennessee Valley

  2. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Davis Besse Unit 1",894,"5,185",32.8,"FirstEnergy Nuclear Operating Company" "Perry Unit 1","1,240","10,620",67.2,"FirstEnergy Nuclear Operating Company" "2

  3. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Cooper Unit 1",767,"6,793",61.4,"Nebraska Public Power District" "Fort Calhoun Unit 1",478,"4,261",38.6,"Omaha Public Power District" "2 Plants 2

  4. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to

  5. SEP operating history of the Dresden Nuclear Power Station Unit 2

    SciTech Connect (OSTI)

    Mays, G.T.; Harrington, K.H.

    1983-01-01

    206 forced shutdowns and power reductions were reviewed, along with 631 reportable events and other miscellaneous documentation concerning the operation of Dresden-2, in order to indicate those areas of plant operation that compromised plant safety. The most serious plant challenge to plant safety occurred on June 5, 1970; while undergoing power testing at 75% power, a spurious signal in the reactor pressure control system caused a turbine trip followed by a reactor scram. Subsequent erratic water level and pressure control in the reactor vessel, compounded by a stuck indicator pen on a water level monitor-recorder and inability of the isolation condenser to function, led to discharge of steam and water through safety valves into the reactor drywell. No significant contamination was discharged. There was no pressure damage or the reactor vessel of the drywell containment walls. Six areas of operation that should be of continued concern are diesel generator failures, control rod and rod drive malfunctions, radioactive waste management/health physics program problems, operator errors, turbine control valve and EHC problems, and HPCI failures. All six event types have continued to recur.

  6. A Resurgence of United Kingdom Nuclear Power Research (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Grimes, Robin W. (Imperial College, London, UK)

    2012-03-14

    Robin W. Grimes, Professor at Imperial College, London,was the third speaker in the the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Grimes discussed recent research endeavors in advanced nuclear energy systems being pursued in the UK. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  7. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect (OSTI)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  8. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Arkansas Nuclear One Unit 1, Unit 2","1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  9. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Millstone Unit 2, Unit 3","2,103","16,750",100.0,"Dominion Nuclear Conn Inc" "1 Plant 2 Reactors","2,103","16,750",100.0

  10. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 Reactors","3,937","31,200",100.0 "Note: Totals may not equal sum of

  11. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  12. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  13. Owners of Nuclear Power Plants

    SciTech Connect (OSTI)

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  14. Nuclear Energy In the United States Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Status and Outlook for Nuclear Energy In the United States Executive Summary The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear...

  15. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  16. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7

  17. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name/Total Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (Pprcent)","Owner" "River Bend Unit 1",974,"8,363",44.9,"Entergy Gulf States - LA LLC" "Waterford 3 Unit 3","1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2

  18. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  19. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    SciTech Connect (OSTI)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-11-01

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  20. NUCLEAR POWER PLANT

    DOE Patents [OSTI]

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  1. United States -Japan Joint Nuclear Energy Action Plan | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan have both stated their strong support for the contribution of nuclear power to energy security and the global environment. Japan was the first nation to endorse President Bush's Global Nuclear Energy Partnership. This describes a background of the partnership. United States -Japan Joint Nuclear Energy Action Plan (551.62

  2. United States Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  3. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  4. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  5. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union Electric Co" "1 Plant 1 Reactor","1,190","8,996",100.0 "Note: Totals may not equal sum of components due to

  6. Assessment of RELAP5/MOD2 code using loss of offsite power transient data of KNU (Korea Nuclear Unit) No. 1 Plant

    SciTech Connect (OSTI)

    Chung, Bud-Dong; Kim, Hho-Jung . Korea Nuclear Safety Center); Lee, Young-Jin )

    1990-04-01

    This report presents a code assessment study based on a real plant transient that occurred on June 9, 1981 at the KNU {number sign}1 (Korea Nuclear Unit Number 1). KNU {number sign}1 is a two-loop Westinghouse PWR plant of 587 Mwe. The loss of offsite power transient occurred at the 77.5% reactor power with 0.5%/hr power ramp. The real plant data were collected from available on-line plant records and computer diagnostics. The transient was simulated by RELAP5/MOD2/36.05 and the results were compared with the plant data to assess the code weaknesses and strengths. Some nodalization studies were performed to contribute to developing a guideline for PWR nodalization for the transient analysis. 5 refs., 18 figs., 3 tabs.

  7. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  8. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  9. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  10. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  11. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  12. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  13. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  14. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  15. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  16. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  17. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  18. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  19. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  20. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  1. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  2. Technical evaluation of the noise and isolation testing of the reactor protection system for the Davis Besse Nuclear Power Station, Unit 1

    SciTech Connect (OSTI)

    Selan, J.C.

    1980-01-01

    This report documents the technical evaluation of the noise and isolation testing of the reactor protection system (RPS) for the Davis Besse Nuclear Power Station, Unit 1. The testing was performed in accordance to Section 4.6.11, Susceptibility, of MIL-N-19900B, and NRC approved plant test methods. Analysis of the test results shows that the reactor protection system did not degrade below acceptable levels when subjected to electromagnetic, electrostatic, isolation and noise level tests, nor was the system's ability to perform its Class 1E protective functions affected.

  3. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    SciTech Connect (OSTI)

    1997-12-01

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

  4. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 ...

  5. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  6. Overview paper on nuclear power

    SciTech Connect (OSTI)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  7. Global warming and nuclear power

    SciTech Connect (OSTI)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  8. A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The objective of this document is to provide the Department of Energy (DOE) and the nuclear industry with the basis for a plan to ensure the availability of near-term nuclear energy options that...

  9. Ongoing Space Nuclear Systems Development in the United States

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

    2011-10-01

    Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

  10. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine

  11. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Oyster Creek Unit 1",615,"4,601",14.0,"Exelon Nuclear" "PSEG Hope Creek Generating Station Unit 1","1,161","9,439",28.8,"PSEG Nuclear LLC" "PSEG Salem Generating

  12. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOE Patents [OSTI]

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  13. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect (OSTI)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  14. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  15. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0

  16. United Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    United Power, Inc Place: Colorado Website: unitedpower.com Twitter: @UnitedPowerCoop Facebook: https:www.facebook.comUnitedPower Outage Hotline: 1-303-637-1350 Outage Map:...

  17. United States and Italy Sign Nuclear Energy Agreements | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning

  18. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  19. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  20. Topics in nuclear power (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR POWER STATION; GAIN; JAPAN; NATURAL DISASTERS; NUCLEAR INDUSTRY; NUCLEAR POWER; NUCLEAR POWER PLANTS; PROBABILISTIC ESTIMATION; REACTOR ACCIDENTS; REACTOR MAINTENANCE;...

  1. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  2. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  3. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  4. Management of National Nuclear Power Programs for assured safety

    SciTech Connect (OSTI)

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  5. The United Kingdom Nuclear Science Forum

    SciTech Connect (OSTI)

    MacMahon, Desmond; Judge, Steven; Forrest, Robin

    2005-05-24

    The United Kingdom Nuclear Science Forum effectively acts as the United Kingdom's Nuclear Data Committee. As such it is the interface between the UK nuclear data community and international nuclear data centres. This paper outlines the Forum's terms of reference and describes some of its recent activities.

  6. At Vogtle, Big Results with Nuclear Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At Vogtle, Big Results with Nuclear Power At Vogtle, Big Results with Nuclear Power February 20, 2014 - 1:29pm Addthis Construction work inside the Vogtle 3 and 4 module assembly building. | Photo courtesy of Georgia Power Company. Construction work inside the Vogtle 3 and 4 module assembly building. | Photo courtesy of Georgia Power Company. A look inside the Vogtle Unite 3 containment vessel bottom head. | Photo courtesy of Georgia Power Company. A look inside the Vogtle Unite 3 containment

  7. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Brunswick Unit 1, Unit 2","1,858","14,808",36.3,"Progress Energy Carolinas Inc" "Harris Unit 1",900,"7,081",17.4,"Progress Energy Carolinas Inc" "McGuire

  8. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc"

  9. Competitive economics of nuclear power

    SciTech Connect (OSTI)

    Hellman, R.

    1981-03-02

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

  10. Analysis of nuclear power plant component failures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  11. Department of Energy Releases Conditional Agreement for New Nuclear Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants | Department of Energy Conditional Agreement for New Nuclear Power Plants Department of Energy Releases Conditional Agreement for New Nuclear Power Plants September 25, 2007 - 2:49pm Addthis Marks initial step for sponsors of new nuclear plants to qualify for up to $2 billion in federal risk insurance WASHINGTON, DC - The U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today released a Conditional Agreement for companies building new nuclear power plants in the United

  12. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even ...

  13. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit 2","1,097","9,241",100.0,"Energy Northwest" "1 Plant 1 Reactor","1,097","9,241",100.0

  14. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  15. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  16. Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in

  17. Siemens Nuclear Power GmbH AREVA Nuclear Power | Open Energy...

    Open Energy Info (EERE)

    Nuclear Power GmbH AREVA Nuclear Power Jump to: navigation, search Name: Siemens Nuclear Power GmbH (AREVA Nuclear Power) Place: Erlangen, Germany Zip: 91058 Sector: Services...

  18. Electric Power Produced from Nuclear Reactor | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor Arco, ID The Experimental Breeder Reactor No. 1 located at the National Reactor Testing ...

  19. Nuclear power generation and fuel cycle report 1997

    SciTech Connect (OSTI)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  20. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name..."8,291",62.4,"NextEra Energy Point Beach LLC" "2 Plants 3 Reactors","1,584","13,281",100.0

  1. National Nuclear Security Administration United States Department...

    National Nuclear Security Administration (NNSA)

    United States Department of Energy Washington, DC 20585 Prevent, Counter, and Respond-A ... Department of EnergyNational Nuclear Security Administration | March 2016 Prevent, ...

  2. United Power- Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    United Power, in conjunction with wholesale power supplier Tri-State Generation & Transmission (TSGT), offers rebates for the installation of a variety of commercial energy efficient equipment...

  3. Nuclear power reactor instrumentation systems handbook. Volume...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You ...

  4. United States-Japan Nuclear Security Working Group | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) United States-Japan Nuclear Security Working Group March 24, 2014 The United States and Japan established a bilateral Nuclear Security Working Group (NSWG) in 2011 in response to a shared desire to demonstrate leadership in strengthening nuclear security worldwide and in support of the Nuclear Security Summit process. This group developed a Roadmap containing tangible actions in support of shared objectives and goals. When taken together, these goals

  5. Topics in nuclear power

    SciTech Connect (OSTI)

    Budnitz, Robert J.

    2015-03-30

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  6. United States Department of Energy`s reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    SciTech Connect (OSTI)

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage.

  7. (Nuclear power engineering in space)

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.

    1990-06-18

    The principal purpose of this trip was to participate in the Anniversary Specialist Conference on Nuclear Power Engineering in Space hosted by the USSR Ministry of Atomic Power Engineering and Industry. The conference was held in Obninsk, USSR. A secondary purpose of the trip was to meet with the French Commissariat A L'Energie Atomique in Paris regarding the status of their space power program.

  8. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (OSTI)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  9. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date" 1,581,"4,948",97.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,581,"4,948",97.2

  10. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,855,"6,755",90.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  11. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Environmental Management (EM)

    Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy ...

  12. Nuclear Power Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) Nuclear Power Facilities (2008) (408.42 KB) More Documents & Publications Front-end Nuclear Facilities (2008) Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Transmission Infrastructure Investment Projects (2009)

  13. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  14. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  15. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  16. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  17. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net ...

  18. Helping nuclear power help us

    SciTech Connect (OSTI)

    Schecker, Jay A

    2009-01-01

    After a prolonged absence, the word 'nuclear' has returned to the lexicon of sustainable domestic energy resources. Due in no small part to its demonstrated reliability, nuclear power is poised to playa greater role in the nation's energy future, producing clean, carbon-neutral electricity and contributing even more to our energy security. To nuclear scientists, the resurgence presents an opportunity to inject new technologies into the industry to maximize the benefits that nuclear energy can provide. 'By developing new options for waste management and exploiting new materials to make key technological advances, we can significantly impact the use of nuclear energy in our future energy mix,' says Chris Stanek, a materials scientist at Los Alamos National Laboratory. Stanek approaches the big technology challenges by thinking way small, all the way down to the atoms. He and his colleagues are using cutting edge atomic-scale simulations to address a difficult aspect of nuclear waste -- predicting its behavior far into the future. Their research is part of a broader, coordinated effort on the part of the Laboratory to use its considerable experimental, theoretical, and computational capabilities to explore advanced materials central to not only waste issues, but to nuclear fuels as well.

  19. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    SciTech Connect (OSTI)

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  20. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  1. Operation of Grand Gulf Nuclear Station, Units 1 and 2, Dockets Nos. 50-416 and 50-417: Mississippi Power and Light Company, Middle South Energy, Inc. , South Mississippi Electric Power Association. Final environmental statement

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The information in this Final Environmental Statement is the second assessment of the environmental impacts associated with the construction and operation of the Grand Gulf Nuclear Station, Units 1 and 2, located on the Mississippi River in Claiborne County, Mississippi. The Draft Environmental Statement was issued in May 1981. The first assessment was the Final Environmental Statement related to construction, which was issued in August 1973 prior to issuance of the Grand Gulf Nuclear Station construction permits. In September 1981 Grand Gulf Unit 1 was 92% complete and Unit 2 was 22% complete. Fuel loading for Unit 1 is scheduled for December 1981. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the Station, and includes the staff responses to comments on the Draft Environmental Statement.

  2. Nuclear Power: High Hopes, Unfulfilled Promise (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Power: High Hopes, Unfulfilled Promise Citation Details In-Document Search Title: Nuclear Power: High Hopes, Unfulfilled Promise You are accessing a document from the Department ...

  3. Measurements of the reactor neutron power in absolute units

    SciTech Connect (OSTI)

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  4. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    The list indicates percentage ownership of commercial nuclear power plants by utility companies as of September 1, 1982. The list includes all plants licensed to operate, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review. Part I lists plants alphabetically with their associated applicants and percentage ownership. Part II lists applicants alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses.

  5. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  6. UNITED STATES NUCLEAR REGULATORY COMMISSION

    Office of Legacy Management (LM)

    WASHINGTON, 0. C. 20555 AUG i 3 1979 ,,~---Y--*. FCAF:Wi3 )I 70-364 : i: SNM-414,jAmendment No. 3 --A Babcock and Wilcox Company Nuclear Materials Division ATTN: Mr. Michael A. Austin Manager, Technical Control 609 North Warren Avenue Apollo, Pennsylvania 15613 Gentiemen: (1 i' \ (. \ In accordance with your application dated June 18, 1979, and pursuant to Title 10, Code of Federal Regulations, Part 70, Materials License SNM-414 is hereby amended to: 1. Delete the function of the Regulatory

  7. Role of nuclear power in the Philippine power development program

    SciTech Connect (OSTI)

    Aleta, C.R.

    1994-12-31

    The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

  8. Analysis of the LaSalle Unit 2 nuclear power plant: Risk Methods Integration and Evaluation Program (RMIEP). Volume 8, Seismic analysis

    SciTech Connect (OSTI)

    Wells, J.E.; Lappa, D.A.; Bernreuter, D.L.; Chen, J.C.; Chuang, T.Y.; Johnson, J.J.; Campbell, R.D.; Hashimoto, P.S.; Maslenikov, O.R.; Tiong, L.W.; Ravindra, M.K.; Kincaid, R.H.; Sues, R.H.; Putcha, C.S.

    1993-11-01

    This report describes the methodology used and the results obtained from the application of a simplified seismic risk methodology to the LaSalle County Nuclear Generating Station Unit 2. This study is part of the Level I analysis being performed by the Risk Methods Integration and Evaluation Program (RMIEP). Using the RMIEP developed event and fault trees, the analysis resulted in a seismically induced core damage frequency point estimate of 6.OE-7/yr. This result, combined with the component importance analysis, indicated that system failures were dominated by random events. The dominant components included diesel generator failures (failure to swing, failure to start, failure to run after started), and condensate storage tank.

  9. Nuclear Decommissioning Authority of the United Kingdom NDA ...

    Open Energy Info (EERE)

    Decommissioning Authority of the United Kingdom NDA Jump to: navigation, search Name: Nuclear Decommissioning Authority of the United Kingdom (NDA) Place: Cumbria, England, United...

  10. Table 9.1 Nuclear Generating Units, 1955-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nuclear Generating Units, 1955-2011 Year Original Licensing Regulations (10 CFR Part 50) 1 Current Licensing Regulations (10 CFR Part 52) 1 Permanent Shutdowns Operable Units 7 Construction Permits Issued 2,3 Low-Power Operating Licenses Issued 3,4 Full-Power Operating Licenses Issued 3,5 Early Site Permits Issued 3 Combined License Applications Received 6 Combined Licenses Issued 3 1955 1 0 0 – – – – – – 0 0 1956 3 0 0 – – – – – – 0 0 1957 1 1 1 – – – – – – 0 1 1958 0 0 0 –

  11. Oilwell Power Controller (OPC Unit). Technical report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    Double M Electric, Inc. in Watford City, ND is finalizing the testing of its Oilwell Power Controller (OPC) Prototype Unit. This device can be used as a rod pump controller and it can also monitor, record and store power usage, temperature and pressure data. The unit also has the capability to measure the rod string weight, therefore it can be used as a dynamometer. A total of 10 OPC Units were assembled and installed on oilwells pumped with rod pumps in the Central and Western United States. Data from these wells was analyzed and forwarded to the participating oil companies.

  12. July 2010, Status and Outlook for Nuclear Energy In the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy July 2010, Status and Outlook for Nuclear Energy In the United States July 2010, Status and Outlook for Nuclear Energy In the United States The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear power plants in the United States. Currently, 13 license applica- tions are under active review by the Nuclear Regulatory Commission (NRC) for up to 22 new reactors. The De- partment of Energy has awarded conditional commit- ments for

  13. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS).

  14. United Power- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    United Power is providing rebates to their customers for the purchase of photovoltaic (PV), wind, and solar water heating systems. These incentives are separate from the rebates provided by the...

  15. United Power- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    United Power, together with Tri-State Generation and Transmission (TSGT), offers rebates for the installation of a variety of energy efficient equipment including heating and cooling systems, water...

  16. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect (OSTI)

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  17. Nuclear power and the public: an update of collected survey research on nuclear power

    SciTech Connect (OSTI)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  18. Nuclear power program and technology development in Korea

    SciTech Connect (OSTI)

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t as easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.

  19. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Programs Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and

  20. Anhui Wuhu Nuclear Power Co | Open Energy Information

    Open Energy Info (EERE)

    Wuhu Nuclear Power Co Jump to: navigation, search Name: Anhui Wuhu Nuclear Power Co. Place: Shenzhen, Guangdong Province, China Zip: 518031 Product: JV between Guangdong Nuclear...

  1. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  2. Lianyungang Zhongneng United Wind Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongneng United Wind Power Co Ltd Jump to: navigation, search Name: Lianyungang Zhongneng United Wind Power Co Ltd Place: Lianyungang, Jiangsu Province, China Sector: Wind energy...

  3. Microwave Regenerated DPF for Auxiliary Power Units and Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration ...

  4. United States and Italy Sign Agreements to Advance Developments in Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy

  5. Nuclear power in the Soviet Union

    SciTech Connect (OSTI)

    Ponomarev-Stepnoi, N.N.

    1989-01-01

    The pros and cons of nuclear power are similar in many countries, but the following pro factors are specific to the Soviet Union: the major sources of conventional fuel are in one area of the country, but energy consumption is concentrated in another; and a large portion of energy is generated using oil and gas. The arguments against nuclear power are as follows: safety requirements and expectations have been increased; and public opinion is negative. A program of nuclear power generation has been developed. New techniques are being implemented to increase safety and enhance operations of different types of nuclear power plants. Its should be obvious in the future that a nuclear power plant has better economic and environmental parameters than existing methods of power generation.

  6. United States Marks 20 Years without Underground Nuclear Explosive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    United States Marks 20 Years without Underground Nuclear Explosive Testing September 21, 2012 WASHINGTON, DC -- Twenty years ago, on September 23, 1992, the United States conducted ...

  7. KiloPower Project - KRUSTY Experiment Nuclear Design (Technical...

    Office of Scientific and Technical Information (OSTI)

    KiloPower Project - KRUSTY Experiment Nuclear Design Citation Details In-Document Search Title: KiloPower Project - KRUSTY Experiment Nuclear Design This PowerPoint presentation ...

  8. United States -Japan Joint Nuclear Energy Action Plan

    Broader source: Energy.gov (indexed) [DOE]

    -Japan Joint Nuclear Energy Action Plan 1. Introduction 1.1 Background and Objective ... for the contribution of nuclear power to energy security and the global environment. ...

  9. Powering the Nuclear Navy | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. NNSA's Naval Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. Learn More USS George H.W. Bush conducts flight operations USS George H.W. Bush conducts flight

  10. Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unit to Provide Renewable Power to Honolulu Port - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  11. Inventory of power plants in the United States, 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  12. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  13. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  14. ATWS analysis for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect (OSTI)

    Dallman, R.J.; Jouse, W.C.

    1985-01-01

    Analyses of postulated Anticipated Transients Without Scram (ATWS) were performed at the Idaho National Engineering Laboratory (INEL). The Browns Ferry Nuclear Plant Unit 1 (BFNP1) was selected as the subject of this work because of the cooperation of the Tennessee Valley Authority (TVA). The work is part of the Severe Accident Sequence Analysis (SASA) Program of the US Nuclear Regulatory Commission (NRC). A Main Steamline Isolation Valve (MSIV) closure served as the transient initiator for these analyses, which proceeded a complete failure to scram. Results from the analyses indicate that operator mitigative actions are required to prevent overpressurization of the primary containment. Uncertainties remain concerning the effectiveness of key mitigative actions. The effectiveness of level control as a power reduction procedure is limited. Power level resulting from level control only reduce the Pressure Suppression Pool (PSP) heatup rate from 6 to 4F/min.

  15. Interim reliability-evaluation program: analysis of the Millstone Point Unit 1 nuclear power plant. Volume IV. Appendix B. 9 through B. 19 and C

    SciTech Connect (OSTI)

    Curry, J J; Gallagher, D W; Modarres, M; Radder, J A

    1983-05-01

    Appendices are presented concerning isolation condenser makeup; vapor suppression system; station air system; reactor building closed cooling water system; turbine building secondary closed water system; service water system; emergency service water system; fire protection system; emergency ac power; dc power system; event probability estimation; methodology of accident sequence quantification; and assignment of dominant sequences to release categories.

  16. Public opinion factors regarding nuclear power

    SciTech Connect (OSTI)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  17. Public opinion factors regarding nuclear power

    SciTech Connect (OSTI)

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  18. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect (OSTI)

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  19. Workshop on nuclear power growth and nonproliferation

    SciTech Connect (OSTI)

    Pilat, Joseph F

    2010-01-01

    It is widely viewed that an expansion of nuclear power would have positive energy, economic and environmental benefits for the world. However, there are concerns about the economic competitiveness, safety and proliferation and terrorism risks of nuclear power. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security. In his Prague speech, President Obama stated: 'we should build a new framework for civil nuclear cooperation, including an international fuel bank, so that countries can access peaceful power without increasing the risks of proliferation. That must be the right of every nation that renounces nuclear weapons, especially developing countries embarking on peaceful programs. And no approach will succeed if it's based on the denial of rights to nations that play by the rules. We must harness the power of nuclear energy on behalf of our efforts to combat climate change, and to advance peace opportunity for all people.' How can the President's vision, which will rekindle a vigorous public debate over the future of nuclear power and its relation to proliferation, be realized? What critical issues will frame the reemerging debate? What policies must be put into place to address these issues? Will US policy be marked more by continuity or change? To address these and other questions, the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars will host a workshop on the future of nuclear power and nonproliferation.

  20. Experiments ✚ Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments + Simulations = Better Nuclear Power Research Experiments ✚ Simulations = Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation Damage July 31, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Radiation Damage PNNL In a study featured on the cover of a Journal of Materials Research focus issue, an international research collaboration used molecular dynamics simulations run at NERSC to identify atomic-level details of early-stage

  1. Inventory of power plants in the United States 1994

    SciTech Connect (OSTI)

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  2. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Office of Environmental Management (EM)

    Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis ...

  3. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Environmental Management (EM)

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  4. China Guangdong Nuclear Power Holding Co Ltd CGNPC | Open Energy...

    Open Energy Info (EERE)

    Nuclear Power Holding Co Ltd CGNPC Jump to: navigation, search Name: China Guangdong Nuclear Power Holding Co Ltd (CGNPC) Place: Shenzhen, Guangdong Province, China Zip: 518031...

  5. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, ...

  6. Understanding seismic design criteria for Japanese nuclear power...

    Office of Scientific and Technical Information (OSTI)

    Understanding seismic design criteria for Japanese nuclear power plants Citation Details In-Document Search Title: Understanding seismic design criteria for Japanese nuclear power ...

  7. Inventory of Power Plants in the United States, October 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-27

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  8. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  9. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act. Teacher guide

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  10. Securing the United States' power infrastructure

    SciTech Connect (OSTI)

    Happenny, Sean F.

    2015-08-01

    The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.

  11. The American nuclear power industry. A handbook

    SciTech Connect (OSTI)

    Pearman, W.A.; Starr, P.

    1984-01-01

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index.

  12. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Callaway Unit 1","1,190","8,996",100.0,"Union Electric Co" "1 Plant 1 Reactor","1,190","8,996",100.0 "Note: Totals may not equal sum of components due to ...

  13. Power systems simulations of the western United States region.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Poch, L.; Thimmapuram, P.; Veselka, T.; Decision and Information Sciences

    2010-03-15

    This report documents a part of a broad assessment of energy-water-related issues in the western United States. The full analysis involved three Department of Energy national laboratories: Argonne National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Argonne's objective in the overall project was to develop a regional power sector expansion forecast and a detailed unit-level operational (dispatch) analysis. With these two major analysis components, Argonne estimated current and future freshwater withdrawals and consumption related to the operation of U.S. thermal-electric power plants in the Western Electricity Coordinating Council (WECC) region for the period 2005-2025. Water is withdrawn and used primarily for cooling but also for environmental control, such as sulfur scrubbers. The current scope of the analysis included three scenarios: (1) Baseline scenario as a benchmark for assessing the adequacy and cost-effectiveness of water conservation options and strategies, (2) High nuclear scenario, and (3) High renewables scenario. Baseline projections are consistent with forecasts made by the WECC and the Energy Information Administration (EIA) in its Annual Energy Outlook (AEO) (EIA 2006a). Water conservation scenarios are currently limited to two development alternatives that focus heavily on constructing new generating facilities with zero water consumption. These technologies include wind farms and nuclear power plants with dry cooling. Additional water conservation scenarios and estimates of water use associated with fuel or resource extraction and processing will be developed in follow-on analyses.

  14. Integrated Risk Assessment for the LaSalle Unit 2 Nuclear Power Plant, Phenomenology and Risk Uncertainty Evaluation Program (PRUEP), MELCOR code calculations. Volume 3

    SciTech Connect (OSTI)

    Shaffer, C.J. [Science and Engineering Associates, Albuquerque, NM (United States); Miller, L.A.; Payne, A.C. Jr.

    1992-10-01

    A Level III Probabilistic Risk Assessment (PRA) has been performed for LaSalle Unit 2 under the Risk Methods Integration and Evaluation Program (RMIEP) and the Phenomenology and Risk Uncertainty Evaluation Program (PRUEP). This report documents the phenomenological calculations and sources of. uncertainty in the calculations performed with HELCOR in support of the Level II portion of the PRA. These calculations are an integral part of the Level II analysis since they provide quantitative input to the Accident Progression Event Tree (APET) and Source Term Model (LASSOR). However, the uncertainty associated with the code results must be considered in the use of the results. The MELCOR calculations performed include four integrated calculations: (1) a high-pressure short-term station blackout, (2) a low-pressure short-term station blackout, (3) an intermediate-term station blackout, and (4) a long-term station blackout. Several sensitivity studies investigating the effect of variations in containment failure size and location, as well as hydrogen ignition concentration are also documented.

  15. Integrated Risk Assessment for the LaSalle Unit 2 Nuclear Power Plant, Phenomenology and Risk Uncertainty Evaluation Program (PRUEP), MELCOR code calculations

    SciTech Connect (OSTI)

    Shaffer, C.J. (Science and Engineering Associates, Albuquerque, NM (United States)); Miller, L.A.; Payne, A.C. Jr.

    1992-10-01

    A Level III Probabilistic Risk Assessment (PRA) has been performed for LaSalle Unit 2 under the Risk Methods Integration and Evaluation Program (RMIEP) and the Phenomenology and Risk Uncertainty Evaluation Program (PRUEP). This report documents the phenomenological calculations and sources of. uncertainty in the calculations performed with HELCOR in support of the Level II portion of the PRA. These calculations are an integral part of the Level II analysis since they provide quantitative input to the Accident Progression Event Tree (APET) and Source Term Model (LASSOR). However, the uncertainty associated with the code results must be considered in the use of the results. The MELCOR calculations performed include four integrated calculations: (1) a high-pressure short-term station blackout, (2) a low-pressure short-term station blackout, (3) an intermediate-term station blackout, and (4) a long-term station blackout. Several sensitivity studies investigating the effect of variations in containment failure size and location, as well as hydrogen ignition concentration are also documented.

  16. United States-Republic of Korea (ROK) International Nuclear Energy...

    Energy Savers [EERE]

    States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International ...

  17. Nuclear power plant simulators: their use in operator training and requalification

    SciTech Connect (OSTI)

    Jones, D.W.; Baer, D.K.; Francis, C.C.

    1980-07-01

    This report presents the results of a study performed for the Nuclear Regulatory Commission to evaluate the capabilities and use of nuclear power plant simulators either built or being built by the US nuclear power industry; to determine the adequacy of existing standards for simulator design and for the training of power plant operators on simulators; and to assess the issues about simulator training programs raised by the March 28, 1979, accident at Three Mile Island Unit 2.

  18. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect (OSTI)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  19. Green Power Marketing in the United States. A Status Report ...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Green Power Marketing in the United States. A ... This report documents green power marketing activities and trends in the United States. It ...

  20. National Nuclear Security Administration United States Department...

    National Nuclear Security Administration (NNSA)

    and respond to the threats of nuclear proliferation and terrorism make a vital ... The JCPOA has dramatically reduced the threat of nuclear proliferation by blocking Iran's ...

  1. The Fukushima Nuclear Event and its Implications for Nuclear Power

    SciTech Connect (OSTI)

    Golay, Michael

    2011-07-06

    The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

  2. Nuclear power and public acceptance

    SciTech Connect (OSTI)

    Hirschmann, H.

    1989-01-01

    Public acceptance is a decisive factor of growing importance, although economics has been and will remain the most decisive factor in ordering new nuclear capacity. Nuclear energy can make an important contribution toward preventing and reducing the greenhouse effect. Many politicians tend to base their decisions not on facts but rather on so called public opinion and consequently to overreact in particular on environmental issues. The entire debate hinges on public confidence rather than on a lack of information. There is no 100% guarantee that technical facilities will operate completely accident-free. Therefore, standards should be harmonized, plants should be operated safely and consequences of possible accidents should be limited. There needs to be some kind of early information system between countries concerning upcoming issues as a prerequisite for acting instead of reacting, because this is an essential tool in convincing the public that they can have more confidence. Technical information alone does not answer the real questions of the public. Political, technical, and economic matters as well as public opinion are interwoven and cannot be separated from each. Therefore, the exchange of experience gained in all these sectors on an international basis must be improved.

  3. Russian nuclear-powered submarine decommissioning

    SciTech Connect (OSTI)

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  4. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  5. UNITED STATES NUCLEAR REGULATORY COMMISSION REGION I

    Office of Legacy Management (LM)

    and Lab Branch Division of Nuclear Materials Safety Docket No. 040-07123 License No. ... SUB-748 file cc wencl: State of New York NATIONAL LEAD COMPANY ?La;R Pile cOpt NUCLEAR ...

  6. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Updates available at: www.energy.gov/ne NEXT UPDATE - July 2014 Page 1 News Updates  On February 20, Secretary Moniz announced the issuance of loan guarantees totalling approximately $6.5 billion to Georgia Power Company and Oglethorpe Power Company for the construction of two new nuclear reactors at the Alvin W. Vogtle Electric Generating Plant. The Department continues to work on the remaining conditional commitment for a $1.8 billion loan guarantee to Municipal Electric Authority of

  7. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    DOE Patents [OSTI]

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  8. Auxiliary power unit for moving a vehicle

    DOE Patents [OSTI]

    Akasam, Sivaprasad; Johnson, Kris W.; Johnson, Matthew D.; Slone, Larry M.; Welter, James Milton

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  9. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2013 News Updates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 News Updates  Dominion Resources, Inc. has informed the NRC that Dominion Virginia Power will amend its COL application to reflect the ESBWR technology by the end of 2013. In 2009 Dominion dropped the ESBWR from its COLA after failing to reach a commercial agreement with General Electric-Hitachi (GEH). A COL is expected no earlier than late 2015. Dominion Virginia Power has not yet committed to building a new nuclear unit at North Anna.  NRC has determined that the latest revision to the

  10. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  11. National Nuclear Security Administration United States Department of Energy

    National Nuclear Security Administration (NNSA)

    United States Department of Energy Washington, DC 20585 Prevent, Counter, and Respond-A Strategic Plan to Reduce Global Nuclear Threats FY 2017-FY 2021 Report to Congress March 2016 This page left blank intentionally. Department of Energy/National Nuclear Security Administration | March 2016 Prevent, Counter, and Respond--A Strategic Plan to Reduce Global Nuclear Threats (FY 2017-FY 2021)| Page i Message from the Administrator The Department of Energy's National Nuclear Security Administration

  12. Nuclear power-accomplishments and prospects

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    Nuclear energy is probably unique in being an international endeavor. The US was correct in 1973 in embracing nuclear energy, and is correct even today in continuing to champion and push this technology. Several major events justify this view. They include: the world's growing dependence on oil and America's increasing dependence on the unstable Middle East; steady high growth in electricity demand; culminated in this summer's record peak demands across the country, and while it was a hot summer, most of that increased demand was industrial activity-economic activity-not due to heat and renewed emphasis on the environment. The job of nuclear utilities and manufacturers is to work with continuity towards greater reliability, safety, and economy of our plants as they exist today. Nuclear power offers clear objective advantages if one is able to look beyond the illusions of the immediate situation. Taipower believes that nuclear power should be the major energy resource for Taiwan in the future. The first problem facing Taipower is the long lead time required for project approval. The second problem Taipower faces is the difficulty in obtaining a public consensus. Three main rational and irrational reasons are decisive for this future development of nuclear energy in Germany: energy structure, economics, and public acceptance. The use of nuclear energy is ethically not irresponsible, but it is ethically irresponsible not to use nuclear energy. A lot of modifications on the European plants have taken place to try to minimize the chance of having an accident and, in case it should happen, to limit the consequences. Another problem is waste deposits. As long as there is no answer to this question, the public will continue to debate on this issue.

  13. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Office of Environmental Management (EM)

    "For decades, we have worked in close partnership with Japan on nuclear issues, ranging from preventing the proliferation of nuclear weapons and confronting North Korea, to power ...

  14. SP-100, the US Space Nuclear Reactor Power Program. Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: SP-100, the US Space Nuclear Reactor Power Program. Technical information report Citation Details In-Document Search Title: SP-100, the US Space Nuclear Reactor ...

  15. Multiple-Reheat Brayton Cycles for Nuclear Power Conversion with...

    Office of Scientific and Technical Information (OSTI)

    Volume: 144; Journal Issue: 3; Other Information: Copyright (c) 2006 American Nuclear Society (ANS), United States, ... CAPITALIZED COST; CHEMICAL REACTIONS; ...

  16. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  17. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  18. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Updates available at: www.energy.gov/ne NEXT UPDATE - October 2015 Page 1 News Updates  DTE Energy has received a license to build and operate an ESBWR light water reactor at its Fermi site in Newport, Michigan; the company has not committed to building a new plant, but is retaining the option for long-term planning purposes.  The Nuclear Regulatory Commission has voted to grant the Director of Nuclear Reactor Regulation authority to issue a full power operating license to Tennessee

  19. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  20. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  1. Carbon pricing, nuclear power and electricity markets

    SciTech Connect (OSTI)

    Cameron, R.; Keppler, J. H.

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised

  2. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  3. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas; Upadhyaya, Belle R.

    2011-01-01

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  4. Personnel supply and demand issues in the nuclear power industry. Final report of the Nuclear Manpower Study Committee

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The anticipated personnel needs of the nuclear power industry have varied widely in recent years, in response to both increasing regulatory requirements and declining orders for new plants. Recent employment patterns in the nuclear energy field, with their fluctuations, resemble those of defense industries more than those traditionally associated with electric utilities. Reactions to the accident at Three Mile Island Unit 2 by industry and regulators have increased the demand for trained and experienced personnel, causing salaries to rise. Industry, for example, has established several advisory organizations like the Institute for Nuclear Power Operations (INPO). At the same time, the US Nuclear Regulatory Commission (NRC) has imposed many new construction and operating requirements in an effort to take advantage of lessons learned from the Three Mile Island incident and to respond to the perceived public interest in better regulation of nuclear power. Thus, at present, utilities, architect-engineer firms, reactor vendors, and organizations in the nuclear development community have heavy workloads.

  5. Green Power Marketing in the United States. A Status Report ...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: green power marketing; utility green pricing programs; renewable energy certificates; renewable electricity; green ...

  6. Green Power Marketing in the United States. A Status Report ...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Green Power Marketing in the United States. A Status Report (2008 Data) Voluntary consumer decisions to buy electricity supplied from renewable energy sources ...

  7. United States Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 ...

  8. United States and Mexico to Partner in Fight Against Nuclear...

    Energy Savers [EERE]

    United States and Mexico to Partner in Fight Against Nuclear Smuggling April 16, 2007 - 12:36pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman and Mexican ...

  9. Sandia Nuclear Power Safety Expert Elected to National Academy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... power plant accidents during his more than 40-year career, was elected a member of the National Academy of Engineering (NAE) "for contributions to commercial nuclear power plant ...

  10. China Guangdong Nuclear Power Company | Open Energy Information

    Open Energy Info (EERE)

    Power Company Jump to: navigation, search Name: China Guangdong Nuclear Power Company Place: Guangzhou, China Coordinates: 23.129075, 113.264423 Show Map Loading map......

  11. Energy Department Nuclear Systems Are Powering Mars Rover | Department...

    Energy Savers [EERE]

    Nuclear power is uniquely suited to provide these missions with safe and reliable ... energy systems developed by DOE to power missions such as the Apollo and Viking missions; ...

  12. Howard Baker Center for Public Policy Nuclear Power Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared...

  13. Nuclear Power Corp L T JV | Open Energy Information

    Open Energy Info (EERE)

    Corp L T JV Jump to: navigation, search Name: Nuclear Power Corp-L&T JV Place: Mumbai, Maharashtra, India Zip: 400094 Product: JV between Nuclear Power Corp. and L&T. Coordinates:...

  14. Nuclear Power and the Environment - Energy Explained, Your Guide...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Exports How Much Coal Is Left Use of Coal Prices ... Unlike fossil fuel-fired power plants, nuclear reactors do ... the nuclear power plant, then the emissions from ...

  15. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear

  16. Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States-Japan Joint Nuclear Energy Action Plan Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan PDF icon Fact Sheet: United States-Japan Joint Nuclear Energy ...

  17. Linking Humans and Systems in Nuclear Power

    SciTech Connect (OSTI)

    Jacques Hugo

    2013-02-01

    Traditional engineering methods do not make provision for the integration of human considerations, while traditional human factors methods do not scale well to the complexity of large-scale nuclear power plant projects. Although the need for up-to-date human factors engineering processes and tools is recognised widely in industry, so far no formal guidance has been developed. This article proposes such a framework.

  18. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  19. United States nuclear tests, July 1945 through September 1992

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  20. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  1. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,065","8,612",92.3,"BWR","application/vnd.ms-excel","application/vnd.ms-

  2. Machinery monitoring system installed at nuclear power station

    SciTech Connect (OSTI)

    Piety, K.; Hamrick, L.; McCurdy, A.

    1981-10-01

    The Grand Gulf Nuclear Station under construction in Mississippi will have a computer-based system to monitor 300 process variables and 200 vibration signals in each of the two units. The system's functions include monitoring support, startup/shutdown, surveillance, and diagnostics. The tasks associated with machinery monitoring are broken down into the initial plant design, construction and startup testing, and power-operation phases. The value of this monitoring is discussed and summarized in a table showing the impact of component failure on plant availability. 4 figures, 3 tables. (DCK)

  3. Commercial Nuclear Reprocessing in the United States

    SciTech Connect (OSTI)

    Sherrill, Charles Leland; Balatsky, Galya Ivanovna

    2015-09-09

    The short presentation outline: Reprocessing Overview; Events leading up to Carter’s Policy; Results of the decision; Policy since Nuclear Nonproliferation Act. Conclusions reached: Reprocessing ban has become an easy and visible fix to the public concern about proliferation, but has not completely stopped proliferation; and, Reprocessing needs to become detached from political considerations, so technical research can continue, regardless of the policy decisions we decide to take.

  4. Expanding Options for Nuclear Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expanding Options for Nuclear Power Expanding Options for Nuclear Power April 15, 2013 - 10:12am Addthis The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. |

  5. Lesson 7 - Waste from Nuclear Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing

  6. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  7. International Working Group Meeting Focuses on Nuclear Power Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Financing of New Nuclear Projects | Department of Energy Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009.

  8. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-923, "Power Plant Operations Report." ... Fossil 761,603 763,994 770,221 774,279 782,176 Coal 312,956 ... Natural Gas includes single-fired and dual-fired plants ...

  9. DOE Announces Loan Guarantee Applications for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction | Department of Energy Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The

  10. Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report

    Broader source: Energy.gov [DOE]

    The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States.

  11. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  12. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  13. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  14. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Updates available at: www.energy.gov/ne NEXT UPDATE - April 2016 Page 1 News Updates  The Tennessee Valley Authority has completed fuel loading of the Watts Bar Unit 2 reactor. TVA plans to begin commercial operation of the 1,150 MW reactor in early 2016 following completion of power ascension testing.  The final environmental impact statement for the PSEG Early Site Permit (ESP) has been completed; an ESP could be issued as early as mid- 2016. If approved, the permit will be valid for

  15. UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER...

    Office of Scientific and Technical Information (OSTI)

    FOR JAPANESE NUCLEAR POWER PLANTS Y.J. Park and C.H. Hofmayer Brookhaven National Laboratory Upton, Long Island, New York 11973 J.F. Costello U.S. Nuclear Regulatory ...

  16. Universal power transistor base drive control unit

    DOE Patents [OSTI]

    Gale, Allan R.; Gritter, David J.

    1988-01-01

    A saturation condition regulator system for a power transistor which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition.

  17. Universal power transistor base drive control unit

    DOE Patents [OSTI]

    Gale, A.R.; Gritter, D.J.

    1988-06-07

    A saturation condition regulator system for a power transistor is disclosed which achieves the regulation objectives of a Baker clamp but without dumping excess base drive current into the transistor output circuit. The base drive current of the transistor is sensed and used through an active feedback circuit to produce an error signal which modulates the base drive current through a linearly operating FET. The collector base voltage of the power transistor is independently monitored to develop a second error signal which is also used to regulate base drive current. The current-sensitive circuit operates as a limiter. In addition, a fail-safe timing circuit is disclosed which automatically resets to a turn OFF condition in the event the transistor does not turn ON within a predetermined time after the input signal transition. 2 figs.

  18. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  19. Nuclear Systems Powering a Mission to Mars | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Powering a Mission to Mars Nuclear Systems Powering a Mission to Mars November 28, 2011 - 11:23am Addthis Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Curiosity Mission: investigate whether the Gale Crater on Mars has ever offered environmental conditions that support the

  20. President Obama Announces Loan Guarantees to Construct New Nuclear Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactors in Georgia | Department of Energy Loan Guarantees to Construct New Nuclear Power Reactors in Georgia President Obama Announces Loan Guarantees to Construct New Nuclear Power Reactors in Georgia February 16, 2010 - 12:00am Addthis Washington D.C. --- Underscoring his Administration's commitment to jumpstarting the nation's nuclear power industry, President Obama today announced that the Department of Energy has offered conditional commitments for a total of $8.33 billion in loan

  1. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Workers | Department of Energy Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC)

  2. NREL: Energy Analysis - Nuclear Power Results - Life Cycle Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harmonization Nuclear Power Results - Life Cycle Assessment Harmonization Over the last 30 years, analysts have conducted life cycle assessments on the environmental impacts associated with a variety of nuclear power technologies and systems. These life cycle assessments have had wide-ranging results. To better understand greenhouse gas (GHG) emissions from nuclear power systems, NREL completed a comprehensive review and analysis of life cycle assessments focused on light water reactors

  3. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  4. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  5. The Use of Thorium within the Nuclear Power Industry - 13472...

    Office of Scientific and Technical Information (OSTI)

    for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized ...

  6. Economic Conditions and Factors Affecting New Nuclear Power Deployment...

    Office of Scientific and Technical Information (OSTI)

    ... With a multiple-year lead time, nuclear power plants are acutely vulnerable to market corrections. less Authors: Harrison, Thomas J. 1 + Show Author Affiliations Oak Ridge ...

  7. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks Citation Details In-Document Search Title: Pyroelectric Energy ...

  8. Design Concept and Application of Small Nuclear Power Reactor

    SciTech Connect (OSTI)

    Minato, Akio; Sekimoto, Hiroshi

    2009-03-31

    The outline of the recent design concepts and those features of the small nuclear power rector are described, including specifications, present design status, application and so on.

  9. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment Fund Management Company Place: Shenzhen,...

  10. State Nuclear Power Technology Corporation SNPTC | Open Energy...

    Open Energy Info (EERE)

    Technology Corporation SNPTC Jump to: navigation, search Name: State Nuclear Power Technology Corporation (SNPTC) Place: Beijing, Beijing Municipality, China Zip: 100032 Product:...

  11. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect (OSTI)

    Milbrandt, A.; Mann, M.

    2009-02-01

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  12. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect (OSTI)

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  13. Sandia Nuclear Power Safety Expert Elected to National Academy of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Nuclear Power Safety Expert Elected to National Academy of Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  14. Replacement energy costs for nuclear electricity-generating units in the United States: 1997--2001. Volume 4

    SciTech Connect (OSTI)

    VanKuiken, J.C.; Guziel, K.A.; Tompkins, M.M.; Buehring, W.A.

    1997-09-01

    This report updates previous estimates of replacement energy costs for potential short-term shutdowns of 109 US nuclear electricity-generating units. This information was developed to assist the US Nuclear Regulatory Commission (NRC) in its regulatory impact analyses, specifically those that examine the impacts of proposed regulations requiring retrofitting of or safety modifications to nuclear reactors. Such actions might necessitate shutdowns of nuclear power plants while these changes are being implemented. The change in energy cost represents one factor that the NRC must consider when deciding to require a particular modification. Cost estimates were derived from probabilistic production cost simulations of pooled utility system operations. Factors affecting replacement energy costs, such as random unit failures, maintenance and refueling requirements, and load variations, are treated in the analysis. This report describes an abbreviated analytical approach as it was adopted to update the cost estimates published in NUREG/CR-4012, Vol. 3. The updates were made to extend the time frame of cost estimates and to account for recent changes in utility system conditions, such as change in fuel prices, construction and retirement schedules, and system demand projects.

  15. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect (OSTI)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  16. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2016

    Energy Savers [EERE]

    ... delivered; this is the final steam generator for the project. Vertical construction of the cooling tower is 50% complete. Work on the Unit 3 turbine building (Unit 3 and Unit 4 ...

  17. Korea Hydro and Nuclear Power Company, Ltd Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Korea Hydro and Nuclear Power Co., Ltd. (KHNP), a large electric company based in the Republic of Korea, operates 20 nuclear power plants and has 8 more planned or under construction. The Korean government has given KHNP responsibility for permanent disposal of nuclear waste. The company has turned to Sandia' s Defense Waste Management Programs in Carlsbad, NM to lead an educational project for its staff on repository sciences based on Sandia's well- known expertise in the field. Sandia has

  18. Inventory of power plants in the United States as of January 1, 1997

    SciTech Connect (OSTI)

    1997-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1997. The publication also provides a 10-yr outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  19. Inventory of power plants in the United States 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-09-21

    This document is prepared annually by the Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units in operation and to provide a 10-year outlook of future generating unit additions by electric utilities in the United States (the 50 states and the District of Columbia). Data summarized in this report are useful to a wide audience including Congress, federal and state agencies, the electric utility industry, and the general public. The data presented in this report were assembled and published by the EIA, to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Summary Statistics; Operable Electric Generating Units; and Projected Electric Generating Unit Additions.

  20. Inventory of power plants in the United States as of January 1, 1996

    SciTech Connect (OSTI)

    1996-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1996. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 as amended.

  1. Overview of the United States spent nuclear fuel program

    SciTech Connect (OSTI)

    Hurt, W.L.

    1997-12-01

    As a result of the end of the Cold War, the mission of the US Department of Energy (DOE) has shifted from an emphasis on nuclear weapons development and production to an emphasis on the safe management and disposal of excess nuclear materials including spent nuclear fuel from both production and research reactors. Within the US, there are two groups managing spent nuclear fuel. Commercial nuclear power plants are managing their spent nuclear fuel at the individual reactor sites until the planned repository is opened. All other spent nuclear fuel, including research reactors, university reactors, naval reactors, and legacy material from the Cold War is managed by DOE. DOE`s mission is to safely and efficiently manage its spent nuclear fuel and prepare it for disposal. This mission involves correcting existing vulnerabilities in spent fuel storage; moving spent fuel from wet basins to dry storage; processing at-risk spent fuel; and preparing spent fuel in road-ready condition for repository disposal. Most of DOE`s spent nuclear fuel is stored in underwater basins (wet storage). Many of these basins are outdated, and spent fuel is to be removed and transferred to more modern basins or to new dry storage facilities. In 1995, DOE completed a complex-wide environmental impact analysis that resulted in spent fuel being sent to one of three principal DOE sites for interim storage (up to 40 years) prior to shipment to a repository. This regionalization by fuel type will allow for economies of scale yet minimize unnecessary transportation. This paper discusses the national SNF program, ultimate disposition of SNF, and the technical challenges that have yet to be resolved, namely, release rate testing, non-destructive assay, alternative treatments, drying, and chemical reactivity.

  2. I UNITED STATES NUCLEAR REGU.LATORYCOMMISS& REGION I

    Office of Legacy Management (LM)

    ' \*-'- I UNITED STATES NUCLEAR REGU.LATORYCOMMISS& REGION I 63, PARK AVENUE KING OF PRUSSIA. PENNSY LVANIA 19406 I..*. :+ 2 6 JUN 1979 2.lr.b The Commonwealth of Massachusetts Department of Public Health Division of Health Care Standards 8 Regulation ATTN: Mr. Gerald S. Parker, Director Radiation Control Programs 80 Boylston Street, Room 835 Boston, Massachusetts 02116 Dear Mr. Parker: Enclosed for your information and retention is a copy of the NRC, Region I Investigation Report No.

  3. Important technology considerations for space nuclear power systems

    SciTech Connect (OSTI)

    Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

    1988-03-01

    This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

  4. Klotz visits Bettis Atomic Power Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Klotz visits Bettis Atomic Power Laboratory Wednesday, July 8, 2015 - 1:03pm Lt. Gen. Frank G. Klotz, DOE Undersecretary for Nuclear Security and NNSA Administrator, visited the Bettis Atomic Power Laboratory in West Mifflin, PA on July 2, 2015. NNSA Blog Gen. Klotz toured through several test facilities where Bettis personnel reviewed ongoing development efforts to qualify techniques for in-situ repairs of nuclear powered submarine components, discussed full scale

  5. Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Touts Robust Economy | Department of Energy Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building

  6. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic

  7. The future of nuclear power and nuclear safety in the former Soviet Union

    SciTech Connect (OSTI)

    Potter, W.C.

    1993-03-01

    Although the international community is rightly concerned about the dangers of nuclear weapons proliferation in the former Soviet Union, the greatest nuclear threat emanating from that region has nothing to do with weapons. It stems, rather, from the deteriorating state of nuclear safety at the civilian nuclear power plants in Kazakhstan, Lithuanian, Russia, and Ukraine. This situation, caused by a combination of economic, political, and social factors, threatens to undermine the future of nuclear power in the former Soviet Union at the very time when the proponents of nuclear energy appear to be staging a remarkable comeback.

  8. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  9. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect (OSTI)

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  10. United States and France Sign Joint Statement on Civil Liability for Nuclear Damage

    Broader source: Energy.gov [DOE]

    The United States and France today issued the Joint Statement on Civil Liability for Nuclear Damage that sets forth the common views of the United States and France on civil nuclear liability

  11. Nuclear power programs in developing countries of the world: Southeast Asia

    SciTech Connect (OSTI)

    1995-05-01

    This article reviews the present and future status of the nuclear industry in the developing nations of China, North Korea, Thailand, Indonesia, and the Philippines. Each of the countries has a booming export-driven economy, which is turn requires considerable new generating capacity. The nuclear option is being considered as a provider of much of this additional capacity. China is committed to an extensive nuclear power program, and Indonesia has an ambitious plan to have seven to twelve reactors in service by the year 2015. North Korea will receive two LWRs to replace its current non-power nuclear units. The nuclear option is still under discussion in the Philippines and in Thailand.

  12. Owners of nuclear power plants: Percentage ownership of commercial nuclear power plants by utility companies

    SciTech Connect (OSTI)

    Wood, R.S.

    1987-08-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of June 1, 1987. The list includes all plants licensed to operate, under construction, docked for NRC safety and environmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally canceled. In many cases, ownership may be in the process of changing as a result of altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified. Part I lists plants alphabetically with their associated applicants/licensees and percentage ownership. Part II lists applicants/licensees alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses (OL's). Footnotes for both parts appear at the end of this document.

  13. Experiments ✚ Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    various cladding materials and fuels used in reactors respond to radiation damage. ... and extending their study to look at accident-tolerant nuclear fuel cladding. "This marriage ...

  14. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2014

    Energy Savers [EERE]

    ... COMPANY REACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DCCP TBD Holtec International SMR-160 160 DC Q4 ...

  15. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY OCTOBER 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... COMPANY REACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DC TBD Holtec International SMR-160 160 DC TBD ...

  16. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2015

    Broader source: Energy.gov (indexed) [DOE]

    ... COMPANY R EACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DC TBD Holtec International SMR-160 160 DC TBD ...

  17. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2015

    Energy Savers [EERE]

    ... COMPANY R EACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DCCP TBD Holtec International SMR-160 160 DC Q4 ...

  18. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... REACTOR SIZE (MWE) APPLICATION EXPECTED DC SUBMITTAL DATE Light Water Reactors Babcock &Wilcox mPower, Inc. mPower SMR 180 DCCP TBD Holtec International SMR-160 160 DC Q4 CY ...

  19. NNSA Physicist Named One of Ebony's Power 100 | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Physicist Named One of Ebony's Power 100 Monday, December 7, 2015 - 12:00am NNSA Blog Dr. Njema Frazier walked the red carpet at the Ebony Power 100 event in Los Angeles Dec. 2. Dr. Njema Frazier is a physicist in the NNSA's Office of Defense Programs, leading scientific and technical efforts to ensure that the United States maintains a credible nuclear deterrent without nuclear explosive testing. In addition to her day job in national security, she is a member of the

  20. Nuclear Power: High Hopes, Unfulfilled Promise (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: Energy Sciences; Energy Conservation, ...

  1. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2016

    Energy Savers [EERE]

    ... and Crystal River were both due to problems related to steam generator replacements. ... Final concrete has been placed for turbine floor. Unit 4: First of three containment ...

  2. Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60 years ago, scientists in Arco, Idaho successfully used nuclear energy to power four light bulbs. They laid the groundwork for decades of clean electricity and put the U.S. at...

  3. Business risks to utilities as new nuclear power costs escalate

    SciTech Connect (OSTI)

    Severance, Craig A.

    2009-05-15

    A nuclear power megaproject carries with it severe business risks. Despite attempts to shift these risks to taxpayers and ratepayers, ultimately there are no guarantees for utility shareholders. Utility management needs to keep some core principles in mind. (author)

  4. Annex: Attributes of Proliferation Resistance for Civilian Nuclear Power Systems

    Broader source: Energy.gov [DOE]

    The NERAC1 Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power Systems (TOPS) determined at its first meeting in November 1999 that a...

  5. Presentation: R&D for the Future of Nuclear Power

    Broader source: Energy.gov [DOE]

    The Secretary of Energy Advisory Board (SEAB) received a briefing on R&D for the future of nuclear power. The presentation was given by Mark Peters, Director of Idaho National Laboratory, on June 14, 2016.

  6. Wind Power Price Trends in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-07-15

    For the fourth year in a row, the United States led the world in adding new wind power capacity in 2008, and also surpassed Germany to take the lead in terms of cumulative installed wind capacity. The rapid growth of wind power in the U.S. over the past decade (Figure 1) has been driven by a combination of increasingly supportive policies (including the Federal production tax credit (PTC) and a growing number of state renewables portfolio standards), uncertainty over the future fuel costs and environmental liabilities of natural gas and coal-fired power plants, and wind's competitive position among generation resources. This article focuses on just the last of these drivers - i.e., trends in U.S. wind power prices - over the period of strong capacity growth since 1998.

  7. Renewing America's Nuclear Power Partnership for Energy Security and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Growth | Department of Energy Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8, 2008 - 4:14pm Addthis Remarks as Prepared for Delivery by Secretary Bodman Thank you, Jamie, for that kind introduction. And many thanks as well to Secretary Gutierrez, Deputy Secretary Sullivan and the entire Commerce team for convening this important event. As always, it's

  8. Nuclear stopping power in warm and hot dense matter

    SciTech Connect (OSTI)

    Faussurier, Gerald; Blancard, Christophe; Gauthier, Maxence

    2013-01-15

    We present a method to estimate the nuclear component of the stopping power of ions propagating in dense matter. Three kinds of effective pair potentials are proposed. Results from the warm dense matter regime and the domain of high energy density physics are presented and discussed for proton and helium. The role of ionic temperature is examined. The nuclear stopping power can play a noticeable role in hot dense matter.

  9. International Working Group Meeting Focuses on Nuclear Power Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Needs | Department of Energy Needs International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Needs June 2, 2010 - 12:02pm Addthis VIENNA, Austria - The multi-nation Infrastructure Development Working Group (IDWG) of the Global Nuclear Energy Partnership (GNEP) held its sixth meeting on May 26-27, 2010, in Vienna, Austria. The two-day event included workshops on nuclear energy regulatory agency engagement and the infrastructure needs for

  10. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Updates available at: www.energy.gov/ne NEXT UPDATE - October 2014 Page 1 News Updates  The NRC Atomic Safety and Licensing Board (ASLB) has ruled that Toshiba's participation in Nuclear Innovation North America's South Texas Project does not violate federal rules on foreign ownership, control or domination of nuclear reactors. NRC staff had previously stated that despite having only a 10% ownership stake in the project, Toshiba's level of financial support constituted an impermissible

  11. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power...

    Office of Scientific and Technical Information (OSTI)

    Erosioncorrosion-induced pipe wall thinning in US Nuclear Power Plants Citation Details In-Document Search Title: Erosioncorrosion-induced pipe wall thinning in US Nuclear Power ...

  12. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  13. UPDATE: nuclear power program information and data, July-September 1981

    SciTech Connect (OSTI)

    DOE /NBM--6011986

    1981-01-01

    UPDATE is published by the Office of Coordination and Special Projects, Office of Nuclear Reactor Programs, to provide a quick reference source on the current status of nuclear powerplant construction and operation in the United States and for information on the fuel cycle, economics, and performance of nuclear generating units. Similar information on other means of electric generation as related to nuclear power is included when appropriate. The subject matter of the reports and analyses presented in UPDATE will vary from issue to issue, reflecting changes in foci of interest and new developments in the field of commercial nuclear power generation. UPDATA is intended to provide a timely source of current statistics, results of analyses, and programmatic information proceeding from the activities of the Office of Nuclear Reactor Programs and other components of the Department of Energy, as well as condensations of topical articles from other sources of interest to the nuclear community. It also facilitates quick responses to requests for data and information of the type often solicited from this office.

  14. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Seabrook Unit 1","1,247","10,910",100.0,"NextEra Energy Seabrook LLC" "1 Plant 1 Reactor","1,247","10,910",100.0 "Note: Totals may not equal sum of components due to ...

  15. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect (OSTI)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  16. United States and the Republic of Korea Sign Agreement for Civil Nuclear

    National Nuclear Security Administration (NNSA)

    Cooperation | National Nuclear Security Administration | (NNSA) United States and the Republic of Korea Sign Agreement for Civil Nuclear Cooperation June 15, 2015 Washington, DC - Today Secretary of Energy Ernest J. Moniz and Korean Foreign Minister Yun signed the successor United States - Republic of Korea Agreement for Civil Nuclear Cooperation, or 123 Agreement, as they are referred to in the United States. The United States and the Republic of Korea (ROK) are world leaders in civil

  17. United States and Japan Sign Joint Nuclear Energy Action Plan to Promote

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Cooperation | Department of Energy Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation April 25, 2007 - 12:36pm Addthis WASHINGTON, DC - United States Department of Energy Secretary Samuel W. Bodman and Japan's Ministers Akira Amari, Bunmei Ibuki, and Taro Aso, this week presented to U.S. President George W. Bush and Japanese Prime Minister Shinzo

  18. United States-Russia Joint Statement on the Results of the Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Nuclear Security Working Group Meeting | Department of Energy States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting United States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting December 10, 2010 - 12:00am Addthis Moscow - Earlier this week, Deputy Secretary of Energy Daniel Poneman, representing the United States government, signed a joint statement with Russia's Director

  19. Assessment of ceramic composites for MMW space nuclear power systems

    SciTech Connect (OSTI)

    Besmann, T.M.

    1987-01-01

    Proposed multimegawatt nuclear power systems which operate at high temperatures, high levels of stress, and in hostile environments, including corrosive working fluids, have created interest in the use of ceramic composites as structural materials. This report assesses the applicability of several ceramic composites in both Brayton and Rankine cycle power systems. This assessment considers an equilibrium thermodynamic analysis and also a nonequilibrium assessment. (FI)

  20. Institute of Nuclear Power Operations annual report, 1993

    SciTech Connect (OSTI)

    1993-12-31

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

  1. Data processing unit and power system for the LANL REM instrument package. Final report

    SciTech Connect (OSTI)

    Lockhart, W.

    1994-03-01

    The NEPSTP spacecraft needs highly reliable instrumentation to measure the nuclear reactor health and performance. These reactor measurements are essential for initial on-orbit phase operations and documentation of performance over time. Los Alamos National Laboratory (LANL), under the guidance of W. C. Feldman, principal investigator, has designed the Radiation Environment Monitoring (REM) package to meet these needs. The instrumentation package contains two neutron detectors, one gamma-ray detector, a data processing unit, and an instrument power system. The REM package is an integration of quick turn-around, state of the practice technology for detectors, data processors, and power systems. A significant portion of REM consists of subsystems with flight history. Southwest Research Institute (SwRI) has been tasked by LANL to design support electronics, including the Data Processing Unit (DPU) and Power System for REM. The goal for this project is to use technologies from current programs to speed up and simplify the design process. To meet these design goals, the authors use an open architecture VME bus for the DPU and derivatives of CASSINI power supplies for the instrument power system. To simplify integration and test activities, they incorporate a proven software development strategy and tool kits from outside vendors. The objective of this report is to illustrate easily incorporated system level designs for the DPU, power system and ground support electronics (GSE) in support of the important NEPSTP program.

  2. Quarterly Nuclear Power Deployment Scorecard - January 2013 ...

    Broader source: Energy.gov (indexed) [DOE]

    On November 28 Lehigh Heavy Forge Corporation announced an agreement with Babcock and Wilcox Company to fabricate and qualify large forgings for the B&W mPower SMR. Forgings would ...

  3. Method for assigning sites to projected generic nuclear power plants

    SciTech Connect (OSTI)

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  4. National Nuclear Security Administration United States Department of Energy

    National Nuclear Security Administration (NNSA)

    America Treaty Organization NCT Nuclear Counterterrorism NCTIR Nuclear Counterterrorism and Incident Response Program NDAA National Defense Authorization Act NELA Nuclear Explosive Like-Assembly NEST Nuclear Emergency Support Team NGSI Next Generation Safeguards Initiative NIS Nonproliferation and International Security Program NMF National Mission Force NNSA National Nuclear Security Administration NNSS Nevada Nuclear Security Site NPAC Nonproliferation Policy and Arms Control Program NPT

  5. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D. R.

    1985-03-19

    A laser using heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  6. Nuclear heated and powered metal excimer laser

    SciTech Connect (OSTI)

    Womack, D.R.

    1982-02-11

    A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

  7. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  8. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1989-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  9. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Benkovitz, C.

    1981-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  10. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect (OSTI)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo; Kim, Juyoul; Kim, Juyub

    2013-07-01

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  11. United States-Japan Nuclear Security Working Group Fact Sheet | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) United States-Japan Nuclear Security Working Group Fact Sheet March 27, 2012 Since the announcement of establishing the U.S.-Japan Nuclear Security Working Group at the U.S.-Japan Summit meeting in November 2010, this Group has successfully fulfilled its responsibility to identify and coordinate tangible outcomes for the 2012 Nuclear Security Summit, including the promotion of robust security for nuclear materials at civilian nuclear facilities and

  12. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect (OSTI)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  13. What future for nuclear power? Workshop report

    SciTech Connect (OSTI)

    1998-12-31

    A Workshop on this highly controversial subject, organized by the Energy and Environment Programme of the RIIA, was held on 10th November 1997 at Green College, Oxford. The meeting was attended by some forty people from eight countries, coming from the nuclear and electricity generating industry, governments, research organizations, academic institutions, environmental pressure groups and inter-governmental organizations. In addition, subsequent to this Workshop, there have been a number of smaller, more informal discussions on various aspects of the subject. This paper summarizes the main conclusions arising from the Workshop and from these later discussions.

  14. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    DOE Patents [OSTI]

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  15. 6,"Edwin I Hatch","Nuclear","Georgia Power Co",1759 7,"Thomas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Co",1793 6,"Edwin I Hatch","Nuclear","Georgia Power Co",1759 7,"Thomas A Smith Energy Facility","Natural gas","Oglethorpe Power Corporation",1290 ...

  16. The United States Plutonium Balance, 1944-2009 | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Pits The United States Plutonium Balance, 1944-2009 The United States Plutonium Balance, 1944-2009 The United States has released an inventory of its plutonium balances...

  17. Nuclear Archeology for CANDU Power Reactors

    SciTech Connect (OSTI)

    Broadhead, Bryan L

    2011-01-01

    The goal of this work is the development of so-called 'nuclear archeology' techniques to predict the irradiation history of both fuel-related and non-fuel-related materials irradiated in the CANDU (CANada Deuterium Uranium) family of nuclear reactors. In this application to CANDU-type reactors, two different scenarios for the collection of the appropriate data for use in these procedures will be assumed: the first scenario is the removal of the pressure tubes, calandria tubes, or fuel cladding and destructive analysis of the activation products contained in these structural materials; the second scenario is the nondestructive analysis (NDA) of the same hardware items via high-resolution gamma ray scans. There are obvious advantages and disadvantages for each approach; however, the NDA approach is the central focus of this work because of its simplicity and lack of invasiveness. The use of these techniques along with a previously developed inverse capability is expected to allow for the prediction of average flux levels and irradiation time, and the total fluence for samples where the values of selected isotopes can be measured.

  18. Integrated approach to economical, reliable, safe nuclear power production

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    An Integrated Approach to Economical, Reliable, Safe Nuclear Power Production is the latest evolution of a concept which originated with the Defense-in-Depth philosophy of the nuclear industry. As Defense-in-Depth provided a framework for viewing physical barriers and equipment redundancy, the Integrated Approach gives a framework for viewing nuclear power production in terms of functions and institutions. In the Integrated Approach, four plant Goals are defined (Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness) with the attendant Functional and Institutional Classifications that support them. The Integrated Approach provides a systematic perspective that combines the economic objective of reliable power production with the safety objective of consistent, controlled plant operation.

  19. National Nuclear Security Administration United States Department of Energy

    National Nuclear Security Administration (NNSA)

    Atlantic Treaty Organization NCT Nuclear Counterterrorism NCTIR Nuclear Counterterrorism and Incident Response Program NDAA National Defense Authorization Act NELA Nuclear Explosive Like-Assembly NEST Nuclear Emergency Support Team NGSI Next Generation Safeguards Initiative NIS Nonproliferation and International Security Program NMF National Mission Force NNSA National Nuclear Security Administration NNSS Nevada National Security Site NPAC Nonproliferation Policy and Arms Control Program NPT

  20. Hans Bethe, Powering the Stars, and Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hans Bethe, Energy Production in Stars, and Nuclear Physics Awards and Tributes * Resources with Additional Information Hans Bethe Courtesy of Cornell University "Hans Bethe was one of the great physicists not only of the twentieth century, but of all time. During his long life, he uncovered the secrets powering the stars, published the standard work on nuclear physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of genius and

  1. Solid state laser media driven by remote nuclear powered fluorescence

    DOE Patents [OSTI]

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  2. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H.

    2012-07-01

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also

  3. Transient Testing of Nuclear Fuels and Materials in United States

    SciTech Connect (OSTI)

    Daniel M. Wachs

    2012-12-01

    The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

  4. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at

  5. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Updates available at: www.energy.gov/ne NEXT UPDATE - April 2015 Page 1 News Updates  SCANA corporation has filed a petition with the Public Service Commission of South Carolina seeking an update to the construction schedule for V.C. Summer units 2 and 3. Revised estimates for substantial completion ("without consideration of all mitigating strategies") now stand at June 2019 and June 2020. Primary reasons for the delay included issues with submodule design and fabrication. 

  6. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already

  7. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect (OSTI)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  8. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOE Patents [OSTI]

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  9. The History of Nuclear Power in Space | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The History of Nuclear Power in Space The History of Nuclear Power in Space June 9, 2015 - 11:42am Addthis Marissa Newhall Marissa Newhall Director of Digital Strategy and Communications How can I participate? It's Space Week on Energy.gov -- and we're highlighting the contributions of the Energy Department and our National Labs to the U.S. space program. Join us for "The Energy of Star Wars: A Google+ Hangout" on Friday June 12 at 2 p.m. EDT. Ask questions now and during the Hangout

  10. Howard Baker Center for Public Policy Nuclear Power Conference | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Ambassador Baker for that warm introduction and for all the good work you and the University of Tennessee are sponsoring through the Baker Center for Public Policy. I also want to thank Representative Hamilton and the Wilson Center for hosting this event on such an important

  11. Sandia tops $6.5 million in United Way donations | National Nuclear...

    National Nuclear Security Administration (NNSA)

    tops 6.5 million in United Way donations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  12. Seismic risk management solution for nuclear power plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefitmore » of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.« less

  13. Seismic risk management solution for nuclear power plants

    SciTech Connect (OSTI)

    Coleman, Justin; Sabharwall, Piyush

    2014-12-01

    Nuclear power plants should safely operate during normal operations and maintain core-cooling capabilities during off-normal events, including external hazards (such as flooding and earthquakes). Management of external hazards to expectable levels of risk is critical to maintaining nuclear facility and nuclear power plant safety. Seismic risk is determined by convolving the seismic hazard with seismic fragilities (capacity of systems, structures, and components). Seismic isolation (SI) is one protective measure showing promise to minimize seismic risk. Current SI designs (used in commercial industry) reduce horizontal earthquake loads and protect critical infrastructure from the potentially destructive effects of large earthquakes. The benefit of SI application in the nuclear industry is being recognized and SI systems have been proposed in American Society of Civil Engineer Standard 4, ASCE-4, to be released in the winter of 2014, for light water reactors facilities using commercially available technology. The intent of ASCE-4 is to provide criteria for seismic analysis of safety related nuclear structures such that the responses to design basis seismic events, computed in accordance with this standard, will have a small likelihood of being exceeded. The U.S. nuclear industry has not implemented SI to date; a seismic isolation gap analysis meeting was convened on August 19, 2014, to determine progress on implementing SI in the U.S. nuclear industry. The meeting focused on the systems and components that could benefit from SI. As a result, this article highlights the gaps identified at this meeting.

  14. Design issues concerning Iran`s Bushehr nuclear power plant VVER-1000 conversion

    SciTech Connect (OSTI)

    Carson, C.F.

    1996-12-31

    On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iran achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was {approx}80% complete and unit 2 was {approx}50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction.

  15. Solar power purchase for DOE laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Solar power purchase for DOE laboratories January 13, 2015 WASHINGTON D.C. -- The U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) announced today it has finalized the license agreement with Whitethorn Solar, a wholly owned subsidiary of Juwi Solar Inc. (Juwi), for a solar electrical generation system onsite at Lawrence Livermore National Laboratory. When completed, the power generated by this system will represent the DOE/NNSA's largest

  16. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect (OSTI)

    Myers, Carl W; Elkins, Ned Z

    2008-01-01

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  17. Proceedings of the Third International Workshop on the implementation of ALARA at nuclear power plants

    SciTech Connect (OSTI)

    Khan, T.A.; Roecklein, A.K.

    1995-03-01

    This report contains the papers presented and the discussions that took place at the Third International Workshop on ALARA Implementation at Nuclear Power Plants, held in Hauppauge, Long Island, New York from May 8--11, 1994. The purpose of the workshop was to bring together scientists, engineers, health physicists, regulators, managers and other persons who are involved with occupational dose control and ALARA issues. The countries represented were: Canada, Finland, France, Germany, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, the United Kingdom and the United States. The workshop was organized into twelve sessions and three panel discussions. Individual papers have been cataloged separately.

  18. US Central Station Nuclear Electric Generating Units: significant milestones. (Status as of April 1, 1980)

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Construction and operational milestones are tabulated for US nuclear power plants. Data are presented on nuclear steam supply system orders. A schedule of commercial operation through 1990 is given.

  19. An introduction to the design, commissioning and operation of nuclear air cleaning systems for Qinshan Nuclear Power Plant

    SciTech Connect (OSTI)

    Xinliang Chen; Jiangang Qu; Minqi Shi

    1995-02-01

    This paper introduces the design evolution, system schemes and design and construction of main nuclear air cleaning components such as HEPA filter, charcoal adsorber and concrete housing etc. for Qinshan 300MW PWR Nuclear Power Plant (QNPP), the first indigenously designed and constructed nuclear power plant in China. The field test results and in-service test results, since the air cleaning systems were put into operation 18 months ago, are presented and evaluated. These results demonstrate that the design and construction of the air cleaning systems and equipment manufacturing for QNPP are successful and the American codes and standards invoked in design, construction and testing of nuclear air cleaning systems for QNPP are applicable in China. The paper explains that the leakage rate of concrete air cleaning housings can also be assured if sealing measures are taken properly and embedded parts are designed carefully in the penetration areas of the housing and that the uniformity of the airflow distribution upstream the HEPA filters can be achieved generally no matter how inlet and outlet ducts of air cleaning unit are arranged.

  20. Cost estimate guidelines for advanced nuclear power technologies

    SciTech Connect (OSTI)

    Delene, J.G.; Hudson, C.R. II.

    1990-03-01

    To make comparative assessments of competing technologies, consistent ground rules must be applied when developing cost estimates. This document provides a uniform set of assumptions, ground rules, and requirements that can be used in developing cost estimates for advanced nuclear power technologies. 10 refs., 8 figs., 32 tabs.

  1. Small Modular Reactors - Key to Future Nuclear Power

    Broader source: Energy.gov (indexed) [DOE]

    Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S. 1,2 Robert Rosner ... b,c Wind (On-shore) 90 9 Solar PV 180 18 Solar Thermal 250 25 Biomass 90-180 9-18 a. ...

  2. A survey of fatigue monitoring in the nuclear power industry

    SciTech Connect (OSTI)

    Ware, A.G.

    1991-12-31

    The original design of nuclear power plants addressed fatigue concerns by including calculations of projected fatigue usage for specific components; the calculations were based on estimates of the number and severity of expected transients over the 40-year design life of the plants. In some cases, the transients occurring in the plants are not as severe as was anticipated in the original design analyses, while in other cases events have occurred that were not anticipated in the design basis documents. Field failures caused by fatigue have identified some of those cases. In response, several organizations in the United States and overseas have developed fatigue monitoring programs to more accurately estimate the fatigue usage. One basic approach consists of reconstructing the fatigue usage to date based on the transients recorded in the operating history instead of those projected in the design documents. Another approach includes monitoring the plant instrumentation to determine actual values for parameters such as temperature and pressure and using the measured values in the fatigue usage calculations instead of the values projected in the design documents. The use of existing plant instrumentation to measure temperature, pressure, flow rate, etc., along with the incorporation of conservative assumptions, had generally proven adequate for estimating fatigue usage; however, in some cases additional instrumentation installed for local monitoring can provide a more accurate estimate, especially where thermal stratification is known to occur. Fatigue monitoring can aid in identifying fatigue concerns not anticipated in the original design and for reducing the excessive conservatism in some of the original design calculations so that the fatigue lives of these components can be justified as they age. Fatigue monitoring can also assist efforts to reduce ongoing fatigue usage through design modifications and operating procedure changes.

  3. A survey of fatigue monitoring in the nuclear power industry

    SciTech Connect (OSTI)

    Ware, A.G.

    1991-01-01

    The original design of nuclear power plants addressed fatigue concerns by including calculations of projected fatigue usage for specific components; the calculations were based on estimates of the number and severity of expected transients over the 40-year design life of the plants. In some cases, the transients occurring in the plants are not as severe as was anticipated in the original design analyses, while in other cases events have occurred that were not anticipated in the design basis documents. Field failures caused by fatigue have identified some of those cases. In response, several organizations in the United States and overseas have developed fatigue monitoring programs to more accurately estimate the fatigue usage. One basic approach consists of reconstructing the fatigue usage to date based on the transients recorded in the operating history instead of those projected in the design documents. Another approach includes monitoring the plant instrumentation to determine actual values for parameters such as temperature and pressure and using the measured values in the fatigue usage calculations instead of the values projected in the design documents. The use of existing plant instrumentation to measure temperature, pressure, flow rate, etc., along with the incorporation of conservative assumptions, had generally proven adequate for estimating fatigue usage; however, in some cases additional instrumentation installed for local monitoring can provide a more accurate estimate, especially where thermal stratification is known to occur. Fatigue monitoring can aid in identifying fatigue concerns not anticipated in the original design and for reducing the excessive conservatism in some of the original design calculations so that the fatigue lives of these components can be justified as they age. Fatigue monitoring can also assist efforts to reduce ongoing fatigue usage through design modifications and operating procedure changes.

  4. Multimegawatt space nuclear power supply, Phase 1 Final report

    SciTech Connect (OSTI)

    Not Available

    1989-02-17

    This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

  5. Factors driving wind power development in the United States

    SciTech Connect (OSTI)

    Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

    2003-05-15

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24 percent annually during the past five years. About 1,700 MW of wind energy capacity was installed in 2001, while another 410 MW became operational in 2002. This year (2003) shows promise of significant growth with more than 1,500 MW planned. With this growth, an increasing number of states are experiencing investment in wind energy projects. Wind installations currently exist in about half of all U.S. states. This paper explores the key factors at play in the states that have achieved a substantial amount of wind energy investment. Some of the factors that are examined include policy drivers, such as renewable portfolio standards (RPS), federal and state financial incentives, and integrated resource planning; as well as market drivers, such as consumer demand for green power, natural gas price volatility, and wholesale market rules.

  6. Top 6 Things You Didn't Know About Nuclear Power | Department...

    Energy Savers [EERE]

    Nuclear Power December 12, 2014 - 10:39am Addthis These are the first lightbulbs lit by nuclear fission at Argonne's EBR or Experimental Breeder Reactor.| Energy Department...

  7. UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL...

    Office of Legacy Management (LM)

    STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL LlCENSE pp.o-o 43 Licensee 1. ... Date Sepikmber 30, I.962 -6. Special Nuclear:Material SnrichedtoS I under this ...

  8. UNITED STATES NUCLEAR REGULATORY COMMISSION WAWINQTON, 0. C....

    Office of Legacy Management (LM)

    WAWINQTON, 0. C. ZOSSS Hr. Ray Cooperstein Nuclear Environmental Department ,of Energy ... nuclear reactab:ifot the 0.8. Navy under an Atomic I :;. i,: Snergy Commieeion contract. ...

  9. An Assessment of Energy Potential at Non-Powered Dams in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy An Assessment of Energy Potential at Non-Powered Dams in the United States An Assessment of Energy Potential at Non-Powered Dams in the United States An Assessment of Energy Potential at Non-Powered Dams in the United States- The United States has produced clean, renewable electricity from hydropower for more than 100 years, but hydropower producing facilities represent only a fraction of the infrastructure development that has taken place on the nation's waterways.

  10. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    SciTech Connect (OSTI)

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  11. Joint Statement by the United States and Italy on the 2014 Nuclear Security

    National Nuclear Security Administration (NNSA)

    Summit | National Nuclear Security Administration | (NNSA) Joint Statement by the United States and Italy on the 2014 Nuclear Security Summit March 24, 2014 See a fact sheet here. The White House Office of the Press Secretary Italy and the United States of America are pleased to announce that they have jointly completed the removal of approximately 20 kilograms of excess highly enriched uranium (HEU) and separated plutonium from Italy. At the 2012 Nuclear Security Summit, Italy and the

  12. United States-Republic of Korea (ROK) International Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative (INERI) Annual Steering Committee Meeting | Department of Energy States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting January 14, 2015 - 9:33am Addthis United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting On

  13. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    SciTech Connect (OSTI)

    Kisner, Roger A; Mullens, James Allen; Wilson, Thomas L; Wood, Richard Thomas; Korsah, Kofi; Qualls, A L; Muhlheim, Michael David; Holcomb, David Eugene; Loebl, Andy

    2007-08-01

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  14. Review of maintenance personnel practices at nuclear power plants

    SciTech Connect (OSTI)

    Chockie, A.D.; Badalamente, R.V.; Hostick, C.J.; Vickroy, S.C.; Bryant, J.L.; Imhoff, C.H.

    1984-05-01

    As part of the Nuclear Regulatory Commission (NRC) sponsored Maintenance Qualifications and Staffing Project, the Pacific Northwest Laboratory (PNL) has conducted a preliminary assessment of nuclear power plant (NPP) maintenance practices. As requested by the NRC, the following areas within the maintenance function were examined: personnel qualifications, maintenance training, overtime, shiftwork and staffing levels. The purpose of the assessment was to identify the primary safety-related problems that required further analysis before specific recommendations can be made on the regulations affecting NPP maintenance operations.

  15. Understanding the nature of nuclear power plant risk

    SciTech Connect (OSTI)

    Denning, R. S.

    2012-07-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  16. Inventory of Nonutility Electric Power Plants in the United States

    Reports and Publications (EIA)

    2003-01-01

    Final issue of this report. Provides annual aggregate statistics on generating units operated by nonutilities in the United States and the District of Columbia. Provides a 5-year outlook for generating unit additions and changes.

  17. United States Department of Energy Nuclear Materials Stewardship

    SciTech Connect (OSTI)

    Newton, J. W.

    2002-02-27

    The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials.

  18. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    SciTech Connect (OSTI)

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  19. Socio-economic impacts of nuclear generating stations: Crystal River Unit 3 case study

    SciTech Connect (OSTI)

    Bergmann, P.A.

    1982-07-01

    This report documents a case study of the socio-economic impacts of the construction and operation of the Crystal River Unit 3 nuclear power station. It is part of a major post-licensing study of the socio-economic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period 1980 to 1981. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socio-economic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined.

  20. United States and China Mark 10th Anniversary of Peaceful Uses of Nuclear

    National Nuclear Security Administration (NNSA)

    Technology Joint Coordination Meetings | National Nuclear Security Administration | (NNSA) United States and China Mark 10th Anniversary of Peaceful Uses of Nuclear Technology Joint Coordination Meetings May 14, 2015 CHENGDU, CHINA - On May 6 and 7, the Department of Energy's National Nuclear Security Administration (NNSA) Deputy Administrator for Defense Nuclear Nonproliferation Anne Harrington and China National Energy Administration (NEA) Director General Liu Baohua co-chaired the 10th

  1. Pantex makes large donation to United Way | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Tuesday, January 14, 2014 - 4:00pm B&W Pantex General Manager John Woolery, center, presents a B&W corporate donation Friday to the United Way of Amarillo and Canyon. United Way ...

  2. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  3. Understanding seismic design criteria for Japanese Nuclear Power Plants

    SciTech Connect (OSTI)

    Park, Y.J.; Hofmayer, C.H.; Costello, J.F.

    1995-04-01

    This paper summarizes the results of recent survey studies on the seismic design practice for nuclear power plants in Japan. The seismic design codes and standards for both nuclear as well as non-nuclear structures have been reviewed and summarized. Some key documents for understanding Japanese seismic design criteria are also listed with brief descriptions. The paper highlights the design criteria to determine the seismic demand and component capacity in comparison with U.S. criteria, the background studies which have led to the current Japanese design criteria, and a survey of current research activities. More detailed technical descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  4. Department of Energy to Co-Sponsor Workshop on Nuclear Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Co-Sponsor Workshop on Nuclear Power Plant Life Extension R&D Department of Energy to Co-Sponsor Workshop on Nuclear Power Plant Life Extension R&D September 29, 2010 - 11:38am ...

  5. Los Alamos turns its nuclear weapons power to war on cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory ...

  6. Incidents at nuclear power plants caused by the human factor

    SciTech Connect (OSTI)

    Mashin, V. A.

    2012-09-15

    Psychological analysis of the causes of incorrect actions by personnel is discussed as presented in the report 'Methodological guidelines for analyzing the causes of incidents in the operation of nuclear power plants.' The types of incorrect actions and classification of the root causes of errors by personnel are analyzed. Recommendations are made for improvements in the psychological analysis of causes of incorrect actions by personnel.

  7. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    SciTech Connect (OSTI)

    Leggett, Richard Wayne; Eckerman, Keith F; Manger, Ryan P

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  8. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Deputy Secretary Daniel Poneman spoke at the Tokyo American Center today about nuclear power after Fukushima.

  9. Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    O'Connell, J. Michael

    2002-01-01

    OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

  10. Top 6 Things You Didn't Know About Nuclear Power

    Broader source: Energy.gov [DOE]

    Part of our "Top Things You Didn't Know About..." series, we outline 6 fascinating facts about nuclear power.

  11. Transformer failure and common-mode loss of instrument power at Nine Mile Point Unit 2 on August 13, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    On August 13, 1991, at Nine Mile Point Unit 2 nuclear power plant, located near Scriba, New York, on Lake Ontario, the main transformer experienced an internal failure that resulted in degraded voltage which caused the simultaneous loss of five uninterruptible power supplies, which in turn caused the loss of several nonsafety systems, including reactor control rod position indication, some reactor power and water indication, control room annunciators, the plant communications system, the plant process computer, and lighting at some locations. The reactor was subsequently brought to a safe shutdown. Following this event, the US Nuclear Regulatory Commission dispatched an Incident Investigation Team to the site to determine what happened, to identify the probable causes, and to make appropriate findings and conclusions. This report describes the incident, the methodology used by the team in its investigation, and presents and the team's findings and conclusions. 59 figs., 14 tabs.

  12. Watts Bar Unit 1 Cycle Zero Power Physics Tests Analysis with VERA-CS

    SciTech Connect (OSTI)

    Gehin, Jess C; Godfrey, Andrew T; Evans, Thomas M; Hamilton, Steven P; Francheschini, F.

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications, including a core simulation capability called VERA-CS. A key milestone for this endeavor is to validate VERA against measurements from operating nuclear power reactors. The first step in validation against plant data is to determine the ability of VERA to accurately simulate the initial startup physics tests for Watts Bar Nuclear Power Station, Unit 1 (WBN1) cycle 1. VERA-CS calculations were performed with the Insilico code developed at ORNL using cross section processing from the SCALE system and the transport capabilities within the Denovo transport code using the SPN method. The calculations were performed with ENDF/B-VII.0 cross sections in 252 groups (collapsed to 23 groups for the 3D transport solution). The key results of the comparison of calculations with measurements include initial criticality, control rod worth critical configurations, control rod worth, differential boron worth, and isothermal temperature reactivity coefficient (ITC). The VERA results for these parameters show good agreement with measurements, with the exception of the ITC, which requires additional investigation. Results are also compared to those obtained with Monte Carlo methods and a current industry core simulator.

  13. DOE - Office of Legacy Management -- Piqua Nuclear Power Facility - OH 08

    Office of Legacy Management (LM)

    Piqua Nuclear Power Facility - OH 08 FUSRAP Considered Sites Site: Piqua Nuclear Power Facility (OH.08 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Piqua, Ohio, Decommissioned Reactor Site Documents Related to Piqua Nuclear Power Facility

  14. Green Power Marketing in the United States: A Status Report (11th Edition)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Information Resources » Green Power Marketing in the United States: A Status Report (11th Edition) Green Power Marketing in the United States: A Status Report (11th Edition) This report documents green power marketing activities and trends in the United States, focusing on consumer decisions to purchase electricity supplied from renewable energy sources. Date October 2008 Topic Financing, Incentive & Market Analysis Codes, Standards & Utility Policies

  15. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    SciTech Connect (OSTI)

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

  16. Pantex kicks off United Way campaign | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) kicks off United Way campaign Friday, August 29, 2014 - 1:45pm United Way campaign kickoff event Clarence Rashada holds up a sign expressing Pantexans' support during the United Way campaign kickoff event last week as (from left) Kendra Garcia, Katy Felder and Charles Thomas look on. The four are loaned executives from Pantex sent to support the United Way campaign. This year's theme is "Make it Personal." Each year, Pantex employees pledge hundreds of

  17. BioPower Application (United States) | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentbiopower-application-united-states,ht Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration &...

  18. Land-Use Requirements of Modern Wind Power Plants in the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong National Renewable Energy...

  19. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  20. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    SciTech Connect (OSTI)

    Winslow, Anne

    2011-06-28

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

  1. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  2. United States Nuclear Tests, July 1945 through September 1992, December 2000

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-12-01

    This document list chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Revision 15, dated December 2000.

  3. Green Power Marketing in the United States: A Status Report (11th Edition)

    SciTech Connect (OSTI)

    Bird, L.; Kreycik, C.; Friedman, B.

    2008-10-01

    This report documents green power marketing activities and trends in the United States. It presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets and green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of renewable energy certificates. Key market trends and issues are also discussed.

  4. Sec. Moniz to Georgia, Energy Department Scheduled to Close on Loan Guarantees to Construct New Nuclear Power Plant Reactors

    Broader source: Energy.gov [DOE]

    Project represents first new nuclear reactors to begin construction in the United States in three decades

  5. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect (OSTI)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G.

    2013-07-01

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  6. The role and future of nuclear power in Canada

    SciTech Connect (OSTI)

    Runnalls, O.J.C.

    1989-01-01

    Canada is rich in energy. Hydraulic power is the main source of electricity in Canada. The availability of natural resources and energy has guided the economic development of all the provinces. The Canadian Nuclear Association sponsored a survey of public attitudes in May of 1988. There appears to be less understanding of the actual supply of electricity and of the future natural resource availability. One out of five Canadians strongly opposes the use of nuclear energy. The CANDU type reactor proven to be a very economical and reliable choice in Canada. With the attention now being focused on the greenhouse effect and acid rain in Canada, opinion leaders, even in the traditionally antinuclear environmental community, are reconsidering the nuclear option. A significant hurdle has to be cleared in the relatively near future: a public review of the deep geologic high-level waste disposal concept. Groundwork has been laid to prepare for significant participation in a nuclear renaissance, across Canada and around the world.

  7. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    SciTech Connect (OSTI)

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions.

  8. Refractory alloy technology for space nuclear power applications

    SciTech Connect (OSTI)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  9. Green Power Marketing in the United States. A Status Report ...

    Office of Scientific and Technical Information (OSTI)

    Subject: renewable energy certificates; RECs; energy consumers; electricity; green power marketing; green pricing; renewable energy; electricity markets; utilities; greenhouse gas ...

  10. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema (OSTI)

    Grossenbacher, John

    2013-05-28

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  11. INL Director Discusses the Future for Nuclear Energy in the United States

    SciTech Connect (OSTI)

    Grossenbacher, John

    2011-01-01

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  12. DOE Summit on Improving the Economics of America's Nuclear Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summit on Improving the Economics of America's Nuclear Power Plants DOE Summit on Improving the Economics of America's Nuclear Power Plants May 19, 2016 - 3:10pm Addthis 202-586-9680 DOE News WASHINGTON - Today, the Energy Department convened a summit on Improving the Economics of America's Nuclear Power Plants. Secretary Moniz, Members of Congress, stakeholders, and experts discussed potential solutions to address the unique challenges facing the nuclear industry in the

  13. United States and South Africa Sign Agreement on Cooperation in Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research and Development | Department of Energy South Africa Sign Agreement on Cooperation in Nuclear Energy Research and Development United States and South Africa Sign Agreement on Cooperation in Nuclear Energy Research and Development September 16, 2009 - 12:00am Addthis Vienna, Austria - U.S. Secretary of Energy Steven Chu and South African Minister of Energy Dipuo Peters signed a bilateral Agreement on Cooperation in Research and Development of Nuclear Energy on September 14 in

  14. DOE - Office of Legacy Management -- United Nuclear Corp - MO 0-03

    Office of Legacy Management (LM)

    Nuclear Corp - MO 0-03 FUSRAP Considered Sites Site: UNITED NUCLEAR CORP. (MO.0-03) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Mallinckrodt Chemical Works Mallinckrodt Nuclear Corporation MO.0-03-1 MO.0-03-2 Location: Hematite , Missouri MO.0-03-1 Evaluation Year: Circa 1987 MO.0-03-3 Site Operations: Commercial fuel fabrication operation. Licensed to reclaim unirradiated enriched uranium from scrap generated in fuel fabrication and fuel

  15. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect (OSTI)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  16. Early Site Permit Demonstration Program: Nuclear Power Plant Siting Database

    Energy Science and Technology Software Center (OSTI)

    1994-01-28

    This database is a repository of comprehensive licensing and technical reviews of siting regulatory processes and acceptance criteria for advanced light water reactor (ALWR) nuclear power plants. The program is designed to be used by applicants for an early site permit or combined construction permit/operating license (10CFRR522, Subparts A and C) as input for the development of the application. The database is a complete, menu-driven, self-contained package that can search and sort the supplied datamore » by topic, keyword, or other input. The software is designed for operation on IBM compatible computers with DOS.« less

  17. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  18. Surveys of organizational culture and safety culture in nuclear power

    SciTech Connect (OSTI)

    Brown, Walter S.

    2000-07-30

    The results of a survey of organizational culture at a nuclear power plant are summarized and compared with those of a similar survey which has been described in the literature on ''high-reliability organizations''. A general-purpose cultural inventory showed a profile of organizational style similar to that reported in the literature; the factor structure for the styles was also similar to that of the plant previously described. A specialized scale designed to measure ''safety culture'' did not distinguished among groups within the organization that would be expected to differ.

  19. Advanced maintenance, inspection & repair technology for nuclear power plants

    SciTech Connect (OSTI)

    Hinton, B.M.

    1994-12-31

    Maintenance, inspection, and repair technology for nuclear power plants is outlined. The following topics are discussed: technology for reactor systems, reactor refueling bridge, fuel inspection system, fuel shuffling software, fuel reconstitution, CEA/RCCA/CRA inspection, vessel inspection capabilities, CRDM inspection and repair, reactor internals inspection and repair, stud tensioning system, stud/nut cleaning system, EDM machining technology, MI Cable systems, core exit T/C nozzle assemblies, technology for steam generators, genesis manipulator systems, ECT, UT penetrant inspections, steam generator repair and cleaning systems, technology for balance of plant, heat exchangers, piping and weld inspections, and turbogenerators.

  20. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, James G.

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  1. A Study on Cost Allocation in Nuclear Power Coupled with Desalination

    SciTech Connect (OSTI)

    Lee, ManKi; Kim, SeungSu; Moon, KeeHwan; Lim, ChaeYoung

    2004-07-01

    As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. The total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)

  2. Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant

    SciTech Connect (OSTI)

    Meijing Wu; Guozhang Shen

    2006-07-01

    The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

  3. Handbook of nuclear power plant seismic fragilities, Seismic Safety Margins Research Program

    SciTech Connect (OSTI)

    Cover, L.E.; Bohn, M.P.; Campbell, R.D.; Wesley, D.A.

    1983-12-01

    The Seismic Safety Margins Research Program (SSMRP) has a gola to develop a complete fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-induced radioactive release from a commercial nuclear power plant. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor were made. These calculations required a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most would be usable for other sites as well.

  4. Managing aging in nuclear power plants: Insights from NRC`s Maintenance Team Inspection reports

    SciTech Connect (OSTI)

    Fresco, A.; Subudhi, M.

    1992-12-31

    A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of sixty-seven of the reports issued on these in-depth team inspections have been reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant structures, systems, and components (SSCs). Relevant information has been extracted from these inspection reports sorted into several categories; including Specific Aging Insights, Preventive Maintenance, Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified.

  5. Managing aging in nuclear power plants: Insights from NRC's Maintenance Team Inspection reports

    SciTech Connect (OSTI)

    Fresco, A.; Subudhi, M.

    1992-01-01

    A plant's maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of sixty-seven of the reports issued on these in-depth team inspections have been reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant structures, systems, and components (SSCs). Relevant information has been extracted from these inspection reports sorted into several categories; including Specific Aging Insights, Preventive Maintenance, Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified.

  6. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  7. Chapter 4: Advancing Clean Electric Power Technologies | Hybrid Nuclear-Renewable Energy Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hybrid Nuclear-Renewable Energy Systems Chapter 4: Technology Assessments Introduction and Background This Technology Assessment summarizes the current state of knowledge of nuclear-renewable hybrid

  8. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect (OSTI)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  9. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    SciTech Connect (OSTI)

    Cooke, Conrad; Spann, Holger

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to

  10. A preliminary design and BOP cost analysis of M-C Power`s MCFC commerical unit

    SciTech Connect (OSTI)

    Chen, T.P.

    1996-12-31

    M-C Power Corporation plans to introduce its molten carbonate fuel cell (MCFC) market entry unit in the year 2000 for distributed and on-site power generation. Extensive efforts have been made to analyze the cell stack manufacturing costs. The major objective of this study is to conduct a detailed analysis of BOP costs based on an initial design of the market entry unit.

  11. Supporting Our Nation's Nuclear Industry

    ScienceCinema (OSTI)

    Lyons, Peter

    2013-05-29

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  12. Green Power Marketing in the United States: A Status Report (2009 Data)

    SciTech Connect (OSTI)

    Bird, L.; Sumner, J.

    2010-09-01

    This report documents green power marketing activities and trends in the United States. First, aggregate green power sales data for all voluntary purchase markets across the United States are presented. Next, we summarize data on utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. Finally, this is followed by a discussion of key market trends and issues. The data presented in this report are based primarily on figures provided to NREL by utilities and independent renewable energy marketers.

  13. Green Power Marketing in the United States. A Status Report (2009 Data)

    SciTech Connect (OSTI)

    Bird, Lori; Sumner, Jenny

    2010-09-01

    This report documents green power marketing activities and trends in the United States. First, aggregate green power sales data for all voluntary purchase markets across the United States are presented. Next, we summarize data on utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. Finally, this is followed by a discussion of key market trends and issues. The data presented in this report are based primarily on figures provided to NREL by utilities and independent renewable energy marketers.

  14. MAP: Concentrating Solar Power Across the United States | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Concentrating Solar Power Facilities and CSP Energy Potential Gradient Click icons to ... Trough or Fresnel Parabolic Dish Concentrating Solar Energy Potential (watt hoursmday) ...

  15. Wind Vision Chapter 2: Wind Power in the United States

    Broader source: Energy.gov (indexed) [DOE]

    ... development costs and power purchase agreement (PPA) terms. ... been rela- tively slow to enter the U.S. market features. ... http:www.ercot.comsearch results?...

  16. Guodian United Power Technology Co Ltd formerly Guodian Union...

    Open Energy Info (EERE)

    Beijing Municipality, China Zip: 100044 Sector: Wind energy Product: China-based wind turbine maker and daughter company of state-owned power generator China Guodian. References:...

  17. United States Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" ...onal",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 ...

  18. Green Power Marketing in the United States: A Status Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Date October 2008 Topic Financing, Incentive & Market Analysis Codes, Standards & Utility Policies Subprogram Soft Costs Author National Renewable Energy Laboratory Green Power ...

  19. Regulatory process for decommissioning nuclear power reactors. Final report

    SciTech Connect (OSTI)

    1998-03-01

    This report provides regulatory guidance for utilities consistent with the changes in the decommissioning rule, 10 CFR50.82 as revised in July 1996. The purpose of this report is to explain the new rule in the context of related industry experience and to provide practical guidance to licensees contemplating or implementing a shutdown. Because the regulatory process is still rapidly evolving, this report reflects only a current status of the acceptable methods and practices derived from a review of the current regulations, guidance documents and industry experience for decommissioning a nuclear power reactor. EPRI anticipates periodic updates of this document to incorporate various utility experiences with decommissioning, and also to reflect any regulatory changes. The report provides a summary of ongoing federal agency and industry activities and the regulatory requirements that are currently applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning action plan, providing industry experience and guidance for licensees considering or implementing permanent shutdown.

  20. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  1. NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE

    SciTech Connect (OSTI)

    Sherman, S

    2008-09-22

    A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

  2. The Use of Thorium within the Nuclear Power Industry - 13472

    SciTech Connect (OSTI)

    Miller, Keith

    2013-07-01

    Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ∼0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, from the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)

  3. BWR ATWS simulations for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect (OSTI)

    Dallman, R.J.

    1984-01-01

    Under auspices of the US Nuclear Regulatory Commission, simulations of anticipated transients without scram (ATWS) in a boiling water reactor are being performed. A methodology has been developed to study the ATWS, and deterministic analyses have been conducted. Results are presented for one of the most probable (albeit hypothetical) sequences leading to core and containment damage. Areas presenting calculational uncertainties are identified, and requirements for their resolution are proposed.

  4. Inventory of Electric Utility Power Plants in the United States

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

  5. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  6. Green Power Marketing in the United States. A Status Report (Tenth Edition)

    SciTech Connect (OSTI)

    Bird, Lori; Dagher, Leila; Swezey, Blair

    2007-12-01

    This report documents green power marketing activities and trends in the United States, focusing on consumer decisions to purchase electricity supplied from renewable energy sources and how this choice represents a powerful market support mechanism for renewable energy development. The report presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets, on green power marketing activity in competitive electricity markets, and green power sold to voluntary purchasers in the form of renewable energy certificates. It also includes a discussion of key market trends and issues.

  7. Aging assessment of surge protective devices in nuclear power plants

    SciTech Connect (OSTI)

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters.

  8. Nuclear power and the allocation of emissions allowances: a new hampshire case study

    SciTech Connect (OSTI)

    Space, William

    2007-04-15

    The Regional Greenhouse Gas Initiative's model rule allows states to allocate carbon allowances to nuclear power plants. New Hampshire's 2003 decision to include nuclear uprates in its NO{sub x} allocations represents a relevant precedent. (author)

  9. United States Showcases Nuclear Emergency Response Capabilities | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Speed at 90 m 10-JAN-2011 1.1.1 Wind Speed at 90 m m/s 11.5 - 12.0 11.0 - 11.5 10.5 - 11.0 10.0 - 10.5 9.5 - 10.0 9.0 - 9.5 8.5 - 9.0 8.0 - 8.5 7.5 - 8.0 7.0 - 7.5 6.5 - 7.0 6.0 - 6.5 0.0 - 6.0 mph 25.7 - 26.8 24.6 - 25.7 23.5 - 24.6 22.4 - 23.5 21.3 - 22.4 20.1 - 21.3 19.0 - 20.1 17.9 - 19.0 16.8 - 17.9 15.7 - 16.8 14.5 - 15.7 13.4 - 14.5 0.0 - 13.4 Nuclear Security Administration | (NNSA)

    Showcases Nuclear Emergency Response Capabilities October 17, 2008 AVILA, Spain -

  10. Los Alamos turns its nuclear weapons power to war on cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory is manufacturing a radioactive treatment that targets tumors, without killing the surrounding healthy tissue. December 20, 2015 Los Alamos physicist Eva Birnbaum Los Alamos physicist Eva Birnbaum Los Alamos turns its nuclear weapons power to war on cancer NBC News got exclusive access to Los Alamos National Laboratory

  11. DOE - Office of Legacy Management -- Hallam Nuclear Power Facility - NE 01

    Office of Legacy Management (LM)

    Hallam Nuclear Power Facility - NE 01 FUSRAP Considered Sites Site: Hallam Nuclear Power Facility (NE.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Hallam, Nebraska, Decommissioned Reactor Site Documents Related to Hallam Nuclear Power Facility U.S. Department of Energy 2009 Annual Inspection - Hallam, Nebraska June 2009 Page 1

  12. Wind Vision: A New Era for Wind Power in the United States | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a

  13. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect (OSTI)

    Sheng, Jiawei [Kyoto University (Japan); Choi, Kwansik [Nuclear Environment Technology Institute (Korea, Republic of); Yang, Kyung-Hwa [Nuclear Environment Technology Institute (Korea, Republic of); Lee, Myung-Chan [Nuclear Environment Technology Institute (Korea, Republic of); Song, Myung-Jae [Nuclear Environment Technology Institute (Korea, Republic of)

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  14. Aging management guideline for commercial nuclear power plants-pumps

    SciTech Connect (OSTI)

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D.

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  15. Prognostics and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect (OSTI)

    Leonard J. Bond; Pradeep Ramuhalli; Magdy S. Tawfik; Nancy J. Lybeck

    2011-06-01

    Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and periodic in service inspection (ISI) for passive systems: there is growing interest in deploying on-line monitoring. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to and prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

  16. Fitness for duty in the nuclear power industry

    SciTech Connect (OSTI)

    Durbin, N.; Moore, C.; Grant, T.; Fleming, T.; Hunt, P.; Martin, R.; Murphy, S.; Hauth, J.; Wilson, R.; Bittner, A.; Bramwell, A.; Macaulay, J.; Olson, J.; Terrill, E.; Toquam, J. )

    1991-09-01

    This report presents an overview of the NRC licensees' implementation of the FFD program during the first full year of the program's operation and provides new information on a variety of FFD technical issues. The purpose of this document is to contribute to appropriate changes to the rule, to the inspection process, and to other NRC activities. It describes the characteristics of licensee programs, discusses the results of NRC inspections, updates technical information covered in previous reports, and identifies lessons learned during the first year. Overall, the experience of the first full year of licensees' FFD program operations indicates that licensees have functioning fitness for duty programs devoted to the NRC rule's performance objectives of achieving drug-free workplaces in which nuclear power plant personnel are not impaired as they perform their duties. 96 refs., 14 tabs.

  17. Analysis of Nuclear Power Plant Operating Costs: A 1995 Update, An

    Reports and Publications (EIA)

    1995-01-01

    This report provides an analysis of nuclear power plant operating costs. The Energy Information Administration published three reports on this subject during the period 1988-1995.

  18. EISPC White Paper on “State Approaches to Retention of Nuclear Power Plants” Now Available

    Broader source: Energy.gov [DOE]

    The Eastern Interconnection States’ Planning Collaborative (EISPC) has released a white paper on “State Approaches to Retention of Nuclear Power Plants” that examines operational, economic, and...

  19. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. – Energy Deputy Secretary Daniel Poneman spoke at the Tokyo American Center today about nuclear power after Fukushima.

  20. "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Saturday MBG Auditorium "Is There a Future for Nuclear Power After Fukushima?", Dr. ... For the safety of staff and visitors, PPPL security officers retain the right to ...

  1. Small Modular Reactors- Key to Future Nuclear Power Generation in the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Small Modular Reactors - Key to Future Nuclear Power Generation in the U.S. University of Chicago, Energy Policy Institute at Chicago

  2. Nuclear Navy United States Atomic Energy Commission Historical Advisory

    Energy Savers [EERE]

    Department of Energy In accordance with DOE Order No. 202-05-03 Pepco is required to provide notification of any and all 230kV planned outages at Potomac River Generating Station. On Tuesday February 20, 2007 Potomac Electric Power Company (Pepco) will be taking a planned outage on the 23106 high voltage circuit between the Palmer's Corner Substation and the Potomac River Generating Station. Notification of Planned 230kV Outage at Potomac River Generating Station (13.36 KB) More Documents

  3. Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuel Qualification Program | Department of Energy Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine Nuclear Fuel Qualification Program Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine Nuclear Fuel Qualification Program April 9, 2010 - 12:11pm Addthis KYIV, UKRAINE - Officials from the U.S. Department of Energy's (DOE) Office of Nuclear Energy today (April 8, 2010) participated in a ceremony in Ukraine to mark the insertion of

  4. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to

  5. Microsoft PowerPoint - NRC Nuclear Export Controls Implementing...

    National Nuclear Security Administration (NNSA)

    Legal Basis * Atomic Energy Act of 1954, as amended * Nuclear Non-Proliferation Act of 1978 * Treaties, Conventions and Agreements including: - Nuclear Non-Proliferation Treaty - ...

  6. Nuclear Regulatory Commission Handling of Beyond Design Basis Events for Nuclear Power Reactors

    Broader source: Energy.gov [DOE]

    Presenter: Bill Reckley, Chief, Policy and Support Branch, Japan Lessons-Learned Project Directorate, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission US Nuclear Regulatory Commission

  7. Interaction of science and diplomacy: Latin American, the United States and nuclear energy, 1945-1955

    SciTech Connect (OSTI)

    Cabral, R.

    1986-01-01

    Nuclear programs in Argentina and Brazil can be traced to August 1945 when their scientific communities articulated responses to the atomic bombings of Japan. They culminated in attempts to develop independent nuclear programs, sharply opposed by the United States, during the nationalist governments of Juan Peron and Getulio Vargas. This dissertation, based on primary sources from the three nations, analyzes these programs and the American responses. Latin America entered the nuclear age attempting to control natural resources, to improve scientific establishments, and to appraise Latin American-United States relations. Despite some clear warnings about nuclear dangers, the new form of energy was seen as the solution to industrial problems, poverty, and outside political interference. International opposition, which may have included nuclear threats from the United States, blocked Argentina's first attempt in 1947. After 1948, Peron wanted a nuclear program for cheap energy and prestige. The qualifications of the Brazilian scientists gave more substance to their program. The program originated in August, 1945, but assumed national proportion with the government of Vargas in 1951. Lack of American cooperation forced Vargas to establish a secret program with Germany. American troops intervened taking over the German equipment already completed. The final collapse came about with Vargas' suicide in August, 1954.

  8. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  9. Microsoft PowerPoint - Australian Nuclear Cooperation Agreements_Vanessa Robertson [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Australian Nuclear Cooperation Agreements Dr Vanessa Robertson, Australian Safeguards and Non-Proliferation Office The Australian Safeguards and Non-Proliferation Office 2 Director General Assistant Secretary Bilateral Safeguards IAEA Safeguards Nuclear Security Non- Proliferation CTBT and Disarmament CWC Implementation Support Unit Bilateral Safeguards Section  Bilateral Safeguards Section is responsible for: - Development and implementation of bilateral nuclear cooperation agreements

  10. Establishing a value chain for human factors in nuclear power plantcontrol room modernization

    SciTech Connect (OSTI)

    Joe, Jeffrey Clark; Thomas, Kenneth David; Boring, Ronald Laurids

    2015-07-01

    Commercial nuclear power plants in the United States (U.S.) have operated reliably and efficiently for decades. With the life extensions of plants now being planned for operation beyond their original operating licenses, there are opportunities to achieve even greater efficiencies, while maintaining high operational reliabilities, with strategic, risk- and economically-informed, upgrades to plant systems and infrastructure. The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program supports the commercial nuclear industry’s modernization efforts through research and development (R&D) activities across many areas to help establish the technical and economic bases for modernization activities. The Advanced Instrumentation, Information, and Control Systems Technologies pathway is one R&D focus area for the LWRS program, and has researchers at Idaho National Laboratory working with select utility partners to use human factors and instrumentation and controls R&D to help modernize the plant’s main control room. However, some in the nuclear industry have not been as enthusiastic about using human factors R&D to inform life extension decision making. Part of the reason for this may stem from uncertainty decision-makers have regarding how human factors fits into the value chain for nuclear power plant control room modernization. This paper reviews past work that has attempted to demonstrate the value of human factors, and then describes the value chain concept, how it applies to control room modernization, and then makes a case for how and why human factors is an essential link in the modernization value chain.

  11. Forecasting the Growth of Green Power Markets in the United States

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Holt, E.; Swezey, B.

    2001-10-31

    In this report, we quantify the potential size and impact of the green power market in the United States, and identify features of the market that will most affect its ultimate growth trajectory.

  12. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  13. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    SciTech Connect (OSTI)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  14. The Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    SciTech Connect (OSTI)

    Steinberg, M.

    1983-02-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high energy (1 to 2 GeV) protons on a heavy metal target. The neutrons are absorbed in a surrounding natural uranium or thorium blanket in which fissile Pu-239 or U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high beam current continuous wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a selfsufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of the short-lived fission products external to the fuel cycle eliminates the need for long-term geological age storage of fission product waste.

  15. Nuclear Power Generation and Fuel Cycle Report 1996

    Reports and Publications (EIA)

    1996-01-01

    This report provides information and forecasts important to the domestic and world nuclear and uranium industries.

  16. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    and net generation, 2010 Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn ... "Annual Electric Generator Report," and Form EIA-923, "Power Plant Operations Report." ...

  17. Managing aging in nuclear power plants: Insights from NRC maintenance team inspection reports

    SciTech Connect (OSTI)

    Fresco, A.; Subudhi, M.; Gunther, W.; Grove, E.; Taylor, J.

    1993-12-01

    A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of 67 of the reports issued on these in-depth team inspections were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant systems, structures, and components. Relevant information was extracted from these inspection reports and sorted into several categories, including Specific Aging Insights, Preventive Maintenance, Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified. The information also was sorted according to systems and components, including: Auxiliary Feedwater, Main Feedwater, High Pressure Injection for both BWRs and PWRs, Service Water, Instrument Air, and Emergency Diesel Generator Air Start Systems, and Emergency Diesel Generators Air Start Systems, emergency diesel generators, electrical components such as switchgear, breakers, relays, and motor control centers, motor operated valves and check valves. This information was compared to insights gained from the Nuclear Plant Aging Research (NPAR) Program. Attributes of plant maintenance programs where the NRC inspectors felt that improvement was needed to properly address the aging issue also are discussed.

  18. Challenges in Determining the Isotopic Mixture for the Fukushima Daiichi Nuclear Power Plant

    SciTech Connect (OSTI)

    Shanks, Arthur; Fournier, Sean; Shanks, Sonoya

    2012-05-01

    As part of the United States response to the Fukushima Daiichi Nuclear Power Plant emergency, the National Nuclear Security Administration (NNSA) Consequence Management (CM) Teams were activated with elements deploying to Japan. The NNSA CM teams faced the urgent need for information regarding the potential radiological doses that citizens of might experience. This paper discusses the challenges and lessons learned associated with the analysis of field collected samples and gamma spectra in an attempt to determine the isotopic mixture present on the ground around the Plant. There were several interesting and surprising lessons to be learned from the sample analysis portion of the response. The paper discusses several elements of the response that were unique to the event occurring in Japan, as well as several elements that would have occurred in a U.S. nuclear reactor event. Sections of this paper address details of the specific analytical challenges faced during the efforts to analyze samples and try to understand the overall release source term.

  19. United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Ernest Moniz and Director General of the Russian Federation State Corporation “Rosatom” Sergey Kirienko today signed the Agreement between the Government of the United States of America and the Government of the Russian Federation on Cooperation in Nuclear- and Energy-Related Scientific Research and Development

  20. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect (OSTI)

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  1. Safety of nuclear power reactors in the former Eastern European Countries

    SciTech Connect (OSTI)

    Chakraborty, S.

    1995-10-01

    This article discusses the safety of nuclear power plants in the former Eastern European countries (including the former Soviet Union). The current international design, fabrication, construction, operation, safety, regulatory standards and practices, and ways to resolve plant problems are addressed in light of experience with the Western nuclear power development programs.

  2. Proposal for broader United States-Russian transparency of nuclear arms reductions

    SciTech Connect (OSTI)

    Percival, C.M.; Ingle, T.H.; Bieniawski, A.J.

    1995-07-01

    During the January 1994 Summit Presidents Clinton and Yeltsin agreed on the goal of ensuring the ``transparency and irreversibility`` of the nuclear arms reduction process. As a result, negotiations are presently underway between the United States Government and the Russian Federation to confirm the stockpiles of plutonium and highly enriched uranium removed from nuclear weapons. In December 1994 the United States presented a paper to the Russian Federation proposing additional measures to provide broader transparency of nuclear arms reduction. The US Department of Energy is studying the implementation of these broader transparency measures at appropriate DOE facilities. The results of the studies include draft protocols for implementation, assessments of the implementation procedures and the impacts on the facilities and estimates of the cost to implement these measures at various facilities.

  3. Generic implications of ATWS events at the Salem Nuclear Power Plant: generic implications. Vol. 1

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This report is the first of two volumes. It documents the work of an interoffice, interdisciplinary NRC Task Force established to determine the generic implications of two anticipated transients without scram (ATWS) at the Salem Nuclear Power Plant, Unit 1 on February 22 and 25, 1983. A second report will document the NRC actions to be taken based on the work of the Task Force. The Task Force was established to address three questions: (1) Is there a need for prompt action for similar equipment in other facilities. (2) Are NRC and its licensees learning the sefety-management lessons, and, (3) How should the priority and content of the ATWS rule be adjusted. A number of short-term actions were taken through Bulletins and an Information Notice. Intermediate-term actions to address the generic issues will be addressed in the separate report and implemented through appropriate regulatory mechanisms.

  4. Some social and economic problems, tasks and purposes of nuclear power in Russia

    SciTech Connect (OSTI)

    Adamov, E.O.; Bryunin, S.V.; Orlov, V.V.

    1996-08-01

    The complicated economic situation in Russia in power generation is manifested in a low efficiency of power utilization and in reduction of its generation and mining of energy resources. Primary energy production per capita in Russia is approximately 50% higher than on the average for Western Europe and approximately the same amount of electric power is generated. But per unit value of gross domestic product (GDP) its consumption is 3.0 and 2.7 times higher, respectively. Amount of diverse pollutants release to the atmosphere per GDP unit value is about 3.0 times higher. Restructuring of Russian economy and modernization of its power generation, which is also a matter of international community concern, will improve these indices, though it will require a lot of time and expenses. A number of aspects should be emphasized: (1) energy policy is to be considered in the context of general economic situation, as well as a key element for solving long-term social problems and base of Russia integration into the world economy; (2) comparatively large resources of fossil fuel are to be considered as national wealth and, strategically, reduction of their consumption for energy generation and export purposes should be envisaged; (3) reactor technologies, that do not rule out potentiality of recurrence of the gravest accidents (reactivity type accidents and the ones involving loss of coolant), can not be put at the foundation of large-scale NP; (4) conditions of nonproliferation that are in use now failed to prevent nuclear weapons propagation to new states and should be replaced by more effective ones; (5) for a country, where NP share in fuel and energy balance is slightly above 3%, not solely evolutionary course of development is feasible; (6) expanding scale of high-level wastes disposal is unacceptable in principle; (7) radical solution of growing ecological problems all over the world, including global warming of climate, is unthinkable without NP development.

  5. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    SciTech Connect (OSTI)

    Greene, Sherrell R; Flanagan, George F; Borole, Abhijeet P

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  6. The Future Potential of Waver Power in the United States

    SciTech Connect (OSTI)

    Mirko Previsic; Jeff Epler; Maureen Hand; Donna Heimiller; Walter Short; Kelly Eurek

    2012-09-20

    The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the United States, is located close to coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As a renewable electricity generation technology, ocean wave energy offers a low air pollutant option for diversifying the U.S. electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses the following: (1) The theoretical, technical and practical potential for electricity generation from wave energy (2) The present lifecycle cost profile (Capex, Opex, and Cost of Electricity) of wave energy conversion technology at a reference site in Northern California at different plant scales (3) Cost of electricity variations as a function of deployment site, considering technical, geo-spatial and and electric grid constraints (4) Technology cost reduction pathways (5) Cost reduction targets at which the technology will see significant deployment within US markets, explored through a series of deployment scenarios RE Vision Consulting, LLC (RE Vision), engaged in various analyses to establish current and future cost profiles for marine hydrokinetic (MHK) technologies, quantified the theoretical, technical and practical resource potential, performed electricity market assessments and developed deployment scenarios. RE Vision was supported in this effort by NREL analysts, who compiled resource information, performed analysis using the ReEDSa model to develop deployment scenarios, and developed a simplified assessment of the Alaska and Hawaii electricity markets.

  7. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  8. Expert systems applied to two problems in nuclear power plants

    SciTech Connect (OSTI)

    Kim, K.Y.

    1988-01-01

    This dissertation describes two prototype expert systems applied to two problems in nuclear power plants. One problem is spare parts inventory control, and the other one is radionuclide release from containment during severe accident. The expert system for spare parts inventory control can handle spare parts requirements not only in corrective, preventive, or predictive maintenance, but also when failure rates of components or parts are updated by new data. Costs and benefits of spare parts inventory acquisition are evaluated with qualitative attributes such as spare part availability to provide the inventory manager with an improved basis for decision making. The expert system is implemented with Intelligence/Compiler on an IBM-AT. The other expert system for radionuclide release from containment can estimate magnitude, type, location, and time of release of radioactive materials from containment during a severe accident nearly on line, based on the actual measured physical parameters such as temperature and pressure inside the containment. The expert system has a function to check the validation of sensor data. The expert system is implemented with KEE on a Symbolics LISP machine.

  9. Assessment of ceramic composites for multimegawatt space nuclear power systems

    SciTech Connect (OSTI)

    Besmann, T.M.

    1986-12-01

    A calculational thermodynamic equilibrium analysis of the compatibility of ceramic-ceramic composites and a nonequilibrium assessment based on the literature of their use in proposed multimegawatt space nuclear power systems was performed. The five candidate composites included Al/sub 2/O/sub 3/-reinforced Al/sub 2/O/sub 3/, SiC-whisker-toughened Al/sub 2/O/sub 3/, SiC-whisker-toughened Si/sub 3/N/sub 4/, SiC-fiber-reinforced ZrC, and carbon-fiber-reinforced ZrC. The reactor concepts included Brayton cycle (continuous and burst mode) and Rankine cycle. It was determined that Al/sub 2/O/sub 3/-reinforced Al/sub 2/O/sub 3/ and carbon-fiber-reinforced ZrC are compatible in the Brayton-cycle continuous-mode system and that Al/sub 2/O/sub 3/-reinforced Al/sub 2/O/sub 3/, SiC-fiber-reinforced ZrC, and carbon-fiber-reinforced ZrC are compatible in the Rankine-cycle system. None of the candidate ceramic composite systems was likely to be sufficiently stable under Brayton-cycle burst-mode conditions.

  10. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas; Belles, Randy; Cetiner, Mustafa Sacit; Holcomb, David Eugene; Korsah, Kofi; Loebl, Andy; Mays, Gary T; Muhlheim, Michael David; Mullens, James Allen; Poore III, Willis P; Qualls, A L; Wilson, Thomas L; Waterman, Michael E.

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same

  11. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  12. Energy Department Nuclear Systems Are Powering Mars Rover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vogtle Advanced Nuclear Energy Project | Department of Energy Remaining $1.8 Billion in Loan Guarantees for Vogtle Advanced Nuclear Energy Project Energy Department Issues Remaining $1.8 Billion in Loan Guarantees for Vogtle Advanced Nuclear Energy Project June 24, 2015 - 9:20am Addthis NEWS MEDIA CONTACT (202) 586-4940 To further support the construction of two advanced nuclear reactors at the Alvin W. Vogtle Electric Generating Plant, the Department of Energy announced today it will issue

  13. Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the Middle East

    SciTech Connect (OSTI)

    Windsor, Lindsay K.; Kessler, Carol E.

    2007-09-11

    An exceptional number of Middle Eastern and North African nations have recently expressed interest in developing nuclear energy for peaceful purposes. Many of these countries have explored nuclear research in limited ways in the past, but the current focused interest and application of resources towards developing nuclear-generated electricity and nuclear-powered desalination plants is unprecedented. Consequently, questions arise in response to this emerging trend: What instigated this interest? To what end(s) will a nuclear program be applied? Does the country have adequate technical, political, legislative, nonproliferation, and safety infrastructure required for the capability desired? If so, what are the next steps for a country in preparation for a future nuclear program? And if not, what collaboration efforts are possible with the United States or others? This report provides information on the capabilities and interests of 13 countries in the region in nuclear energy programs in light of safety, nonproliferation and security concerns. It also provides information useful for determining potential for offering technical collaboration, financial aid, and/or political support.

  14. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    SciTech Connect (OSTI)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as `endangered` when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A `threatened` classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals.

  15. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    SciTech Connect (OSTI)

    Mahadevan, Sankaran; Cai, Guowei; Agarwal, Vivek

    2015-03-01

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoring of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these

  16. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect (OSTI)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  17. Energy Department Nuclear Systems Are Powering Mars Rover | Department...

    Broader source: Energy.gov (indexed) [DOE]

    It's powered by the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Photo courtesy of NASAJPL-Caltech. Powering Curiosity: Multi-Mission Radioisotope Thermoelectric ...

  18. Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared...

    Energy Savers [EERE]

    Tom Fanning, President of Southern Company Paul Bowers, President and Chief Executive Officer of Georgia Power Tom Smith, Chief Executive Officer of Oglethorpe Power Bob Johnston, ...

  19. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  20. Green Power Marketing in the United States: A Status Report, Sixth Edition

    SciTech Connect (OSTI)

    Bird, L.; Swezey, B.

    2003-10-01

    Voluntary consumer decisions to purchase electricity supplied from renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering''green power'' options to their customers. Since then, these products have become more prevalent both from utilities and in states that have introduced competition into their retail electricity markets. Today, nearly 50% of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. Currently, more than 350 investor-owned utilities, rural electric cooperatives, and other publicly owned utilities in 33 states offer green power programs. This report provides an overview of green power marketing activity in the United States. It describes green power product offerings, consumer response, and recent industry trends. The three distinct markets for green power are discussed in turn.

  1. Microsoft PowerPoint - Australian Nuclear Cooperation Agreements...

    National Nuclear Security Administration (NNSA)

    Australian Nuclear Cooperation Agreements Dr Vanessa Robertson, Australian Safeguards and Non-Proliferation Office The Australian Safeguards and Non-Proliferation Office 2 Director ...

  2. Nuclear Power Generation and Fuel Cycle Report 1997

    Reports and Publications (EIA)

    1997-01-01

    Final issue. This report provides information and forecasts important to the domestic and world nuclear and uranium industries. 1997 represents the most recent publication year.

  3. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  4. Statement from Deputy Secretary of Energy Elizabeth Sherwood-Randall after Visiting the Fukushima Dai-ichi Nuclear Power Station

    Broader source: Energy.gov [DOE]

    Deputy Secretary Elizabeth Sherwood-Randall's statement after visiting the Fukushima Dai-ichi Nuclear Power Station in Japan

  5. Prognostics Health Management and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Coble, Jamie B.; Meyer, Ryan M.; Bond, Leonard J.

    2013-12-01

    There is growing interest in longer-term operation of the current US nuclear power plant fleet. This paper will present an overview of prognostic health management (PHM) technologies that could play a role in the safe and effective operation of nuclear power plants during extended life. A case study in prognostics for materials degradation assessment, using laboratory-scale measurements, is briefly discussed, and technical gaps that need to be addressed prior to PHM system deployment for nuclear power life extension are presented.

  6. Security by Design in the United States: Fact Sheet | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Security by Design in the United States: Fact Sheet March 23, 2012 Since the events of September 11, 2001, security requirements for nuclear facilities have increased primarily due to changes in the Design Basis Threat against which planned facilities are designed and existing physical security systems are tested. As a result, security costs and operational impacts have increased significantly because facilities originally were not designed with intrinsic

  7. Company, for the United States Department of Energy's National Nuclear Security

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Small Business Advocate Sandia National Laboratories 24 th Annual Briefing for Industry 2010 August 18, 2010 Small Business Utilization Department Small Business Program Don Devoti, Manager Small Business Utilization Sandia is a multiprogram laboratory operated by Sandia Corporation, a

  8. The network architecture and site test of DCIS in Lungmen nuclear power station

    SciTech Connect (OSTI)

    Lee, C. K.

    2006-07-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  9. Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station

    SciTech Connect (OSTI)

    Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro

    2013-07-01

    For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

  10. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations.

  11. Inventory of power plants in the United States as of January 1, 1998

    SciTech Connect (OSTI)

    1998-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1998. The publication also provides a 10-year outlook for generating unit additions and generating unit changes. This report is prepared annually by the Energy Information Administration (EIA). Data summarized in this report are useful to a wide audience. This is a report of electric utility data; in cases where summary data or nonconfidential data of nonutilities are presented, it is specifically noted as nonutility data. 19 figs., 36 tabs.

  12. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  13. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    SciTech Connect (OSTI)

    Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

    2012-08-01

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities

  14. Probabilistic methods in seismic risk assessment for nuclear power plants: proceedings

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    The state-of-the-art in seismic risk analysis applied to the design and siting of nuclear power plants was addressed in this meeting. Presentations were entered individually into the date base. (ACR)

  15. Prospects for Nuclear Power(Davis 2012) | OpenEI Community

    Open Energy Info (EERE)

    Prospects for Nuclear Power(Davis 2012) Home > Groups > Energy Systems Integration Qinsun's picture Submitted by Qinsun(35) Member 15 November, 2012 - 13:36 This paper analyzed the...

  16. Coupling Ocean Thermal Energy Conversion technology (OTEC) with nuclear power plants

    SciTech Connect (OSTI)

    Goldstein, M.K.; Rezachek, D.; Chen, C.S.

    1981-01-01

    The prospects of utilizing an OTEC Related Bottoming Cycle to recover waste heat generated by a large nuclear (or fossil) power plant are examined. With such improvements, OTEC can become a major energy contributor. 12 refs.

  17. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  18. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  19. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  20. Phasor Measurement Units

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phasor Measurement Units - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced