Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

2

Illinois Nuclear Profile - Clinton Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

3

Bryan Balkenbush Fukushima Daiichi Nuclear Power Station `Issue'  

E-Print Network [OSTI]

Bryan Balkenbush Fukushima Daiichi Nuclear Power Station `Issue' Map: Timeline: March 11th, sparking a tsunami March 14th : Explosion reported by second nuclear reactor, authorities scramble to cool reactors to avoid full nuclear meltdown March 15th : A second explosion occurs in reactor 4. Radiation

Toohey, Darin W.

4

Enhancement of NRC station blackout requirements for nuclear power plants  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

McConnell, M. W. [United States Nuclear Regulatory Commission, Mail Stop: 012-H2, Washington, DC 20555 (United States)

2012-07-01T23:59:59.000Z

5

Extra-terrestrial nuclear power stations : transportation and operation  

E-Print Network [OSTI]

Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples ...

Kane, Susan Christine

2005-01-01T23:59:59.000Z

6

Regulatory practices in India for establishing nuclear power stations  

SciTech Connect (OSTI)

The Atomic Energy Regulatory Board (AERB) of India was established as an independent regulatory authority charged with regulating radiation protection and nuclear safety. This article reviews the current state of India`s nuclear power reactor program and discusses the makeup of functions of the AERB, including the preparation of issuance of safety codes, guides, and other standards, with special recent emphasis on pressurized-heavy-water reactors (PHWRs). The AERB`s relationship to nuclear plant owners is discussed, as are the inspection and control functions the AERB performs, both for the construction and operation of nuclear plants and the licensing of operating personnel. 8 refs., 2 figs.

De, A.K. [Atomic Energy Regulatory Board, Calcutta (India); Singh, S.P. [Atomic Energy Regulatory Board, Bombay (India)

1991-07-01T23:59:59.000Z

7

Qualification of Class 1E static battery charges and inverters for nuclear power generating stations  

SciTech Connect (OSTI)

This standard describes methods for qualifying static battery chargers and inverters for Class 1E installations in environmentally controlled areas outside containment in nuclear power generating stations. The purpose of this standard is to provide specific procedures to meet the requirements of IEEE Std. 323-1974.

Not Available

1981-01-01T23:59:59.000Z

8

Pilgrim Nuclear Power Station Docket No. 50-293 License No. DPR-35 Pilgrim Nuclear Power Station (PNPS) License Renewal Application  

E-Print Network [OSTI]

information that supplemented the LRA as a result of operating experience (OE) and industry activities potentially relevant to aging management in several specific areas. This letter provides further clarification of that supplemental information to the LRA specific to the following areas which Entergy agreed to evaluate based upon communications with the NRC technical staff. 1. Aging management of neutron-absorbing materialsEntergy Nuclear Operations, Inc. Letter Number: 2.11.017 Pilgrim Nuclear Power Station Page 2 2. Inspection of buried pipe and tanks 3. Aging management of low voltage cables 4. Inspection of containment coatings 5. Metal fatigue NUREG/CR-6260 A new regulatory commitment is provided in the PNPS License Renewal Commitment List as

Stephen J. Bethay

2011-01-01T23:59:59.000Z

9

The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations  

SciTech Connect (OSTI)

This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States)] [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States)] [MOS, Inc., Melville, NY (United States)

1994-01-01T23:59:59.000Z

10

IEEE Standard for qualification of Class 1E lead storage batteries for nuclear power generating stations  

SciTech Connect (OSTI)

This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1979 and IEEE Std 308-1978, can be demonstrated by using the procedures provided in this Standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other types batteries are beyond the scope of this Standard.

Not Available

1980-01-01T23:59:59.000Z

11

The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation  

SciTech Connect (OSTI)

Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

2012-07-01T23:59:59.000Z

12

Thermal Modeling of NUHOMS HSM-15 and HSM-1 Storage Modules at Calvert Cliffs Nuclear Power Station ISFSI  

SciTech Connect (OSTI)

As part of the Used Fuel Disposition Campaign of the Department of Energy (DOE), visual inspections and temperature measurements were performed on two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI). Detailed thermal models models were developed to obtain realistic temperature predictions for actual storage systems, in contrast to conservative and bounding design basis calculations.

Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.; Cuta, Judith M.; Collins, Brian A.; Siciliano, Edward R.

2012-10-01T23:59:59.000Z

13

Evaluation of station blackout accidents at nuclear power plants: Technical findings related to unresolved safety issue A-44: Final report  

SciTech Connect (OSTI)

''Station Blackout,'' which is the complete loss of alternating current (AC) electrical power in a nuclear power plant, has been designated as Unresolved Safety Issue A-44. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on AC power, the consequences of a station blackout could be severe. This report documents the findings of technical studies performed as part of the program to resolve this issue. The important factors analyzed include: the fequency of loss of offsite power; the probability that emergency or onsite AC power supplies would be unavailable; the capability and reliability of decay heat removal systems independent of AC power; and the likelihood that offsite power would be restored before systems that cannot operate for extended periods without AC power fail, thus resulting in core damage. This report also addresses effects of different designs, locations, and operational features on the estimated frequency of core damage resulting from station blackout events.

Not Available

1988-06-01T23:59:59.000Z

14

Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230  

SciTech Connect (OSTI)

Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle Plates to the Baffle Former Plates. The FaST is designed to remove the Baffle Former Plates from the Core Barrel. The VRS further volume reduces segmented components using multiple configurations of the 38i and horizontal reciprocating saws. After the successful removal and volume reduction of the Internals, the RV will be segmented using a 'First in the US' thermal cutting process through a co-operative effort with Siempelkamp NIS Ingenieurgesellschaft mbH using their experience at the Stade NPP and Karlsruhe in Germany. SNS mobilized in the fall of 2011 to commence execution of the project in order to complete the RVI segmentation, removal and packaging activities for the first unit (Unit 2) by end of the 2012/beginning 2013 and then mobilize to the second unit, Unit 1. Parallel to the completion of the segmentation of the reactor vessel internals at Unit 1, SNS will segment the Unit 2 pressure vessel and at completion move to Unit 1. (authors)

Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)] [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

2013-07-01T23:59:59.000Z

15

Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station  

SciTech Connect (OSTI)

For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro [Japan Atomic Energy Agency 4-33 Muramatsu, Tokaimura, Nakagun, Ibaraki 319-1194 (Japan)

2013-07-01T23:59:59.000Z

16

The Decline and Death of Nuclear Power  

E-Print Network [OSTI]

Y. , & Kitazawa, K. (2012). Fukushima in review: A complexin new nuclear power stations after Fukushima. The Guardian.nuclear-power- stations-fukushima Hvistendahl, M. (2007,

Melville, Jonathan

2013-01-01T23:59:59.000Z

17

Underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents [OSTI]

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

Hampel, Viktor E. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

18

An underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents [OSTI]

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

Hampel, V.E.

1988-05-17T23:59:59.000Z

19

Application of a 2-D particle tracking model to simulate entrainment of winter flounder larvae at the Millstone Nuclear Power Station  

E-Print Network [OSTI]

A 2-D random walk model, developed by Dimou (1989) as part of this research project, was used to simulate entrainment at the Millstone Nuclear Power Station of winter flounder larvae hatched within Niantic River.

Dimou, Nadia K.

1989-01-01T23:59:59.000Z

20

A radiological assessment of nuclear power and propulsion operations near Space Station Freedom. Contract report, January 1988-January 1990  

SciTech Connect (OSTI)

Scenarios were identified which involve the use of nuclear power systems in the vicinity of Space Station Freedom (SSF) and their radiological impact on the SSF crew was quantified. Several of the developed scenarios relate to the use of SSF as an evolutionary transportation node for lunar and Mars missions. In particular, radiation doses delivered to SSF crew were calculated for both the launch and subsequent return of a Nuclear Electric Propulsion (NEP) cargo vehicle and a Nuclear Thermal Rocket (NTR) personnel vehicle to low earth orbit. The use of nuclear power on co-orbiting platforms and the storage and handling issues associated with radioisotope power systems were also explored as they relate to SSF. A central philosophy in these analyses was the utilization of a radiation dose budget, defined as the difference between recommended dose limits from all radiation sources and estimated doses received by crew members from natural space radiations. Consequently, for each scenario examined, the dose budget concept was used to identify and quantify constraints on operational parameters such as launch separation distances, returned vehicle parking distances, and reactor shutdown times prior to vehicle approach. The results indicate that realistic scenarios do not exist which would preclude the use of nuclear power sources in the vicinity of SSF. The radiation dose to the SSF crew can be maintained at safe levels solely by implementing proper and reasonable operating procedures.

Bolch, W.E.; Thomas, J.K.; Peddicord, K.L.; Nelson, P.; Marshall, D.T.; Busche, D.M.

1990-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Repowering of the Midland Nuclear Station  

E-Print Network [OSTI]

REPOWERING OF THE MIDLAND NUCLEAR STATION C.E. Gatlin Jr. Gerald C. Velleroer Janes A. Mooney Manager of Projects Fluor Daniel, IrK::. Vice President Fluor Daniel, IrK::. Vice President Midlarrl eogneneration Venture Chicago, Illinois... Chicago, Illinois Midland, Michigan The conversion of the Midland Nuclear Station to a combined cycle power facility is the first of its kind. The eXisting nuclear steam turbine, combined with new, natural-gas-fired gas turbines, will create...

Gatlin, C. E. Jr.; Vellender, G. C.; Mooney, J. A.

22

MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA  

SciTech Connect (OSTI)

This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors and hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.

GREENE,G.A.; GUPPY,J.G.

1998-08-01T23:59:59.000Z

23

The Decline and Death of Nuclear Power  

E-Print Network [OSTI]

The Economist (2012). Nuclear power: The 30-year itch. Thesince the Cold War, nuclear power plants are being plannedDramatic fall in new nuclear power stations after Fukushima.

Melville, Jonathan

2013-01-01T23:59:59.000Z

24

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

(percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

25

A pilot application of risk-informed methods to establish inservice inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station. Revision 1  

SciTech Connect (OSTI)

As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest National Laboratory has developed risk-informed approaches for inservice inspection plans of nuclear power plants. This method uses probabilistic risk assessment (PRA) results to identify and prioritize the most risk-important components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot application of this methodology. This report, which incorporates more recent plant-specific information and improved risk-informed methodology and tools, is Revision 1 of the earlier report (NUREG/CR-6181). The methodology discussed in the original report is no longer current and a preferred methodology is presented in this Revision. This report, NUREG/CR-6181, Rev. 1, therefore supersedes the earlier NUREG/CR-6181 published in August 1994. The specific systems addressed in this report are the auxiliary feedwater, the low-pressure injection, and the reactor coolant systems. The results provide a risk-informed ranking of components within these systems.

Vo, T.V.; Phan, H.K.; Gore, B.F.; Simonen, F.A.; Doctor, S.R. [Pacific Northwest National Lab., Richland, WA (United States)

1997-02-01T23:59:59.000Z

26

Search of Neutrino Magnetic Moments with a High-Purity Germanium Detector at the Kuo-Sheng Nuclear Power Station  

E-Print Network [OSTI]

A search of neutrino magnetic moments was carried out at the Kuo-Sheng Nuclear Power Station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl) and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1 $\\cpd$ near threshold were achieved. Details of the reactor neutrino source, experimental hardware, background understanding and analysis methods are presented. Based on 570.7 and 127.8 days of Reactor ON and OFF data, respectively, at an average Reactor ON electron anti-neutrino flux of $\\rm{6.4 \\times 10^{12} cm^{-2} s^{-1}}$, the limit on the neutrino magnetic moments of $\\rm{\\munuebar < 7.4 \\times 10^{-11} \\mub}$ at 90% confidence level was derived. Indirect bounds on the $\

H. T. Wong; TEXONO Collaboration

2006-11-14T23:59:59.000Z

27

Nuclear Power Overview  

Broader source: Energy.gov (indexed) [DOE]

San Onofre Nuclear Generating Station San Onofre Nuclear Generating Station Bob Ashe-Everest Southern California Edison 10 Incoming New Fuel Inspecting New Fuel SONGS Unit 1 Fuel...

28

Technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1  

SciTech Connect (OSTI)

This report documents the technical evaluation of the noise and isolation testing of the safety features actuation system at the Davis Besse Nuclear Power Station, Unit 1. The tests were to verify that faults on the non-Class 1E circuits would not propagate to the Class 1E circuits and degrade them below acceptable levels. The tests conducted demonstrated that the safety features actuation system did not degrade below acceptable levels nor was the system's ability to perform its protective functions affected.

Selan, J.C.

1981-07-01T23:59:59.000Z

29

Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project  

SciTech Connect (OSTI)

ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

Sullivan T.

2014-06-09T23:59:59.000Z

30

PAVAN: an atmospheric-dispersion program for evaluating design-basis accidental releases of radioactive materials from nuclear power stations  

SciTech Connect (OSTI)

This report provides a user's guide for the NRC computer program, PAVAN, which is a program used by the US Nuclear Regulatory Commission to estimate downwind ground-level air concentrations for potential accidental releases of radioactive material from nuclear facilities. Such an assessment is required by 10 CFR Part 100 and 10 CFR Part 50. The program implements the guidance provided in Regulatory Guide 1.145, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants. Using joint frequency distributions of wind direction and wind speed by atmospheric stability, the program provides relative air concentration (X/Q) values as functions of direction for various time periods at the exclusion area boundary (EAB) and the outer boundary of the low population zone (LPZ). Calculations of X/Q values can be made for assumed ground-level releases (e.g., through building penetrations and vents) or elevated releases from free-standing stacks. Various options may be selected by the user. They can account for variation in the location of release points, additional plume dispersion due to building wakes, plume meander under low wind speed conditions, and adjustments to consider non-straight trajectories. It computes an effective plume height using the physical release height which can be reduced by inputted terrain features. It cannot handle multiple emission sources. A description of the main program and all subroutines is provided. Also included as appendices are a complete listing of the program and two test cases with the required data inputs and the resulting program outputs.

Bander, T.J.

1982-11-01T23:59:59.000Z

31

California Nuclear Profile - San Onofre Nuclear Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

32

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

33

Letter of Intent for KASKA: High Accuracy Neutrino Oscillation Measurements with anti-nu_es from Kashiwazaki-Kariwa Nuclear Power Station  

E-Print Network [OSTI]

One of the current most-demanded experiments in neutrino physics is to measure the last mixing angle theta_13. KASKA is an experiment to detect new type of reactor neutrino oscillation and to measure sin^2 2theta_13 accurately using the world's most powerful nuclear reactor complex; Kashiwazaki-Kariwa nuclear power station. KASKA utilizes near and far detectors of identical structure at nearly optimized baselines and underground depths to cancel most of the systematics and reduce backgrounds. The expected sensitivity is sin^2 2theta_13~0.015, which is 10 times better sensitivity than the current upper limit measured by CHOOZ reactor experiment. Extension of KASKA project has potential to accurately measure other anti-nu_e oscillation parameters. Intense and precisely known neutrino flux measured by the KASKA-theta_13 phase can be used to pin down sin^2 2theta_12 at a baseline ~50km and to measure Dm^2_13 for the first time at a baseline ~5km. This Letter of Intent describes physics motivation, detector system and expected performance of the KASKA experiment.

M. Aoki; K. Akiyama; Y. Fukuda; A. Fukui; Y. Funaki; H. Furuta; T. Hara; T. Haruna; N. Ishihara; T. Iwabuchi; M. Katsumata; T. Kawasaki; M. Kuze; J. Maeda; T. Matsubara; T. Matsumoto; H. Minakata; H. Miyata; Y. Nagasaka; T. Nakagawa; N. Nakajima; H. Nakano; K. Nitta; M. Nomachi; K. Sakai; Y. Sakamoto; K. Sakuma; M. Sasaki; F. Suekane; H. Sugiyama; T. Sumiyoshi; H. Tabata; N. Tamura; M. Tanimoto; Y. Tsuchiya; R. Watanabe; O. Yasuda

2006-07-11T23:59:59.000Z

34

Reliability and optimization studies of nuclear and solar powered systems utilizing a Stirling engine for the space station  

E-Print Network [OSTI]

. A separate radiator cooling loop operating at temperatures around 200oC accomplishes this. Application of a FPSE to space power requires that each of the engine modules must be dynamically self-balanced. The dual opposed engine using a common.... The SP-100 reactor system is a fast neutron spectrum, liquid metal cooled core with a thermoelectric power conversion unit. The reference flight system design is for 100 kWe output while the components are scalable from 10 to 1000 kWe. Because the SP...

Schmitz, Paul Charles

1990-01-01T23:59:59.000Z

35

EECBG Success Story: Police Station Triples Solar Power - and...  

Broader source: Energy.gov (indexed) [DOE]

Police Station Triples Solar Power - and Savings EECBG Success Story: Police Station Triples Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police...

36

Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station  

SciTech Connect (OSTI)

For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro [Japan Atomic Energy Agency, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Kondo, Yoshikazu; Noguchi, Yoshikazu [PESCO Co.Ltd. (Korea, Republic of)

2013-07-01T23:59:59.000Z

37

We use networks so that if one power station goes down, the area it provides  

E-Print Network [OSTI]

.cwh.org.uk/main.asp?page=393 ­ Battersea Power Station; www.progressillinois.com/.../images/windfarm.jpg - Wind farm; The Simpsons - nuclear power plant; http://www.projectsmonitor.com/NewsImages/ - Gas Pipeline. #12;We use networks so that if one power station goes down, the area it provides electricity

Wright, Francis

38

Nuclear power browning out  

SciTech Connect (OSTI)

When the sad history of nuclear power is written, April 26, 1986, will be recorded as the day the dream died. The explosion at the Chernobyl plant was a terrible human tragedy- and it delivered a stark verdict on the hope that nuclear power will one day replace fossil fuel-based energy systems. Nuclear advocates may soldier on, but a decade after Chernobyl it is clear that nuclear power is no longer a viable energy option for the twenty-first century.

Flavin, C.; Lenssen, N.

1996-05-01T23:59:59.000Z

39

NUCLEAR POWER in CALIFORNIA  

E-Print Network [OSTI]

NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

40

Commercial nuclear power 1990  

SciTech Connect (OSTI)

This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

Not Available

1990-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit...

42

Preliminary Thermal Modeling of Hi-Storm 100S-218 Version B Storage Modules at Hope Creek Nuclear Power Station ISFSI  

SciTech Connect (OSTI)

This report fulfills the M3 milestone M3FT-13PN0810022, “Report on Inspection 1”, under Work Package FT-13PN081002. Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for four modules at the Hope Creek Nuclear Generating Station ISFSI that have been identified as candidates for inspection in late summer or early fall/winter of 2013. These are HI-STORM 100S-218 Version B modules storing BWR 8x8 fuel in MPC-68 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these four storage systems, with the following boundary conditions and assumptions.

Cuta, Judith M.; Adkins, Harold E.

2013-08-30T23:59:59.000Z

43

Nuclear Power Generating Facilities (Maine)  

Broader source: Energy.gov [DOE]

The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

44

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

45

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect (OSTI)

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

46

anna power station: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Regarding Kewaunee Power Station CiteSeer Summary: This supplemental environmental impact statement (SEIS) has been prepared in response to an application submitted by Dominion...

47

anna power stations: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Regarding Kewaunee Power Station CiteSeer Summary: This supplemental environmental impact statement (SEIS) has been prepared in response to an application submitted by Dominion...

48

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

49

Washington Nuclear Profile - Columbia Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

50

Illinois Nuclear Profile - Dresden Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

51

Illinois Nuclear Profile - Byron Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

52

Illinois Nuclear Profile - Braidwood Generation Station  

U.S. Energy Information Administration (EIA) Indexed Site

Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

53

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

54

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

55

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

56

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

57

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

58

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

59

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

60

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

62

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

63

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

64

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

65

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

66

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

67

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

68

Optimized nuclear and solar dynamic organic Rankine cycles for Space Station applications  

E-Print Network [OSTI]

1988) Dana Len Eubanks, B. S. , Texas A&M University Chair of Advisory Committee: Dr. Frederick R. Best In order to better characterize the growth power generation system of the Space Station, the National Aeronautics and Space Administration has re... and design the required nuclear, solar dynamic, and thermodynamic components. The solar and nuclear systems are optimized with respect to one of three variables: system mass, volume, or thermodynamic effi- ciency. Having optimized the two power options& a...

Eubanks, Dana Len

1988-01-01T23:59:59.000Z

69

INSTALLATION OF A POST-ACCIDENT CONFINEMENT HIGH-LEVEL RADIATION MONITORING SYSTEM IN THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA  

SciTech Connect (OSTI)

This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install and make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.

GREENE,G.A.; GUPPY,J.G.

1998-09-01T23:59:59.000Z

70

CONSTRUCTION OF NUCLEAR POWER PLANTS  

E-Print Network [OSTI]

CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing WAS DEEPLY INVOLVED IN ALMOST EVERY ASPECT OF BUILDING THE PLANTS THROUGH · Quality Assurance · Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

71

Overview paper on nuclear power  

SciTech Connect (OSTI)

This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

Spiewak, I.; Cope, D.F.

1980-09-01T23:59:59.000Z

72

Economics of nuclear power in Finland  

SciTech Connect (OSTI)

The nuclear power generation fits perfectly with the long duration load profile of the Finnish power system. The good performance of the Finnish nuclear power has yielded benefits also to the consumers through its contribution to decreasing the electricity price. Furthermore, the introduction of nuclear power has resulted in a clear drop in carbon dioxide emissions from electricity generation in the shift of 1970's and 1980's. In the year 2001 the four Finnish nuclear power units at Loviisa and Olkiluoto generated 22.8 TWh electricity, equivalent to 28 per cent of the total consumption. Loviisa power station has a net output capacity of 2 x 488 MW, and Olkiluoto 2 x 840 MW. The capacity factors of the four nuclear units have been above 90 per cent, which are among the highest in the world. The energy-intensive process industries in particular have strong belief in nuclear power. In November 2000, Teollisuuden Voima company (TVO) submitted to the Finnish Government an application for decision in principle concerning the construction of a new nuclear power plant unit. The arguments were among other things to guarantee for the Finnish industry the availability of cheap electric energy and to meet the future growth of electricity consumption in Finland. The carbon-free nuclear power also represents the most efficient means to meet the Greenhouse Gas abatement quota of Finland. Simultaneously, the energy policy of the Government includes intensive R and D and investment support for the renewable energy sources and energy conservation, and the objective is also to replace coal with natural gas as much as reasonably possible. The fifth nuclear unit would be located in one of the existing Finnish nuclear sites, i.e. Olkiluoto or Loviisa. The size of the new nuclear unit would be in the range of 1000 to 1600 MW electric. The ready infrastructure of the existing site could be utilised resulting in lower investment cost for the new unit. The Finnish Government accepted the application of TVO Company on January 17, 2002, but the final word will be said by the Parliament. During the spring 2002 there will be intensive discussion on all levels, whether nuclear power is for or against 'the total benefit of the society'. The Parliament decision is expected to be made by the summer 2002. In this paper, firstly a financial comparison of the new base-load power plant alternatives is carried out in the Finnish circumstances, and secondly the actual power production costs of the existing Olkiluoto nuclear power plant based on the operating history of about 20 years will be referred. (authors)

Tarjanne, Risto; Luostarinen, Kari [Lappeenranta University of Technology, Department of Energy and Environmental Technology, PO Box 20, FIN-53851 Lappeenranta (Finland)

2002-07-01T23:59:59.000Z

73

The elements of nuclear power  

SciTech Connect (OSTI)

An introduction to the principles of nuclear fission power generation. Describes the physical processes which occur in a nuclear reactor and discusses the theory behind the calculations. Also covers heat transfer in reactors, thermodynamic power cycles, reactor operators, and radiation shielding. Material covered includes topics on the effects of nuclear radiation on humans, the safety of nuclear reactors and of those parts of the nuclear fuel cycle which deal with fuel element manufacture and the reprocessing of irradiated fuel.

Bennet, D.J.; Thomson, J.R.

1989-01-01T23:59:59.000Z

74

The Decline and Death of Nuclear Power  

E-Print Network [OSTI]

funding, causing nuclear power to simply fall off the energyor “ambivalent” about nuclear power to firmly against it.

Melville, Jonathan

2013-01-01T23:59:59.000Z

75

D.McNew/GettyIMaGes San Onofre Nuclear Generating Station, California.  

E-Print Network [OSTI]

D.McNew/GettyIMaGes San Onofre Nuclear Generating Station, California. CORRESPONDENCE Checklist be supplied by solar power plants covering about 36,000 square kilometres of land in the desert southwest,theycanberampedupquickly.Annualinstallationofwind- energy capacity in the United States has quadrupled from Counterpoint Not wanted, not needed J. Doyne

76

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

77

Design of photovoltaic central power station concentrator array  

SciTech Connect (OSTI)

A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

Not Available

1984-02-01T23:59:59.000Z

78

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

79

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

80

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear Power Plant Design Project  

E-Print Network [OSTI]

Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global.............................................................................................................. 4 3. Assessment of the Issues and Needs for a New Plant

82

Climate Change, Nuclear Power and Nuclear  

E-Print Network [OSTI]

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP plays a large role in replacing coal red plants. al hydro electricity options penetrate in the climate way across scenarios, showing a slight severe climate targets. In Industry, the climate target has

83

Compression and immersion tests and leaching of radionuclides, stable metals, and chelating agents from cement-solidified decontamination waste collected from nuclear power stations  

SciTech Connect (OSTI)

A study was performed for the Nuclear Regulatory Commission (NRC) to evaluate structural stability and leachability of radionuclides, stable metals, and chelating agents from cement-solidified decontamination ion-exchange resin wastes collected from seven commercial boiling water reactors and one pressurized water reactor. The decontamination methods used at the reactors were the Can-Decon, AP/Citrox, Dow NS-1, and LOMI processes. Samples of untreated resin waste and solidified waste forms were subjected to immersion and compressive strength testing. Some waste-form samples were leach-tested using simulated groundwaters and simulated seawater for comparison with the deionized water tests that are normally performed to assess waste-form leachability. This report presents the results of these tests and assesses the effects of the various decontamination methods, waste form formulations, leachant chemical compositions, and pH of the leachant on the structural stability and leachability of the waste forms. Results indicate that releases from intact and degraded waste forms are similar and that the behavior of some radionuclides such as {sup 55}Fe, {sup 60}Co, and {sup 99}Tc were similar. In addition, the leachability indexes are greater than 6.0, which meets the requirement in the NRC`s ``Technical Position on Waste Form,`` Revision 1.

Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1994-06-01T23:59:59.000Z

84

Husavik Geothermal Power Station | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind FarmWouldOpenSchools JumpStation

85

atomic power station-2: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power of 42 VK with a big change (9.6 Feenstra, Randall 7 Power laws and fractal behavior in nuclear stability, atomic weights and molecular weights Physics Websites...

86

Incremental costs and optimization of in-core fuel management of nuclear power plants  

E-Print Network [OSTI]

This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

Watt, Hing Yan

1973-01-01T23:59:59.000Z

87

Seismic risk assessment as applied to the Zion Nuclear Generating Station  

SciTech Connect (OSTI)

To assist the US Nuclear Regulatory Commission (NRC) in its licensing and evaluation role, the NRC funded the Seismic Safety Margins Research Program (SSMRP) at Lawrence Livermore National Laboratory (LLNL) with the goal of developing tools and data bases to evaluate the risk of earthquake caused radioactive release from a commercial nuclear power plant. This paper describes the SSMRP risk assessment methodology and the results generated by applying this methodology to the Zion Nuclear Generating Station. In addition to describing the failure probabilities and risk values, the effects of assumptions about plant configuration, plant operation, and dependence will be given.

Wells, J.

1984-08-01T23:59:59.000Z

88

EIS-0210: Tampa Electric Company-Polk Power Station (Adopted)  

Broader source: Energy.gov [DOE]

The U.S. Environmental Protection Agency prepared this statement to fulfill its National Environmental Policy Act requirements with respect to the potential issuance of a permit to the Tampa Electric Company under the National Pollutant Discharge Elimination System for the 1,150-MW Polk Power Station, a new pollutant source. The U.S. Department of Energy served as a cooperating agency in the development of this document due to its potential role to provide cost-shared financial assistance for a 260-MW Integrated Gasification Combined Cycle unit at the Power Station under its Clean Coal Technology Demonstration Project, and adopted the document by August 1994.

89

Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation of Real  

E-Print Network [OSTI]

1 Intelligent Voltage and Reactive Power Control of Mini-Hydro Power Stations for Maximisation Control (APFC) modes. The ability to export active and reactive power from mini-hydro power generators electrical power generation from renewable resources. Additionally, the potential early retiral of central

Harrison, Gareth

90

Poihipi Power Station | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc Jump to: navigation,Information isPoihipi

91

Sesta Geothermal Power Station | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search| Open EnergySermatec JumpSesta Geothermal Power

92

Svartsengi Geothermal Power Station | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation, search Name:STS JumpSuzlon EnergyWindPower

93

The Decline and Death of Nuclear Power  

E-Print Network [OSTI]

2012). NRC: Nuclear Security and Safeguards.nrc.gov.in nuclear reactor maintenance and security. However, when aof nuclear power plants, as well as physical security to

Melville, Jonathan

2013-01-01T23:59:59.000Z

94

Optimal sequencing site of hydro-power stations  

SciTech Connect (OSTI)

At the first stage of a hydro-power survey of a river, it is important to select the optimal hydro-power site. The most important condition to be satisfied is to determine the optimal site where the greatest and most economical amount of hydro-energy can be obtained. This paper proposes a new method in which the optimal arrangement of the hydro-power stations is determined by a computational operation using discrete data at points along the river such as the drainage area, altitude, and distance along the river channel as obtained from topographical maps instead of drawing on engineers` experiences and the intuitions of experts. The results by this method are then compared with data on existing hydro-power stations and the results planned by expert engineers to show that this new computational method is superior.

Hayashi, T.; Yoshino, F.; Waka, R. [Tottori Univ., Koyama (Japan). Dept. of Mechanical Engineering

1995-06-01T23:59:59.000Z

95

Nevada Power: Clark Station; Las Vegas, Nevada (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Stoffel, T.; Andreas, A.

96

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

97

Solar photovoltaic power system for a radio station  

SciTech Connect (OSTI)

Under sponsorship of the US Department of Energy, Massachusetts Institute of Technology Lincoln Laboratory has developed a concept for a small photovoltaic power system. Of simple construction, the system uses low-cost, prefabricated, transportable units for easy, fast installation and requires minimal site preparation. The first application of this experimental system began operation in August 1979 at daytime AM radio station WNBO in Bryan, Ohio. The project was jointly undertaken by the Laboratory and the radio station. The photovoltaic system described holds promise for a wide range of applications and economic feasibility by the mid- to late-1980s.

Nichols, B. E.

1980-12-01T23:59:59.000Z

98

Seismic margin review of the Maine Yankee Atomic Power Station: Fragility analysis  

SciTech Connect (OSTI)

This Fragility Analysis is the third of three volumes for the Seismic Margin Review of the Maine Yankee Atomic Power Station. Volume 1 is the Summary Report of the first trial seismic margin review. Volume 2, Systems Analysis, documents the results of the systems screening for the review. The three volumes are part of the Seismic Margins Program initiated in 1984 by the Nuclear Regulatory Commission (NRC) to quantify seismic margins at nuclear power plants. The overall objectives of the trial review are to assess the seismic margins of a particular pressurized water reactor, and to test the adequacy of this review approach, quantification techniques, and guidelines for performing the review. Results from the trial review will be used to revise the seismic margin methodology and guidelines so that the NRC and industry can readily apply them to assess the inherent quantitative seismic capacity of nuclear power plants.

Ravindra, M. K.; Hardy, G. S.; Hashimoto, P. S.; Griffin, M. J.

1987-03-01T23:59:59.000Z

99

Safer nuclear power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards and Security Systems SHARESafer nuclear

100

(Nuclear power engineering in space)  

SciTech Connect (OSTI)

The principal purpose of this trip was to participate in the Anniversary Specialist Conference on Nuclear Power Engineering in Space hosted by the USSR Ministry of Atomic Power Engineering and Industry. The conference was held in Obninsk, USSR. A secondary purpose of the trip was to meet with the French Commissariat A L'Energie Atomique in Paris regarding the status of their space power program.

Cooper, R.H. Jr.

1990-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Future Prospects for Nuclear Power after Fukushima  

E-Print Network [OSTI]

at the FukushimaDaiichi nuclear power plant in Japan has changed the perception of nuclear as a safe energy sourceFuture Prospects for Nuclear Power after Fukushima Nuclear is a highintensity energy source as the next generation of Light Water Reactors. We will also discuss the future prospects of nuclear power

Goldberg, Bennett

102

Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations  

SciTech Connect (OSTI)

Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

Wittenbrock, N. G.

1982-01-01T23:59:59.000Z

103

EIS-0215: Pinon Pine Power Project, Tracy Station, NV  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) prepared this statement to assess the environmental and human health issues associated with the Pinon Pine Power Project, a proposed demonstration project that would be cost-shared by DOE and the Sierra Pacific Power Company (SPPCo.) under DOE's Clean Coal Technology Program. The proposed Federal action is for DOE to provide cost-shared funding support for the construction and operation of the Pinon Pine Power Project, a coal-fired power generating facility, which would be a nominal, 800-ton-per-day (104 megawatt (MW) gross generation) air-blown, Integrated Gasification Combined-Cycle plant proposed by SPPCo. at its Tracy Power Station near Reno, Nevada.

104

Development of Power-head based Fan Airflow Station  

E-Print Network [OSTI]

related to the measured fan speed. Actually the measured fan speed is assumed to equal the motor synchronous speed, which is proportional to the VFD frequency. Theoretically it is not true. The difference between the synchronous speed and motor speed... the basic theory, experiment and results of the power-head based airflow station. Theory Figure 1 shows variable speed fan connection schematic. VFD is normally installed on the motor to adjust the motor speed by modulating frequency. Typically...

Wang, G.; Liu, M.

2005-01-01T23:59:59.000Z

105

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

106

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

107

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

108

Nuclear power high technology colloquium: proceedings  

SciTech Connect (OSTI)

Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

Not Available

1984-12-10T23:59:59.000Z

109

Effect of Hurricane Andrew on the Turkey Point Nuclear Generating Station from August 20--30, 1992. [Final report  

SciTech Connect (OSTI)

On August 24, 1992, Hurricane Andrew, a Category 4 hurricane, struck the Turkey Point Electrical Generating Station with sustained winds of 145 mph (233 km/h). This is the report of the team that the US Nuclear Regulatory Commission (NRC) and the Institute of Nuclear Power Operations (INPO) jointly sponsored (1) to review the damage that the hurricane caused the nuclear units and the utility`s actions to prepare for the storm and recover from it, and (2) to compile lessons that might benefit other nuclear reactor facilities.

Hebdon, F.J. [Institute of Nuclear Power Operations, Atlanta, GA (United States)

1993-03-01T23:59:59.000Z

110

Organizational learning at nuclear power plants  

E-Print Network [OSTI]

The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

Carroll, John S.

1991-01-01T23:59:59.000Z

111

Toyon Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperationsInformationRowleyIndianaToyon Power Station

112

A study of PFBC feasibility for the Linkou Power Station  

SciTech Connect (OSTI)

In an energy import-dependent country, Taipower burns coal from different sources in order to alleviate its dependence on oil. It is desirable that a power station can burn a wide range of coal types with minimal sacrifices of operational safety, power-generating efficiency, environmental acceptability and economics. In addition, public concern over power plant pollution is prevalent throughout the country; thus, careful planning of coal-fired power plants is indispensable in the future. Consequently, clean coal technology must be adopted as much as possible in order to gain public support for new power projects. Pressurized fluidized bed combustion (PFBC) based on fluidized bed combustion (FBC) and gas turbine technologies was proved at four pilot plants in Sweden, Spain and the United States to be a viable utility-sized advanced coal-burning technology which is able to meet requirements for high efficiency and low emissions and is applicable to a wide range of combustion fuels. Therefore, it was thought to be high time to investigate the feasibility of adopting the technology to Taiwan`s future coal-fired power projects. ABB Carbon of Sweden was invited to perform the feasibility study.

Yu, Sheng-Hsiung

1993-12-31T23:59:59.000Z

113

NUCLEAR POWER IN CALIFORNIA: 2007 STATUS REPORT  

E-Print Network [OSTI]

reprocessing program, and issues related to the transportation of nuclear waste. The costs of nuclear power, the future of nuclear power is addressed by considering the safety and reliability of the aging U.S. nuclear ............................................................................................ 3 Storage and Disposal of Spent Fuel

114

Sabotage at Nuclear Power Plants  

SciTech Connect (OSTI)

Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

Purvis, James W.

1999-07-21T23:59:59.000Z

115

Power-Optimal Scheduling for a Green Base Station with Delay Constraints  

E-Print Network [OSTI]

objective of Green Communication is to provide quality of service (QoS) at reduced energy consumptionPower-Optimal Scheduling for a Green Base Station with Delay Constraints Anusha Lalitha, Santanu with average delay constraint on the downlink of a Green Base- station. A Green Base-station is powered by both

Sharma, Vinod

116

nuclear power Update of the mit 2003  

E-Print Network [OSTI]

#12;Future of nuclear power Update of the mit 2003 PROFESSOR JOHN M.DEUTCH Institute Professor of Technology. All rights reserved. #12;Update of the MIT 2003 Future of Nuclear Power Study 3 In 2003 a group of MIT faculty issued a study on The Future of Nuclear Power.1 The study was motivated by growing concern

Reuter, Martin

117

SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.  

SciTech Connect (OSTI)

This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

2014-02-01T23:59:59.000Z

118

Nuclear Power Trends Energy Economics and Sustainability  

E-Print Network [OSTI]

Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear;National Research Council of Greece, May 8, 2008 Outline · The Problem · Nuclear Energy Trends · Energy Economics · Life Cycle Analysis · Nuclear Sustainability · Nuclear Energy in Greece? #12;National Research

119

Power to the People or Regulatory Ratcheting? Explaining the Success (or Failure) of Attempts to Site Commercial U.S. Nuclear Power Plants: 1954 -19961  

E-Print Network [OSTI]

to Site Commercial U.S. Nuclear Power Plants: 1954 - 19961 7 April 2014 Eric Berndt2 and Daniel P. Aldrich to attempt siting nuclear power plant facilities in large numbers in the 1960s. By the late 1990s, more than 1984). In the case of the Shoreham Nuclear Generating Station in Long Island, the plant was completed

120

Nuclear power for energy and for scientific progress  

E-Print Network [OSTI]

The Introduction in this paper underlines the present general situation for energy and the environment using the words of the US Secretary of Energy. A short presentation is made of some major nuclear power plants used to study one fundamental parameter for neutrino oscillations. The nuclear power status in some Far East Nations is summarized. The 4th generation of nuclear power stations, with emphasis on Fast Neutron Reactors, is recollected. The world consumptions of all forms of energies is recalled, fuel reserves are considered and the opportunities for a sustainable energy future is discussed. These considerations are applied to the italian situation, which is rather peculiar, also due to the many consequencies of the strong Nimby effects in Italy.

Giacomelli, G

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results  

SciTech Connect (OSTI)

This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

2014-02-01T23:59:59.000Z

122

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

123

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

124

The Fourth Generation of Nuclear Power  

SciTech Connect (OSTI)

The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: • Nuclear power must remain economically competitive, • The public must remain confident in the safety of the plants and the fuel cycle. • Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. • The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and • We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

Lake, James Alan

2000-11-01T23:59:59.000Z

125

Nuclear power plants: structure and function  

SciTech Connect (OSTI)

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

126

Space nuclear power and man's extraterrestrial civilization  

SciTech Connect (OSTI)

This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered.

Angelo, J.J.; Buden, D.

1983-01-01T23:59:59.000Z

127

New Jersey Nuclear Profile - PSEG Salem Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

128

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

129

Illinois Nuclear Profile - LaSalle Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

130

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

131

KRS Chapter 278: Nuclear Power Facilities (Kentucky)  

Broader source: Energy.gov [DOE]

No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has...

132

ESBWR response to an extended station blackout/loss of all AC power  

SciTech Connect (OSTI)

U.S. federal regulations require light water cooled nuclear power plants to cope with Station Blackouts for a predetermined amount of time based on design factors for the plant. U.S. regulations define Station Blackout (SBO) as a loss of the offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency AC power system. According to U.S. regulations, typically the coping period for an SBO is 4 hours and can be as long as 16 hours for currently operating BWR plants. Being able to cope with an SBO and loss of all AC power is required by international regulators as well. The U.S. licensing basis for the ESBWR is a coping period of 72 hours for an SBO based on U.S. NRC requirements for passive safety plants. In the event of an extended SBO (viz., greater than 72 hours), the ESBWR response shows that the design is able to cope with the event for at least 7 days without AC electrical power or operator action. ESBWR is a Generation III+ reactor design with an array of passive safety systems. The ESBWR primary success path for mitigation of an SBO event is the Isolation Condenser System (ICS). The ICS is a passive, closed loop, safety system that initiates automatically on a loss of power. Upon Station Blackout or loss of all AC power, the ICS begins removing decay heat from the Reactor Pressure Vessel (RPV) by (i) condensing the steam into water in heat exchangers located in pools of water above the containment, and (ii) transferring the decay heat to the atmosphere. The condensed water is then returned by gravity to cool the reactor again. The ICS alone is capable of maintaining the ESBWR in a safe shutdown condition after an SBO for an extended period. The fuel remains covered throughout the SBO event. The ICS is able to remove decay heat from the RPV for at least 7 days and maintains the reactor in a safe shutdown condition. The water level in the RPV remains well above the top of active fuel for the duration of the SBO event. Beyond 7 days, only a few simple actions are needed to cope with the SBO for an indefinite amount of time. The operation of the ICS as the primary success path for mitigation of an SBO, allows for near immediate plant restart once power is restored. (authors)

Barrett, A. J.; Marquino, W. [New Plants Engineering, GE Hitachi Nuclear Energy, M/CA 75, 3901 Castle Hayne Road, Wilmington, NC 28402 (United States)

2012-07-01T23:59:59.000Z

133

Update on the Cost of Nuclear Power  

E-Print Network [OSTI]

We update the cost of nuclear power as calculated in the MIT (2003) Future of Nuclear Power study. Our main focus is on the changing cost of construction of new plants. The MIT (2003) study provided useful data on the cost ...

Parsons, John E.

2009-01-01T23:59:59.000Z

134

Nuclear Power in France Beyond the Myth  

E-Print Network [OSTI]

.fissilematerials.org). In 2006-2007 he was part of a consultant consortium that assessed nuclear decommissioning and wasteNuclear Power in France Beyond the Myth By Mycle Schneider International Consultant on Energy and Nuclear Policy Commissioned by the Greens-EFA Group in the European Parliament V5 #12;Note: The present

Laughlin, Robert B.

135

Implementing split-feed fuel designs at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

Energy, like many US utilities, has implemented extended (18-month) operating cycles. In addition, capacity factors have significantly improved during the past 10 yr. Both changes result in relatively high cycle energy requirements. To effectively meet these requirements, Energy has adopted Siemens Power Corporation's advanced fuel design (SNP-9 x 9-5) for use at Grand Gulf nuclear station. The implementation of this design, along with improvements in technical specifications, provide opportunities for improved fuel cycle economics. One strategy used to obtain this performance is the development of split-feed reload batch designs. A split-feed batch contains two subbatches with different batch average enrichments. Split-feed designs have been developed for the current operating cycle and the next planned cycle.

Smith, F.H.; Covington, L.J. (Entergy Operations, Jackson, MS (United States))

1993-01-01T23:59:59.000Z

136

Nuclear Power Plant Concrete Structures  

SciTech Connect (OSTI)

A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

Basu, Prabir [International Atomic Energy Agency (IAEA)] [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF)] [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

137

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

138

Envelope amplifier design for wireless base-station power amplifiers  

E-Print Network [OSTI]

Measured Switcher Power Loss and Efficiency Performancea) Efficiency; (b) Power loss . . . . . . . . . . . . . . .Switcher Efficiency and Power Loss . . . . Figure 3.24: High

Hsia, Chin

2010-01-01T23:59:59.000Z

139

The Handbook of Applied Bayesian Analysis, Eds: Tony O'Hagan & Mike West, Oxford University Bayesian analysis and decisions in nuclear power plant  

E-Print Network [OSTI]

Bayesian analysis and decisions in nuclear power plant maintenance Elmira Popova, David Morton, Paul Damien are then applied to solving an important problem in a nuclear power plant system at the South Texas Project (STP) Electric Generation Station. STP is one of the newest and largest nuclear power plants in the US

Morton, David

140

Review: Nuclear Power Is Not the Answer by Helen Caldicott  

E-Print Network [OSTI]

Review: Nuclear Power Is Not the Answer By Helen CaldicottPakistan. Helen Caldicott. Nuclear Power Is Not the Answer.about the true costs of nuclear power, the health effects of

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Workshop on nuclear power growth and nonproliferation  

SciTech Connect (OSTI)

It is widely viewed that an expansion of nuclear power would have positive energy, economic and environmental benefits for the world. However, there are concerns about the economic competitiveness, safety and proliferation and terrorism risks of nuclear power. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security. In his Prague speech, President Obama stated: 'we should build a new framework for civil nuclear cooperation, including an international fuel bank, so that countries can access peaceful power without increasing the risks of proliferation. That must be the right of every nation that renounces nuclear weapons, especially developing countries embarking on peaceful programs. And no approach will succeed if it's based on the denial of rights to nations that play by the rules. We must harness the power of nuclear energy on behalf of our efforts to combat climate change, and to advance peace opportunity for all people.' How can the President's vision, which will rekindle a vigorous public debate over the future of nuclear power and its relation to proliferation, be realized? What critical issues will frame the reemerging debate? What policies must be put into place to address these issues? Will US policy be marked more by continuity or change? To address these and other questions, the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars will host a workshop on the future of nuclear power and nonproliferation.

Pilat, Joseph F [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

142

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit...

143

NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944  

E-Print Network [OSTI]

#12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20, naval reactors, and nuclear power plants. Oak Ridge experiments byArt Snell in 1944 showed that 10 tons

Pennycook, Steve

144

CEC-150-2006-001-F NUCLEAR POWER  

E-Print Network [OSTI]

on California's nuclear power plants and key nuclear power issues such as nuclear waste storage, disposal, and transportation. The report reviews the federal and state regulatory framework for nuclear power and the various of continuing to operate California's aging nuclear power plants. Safety and security issues are key

145

aagesta nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

146

Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...  

Energy Savers [EERE]

Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in...

147

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy Savers [EERE]

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

148

SciTech Connect: Nuclear power reactor instrumentation systems...  

Office of Scientific and Technical Information (OSTI)

Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You...

149

Japanese nuclear power and the Kyoto agreement  

E-Print Network [OSTI]

We find that, on an economic basis, nuclear power could make a substantial contribution for meeting the emissions target Japan agreed to in the Kyoto Protocol. It is unlikely however that the contribution would be as large ...

Babiker, Mustafa H.M.; Reilly, John M.; Ellerman, A. Denny.

150

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union...

151

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"Syste...

152

Nuclear Power 2010 Program: Combined Construction and Operating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined...

153

The American nuclear power industry. A handbook  

SciTech Connect (OSTI)

This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index.

Pearman, W.A.; Starr, P.

1984-01-01T23:59:59.000Z

154

Design of a photovoltaic central power station: flat-plate array  

SciTech Connect (OSTI)

A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

Not Available

1984-02-01T23:59:59.000Z

155

Genesee Power Station LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: Energy ResourcesEnergyGeneralGeneseeStation LP

156

Monitoring equipment environment during nuclear plant operation at Salem and Hope Creek generating stations  

SciTech Connect (OSTI)

Monitoring of environmental parameters has become a significant issue for operating nuclear power plants. While the long-term benefits of plant life extension programs are being pursued with comprehensive environmental monitoring programs, the potential effect of local hot spots at various plant locations needs to be evaluated for its effect on equipment degradation and shortening of equipment qualified life. A significant benefit can be experienced from temperature monitoring when a margin exists between the design versus actual operating temperature. This margin can be translated into longer equipment qualified life and significant reduction in maintenance activities. At PSE and G, the immediate need for monitoring environmental parameters is being accomplished via the use of a Logic Beach Bitlogger. The Bitlogger is a portable data loggings system consisting of a system base, input modules and a communication software package. Thermocouples are installed on selected electrical equipment and cables are run from the thermocouples to the input module of the Bitlogger. Temperature readings are taken at selected intervals, stored in memory, and downloaded periodically to a PC software program, i.e., Lotus. The data is formatted into tabular or graphical documents. Because of their versatility, Bitloggers are being used differently at the authors Nuclear facility. At the Salem Station (2 Units-4 loop Westinghouse PWR), a battery powered, fully portable, calibrated Bitlogger is located in an accessible area inside Containment where it monitors the temperature of various electrical equipment within the Pressurizer Enclosure. It is planned that close monitoring of the local hot spot temperatures in this area will allow them to adjust and reconcile the environmental qualification of the equipment.

Blum, A.; Smith, R.J. [Public Service Electric and Gas Co., Hancocks Bridge, NJ (United States)

1991-06-01T23:59:59.000Z

157

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters  

SciTech Connect (OSTI)

Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

Robert J. Goldston

2010-03-03T23:59:59.000Z

158

The Fukushima Nuclear Event and its Implications for Nuclear Power  

SciTech Connect (OSTI)

The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

Golay, Michael (MIT) [MIT

2011-07-06T23:59:59.000Z

159

GNEP Element:Expand Domestic Use of Nuclear Power | Department...  

Broader source: Energy.gov (indexed) [DOE]

Expand Domestic Use of Nuclear Power GNEP Element:Expand Domestic Use of Nuclear Power A report discussing the intentions of the GNEP. GNEP Element:Expand Domestic Use of Nuclear...

160

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS  

E-Print Network [OSTI]

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Chevalier EDF R&D ­ Simulation and information Technologies for Power generation system Department 6, Quai Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Resin Cleaning System (ARCS) at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

Steam generation system in-core components can undergo serious material degradation by a variety of corrosion-related phenomena. These phenomena are largely controlled by boiler water (i.e. reactor water) chemistry which is strongly impacted by the performance of the condensate system mixed bed ion exchange units. In Boiling Water Reactors (BWR), the mixed bed ion exchange units not only provide protection from ionic contaminants, but also remove insoluble corrosion products by filtration/adsorption. These insoluble corrosion products removed by the ion exchange units must then be periodically cleaned from the resin bed by some process external to the BWR primary water loop. A unique resin cleaning process called the {open_quotes}Advanced Resin Cleaning System{close_quotes} (ARCS) was developed in the late 1980`s by members of CENTEC-XXI, located in Santa Clara, CA. This system, which has been successfully operated for several years at a Pressurized Water Reactor is highly efficient for removal of both insoluble corrosion products and anion/cation resin fines, and generates significantly less waste water than other cleaning methods. The ARCS was considered the most attractive method for meeting the demanding and costly resin cleaning needs of a BWR. A {open_quotes}Tailored Collaboration{close_quotes} project was initiated between EPRI, Entergy Operations (Grand Gulf Station), and CENTEC-XXI to demonstrate the {open_quotes}Advanced Resin Cleaning System{close_quotes} in a BWR.

Asay, R.H.; Earls, J.E.; Naughton, M.D. [Centec 21, Inc., Santa Clara, CA (United States)

1996-10-01T23:59:59.000Z

162

Virtual environments for nuclear power plant design  

SciTech Connect (OSTI)

In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

1996-03-01T23:59:59.000Z

163

Nuclear power and its environmental effects  

SciTech Connect (OSTI)

The authors, veterans in the field of nuclear technology, attempt in this book to present the complexities of nuclear energy issues for the general public. Their coverage of the subject is very thorough, starting with the fundamentals of nuclear reactors and of electrical power generation and continuing into such environmental problem areas as the biological effects of radiation, radioactive waste management, diposal of waste heat, and transportation of nuclear materials. Generally, they reflect the optimism of the pro-nuclear establishment, to which their publisher belongs. However, their tone is calm and nonpolemical, and even antinuclear advocates should find the volume to be a handy compilation of many basic facts. Recommended for public and academic libraries.

Glasstone, S.; Jordan, W.H.

1980-01-01T23:59:59.000Z

164

Nuclear Simulation and Radiation Physics Investigations of the Target Station of the European Spallation Neutron Source  

SciTech Connect (OSTI)

The European Spallation Neutron Source (ESS) delivers high-intensity pulsed particle beams with 5-MW average beam power at 1.3-GeV incident proton energy. This causes sophisticated demands on material and geometry choices and a very careful optimization of the whole target system. Therefore, complex and detailed particle transport models and computer code systems have been developed and used to study the nuclear assessment of the ESS target system. The purpose here is to describe the methods of calculation mainly based on the Monte Carlo code to show the performance of the ESS target station. The interesting results of the simulations of the mercury target system are as follows: time-dependent neutron flux densities, energy deposition and heating, radioactivity and afterheat, materials damage by radiation, and high-energy source shielding. The results are discussed in great detail. The validity of codes and models, further requirements to improve the methods of calculation, and the status of running and planned experiments are given also.

Filges, Detlef; Neef, Ralf-Dieter; Schaal, Hartwig [Forschungszentrum Juelich GmbH (Germany)

2000-10-15T23:59:59.000Z

165

Floating nuclear power plant safety assurance principles  

SciTech Connect (OSTI)

In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described.

Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.

1993-12-31T23:59:59.000Z

166

Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577  

SciTech Connect (OSTI)

Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M. [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)] [Westinghouse Nuclear Services, 1 Energy Drive, Lake Bluff, Illinois 60044 (United States)

2013-07-01T23:59:59.000Z

167

Nuclear Power No Solution to the Climate Crisis  

E-Print Network [OSTI]

Nuclear Power No Solution to the Climate Crisis Michael Mariotte Nuclear Information and Resource-12, 2009 #12;Environmental Statement on Nuclear Power and the Climate Crisis "We do not support emissions than nuclear power." Signed by 483 US organizations, 164 int'l organizations and 10

Laughlin, Robert B.

168

Global nuclear power supply chains and the rise of China's nuclear industry  

E-Print Network [OSTI]

China has embarked on a massive expansion of nuclear power that may fundamentally change the global nuclear industry, for better or for worse. Some industry observers argue that the incumbent nuclear power companies are ...

Metzler, Florian

2012-01-01T23:59:59.000Z

169

Archbald Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhaseAquila IncArchbald Power

170

Penrose Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources Jump to: navigation, searchPenrose Power

171

Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.  

SciTech Connect (OSTI)

This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

OHara,J.; Higgins, J.; Brown, W.; Fink, R.

2008-02-14T23:59:59.000Z

172

Transactions of the fourth symposium on space nuclear power systems  

SciTech Connect (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1987-01-01T23:59:59.000Z

173

Transactions of the fifth symposium on space nuclear power systems  

SciTech Connect (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1988-01-01T23:59:59.000Z

174

Selva 1 Geothermal Power Station | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name:OpenOpen EnergySelva 1 Geothermal Power

175

Management of National Nuclear Power Programs for assured safety  

SciTech Connect (OSTI)

Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

Connolly, T.J. (ed.)

1985-01-01T23:59:59.000Z

176

Coal and nuclear power: Illinois' energy future  

SciTech Connect (OSTI)

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

177

Carbon pricing, nuclear power and electricity markets  

SciTech Connect (OSTI)

In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised electricity market, looking at the impact of the seven key variables and provide conclusions on the portfolio that a utility would be advised to maintain, given the need to limit risks but also to move to low carbon power generation. Such portfolio diversification would not only limit financial investor risk, but also a number of non-financial risks (climate change, security of supply, accidents). (authors)

Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

2012-07-01T23:59:59.000Z

178

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters  

SciTech Connect (OSTI)

Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

Robert J. Goldston

2011-04-28T23:59:59.000Z

179

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana)  

Broader source: Energy.gov [DOE]

The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as...

180

A Flow Level Perspective on Base Station Power Allocation in Green Networks  

E-Print Network [OSTI]

the energy-efficiency of base stations operating in the downlink. The energy-efficiency refers to the amount nature of users (referred to as the global energy-efficiency). We emphasize our numerical results that study the influence of the radio conditions, transmit power and the user traffic on the energy-efficiency

Boyer, Edmond

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EIS-0080: Decommissioning of the Shippingport Atomic Power Station, Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

182

An Experiment in Reducing Cellular Base Station Power Draw With Virtual Coverage  

E-Print Network [OSTI]

providers offer "low-power" GSM Base Stations (BTS) for use with renewable energy sources, these have permission and/or a fee. ACM DEV 4, December 06 -- 07 2013, Cape Town, South Africa Copyright is held. For example, the GSM Association estimates that 95% of people living without cellular access in East Africa

Parikh, Tapan S.

183

Confirmatory Survey Results for the Reactor Building Dome Upper Surfaces, Rancho Saco Nuclear Generating Station  

SciTech Connect (OSTI)

Results from a confirmatory survey of the upper structural surfaces of the Reactor Building Dome at the Rancho Seco Nuclear Generating Station (RSNGS) performed by the Oak Ridge Institute for Science and Education for the NRC. Also includes results of interlaboratory comparison analyses on several archived soil samples that would be provided by RSNGS personnel. The confirmatory surveys were performed on June 7 and 8, 2006.

Wade C. Adams

2006-10-25T23:59:59.000Z

184

System Definition Document: Reactor Data Necessary for Modeling Plutonium Disposition in Catawba Nuclear Station Units 1 and 2  

SciTech Connect (OSTI)

The US Department of Energy (USDOE) has contracted with Duke Engineering and Services, Cogema, Inc., and Stone and Webster (DCS) to provide mixed-oxide (MOX) fuel fabrication and reactor irradiation services in support of USDOE's mission to dispose of surplus weapons-grade plutonium. The nuclear station units currently identified as mission reactors for this project are Catawba Units 1 and 2 and McGuire Units 1 and 2. This report is specific to Catawba Nuclear Station Units 1 and 2, but the details and materials for the McGuire reactors are very similar. The purpose of this document is to present a complete set of data about the reactor materials and components to be used in modeling the Catawba reactors to predict reactor physics parameters for the Catawba site. Except where noted, Duke Power Company or DCS documents are the sources of these data. These data are being used with the ORNL computer code models of the DCS Catawba (and McGuire) pressurized-water reactors.

Ellis, R.J.

2000-11-01T23:59:59.000Z

185

Transient modeling of thermionic space nuclear power systems  

E-Print Network [OSTI]

elements convert the thermal power generated by the core into electrical power to be supplied to the load. Some recent designs ol' space nuclear reactors investi- gate single loop systems operating with direct in-core thermionic conversion. CENTAR... CHAPTER I INTRODUCTION . Objectives and Methodology . . Thesis Organization Literature Review II CENTAR SIMULATION CODE FOR SPACE NUCLEAR POWER SYSTEMS III TOPAZ II SPACE NUCLEAR POWER SYSTEM. . . . . System Layout. Nuclear Core...

Berge, Francoise M

1991-01-01T23:59:59.000Z

186

Dose reduction at nuclear power plants  

SciTech Connect (OSTI)

The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

Baum, J.W.; Dionne, B.J.

1983-01-01T23:59:59.000Z

187

Sorption (Kd) measurements in support of dose assessments for Zion Nuclear Station Decommissioning  

SciTech Connect (OSTI)

The Zion Nuclear Power Station is being decommissioned. ZionSolutions proposes to leave much of the below grade structures in place and to fill them with “clean” concrete demolition debris from the above grade parts of the facility. This study, commissioned by ZionSolutions and conducted by the Brookhaven National Laboratory (BNL) was performed to provide site-specific data for performance assessment calculations to support the request to terminate the NRC license and allow unrestricted use of the facility. Specifically, this study measured the distribution coefficient for five radionuclides of concern using site-specific soils and groundwater. The distributions coefficient is a measure of the amount of the radionuclide that will remain sorbed to the soil or concrete that is present relative to the amount that will remain in solution. A high distribution coefficient indicates most of the radionuclide will remain on the solid material and will not be available for transport by the groundwater. The radionuclides of concern are Fe-55, Co-60, Ni-63, Sr-90, and Cs-137. Tests were performed following ASTM C1733-10, Standard Test Methods for Distribution Coefficients of Inorganic Species by the Batch Method. Sr-85 was used in the testing as an analogue for Sr-90 because it behaves similarly with respect to sorption and has a gamma emission that is easier to detect than the beta emission from Sr-90. Site-specific soils included disturbed sand (sand removed during construction and used as backfill), native sand, silt/clay and silt. In addition, concrete cores from the Unit-1 Containment Building and the Crib House were broken into particles less than 2 mm in size and tested to obtain distribution coefficients for the five nuclides.

Yim S. P.; Sullivan T.; Milian, L.

2012-12-12T23:59:59.000Z

188

Problem free nuclear power and global change  

SciTech Connect (OSTI)

Nuclear fission power reactors represent a solution-in-principle to all aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high- grade heat for electricity generation, space heating and industrial process-driving around the world, without emitting greenhouse gases or atmospheric particulates. However, a substantial number of major issues currently stand between nuclear power implemented with light- water reactors and widespread substitution for large stationary fossil fuel-fired systems, including long-term fuel supply, adverse public perceptions regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps more seriously - cost. We describe a GW-scale, high-temperature nuclear reactor heat source that can operate with no human intervention for a few decades and that may be widely acceptable, since its safety features are simple, inexpensive and easily understood. We provide first-level details of a reactor system designed to satisfy these requirements. Such a back-solving approach to realizing large-scale nuclear fission power systems potentially leads to an energy source capable of meeting all large-scale stationary demands for high- temperature heat. If widely employed to support such demands, it could, for example, directly reduce present-day world-wide CO{sub 2} emissions by two-fold; by using it to produce non-carbonaceous fuels for small mobile demands, a second two-fold reduction could be attained. Even the first such reduction would permit continued slow power-demand growth in the First World and rapid development of the Third World, both without any governmental suppression of fossil fuel usage.

Teller, E.; Wood, L.; Nuckolls, J.; Ishikawa, M.; Hyde, R.

1997-08-15T23:59:59.000Z

189

AIAA 94-4688 Topaz II Nuclear Powered  

E-Print Network [OSTI]

Y Y AIAA 94-4688 Topaz II Nuclear Powered SAR Satellite M. Feuerstein and Dr. 9. Agrawal Naval Astronautics 370 L'EnfantPromenade, S.W., Washington, D.C. 20024 #12;AIAA-94-4688 TOPAZ 11NUCLEAR POWERED SAR at the Naval Postgraduate School. Thc design team integrated a Topaz I1 nuclear power system with an EOS

190

PNNL's Community Science & Technology Seminar Series Nuclear Power in a  

E-Print Network [OSTI]

PNNL's Community Science & Technology Seminar Series Nuclear Power in a Post-Fukushima World generated by nuclear power. What will the U.S. energy portfolio look like, and how will the energy demand is focused on longer- term operation of nuclear power plants, including measurements to detect

191

Can Nuclear Power Be Flexible? Laurent POURET + William J. NUTTALL  

E-Print Network [OSTI]

in energy demand. Such a statement implies that nuclear power is incapable of load-following for technical1 Can Nuclear Power Be Flexible? Laurent POURET + William J. NUTTALL Judge Business School the issue of whether nuclear power can play a flexible role within an electricity system. It does not deal

Aickelin, Uwe

192

SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)  

E-Print Network [OSTI]

SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

193

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect (OSTI)

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

194

Nuclear power generation and fuel cycle report 1997  

SciTech Connect (OSTI)

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

NONE

1997-09-01T23:59:59.000Z

195

Seismic requirements for design of nuclear power plants and nuclear test facilities  

SciTech Connect (OSTI)

This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

Not Available

1985-02-01T23:59:59.000Z

196

Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site  

SciTech Connect (OSTI)

As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

1983-09-01T23:59:59.000Z

197

Educational/trainingEducational/training needs of Nuclear Powerneeds of Nuclear Power  

E-Print Network [OSTI]

]Industry [NPI] Presented byPresented by Nicholas TsoulfanidisNicholas Tsoulfanidis Nuclear EnergyNuclear EnergyEducational/trainingEducational/training needs of Nuclear Powerneeds of Nuclear Power Industry [NPI: The TMI lesson for the US Nuclear Industry.for the US Nuclear Industry. ·· Activities of the NPI

198

The USSR nuclear power: Expectation of renaissance  

SciTech Connect (OSTI)

When the Soviet specialists presented the data on the causes and consequences of the largest world nuclear accident to the world community in 1986 and even in a year after the Chernobyl catastrophe, they kept certain optimism concerning continuous steady implementation of the nuclear power projects in this country. However five post Chernobyl years have shown that the installed capacities of the Soviet NPPs increased only by 5GW. Basing on the most optimistic current estimations it can be said that by the turn of the century the total NPP capacity will not have reached even a third of 190 GW to which the Soviet nuclear program, adopted in the beginning of the 80s, was oriented. It should be pointed out that the cause of reduction in the program was not only canceling of the orders for new NPP construction but also stopped construction works even at the final stage of NPP erection. In the whole, research works, construction and extension of NPP were interrupted on 39 sites of total capacity 109 GW. Not going into a detailed analysis of the causes of this situation, it should be pointed out that deep economical and ecological prerequisites for maintenance and further development of the nuclear component in the fuel and energy balance of this country not only did not vanish but rather are growing in time in the forecasted economic situation.

Gagarinski, A.; Ponomarev-Stepnoi, N. (I.V. Kurchatov Institute of Atomic Energy, Kurchatov Square (Russian Federation))

1992-01-01T23:59:59.000Z

199

Nuclear power generation and fuel cycle report 1996  

SciTech Connect (OSTI)

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

200

Power generation from nuclear reactors in aerospace applications  

SciTech Connect (OSTI)

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear Power and the World's Energy Requirements  

E-Print Network [OSTI]

The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

V. Castellano; R. F. Evans; J. Dunning-Davies

2004-06-10T23:59:59.000Z

202

License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning  

SciTech Connect (OSTI)

The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

203

Nuclear reactor power for an electrically powered orbital transfer vehicle  

SciTech Connect (OSTI)

To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

1987-01-01T23:59:59.000Z

204

Analysis of the Use of Wind Energy to Supplement the Power Needs at McMurdo Station and Amundsen-Scott South Pole Station, Antarctica  

SciTech Connect (OSTI)

This report summarizes an analysis of the inclusion of wind-driven power generation technology into the existing diesel power plants at two U.S. Antarctic research stations, McMurdo and Amundsen-Scott South Pole Station. Staff at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) conducted the analysis. Raytheon Polar Services, which currently holds the private sector support contract for the two research stations, was a major contributor to this report. To conduct the analysis, available data were obtained on the wind resources, power plant conditions, load, and component cost. Whenever possible, we validated the information. We then used NREL's Hybrid2 power system modeling software to analyze the potential and cost of using wind turbine generators at the two aforementioned facilities. Unfortunately, the power systems and energy allocations at McMurdo and South Pole Station are being redeveloped, so it is not possible to validate future fuel use. This report is an initial assessment of the potential use of wind energy and should be followed by further, more detailed analysis if this option is to be considered further.

Baring-Gould, I.; Robichaud, R.; McLain, K.

2005-05-01T23:59:59.000Z

205

Nuclear power and the public: an update of collected survey research on nuclear power  

SciTech Connect (OSTI)

The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

1981-12-01T23:59:59.000Z

206

Technological developments to improve combustion efficiency and pollution control in coal-fired power stations in Japan  

SciTech Connect (OSTI)

In 1975, approximately 60 percent of all power generating facilities in Japan were oil fired. The oil crisis in the 1970s, however, led Japanese power utilities to utilize alternatives to oil as energy sources, including nuclear power, coal, LNG, and others. As a result, by 1990, the percentage of oil-fired power generation facilities had declined to approximately 31 percent. On the other hand, coal-fired power generation, which accounted for 5.7 percent of all facilities in 1975, increased its share to 7.5 percent in 1990 and is anticipated to expand further to 13 percent by the year 2000. In order to increase the utilization of coal-fired power generation facilities in Japan, it is necessary to work out thorough measures to protect the environment, mainly to control air pollution. The technologies that are able to do this are already available. The second issue is how to improve efficiency. In this chapter, I would like to introduce technological developments that improve efficiency and that protect the environment which have been implemented in coal-fired power stations in Japan. Examples of the former, include the atmospheric fluidized bed combustion (AFBC) boiler, the pressurized fluidized bed combustion (PFBC) boiler, and the ultra super-critical (USC) steam condition turbine, and an example of the latter is the dry deSOx/deNOx. Although details are not provided in this paper, there are also ongoing projects focusing on the development of technology for integrated gasification combined cycle generation, fuel cells and other systems undertaken by the government, i.e., the Ministry of International Trade and Industry (MITI), which is committed to the New Energy and Industrial Technology Development Organization (NEDO).

Miyasaka, Tadahisa

1993-12-31T23:59:59.000Z

207

Novel Nuclear Powered Photocatalytic Energy Conversion  

SciTech Connect (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

208

Utility system integration and optimization models for nuclear power management  

E-Print Network [OSTI]

A nuclear power management model suitable for nuclear utility systems optimization has been developed for use in multi-reactor fuel management planning over periods of up to ten years. The overall utility planning model ...

Deaton, Paul Ferris

1973-01-01T23:59:59.000Z

209

Nuclear power systems for Lunar and Mars exploration  

SciTech Connect (OSTI)

Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

Sovie, R.J.; Bozek, J.M.

1994-09-01T23:59:59.000Z

210

E-Print Network 3.0 - aged nuclear power Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Background Analog electro-mechanical systems in existing nuclear power plants are aging... Engineering 2 Nuclear Power Plant 12;2 MIT Department of Nuclear Engineering 3...

211

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect (OSTI)

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

212

Nuclear Power 2010 Unveiled update 3.04.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nuclear power include heavy carbon emissions from energy intensive reactor construction and fuel enrichment operations, radioactive discharges from uranium mine...

213

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network [OSTI]

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the ...

Kengy Barty

2012-02-17T23:59:59.000Z

214

Guidance for Deployment of Mobile Technologies for Nuclear Power...  

Broader source: Energy.gov (indexed) [DOE]

This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking...

215

Microsoft PowerPoint - GM nuclear 101.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is economically viable. Tuesday India-US nuclear pact overwhelmingly passed by House of Representatives Wednesday Amarillo Power announced intent to build 2 ABWRs in...

216

Nuclear Power - Control, Reliability and Human Factors  

E-Print Network [OSTI]

Instrumentation and Control 49 H.M. Hashemian Chapter 4 Design Considerations for the Implementation of a Mobile IP Telephony System in a Nuclear Power Plant 67 J. Garc?a-Hern?ndez, J. C. Vel?zquez- Hern?ndez, C. F. Garc?a-Hern?ndez and M. A. Vallejo-Alarc?n... Reliability K s e n i i a Sapoz h n i k o v a and Roald Tayma n o v D.I.Mendeleyev Institute for Metrology, Russia 1. Introduction At present, a great number of embedded sens o r devi c es provi d e monito r i n g of operat i n g condi t io n...

217

Can New Nuclear Power Plants be Project Financed?  

E-Print Network [OSTI]

This paper considers the prospects for financing a wave of new nuclear power plants (NPP) using project financing, which is used widely in large capital intensive infrastructure investments, including the power and gas sectors, but has...

Taylor, Simon

218

Direct conversion nuclear reactor space power systems  

SciTech Connect (OSTI)

This paper presents the results of a study of space nuclear reactor power systems using either thermoelectric or thermionic energy converters. An in-core reactor design and two heat pipe cooled out-of-core reactor designs were considered. One of the out-of-core cases utilized, long heat pipes (LHP) directly coupled to the energy converter. The second utilized a larger number of smaller heat pipes (mini-pipe) radiatively coupled to the energy converter. In all cases the entire system, including power conditioning, was constrained to be launched in a single shuttle flight. Assuming presently available performance, both the LHP thermoelectric system and minipipe thermionic system, designed to produce 100 kWe for seven years, would have a specific mass near 22kg/kWe. The specific mass of the thermionic minipipe system designed for a one year mission is 165 kg/kWe due to less fuel swelling. Shuttle imposed growth limits are near 300 kWe and 1.2 MWe for the thermoelectric and thermionic systems, respectively. Converter performance improvements could double this potential, and over 10 MWe may be possible for very short missions.

Britt, E.J.; Fitzpatrick, G.O.

1982-08-01T23:59:59.000Z

219

Electrical power system failure detection, isolation and recovery on the International Space Station Alpha  

SciTech Connect (OSTI)

The problem of how to detect, isolate, and recover from failures on the International Space Station Alpha (ISSA) is currently under study and development by NASA and a number of contractors including Rocketdyne Division of Rockwell International. The effort is planned to provide an advanced real-time failure detection system for the station. The autonomous power system project is designed to demonstrate the abilities of integrated intelligent diagnosis, control and scheduling techniques to space power distribution hardware. In this paper the latest failure detection, isolation, and recovery (FDIR) design, which provides an autonomous FDIR for the Electric Power System (EPS), will be described. The ISSA Concept of Operations and Utilization (COU) defines the ability of the vehicle to ``survive 24 hours of operation without crew or ground intervention``. This results in a necessity to design and develop automatic failure detection techniques to accomplish such autonomous operation without routine commanding. This paper addresses the current EPS FDIR design concept and concentrates on how to resolve the FDIR issues and come up with a robust design to recover from abnormal behavior.

Aghabarari, E. [Rockwell International, Canoga Park, CA (United States). Rocketdyne Division; Varney, J. [McDonnell Douglas, Houston, TX (United States)

1995-12-31T23:59:59.000Z

220

Nuclear space power safety and facility guidelines study  

SciTech Connect (OSTI)

This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

Mehlman, W.F.

1995-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS  

E-Print Network [OSTI]

1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 of prototypical behaviors. Its performance is tested with respect to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault

Boyer, Edmond

222

C Produced by Nuclear Power Reactors Generation and Characterization of  

E-Print Network [OSTI]

14 C Produced by Nuclear Power Reactors ­ Generation and Characterization of Gaseous, Liquid and process water from nuclear reactors ­ A method for quantitative determination of organic and inorganic and Solid Waste �sa Magnusson Division of Nuclear Physics Department of Physics 2007 Akademisk avhandling

Haviland, David

223

Inspection of Nuclear Power Plant Containment Structures  

SciTech Connect (OSTI)

Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

Graves, H.L.; Naus, D.J.; Norris, W.E.

1998-12-01T23:59:59.000Z

224

Regulatory guidance for lightning protection in nuclear power plants  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)

Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.; Korsah, K. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6007 (United States); Antonescu, C. E. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

2006-07-01T23:59:59.000Z

225

Regulatory Guidance for Lightning Protection in Nuclear Power Plants  

SciTech Connect (OSTI)

Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

Kisner, Roger A [ORNL; Wilgen, John B [ORNL; Ewing, Paul D [ORNL; Korsah, Kofi [ORNL; Antonescu, Christina E [ORNL

2006-01-01T23:59:59.000Z

226

Asthma in the vicinity of power stations: II. Outdoor air quality and symptoms  

SciTech Connect (OSTI)

To assess longitudinally the effect of living in the vicinity of coal-fired power stations on children with asthma, 99 schoolchildren with a history of wheezing in the previous 12 months were studied for 1 year, using daily diaries and measurements of air quality. The children had been identified in a cross-sectional survey of two coastal areas: Lake Munmorah (LM), within 5 km of two power stations, and Nelson Bay (NB), free from major industry. Daily air quality (sulphur dioxide (SO2) and nitrogen oxides (NOx)), respiratory symptoms, and treatment for asthma were recorded throughout the year. Measurements of SO2 and NOx at LM were well within recommended guidelines although they were several times higher than at NB: maximum daily levels in SO2 (micrograms/m3) were 26 at LM, 11 at NB (standard, 365); yearly average SO2 was 2 at LM, 0.3 at NB (standard, 60); yearly average NOx (micrograms/m3) was 2 at LM, 0.4 at NB (standard, 94). Marked weekly fluctuations occurred in the prevalence of cough, wheezing, and breathlessness, without any substantial differences between LM and NB. Overall, the prevalence of symptoms was low (10% for wheezing, 20% for any symptom). Whether the daily SO2 and NOx levels affected the occurrence of respiratory symptoms was investigated in children at LM using a logistic regression (Korn and Whittemore technique). For these children as a group, air quality measurements were not associated with the occurrence of symptoms.

Henry, R.L.; Bridgman, H.A.; Wlodarczyk, J.; Abramson, R.; Adler, J.A.; Hensley, M.J. (Disciplines of Paediatrics, University of Newcastle, New South Wales (Australia))

1991-01-01T23:59:59.000Z

227

Important technology considerations for space nuclear power systems  

SciTech Connect (OSTI)

This paper discusses the technology considerations that guide the development of space nuclear power sources (NPS) by the Department of Energy (DOE) to meet a wide variety of applications. The Department and its predecessor agencies have been developing NPS since the 1950s and producing NPS for spacecraft for the National Aeronautics and Space Administration (NASA) and the Department of Defense (DOD) since the early 1960s. No one nuclear power type, isotope or reactor, will suffice over the entire range of mission power required. Nor is one type of power conversion system, be it static or dynamic, the optimum choice of all space nuclear power system applications. There is a need for DOE, in partnership with its users, NASA and DOD, to develop a variety of types of space nuclear power sources -- isotope-static, isotope-dynamic, reactor-static, and reactor-dynamic -- to meet mission requirements well into the next century. 2 figs., 1 tab.

Kuspa, J.P.; Wahlquist, E.J.; Bitz, D.A.

1988-03-01T23:59:59.000Z

228

Nuclear space power and propulsion requirements and issues  

SciTech Connect (OSTI)

The use of nuclear power in space is going through a low point. The kinds of missions that would use nuclear power are expensive and there are few new expensive missions. Both NASA and DoD are in a mode of cheaper, faster, better, which means using what is available as much as possible and only incorporating new technology to reduce mission cost. NASA is performing Mission to Planet Earth and detailed exploration missions of Mars. These NASA missions can be done with solar-battery power subsystems and there is no need for nuclear power. The NASA mission to Pluto does require nuclear radioisotope power. Ways to reduce the power subsystem cost and the power level are being investigated. NASA is studying ways to explore beyond Mars with solar-battery power because of the cost and uncertainty in the availability and launchability of nuclear space power systems. The DoD missions are all in earth orbit and can be done with solar-battery systems. The major DoD requirement at present is to reduce costs of all their space missions. One way to do this is to develop highly efficient upper stage boosters that can be integrated with lower cost Earth to low orbit stages and still place their payloads in to higher orbits. One attractive upper stage is a nuclear bimodal (propulsion and power) engine to accomplished lower booster cost to place space assets in GEO. However this is not being pursued because of DOE`s new policy not to fund nuclear space power research and development as well as the difficulty in obtaining launch approval for nuclear propulsion and power systems.

Swerdling, M. [IR Associates, North Hills, CA (United States); Isenberg, L. [IR Associates, La Habra, CA (United States)

1995-12-31T23:59:59.000Z

229

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . • . . . .

Yen, W.W.S.

2010-01-01T23:59:59.000Z

230

Working Group Report on - Space Nuclear Power Systems and Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

addressed long-term planning for disposition of radioactive materials, development of space nuclear systems, and general needs related to these areas. The following are the...

231

LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS  

E-Print Network [OSTI]

LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC employed for analyzing reactor dynamics. Equations of this type are used for analyzing the stability of the reactor power, etc. Among these problems the question of the boundedness of reactor power bursts

Bazhenov, Maxim

232

The Decommissioning of the Trino Nuclear Power Plant  

SciTech Connect (OSTI)

Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise utilizes the full range of BNFL decommissioning experience and knowledge to develop a strategy, methodology and cost for the decommissioning of NPPs. Over the past year, a prompt decommissioning strategy for Trino has been developed. The strategy has been based on the principles of minimizing waste products that require long term storage, maximizing 'free release' materials and utilizing existing and regulatory approved technologies.

Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

2002-02-27T23:59:59.000Z

233

Radioisotope-based Nuclear Power Strategy for Exploration Systems Development  

SciTech Connect (OSTI)

Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

Schmidt, George R.; Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2006-01-20T23:59:59.000Z

234

Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power  

SciTech Connect (OSTI)

The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

Holcomb, R.S.

1992-07-01T23:59:59.000Z

235

The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as  

E-Print Network [OSTI]

Ensuring Dependable Supply ... The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as a resource capable of meeting the Nation's energy, environmental and national security-of-the-box" solutions to the full range of nuclear energy technology issues. zz Generationz

Kemner, Ken

236

Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report  

SciTech Connect (OSTI)

This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

NONE

1994-06-01T23:59:59.000Z

237

Petrography and chemistry of high-carbon fly ash from the Shawnee Power Station, Kentucky  

SciTech Connect (OSTI)

The Shawnee power station in western Kentucky consists of ten 150-MW units, eight of which burn low-sulfur (< 1 wt %) eastern Kentucky and central West Virginia coal. The other units burn medium- and high-sulfur (> 1 wt %) coal in an atmospheric fluidized-bed combustion unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25 wt %. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6% to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety, but there is a portion that is a thick-walled variety similar to a petroleum coke.

Hower, J.C.; Thomas, G.A.; Robertson, J.D.; Wong, A.S. [Univ. of Kentucky, Lexington, KY (United States); Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

1996-01-01T23:59:59.000Z

238

Petrography and chemistry of fly ash from the Shawnee Power Station, Kentucky  

SciTech Connect (OSTI)

The Shawnee Power Station in western Kentucky consists of ten 150 MW units, eight of which burn low-sulfur eastern Kentucky and central West Virginia coal. The other units bum medium and high-sulfur coal in an AFBC unit and in a research unit. The eight low-sulfur coal units were sampled in a 1992 survey of Kentucky utilities. Little between-unit variation is seen in the ash-basis major oxide and minor element chemistry. The carbon content of the fly ashes varies from 5 to 25%. Similarly, the isotropic and anisotropic coke in the fly ash varies from 6 to 42% (volume basis). Much of the anisotropic coke is a thin-walled macroporous variety but there is a portion which is a thick-walled variety similar to a petroleum coke.

Hower, J.C.; Thomas, G.A.; Wild, G.D. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Clifford, D.S.; Eady, J.D. [Tennessee Valley Authority, Chattanooga, TN (United States)

1994-12-31T23:59:59.000Z

239

ME 337C Introduction to Nuclear Power Systems ABET EC2000 syllabus  

E-Print Network [OSTI]

ME 337C ­ Introduction to Nuclear Power Systems Page 1 ABET EC2000 syllabus ME 337C ­ Introduction to Nuclear Power Systems Fall 2009 Required or Elective: Elective 2008-2010 Catalog Data: Radioactivity, nuclear interactions: fission and fusion, fission reactors, nuclear power systems, nuclear power safety

Ben-Yakar, Adela

240

atr-fugen nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Opening up the future in space with nuclear power  

SciTech Connect (OSTI)

Man's extraterrestrial development is dependent on abundant power. For example, space-based manufacturing facilities are projected to have a power demand of 300 kWe by the end of this Century, and several megawatts in the early part of next millennium. The development of the lunar resource base will result in power needs ranging from an initial 100 kW(e) to many megawatts. Human visits to Mars could be achieved using a multimegawatt nuclear electric propulsion system or high thrust nuclear rockets. Detailed exploration of the solar system will also be greatly enhanced by the availability of large nuclear electric propulsion systems. All of these activities will require substantial increases in space power - hundreds of kilowatts to many megawatts. The challenge is clear: how to effectively use nuclear energy to support humanity's expansion into space.

Buden, D.; Angelo, J. Jr.

1985-01-01T23:59:59.000Z

242

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

243

Nuclear Power for Deep-Space Missions | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Power for Deep-Space Missions Mar 06 2015 12:00 PM - 01:00 PM David Dixon, The University of Tennessee, Knoxville UT Science Forum Thompson-Boling Arena Dining room C-D,...

244

Mapping complexity sources in nuclear power plant domains  

E-Print Network [OSTI]

Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical for ensuring safe performance of both operators and the entire system. New ...

Sasangohar, Farzan

245

Risk-informed incident management for nuclear power plants  

E-Print Network [OSTI]

Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

Smith, Curtis Lee, 1966-

2002-01-01T23:59:59.000Z

246

anna nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chapter 11 Effects of the Operating Nuclear Power Plant on Marine Ecology and Environment - A Case Study of Daya Bay in China 255 You-Shao Wang Chapter 12 Microbial Leaching...

247

Development of decontamination techniques for decommissioning commercial nuclear power plants  

SciTech Connect (OSTI)

NUPEC has been developing various techniques to safely and efficiently decommission large commercial nuclear power plants. The development work, referred to as the verification tests, has been performed since 1982. The verification tests on decontamination techniques have focused on the reduction of both occupational radiation exposure and radioactive waste volume. Experiments on various decontamination methods have been carried out. Prospects of applying efficient decontamination techniques to commercial nuclear power plant decommissioning are bright due to the experimental results.

Ishikura, T.; Miwa, T.; Onozawa, T.; Ohtsuka, H. [Nuclear Power Engineering Corp., Tokyo (Japan). Plant and Components Dept.; Ishigure, K. [Univ. of Tokyo (Japan). Dept. of Quantum Engineering and System Science

1993-12-31T23:59:59.000Z

248

Boron control system for a nuclear power plant  

SciTech Connect (OSTI)

Ion exchangers which reversibly store borate ions in a temperature dependent process are combined with evaporative boric acid recovery apparatus to provide a boron control system for controlling the reactivity of nuclear power plants. A plurality of ion exchangers are operated sequentially to provide varying amounts of boric acid to a nuclear reactor for load follow operations. Evaporative boric acid recovery apparatus is utilized for major changes in the boron concentration within the nuclear reactor.

Brown, W.W.; Van der Schoot, M.R.

1980-09-30T23:59:59.000Z

249

Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993  

SciTech Connect (OSTI)

This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

Not Available

1994-08-01T23:59:59.000Z

250

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

total reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Seabrook Unit 1","1,247","10,910",100.0,"NextEr...

251

Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario Hydro`s Bruce Nuclear Generating Station `A`  

SciTech Connect (OSTI)

Ontario Hydro at the Bruce Nuclear Generating Station `A` has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants to satisfy regulatory requirements for emissions. The system will remove radionuclide and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

Day, J.E.; Baker, R.L.

1995-05-01T23:59:59.000Z

252

Aging of concrete structures in nuclear power plants  

SciTech Connect (OSTI)

The Structural Aging (SAG) Program, sponsored by the US Nuclear Regulatory Commission (USNRC) and conducted by the Oak Ridge National Laboratory (ORNL), had the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant structures for continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued service determinations. Major accomplishments under the SAG Program during the first two years of its planned five-year duration have included: development of a Structural Materials Information Center and formulation of a Structural Aging Assessment Methodology for Concrete Structures in Nuclear Power Plants. 9 refs.

Naus, D.J.; Pland, C.B. (Oak Ridge National Lab., TN (USA)); Arndt, E.G. (Nuclear Regulatory Commission, Washington, DC (USA))

1991-01-01T23:59:59.000Z

253

Infrastructure development assistance modeling for nuclear power plant  

SciTech Connect (OSTI)

The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to make the model more sophisticated as a 'semi-tailored model' so that it can be applied to a certain country reflecting its unique conditions. In accordance with its degree of established infrastructure, we can adjust or modify the model. Despite lots of benefits of using this model, there remain limitations such as time and budget constraints. These problems, however, can be addressed by cooperating with international organization such as the IAEA and other companies that share the same goal of helping newcomer countries introduce nuclear power. (authors)

Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M. [Korea Hydro and Nuclear Power Co., LTD, 23, 106 gil, Yeongdong-daero, Gangnam-gu, 153-791 (Korea, Republic of)

2012-07-01T23:59:59.000Z

254

Aging management of containment structures in nuclear power plants  

SciTech Connect (OSTI)

Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants.

Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [The Johns Hopkins Univ., Baltimore, MD (United States); Graves, H.L. III; Norris, W.E. [US Nuclear Regulatory Commission, Washington, DC (United States)

1994-12-31T23:59:59.000Z

255

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst  

E-Print Network [OSTI]

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska. This report evaluates the village electric usage patterns, wind energy resource potential, and wind

Massachusetts at Amherst, University of

256

Institute of Nuclear Power Operations 1994 annual report  

SciTech Connect (OSTI)

This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

NONE

1994-12-31T23:59:59.000Z

257

Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

258

Nuclear Power Facilities (2008) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear FacilitiesNuclearNavy

259

Sorption (Kd) measurements on cinder block and grout in support of dose assessments for Zion Nuclear Station decommissioning  

SciTech Connect (OSTI)

The Zion Nuclear Power Station is being decommissioned. ZionSolutions proposes to leave much of the below grade structures in place and to fill them with a backfill to provide structural support. Backfills under consideration include “clean” concrete demolition debris from the above grade parts of the facility, a flowable grout, cinder block construction debris and sand. A previous study (Yim, 2012) examined the sorption behavior of five nuclides (Fe-55, Co-60, Ni-63, Sr-85, and Cs-137) on concrete and local soils. This study, commissioned by ZionSolutions and conducted by the Brookhaven National Laboratory (BNL) examines the sorption behavior on cinder block and grout materials. Specifically, this study measured the distribution coefficient for four radionuclides of concern using site-groundwater and cinder block from the Zion site and a flowable grout. The distributions coefficient is a measure of the amount of the radionuclide that will remain sorbed to the solid material that is present relative to the amount that will remain in solution. A high distribution coefficient indicates most of the radionuclide will remain on the solid material and will not be available for transport by the groundwater. The radionuclides examined in this set of tests were Co-60, Ni-63, Sr-85, and Cs-137. Tests were performed following ASTM C1733-10, Standard Test Methods for Distribution Coefficients of Inorganic Species by the Batch Method. Sr-85 was used in the testing as an analogue for Sr-90 because it behaves similarly with respect to sorption and has a gamma emission that is easier to detect than the beta emission from Sr-90.

Milian L.; Sullivan T.

2014-06-24T23:59:59.000Z

260

Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels  

E-Print Network [OSTI]

Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future  

E-Print Network [OSTI]

TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, Clean Energy Can Deliver More Energy than Nuclear Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 America Has Enormous Clean Energy Potential . . . . . . . . . . . . . . . . 22

Laughlin, Robert B.

262

The potential for a nuclear renaissance : the development of nuclear power under climate change mitigation policies  

E-Print Network [OSTI]

Anthropogenic emissions of greenhouse gases are very likely to have already changed the Earth's climate, and will continue to change it for centuries if no action is taken. Nuclear power, a nearly carbon-free source of ...

Osouf, Nicolas

2007-01-01T23:59:59.000Z

263

Nuclear Regulatory Commission issuances  

SciTech Connect (OSTI)

This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

NONE

1996-03-01T23:59:59.000Z

264

Nuclear heated and powered metal excimer laser  

SciTech Connect (OSTI)

A laser uses heat and thermionic electrical output from a nuclear reactor in which heat generated by the reactor is utilized to vaporize metal lasants. Voltage output from a thermionic converter is used to create an electric discharge in the metal vapors. In one embodiment the laser vapors are excited by a discharge only. The second embodiment utilizes fission coatings on the inside of heat pipes, in which fission fragment excitation and ionization is employed in addition to a discharge. Both embodiments provide efficient laser systems that are capable of many years of operation without servicing. Metal excimers are the most efficient electronic transition lasers known with output in the visible wavelengths. Use of metal excimers, in addition to their efficiency and wavelengths, allows utilization of reactor waste heat which plagues many nuclear pumped laser concepts.

Womack, D.R.

1982-02-11T23:59:59.000Z

265

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect (OSTI)

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

266

Plume opacity investigation at a stoker-fired power generating station  

SciTech Connect (OSTI)

A public utility contacted the Conoco Coal Research Division through Consolidation Coal Company and requested technical assistance in determining the cause of a high plume opacity at one of their stoker-fired power generating stations. The sporadic occurrence of a high opacity plume (>20%) had been reported for several years. Although the utility was burning low sulfur coal, sulfuric acid mist had been suspected as the cause of the plume opacity; therefore, anhydrous ammonia had been injected into the flue gas at the ESP inlet plenums to control the plume opacity with some degree of success. However, for the last two years, the high plume opacity has occurred more frequently. The possible causes of the high plume opacity investigated were: 1) organic species emissions, 2) particulate mass loading, 3) particle size distribution, and 4) sulfuric acid emissions. The investigation included detailed sampling inside the boiler, stack, and plume areas. It was determined that the major cause of the high plume opacity was submicron particle growth at the stack exit due to sulfuric acid/water condensation. The larger particles more efficiently scattered light which resulted in the visible plume at the stack exit. The organic emissions and particulate mass loading in the stack flue gas had minimal effect on the high plume opacity. The fly ash size distribution would also have had minimal effect if the sulfuric acid had not been present.

Lewis, G.H.

1987-01-01T23:59:59.000Z

267

Use of fuel cells for improving on-site emergency power availability and reliability ad nuclear power plants  

E-Print Network [OSTI]

To assure safe shutdown of a nuclear power plant, there must always be reliable means of decay heat removal provided, in last resort, by an Emergency Core Cooling System (ECCS). Currently the majority of nuclear power ...

Akkaynak, Derya

2005-01-01T23:59:59.000Z

268

Fiber optic sensors for nuclear power plant applications  

SciTech Connect (OSTI)

Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

2012-05-17T23:59:59.000Z

269

Identifying and bounding uncertainties in nuclear reactor thermal power calculations  

SciTech Connect (OSTI)

Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

2012-07-01T23:59:59.000Z

270

Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their  

E-Print Network [OSTI]

Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

Cummings, Mary "Missy"

271

Solid state laser media driven by remote nuclear powered fluorescence  

DOE Patents [OSTI]

An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

Prelas, Mark A. (Columbia, MO)

1992-01-01T23:59:59.000Z

272

Scoping calculations of power sources for nuclear electric propulsion  

SciTech Connect (OSTI)

This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1994-05-01T23:59:59.000Z

273

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 1, FEBRUARY 2011 277 Anomaly Detection in Nuclear Power Plants via  

E-Print Network [OSTI]

in Nuclear Power Plants via Symbolic Dynamic Filtering Xin Jin, Student Member, IEEE, Yin Guo, Soumik Sarkar detection algorithm for condition monitoring of nuclear power plants, where symbolic feature extraction Innova- tive & Secure (IRIS) simulator of nuclear power plants, and its per- formance is evaluated

Ray, Asok

274

What future for nuclear power? Workshop report  

SciTech Connect (OSTI)

A Workshop on this highly controversial subject, organized by the Energy and Environment Programme of the RIIA, was held on 10th November 1997 at Green College, Oxford. The meeting was attended by some forty people from eight countries, coming from the nuclear and electricity generating industry, governments, research organizations, academic institutions, environmental pressure groups and inter-governmental organizations. In addition, subsequent to this Workshop, there have been a number of smaller, more informal discussions on various aspects of the subject. This paper summarizes the main conclusions arising from the Workshop and from these later discussions.

NONE

1998-12-31T23:59:59.000Z

275

Report on aging of nuclear power plant reinforced concrete structures  

SciTech Connect (OSTI)

The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

1996-03-01T23:59:59.000Z

276

Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR  

SciTech Connect (OSTI)

This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

Berry, D. L.

1980-05-01T23:59:59.000Z

277

A methodology for evaluating ``new`` technologies in nuclear power plants  

SciTech Connect (OSTI)

As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

Korsah, K.; Clark, R.L.; Holcomb, D.E.

1994-06-01T23:59:59.000Z

278

Space nuclear power, propulsion, and related technologies.  

SciTech Connect (OSTI)

Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

Berman, Marshall

1992-01-01T23:59:59.000Z

279

Nuclear Power - Deployment, Operation and Sustainability  

E-Print Network [OSTI]

t e su bmersion time. In addition, the high specific energy, or energy per unit weight of nuclear fuel, eliminat e s the need for consta n t refuel i n g by fleets of vulner a b l e tanke r s follo w i n g a fleet of surfa c e or subsur f a c e... onal Labora t o r y (INL) in 1989. The section of the hull containi n g the reactor rested in a ?sea tank? of water 40 feet deep and 50 feet in diameter. The purpose of the water was to help the shiel di n g designe r s stud y the ?backsca t t e r...

280

Ground-based testing of space nuclear power plants  

SciTech Connect (OSTI)

Small nuclear power plants for space applications are evaluated according to their testability in this two part report. The first part introduces the issues involved in testing these power plants. Some of the concerns include oxygen embrittlement of critical components, the test environment, the effects of a vacuum environment on materials, the practically of racing an activated test chamber, and possible testing alternative the SEHPTR, king develop at the Idaho National Engineering Laboratory. 10 refs., 6 figs., 1 tab.

McDonald, T.G.

1990-10-22T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2015  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoans | Department of- EastResiliency15 Updates

282

QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2015  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoans | Department of- EastResiliency15

283

QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY OCTOBER 2014  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoans | Department of- EastResiliency154

284

Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power  

SciTech Connect (OSTI)

Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

285

Evaluation of SO{sub 2} control technologies for three SCE&G power stations  

SciTech Connect (OSTI)

South Carolina Electric and Gas, Co. (SCE&G) commissioned a detailed engineering study evaluating flue gas desulphurization (FGD) equipment for three coal fired generating stations in 1993. Raytheon Engineers and Constructors performed the study evaluating wet and dry FGD processes at three of SCE&G`s generating stations. This paper presents the results and conclusions from the study. The following areas are discussed: (1) Station Descriptions; (2) Process Design Criteria; (3) Study Goals and Methodology; (4) Results from the Economic and Kepner-Tregoe Analysis; and (5) Study Recommendations. The paper concludes with a lessons learned section discussing issues which arose during the study.

Robinson, J.A. Jr. [South Carolina Electric and Gas, Co., Columbia, SC (United States); Wiggins, D.S. [Raytheon Engineers and Constructors, Philadelphia, PA (United States)

1995-06-01T23:59:59.000Z

286

US nuclear power plant operating cost and experience summaries  

SciTech Connect (OSTI)

NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

Kohn, W.E.; Reid, R.L.; White, V.S.

1998-02-01T23:59:59.000Z

287

Nuclear Power Plant NDE Challenges - Past, Present, and Future  

SciTech Connect (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship, not fitness for service) and with good engineering judgment. Fortuitously, those nuclear power plants were designed using defense-in-depth concepts, with nondestructive examination (NDE) an important layer, so they can tolerate almost any component failure and still continue to operate safely. In the 30+ years of reactor operation, many material failures have occurred. Unfortunately, NDE has not provided the reliability to detect degradation prior to initial failure (breaching the pressure boundary). However, NDE programs have been improved by moving from prescriptive procedures to performance demonstrations that quantify inspection effectiveness for flaw detection probability and sizing accuracy. Other improvements include the use of risk-informed strategies to ensure that reactor components contributing the most risk receive the best and most frequent inspections. Another challenge is the recent surge of interest in building new nuclear power plants in the United States to meet increasing domestic energy demand. New construction will increase the demand for NDE but also offers the opportunity for more proactive inspections. This paper reviews the inception and evolution of NDE for nuclear power plants over the past 40 years, recounts lessons learned, and describes the needs remaining as existing plants continue operation and new construction is contemplated.

Doctor, S. R. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

2007-03-21T23:59:59.000Z

288

Nuclear power grows in China`s energy mix  

SciTech Connect (OSTI)

China`s rapid economic growth in the past two decades has caused the nations`s demand for electricity to exceed its capacity. AS of 1992, with power shortages as high as 25 percent, {open_quotes}power plant operators were often forced to resort to rolling brownouts to avoid complete system breakdowns,{close_quotes} says Xavier Chen, an assistant professor with the Asian Institute of Technology`s Energy Program in Bangkok, Thailand. To keep pace with China`s economic development, Chen estimates that {open_quotes}China must increase its electricity capacity 6 to 8 percent a year each year into the foreseeable future.{close_quotes} For now, coal is transported to power plants in the rapidly developing eastern coastal provinces at great expense. Chen also notes that the environmental disadvantages of coal make it a less desirable source of energy than nuclear. Development of nuclear energy is likely to go forward for another reason: In China, there is much less opposition to nuclear power plants than in other developing nations. {open_quotes}Nuclear energy likely will plan an important role in China`s future energy mix and help close the gap between electricity production and demand,{close_quotes} Chen says.

Chen, Xavier [Institute of Technology`s Energy Program, Bangkok (Thailand)

1996-07-01T23:59:59.000Z

289

Radioactive Effluents from Nuclear Power Plants Annual Report 2007  

SciTech Connect (OSTI)

This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

2010-12-10T23:59:59.000Z

290

Radioactive Effluents from Nuclear Power Plants Annual Report 2008  

SciTech Connect (OSTI)

This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

2010-12-10T23:59:59.000Z

291

Nuclear Power Options Viability Study. Volume 4. Bibliography  

SciTech Connect (OSTI)

Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number.

Trauger, D.B.; White, J.D.; Sims, J.W. (eds.)

1986-09-01T23:59:59.000Z

292

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

293

An Approach to Autonomous Control for Space Nuclear Power Systems  

SciTech Connect (OSTI)

Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

Wood, Richard Thomas [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

294

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

295

Multimegawatt space nuclear power supply, Phase 1 Final report  

SciTech Connect (OSTI)

This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

Not Available

1989-02-17T23:59:59.000Z

296

Nuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear Power''''''''s Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Little Secret: Uranium MiningSecret:  

E-Print Network [OSTI]

,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 1 2 3 4 5 6 7 8 9 10 11 12 Coal[1] Petroleum Liquids[2] Petroleum Coke Natural Gas Other Gases[3] Nuclear Hydroelectric Conventional Other Renewables[4 Consumption Petroleum Coal Natural Gas Non-biogenic MSW and Geothermal Energy Subtotal http

Sheridan, Jennifer

297

Understanding the nature of nuclear power plant risk  

SciTech Connect (OSTI)

This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

Denning, R. S. [Ohio State Univ., 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)

2012-07-01T23:59:59.000Z

298

Rewriting the standard on the functional requirements for computers used in safety systems of nuclear power plants  

SciTech Connect (OSTI)

Because of the rapid development of state-of-the-art computer technology, a rewrite of ANSI/IEEE-ANS-7-4.3.2-1982, {open_quotes}Application Criteria for Digital Computer Systems of Nuclear Power Generating Stations,{close_quotes} was required. This article outlines the thrust of this rewrite, which is nearing the balloting process, and identifies standards and guidelines to be used in the development of a highly reliable to be used in the development of a highly reliable computer system. The rewrite activity has been in process approximately 2 yr and is a cooperative project of the American Nuclear Society (ANS) Nuclear Power Plant Standards Committee (NUPPSCO) and the Institute of Electrical and Electronics Engineers (IEEE) Nuclear Power Engineering Committee (NPEC). Because computer technology has progressed significantly since ANSI/IEEE-ANS-7-4.3.2-1982 was issued, the rewrite was a very interesting challenge to the work group. The primary difference between the 1982 version and the rewrite is that the 1982 version addressed the quality assurance aspects of the Quality criteria, which included the integration of hardware and software and subsequent verification and validation, whereas the rewrite, being a product of IEEE Std 603-1991, {open_quotes}IEEE Standard Criteria for Safety Systems for Nuclear Power Generating Stations,{close_quotes} was written to establish the minimum requirements for computer systems (hardware, software, and interfaces) used in safety systems. This article presents an introduction to the scope of the rewrite, provides a brief comment on how the work group addressed the scope, and follows with details on how the work group addressed the scope and rewrite direction. 1 fig., 1 tab.

Matras, J.R. [Science Applications International Corp., Las Vegas, NV (United States)

1991-07-01T23:59:59.000Z

299

Review of maintenance personnel practices at nuclear power plants  

SciTech Connect (OSTI)

As part of the Nuclear Regulatory Commission (NRC) sponsored Maintenance Qualifications and Staffing Project, the Pacific Northwest Laboratory (PNL) has conducted a preliminary assessment of nuclear power plant (NPP) maintenance practices. As requested by the NRC, the following areas within the maintenance function were examined: personnel qualifications, maintenance training, overtime, shiftwork and staffing levels. The purpose of the assessment was to identify the primary safety-related problems that required further analysis before specific recommendations can be made on the regulations affecting NPP maintenance operations.

Chockie, A.D.; Badalamente, R.V.; Hostick, C.J.; Vickroy, S.C.; Bryant, J.L.; Imhoff, C.H.

1984-05-01T23:59:59.000Z

300

Envelope amplifier for broadband base-station envelope tracking power amplifier  

E-Print Network [OSTI]

represents total power loss inside the envelope ampli?er.simulator can simulate the power loss by extracting andThere are three main power losses inside the envelope ampli?

Zhu, Qiuyao

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Identification of good practices in the operation of nuclear power plants  

E-Print Network [OSTI]

This work developed an approach to diagnose problems and identify good practices in the operation of nuclear power plants using the system dynamics technique. The research began with construction of the ORSIM (Nuclear Power ...

Chen, Haibo, 1975-

2005-01-01T23:59:59.000Z

302

Nuclear power plant performance assessment pertaining to plant aging in France and the United States  

E-Print Network [OSTI]

The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

Guyer, Brittany (Brittany Leigh)

2013-01-01T23:59:59.000Z

303

Viability of an expanded United States nuclear power program and its effects on energy markets  

E-Print Network [OSTI]

The four biggest energy sources in the United States are coal, crude oil, natural gas, and nuclear power. While coal and nuclear power are produced domestically, more than 70% of crude oil and 20% of natural gas is imported. ...

Khan, Tanzeer S

2006-01-01T23:59:59.000Z

304

A Roadmap to Deploy New Nuclear Power Plants in the United States...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume...

305

An examination of the pursuit of nuclear power plant construction projects in the United States  

E-Print Network [OSTI]

The recent serious reconsideration of nuclear power as a means for U.S. electric utilities to increase their generation capacity provokes many questions regarding the achievable success of future nuclear power plant ...

Guyer, Brittany (Brittany Leigh)

2011-01-01T23:59:59.000Z

306

Emptying of the Storage for Solid Radioactive Waste in the Greifswald Nuclear Power Plant  

SciTech Connect (OSTI)

On the Greifswald site, 8 WWER 440 reactor units are located and also several facilities to handle fuel and radwaste. After the reunification of Germany, the final decision was taken to decommission all these Russian designed reactors. Thus, EWN is faced with a major decommissioning project in the field of nuclear power stations. One of the major tasks before the dismantling of the plant is the complete disposal of the operational waste. Among other facilities, a store for solid radioactive waste is located on the site, which has been filled over 17 years of operation of units 1 to 4. The paper presents the disposal technology development and results achieved. This activity is the first project in the operational history of the Russian type serial reactor line WWER-440.

Hartmann, B.; Fischer, J.

2002-02-26T23:59:59.000Z

307

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

S. Commercial Nuclear Power Plants. WASH-1400. October 1975.Content of for Nuclear Power Plants. Regulatory Guide 1.101.PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSING PROCESS

Yen, W.W.S.

2010-01-01T23:59:59.000Z

308

System aspects of a Space Nuclear Reactor Power System  

SciTech Connect (OSTI)

Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

1988-01-01T23:59:59.000Z

309

Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the  

E-Print Network [OSTI]

PNNL-16840 Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North and application of resources towards developing nuclear-generated electricity and nuclear-powered desalination nations have recently expressed interest in developing nuclear energy for peaceful purposes. Many

310

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

311

Decommissioning nuclear power plants - the wave of the future  

SciTech Connect (OSTI)

The paper discusses the project controls developed in the decommissioning of a nuclear power plant. Considerations are given to the contaminated piping and equipment that have to be removed and the spent and used fuel that has to be disposed of. The storage issue is of primary concern here. The cost control aspects and the dynamics of decommissioning are discussed. The effects of decommissioning laws on the construction and engineering firms are mentioned. 5 refs.

Griggs, F.S. Jr. [Raytheon Engineers and Contractors, Cumberland City, TN (United States)

1994-12-31T23:59:59.000Z

312

Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel  

SciTech Connect (OSTI)

Evidence of the release Pu from the Fukushima Daiichi nuclear power station to the local environment and surrounding communities and estimates on fraction of total fuel inventory released

Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

2011-12-05T23:59:59.000Z

313

ASSESSING NUCLEAR POWER PLANT SAFETY AND RECOVERY FROM EARTHQUAKES USING A SYSTEM-OF-SYSTEMS  

E-Print Network [OSTI]

by Monte Carlo simulation the probability that the nuclear power plant enters in an unsafe stateASSESSING NUCLEAR POWER PLANT SAFETY AND RECOVERY FROM EARTHQUAKES USING A SYSTEM in which the plant is embedded. As a test system, we consider the impacts produced on a nuclear power plant

Paris-Sud XI, Université de

314

Empirical relations for nuclear stopping power F. S. Garnir-Monjoie  

E-Print Network [OSTI]

31 Empirical relations for nuclear stopping power F. S. Garnir-Monjoie Institut de Mathématiques, D, due to inelastic interaction with the target electrons, and the nuclear stopping power induced. The Lindhard, Scharff and Schiott theory (LSS theory) [1] shows that the nuclear stopping power is the same

Paris-Sud XI, Université de

315

Four convictions motivate this paper.1 First, nuclear power could make a signi-  

E-Print Network [OSTI]

Four convictions motivate this paper.1 First, nuclear power could make a signi½- cant contribution to climate change mitiga- tion. To do so, however, nuclear power would have to be deployed extensive- ly of rules to govern nuclear power that are the same in all countries. Second, the world is not now safe

316

A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo  

E-Print Network [OSTI]

A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div, conducted using a nuclear power plant shutdown system being developed in Korea, demonstrated in nuclear power plant's reactor protection systems. The software verification framework uses two different

317

Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications  

E-Print Network [OSTI]

C4.2 Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications and control (I&C) systems play a crucial role in the operation of nuclear power plants (NPP) and other safety is available. The use of model checking to verify two nuclear power plant related systems is described: an arc

Heljanko, Keijo

318

Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector , Redouane Seraouib  

E-Print Network [OSTI]

Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector Machine Jie.zio@ecp.fr Abstract In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP monitoring, Nuclear power plant, Point prediction hal-00790421,version1-12Jun2013 Author manuscript

Boyer, Edmond

319

PLC-Based Safety Critical Software Development for Nuclear Power Plants  

E-Print Network [OSTI]

PLC-Based Safety Critical Software Development for Nuclear Power Plants Junbeom Yoo1 , Sungdeok Cha development technique for nuclear power plants'I&C soft- ware controllers. To improve software safety, we in developing safety-critical control software for a Korean nuclear power plant, and experience to date has been

320

Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon  

E-Print Network [OSTI]

Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon Gipsa of nuclear power plants. Unfortunately, today's policies present a major drawback. Indeed, these monitoring safety constraints: nuclear power plants. Key components of such systems are motor-operated valves (MOVs

Boyer, Edmond

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices  

E-Print Network [OSTI]

Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices Marko threats to a nuclear power plant in the year 1991 and after the 9/11 events in 2001. The methodology which strength and injuries of human beings with nuclear power plant models used in probabilistic safety

Cizelj, Leon

322

Childhood leukaemia incidence below the age of 5 years near French nuclear power plants  

E-Print Network [OSTI]

Childhood leukaemia incidence below the age of 5 years near French nuclear power plants D Laurier 1 living in the vicinity of nuclear power plants in Germany. We present herein results about the incidence of childhood leukaemia in the vicinity of nuclear power plants in France for the same age range. These results

Paris-Sud XI, Université de

323

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance  

SciTech Connect (OSTI)

The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

Not Available

1980-06-01T23:59:59.000Z

324

Nuclear Power: Is It a New Clear Choice for Malaysia  

SciTech Connect (OSTI)

Energy is essential for socio-economic development. Any nation's standard of living is closely related to its access to energy. To put into perspective, the per capita electricity consumptions in developed countries of the Organisation for Economic Cooperation and Development (OECD) is currently estimated at 8600 kilowatts-hour per year as compared to the consumption rates in Malaysia and some African countries of 3300 and 50 kilowatts-hour per year, respectively. Energy is therefore an important pre-requisite for achieving the Malaysian vision of becoming a developed nation by the year 2020, in that it is needed not only for industrialization programme but also in maintaining quality of life. In Malaysia, the main concern currently is still on the supply in term of adequacy, reliability and quality; and moving slowly but steadily towards security, sustainability, environmentally friendly and contribution to climate change. With this new dimension, nuclear power emerged as a good match to a possible alternative in the comprehensive national energy policy. Many studies presented the positive aspects of nuclear power while others indicated the bad sides and potential risks. This paper will highlight some of those pros and cons as well as the potential risks beside a discussion on relevant requirements for a nuclear power programme in particular those of interest to the professionals in the physical sciences.

Besar, Idris B. [Industrial Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia) Bangi, 43000 Kajang, Selangor (Malaysia)

2008-05-20T23:59:59.000Z

325

India's nuclear power program : a study of India's unique approach to nuclear energy  

E-Print Network [OSTI]

India is in the middle of the biggest expansion of nuclear power in its history, adding 20 GWe in the next 14 years in the form of pressure water reactors and fast breeder reactors. At the same time, the United States is ...

Murray, Caitlin Lenore

2006-01-01T23:59:59.000Z

326

Conceivable new recycling of nuclear waste by nuclear power companies in their plants  

E-Print Network [OSTI]

We outline the basic principles and the needed experiments for a conceivable new recycling of nuclear waste by the power plants themselves to avoid its transportation and storage to a (yet unknown) dumping area. Details are provided in an adjoining paper and in patents pending.

Ruggero Maria Santilli

1997-04-09T23:59:59.000Z

327

Refractory metal alloys and composites for space nuclear power systems  

SciTech Connect (OSTI)

Space power requirements for future NASA and other United States missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide base line information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wire for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites will be discussed. 20 refs., 27 figs., 1 tab.

Titran, R.H.; Stephens, J.R.; Petrasek, D.W.

1988-01-01T23:59:59.000Z

328

MIT Nuclear Space Research Andrew C. Kadak  

E-Print Network [OSTI]

SELENE MIT Nuclear Space Research Andrew C. Kadak Professor of the Practice Nuclear Science with Nuclear Energy ­ Selene - Sodium-Cooled Epithermal Long-term Exploration Nuclear Engine (MS thesis) ­ The Martian Surface Reactor: An Advanced Nuclear Power Station for Manned Extraterrestrial Exploration

329

Reviewing PSA-based analyses to modify technical specifications at nuclear power plants  

SciTech Connect (OSTI)

Changes to Technical Specifications (TSs) at nuclear power plants (NPPs) require review and approval by the United States Nuclear Regulatory Commission (USNRC). Currently, many requests for changes to TSs use analyses that are based on a plant`s probabilistic safety assessment (PSA). This report presents an approach to reviewing such PSA-based submittals for changes to TSs. We discuss the basic objectives of reviewing a PSA-based submittal to modify NPP TSs; the methodology of reviewing a TS submittal, and the differing roles of a PSA review, a PSA Computer Code review, and a review of a TS submittal. To illustrate this approach, we discuss our review of changes to allowed outage time (AOT) and surveillance test interval (STI) in the TS for the South Texas Project Nuclear Generating Station. Based on this experience gained, a check-list of items is given for future reviewers; it can be used to verify that the submittal contains sufficient information, and also that the review has addressed the relevant issues. Finally, recommended steps in the review process and the expected findings of each step are discussed.

Samanta, P.K.; Martinez-Guridi, G. [Brookhaven National Lab., Upton, NY (United States); Vesely, W.E. [Science Applications International Corporation, Dublin, OH (United States)

1995-12-01T23:59:59.000Z

330

Nuclear Power: A Price Worth Paying For A Stable Climate? Will Cavendish & Robert Gross  

E-Print Network [OSTI]

and under private sector investment criteria a new nuclear station would produce electricity at more than that "nuclear energy will play an essential role in electricity production and strategies against global warming provides a significant share of the world's energy (one quarter of the UK's electricity for example

331

Cost analysis for potential modifications to enhance the ability of a nuclear plant to endure station blackout  

SciTech Connect (OSTI)

Cost estimates were required to serve as partial bases for decisions on four potential nuclear reactor facility modifications being considered in the resolution of US1 A-44, Station Blackout. The modifications constituting the four Subtasks in this report are: increasing battery capacity; adding an AC-independent charging pump for reactor coolant seal injection; increasing condensate storage tank capacity; and increasing compressed air supply for instrument air. Science and Engineering Associates, Inc., established the engineering requirements for the facility modifications; MATHTECH, Inc., supported the effort by estimating costs related to those modifications. The cost estimates contained in this report include those for the following: engineering and design; equipment, material, and structures; installation; and present worth of the annual operation and maintenance over the remaining useful life of the reactor. In addition to providing engineering requirements for the four modifications, SEA, Inc., evaluated the potential for synergistic solutions.

Clark, R.A.; Riordon, B.J.; Thomas, W.R.; Watlington, B.E.

1984-07-01T23:59:59.000Z

332

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

333

Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems  

E-Print Network [OSTI]

High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

White, Daniel B., Jr

2011-01-01T23:59:59.000Z

334

Online Sensor Calibration Assessment in Nuclear Power Systems  

SciTech Connect (OSTI)

Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

2013-06-01T23:59:59.000Z

335

Nuclear power fleets and uranium resources recovered from phosphates  

SciTech Connect (OSTI)

Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

2013-07-01T23:59:59.000Z

336

Underwater nuclear power plants: improved safety, environmental compatibility and efficiency  

SciTech Connect (OSTI)

The further development of nuclear power engineering depends on the creation of a new generation of nuclear power plant (NPP) projects that have a high degree of safety. Decisions ensuring secure NPP exploitation must be based on the possibility of eliminating or localizing accidents. Using environmental properties to achieve secure NPP exploitation and accident elimination leads to suggest the construction of NPPs in water. An efficient way to provide energy to remote coastal areas is through use of floatable construction of prefabricated units. Floatable construction raises the quality of works, reduces expenditures on industrial facilities, and facilities building conditions in districts with extreme climatic conditions. A type of NPP that is situated on a shelf with the reactor compartment placed at the sea bottom is proposed. The underwater location of the reactor compartment on the fixed depth allows the natural water environment conditions of natural hydrostatic pressure, heat transfer and circulation to provide NPP safety. An example of new concept for power units with under-water localization of the reactor compartment is provided by the double-block NPP in a VVER reactor.

Galustov, K.Z.; Abadjyan, K.A.; Pavlov, A.B.

1991-01-01T23:59:59.000Z

337

Refractory alloy technology for space nuclear power applications  

SciTech Connect (OSTI)

Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

1984-01-01T23:59:59.000Z

338

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

Nero, A.V.

2010-01-01T23:59:59.000Z

339

Nuclear Power 2010 Program Dominion Virginia Power Cooperative Project U.S. Department of Energy Cooperative Agreement DE-FC07-05ID14635 Construction and Operating License Demonstration Project Final Report  

SciTech Connect (OSTI)

This report serves to summarize the major activities completed as part of Virginia Electric and Power Company's North Anna construction and operating license demonstration project with DOE. Project successes, lessons learned, and suggestions for improvement are discussed. Objectives of the North Anna COL project included preparation and submittal of a COLA to the USNRC incorporating ESBWR technology for a third unit a the North Anna Power Station site, support for the NRC review process and mandatory hearing, obtaining NRC approval of the COLA and issuance of a COL, and development of a business case necessary to support a decision on building a new nuclear power plant at the North Anna site.

Eugene S. Grecheck

2010-11-30T23:59:59.000Z

340

Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems  

E-Print Network [OSTI]

, use of electric primary propulsion in flight systems has been limited to low-power, solar electric thruster output power are identified. Design evolutions are presented for three thrusters that would1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)  

Reports and Publications (EIA)

Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

2010-01-01T23:59:59.000Z

342

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

SciTech Connect (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

343

Nuclear power reactor education and training at the Ford nuclear reactor  

SciTech Connect (OSTI)

Since 1977, staff members of the University of Michigan's Ford nuclear reactor have provided courses and reactor laboratory training programs for reactor operators, engineers, and technicians from seven electric utilities, including Cleveland Electric Illuminating, Consumers Power, Detroit Edison, Indiana and Michigan Electric, Nebraska Public Power, Texas Utilities Generating Company, and Toledo Edison. Reactor laboratories, instrument technician training, and reactor physics courses have been conducted at the university. Courses conducted at plant sites include reactor physics, thermal sciences, materials sciences, and health physics and radiation protection.

Burn, R.R.

1989-01-01T23:59:59.000Z

344

Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant  

SciTech Connect (OSTI)

The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

Meijing Wu; Guozhang Shen [Qinshan Nuclear power company (China)

2006-07-01T23:59:59.000Z

345

Float level switch for a nuclear power plant containment vessel  

DOE Patents [OSTI]

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

Powell, James G. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

346

Float level switch for a nuclear power plant containment vessel  

DOE Patents [OSTI]

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

Powell, J.G.

1993-11-16T23:59:59.000Z

347

Aging management guideline for commercial nuclear power plants - heat exchangers  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

1994-06-01T23:59:59.000Z

348

Novel power system demonstrated for space travel | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNationalNewportBig EddyofSecurity Administration Novel power

349

Algorithms for Incorporation of Dynamic Recovery in Estimating Frequency of Critical Station Blackout  

E-Print Network [OSTI]

This thesis involves exploring enhancement of estimating the probability of a critical station blackout in nuclear power plant operations by the use of direct numerical evaluation of multidimensional nonrecovery integrals. This requires development...

Rodi, Paul J.

2012-07-16T23:59:59.000Z

350

Divisional isolation using electro-pneumatic controls at Entergy`s River Bend Power Station  

SciTech Connect (OSTI)

In 1991, The Service Water System at River Bend Nuclear Plant was modified from an open flume system to a closed system. Closing the system presented some unique challenges to the Design Engineering staff with respect to compliance to The Nuclear Regulatory Commission`s Regulatory Guide 1.75 (RG 1.75). This paper will explain the mechanical and electrical changes made to the plant in order to maintain compliance with the applicable regulations and the reasoning for the design decisions involved.

Finkenaur, R.G. III [Entergy Operations, Inc., St. Francisville, LA (United States). River Bend Station

1995-10-01T23:59:59.000Z

351

Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM  

E-Print Network [OSTI]

Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM ROUNDTABLE Roundtable > Nuclear power and climate change Nuclear power and climate change In Progress: 5 September 2007 When considering ways to limit carbon dioxide emissions

Berry, R. Stephen

352

Summary of space nuclear reactor power systems, 1983--1992  

SciTech Connect (OSTI)

This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

Buden, D.

1993-08-11T23:59:59.000Z

353

Definition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear Electric Propulsion and Power Systems  

E-Print Network [OSTI]

Nuclear Electric Propulsion and Power Systems By Bryan K. Smith Submitted to the System Design, expansion and screening of Nuclear Electric Propulsion and Power concepts capable of achieving planetaryDefinition, Expansion and Screening of Architectures for Planetary Exploration Class Nuclear

354

Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.  

E-Print Network [OSTI]

Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc. Reactor Type a nuclear power plant. Plant was Entergy, a Boiling Water Reactor (BWR) type. Built in the 80's, it has of the veteran plant workers. The presentation gave the nuclear plant engineering basics and built

Ervin, Elizabeth K.

355

Search of Axions from a Nuclear Power Reactor with a High-Purity Germanium Detector  

E-Print Network [OSTI]

A search of axions produced in nuclear transitions was performed at the Kuo-Sheng Nuclear Power Station with a high-purity germanium detector of mass 1.06 kg at a distance of 28 m from the 2.9 GW reactor core. The expected experimental signatures were mono-energetic lines produced by their Primakoff or Compton conversions at the detector. Based on 459.0/96.3 days of Reactor ON/OFF data, no evidence of axion emissions were observed and constraints on the couplings $\\gagg$ and $\\gaee$ versus axion mass $m_a$ within the framework of invisible axion models were placed. The KSVZ and DFSZ models can be excluded for 10^4 eV < m_a < 10^6 ~eV. Model-independent constraints on \\gagg \\gv1 < 7.7 X 10^{-9} GeV^{-2} for m_{a} < 10^5 eV and \\gaee \\gv1 < 1.3 X 10^{-10} for m_{a} < 10^6 eV at 90% confidence level were derived. This experimental approach provides a unique probe for axion mass at the keV--MeV range not accessible to the other techniques.

H. M. Chang; TEXONO Collaboration

2007-01-21T23:59:59.000Z

356

Non-nuclear power sources for deep space  

SciTech Connect (OSTI)

Electric propulsion and non-nuclear power can be used in tandem as a replacement for the current chemical booster and radioisotope thermoelectric generators now in use for deep space applications (i.e., to the asteroid belt and beyond). In current generation systems, electric propulsion is usually considered to be impractical because of the lack of high power for deep space, and non-nuclear power is thought to be impractical partly due to its high mass. However, when taken in combination, a solar powered electric upper stage can provide ample power and propulsion capability for use in deep space. Radioisotope thermoelectric generator (RTG) systems have generally been selected for missions only when other systems are absolutely unavailable. The disadvantages of radioisotopes include the need for nuclear safety as another dimension of concern in payload integration; the lack of assured availability of plutonium in the post-cold-war world; the enormous cost of plutonium-238; and the system complexity introduced by the need to continuously cool the system during the pre-launch phase. A conservative estimate for the total power for the solar array at beginning of life (BOL) may be in the range of 25 kW in order to provide 500 W continuous power at Jupiter. The availability of {approximately} 25 kW(e) in earth orbit raises the interesting possibility of coupling electric propulsion units to this free electric power. If electric propulsion is used to raise the probe from low-earth-orbit to an earth-escape trajectory, the system could actually save on low-earth orbit mass. Electric propulsion could be used by itself in a spiral trajectory orbit raising maneuver to earth escape velocity, or it could be used in conjunction with a chemical upper stage (either solid rocket or liquid), which would boost the payload to an elliptical orbit. The concept is to begin the Earth-Jupiter trip with a swing-by near the Sun close to the orbit of Venus and perhaps even closer if thermal loads can be tolerated. During the solar swing-by, much more power will be produced by the solar panels, allowing the spacecraft's velocity to be increased significantly. The outbound leg of the journey can, therefore, be made much more quickly than with the classical trajectory. For the purposes of a Jupiter mission, it is assumed that 20 km/sec total delta-v would be required. For a payload envelope of 17,304 kg, a 1,900 sec Isp capability means that 11,386 kg of propellant would have to be consumed, leaving 5,917 kg for the mass of the probe plus dry mass of the upper stage. The thruster subsystem would require 765 kg of thruster subsystem mass, and probably less. Assuming tanks, regulators and valves amount to 10% of the propellant mass (very likely a pessimistic assumption), it is possible to assign a mass of 1,150 kg for the tankage subsystem. This results in a mass allowance of at least 4,000 kg for the probe. This compares favorably with the dry mass of 1,637 kg for Galileo, for example, and suggests that more than adequate margin exists. If the payload margin is used for battery storage, flyby missions to the outer planets may be possible.

Kennel, E.B.; Tang, C.; Santarius, J.F.

1998-07-01T23:59:59.000Z

357

Compiling Utility Requirements For New Nuclear Power Plant Project  

SciTech Connect (OSTI)

Teollisuuden Voima Oy (TVO) submitted in November 2000 to the Finnish Government an application for a Decision-in-Principle concerning the construction of a new nuclear power plant in Finland. The actual investment decision can be made first after a positive decision has been made by the Government and the Parliament. Parallel to the licensing process, technical preparedness has been upheld so that the procurement process can be commenced without delay, when needed. This includes the definition of requirements for the plant and preliminary preparation of bid inquiry specifications. The core of the technical requirements corresponds to the specifications presented in the European Utility Requirement (EUR) document, compiled by major European electricity producers. Quite naturally, an amount of modifications to the EUR document are needed that take into account the country- and site-specific conditions as well as the experiences gained in the operation of the existing NPP units. Along with the EUR-related requirements concerning the nuclear island and power generation plant, requirements are specified for scope of supply as well as for a variety of issues related to project implementation. (author)

Patrakka, Eero [Teollisuuden Voima Oy, 27160 Olkiluoto (Finland)

2002-07-01T23:59:59.000Z

358

Dominant Nuclear Outflow Driving Mechanisms in Powerful Radio Galaxies  

E-Print Network [OSTI]

In order to identify the dominant nuclear outflow mechanisms in Active Galactic Nuclei, we have undertaken deep, high resolution observations of two compact radio sources (PKS 1549-79 and PKS 1345+12) with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope. Not only are these targets known to have powerful emission line outflows, but they also contain all the potential drivers for the outflows: relativistic jets, quasar nuclei and starbursts. ACS allows the compact nature (nuclear position angles of both the optical emission line and radio data. There is no evidence for bi-conical emission line features on the large-scale and there is a divergance in the relative position angles of the optical and radio structure. This enables us to exclude starburst driven outflows. However, we are unable to clearly distinguish between radiative AGN wind driven outflows and outflows powered by relativistic radio jets. The small scale bi-conical features, indicative of such mechanisms could be below the resolution limit of ACS, especially if aligned close to the line of sight. In addition, there may be offsets between the radio and optical nuclei induced by heavy dust obscuration, nebular continuum or scattered light from the AGN.

Dan Batcheldor; Clive Tadhunter; Joanna Holt; Raffaella Morganti; Christopher P. O'Dea; David J. Axon; Anton Koekemoer

2007-02-20T23:59:59.000Z

359

NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE  

SciTech Connect (OSTI)

A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

Sherman, S

2008-09-22T23:59:59.000Z

360

The Use of Thorium within the Nuclear Power Industry - 13472  

SciTech Connect (OSTI)

Thorium is 3 to 4 times more abundant than uranium and is widely distributed in nature as an easily exploitable resource in many countries. Unlike natural uranium, which contains ?0.7% fissile {sup 235}U isotope, natural thorium does not contain any fissile material and is made up of the fertile {sup 232}Th isotope only. Therefore thorium and thorium-based fuel as metal, oxide or carbide, has been utilized in combination with fissile {sup 235}U or {sup 239}Pu in nuclear research and power reactors for conversion to fissile {sup 233}U, thereby enlarging fissile material resources. During the pioneering years of nuclear energy, from the mid 1950's to mid 1970's, there was considerable interest worldwide to develop thorium fuels and fuel cycles in order to supplement uranium reserves. Thorium fuels and fuel cycles are particularly relevant to countries having large thorium deposits but very limited uranium reserves for their long term nuclear power programme. The feasibility of thorium utilization in high temperature gas cooled reactors (HTGR), light water reactors (LWR), pressurized heavy water reactors (PHWRs), liquid metal cooled fast breeder reactors (LMFBR) and molten salt breeder reactors (MSBR) were demonstrated. The initial enthusiasm for thorium fuels and fuel cycles was not sustained among the developing countries later, due to new discovery of uranium deposits and their improved availability. However, in recent times, the need for proliferation-resistance, longer fuel cycles, higher burnup, and improved waste form characteristics, reduction of plutonium inventories and in situ use of bred-in fissile material has led to renewed interest in thorium-based fuels and fuel cycles. (authors)

Miller, Keith [The UK's National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington WA3 6AE (United Kingdom)] [The UK's National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington WA3 6AE (United Kingdom)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Power laws and fractal behavior in nuclear stability, atomic weights and molecular weights  

E-Print Network [OSTI]

Power laws and fractal behavior in nuclear stability, atomic weights and molecular weights V. Paar and molecular weights. In Section 2 we introduce the power law for the description of the line of nuclear, Bijeniccka 32, 10000 Zagreb, Croatia Accepted 15 January 2002 Abstract A power law is introduced

Pavin, Nenad

362

Development of a Societal-Risk Goal for Nuclear Power Safety  

SciTech Connect (OSTI)

The safety-goal policy of the Nuclear Regulatory Commission (NRC) has never included a true societal-risk goal. The NRC did acknowledge that the original goal for the risk of latent cancer facilities “was an individual risk goal not related to the number of people involved,” and stated that “a true societal risk goal would place a limit on the aggregate number of people affected.” However, this limitation was never satisfactorily addressed. Moreover, the safety goal has historically focused primarily on fatalities and latent health effects, while experience with actual nuclear accidents has shown that societal disruption can be significant even in accidents that yield only small to modest numbers of fatalities. Therefore, we have evaluated the social disruption effects from severe reactor accidents as a basis to develop a societal-risk goal for nuclear power plants, considering both health effects and non-health concerns such as property damage and land interdiction. Our initial analysis considered six different nuclear power plant sites in the U.S. for Boiling Water Reactors and Pressurized Water Reactors. The accident sequences considered for these two reactor types were station blackout sequences (both short-term and long-term SBO) as well as an STSBO with RCIC failure for the BWR and a Steam Generator Tube Rupture for the PWR. The source term release was an input in a RASCAL calculation of the off-site consequences using actual site-based weather data for each of the six plant sites randomly selected over a two-year period. The source term release plumes were then compared to Geographical Information System data for each site to determine the population affected and that would need to be evacuated to meet current emergency preparedness regulations. Our results to date suggest that number of people evacuated to meet current protective action guidelines appears to be a good proxy for disruption -- and, unlike other measures of disruption, has the advantage of being relatively straightforward to calculate for a given accident scenario and a given geographical location and plant site. Revised safety goals taking into account the potential for societal disruption could in principle be applied to the current generation of nuclear plants, but could also be used in evaluating and siting new technologies, such as small modular light water reactors, advanced Gen-IV high-temperature reactors, as well as reactor designs with passive safety features such as filtered vented containments.

Vicki Bier; Michael Corradini; Robert Youngblood; Caleb Roh; Shuji Liu

2014-06-01T23:59:59.000Z

363

The future of nuclear power in the United States : economic and regulatory challenges  

E-Print Network [OSTI]

This paper examines the economic and regulatory challenges that must be faced by potential investors in new nuclear power plants in the United States. The historical development of the existing fleet of over 100 nuclear ...

Joskow, Paul L.

2006-01-01T23:59:59.000Z

364

U.S. nuclear power plants as terrorist targets : threat perception and the media  

E-Print Network [OSTI]

In recent history, nuclear engineers and the nuclear power industry have been primarily concerned with two things: safety and waste. In the past few years, a third concern has risen to join these two at the top: terrorism. ...

Laughter, Mark, 1980-

2005-01-01T23:59:59.000Z

365

Personnel supply and demand issues in the nuclear power industry. Final report of the Nuclear Manpower Study Committee  

SciTech Connect (OSTI)

The anticipated personnel needs of the nuclear power industry have varied widely in recent years, in response to both increasing regulatory requirements and declining orders for new plants. Recent employment patterns in the nuclear energy field, with their fluctuations, resemble those of defense industries more than those traditionally associated with electric utilities. Reactions to the accident at Three Mile Island Unit 2 by industry and regulators have increased the demand for trained and experienced personnel, causing salaries to rise. Industry, for example, has established several advisory organizations like the Institute for Nuclear Power Operations (INPO). At the same time, the US Nuclear Regulatory Commission (NRC) has imposed many new construction and operating requirements in an effort to take advantage of lessons learned from the Three Mile Island incident and to respond to the perceived public interest in better regulation of nuclear power. Thus, at present, utilities, architect-engineer firms, reactor vendors, and organizations in the nuclear development community have heavy workloads.

Not Available

1981-01-01T23:59:59.000Z

366

Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station  

SciTech Connect (OSTI)

During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

2012-06-01T23:59:59.000Z

367

Intra- and inter-unit variation in fly ash petrography: Examples from a western Kentucky power station  

SciTech Connect (OSTI)

Fly ash was collected from eight mechanical and ten baghouse hoppers at each of twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of low-sulfur, high volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical units. The coarser mechanical fly ash showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbons and total coke; the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in ratios of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units.

Hower, J.C.; Rathbone, R.F. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Goodman, J. [Prestonburg High School, KY (United States)

1998-12-31T23:59:59.000Z

368

Nuclear Rocket Development Station at the Nevada Test Site | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed| Department ofDC.Navy UnitedManagement

369

PROJECT REPORT Energy Management for EV Charge Station in Distributed Power System  

E-Print Network [OSTI]

of few batteries which connected to the DPS generator, super capacitors(or other energy storage device capacitors, we want to obtain an optimal battery and super capacitor discharging schedule from distributed. Then the second one is conventional power grid will only connected to super capacitors and charge them when needed

He, Lei

370

Aging assessment of surge protective devices in nuclear power plants  

SciTech Connect (OSTI)

An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters.

Davis, J.F.; Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States)] [Florida Univ., Gainesville, FL (United States)

1996-01-01T23:59:59.000Z

371

Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992  

SciTech Connect (OSTI)

As part of the Tampa Electric Polk Power Unit No. 1, a Texaco pressurized, oxygen-blown entrained-flow coal gasifier will convert approximately 2300 tons per day of coal (dry basis) into a medium-BTU fuel gas with a heat content of about 250 BTU/scf (LHV). Syngas produced in the gasifier flows through a high-temperature heat recovery unit which cools the gases prior to entering two parallel clean-up areas. A portion (up to 50%) of the hot syngas is cooled to 1000{degrees}F and passed through a moving bed of zinc titanate sorbent which removed sulfur containing components of the fuel gas. The project will be the first in the world to demonstrate this advanced metal oxide hot gas desulfurization technology at a commercial scale. The remaining portion of the syngas is cooled to 400{degrees}F for conventional acid gas removal. This portion of the plant is capable of processing between 50% and 100% of the dirty syngas. The cleaned low-BTU syngas is then routed to the combined cycle power generation system where it is mixed with air and burned in the gas turbine combustor. Heat is extracted from the expanded exhaust gases by a heat recovery steam generator to produce high pressure steam. This steam, along with the steam generated in the gasification process, drives a steam turbine to generate an additional 132MW of power. Internal process power consumption is approximately 62MW, and includes power for coal grinding, air separation, and feed pumps. Net output from the IGCC demonstration plant will be 260MW.

none,

1993-10-01T23:59:59.000Z

372

Chernobyl doses. Volume 3. Habitat and vegetation near the Chernobyl Nuclear Reactor Station. Technical report, 29 September 1987-28 February 1992  

SciTech Connect (OSTI)

This volume presents a detailed exposition on the soils, climate, and vegetation of the Poles'ye region of Ukraine and Belorussia with emphasis on the area around the Chernobyl Nuclear Reactor Station. This data provides background for interpretation of multispectral satellite imagery of the area. Volume 1 uses these images and the information of this report to analyze the radiation response of the canopy of the coniferous forests in the immediate vicinity of the reactor station after the accident of 26 April 1986.... Chernobyl, Forest damage, Landsat, Change detection, Conifer stress, Fallout, Ionizing radiation, Multispectral imagery.

Painter, E.L.; Whicker, F.W.

1993-01-01T23:59:59.000Z

373

Study of seismic design bases and site conditions for nuclear power plants  

SciTech Connect (OSTI)

This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches.

Not Available

1980-04-01T23:59:59.000Z

374

Aging of safety class 1E transformers in safety systems of nuclear power plants  

SciTech Connect (OSTI)

This report discusses aging effects on safety-related power transformers in nuclear power plants. It also evaluates maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission`s (NRC`s) Nuclear Plant-Aging Research approach. It investigates the materials used in transformer construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes transformer failure events reported in various databases, and evaluates maintenance practices. Databases maintained by the nuclear industry were analyzed to evaluate the effects of aging on the operation of nuclear power plants.

Roberts, E.W.; Edson, J.L.; Udy, A.C. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1996-02-01T23:59:59.000Z

375

Damodar Valley Corporation, Chandrapura Unit 2 Thermal Power Station Residual Life Assessment Summary report  

SciTech Connect (OSTI)

The BHEL/NTPC/PFC/TVA teams assembled at the DVC`s Chadrapura station on July 19, 1994, to assess the remaining life of Unit 2. The workscope was expanded to include major plant systems that impact the unit`s ability to sustain generation at 140 MW (Units 1-3 have operated at average rating of about 90 MW). Assessment was completed Aug. 19, 1994. Boiler pressure parts are in excellent condition except for damage to primary superheater header/stub tubes and economizer inlet header stub tubes. The turbine steam path is in good condition except for damage to LP blading; the spar rotor steam path is in better condition and is recommended for Unit 2. Nozzle box struts are severely cracked from the flame outs; the cracks should not be repaired. HP/IP rotor has surface cracks at several places along the steam seal areas; these cracks are shallow and should be machined out. Detailed component damage assessments for above damaged components have been done. The turbine auxiliary systems have been evaluated; cooling tower fouling/blockage is the root cause for the high turbine back pressure. The fuel processing system is one of the primary root causes for limiting unit capacity. The main steam and hot reheat piping systems were conservatively designed and have at least 30 years left;deficiencies needing resolution include restoration of insulation, replacement of 6 deformed hanger clamp/bolts, and adjustment of a few hanger settings. The cold reheat piping system is generally in good condition; some areas should be re-insulated and the rigid support clamps/bolts should be examined. The turbine extraction piping system supports all appeared to be functioning normally.

NONE

1995-02-01T23:59:59.000Z

376

Management of aging of nuclear power plant containment structures  

SciTech Connect (OSTI)

Research addressing aging management of nuclear power plant concrete and steel containment structures is summarized. Accomplishments related to concrete containment structures include formation of a materials` property database; an aging assessment methodology to identify critical structures and degradation factors; guidelines and evaluation criteria for use in condition assessments; and a time-dependent reliability-based methodology for condition assessments and estimations of future performance. Under the steel containments and liners activity, a degradation assessment methodology has been developed, mathematical models that describe time-dependent changes in the containment due to aggressive environmental factors have been identified, and statistical data supporting the use of these models in time-dependent reliability analysis have been summarized.

Naus, D.; Oland, C.B. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.; Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering; Norris, W.E.; Graves, H.L. III [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1998-06-01T23:59:59.000Z

377

Prognostics and Life Beyond 60 for Nuclear Power Plants  

SciTech Connect (OSTI)

Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and periodic in service inspection (ISI) for passive systems: there is growing interest in deploying on-line monitoring. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to and prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

Leonard J. Bond; Pradeep Ramuhalli; Magdy S. Tawfik; Nancy J. Lybeck

2011-06-01T23:59:59.000Z

378

Aging management guideline for commercial nuclear power plants-pumps  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D. [MDC-Ogden Environmental and Energy Services, Southfield, MI (United States)

1994-03-01T23:59:59.000Z

379

Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors  

E-Print Network [OSTI]

The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

Gibbs, Jonathan Paul

2008-01-01T23:59:59.000Z

380

A holistic investigation of complexity sources in nuclear power plant control rooms  

E-Print Network [OSTI]

The nuclear power community in the United States is moving to modernize aging power plant control rooms as well as develop control rooms for new reactors. New generation control rooms, along with modernized control rooms, ...

Sasangohar, Farzan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Japanese set to direct `sun-power' nuclear reactor in France September 16, 2005  

E-Print Network [OSTI]

Japanese set to direct `sun-power' nuclear reactor in France September 16, 2005 Japan has been as the site for the reactor, designed to emulate the power of the sun, after Tokyo withdrew its bid to host

382

An evolution of nozzle design: The low NOx burner experience at the Baldwin Power Station  

SciTech Connect (OSTI)

Illinois Power Company (IPC) installed low NO{sub x} burners on Baldwin Unit 3 in the Spring of 1994. Although the NO{sub x} reduction performance of these burners has been outstanding, IPC suffered catastrophic nozzle failure in the first 8 weeks of operation. The nozzles were then modified and later, replaced. Within 1 week of operation, 2 of the new nozzles also failed. This paper traces the development of the original nozzle, the influences-of other nozzle failures on its design, the determination of the cause of the original and subsequent failures, and the current state of the nozzles.

Forney, D.W. [Illinois Power Co., Decatur, IL (United States); Murray, D.G. [Rolls Royce Industrial Power, Inc., Atlanta, GA (United States); Beal, P.R. [Rolls-Royce Industrial Power, Inc., Derby (United Kingdom)

1996-01-01T23:59:59.000Z

383

Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario hydro`s Bruce nuclear generating station {open_quotes}A{close_quotes}  

SciTech Connect (OSTI)

Ontario Hydro at the Bruce Nuclear Generating Station {open_quotes}A{close_quotes} has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

Day, J.E.; Baker, R.L. [ADTECHS Corporation, Herndon, VA (United States)

1994-12-31T23:59:59.000Z

384

atucha nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal...

385

a-1 nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal...

386

almaraz nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal...

387

angra nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal...

388

angra-1 nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal...

389

Microsoft PowerPoint - Project Briefing for Nuclear Energy Advisory...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Nuclear Plant Next Generation Nuclear Plant . Project Briefing for . Nuclear Energy Advisory Committee uc ea e gy d so y Co ttee Greg Gibbs Director NGNP Project...

390

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect (OSTI)

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

391

Nuclear Regulatory Commission Handling of Beyond Design Basis Events for Nuclear Power Reactors  

Broader source: Energy.gov [DOE]

Presenter: Bill Reckley, Chief, Policy and Support Branch, Japan Lessons-Learned Project Directorate, Office of Nuclear Reactor Regulation, US Nuclear Regulatory Commission US Nuclear Regulatory Commission

392

Feature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M. Edwards and Asok Ray  

E-Print Network [OSTI]

Feature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M monitoring of nuclear power plants (NPP) is one of the key issues addressed in nuclear energy safety research is performed during each nuclear power plant refueling outage, which may not be cost effective [1

Ray, Asok

393

A solar powered distillation plant and pump station for use in ocean side desert areas  

SciTech Connect (OSTI)

There are thousands of miles of ocean shoreline which could sustain a productive human existence if sufficient fresh water were available for human consumption and for irrigation of crops. While solar stills can be built to produce fresh water at or close to sea level, raising water to a height sufficient to irrigate crops, even with minimum water usage crops, requires a significant amount of energy. This paper describes a ``no-external power`` process by which seawater can be purified and raised to a height above sea level sufficient to carry on a productive living in certain areas of the world. This device, the Solar Evaporation and Pumping System (SEAPS) is described as to function and areas of use.

Dearien, J.A.; Priebe, S.J.

1994-12-31T23:59:59.000Z

394

EIS-0036: Coal Conversion Program, New England Power Company, Brayton Point Generating Station Plants 1, 2 and 3, Sommerset, Bristol County, Massachusetts  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this EIS to evaluate the site-specific environmental impacts of issuing a Notice of Effectiveness to New England Power Company's Brayton Point Generating Station, Units 1, 2 and 3 to prohibit burning of gas or oil as the primary source of fuel.

395

assisting nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Control 1 61500 Network Assisted Power Control for Wireless Data David lesson of cellular telephone network operation is that effective power control is essential...

396

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

397

Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station  

E-Print Network [OSTI]

This final article about the CHOOZ experiment presents a complete description of the electron antineutrino source and detector, the calibration methods and stability checks, the event reconstruction procedures and the Monte Carlo simulation. The data analysis, systematic effects and the methods used to reach our conclusions are fully discussed. Some new remarks are presented on the deduction of the confidence limits and on the correct treatment of systematic errors.

M. Apollonio; A. Baldini; C. Bemporad; E. Caffau; F. Cei; Y. Declais; H. de Kerret; B. Dieterle; A. Etenko; L. Foresti; J. George; G. Giannini; M. Grassi; Y. Kozlov; W. Kropp; D. Kryn; M. Laiman; C. E. Lane; B. Lefievre; I. Machulin; A. Martemyanov; V. Martemyanov; L. Mikaelyan; D. Nicolo; M. Obolensky; R. Pazzi; G. Pieri; L. Price; S. Riley; R. Reeder; A. Sabelnikov; G. Santin; M. Skorokhvatov; H. Sobel; J. Steele; R. Steinberg; S. Sukhotin; S. Tomshaw; D. Veron; V. Vyrodov

2003-01-13T23:59:59.000Z

398

Closed Brayton cycle power conversion systems for nuclear reactors :  

SciTech Connect (OSTI)

This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

2006-04-01T23:59:59.000Z

399

Pacific Basin Nuclear Conference (PBNC 2012), BEXCO, Busan, Korea, March 18 ~ 23, 2012 CHALLENGES OF CYBER SECURITY FOR NUCLEAR POWER PLANTS  

E-Print Network [OSTI]

PBNC 2012 CHALLENGES OF CYBER SECURITY FOR NUCLEAR POWER PLANTS Kwangjo Kim KAIST, Daejeon, Korea.kim@kustar.ac.ae Abstract Nuclear Power Plants (NPPs) become one of the most important infrastructures in providing improvement. 1. Introduction Nuclear Power Plants (NPPs) become one of the most important infrastructures

Kim, Kwangjo

400

A Literature Review on Ruthenium Behaviour in Nuclear Power Plant Severe Accidents  

E-Print Network [OSTI]

A Literature Review on Ruthenium Behaviour in Nuclear Power Plant Severe Accidents C. MUN , L Literature Review on Ruthenium Behaviour in Nuclear Power Plant Severe Accidents C. MUN a , L. CANTREL a , C Accidents Majeurs (DPAM), CEN Cadarache - France 1 b Commissariat à l'Energie Atomique (CEA), Direction de l'Energie

Boyer, Edmond

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Safety of nuclear power reactors in the former Eastern European countries  

SciTech Connect (OSTI)

This article discusses the safety of nuclear power plants in the former Eastern European countries (including the former Soviet Union). The current international design fabrication, construction, operation, safely, regulatory standards and practices, and ways to resolve plant problems are addressed in light of experience with the Western nuclear power development programs. 9 refs., 4 figs.

Chakraborty, S. [Swiss Federal Nuclear Safety Inspectorate, Villigen (Switzerland)

1995-01-01T23:59:59.000Z

402

Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting  

SciTech Connect (OSTI)

Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

2013-03-01T23:59:59.000Z

403

Nuclear Power: a Hedge against Uncertain Gas and Carbon Prices?  

E-Print Network [OSTI]

conducted in Belgium (Ampere, 2000), the U.K. (RAE, 2004), Finland (Tarjanne and Rissanen, 2000), France (Dideme, 2003), and the USA (Deutch et al., 2003, and Tolley et al., 2004). The table shows wide differences in the results, arising mainly from... Belgium (Ampere) Finland (Tarjanne) France (DGEMP) UK (RAE) USA (Deutch et al., MIT) USA (Tolley et al., University of Chicago) Date 2000 2001 2003 2004 2003 2004 Nuclear CCGT Nuclear CCGT Nuclear CCGT Nuclear CCGT Nuclear CCGT...

Roques, Fabien A; Nuttall, William J; Newbery, David; de Neufville, Richard

2006-03-14T23:59:59.000Z

404

Power-Law Rheology of Isolated Nuclei with Deformation Mapping of Nuclear Substructures  

E-Print Network [OSTI]

Power-Law Rheology of Isolated Nuclei with Deformation Mapping of Nuclear Substructures Kris Noel-induced changes in genome expression as well as remodeling of nuclear architecture in development and disease motivate a deeper understanding of nuclear mechanics. Chromatin and green fluorescent protein-lamin B

Discher, Dennis

405

Nuclear Power: "Made in China" Andrew C. Kadak, Ph.D.  

E-Print Network [OSTI]

Nuclear Power: "Made in China" Andrew C. Kadak, Ph.D. Professor of the Practice Department of Nuclear Science and Engineering Massachusetts Institute of Technology Introduction There is no doubt alone would be a tremendous challenge. In the past, China had shunned nuclear energy expansion due

406

Aging of Class 1E batteries in safety systems of nuclear power plants  

SciTech Connect (OSTI)

This report presents the results of a study of aging effects on safety-related batteries in nuclear power plants. The purpose is to evaluate the aging effects caused by operation within a nuclear facility and to evaluate maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission's (NRC's) Nuclear Plant-Aging Research approach and investigates the materials used in battery construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes battery-failure events reported in various data bases, and evaluates recommended maintenance practices. Data bases that were analyzed included the NRC's Licensee Event Report system, the Institute for Nuclear Power Operations' Nuclear Plant Reliability Data System, the Oak Ridge National Laboratory's In-Plant Reliability Data System, and The S.M. Stoller Corporation's Nuclear Power Experience data base.

Edson, J.L.; Hardin, J.E.

1987-07-01T23:59:59.000Z

407

Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis  

SciTech Connect (OSTI)

Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

2009-03-01T23:59:59.000Z

408

The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12) Sheraton Station Square, Pittsburgh, Pennsylvania, U.S.A. September 30-October 4, 2007  

E-Print Network [OSTI]

in the unit square. Figure 1: Physical Domain and Fictitious Domain. simulation of nuclear power plants fromThe 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12) Sheraton DOMAIN SIMULATIONS FOR THE TWO-PHASE FLOW ENERGY BALANCE OF THE CLOTAIRE STEAM GENERATOR MOCK-UP Michel

Paris-Sud XI, Université de

409

Leasing of Nuclear Power Plants With Using Floating Technologies  

SciTech Connect (OSTI)

The proposal to organize and realize the international program on leasing of Nuclear Power Plant (NPP) reactor compartments is brought to the notice of potential partners. The proposal is oriented to the construction of new NPPs or to replacement of worked-out reactor units of the NPPs in operation on the sites situated near water area and to the use of afloat technologies for construction, mounting and transportation of reactor units as a Reactor Compartment Block Module (RCBM). According to the offered project the RCBM is fabricated in factory conditions at the largest Russian defense shipbuilding plant - State Unitary Enterprise 'Industrial Association SEVMASHPREDPRIYATIE' (SEVMASH) in the city of Severodvinsk of the Arkhangelsk region. After completion of assembling, testing and preliminary licensing the RCBM is given buoyancy by means of hermetic sealing and using pontoons and barges. The RCBM delivery to the NPP site situated near water area is performed by sea route. The RCBM is brought to the place of its installation with the use of appropriate hydraulic structures (canals, shipping locks), then is lowered on the basement constructed beforehand and incorporated into NPP scheme, of which the components are installed in advance. Floating means can be detached from the RCBM and used repeatedly for other RCBMs. Further procedure of NPP commissioning and its operation is carried out according to traditional method by power company in the framework of RCBM leasing with enlisting the services of firm-manufacturer's specialists either to provide reactor plant operation and concomitant processes or to perform author's supervision of operation. After completion of lifetime and reactor unloading the RCBM is dismantled with using the same afloat technology and taken away from NPP site to sea area entirely, together with its structures (reactor vessel, heat exchangers, pumps, pipelines and other equipment). Then RCBM is transported by shipping route to a firm-manufacturer, for subsequent reprocessing, utilization and storage. Nuclear fuel and radioactive wastes are removed from NPP site also. Use of leasing method removes legal problems connected with the transportation of radioactive materials through state borders as the RCBM remains a property of the state-producer at all stages of its life cycle. (authors)

Kuznetsov, Yu.N.; Gabaraev, B.A.; Reshetov, V.A.; Moskin, V.A. [Federal State Unitary Enterprise, N.A. Dollezhal' Scientific-Research and Design Institute of Power Engineering (Russian Federation)

2002-07-01T23:59:59.000Z

410

Confirmation of the seismic resistance of nuclear power plant equipment after assembly  

SciTech Connect (OSTI)

It is shown that the natural frequencies and damping decrements of nuclear power plant equipment can only be determined experimentally and directly at the power generation units (reactors) of nuclear power plants under real disassembly conditions for the equipment, piping network, thermal insulation, etc. A computational experimental method is described in which the natural frequencies and damping decrements are determined in the field and the seismic resistance is reevaluated using these values. This method is the basis of the standards document 'Methods for confirming the dynamic characteristics of systems and components of the generating units of nuclear power plants which are important for safety' prepared and introduced in 2012.

Kaznovsky, P. S.; Kaznovsky, A. P.; Saakov, E. S.; Ryasnyj, S. I. [JSC 'Atomtehenergo' (Russian Federation)

2013-05-15T23:59:59.000Z

411

Hardgrove grindability study of Powder River Basin and Appalachian coal components in the blend to a midwestern power station  

SciTech Connect (OSTI)

Five coals representing four distinct coal sources blended at a midwestern power station were subjected to detailed analysis of their Hardgrove grindability. The coals are: a low-sulfur, high volatile A bituminous Upper Elkhorn No. 3 coal (Pike County, KY); a medium-sulfur, high volatile A bituminous Pittsburgh coal (southwestern PA); a low-sulfur, subbituminous Wyodak coal from two mines in the eastern Powder River Basin (Campbell County, WY). The feed and all samples processed in the Hardgrove grindability test procedure were analyzed for their maceral and microlithotype content. The high-vitrinite Pittsburgh coal and the relatively more petrographically complex Upper Elkhorn No. 3 coal exhibit differing behavior in grindability. The Pittsburgh raw feed, 16x30 mesh fraction (HGI test fraction), and the {minus}30 mesh fraction (HGI reject) are relatively similar petrographically, suggesting that the HGI test fraction is reasonably representative of the whole feed. The eastern Kentucky coal is not as representative of the whole feed, the HGI test fraction having lower vitrinite than the rejected {minus}30 mesh fraction. The Powder River Basin coals are high vitrinite and show behavior similar to the Pittsburgh coal.

Padgett, P.L.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

1996-12-31T23:59:59.000Z

412

Economic Benefits of Advanced Materials in Nuclear Power Systems  

SciTech Connect (OSTI)

One of the key obstacles for the commercial deployment of advanced fast reactors (for either transuranic element burning or power generation) is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors (ALWR). However, the cost estimates for a fast reactor come with a large uncertainty due to the fact that far fewer fast reactors have been built than LWR facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. For example, under the Gen IV program, the Japanese Sodium Fast Reactor (JSFR) has a capital cost estimate that is lower than current LWR s, and considerably lower than that for the PRISM design (which is arguably among the most mature of today s fast reactor designs). Further reductions in capital cost must be made in US fast reactor systems to be considered economically viable. Three key approaches for cost reduction can be pursued. These include design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. While it is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost, the economic benefit of advanced materials has not been quantitatively analyzed. The objective of this work is to examine the potential impact of advanced materials on the capital investment costs of fast nuclear reactors.

Busby, Jeremy T [ORNL

2009-01-01T23:59:59.000Z

413

Contract Specifications For Olkiluoto 3 Nuclear Power Plant  

SciTech Connect (OSTI)

The Finnish Parliament ratified in May 2002 the application for a Decision-in- Principle (DIP) that was submitted by Teollisuuden Voima Oy (TVO) in November 2000 concerning the construction of a new nuclear power plant in Finland (FIN5). The bid inquiries for FIN5 were sent out by TVO in September 2002, requesting the bids by the end of March 2003. A contract with the plant supplier was signed in December 2003, implying the construction of a PWR of type EPR (European Pressurised Water Reactor) in Olkiluoto, called Olkiluoto 3 NPP. The preparation of Bid Inquiry Specifications (BIS) was initiated simultaneously with the filing of the application for DIP. The compilation of BIS was an evolutionary process, starting with the collection of relevant reference material, proceeding through the development of technical, administrative and commercial requirements, and ending with the consolidation of all documentation to a package containing the complete BIS. An intensive bid evaluation process started immediately after receiving the bids, accompanied by negotiations with the supplier candidates. The final Contract Specifications (CS) were constituted on the basis of the BIS supplemented with information contained in the bid and the outcome of the contract negotiations. (author)

Patrakka, Eero [Teollisuuden Voima Oy, 27160 Olkiluoto (Finland)

2004-07-01T23:59:59.000Z

414

Development of Improved Burnable Poisons for Commercial Nuclear Power Reactors  

SciTech Connect (OSTI)

Burnable poisons are used in nuclear reactors to produce a more level distribution of power in the reactor core and to reduce to necessity for a large control system. An ideal burnable poison would burn at the same rate as the fuel. In this study, separation of neutron-absorbing isotopes was investigated in order to eliminate isotopes that remain as absorbers at the end of fuel life, thus reducing useful fuel life. The isotopes Gd-157, Dy-164, and Er-167 were found to have desirable properties. These isotopes were separated from naturally occurring elements by means of plasma separation to evaluate feasibility and cost. It was found that pure Gd-157 could save approximately $6 million at the end of four years. However, the cost of separation, using the existing facility, made separation cost- ineffective. Using a magnet with three times the field strength is expected to reduce the cost by a factor of ten, making isotopically separated burnable poisons a favorable method of increasing fuel life in commercial reactors, in particular Generation-IV reactors. The project also investigated various burnable poison configurations, and studied incorporation of metallic burnable poisons into fuel cladding.

M. L. Grossbeck J-P.A. Renier Tim Bigelow

2003-09-30T23:59:59.000Z

415

Nuclear power plant simulation facility evaluation methodology: handbook. Volume 1  

SciTech Connect (OSTI)

This report is Volume 1 of a two-part document which describes a project conducted to develop a methodology to evaluate the acceptability of nuclear power plant (NPP) simulation facilities for use in the simulator-based portion of NRC's operator licensing examination. The proposed methodology is to be utilized during two phases of the simulation facility life-cycle, initial simulator acceptance and recurrent analysis. The first phase is aimed at ensuring that the simulator provides an accurate representation of the reference NPP. There are two components of initial simulator evaluation: fidelity assessment and a direct determination of the simulation facility's adequacy for operator testing. The second phase is aimed at ensuring that the simulation facility continues to accurately represent the reference plant throughout the life of the simulator. Recurrent evaluation is comprised of three components: monitoring reference plant changes, monitoring the simulator's hardware, and examining the data from actual plant transients as they occur. Volume 1 is a set of guidelines which details the steps involved in the two life-cycle phases, presents an overview of the methodology and data collection requirements, and addresses the formation of the evaluation team and the preparation of the evaluation plan. 29 figs.

Laughery, K.R. Jr.; Carter, R.J.; Haas, P.M.

1986-01-01T23:59:59.000Z

416

Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems  

SciTech Connect (OSTI)

This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same technology, and (3) different architectures within the same technology. Using this convention, the first diversity usage family, designated Strategy A, is characterized by fundamentally diverse technologies. Strategy A at the system or platform level is illustrated by the example of analog and digital implementations. The second diversity usage family, designated Strategy B, is achieved through the use of distinctly different technologies. Strategy B can be described in terms of different digital technologies, such as the distinct approaches represented by general-purpose microprocessors and field-programmable gate arrays. The third diversity usage family, designated Strategy C, involves the use of variations within a technology. An example of Strategy C involves different digital architectures within the same technology, such as that provided by different microprocessors (e.g., Pentium and Power PC). The grouping of diversity criteria combinations according to Strategies A, B, and C establishes baseline diversity usage and facilitates a systematic organization of strategic approaches for coping with CCF vulnerabilities. Effectively, these baseline sets of diversity criteria constitute appropriate CCF mitigating strategies for digital safety systems. The strategies represent guidance on acceptable diversity usage and can be applied directly to ensure that CCF vulnerabilities identified through a D3 assessment have been adequately resolved. Additionally, a framework has been generated for capturing practices regarding diversity usage and a tool has been developed for the systematic assessment of the comparative effect of proposed diversity strategies (see Appendix A).

Wood, Richard Thomas [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Holcomb, David Eugene [ORNL; Korsah, Kofi [ORNL; Loebl, Andy [ORNL; Mays, Gary T [ORNL; Muhlheim, Michael David [ORNL; Mullens, James Allen [ORNL; Poore III, Willis P [ORNL; Qualls, A L [ORNL; Wilson, Thomas L [ORNL; Waterman, Michael E. [U.S. Nuclear Regulatory Commission

2010-02-01T23:59:59.000Z

417

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

418

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

Nero, jA.V.

2010-01-01T23:59:59.000Z

419

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants  

SciTech Connect (OSTI)

Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

Stephen Schey

2009-07-01T23:59:59.000Z

420

Example G Cost of construction of nuclear power plants Description of data  

E-Print Network [OSTI]

1 Example G Cost of construction of nuclear power plants Description of data Table G.1 gives reactor (LWR) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6

Reid, Nancy

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Example G Cost of construction of nuclear power plants Description of data  

E-Print Network [OSTI]

Example G Cost of construction of nuclear power plants Description of data Table G.1 gives data) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6 lines

Reid, Nancy

422

Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates the central themes of this book-  

E-Print Network [OSTI]

109 7 Nuclear Power and Its Fuel Cycle No technological system more dramatically illustrates of ignoring the social, political, and environmental dimensions of innovation - than nuclear power. Once widely seen as an energy source of almost unlimited potential, nuclear power is today expanding in just

Kammen, Daniel M.

423

Two novel procedures for aggregating randomized model ensemble outcomes for robust signal reconstruction in nuclear power plants monitoring systems  

E-Print Network [OSTI]

reconstruction in nuclear power plants monitoring systems P. Baraldi1 , E. Zio1,* , G. Gola2 , D. Roverso2 , M importance for the safe and reliable operation of nuclear power plants. Auto-associative regression models of nuclear power plants for it allows the timely detection of malfunctions and anomalies during operation

Paris-Sud XI, Université de

424

Abstract--Resins are used in nuclear power plants for water ultrapurification. Two approaches are considered in this work  

E-Print Network [OSTI]

Abstract--Resins are used in nuclear power plants for water ultrapurification. Two approaches in manufacturing ultrapure water for nuclear power plants. Resins allow the removal of ionic impurities to subparts-per-million. Thereby in nuclear power plants, resins contribute to guarantee personnel safety, to control feed system

Paris-Sud XI, Université de

425

DATA-DRIVEN ON-LINE PREDICTION OF THE AVAILABLE RECOVERY TIME IN NUCLEAR POWER PLANT FAILURE SCENARIOS  

E-Print Network [OSTI]

1 DATA-DRIVEN ON-LINE PREDICTION OF THE AVAILABLE RECOVERY TIME IN NUCLEAR POWER PLANT FAILURE-XADS). Key Words: Recovery Time, Emergency Accident Management, Nuclear Power Plant, Lead- Bismuth Eutectic e [Øwre, 2001]. Yet, the problem of what kind of decision support to provide to nuclear power plant

Boyer, Edmond

426

Conference committees Chairman of the conference "New Nuclear Power Plants in the Netherlands", June 21-22, 2011,  

E-Print Network [OSTI]

Conference committees Chairman of the conference "New Nuclear Power Plants in the Netherlands Nuclear Power Plants, September 15-19, 2003, Kyoto, Japan. Session chairman GENES4/ANP2003 ,,International Conference on Global Environment and Advanced Nuclear Power Plants, September 15-19, 2003, Kyoto

427

Waste Minimization Policy at the Romanian Nuclear Power Plant  

SciTech Connect (OSTI)

The radioactive waste management system at Cernavoda Nuclear Power Plant (NPP) in Romania was designed to maintain acceptable levels of safety for workers and to protect human health and the environment from exposure to unacceptable levels of radiation. In accordance with terminology of the International Atomic Energy Agency (IAEA), this system consists of the ''pretreatment'' of solid and organic liquid radioactive waste, which may include part or all of the following activities: collection, handling, volume reduction (by an in-drum compactor, if appropriate), and storage. Gaseous and aqueous liquid wastes are managed according to the ''dilute and discharge'' strategy. Taking into account the fact that treatment/conditioning and disposal technologies are still not established, waste minimization at the source is a priority environmental management objective, while waste minimization at the disposal stage is presently just a theoretical requirement for future adopted technologies . The necessary operational and maintenance procedures are in place at Cernavoda to minimize the production and contamination of waste. Administrative and technical measures are established to minimize waste volumes. Thus, an annual environmental target of a maximum 30 m3 of radioactive waste volume arising from operation and maintenance has been established. Within the first five years of operations at Cernavoda NPP, this target has been met. The successful implementation of the waste minimization policy has been accompanied by a cost reduction while the occupational doses for plant workers have been maintained at as low as reasonably practicable levels. This paper will describe key features of the waste management system along with the actual experience that has been realized with respect to minimizing the waste volumes at the Cernavoda NPP.

Andrei, V.; Daian, I.

2002-02-26T23:59:59.000Z

428

Joint electric power alternatives study. Appendix G. Joint parallel nuclear alternatives study for Russia. Final report  

SciTech Connect (OSTI)

The Joint Parallel Nuclear Alternatives Study for Russia (JPNAS) is a parallel study to the Joint Electric Power Alternatives Study (JEPAS). The JPNAS assessed the costs of enhancing the safety level of Russian nuclear power plants (NPPs), decommissioning of RBMK-1000 and first generation VVER-440 units, completion of NPP construction, NPP repowering into fossil fuel plants, and construction of new generation NPPs. In the framework of the JEPAS, the JPNAS provides data on the nuclear sector which is needed to formulate an integrated resources plan and schedule for investments for the development of Russia`s power sector.

NONE

1995-06-01T23:59:59.000Z

429

Prognostics Health Management and Life Beyond 60 for Nuclear Power Plants  

SciTech Connect (OSTI)

There is growing interest in longer-term operation of the current US nuclear power plant fleet. This paper will present an overview of prognostic health management (PHM) technologies that could play a role in the safe and effective operation of nuclear power plants during extended life. A case study in prognostics for materials degradation assessment, using laboratory-scale measurements, is briefly discussed, and technical gaps that need to be addressed prior to PHM system deployment for nuclear power life extension are presented.

Ramuhalli, Pradeep; Coble, Jamie B.; Meyer, Ryan M.; Bond, Leonard J.

2013-12-01T23:59:59.000Z

430

Atmospheric dispersion and the radiological consequences of normal airborne effluents from a nuclear power plant  

SciTech Connect (OSTI)

The relationship between the consequences of the normal exhaust of radioactive materials in air from nuclear power plants and atmospheric dispersion is studied. Because the source terms of the exhaust from a nuclear power plant are relatively low and their radiological consequences are far less than the corresponding authoritative limits, the atmospheric dispersion models, their various modifications, and selections of relevant parameters have few effects on those consequences. In the environmental assessment and siting, the emphasis should not be placed on the consequence evaluation of routine exhaust of nuclear power plants, and the calculation of consequences of the exhaust and atmospheric field measurements should be appropriately, simplified. 12 refs., 5 figs., 7 tabs.

Fang, D.; Yang, L. [Tsinghua Univ., Beijing (China); Sun, C.Z. [Suhou Nuclear Research Inst., Suzhou (China)

1995-01-01T23:59:59.000Z

431

Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 7  

SciTech Connect (OSTI)

The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States)

1993-07-01T23:59:59.000Z

432

Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8  

SciTech Connect (OSTI)

The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

Sullivan, S.G.; Khan, T.A.; Xie, J.W. [Brookhaven National Lab., Upton, NY (United States)

1995-05-01T23:59:59.000Z

433

Hot particle laundry monitoring at a nuclear power facility  

E-Print Network [OSTI]

by adjusting a knob on the control console. The control console contains the control unit, the upper detector control system and the nuclear electronics. The ACM-120 uses a microprocessor to analyze the data and monitor for various system malfunctions..., monitoring method, detector type, alarm levels and the storage and disposal limits. In the second part, a detailed evaluation was conducted on three automated laundry monitors; National Nuclear LCM-15A, I. R. T. ACM-120, Interstate Nuclear Services ALM...

Farver, Douglas Floyd

2012-06-07T23:59:59.000Z

434

Nuclear energy is an important source of power, supplying 20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from...

435

UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program  

SciTech Connect (OSTI)

The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

Wolfe, Lothar PhD

2000-03-01T23:59:59.000Z

436

Quiz # 7, STAT 383, Prof. Suman Sanyal, April 8, 2009 (Q2, Page 354) To decide whether the pipe welds in a nuclear power plant meet  

E-Print Network [OSTI]

welds in a nuclear power plant meet specifications, a random sample of welds is to be selected : µ nuclear power plants is to determine if welds

Sanyal, Suman

437

Renewable Energy, Nuclear Power and Galileo: Do Scientists Have a Duty to Expose Popular Misconceptions?  

E-Print Network [OSTI]

1 OPINION Renewable Energy, Nuclear Power and Galileo: Do Scientists Have a Duty to Expose Popular misconception discussed below concerns the fallacy that renewable energy is rapidly supplanting conventional energy. Total non-hydro renewables today offset o

Hansen, James E.

438

Probabilistic methods in seismic risk assessment for nuclear power plants: proceedings  

SciTech Connect (OSTI)

The state-of-the-art in seismic risk analysis applied to the design and siting of nuclear power plants was addressed in this meeting. Presentations were entered individually into the date base. (ACR)

Not Available

1983-01-01T23:59:59.000Z

439

Maximizing nuclear power plant performance via mega-uprates and subsequent license renewal  

E-Print Network [OSTI]

The goal of this thesis is to develop a methodology to evaluate the engineering and economic implications of maximizing performance of the United States' commercial fleet of nuclear power plants. This methodology addresses ...

DeWitte, Jacob D. (Jacob Dominic)

2014-01-01T23:59:59.000Z

440

Safety culture in the nuclear power industry : attributes for regulatory assessment  

E-Print Network [OSTI]

Safety culture refers to the attitudes, behaviors, and conditions that affect safety performance and often arises in discussions following incidents at nuclear power plants. As it involves both operational and management ...

Alexander, Erin L

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Dynamic reliability using entry-time approach for maintenance of nuclear power plants  

E-Print Network [OSTI]

-time processes have the potential to provide a significantly greater range of applicability and flexibility than traditional reliability tools for case studies related to equipment and components in nuclear power plants. In this dissertation, the finite...

Wang, Shuwen

2009-05-15T23:59:59.000Z

442

Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion  

SciTech Connect (OSTI)

This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

Per F. Peterson

2010-03-01T23:59:59.000Z

443

WHEN A PAIR of nuclear-powered Russian submarines was reported patrolling  

E-Print Network [OSTI]

WHEN A PAIR of nuclear-powered Russian submarines was reported patrolling off the eastern seaboard as "explaining-away." Although several algorithms were later developed to perform Bayesian updating in general

California at Los Angeles, University of

444

"Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 21, 2012, 9:30am Science On Saturday MBG Auditorium "Is There a Future for Nuclear Power After Fukushima?", Dr. Alexander Glaser, Woodrow Wilson School of Public and...

445

Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979  

SciTech Connect (OSTI)

Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

1980-06-01T23:59:59.000Z

446

Membranes for H2 generation from nuclear powered thermochemical cycles.  

SciTech Connect (OSTI)

In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

2006-11-01T23:59:59.000Z

447

Improved assessment of population doses and risk factors for a nuclear power plant under accident conditions  

E-Print Network [OSTI]

In order to assess the doses received by the members of the public due to an accident at a nuclear power plant, a number of physical processes must be modeled. These processes include the release of radioactive materials, the atmospheric dispersion... representative of the industry. Generic reactor sites must be conceptualized in order to obtain meteorologic data which is representative of the areas within the United States in which nuclear power facilities have been sited, Information such as population...

Meyer, Christopher Martin

1985-01-01T23:59:59.000Z

448

The impact of offsite factors on the safety performance of small nuclear power plants  

SciTech Connect (OSTI)

The results of an analysis of the influence of offsite factors on small nuclear power-plant (SNPP) safety performance during postulated severe accidents are presented. Given the plant locations in the immediate vicinity of residential areas and the impossibility of accomplishing the expeditious evacuation of the public, the risk caused by an SNPP severe accident may be considerably less than that for such an event in a large nuclear power plant. 3 refs., 3 figs., 5 tabs.

Baranaev, Yu.D.; Viktorov, A.N. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation)

1991-01-01T23:59:59.000Z

449

Nuclear Systems Powering a Mission to Mars | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclearSafeguardsResearch AreasNuclear

450

Comparison of evolving photovoltaic and nuclear power systems for Earth orbital applications  

SciTech Connect (OSTI)

As the Space Shuttle becomes fully operational, NASA and DOD missions may require high power Earth orbital power systems. Total end-to-end comparisons are made for representative photovoltaic and nuclear systems. The photovoltaic systems examined range from flight demonstrated conventional solid substrate solar array/NiCd battery approaches to undemonstrated advanced array/energy storage systems. End-of-life power to mass performance is presented for 25 kW photovoltaic arrays at orbital altitudes ranging from low Earth orbit to geosynchronous orbit for 1, 5, and 10 year missions. The SP-100 nuclear power system is examined for three technology levels ranging from near term to advanced approaches for 25 and 100 kWe power levels. The system specific power, or ratio of load power to power system mass, for each end-to-end photovoltaic and nuclear system is presented. Detailed descriptions of various photovoltaic and nuclear power systems together with their associated electrical block diagrams are also presented.

Rockey, D.E.; Jones, R.M.; Schulman, I.

1983-08-01T23:59:59.000Z

451

Combining Nuclear Power With Coal-to-Gasoline Conversion  

SciTech Connect (OSTI)

With coal representing 95% and oil only 2.5% of the US fossil fuel reserves and with the abundant nuclear fuel reserves in the US, such combined plants should be built in the near future. (authors)

Hamel, H.J.; Jaeger, Walter; Termuehlen, Heinz

2006-07-01T23:59:59.000Z

452

Nuclear Power Plant NDE Challenges - Past, Present, and Future  

SciTech Connect (OSTI)

This is a paper that covers the major thrust of NDE work that PNNL has conducted for the U.S. Nuclear Regulatory Commission from 1977 to the present.

Doctor, Steven R.

2007-01-01T23:59:59.000Z

453

Renormalization and power counting of chiral nuclear forces  

SciTech Connect (OSTI)

I discuss the progress we have made on modifying Weinberg's prescription for chiral nuclear forces, using renormalization group invariance as the guideline. Some of the published results are presented.

Long, Bingwei [JLAB

2013-08-01T23:59:59.000Z

454

Identification of performance indicators for nuclear power plants  

E-Print Network [OSTI]

Performance indicators have been assuming an increasingly important role in the nuclear industry. An integrated methodology is proposed in this research for the identification and validation of performance indicators for ...

Sui, Yu, 1973-

2001-01-01T23:59:59.000Z

455

The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under Climate Change Mitigation Policies  

E-Print Network [OSTI]

to the Engineering Systems Division and the Department of Nuclear Science and Engineering in Partial Fulfillment............................................................................................. Technology and Policy Program, Engineering Systems Division Department of Nuclear Science and Engineering May....................................................................................................... Richard K. Lester Professor of Nuclear Science and Engineering Director of the Industrial Performance

456

advanced nuclear power: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . 18 3.4.1 Heat Exchanger - Code description . . . . . . . . . . . . . . . 18 3.4.2 Simulation ResultsADVANCED POWER PLANT MODELING WITH APPLICATIONS TO THE ADVANCED BOILING...

457

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

458

Department of Mechanical and Nuclear Engineering Spring 2012 East Campus Power Plant Deaerator Optimization  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 East Campus Power Plant Deaerator Optimization Overview In the East Campus Power plant a new Deaerator system has been installed which Deaerator is the most efficient and then make a recommendation to the plant of which one should

Demirel, Melik C.

459

Present and future nuclear power generation as a reflection of individual countries' resources and objectives  

SciTech Connect (OSTI)

The nuclear reactor industry has been in a state of decline for more than a decade in most of the world. The reasons are numerous and often unique to the energy situation of individual countries. Two commonly cited issues influence decisions relating to construction of reactors: costs and the need, or lack thereof, for additional generating capacity. Public concern has ''politicized'' the nuclear industry in many non-communist countries, causing a profound effect on the economics of the option. The nuclear installations and future plans are reviewed on a country-by-country basis for 36 countries in the light of the resources and objectives of each. Because oil and gas for power production throughout the world are being phased out as much as possible, coal-fired generation currently tends to be the chosen alternative to nuclear power production. Exceptions occur in many of the less developed countries that collectively have a very limited operating experience with nuclear reactors. The Chernobyl accident in the USSR alarmed the public; however, national strategies and plans to build reactors have not changed markedly in the interim. Assuming that the next decade of nuclear power generation is uneventful, additional electrical demand would cause the nuclear power industry to experience a rejuvenation in Europe as well as in the US. 80 refs., 3 figs., 22 tabs.

Borg, I.Y.

1987-06-26T23:59:59.000Z

460

Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C. [Pacific Northwest Lab., Richland, WA (United States)

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants  

SciTech Connect (OSTI)

Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

2012-03-31T23:59:59.000Z

462

The status of nuclear power plants in the People's Republic of China  

SciTech Connect (OSTI)

China's main energy source is coal, but transportation and environmental problems make that fuel less than desirable. Therefore, the Chinese, as part of an effort toward alternative energy sources, are developing nuclear power plants. In addition to providing a cleaner power source, development of nuclear energy would improve the Chinese economic condition and give the nation greater world status. China's first plants, at Qinshan and Daya Bay, are still incomplete. However, China is working toward completion of those reactors and planning the training and operating procedures needed to operate them. At the same time, it is improving its nuclear fuel exports. As they develop the capability for generating nuclear power, the Chinese seem to be aware of the accompanying quality and safety considerations, which they have declared to be first priorities. 50 refs., 7 figs.

Puckett, J.

1991-05-01T23:59:59.000Z

463

Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses  

SciTech Connect (OSTI)

The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations.

Koenig, D.R.; Gido, R.G.; Brandon, D.I.

1985-01-01T23:59:59.000Z

464

Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993  

SciTech Connect (OSTI)

Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

Not Available

1993-12-31T23:59:59.000Z

465

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers  

SciTech Connect (OSTI)

This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

Heather D. Medema; Ronald K. Farris

2012-09-01T23:59:59.000Z

466

11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation  

E-Print Network [OSTI]

Search 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation to employ nuclear fusion technologies in power generation by 2050. China will adopt a three-step strategy with thermonuclear reactors; the second step aims to raise the utilization rate of nuclear fuels from the current 1

467

EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

468

Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report  

SciTech Connect (OSTI)

The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

Not Available

1993-09-01T23:59:59.000Z

469

The History of Nuclear Power in Space | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

space travel may be impractical or impossible. Plutonium-238 works well as a space power source for several reasons. It has a half-life of 88 years, meaning it takes that long...

470

RELIABILITY ANALYSIS OF THE ELECTRICAL POWER DISTRIBUTION SYSTEM TO SELECTED PORTIONS OF THE NUCLEAR HVAC SYSTEM  

SciTech Connect (OSTI)

A design requirement probability of 0.01 or less in a 4-hour period ensures that the nuclear heating, ventilation, and air-conditioning (HVAC) system in the primary confinement areas of the Dry Transfer Facilities (DTFs) and Fuel Handling Facility (FHF) is working during a Category 1 drop event involving commercial spent nuclear fuel (CSNF) assemblies (BSC 2004a , Section 5.1.1.48). This corresponds to an hourly HVAC failure rate of 2.5E-3 per hour or less, which is contributed to by two dominant causes: equipment failure and loss of electrical power. Meeting this minimum threshold ensures that a Category 1 initiating event followed by the failure of HVAC is a Category 2 event sequence. The two causes for the loss of electrical power include the loss of offsite power and the loss of onsite power distribution. Thus, in order to meet the threshold requirement aforementioned, the failure rate of mechanical equipment, loss of offsite power, and loss of onsite power distribution must be less than or equal to 2.5E-3 per hour for the nuclear HVAC system in the primary confinement areas of the DTFs and FHF. The loss of offsite power occurs at a frequency of 1.1E-5 per hour (BSC 2004a, Section 5.1.1.48). The purpose of this analysis is to determine the probability of occurrence of the unavailability of the nuclear HVAC system in the primary confinement areas of the DTFs and FHF due to loss of electrical power. In addition, this analysis provides insights on the contribution to the unavailability of the HVAC system due to equipment failure. The scope of this analysis is limited to finding the frequency of loss of electrical power to the nuclear HVAC system in the primary confinement areas of the DTFs and FHF.

N. Ramirez

2004-12-16T23:59:59.000Z

471

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOE Patents [OSTI]

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, C.D.

1992-11-03T23:59:59.000Z

472

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOE Patents [OSTI]

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, Charles D. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

473

Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report  

SciTech Connect (OSTI)

The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

Ritterbusch, S.E.

2000-08-01T23:59:59.000Z

474

The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101  

SciTech Connect (OSTI)

As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)] [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Kim, Juyoul; Kim, Juyub [FNC Technology, 46 Tabsil-ro, Giheung-gu, Yongin 446-902 (Korea, Republic of)] [FNC Technology, 46 Tabsil-ro, Giheung-gu, Yongin 446-902 (Korea, Republic of)

2013-07-01T23:59:59.000Z

475

Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications  

SciTech Connect (OSTI)

The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

Naus, Dan J [ORNL

2009-05-01T23:59:59.000Z

476

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:  

Broader source: Energy.gov [DOE]

Nuclear power plants in the United States currently produce about 20 percent of the nation’s electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit...

477

Nuclear power safety in central and eastern Europe  

SciTech Connect (OSTI)

The Chernobyl accident showed the weaknesses in the Soviet approach to safety, particularly of nuclear reactors. Until recently, Western governments, scientists, and engineers did not understand how to help their Russian colleagues make a greater society. This article discusses the two main types of Soviet reactors, their safety problems, and the help Westerners are giving to make them safer. 35 refs., 1 fig., 4 tabs.

Wilson, R. [Harvard Univ., Cambridge, MA (United States)

1995-01-01T23:59:59.000Z

478

Aging assessment of large electric motors in nuclear power plants  

SciTech Connect (OSTI)

Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

Villaran, M.; Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)

1996-03-01T23:59:59.000Z

479

A low power 12-bit ADC for nuclear instrumentation  

SciTech Connect (OSTI)

A low power, successive approximation, analog-to-digital converter (ADC) for low rate, low cost, battery powered applications is described. The ADC is based on a commercial 50 mW successive approximation CMOS device (CS5102). An on-chip self-calibration circuit reduces the inherent differential nonlinearity to 7%. A further reduction of the differential nonlinearity to 0.5% is attained with a four bit Gatti function. The Gatti function is distributed to minimize battery power consumption. All analog functions reside with the ADC while the noisy digital functions reside in the personal computer based histogramming memory. Fiber optic cables carry afl digital information between the ADC and the personal computer based histogramming memory.

Adachi, R.; Landis, D.; Madden, N. [Lawrence Berkeley Lab., CA (United States); Silver, E.; LeGros, M. [Lawrence Livermore National Lab., CA (United States)

1992-10-01T23:59:59.000Z

480

OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS  

SciTech Connect (OSTI)

This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

Ronald L. Boring

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power stations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Visualization and continuous simulation of a space nuclear power system  

E-Print Network [OSTI]

2 Design of reactor system developed using graphical editor 17 3 Front end of Omega 4 Color Scale Editor . 19 21 5 Color Scale Editor with a more continuous scale 23 6 User Interface of Xcigs 25 7 Selection of particular component and cell... mathematical model is used to represent a physical or a hypothetical design of a space nuclear reactor. Thermal hydraulic analysis programs (such as CENTAR [5, 4], TRAC [2], and RELAP [6]) perform analysis on such models and produce simulation results...

Rawal, Rajiv

1992-01-01T23:59:59.000Z

482

Nuclear energy is an important source of power, supplying 20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclearLife Cycle