National Library of Energy BETA

Sample records for nuclear power generation

  1. Nuclear power generation and fuel cycle report 1997

    SciTech Connect (OSTI)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  2. C Produced by Nuclear Power Reactors Generation and Characterization of

    E-Print Network [OSTI]

    Haviland, David

    14 C Produced by Nuclear Power Reactors ­ Generation and Characterization of Gaseous, Liquid in the terrestrial environment in the vicinity of two European nuclear power plants. Radiocarbon 46(2)863­868. III levels in the vicinity of the Lithuanian nuclear power plant Ignalina. Nuclear Instruments and Methods

  3. Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana)

    Broader source: Energy.gov [DOE]

    The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as...

  4. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  5. Risk Framework for the Next Generation Nuclear Power Plant Construction 

    E-Print Network [OSTI]

    Yeon, Jaeheum 1981-

    2012-12-11

    sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

  6. West European nuclear power generation research and development

    SciTech Connect (OSTI)

    Turinsky, P.J.; Baron, S.; Burch, W.D.; Corradini, M.L.; Lucas, G.E.; Matthews, R.B.; Uhrig, R.E.

    1991-09-01

    This report assesses the status of West European research and development (R&D) in support of nuclear power generation. The focus is on light-water reactors (LWRs), as they will likely be the only concept commerically implemented within the next decade. To a laser degree, alternative concepts such as the high-temperature gas cooled reactor and the liquid-metal reactor (LMR) are also assessed. To bound the study, only the fuel cycle stages of fuel fabrication, power generation, and fuel reprocessing are considered. Under the topic of power generation, the subtopics of core reactor physics, materials, instrumentation and control systems, nuclear power safety, and power plant fabrication and construction are addressed. The front-end fuel cycle stages of mining and milling, conversion and enrichment, and the back-end fuel cycle stages of waste conditioning and disposal and not considered. Most assessments for light-water reactor R&D are completed on a country-by-country basis since there is limited cooperation among the West European countries due to the commercial relevance of R&D in this area.

  7. West European nuclear power generation research and development

    SciTech Connect (OSTI)

    Turinsky, P.J.; Baron, S.; Burch, W.D.; Corradini, M.L.; Lucas, G.E.; Matthews, R.B.; Uhrig, R.E.

    1991-09-01

    This report assesses the status of West European research and development (R D) in support of nuclear power generation. The focus is on light-water reactors (LWRs), as they will likely be the only concept commerically implemented within the next decade. To a laser degree, alternative concepts such as the high-temperature gas cooled reactor and the liquid-metal reactor (LMR) are also assessed. To bound the study, only the fuel cycle stages of fuel fabrication, power generation, and fuel reprocessing are considered. Under the topic of power generation, the subtopics of core reactor physics, materials, instrumentation and control systems, nuclear power safety, and power plant fabrication and construction are addressed. The front-end fuel cycle stages of mining and milling, conversion and enrichment, and the back-end fuel cycle stages of waste conditioning and disposal and not considered. Most assessments for light-water reactor R D are completed on a country-by-country basis since there is limited cooperation among the West European countries due to the commercial relevance of R D in this area.

  8. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  9. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    the possible risk from nuclear power . it . is sufficient tothe Cancer Risk Due to Nuclear-Electric Power Generation",of Accident Risks in U.S. Commercial Nuclear Power Plants",

  10. Membranes for H2 generation from nuclear powered thermochemical cycles.

    SciTech Connect (OSTI)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  11. Nuclear Power Generation and Fuel Cycle Report 1996

    Reports and Publications (EIA)

    1996-01-01

    This report provides information and forecasts important to the domestic and world nuclear and uranium industries.

  12. Nuclear economics 2000: Deterministic and probabilistic projections of nuclear and coal electric power generation costs for the year 2000

    SciTech Connect (OSTI)

    Williams, K.A.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1987-06-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base-load nuclear and coal-fired power plants with a startup date of January 2000. For the Midwest region a complete data set that specifies each parameter used to obtain the comparative results is supplied. When based on the reference set of input variables, the comparison of power generation costs is found to favor nuclear in most regions of the country. Nuclear power is most favored in the northeast and western regions where coal must be transported over long distances; however, coal-fired generation is most competitive in the north central region where large reserves of cheaply mineable coal exist. In several regions small changes in the reference variables could cause either option to be preferred. The reference data set reflects the better of recent electric utility construction cost experience (BE) for nuclear plants. This study assumes as its reference case a stable regulatory environment and improved planning and construction practices, resulting in nuclear plants typically built at the present BE costs. Today's BE nuclear-plant capital investment cost model is then being used as a surrogate for projected costs for the next generation of light-water reactor plants. An alternative analysis based on today's median experience (ME) nuclear-plant construction cost experience is also included. In this case, coal is favored in all ten regions, implying that typical nuclear capital investment costs must improve for nuclear to be competitive.

  13. Nuclear Power Generation and Fuel Cycle Report 1997

    Reports and Publications (EIA)

    1997-01-01

    Final issue. This report provides information and forecasts important to the domestic and world nuclear and uranium industries. 1997 represents the most recent publication year.

  14. Present and future nuclear power generation as a reflection of individual countries' resources and objectives

    SciTech Connect (OSTI)

    Borg, I.Y.

    1987-06-26

    The nuclear reactor industry has been in a state of decline for more than a decade in most of the world. The reasons are numerous and often unique to the energy situation of individual countries. Two commonly cited issues influence decisions relating to construction of reactors: costs and the need, or lack thereof, for additional generating capacity. Public concern has ''politicized'' the nuclear industry in many non-communist countries, causing a profound effect on the economics of the option. The nuclear installations and future plans are reviewed on a country-by-country basis for 36 countries in the light of the resources and objectives of each. Because oil and gas for power production throughout the world are being phased out as much as possible, coal-fired generation currently tends to be the chosen alternative to nuclear power production. Exceptions occur in many of the less developed countries that collectively have a very limited operating experience with nuclear reactors. The Chernobyl accident in the USSR alarmed the public; however, national strategies and plans to build reactors have not changed markedly in the interim. Assuming that the next decade of nuclear power generation is uneventful, additional electrical demand would cause the nuclear power industry to experience a rejuvenation in Europe as well as in the US. 80 refs., 3 figs., 22 tabs.

  15. 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation

    E-Print Network [OSTI]

    Search 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation to employ nuclear fusion technologies in power generation by 2050. China will adopt a three-step strategy-2% to 60-70%; and third step is the employment of nuclear fusion. However, a report by Zhongguo Dianli Wang

  16. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  17. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  18. Climate Change, Nuclear Power and Nuclear

    E-Print Network [OSTI]

    Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

  19. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  1. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  2. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  3. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  4. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  5. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  6. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  7. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  8. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  9. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  10. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  11. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  12. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  13. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  14. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  15. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  16. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  17. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  18. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  19. Nuclear Power 

    E-Print Network [OSTI]

    2010-01-01

    be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems...

  20. Generation IV Nuclear Energy Systems ...

    E-Print Network [OSTI]

    Kemner, Ken

    Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

  1. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  2. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  3. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  4. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  5. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  6. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  7. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  8. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

  9. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1995-01-01

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  10. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  11. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  12. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  13. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

  14. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    SciTech Connect (OSTI)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as `endangered` when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A `threatened` classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals.

  15. Can Next-Generation Reactors Power a Safe Nuclear Futur By Clay Dillow Posted 03.17.2011 at 12:18 pm

    E-Print Network [OSTI]

    Danon, Yaron

    Can Next-Generation Reactors Power a Safe Nuclear Futur By Clay Dillow Posted 03.17.2011 at 12 of nuclear reactors are designed to prevent exactly what we old Fukushima Daiichi plant. Which is good the world rush to reconsider their nuclear plans, nuclear experts look toward a future of smaller, safer

  16. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

  17. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  18. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  19. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, Douglas E. (Delmont, PA); Corletti, Michael M. (New Kensington, PA)

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  20. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  1. Future Prospects for Nuclear Power after Fukushima

    E-Print Network [OSTI]

    Goldberg, Bennett

    Future Prospects for Nuclear Power after Fukushima Nuclear is a highintensity energy source at the FukushimaDaiichi nuclear power plant in Japan has changed the perception of nuclear as a safe energy source as the next generation of Light Water Reactors. We will also discuss the future prospects of nuclear power

  2. NERI Final Project Report: On-Line Intelligent Self-Diagnostic Monitoring System for Next Generation Nuclear Power Plants

    SciTech Connect (OSTI)

    Bond, Leonard J.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Sisk, Daniel R.; Hatley, Darrel D.; Watkins, Kenneth S.; Chai, Jangbom; Kim, Wooshik

    2003-06-20

    This project provides a proof-of-principle technology demonstration for SDMS, where a distributed suite of sensors is integrated with active components and passive structures of types expected to be encountered in next generation nuclear power reactor and plant systems. The project employs state-of-the-art operational sensors, advanced stressor-based instrumentation, distributed computing, RF data network modules and signal processing to improve the monitoring and assessment of the power reactor system and gives data that is used to provide prognostics capabilities.

  3. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

  4. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  5. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . • . . . .

  6. Superconducting Power Generation

    E-Print Network [OSTI]

    Mario Rabinowitz

    2003-02-20

    The superconducting ac generator has the greatest potential for large-scale commercial application of superconductivity that can benefit the public. Electric power is a vital ingredient of modern society, and generation may be considered to be the vital ingredient of a power system. This articles gives background, and an insight into the physics and engineering of superconducting power generation.

  7. Fuzzy Logic Controller Architecture for Water Level Control in Nuclear Power Plant Steam Generator (SG) Using ANFIS Training Method

    SciTech Connect (OSTI)

    Vosoughi, Naser; Naseri, Zahra

    2002-07-01

    Since suitable control of water level can greatly enhance the operation of a power station, a Fuzzy logic controller architecture is applied to show desired control of the water level in a Nuclear steam generator. with regard to the physics of the system, it is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial member functions will be trained and appropriate functions are generated to control water level inside the steam generators while using the stated rules. The proposed architecture can construct an input output mapping based on both human knowledge (in from of Fuzzy if then rules) and stipulated input output data. In this paper with a simple test it has been shown that the architecture fuzzy logic controller has a reasonable response to one step input at a constant power. Through computer simulation, it is found that Fuzzy logic controller is suitable, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plant. (authors)

  8. Operating strategy generators for nuclear reactors

    SciTech Connect (OSTI)

    Solovyev, D. A., E-mail: and@est.mephi.ru; Semenov, A. A.; Shchukin, N. V. [National Research Nuclear University MEPhI (Russian Federation)

    2011-12-15

    Operating strategy generators, i.e., the software intended for increasing the efficiency of work of nuclear power plant operators, are discussed. The possibilities provided by the domestic and foreign operating-strategy generators are analyzed.

  9. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100 public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear

  10. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  11. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  12. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

  13. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    DENSITIES AROUND CALIFORNIA NUCLEAR POWER PLANT. le Iil _. .AROUND CALIFORNIA NUCLEAR POWER PLANTS Miles San OnofreIN CALIFORNIA The California Nuclear Power Plant Emergency

  14. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    the actual risk presented by nuclear power plants. Dependingyears): Average risk from a nuclear power plant during itssocietal risks from a system of 100 nuclear power plants due

  15. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    of radiological risk from nuclear power plants, One suchreservation in risk assessment for nuclear power plants isrisks to populations surrounding a nuclear power plant by

  16. Assessment of the Effect of Different Isolation Systems on Seismic Response of a Nuclear Power Plant

    E-Print Network [OSTI]

    Wong, Jenna

    2014-01-01

    Diesel Generators." Nuclear Power International MagazineIsolation Structure for Nuclear Power Plant, Japan ElectricIsolation System for Nuclear Power Plants, JEAG 4614-2000,

  17. ISO standardization of scaling factor method for low and intermediate level radioactive wastes generated at nuclear power plants

    SciTech Connect (OSTI)

    Kashiwagi, Makoto; Masui, Hideki; Denda, Yasutaka; James, David; Lantes, Bertrand; Mueller, Wolfgang; Garamszeghy, Mike; Leganes, Jose Luis; Maxeiner, Harald; Van Velzen, Leo

    2007-07-01

    Low- and intermediate-level radioactive wastes (L-ILW ) generated at nuclear power plants are disposed of in various countries. In the disposal of such wastes, it is required that the radioactivity concentrations of waste packages should be declared with respect to difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63 and a-emitting nuclides, which are often limited to maximum values in disposal licenses, safety cases and/or regulations for maximum radioactive concentrations. To fulfill this requirement, the Scaling Factor method (SF method) has been applied in various countries as a principal method for determining the concentrations of DTM nuclides. In the SF method, the concentrations of DTM nuclides are determined by multiplying the concentrations of certain key nuclides by SF values (the determined ratios of radioactive concentration between DTM nuclides and those key nuclides). The SF values used as conversion factors are determined from the correlation between DTM nuclides and key nuclides such as Co-60. The concentrations of key nuclides are determined by {gamma} ray measurements which can be made comparatively easily from outside the waste package. The SF values are calculated based on the data obtained from the radiochemical analysis of waste samples. The use of SFs, which are empirically based on analytical data, has become established as a widely recognized 'de facto standard'. A number of countries have independently collected nuclide data by analysis over many years and each has developed its own SF method, but all the SF methods that have been adopted are similar. The project team for standardization had been organized for establishing this SF method as a 'de jure standard' in the international standardization system of the International Organization for Standardization (ISO). The project team for standardization has advanced the standardization through technical studies, based upon each country's study results and analysis data. The conclusions reached by the project team was published as ISO International Standard 21238:2007 'The Scaling Factor method to determine the radioactivity of low- and intermediate-level radioactive waste packages generated at nuclear power plants'. This paper gives an introduction to the international standardization process for the SF method and the contents of the recently published International Standard. (authors)

  18. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  19. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSING PROCESSPlanning for Nuclear Power Plants Determination of Accidentnuclear power plants . . . . . . . . . • . . . . .2.2.4.3.

  20. Utilities' Use of Nuclear Generation

    SciTech Connect (OSTI)

    Ray, Harold B.

    2002-09-30

    This PowerPoint presentation was given at the Nuclear Energy Research Advisory Committee meeting, held 30 September 2002 in Arlington, VA.

  1. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    SciTech Connect (OSTI)

    1993-12-31

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  2. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing OF ST. LUCIE-2 at FLORIDA POWER & LIGHT COMPANY · Robert E. Uhrig 1974-1986 ­ Vice President, Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  3. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

  4. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

  5. Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the

    E-Print Network [OSTI]

    Summary.........................................................................5 Country Reports Egypt and application of resources towards developing nuclear-generated electricity and nuclear-powered desalination

  6. Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants

    SciTech Connect (OSTI)

    Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

    1998-07-01

    The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

  7. Verification of voltage/frequency requirement for emergency diesel generator in nuclear power plant using dynamic modeling

    SciTech Connect (OSTI)

    Hur, Jin-Suk; Roh, Myung- Sub

    2014-02-12

    One major cause of the plant shutdown is the loss of electrical power. The study is to comprehend the coping action against station blackout including emergency diesel generator, sequential loading of safety system and to ensure that the emergency diesel generator should meet requirements, especially voltage and frequency criteria using modeling tool. This paper also considered the change of the sequencing time and load capacity only for finding electrical design margin. However, the revision of load list must be verified with safety analysis. From this study, it is discovered that new load calculation is a key factor in EDG localization and in-house capability increase.

  8. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  9. Overview paper on nuclear power

    SciTech Connect (OSTI)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  10. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    SciTech Connect (OSTI)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  11. Global warming and nuclear power

    SciTech Connect (OSTI)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two-fold reduction might be attained. Even the first such halving of carbon intensivity of stationary-source energy production world-wide might permit continued slow power-demand growth in the highly developed countries and rapid development of the other 80% of the world, both without active governmental suppression of fossil fuel usage - while also stabilizing carbon input-rates into the Earth`s atmosphere. The second two-fold reduction might obviate most global warming concerns.

  12. Experiments + Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments + Simulations Better Nuclear Power Research Experiments Simulations Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation...

  13. Electrokinetic Power Generation from Liquid Water Microjets

    E-Print Network [OSTI]

    Duffin, Andrew M.

    2008-01-01

    Electrokinetic Power Generation from Liquid Water MicrojetsElectrokinetic power generation using liquid water microjetscalculations of power generation and conversion efficiency.

  14. Topics in nuclear power (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR POWER STATION; GAIN; JAPAN; NATURAL DISASTERS; NUCLEAR INDUSTRY; NUCLEAR POWER; NUCLEAR POWER PLANTS; PROBABILISTIC ESTIMATION; REACTOR ACCIDENTS; REACTOR MAINTENANCE;...

  15. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  16. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Measurements - Nuclear Regulatory Commission - protectiveand by the Nuclear Regulatory Commission (NRC) as a basisplants. The Nuclear Regulatory Commission is the agency

  17. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    the entire area of nuclear safety. A portion of the safetypeaceful uses of nuclear energy; health and safety measuresU. S. Nuclear Regulatory Conunission, "Reactor Safety Study:

  18. Nuclear power plant construction activity, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-24

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

  19. Automotive Power Generation and Control

    E-Print Network [OSTI]

    Caliskan, Vahe

    This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

  20. PNNL's Community Science & Technology Seminar Series Nuclear Power in a

    E-Print Network [OSTI]

    PNNL's Community Science & Technology Seminar Series Nuclear Power in a Post-Fukushima World generated by nuclear power. What will the U.S. energy portfolio look like, and how will the energy demand is focused on longer- term operation of nuclear power plants, including measurements to detect

  1. Nuclear Power Plant Design Project

    E-Print Network [OSTI]

    Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global) .................................................................... 14 4.4 High Temperature Gas Reactor

  2. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  3. Mesofluidic magnetohydrodynamic power generation

    E-Print Network [OSTI]

    Fucetola, Jay J

    2012-01-01

    Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

  4. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  5. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01

    OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

  6. Competitive economics of nuclear power

    SciTech Connect (OSTI)

    Hellman, R.

    1981-03-02

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

  7. RF power generation

    E-Print Network [OSTI]

    Carter, R G

    2011-01-01

    This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  8. Working Group Report on - Space Nuclear Power Systems and Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even...

  9. Spin Seebeck power generators

    SciTech Connect (OSTI)

    Cahaya, Adam B.; Tretiakov, O. A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Bauer, Gerrit E. W. [Institute for Materials Research and WPI-AIMR, Tohoku University, Sendai 980-8577 (Japan); Kavli Institute of NanoScience, TU Delft Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2014-01-27

    We derive expressions for the efficiency and figure of merit of two spin caloritronic devices based on the spin Seebeck effect (SSE), i.e., the generation of spin currents by a temperature gradient. The inverse spin Hall effect is conventionally used to detect the SSE and offers advantages for large area applications. We also propose a device that converts spin current into electric one by means of a spin-valve detector, which scales favorably to small sizes and approaches a figure of merit of 0.5 at room temperature.

  10. Financial and ratepayer impacts of nuclear power plant regulatory reform

    SciTech Connect (OSTI)

    Turpin, A.G.

    1985-01-01

    Three reports - ''The Future Market for Electric Generating Capacity,'' ''Quantitative Analysis of Nuclear Power Plant Licensing Reform,'' and ''Nuclear Rate Increase Study'' are recent studies performed by the Los Alamos National Laboratory that deal with nuclear power. This presents a short summary of these three studies. More detail is given in the reports.

  11. Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility 

    E-Print Network [OSTI]

    Barner, Robert Buckner

    2007-04-25

    energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in their early...

  12. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    The Economist (2012). Nuclear power: The 30-year itch. TheDramatic fall in new nuclear power stations after Fukushima.environment/2012/mar/08/fall-nuclear-power- stations-

  13. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    2012). NRC: Nuclear Security and Safeguards.nrc.gov.in nuclear reactor maintenance and security. However, when aof nuclear power plants, as well as physical security to

  14. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  15. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    Y. , & Kitazawa, K. (2012). Fukushima in review: A complexin new nuclear power stations after Fukushima. The Guardian.nuclear-power- stations-fukushima Hvistendahl, M. (2007,

  16. Nuclear power reactor instrumentation systems handbook. Volume...

    Office of Scientific and Technical Information (OSTI)

    Nuclear power reactor instrumentation systems handbook. Volume 1 Citation Details In-Document Search Title: Nuclear power reactor instrumentation systems handbook. Volume 1 You...

  17. NUCLEAR POWER PLANT Nuclear power plants have safety and security procedures in place and

    E-Print Network [OSTI]

    NUCLEAR POWER PLANT ACCIDENTS Nuclear power plants have safety and security procedures in place and are closely monitored by the Nuclear Regulatory Commission (NRC). An accident at a nuclear power plant could of nuclear power plant accidents? Radioactive materials in the plume from the nuclear power plant can settle

  18. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    fall in new nuclear power stations after Fukushima. Thenuclear-power- stations-fukushima Hvistendahl, M. (2007,

  19. Solid state pulsed power generator

    DOE Patents [OSTI]

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  20. Experimental investigation on the chemical precipitation generation under the loss of coolant accident of nuclear power plants

    SciTech Connect (OSTI)

    Kim, C. H.; Sung, J. J. [Korea Hydro and Nuclear Power Co., Ltd., 25-1, Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Chung, Y. W. [FNC Technology Co., Ltd., Seoul National Univ., Bldg. 135-301, Gwanakro 599, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2012-07-01

    The PWR containment buildings are designed to facilitate core cooling in the event of a Loss of Coolant Accident (LOCA). The cooling process requires water discharged from the break and containment spray to be collected in a sump for recirculation. The containment sump contains screens to protect the components of the Emergency Core Cooling System (ECCS) and Containment Spray System (CSS) from debris. Since the containment materials may dissolve or corrode when exposed to the reactor coolant and spray solutions, various chemical precipitations can be generated in a post-LOCA environment. These chemical precipitations may become another source of debris loading to be considered in sump screen performance and downstream effects. In this study, new experimental methodology to predict the type and quantity of chemical precipitations has been developed. To generate the plant-specific chemical precipitation in a post-LOCA environment, the plant specific chemical condition of the recirculation sump during post-LOCA is simulated with the experimental reactor for the chemical effect. The plant-specific containment materials are used in the present experiment such as glass fibers, concrete blocks, aluminum specimens, and chemical reagent - boric acid, spray additives or buffering chemicals (sodium hydroxide, Tri-Sodium Phosphate (TSP), or others). The inside temperature of the reactor is controlled to simulate the plant-specific temperature profile of the recirculation sump. The total amount of aluminum released from aluminum specimens is evaluated by ICP-AES analysis to determine the amount of AlOOH and NaAlSi{sub 3}O{sub 8} which induce very adverse effect on the head loss across the sump screens. The amount of these precipitations generated in the present experimental study is compared with the results of WCAP-16530-NP-A. (authors)

  1. Nuclear Power Trends Energy Economics and Sustainability

    E-Print Network [OSTI]

    Nuclear Power Trends Energy Economics and Sustainability L. H. Tsoukalas Purdue University Nuclear Nuclear Today · 439 nuclear power reactors (31 countries) · Over 12,000 years of operating experience · Nuclear reactors supply 16% of the world's electricity as base-load power (372,000 MWe of total capacity

  2. Topics in nuclear power

    SciTech Connect (OSTI)

    Budnitz, Robert J.

    2015-03-30

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of 'significant events' since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its 'lessons learned' have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  3. Carbon pricing, nuclear power and electricity markets

    SciTech Connect (OSTI)

    Cameron, R.; Keppler, J. H. [OECD Nuclear Energy Agency, 12, boulevard des Iles, 92130 Issy-les-Moulineaux (France)

    2012-07-01

    In 2010, the NEA in conjunction with the International Energy Agency produced an analysis of the Projected Costs of Electricity for almost 200 power plants, covering nuclear, fossil fuel and renewable electricity generation. That analysis used lifetime costs to consider the merits of each technology. However, the lifetime cost analysis is less applicable in liberalised markets and does not look specifically at the viewpoint of the private investor. A follow-up NEA assessment of the competitiveness of nuclear energy against coal- and gas-fired generation under carbon pricing has considered just this question. The economic competition in electricity markets is today between nuclear energy and gas-fired power generation, with coal-fired power generation not being competitive as soon as even modest carbon pricing is introduced. Whether nuclear energy or natural gas comes out ahead in their competition depends on a number of assumptions, which, while all entirely reasonable, yield very different outcomes. The analysis in this study has been developed on the basis of daily data from European power markets over the last five-year period. Three different methodologies, a Profit Analysis looking at historic returns over the past five years, an Investment Analysis projecting the conditions of the past five years over the lifetime of plants and a Carbon Tax Analysis (differentiating the Investment Analysis for different carbon prices) look at the issue of competitiveness from different angles. They show that the competitiveness of nuclear energy depends on a number of variables which in different configurations determine whether electricity produced from nuclear power or from CCGTs generates higher profits for its investors. These are overnight costs, financing costs, gas prices, carbon prices, profit margins (or mark-ups), the amount of coal with carbon capture and electricity prices. This paper will present the outcomes of the analysis in the context of a liberalised electricity market, looking at the impact of the seven key variables and provide conclusions on the portfolio that a utility would be advised to maintain, given the need to limit risks but also to move to low carbon power generation. Such portfolio diversification would not only limit financial investor risk, but also a number of non-financial risks (climate change, security of supply, accidents). (authors)

  4. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as...

  5. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  6. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as ...

  7. Thermoelectric power generator for variable thermal power source

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  8. Elie: an event generator for nuclear reactions

    E-Print Network [OSTI]

    Dominique Durand

    2008-03-14

    An event generator for the description of nuclear reactions in the Fermi energy range is briefly introduced and first comparisons with experimental data are shown.

  9. Intelligent Component Monitoring for Nuclear Power Plants

    SciTech Connect (OSTI)

    Lefteri Tsoukalas

    2010-07-30

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  10. Safer nuclear power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV6STATDecember 2,Requirements OSafer

  11. Nuclear power high technology colloquium: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-12-10

    Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

  12. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2015

    Energy Savers [EERE]

    purposes. The Nuclear Regulatory Commission has voted to grant the Director of Nuclear Reactor Regulation authority to issue a full power operating license to Tennessee...

  13. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid...

  14. Organizational learning at nuclear power plants

    E-Print Network [OSTI]

    Carroll, John S.

    1991-01-01

    The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

  15. 24. Nuclear? Nuclear power comes in two flavours

    E-Print Network [OSTI]

    Ernst, Damien

    24. Nuclear? Nuclear power comes in two flavours: 1. Nuclear fission. Split up heavy nuclei into medium-sized nu- clei, thereby releasing energy. 2. Nuclear fusion. Fuse light nuclei into medium-sized nuclei, thereby releasing energy. 1 #12;Nuclear energy available per atom is roughly one mil- lion times

  16. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    hints of a burgeoning “energy crisis” (Rosa & Dunlap, 1994).consciousness for years. ” energy crisis. Nuclear power is

  17. An examination of the pursuit of nuclear power plant construction projects in the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2011-01-01

    The recent serious reconsideration of nuclear power as a means for U.S. electric utilities to increase their generation capacity provokes many questions regarding the achievable success of future nuclear power plant ...

  18. Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects

    E-Print Network [OSTI]

    Gsponer, A

    2005-01-01

    The paper begins with a general introduction and update to Fourth Generation Nuclear Weapons (FGNW), and then addresses some particularly important military aspects on which there has been only limited public discussion so far. These aspects concern the unique military characteristics of FGNWs which make them radically different from both nuclear weapons based on previous-generation nuclear-explosives and from conventional weapons based on chemical-explosives: yields in the 1 to 100 tons range, greatly enhanced coupling to targets, possibility to drive powerful shaped charged jets and forged fragments, enhanced prompt radiation effects, reduced collateral damage and residual radioactivity, etc.

  19. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    and Control Reactor Protection - Inst. and Control NuclearNUCLEAR REACTOR General Primary Cooling System (without steam gen. ) Steam generator Control

  20. nuclear power Update of the mit 2003

    E-Print Network [OSTI]

    Reuter, Martin

    #12;Future of nuclear power Update of the mit 2003 PROFESSOR JOHN M.DEUTCH Institute Professor of Technology. All rights reserved. #12;Update of the MIT 2003 Future of Nuclear Power Study 3 In 2003 a group of MIT faculty issued a study on The Future of Nuclear Power.1 The study was motivated by growing concern

  1. NUCLEAR POWER IN CALIFORNIA: 2007 STATUS REPORT

    E-Print Network [OSTI]

    NUCLEAR POWER IN CALIFORNIA: 2007 STATUS REPORT Prepared For: California Energy Commission Prepared;Abstract This consultant report examines how nuclear power issues have evolved since publication of the consultant report, Nuclear Power in California: Status Report, which was prepared for the 2005 IEPR

  2. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  3. Role of nuclear power in the Philippine power development program

    SciTech Connect (OSTI)

    Aleta, C.R.

    1994-12-31

    The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

  4. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  5. Pseudorandom sequences constructed by the power generator

    E-Print Network [OSTI]

    Katalin, Gyarmati

    Pseudorandom sequences constructed by the power generator Katalin Gyarmati # Abstract We study the pseudorandom properties of the power generator (which includes as special cases the RSA generator and the Blum- Blum-Shub generator). In order to estimate the pseudorandom mea- sures character sums with exponential

  6. Cascading Closed Loop Cycle Power Generation 

    E-Print Network [OSTI]

    Romero, M.

    2008-01-01

    the combustion of fossil fuels. The WOWGen® power plant inherently reduces emissions and Greenhouse Gases (GHG) by producing power from waste heat without consuming fuel, thus increasing the overall energy efficiency of any industrial plant or power generation...

  7. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering] [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering; Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering] [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1991-12-31

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  8. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. (Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering); Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering)

    1991-01-01

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  9. Assessment of architectural options for surface power generation and energy storage on human Mars missions

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Assessment of architectural options for surface power generation and energy storage on human Mars power Nuclear Solar power Architectures a b s t r a c t The provision of power for human Mars surface analysis of surface power generation and energy storage architectures for human Mars surface missions

  10. Moratorium on Construction of Nuclear Power Facilities (Connecticut...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moratorium on Construction of Nuclear Power Facilities (Connecticut) Moratorium on Construction of Nuclear Power Facilities (Connecticut) < Back Eligibility Agricultural Commercial...

  11. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect (OSTI)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  12. Decision-support tool for assessing future nuclear reactor generation portfolios.

    E-Print Network [OSTI]

    Oosterlee, Cornelis W. "Kees"

    Decision-support tool for assessing future nuclear reactor generation portfolios. Shashi Jain, where especially capital costs are known to be highly uncertain. Differ- ent nuclear reactor types uncertainties in the cost elements of a nuclear power plant, to provide an optimal portfolio of nuclear reactors

  13. A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo

    E-Print Network [OSTI]

    A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div, conducted using a nuclear power plant shutdown system being developed in Korea, demonstrated (2001~2008) is to develop a suite of I&C software for use in the next generation Korean nuclear power

  14. Next-Generation Power Electronics: Reducing Energy Waste and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 -...

  15. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  16. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  17. FUTURE POWER GRID INITIATIVE Next Generation Network

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE Next Generation Network Simulations for Power System Applications resources. To operate the future power grids, these will need to take into account: » the integration (509) 372-6575 jason.fuller@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver

  18. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    1. The International Nuclear Safety Advisory Group (Safetystrict safety regulations regarding containment of nuclearnuclear power plant poses is greater than any other source of energy, and no safety

  19. Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems

    E-Print Network [OSTI]

    White, Daniel B., Jr

    2011-01-01

    High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

  20. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations...

  1. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

  2. Nuclear power expansion: thinking about uncertainty

    SciTech Connect (OSTI)

    Holt, Lynne; Sotkiewicz, Paul; Berg, Sanford

    2010-06-15

    Nuclear power is one of many options available to achieve reduced carbon dioxide emissions. The real-option value model can help explain the uncertainties facing prospective nuclear plant developers in developing mitigation strategies for the development, construction, and operation of new nuclear plants. (author)

  3. Nuclear Power in France Beyond the Myth

    E-Print Network [OSTI]

    Laughlin, Robert B.

    Nuclear Power in France Beyond the Myth By Mycle Schneider International Consultant on Energy and Nuclear Policy Commissioned by the Greens-EFA Group in the European Parliament V5 #12;Note: The present international energy nuclear policy consultant. Between 1983 and April 2003 Mycle Schneider was executive

  4. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect (OSTI)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  5. RF Power Generation in LHC

    E-Print Network [OSTI]

    Brunner, O C; Valuch, D

    2003-01-01

    The counter-rotating proton beams in the Large Hadron Collider (LHC) will be captured and then accelerated to their final energies of 2 x 7 TeV by two identical 400 MHz RF systems. The RF power source required for each beam comprises eight 300 kW klystrons. The output power of each klystron is fed via a circulator and a waveguide line to the input coupler of a single-cell super-conducting (SC) cavity. Four klystrons are powered by a 100 kV, 40A AC/DC power converter, previously used for the operation of the LEP klystrons. A five-gap thyratron crowbar protects the four klystrons in each of these units. The technical specification and measured performance of the various high-power elements are discussed. These include the 400MHz/300kW klystrons with emphasis on their group delay and the three-port circulators, which have to cope with peak reflected power levels up to twice the simultaneously applied incident power of 300 kW. In addition, a novel ferrite loaded waveguide absorber, used as termination for port No...

  6. Radio-frequency power generation

    E-Print Network [OSTI]

    Carter, Richard G

    2013-01-01

    This paper reviews the main types of radio-frequency power amplifiers which are, or may be, used for high-power hadron accelerators. It covers tetrodes, inductive output tubes, klystrons and magnetrons with power outputs greater than 10 kW continuous wave or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

  7. Update on the Cost of Nuclear Power

    E-Print Network [OSTI]

    Parsons, John E.

    2009-01-01

    We update the cost of nuclear power as calculated in the MIT (2003) Future of Nuclear Power study. Our main focus is on the changing cost of construction of new plants. The MIT (2003) study provided useful data on the cost ...

  8. Nuclear Power PROS -`No' greenhouse gas emissions

    E-Print Network [OSTI]

    Toohey, Darin W.

    Nuclear Power PROS -`No' greenhouse gas emissions -Fuel is cheep -High energy density (1 ton U = 16 abundant elements found in natural crustal rocks) Nuclear Power CONS -High capital cost due to meeting,000 tons of coal to produce same amount of electricity) -Natural abundance of U (48th among the most

  9. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  10. The generative powers of demolition

    E-Print Network [OSTI]

    Muskopf, Christopher Jon Dalton, 1975-

    2005-01-01

    When examining the factory within the urban fabric, especially those cases that are abandoned and considered obsolete, it may be possible to see the first generative act as one of un-building. Considering demolition as an ...

  11. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Power Plant Reliability-Availability and State Regulation,"Report on Equipment Availability: Fossil and NuclearBasic Definitions* Availability: Reliability: Base Loading:

  12. Impact of Public Policy and Societal Risk Perception on U.S. Civilian Nuclear Power Plant Construction

    E-Print Network [OSTI]

    Ford, David N.

    Impact of Public Policy and Societal Risk Perception on U.S. Civilian Nuclear Power Plant permit applications for 26 new nuclear power reactors. However, the previous generation of U.S. civilian of nuclear plants. Results point to the critical role societal perceptions of nuclear power risk play

  13. Solid state laser media driven by remote nuclear powered fluorescence

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO)

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  14. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  15. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect (OSTI)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  16. Resummed QCD Power Corrections to Nuclear Shadowing

    E-Print Network [OSTI]

    Qiu, J; Qiu, Jianwei; Vitev, Ivan

    2004-01-01

    We calculate and resum a perturbative expansion of nuclear enhanced power corrections to the structure functions measured in deeply inelastic scattering of leptons on a nuclear target. Our results for the Bjorken $x$-, $Q^2$- and $A$-dependence of nuclear shadowing in $F_2^A(x,Q^2)$ and the nuclear modifications to $F_L^A(x,Q^2)$, obtained in terms of the QCD factorization approach, are consistent with the existing data. We demonstrate that the low-$Q^2$ behavior of these data and the measured large longitudinal structure function point to a critical role for the power corrections when compared to other theoretical approaches.

  17. Resummed QCD Power Corrections to Nuclear Shadowing

    E-Print Network [OSTI]

    Jianwei Qiu; Ivan Vitev

    2005-01-10

    We calculate and resum a perturbative expansion of nuclear enhanced power corrections to the structure functions measured in deeply inelastic scattering of leptons on a nuclear target. Our results for the Bjorken $x$-, $Q^2$- and $A$-dependence of nuclear shadowing in $F_2^A(x,Q^2)$ and the nuclear modifications to $F_L^A(x,Q^2)$, obtained in terms of the QCD factorization approach, are consistent with the existing data. We demonstrate that the low-$Q^2$ behavior of these data and the measured large longitudinal structure function point to a critical role for the power corrections when compared to other theoretical approaches.

  18. Relative Movements for Design of Commodities in Nuclear Power Plants

    Broader source: Energy.gov [DOE]

    Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

  19. Review: Nuclear Power Is Not the Answer by Helen Caldicott

    E-Print Network [OSTI]

    Mirza, Umar Karim

    2007-01-01

    Review: Nuclear Power Is Not the Answer By Helen CaldicottPakistan. Helen Caldicott. Nuclear Power Is Not the Answer.about the true costs of nuclear power, the health effects of

  20. Solar thermoelectrics for small scale power generation

    E-Print Network [OSTI]

    Amatya, Reja

    2012-01-01

    In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

  1. Electric Power Generation and Transmission (Iowa)

    Broader source: Energy.gov [DOE]

    Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

  2. Waste Heat Recovery Power Generation with WOWGen 

    E-Print Network [OSTI]

    Romero, M.

    2009-01-01

    WOW operates in the energy efficiency field- one of the fastest growing energy sectors in the world today. The two key products - WOWGen® and WOWClean® provide more energy at cheaper cost and lower emissions. •WOWGen® - Power Generation from...

  3. Hybrid solar-fossil fuel power generation

    E-Print Network [OSTI]

    Sheu, Elysia J. (Elysia Ja-Zeng)

    2012-01-01

    In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

  4. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    6, November~ U. S. Nuclear Regulatory Commission. Title 10,1974·. U. S. Nuclear Regulatory Commission. Office ofJanuary 1977. U. S. Nuclear Regulatory Commission. Office of

  5. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    report on HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL,5 of HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, ANDHealth and Safety Impacts of Nuclear, Geo- thermal, and

  6. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  7. A holistic investigation of complexity sources in nuclear power plant control rooms

    E-Print Network [OSTI]

    Sasangohar, Farzan

    2011-01-01

    The nuclear power community in the United States is moving to modernize aging power plant control rooms as well as develop control rooms for new reactors. New generation control rooms, along with modernized control rooms, ...

  8. Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2008-01-01

    The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

  9. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  10. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect (OSTI)

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  11. NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944

    E-Print Network [OSTI]

    #12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20, naval reactors, and nuclear power plants. Oak Ridge experiments byArt Snell in 1944 showed that 10 tons

  12. CEC-150-2006-001-F NUCLEAR POWER

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION MARCH 2006 CEC-150-2006-001-F NUCLEAR POWER IN CALIFORNIA: STATUS REPORT Prepared for the 2005 Integrated Energy Policy Report FINAL CONSULTANT REPORT #12;NUCLEAR POWER on California's nuclear power plants and key nuclear power issues such as nuclear waste storage, disposal

  13. Educational/trainingEducational/training needs of Nuclear Powerneeds of Nuclear Power

    E-Print Network [OSTI]

    Educational/trainingEducational/training needs of Nuclear Powerneeds of Nuclear Power Industry [NPI.Activities of the NPI. ·· Activities important for a GreekActivities important for a Greek Nuclear Power Industry.Nuclear and models discussed are based on the USdiscussed are based on the US Nuclear Power Industry andNuclear Power

  14. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  15. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Cańizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new for existent nuclear and wind power generation facilities. Keywords: hydrogen production, hydrogen storage, hydrogen economy, nuclear power, wind power, electricity markets, mixed-integer stochastic linear

  16. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  17. Apparatus and method for thermal power generation

    DOE Patents [OSTI]

    Cohen, Paul (Pittsburgh, PA); Redding, Arnold H. (Export, PA)

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  18. Quarterly Nuclear Power Deployment Scorecard - April 2013 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quarterly Nuclear Power Deployment Scorecard - April 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 News Updates On November 20, 2012, the Department of Energy...

  19. Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...

    Office of Environmental Management (EM)

    Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan December 15, 2011 -...

  20. Guangdong Nuclear Power and New Energy Industrial Investment...

    Open Energy Info (EERE)

    Nuclear Power and New Energy Industrial Investment Fund Management Company Jump to: navigation, search Name: Guangdong Nuclear Power and New Energy Industrial Investment Fund...

  1. Renewing America's Nuclear Power Partnership for Energy Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

  2. EEE 564 Interdisciplinary Nuclear Power Operations (3 hrs) Catalog Description: Nuclear power plant systems. Study of the interrelationship and propagation of

    E-Print Network [OSTI]

    Zhang, Junshan

    EEE 564 Interdisciplinary Nuclear Power Operations (3 hrs) Catalog Description: Nuclear power plant (Generation II) pressurized water reactors (PWRs) and boiling water reactors (BWRs) as well as the new Electric's advanced boiling water reactor (ABWR) and economic simplified boiling water reactor (ESBWR

  3. Japanese nuclear power and the Kyoto agreement

    E-Print Network [OSTI]

    Babiker, Mustafa H.M.; Reilly, John M.; Ellerman, A. Denny.

    We find that, on an economic basis, nuclear power could make a substantial contribution for meeting the emissions target Japan agreed to in the Kyoto Protocol. It is unlikely however that the contribution would be as large ...

  4. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  5. DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON,...

  6. Training the Next Generation of Nuclear Energy Leaders | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training the Next Generation of Nuclear Energy Leaders Training the Next Generation of Nuclear Energy Leaders May 8, 2012 - 3:06pm Addthis University of Idaho professor Supathorn...

  7. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    Distribution." U.S. Nuclear Regulatory Commission. Office ofBranch, U.S. Nuclear Regulatory Commission. U.S. WaterLBL-5287. U.S. Nuclear Regulatory Commission Standard Review

  8. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    Effect of Engineered Nuclear Safety, Volume 7, Number d I U.on Reactor Siting," Nuclear Safety, Vol. 7,No, 3, Springto Population," Nuclear Safety, Vol. 14, No.6, November-

  9. Nuclear power for energy and for scientific progress

    E-Print Network [OSTI]

    Giacomelli, G

    2012-01-01

    The Introduction in this paper underlines the present general situation for energy and the environment using the words of the US Secretary of Energy. A short presentation is made of some major nuclear power plants used to study one fundamental parameter for neutrino oscillations. The nuclear power status in some Far East Nations is summarized. The 4th generation of nuclear power stations, with emphasis on Fast Neutron Reactors, is recollected. The world consumptions of all forms of energies is recalled, fuel reserves are considered and the opportunities for a sustainable energy future is discussed. These considerations are applied to the italian situation, which is rather peculiar, also due to the many consequencies of the strong Nimby effects in Italy.

  10. Nuclear power: key to man's extraterrestrial civilization

    SciTech Connect (OSTI)

    Angelo, J.A. Jr.; Buden, D.

    1982-01-01

    The start of the Third Millennium will be highlighted by the establishment of man's extraterrestrial civilization with three technical cornerstones leading to the off-planet expansion of the human resource base. These are (1) the availability of compact energy sources for power and propulsion, (2) the creation of permanent manned habitats in space, and (3) the ability to process materials anywhere in the Solar System. In the 1990s and beyond, nuclear reactors could represent the prime source of both space power and propulsion. The manned and unmanned space missions of tomorrow will demand first kilowatt and then megawatt levels of power. Various nuclear power plant technologies will be discussed, with emphasis on derivatives from the nuclear rocket technology.

  11. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

  12. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  13. Yunnan Zhongda Yanjin Power Generation Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhongda Yanjin Power Generation Co Ltd Jump to: navigation, search Name: Yunnan Zhongda Yanjin Power Generation Co. Ltd. Place: Yunnan Province, China Sector: Hydro Product:...

  14. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

  15. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources Purchase and Installation of a Geothermal Power Plant to Generate...

  16. Overview of Options to Integrate Stationary Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Power Generation...

  17. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

  18. Gas turbine power generation from biomass gasification

    SciTech Connect (OSTI)

    Paisley, M.A.; Litt, R.D.; Overend, R.P.; Bain, R.L.

    1994-12-31

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines or as a substitute fuel in other combustion devices such as boilers, kilns, or other natural gas fired equipment. This paper discusses the development of the use of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier.

  19. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect (OSTI)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  20. The Fukushima Nuclear Event and its Implications for Nuclear Power

    SciTech Connect (OSTI)

    Golay, Michael (MIT) [MIT

    2011-07-06

    The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

  1. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    2010-02-28

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  2. Microelectromechanical power generator and vibration sensor

    DOE Patents [OSTI]

    Roesler, Alexander W. (Tijeras, NM); Christenson, Todd R. (Albuquerque, NM)

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  3. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  4. Low Cost High Concentration PV Systems for Utility Power Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Residential and Utility Solar Power Generating Systems SunPower,Low Cost Thin Film Building-Integrated PV Systems Low Cost High Concentration PV Systems for Utility Power...

  5. Using Backup Generators: Alternative Backup Power Options | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options. Battery-stored backup power-Allows you to continue...

  6. Recent advances in RF power generation

    SciTech Connect (OSTI)

    Tallerico, P.J.

    1990-01-01

    This paper is a review of the progress and methods used in RF generation for particle accelerators. The frequencies of interest are from a few megahertz to 100 GHz, and the powers are for super linear collider applications, but in this case the pulses are short, generally below 1 {mu}s. The very high-power, short-pulse generators are only lightly reviewed here, and for more details the reader should follow the specialized references. Different RF generators excel over various parts of the frequency spectrum. Below 100 MHz solid-state devices and gridded tubes prevail, while the region between 400 MHz and 3 GHz, the cyclotron-resonant devices predominate, and above 250 GHz, Free-Electron Lasers and ubitrons are the most powerful generators. The emphasis for this review is on microwave generation at frequencies below 20 GHz, so the cyclotron-resonant devices are only partially reviewed, while the progress on free-electron laser and ubitrons is not reviewed in this paper. 39 refs., 4 figs.

  7. Nuclear Power Plant Construction Activity, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-08-13

    Nuclear Power Plant Construction Activity 1985 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1985. This Report, which is updated annually, was prepared to respond to the numerous requests received by the Energy Information Administration for the data collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction.''

  8. Photovoltaic Power Generation in the Stellar Environments

    E-Print Network [OSTI]

    T. E. Girish; S. Aranya

    2010-12-03

    In this paper we have studied the problem of photovoltaic power generation near selected stars in the solar neighborhood. The nature of the optical radiation from a star will depend on its luminosity,HR classification and spectral characteristics. The solar celloperation in the habitable zones of the stars is similar to AM1.0 operation near earth.Thecurrent space solar cell technology can be adopted for power generation near G,K and Mtype stars. Silicon solar cells with good near IR response are particularly suitable in theenvironments of M type stars which are most abundant in the universe. . Photovoltaicpower generation near binary stars like Sirius and Alpha Centauri is also discussed.

  9. Japanese set to direct `sun-power' nuclear reactor in France September 16, 2005

    E-Print Network [OSTI]

    Japanese set to direct `sun-power' nuclear reactor in France September 16, 2005 Japan has been develop three generations of nuclear reactors and includes six low-capacity experimental reactors and a 17 asked to nominate the chief of an international project to build a multi- billion-dollar nuclear fusion

  10. The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under Climate Change Mitigation Policies

    E-Print Network [OSTI]

    The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under Climate Change and Policy Program #12;#12;The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under the Earth's climate, and will continue to change it for centuries if no action is taken. Nuclear power

  11. Coal Gasification for Power Generation, 3. edition

    SciTech Connect (OSTI)

    NONE

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  12. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect (OSTI)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  13. Webinar on Environmental Radiation Protection Standards for Nuclear Power

    E-Print Network [OSTI]

    not directly oversee nuclear power plants. · The Nuclear Regulatory Commission (NRC) licenses and overseesWELCOME! Webinar on Environmental Radiation Protection Standards for Nuclear Power Operations #12 for Nuclear Power Operations­ 40 CFR Part 190 Brian Littleton, US EPA May 28, 2014 Public Webinar #12

  14. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

    2008-01-01

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  15. Use of neurals networks in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (USA))

    1989-01-01

    A technique using neural networks as a means of diagnosing transients or abnormal conditions in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of sensor outputs or instrument readings that can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault, problem, or transient condition of the plant. A demonstration of the ability of this technique to identify causes of perturbations in the steam generator of a nuclear plant is presented. 3 refs., 4 figs.

  16. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  17. Global nuclear power supply chains and the rise of China's nuclear industry

    E-Print Network [OSTI]

    Metzler, Florian

    2012-01-01

    China has embarked on a massive expansion of nuclear power that may fundamentally change the global nuclear industry, for better or for worse. Some industry observers argue that the incumbent nuclear power companies are ...

  18. Electrokinetic Power Generation from Liquid Water Microjets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  19. BPA Power Generation (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections Audits Generation Hydro Power Wind Power Monthly GSP

  20. Power Generation Market Watch Cell Processing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w w w.pv - te ch.org Power Generation

  1. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power > Generation Hydro

  2. Sandia Energy - Sandia Nuclear Power Safety Expert Elected to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Power Safety Expert Elected to National Academy of Engineering Home Infrastructure Security Energy Nuclear Energy Capabilities News News & Events Research & Capabilities...

  3. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy andELECTRIC GENERATION IN CALIFORNIA A project performed for the California Energy

  4. Heat Management in Thermoelectric Power Generators

    E-Print Network [OSTI]

    Zebarjadi, Mona

    2015-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show that if Bi1, it lowers the conversion efficiency.

  5. Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nuclear power plants in the United States currently produce about 20 percent of the nation’s electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit...

  6. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    Control as it Relates to Wind- Powered Generation AppendixControl as it Relates to Wind-Powered Generation JohnControl as it Relates to Wind-Powered Generation LBNL-XXXXX

  7. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  8. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  9. Modeling Generator Power Plant Portfolios and Pollution Taxes in

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

  10. Cummins Power Generation SECA Phase 1

    SciTech Connect (OSTI)

    Charles Vesely

    2007-08-17

    The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

  11. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  12. Management of National Nuclear Power Programs for assured safety

    SciTech Connect (OSTI)

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  13. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  14. Power Generation Using Different Cation, Anion, and Ultrafiltration

    E-Print Network [OSTI]

    Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel during power generation. An anion exchange membrane (AEM) produced the largest power density (up to 610 m reports (5, 6), oxygen based cathodes provide a more sustainable method of power generation (6

  15. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  16. Nuclear Power - Operation, Safety and Environment 

    E-Print Network [OSTI]

    2011-01-01

    for Advanced Reactors 47 P. F. Frutuoso e Melo, I. M. S. Oliveira and P. L. Saldanha Chapter 4 Geodetic Terrestrial Observations for the Determination of the Stability in the Kr?ko Nuclear Power Plant Region 71 S. Sav?ek, T. Ambro?i? and D. Kogoj Chapter... Experience in Nuclear Steam Reheat 3 Eugene Saltanov and Igor Pioro Chapter 2 Integrated Approach for Actual Safety Analysis 29 Francesco D?Auria, Walter Giannotti and Marco Cherubini Chapter 3 LWR Safety Analysis and Licensing and Implications...

  17. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  18. Analysis of nuclear power plant component failures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  19. The History of Nuclear Power in Space | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The History of Nuclear Power in Space The History of Nuclear Power in Space June 9, 2015 - 11:42am Addthis Marissa Newhall Marissa Newhall Director of Digital Strategy &...

  20. Secretary Chu Visits Vogtle Nuclear Power Plant | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Visits Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to...

  1. At Vogtle, Big Results with Nuclear Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    At Vogtle, Big Results with Nuclear Power At Vogtle, Big Results with Nuclear Power February 20, 2014 - 1:29pm Addthis Construction work inside the Vogtle 3 and 4 module assembly...

  2. Howard Baker Center for Public Policy Nuclear Power Conference...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared...

  3. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  4. Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly...

    Open Energy Info (EERE)

    Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation, search Name: Datang Jilin Resourceful New Energy Power...

  5. An Approach to Autonomous Control for Space Nuclear Power Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas; Upadhyaya, Belle R.

    2011-01-01

    Under Project Prometheus, the National Aeronautics and Space Administration (NASA) investigated deep space missions that would utilize space nuclear power systems (SNPSs) to provide energy for propulsion and spacecraft power. The initial study involved the Jupiter Icy Moons Orbiter (JIMO), which was proposed to conduct in-depth studies of three Jovian moons. Current radioisotope thermoelectric generator (RTG) and solar power systems cannot meet expected mission power demands, which include propulsion, scientific instrument packages, and communications. Historically, RTGs have provided long-lived, highly reliable, low-power-level systems. Solar power systems can provide much greater levels of power, but power density levels decrease dramatically at {approx} 1.5 astronomical units (AU) and beyond. Alternatively, an SNPS can supply high-sustained power for space applications that is both reliable and mass efficient. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of an SNPS must be able to provide continuous operatio for the mission duration with limited immediate human interaction and no opportunity for hardware maintenance or sensor calibration. In effect, the SNPS control system must be able to independently operate the power plant while maintaining power production even when subject to off-normal events and component failure. This capability is critical because it will not be possible to rely upon continuous, immediate human interaction for control due to communications delays and periods of planetary occlusion. In addition, uncertainties, rare events, and component degradation combine with the aforementioned inaccessibility and unattended operation to pose unique challenges that an SNPS control system must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design.

  6. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  7. Can Nuclear Power Be Flexible? Laurent POURET + William J. NUTTALL

    E-Print Network [OSTI]

    Aickelin, Uwe

    1 Can Nuclear Power Be Flexible? Laurent POURET + William J. NUTTALL Judge Business School the issue of whether nuclear power can play a flexible role within an electricity system. It does not deal with the issue of whether nuclear power should play such a role, but it does examine why in most cases it does

  8. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect (OSTI)

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-01-01

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant's training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  9. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  10. Linking Humans and Systems in Nuclear Power

    SciTech Connect (OSTI)

    Jacques Hugo

    2013-02-01

    Traditional engineering methods do not make provision for the integration of human considerations, while traditional human factors methods do not scale well to the complexity of large-scale nuclear power plant projects. Although the need for up-to-date human factors engineering processes and tools is recognised widely in industry, so far no formal guidance has been developed. This article proposes such a framework.

  11. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  12. Enhanced Efficiency of Wind-Diesel Power Generation in Tribal...

    Office of Environmental Management (EM)

    Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages June 17, 2014 - 3:50pm Addthis The...

  13. Power generation with laterally packaged piezoelectric fine wires

    E-Print Network [OSTI]

    Wang, Zhong L.

    Power generation with laterally packaged piezoelectric fine wires Rusen Yang1 , Yong Qin1 , Liming we report a flexible power generator that is based on cyclic stretching­releasing of a piezoelectric

  14. Generating unstructured nuclear reactor core meshes in parallel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore »examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a Ľ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  15. Generating unstructured nuclear reactor core meshes in parallel

    SciTech Connect (OSTI)

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor core examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a Ľ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.

  16. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  17. Increased Power Generation in a Continuous Flow MFC with

    E-Print Network [OSTI]

    Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode, The Pennsylvania State University, University Park, Pennsylvania 16802 The maximum power generated in a single without affecting power generation (16). Pt can be replaced by less expensive alternatives such as Co

  18. Using Probabilistic Analysis to Value Power Generation Investments Under Uncertainty

    E-Print Network [OSTI]

    Roques, Fabien A.; Nuttall, William J.; Newbery, David

    in three base-load technologies (combined cycle gas turbine, coal plant, and nuclear power plant), and demonstrate using three case studies how such a probabilistic approach provides investors with a much richer analytical framework to assess power...

  19. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  20. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  1. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  2. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

  3. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  4. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    Nuclear- Wastes/Appendices/Radioactive-Waste-Management-Nuclear Association (2010). Radioactive Waste Management:

  5. ON THE LINEAR COMPLEXITY OF THE POWER GENERATOR

    E-Print Network [OSTI]

    Shparlinski, Igor

    ON THE LINEAR COMPLEXITY OF THE POWER GENERATOR Igor Shparlinski School of MPCE, Macquarie on the linear complexity of the power generator of pseudo­random numbers, which in some special cases is also known as the RSA generator and as the Blum--Blum--Shub generator. In some very important cases

  6. Powering the Nuclear Navy | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O09Our Mission / Powering the Nuclear

  7. Electric Power Produced from Nuclear Reactor | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroic Electric FieldAdministration

  8. F POWER MEASUREMENT FOR GENERATION IV SODIUM FAST R. COULON, S. NORMAND, M. MICHEL, L. BARBOT, T. DOMENECH,

    E-Print Network [OSTI]

    Boyer, Edmond

    20 F POWER MEASUREMENT FOR GENERATION IV SODIUM FAST REACTORS R. COULON, S. NORMAND, M. MICHEL, L.F-84500 Bollčne, France. ABSTRACT The Phénix nuclear power plant has been a French Sodium Fast Reactor at the Phénix reactor shows that the use of 20 F as power tagging agent gives a fast and accurate power

  9. New power politics will determine generation's path

    SciTech Connect (OSTI)

    Maize, K.; Neville, A.; Peltier, R.

    2009-01-15

    The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

  10. The U.S. Department of Energy's Office of Nuclear Energy promotes nuclear power as

    E-Print Network [OSTI]

    Kemner, Ken

    nuclear power as a resource capable of meeting the Nation's energy, environmental and national security nuclear power plants. zz NuclearzEnergyzEnablingzTechnologiesz-- to explore transformative, "out our national and international supplies of fuel for nuclear power plants remain stable

  11. What future for nuclear power? Workshop report

    SciTech Connect (OSTI)

    1998-12-31

    A Workshop on this highly controversial subject, organized by the Energy and Environment Programme of the RIIA, was held on 10th November 1997 at Green College, Oxford. The meeting was attended by some forty people from eight countries, coming from the nuclear and electricity generating industry, governments, research organizations, academic institutions, environmental pressure groups and inter-governmental organizations. In addition, subsequent to this Workshop, there have been a number of smaller, more informal discussions on various aspects of the subject. This paper summarizes the main conclusions arising from the Workshop and from these later discussions.

  12. Nuclear Power and the World's Energy Requirements

    E-Print Network [OSTI]

    Castellano, V; Dunning-Davies, J

    2004-01-01

    The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

  13. Nuclear Power and the World's Energy Requirements

    E-Print Network [OSTI]

    V. Castellano; R. F. Evans; J. Dunning-Davies

    2004-06-10

    The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

  14. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    United States Nuclear Regulatory Commission (2012). NRC:United States Nuclear Regulatory Commission (2013). NRC: Newreasons that the Nuclear Regulatory Commission was founded

  15. Commercial Nuclear Power 1984: prospects for the United States and the World

    SciTech Connect (OSTI)

    Gielecki, M.; Diedrich, R.; Hewlett, J.; Murphy, T.

    1984-11-27

    This analysis report presents the current status and outlook for commercial nuclear power reactors for all countries in the world outside centrally planned economic areas (WOCA). The report provides documentation of the US nuclear capacity and generation projections through 1995 that are presented in the Annual Energy Outlook 1983. Additionally, US nuclear capacity and generation projections through 2020 are presented for various nuclear power supply scenarios. These long-term projections are provided in support of the Department of Energy's activities pertaining to the Nuclear Waste Policy Act of 1982. The projections for foreign nuclear capacity through 1990 supplant the preliminary foreign WOCA projection presented in the Annual Energy Outlook 1983 and are supplemented by WOCA country-specific projections through 2000.

  16. Nuclear Power No Solution to the Climate Crisis

    E-Print Network [OSTI]

    Laughlin, Robert B.

    construction of new nuclear reactors as a means of addressing the climate crisis. Available renewable energy Reality Check, Part 4 · Costs raise serious questions about nuclear's competitiveness · 15 cents per kwNuclear Power No Solution to the Climate Crisis Michael Mariotte Nuclear Information and Resource

  17. Nuclear reactor power for an electrically powered orbital transfer vehicle

    SciTech Connect (OSTI)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  18. Analysis of nuclear power plant construction costs

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  19. Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain in their power plants. This paper proposes significant extensions to the electric power supply chain network generators faced with a portfolio of power plant options and subject to pollution taxes. We then demonstrate

  20. Utility system integration and optimization models for nuclear power management

    E-Print Network [OSTI]

    Deaton, Paul Ferris

    1973-01-01

    A nuclear power management model suitable for nuclear utility systems optimization has been developed for use in multi-reactor fuel management planning over periods of up to ten years. The overall utility planning model ...

  1. RF Power Generation in LINAC4

    E-Print Network [OSTI]

    Brunner, O; Schwerg, J N

    2010-01-01

    Linac4 is a lin­ear ac­cel­er­a­tor for neg­a­tive Hy­dro­gen ions (H-) which will re­place the old Linac2 as lin­ear in­jec­tor for the CERN ac­cel­er­a­tors. Its high­er en­er­gy of 160 MeV will give in­creased beam in­ten­si­ty in the down­stream ma­chines. Linac4 is about 100 m long, nor­mal-con­duct­ing, and will be housed in a tun­nel about 12 m below ground. The Linac4 tun­nel will be con­nect­ed to the ex­ist­ing chain of ac­cel­er­a­tors and can be ex­tend­ed to the new in­jec­tion chain. The high RF power for the Linac4 ac­cel­er­at­ing struc­tures will be gen­er­at­ed by thir­teen 1.3 MW klystrons, pre­vi­ous­ly used for the CERN LEP ac­cel­er­a­tor, and six new 2.8 MW klystrons of all op­er­at­ing at a fre­quen­cy of 352.2 MHz. The in­te­gra­tion of the RF power sys­tem in the build­ing is pre­sent­ed. The tech­ni­cal spec­i­fi­ca­tions and the per­for­mance of the var­i­ous high-pow­er el­e­ments are dis­cussed, ...

  2. Commitment of Electric Power Generators under Stochastic Market Prices

    E-Print Network [OSTI]

    Mazumdar, Mainak

    that when an electric power producer has the option of trading electricity at market prices, an optimal unitCommitment of Electric Power Generators under Stochastic Market Prices Jorge Valenzuela 1 November 2001 1 Corresponding author. #12;1 Commitment of Electric Power Generators under Stochastic Market

  3. Geothermal, an alternate energy source for power generation

    SciTech Connect (OSTI)

    Espinosa, H.A.

    1985-02-01

    The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

  4. The Handbook of Applied Bayesian Analysis, Eds: Tony O'Hagan & Mike West, Oxford University Bayesian analysis and decisions in nuclear power plant

    E-Print Network [OSTI]

    Popova, Elmira

    Bayesian analysis and decisions in nuclear power plant maintenance Elmira Popova, David Morton, Paul Damien are then applied to solving an important problem in a nuclear power plant system at the South Texas Project (STP) Electric Generation Station. STP is one of the newest and largest nuclear power plants in the US

  5. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01

    Lying Repositories for Nuclear Waste, NAGRA Technical Reporthost rock formation for nuclear waste storage. EngineeringGas Generation in a Nuclear Waste Repository: Reactive

  6. Direct charge radioisotope activation and power generation

    DOE Patents [OSTI]

    Lal, Amit (Madison, WI); Li, Hui (Madison, WI); Blanchard, James P. (Madison, WI); Henderson, Douglass L. (Madison, WI)

    2002-01-01

    An activator has a base on which is mounted an elastically deformable micromechanical element that has a section that is free to be displaced toward the base. An absorber of radioactively emitted particles is formed on the base or the displaceable section of the deformable element and a source is formed on the other of the displaceable section or the base facing the absorber across a small gap. The radioactive source emits charged particles such as electrons, resulting in a buildup of charge on the absorber, drawing the absorber and source together and storing mechanical energy as the deformable element is bent. When the force between the absorber and the source is sufficient to bring the absorber into effective electrical contact with the source, discharge of the charge between the source and absorber allows the deformable element to spring back, releasing the mechanical energy stored in the element. An electrical generator such as a piezoelectric transducer may be secured to the deformable element to convert the released mechanical energy to electrical energy that can be used to provide power to electronic circuits.

  7. Analysis of Wind Power Generation of Texas 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

    2007-01-01

    ? Not appropriate for predicting hourly power using power curve ? On-site wind: ? Measured power vs. on-site wind following well the power curve prediction ? No curtailment at this site ? Green curves showing a band of 5 MW from the power curve WHY NOT Use... APPLICATION ? Indian Mesa Wind Farm Measured MW Plotted Against Hourly NOAA Wind Speed? ANN significantly improves the prediction of on-site wind speed compared to NOAA. ? Green curves showing a band of 5 MW from the power curve Hourly Wind Power...

  8. Synthesis and Characterization of Iridium- and Cobalt-based Skutterudites for Thermoelectric Power Generation

    E-Print Network [OSTI]

    King, Daniel Jay

    2014-01-01

    for thermoelectric power generation,” 235th ACS Nationalfor Thermoelectric Power Generation A dissertation submittedfor Thermoelectric Power Generation by Daniel Jay King, Jr.

  9. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  10. Nuclear power systems for Lunar and Mars exploration

    SciTech Connect (OSTI)

    Sovie, R.J.; Bozek, J.M.

    1994-09-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

  11. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks Citation Details In-Document Search Title: Pyroelectric Energy Scavenging...

  12. UNDERSTANDING SEISMIC DESIGN CRITERIA FOR JAPANESE NUCLEAR POWER...

    Office of Scientific and Technical Information (OSTI)

    MITI Orders and Notifications: e MITI Order No. 62, "Technical Standards for Nuclear Power Plant Facilities", 1989 (Ref lo). MITI Notification No. 501, "Technical Standards for...

  13. Nuclear Power 2010 Program: Combined Construction and Operating...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Power 2010 (NP 2010) Construction and Operating LicenseDesign Certification (COLDC) Demonstration program together with the financial incentives provided by the Energy...

  14. PUCT - Registration Form for Power Generation Companies and Self...

    Open Energy Info (EERE)

    PUCT - Registration Form for Power Generation Companies and Self-Generators Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: PUCT - Registration Form for...

  15. PUCT Substantive Rule 25.109 - Registration of Power Generation...

    Open Energy Info (EERE)

    PUCT Substantive Rule 25.109 - Registration of Power Generation Companies and Self-Generators Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  16. High-density thermoelectric power generation and nanoscale thermal metrology

    E-Print Network [OSTI]

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  17. Global Installed Capacity of Coal Fired Power Generation to Reach...

    Open Energy Info (EERE)

    offers comprehensive data with regard to the size, growth, and forecast of this market. Coal fired power generation has been a very common energy producing technique for...

  18. January 2013 Most Viewed Documents for Power Generation And Distributi...

    Office of Scientific and Technical Information (OSTI)

    2013 Most Viewed Documents for Power Generation And Distribution Lessons from Large-Scale Renewable Energy Integration Studies: Preprint Bird, L.; Milligan, M. Small punch creep...

  19. Electric Power Generation Using Geothermal Fluid Coproduced from...

    Open Energy Info (EERE)

    Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electric...

  20. Modeling Generator Power Plant Portfolios and Pollution Taxes

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain;Modeling Energy Taxes and Credits: The Genco's Choice · Each Genco has a portfolio of power plants · Each power plant can have different supply costs and transaction costs · Supply costs can reflect capital

  1. Generating Circuit Current Constraints to Guarantee Power Grid Safety

    E-Print Network [OSTI]

    Najm, Farid N.

    Generating Circuit Current Constraints to Guarantee Power Grid Safety Zahi Moudallal ECE Dept, as well as power grid-aware placement and floorplanning. We give a rigorous problem definition and develop of power grids is a necessity in modern chip design. We will use the term "power grid" to refer to either

  2. Configuration management in nuclear power plants

    E-Print Network [OSTI]

    2003-01-01

    Configuration management (CM) is the process of identifying and documenting the characteristics of a facility's structures, systems and components of a facility, and of ensuring that changes to these characteristics are properly developed, assessed, approved, issued, implemented, verified, recorded and incorporated into the facility documentation. The need for a CM system is a result of the long term operation of any nuclear power plant. The main challenges are caused particularly by ageing plant technology, plant modifications, the application of new safety and operational requirements, and in general by human factors arising from migration of plant personnel and possible human failures. The IAEA Incident Reporting System (IRS) shows that on average 25% of recorded events could be caused by configuration errors or deficiencies. CM processes correctly applied ensure that the construction, operation, maintenance and testing of a physical facility are in accordance with design requirements as expressed in the d...

  3. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  4. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

  5. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect (OSTI)

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  6. Method and apparatus for generating low energy nuclear particles

    DOE Patents [OSTI]

    Powell, James R. (Shoreham, NY); Reich, Morris (Flushing, NY); Ludewig, Hans (Brookhaven, NY); Todosow, Michael (Miller Place, NY)

    1999-02-09

    A particle accelerator (12) generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target (14) is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target (14) produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer (44) and a neutron filter (42) are also used for preferentially degrading the secondary particles into a lower energy range if desired.

  7. Method and apparatus for generating low energy nuclear particles

    DOE Patents [OSTI]

    Powell, J.R.; Reich, M.; Ludewig, H.; Todosow, M.

    1999-02-09

    A particle accelerator generates an input particle beam having an initial energy level above a threshold for generating secondary nuclear particles. A thin target is rotated in the path of the input beam for undergoing nuclear reactions to generate the secondary particles and correspondingly decrease energy of the input beam to about the threshold. The target produces low energy secondary particles and is effectively cooled by radiation and conduction. A neutron scatterer and a neutron filter are also used for preferentially degrading the secondary particles into a lower energy range if desired. 18 figs.

  8. Ames Lab 101: Next Generation Power Lines

    ScienceCinema (OSTI)

    Russell, Alan

    2012-08-29

    Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

  9. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect (OSTI)

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  10. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are...

  11. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Us Offices May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu,...

  12. Fault Current Issues for Market Driven Power Systems with Distributed Generation

    E-Print Network [OSTI]

    1 Fault Current Issues for Market Driven Power Systems with Distributed Generation Natthaphob of installing distributed generation (DG) to electric power systems. The proliferation of new generators creates Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault

  13. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions degrade, and the likelihood of equipment damage or failure increases. Such failures can result in forced outages of units that can hamper BPA's ability to meet power...

  14. Nuclear enhanced power corrections to DIS structure functions

    E-Print Network [OSTI]

    Xiaofeng Guo; Jianwei Qiu; Wei Zhu

    2001-10-03

    We calculate nuclear enhanced power corrections to structure functions measured in deeply inelastic lepton-nucleus scattering in Quantum Chromodynamics (QCD). We find that the nuclear medium enhanced power corrections at order of $O(\\alpha_s/Q^2)$ enhance the longitudinal structure function $F_L$, and suppress the transverse structure function $F_1$. We demonstrate that strong nuclear effects in $\\sigma_A/\\sigma_D$ and $R_A/R_D$, recently observed by HERMES Collaboration, can be explained in terms of the nuclear enhanced power corrections.

  15. THE BIRTH OF NUCLEAR-GENERATED ELECTRICITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainable

  16. Nonlinear Electrical Simulation of High-Power Synchronous Generator System

    E-Print Network [OSTI]

    Wu, Thomas

    power density, the generator operates in nonlinear region of the magnetic circuit. Magnetic Finite for motor simulation [I]. Fardoun simulated permanent-magnet machine drive system using SPlCE [2]. NatarajanNonlinear Electrical Simulation of High-Power Synchronous Generator System Jie Chen and Thomas Wu

  17. Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    markets could aid in the design of appropriate price forecasting tools for such markets. Scenario1 Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets Qun Zhou, restructured wholesale power markets, scenario generation, ARMA model, moment-matching method I. INTRODUCTION

  18. BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION

    E-Print Network [OSTI]

    by storing excess power to a battery during excess generation, and then releasing the energy when power generation diminishes. Among other considera- tions, we would like to release and store energy at a bounded States have adopted renewable portfolio standards, which require a certain percentage of electric energy

  19. Electromagnetic Generators for Portable Power Applications Matthew Kurt Senesky

    E-Print Network [OSTI]

    Sanders, Seth

    -- the electrochemical battery -- has failed to shrink at the same rate as circuits and sensors. While this growing or turbines paired with electrical generators. Producing such a system to run efficiently on the milli to power tools to electric vehicle drives to wind power generation -- that would benefit from high

  20. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  1. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    E-Print Network [OSTI]

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  2. NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE

    SciTech Connect (OSTI)

    Sherman, S

    2008-09-22

    A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

  3. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect (OSTI)

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-12-31

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant`s training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  4. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  5. Summary of space nuclear reactor power systems, 1983--1992

    SciTech Connect (OSTI)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  6. harmonic generation at a critical power in inhomogeneous doubly

    E-Print Network [OSTI]

    Soljačić, Marin

    (2) and (3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities- and third-harmonic generation via (2) and (3) nonlinearities. We find that conversion efficiency. Drummond, K. J. McNeil, and D. F. Walls, "Non-equilibrium transitions in sub/second harmonic generation I

  7. Piezoelectric and Semiconducting Coupled Power Generating Process of a

    E-Print Network [OSTI]

    Wang, Zhong L.

    observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of the electric generator relies on the unique coupling of piezoelectric and semiconducting dual properties of ZnPiezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt

  8. Energy Storage System Sizing for Smoothing Power Generation , P. Bydlowski

    E-Print Network [OSTI]

    Boyer, Edmond

    Energy Storage System Sizing for Smoothing Power Generation of Direct J. Aubry1 , P. Bydlowski 1 E-mail: judicael.aubry Abstract This paper examines the sizing energy storage system (ESS) for energy converter. Keywords: Energy Storage System (ESS), power smoothing, Direct Wave Energy Converter, Supercapacitor, Power

  9. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  10. HEITSCH, R OMISCH --HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems in Power Generation

    E-Print Network [OSTI]

    Römisch, Werner

    HEITSCH, R ¨OMISCH -- HYDRO-STORAGE SUBPROBLEMS IN POWER GENERATION 1 Hydro-Storage Subproblems that owns a hydro-thermal generation sys- tem and trades on the power market often lead to complex stochas- tic optimization problems. We present a new approach to solving stochastic hydro-storage subproblems

  11. Economic Conditions and Factors Affecting New Nuclear Power Deployment

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examine the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic analysis. In both cases, the profitable price point is decreased, making more markets open to profitable entry. Overall, the economic attractiveness of a nuclear power construction project is not only a function of its own costs, but a function of the market into which it is deployed. Many of the market characteristics are out of the control of the potential nuclear power plant operators. The decision-making process for the power industry in general is complicated by the short-term market volatility in both the wholesale electricity market and the commodity (natural gas) market. Decisions based on market conditions today may be rendered null and void in six months. With a multiple-year lead time, nuclear power plants are acutely vulnerable to market corrections.

  12. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    No. 75-50 (Ref. 1). Nuclear Safety, September 1975 to Augustreport on HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL,7 of HEAL TH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND

  13. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  14. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect (OSTI)

    Sheng, Jiawei [Kyoto University (Japan); Choi, Kwansik [Nuclear Environment Technology Institute (Korea, Republic of); Yang, Kyung-Hwa [Nuclear Environment Technology Institute (Korea, Republic of); Lee, Myung-Chan [Nuclear Environment Technology Institute (Korea, Republic of); Song, Myung-Jae [Nuclear Environment Technology Institute (Korea, Republic of)

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  15. PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau

    E-Print Network [OSTI]

    Ashley, Michael C. B.

    PLATO Power--a robust, low environmental impact power generation system for the Antarctic plateau the power generation and management system of PLATO. Two redundant arrays of solar panels and a multiply astronomical facilities on the Antarctic plateau, offering minimum environmental impact and requiring minimal

  16. Combined fuel and air staged power generation system

    SciTech Connect (OSTI)

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  17. Protective, Modular Wave Power Generation System

    SciTech Connect (OSTI)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  18. Safe Operation of Backup Power Generators 

    E-Print Network [OSTI]

    Smith, David

    2006-04-19

    equipped with a grounding pin. ? Never plug the generator into a wall outlet in a house or other circuit. This practice, known as ?back feeding,? is extremely dangerous because it energizes the failed electrical wiring supply- ing the home. This could... stream_source_info pdf_2312.pdf.txt stream_content_type text/plain stream_size 6389 Content-Encoding ISO-8859-1 stream_name pdf_2312.pdf.txt Content-Type text/plain; charset=ISO-8859-1 E-395 04/06 Portable generators...

  19. The role of actinide burning and the Integral Fast Reactor in the future of nuclear power

    SciTech Connect (OSTI)

    Hollaway, W.R.; Lidsky, L.M.; Miller, M.M.

    1990-12-01

    A preliminary assessment is made of the potential role of actinide burning and the Integral Fast Reactor (IFR) in the future of nuclear power. The development of a usable actinide burning strategy could be an important factor in the acceptance and implementation of a next generation of nuclear power. First, the need for nuclear generating capacity is established through the analysis of energy and electricity demand forecasting models which cover the spectrum of bias from anti-nuclear to pro-nuclear. The analyses take into account the issues of global warming and the potential for technological advances in energy efficiency. We conclude, as do many others, that there will almost certainly be a need for substantial nuclear power capacity in the 2000--2030 time frame. We point out also that any reprocessing scheme will open up proliferation-related questions which can only be assessed in very specific contexts. The focus of this report is on the fuel cycle impacts of actinide burning. Scenarios are developed for the deployment of future nuclear generating capacity which exploit the advantages of actinide partitioning and actinide burning. Three alternative reactor designs are utilized in these future scenarios: The Light Water Reactor (LWR); the Modular Gas-Cooled Reactor (MGR); and the Integral Fast Reactor (FR). Each of these alternative reactor designs is described in some detail, with specific emphasis on their spent fuel streams and the back-end of the nuclear fuel cycle. Four separation and partitioning processes are utilized in building the future nuclear power scenarios: Thermal reactor spent fuel preprocessing to reduce the ceramic oxide spent fuel to metallic form, the conventional PUREX process, the TRUEX process, and pyrometallurgical reprocessing.

  20. Nuclear power programs in developing countries of the world: Southeast Asia

    SciTech Connect (OSTI)

    1995-05-01

    This article reviews the present and future status of the nuclear industry in the developing nations of China, North Korea, Thailand, Indonesia, and the Philippines. Each of the countries has a booming export-driven economy, which is turn requires considerable new generating capacity. The nuclear option is being considered as a provider of much of this additional capacity. China is committed to an extensive nuclear power program, and Indonesia has an ambitious plan to have seven to twelve reactors in service by the year 2015. North Korea will receive two LWRs to replace its current non-power nuclear units. The nuclear option is still under discussion in the Philippines and in Thailand.

  1. The status of nuclear power plants in the People's Republic of China

    SciTech Connect (OSTI)

    Puckett, J.

    1991-05-01

    China's main energy source is coal, but transportation and environmental problems make that fuel less than desirable. Therefore, the Chinese, as part of an effort toward alternative energy sources, are developing nuclear power plants. In addition to providing a cleaner power source, development of nuclear energy would improve the Chinese economic condition and give the nation greater world status. China's first plants, at Qinshan and Daya Bay, are still incomplete. However, China is working toward completion of those reactors and planning the training and operating procedures needed to operate them. At the same time, it is improving its nuclear fuel exports. As they develop the capability for generating nuclear power, the Chinese seem to be aware of the accompanying quality and safety considerations, which they have declared to be first priorities. 50 refs., 7 figs.

  2. Cascade Failures from Distributed Generation in Power Grids

    E-Print Network [OSTI]

    Scala, Antonio; Scoglio, Caterina

    2012-01-01

    Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

  3. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  4. LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS

    E-Print Network [OSTI]

    Bazhenov, Maxim

    LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC employed for analyzing reactor dynamics. Equations of this type are used for analyzing the stability of the reactor power, etc. Among these problems the question of the boundedness of reactor power bursts

  5. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect (OSTI)

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  6. Update: nuclear power program information and data, October-December 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    UPDATE is published by the Office of Coordination and Special Projects, Office of Nuclear Reactor Programs, to provide a quick reference source on the current status of nuclear powerplant construction and operation in the United States and for information on the fuel cycle, economics, and performance of nuclear generating units. Similar information on other means of electric generation as related to nuclear power is included when appropriate. The subject matter of the reports and analyses presented in UPDATE will vary from issue to issue, reflecting changes in foci of interest and new developments in the field of commercial nuclear power generation. UPDATE is intended to provide a timely source of current statistics, results of analyses, and programmatic information proceeding from the activities of the Office of Nuclear Reactor Programs and other components of the Department of Energy, as well as condensations of topical articles from other sources of interest to the nuclear community. It also facilitates quick responses to requests for data and information of the type often solicited from this office.

  7. UPDATE: nuclear power program information and data, July-September 1981

    SciTech Connect (OSTI)

    DOE /NBM--6011986

    1981-01-01

    UPDATE is published by the Office of Coordination and Special Projects, Office of Nuclear Reactor Programs, to provide a quick reference source on the current status of nuclear powerplant construction and operation in the United States and for information on the fuel cycle, economics, and performance of nuclear generating units. Similar information on other means of electric generation as related to nuclear power is included when appropriate. The subject matter of the reports and analyses presented in UPDATE will vary from issue to issue, reflecting changes in foci of interest and new developments in the field of commercial nuclear power generation. UPDATA is intended to provide a timely source of current statistics, results of analyses, and programmatic information proceeding from the activities of the Office of Nuclear Reactor Programs and other components of the Department of Energy, as well as condensations of topical articles from other sources of interest to the nuclear community. It also facilitates quick responses to requests for data and information of the type often solicited from this office.

  8. Update: nuclear power program information and data, March-April 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    UPDATE is published by the Office of Coordination and Special Projects, Office of Nuclear Reactor Programs, to provide a quick reference source on the current status of nuclear powerplant construction and operation in the United States and for information on the fuel cycle, economics, and performance of nuclear generating units. Similar information on other means of electric generation as related to nuclear power is included when appropriate. The subject matter of the reports and analyses presented in UPDATE will vary from issue to issue, reflecting changes in foci of interest and new developments in the field of commercial nuclear power generation. UPDATE is intended to provide a timely source of current statistics, results of analyses, and programmatic information proceeding from the activities of the Office of Nuclear Reactor Programs and other components of the Department of Energy, as well as condensations of topical articles from other sources of interest to the nuclear community. It also facilitates quick responses to requests for data and information of the type often solicited from this office.

  9. Power Generation and Power Use Decisions in an Industrial Process 

    E-Print Network [OSTI]

    Gilbert, J. S.; Niess, R. C.

    1987-01-01

    on how much power must be made, and has little effect on the fuel-charged-to-power cost. I.n fact, the heat rate on a high-efficiency turbine may be slightly higher than for a low-efficiency turbine, due to greater gear-box losses. The argument may... COMPOSITE E w c: ::::> to < c: w a. ::E w to- ENERGY (0) Figure 3 Hot and Cold Compostte Curves 399 T, T~ ENERGY (0) Figure 2 [Qu1valent Coo1\

  10. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, James H. (Livermore, CA)

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  11. Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    : Boiling Water Reactor Reactor Manufacturer: General Electric Turbine Generator Manufacturer: General a nuclear power plant. Plant was Entergy, a Boiling Water Reactor (BWR) type. Built in the 80's, it has from the reactor is stored under water. An alternative storage is the dry cask storage which

  12. ME 337C Introduction to Nuclear Power Systems ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 337C ­ Introduction to Nuclear Power Systems Page 1 ABET EC2000 syllabus ME 337C ­ Introduction to Nuclear Power Systems Fall 2009 Required or Elective: Elective 2008-2010 Catalog Data: Radioactivity, nuclear interactions: fission and fusion, fission reactors, nuclear power systems, nuclear power safety

  13. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JULY 2014

    Broader source: Energy.gov (indexed) [DOE]

    NRC Atomic Safety and Licensing Board (ASLB) has ruled that Toshiba's participation in Nuclear Innovation North America's South Texas Project does not violate federal rules on...

  14. Power generating system and method utilizing hydropyrolysis

    DOE Patents [OSTI]

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  15. Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators

    E-Print Network [OSTI]

    Pilawa, Robert

    This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and ...

  16. Self-powered wireless sensor system using MEMS piezoelectric micro power generator (PMPG)

    E-Print Network [OSTI]

    Xia, YuXin, M.B.A. Sloan School of Management.

    2006-01-01

    A thin-film lead zirconate titanate, Pb(Zr,Ti)03, MEMS Piezoelectric Micro Power Generator (PMPG) has been integrated with a commercial wireless sensor node (Telos), to demonstrate a self-powered RF temperature sensor ...

  17. Fossil fuel combined cycle power generation method

    DOE Patents [OSTI]

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  18. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    of electric generating plants usefully begins with anmatters, a plant's position within the generating networkthe plant may be divided into a steam generating system and

  19. MAximum Multicore POwer (MAMPO) -An Automatic Multithreaded Synthetic Power Virus Generation

    E-Print Network [OSTI]

    John, Lizy Kurian

    and cooling issues along with a world-wide initiative towards green computing, power consump- tion is a firstMAximum Multicore POwer (MAMPO) - An Automatic Multithreaded Synthetic Power Virus Generation worst case power consumption for a com- puter system is a significant design parameter and it is a very

  20. Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power and Propulsion Systems

    E-Print Network [OSTI]

    1 Technology Survey and Performance Scaling for the Design of High Power Nuclear Electric Power OF HIGH POWER NUCLEAR ELECTRIC POWER AND PROPULSION SYSTEMS by Daniel B. White Jr. Submitted for the degree of Doctor of Philosophy in Aeronautics and Astronautics ABSTRACT High power nuclear electric

  1. Photovoltaic Power Generation in Flagstaff | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Power Generation in Flagstaff Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click...

  2. A thermally efficient micro-reactor for thermophotovoltaic power generation

    E-Print Network [OSTI]

    Nielsen, Ole Mattis, 1977-

    2006-01-01

    Hydrocarbon fuels exhibit very high energy densities, and micro-generators converting the stored chemical energy into electrical power are interesting alternatives to batteries in certain applications. The increasing demands ...

  3. Power Generation From Waste Heat Using Organic Rankine Cycle Systems 

    E-Print Network [OSTI]

    Prasad, A.

    1980-01-01

    Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

  4. Reliability Improvement Programs in Steam Distribution and Power Generation Systems 

    E-Print Network [OSTI]

    Petto, S.

    1987-01-01

    can be found in power generation. steam distribution, and in all types of durable and non-durable Industrial productions. I 300 " 0 " 200 C " ? ? ~ 'DO ?~ 50 ' .. '7. '70 '75 '50 '.2 The cost to maintain steam systems. namely...

  5. North Brawley Power Plant Placed in Service; Currently Generating...

    Open Energy Info (EERE)

    North Brawley Power Plant Placed in Service; Currently Generating 17 MW; Additional Operations Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  6. Sandia Energy - Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation and Water Use Data Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western and Texas...

  7. Improving heat capture for power generation in coal gasification plants

    E-Print Network [OSTI]

    Botros, Barbara Brenda

    2011-01-01

    Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

  8. Integration of decentralized generators with the electric power grid

    E-Print Network [OSTI]

    Finger, Susan

    1981-01-01

    This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

  9. Biomass Power Generation Market Capacity is Estimated to Reach...

    Open Energy Info (EERE)

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  10. Power Generating Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas:Pottawattamie County,River,Generating Inc Jump to:

  11. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines ThisHENPDepartment'sPrestonPreviousMembers | HomeWind

  12. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtrans - Permeation Measurement2 0 th CMto Help

  13. WIMP matter power spectra and small scale power generation

    E-Print Network [OSTI]

    C. Boehm; H. Mathis; J. Devriendt; J. Silk

    2003-09-24

    Dark Matter (DM) is generally assumed to be massive, cold and collisionless from the structure formation point of view. A more correct statement however is that DM indeed experiences collisional damping, but on a scale which is supposed to be too small to be relevant for structure formation. The aim of this paper is to present a Cold (although ``collisional'') Dark Matter particle whose matter power spectrum is damped and see whether it is distinguishable from standard candidates. To achieve this purpose, we calculate the collisional damping and free-streaming scales of neutralinos and non conventional candidates (say light particles heavier than ~1 MeV but lighter than O(10) GeV). The latter can be considered as Cold Dark Matter (CDM) particles in the sense that they become non relativistic before their thermal decoupling epoch. Unlike neutralinos, however, their linear matter power spectrum can be damped on scales of ~ 10^3 Msol due to their interactions. Since these scales are of cosmological interest for structure formation, we perform a series of numerical simulations to obtain the corresponding non linear matter power spectra P(k)_{nl} at the present epoch. We show that because of small scale regeneration, they all resemble each other at low redshifts, i.e. become very similar to a typical CDM matter power spectrum on all but the smallest scales. Therefore, even if lensing measurements at redshift below unity were to yield a P(k)_{nl} consistent with CDM models, this would not constitute a sufficiently robust evidence in favour of the neutralino to rule out alternative DM candidates.

  14. Business risks to utilities as new nuclear power costs escalate

    SciTech Connect (OSTI)

    Severance, Craig A.

    2009-05-15

    A nuclear power megaproject carries with it severe business risks. Despite attempts to shift these risks to taxpayers and ratepayers, ultimately there are no guarantees for utility shareholders. Utility management needs to keep some core principles in mind. (author)

  15. Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60 years ago, scientists in Arco, Idaho successfully used nuclear energy to power four light bulbs. They laid the groundwork for decades of clean electricity and put the U.S. at...

  16. Risk-informed incident management for nuclear power plants

    E-Print Network [OSTI]

    Smith, Curtis Lee, 1966-

    2002-01-01

    Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

  17. Extra-terrestrial nuclear power stations : transportation and operation

    E-Print Network [OSTI]

    Kane, Susan Christine

    2005-01-01

    Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples ...

  18. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  19. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore »already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  20. Thermoelectric Power Generation Allison Duh and Joel Dungan

    E-Print Network [OSTI]

    Lavaei, Javad

    Thermoelectric Power Generation Allison Duh and Joel Dungan May 15, 2013 #12;Introduction A thermoelectric generator (TEG) is a device that converts heat energy directly into electrical energy. Thermoelectric systems capitalize on semiconductor charge carriers excited by a temperature difference to convert

  1. Optimal distributed power generation under network load constraints

    E-Print Network [OSTI]

    Utrecht, Universiteit

    , small wind turbine or central heating power units) can be inserted into any transmission line, mainly because of the development of novel components for decentral power generation (solar panels, small wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel

  2. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    their] clean energy strategy” (BC Hydro, 2010). In Japan,with clean energy and jobs. BC Hydro - For Generations.

  3. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  4. Next generation geothermal power plants. Draft final report

    SciTech Connect (OSTI)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  5. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    SciTech Connect (OSTI)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-07-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80 % of the nuclear heat is converted into useful power. An important feature of the design is the standardization of the heat source, as independent as possible of the process heat application. This should expedite licensing. The essential conditions for success include: 1. Timely adapted licensing process and regulations, codes and standards for such application and design; 2. An industry oriented R and D program to meet the technological challenges making the best use of the international collaboration. Gen IV could be the vector; 3. Identification of an end user (or a consortium of) willing to fund a FOAK. (authors)

  6. Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM

    E-Print Network [OSTI]

    Berry, R. Stephen

    Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM ROUNDTABLE Roundtable > Nuclear power and climate change Nuclear power, experts argue that all options should be considered--including nuclear power. But with nuclear power comes

  7. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  8. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  9. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy andELECTRIC GENERATION IN CALIFORNIA A project performed for the California Energy

  10. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY APRIL 2015

    Energy Savers [EERE]

    also followed from low wholesale electricity prices; closures at San Onofre and Crystal River were both due to problems related to steam generator replacements. There are...

  11. QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2015

    Energy Savers [EERE]

    also followed from low wholesale electricity prices; closures at San Onofre and Crystal River were both due to problems related to steam generator replacements. There are...

  12. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, Viktor E. (Pleasanton, CA)

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  13. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  14. ePOWER Seminar AC solar cells: A new breed of PV power generation

    E-Print Network [OSTI]

    Fletcher, Robin

    % and would thus encourage a greater adoption of multi-junction solar cells. This modular solution is highly of photovoltaics. Presently he is involved in the cell-level power converter design for single junction and multi-junction ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant

  15. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  16. Sandia Energy - Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory Fellows Jerry Simmons IsNationalNuclearNuclear

  17. Evaluation of a Business Case for Safeguards by Design in Nuclear Power Reactors

    SciTech Connect (OSTI)

    Wood, Thomas W.; Seward, Amy M.; Lewis, Valerie A.; Gitau, Ernest TN; Zentner, Michael D.

    2012-12-01

    Safeguards by Design (SbD) is a well-known paradigm for consideration and incorporation of safeguards approaches and associated design features early in the nuclear facility development process. This paradigm has been developed as part of the Next Generation Safeguards Initiative (NGSI), and has been accepted as beneficial in many discussions and papers on NGSI or specific technologies under development within NGSI. The Office of Nuclear Safeguards and Security funded the Pacific Northwest National Laboratory to examine the business case justification of SbD for nuclear power reactors. Ultimately, the implementation of SbD will rely on the designers of nuclear facilities. Therefore, it is important to assess the incentives which will lead designers to adopt SbD as a standard practice for nuclear facility design. This report details the extent to which designers will have compelling economic incentives to adopt SbD.

  18. Customer adoption of small-scale on-site power generation

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-01-01

    of Small-Scale On-Site Power Generation Afzal S. Siddiqui,technologies will tilt power generation economics in favourquality. This pattern of power generation and consumption is

  19. Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    Standard practice for evaluation of surveillance capsules from light-water moderated nuclear power reactor vessels

  20. Top 6 Things You Didn't Know About Nuclear Power | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 6 Things You Didn't Know About Nuclear Power Top 6 Things You Didn't Know About Nuclear Power December 12, 2014 - 10:39am Addthis These are the first lightbulbs lit by nuclear...

  1. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

  2. The potential for a nuclear renaissance : the development of nuclear power under climate change mitigation policies

    E-Print Network [OSTI]

    Osouf, Nicolas

    2007-01-01

    Anthropogenic emissions of greenhouse gases are very likely to have already changed the Earth's climate, and will continue to change it for centuries if no action is taken. Nuclear power, a nearly carbon-free source of ...

  3. Quarterly Nuclear Power Deployment Scorecard - January 2013 ...

    Broader source: Energy.gov (indexed) [DOE]

    October 22, 2012, Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the...

  4. The Decline and Death of Nuclear Power

    E-Print Network [OSTI]

    Melville, Jonathan

    2013-01-01

    power as an energy source, as compared to Germany, France,and solar energy. While in some countries, like Germany andto meet rising energy demands. In Germany, 88% of the

  5. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

  6. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  7. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  8. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, Mark M. (Aiken, SC)

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  9. Biomass gasification for gas turbine-based power generation

    SciTech Connect (OSTI)

    Paisley, M.A.; Anson, D.

    1998-04-01

    The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.

  10. Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction

    E-Print Network [OSTI]

    Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction A for a Canadian oil sands extraction facility using Steam-Assisted Gravity Drainage (SAGD) technology. The energy to produce steam as well as electricity for the oil sands facility; and (3) using the reactor to produce

  11. Delayed Gamma-Ray Assay for Nuclear Safeguards

    E-Print Network [OSTI]

    Mozin, Vladimir

    2011-01-01

    power generation, often associated with the nuclear renaissance, inevitably involves potential risks

  12. Nuclear Power - Deployment, Operation and Sustainability 

    E-Print Network [OSTI]

    2011-01-01

    a f t and surfa c e vesse l s . Even though speci a l snorke l devic e s were used to suck and exhaus t air to the subm a r i n e shallowl y submerge d below the water's surfac e, a nuclear reactor provides it with a theor e t i c a l l y infin i... t e su bmersion time. In addition, the high specific energy, or energy per unit weight of nuclear fuel, eliminat e s the need for consta n t refuel i n g by fleets of vulner a b l e tanke r s follo w i n g a fleet of surfa c e or subsur f a c e...

  13. Power Spectrum Analyses of Nuclear Decay Rates

    E-Print Network [OSTI]

    Javorsek, D; Lasenby, R N; Lasenby, A N; Buncher, J B; Fischbach, E; Gruenwald, J T; Hoft, A W; Horan, T J; Jenkins, J H; Kerford, J L; Lee, R H; Longman, A; Mattes, J J; Morreale, B L; Morris, D B; Mudry, R N; Newport, J R; O'Keefe, D; Petrelli, M A; Silver, M A; Stewart, C A; Terry, B; 10.1016/j.astropartphys.2010.06.011

    2010-01-01

    We provide the results from a spectral analysis of nuclear decay data displaying annually varying periodic fluctuations. The analyzed data were obtained from three distinct data sets: 32Si and 36Cl decays reported by an experiment performed at the Brookhaven National Laboratory (BNL), 56Mn decay reported by the Children's Nutrition Research Center (CNRC), but also performed at BNL, and 226Ra decay reported by an experiment performed at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. All three data sets exhibit the same primary frequency mode consisting of an annual period. Additional spectral comparisons of the data to local ambient temperature, atmospheric pressure, relative humidity, Earth-Sun distance, and their reciprocals were performed. No common phases were found between the factors investigated and those exhibited by the nuclear decay data. This suggests that either a combination of factors was responsible, or that, if it was a single factor, its effects on the decay rate experiments are n...

  14. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema (OSTI)

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  15. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    fueled power generation with wind energy reduces waterand water savings. Index Terms—power system modeling, wind

  16. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  17. Technical Manual for the SAM Biomass Power Generation Model

    SciTech Connect (OSTI)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  18. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

  19. Use of fuel cells for improving on-site emergency power availability and reliability ad nuclear power plants

    E-Print Network [OSTI]

    Akkaynak, Derya

    2005-01-01

    To assure safe shutdown of a nuclear power plant, there must always be reliable means of decay heat removal provided, in last resort, by an Emergency Core Cooling System (ECCS). Currently the majority of nuclear power ...

  20. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  1. Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

  2. Scoping calculations of power sources for nuclear electric propulsion

    SciTech Connect (OSTI)

    Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1994-05-01

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  3. Integrated approach to economical, reliable, safe nuclear power production

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    An Integrated Approach to Economical, Reliable, Safe Nuclear Power Production is the latest evolution of a concept which originated with the Defense-in-Depth philosophy of the nuclear industry. As Defense-in-Depth provided a framework for viewing physical barriers and equipment redundancy, the Integrated Approach gives a framework for viewing nuclear power production in terms of functions and institutions. In the Integrated Approach, four plant Goals are defined (Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness) with the attendant Functional and Institutional Classifications that support them. The Integrated Approach provides a systematic perspective that combines the economic objective of reliable power production with the safety objective of consistent, controlled plant operation.

  4. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

  5. Nuclear Power - System Simulations and Operation 

    E-Print Network [OSTI]

    2011-01-01

    Nuclear Codes 21 Antonella L. Costa, Patr?cia A. L. Reis, Clarysson A. M. Silva, Claubia Pereira, Maria Auxiliadora F. Veloso, Bruno T. Guerra, Humberto V. Soares and Amir Z. Mesquita Chapter 3 Development of an Appendix K Version of RELAP5-3D... 2 1 2 ( , , . . . , , , .. . , ); 1 , .. . ( , , . .. , , , . .. , ); 1 , .. . i i n k j j n k dy f y y y p p p t i n dt z g y y y p p p t j l = = = = where y: the state varia b l e s ; p: the input; z : the output variabl e s Somet i...

  6. Addressing employee concerns about welding in a nuclear power plant

    SciTech Connect (OSTI)

    Danko, J.C.; Hansen, D.D.; O'Leary, P.D.

    1988-03-01

    A leading utility contracted with EG and G Idaho to perform a comprehensive, independent evaluation of the utility's welding program with respect to the safety-related welds made at one of its nuclear power plants. The purpose of this paper is to review a number of the employee concerns and the technical basis for the disposition of these concerns. In addition, recommendations are presented that may help to prevent the recurrence of employee concerns in future nuclear power plant construction, and thereby costly delays may be avoided and welding productivity and quality improved.

  7. Neural networks and their application to nuclear power plant diagnosis

    SciTech Connect (OSTI)

    Reifman, J. [Argonne National Lab., IL (United States). Reactor Analysis Div.

    1997-10-01

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.

  8. Use of expert systems in nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  9. Power Spectrum Analyses of Nuclear Decay Rates

    E-Print Network [OSTI]

    D. Javorsek II; P. A. Sturrock; R. N. Lasenby; A. N. Lasenby; J. B. Buncher; E. Fischbach; J. T. Gruenwald; A. W. Hoft; T. J. Horan; J. H. Jenkins; J. L. Kerford; R. H. Lee; A. Longman; J. J. Mattes; B. L. Morreale; D. B. Morris; R. N. Mudry; J. R. Newport; D. O'Keefe; M. A. Petrelli; M. A. Silver; C. A. Stewart; B. Terry

    2010-07-06

    We provide the results from a spectral analysis of nuclear decay data displaying annually varying periodic fluctuations. The analyzed data were obtained from three distinct data sets: 32Si and 36Cl decays reported by an experiment performed at the Brookhaven National Laboratory (BNL), 56Mn decay reported by the Children's Nutrition Research Center (CNRC), but also performed at BNL, and 226Ra decay reported by an experiment performed at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. All three data sets exhibit the same primary frequency mode consisting of an annual period. Additional spectral comparisons of the data to local ambient temperature, atmospheric pressure, relative humidity, Earth-Sun distance, and their reciprocals were performed. No common phases were found between the factors investigated and those exhibited by the nuclear decay data. This suggests that either a combination of factors was responsible, or that, if it was a single factor, its effects on the decay rate experiments are not a direct synchronous modulation. We conclude that the annual periodicity in these data sets is a real effect, but that further study involving additional carefully controlled experiments will be needed to establish its origin.

  10. Sustainable Power Generation in Microbial Fuel Cells Using

    E-Print Network [OSTI]

    Tullos, Desiree

    Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer applications, especially for wastewater treatment. Introduction Microbial fuel cell (MFC) technology has drawn of electrodes (6­9), (iii) selection and treatment of membranes (10­12), and (iv) optimization of the MFC design

  11. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  12. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-03-24

    The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

  13. Electrical power systems (Guatemala). Electric power generation and distribution equipment, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The article analyzes the electrical power generation and distribution equipment market in Guatemala and contains the following subtopics: market assessment, competitive situation, market access, trade promotion opportunities, best sales prospects, and statistical data. The total market demand of electrical power generation and distribution equipment and materials in Guatemala increased from US $19.0 million in 1987 to $24.8 million in 1988 (30.5 percent).

  14. Optimal selection of on-site generation with combined heat and power applications

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Bailey, Owen; Hamachi LaCommare, Kristina

    2004-01-01

    Modeling with Combined Heat and Power Applications. LBNL-Tax on Microgrid Combined Heat and Power Adoption. JournalGeneration with Combined Heat and Power Applications Afzal

  15. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-07-05

    The third quarter of the project was dedicated to creating the detailed design for the manufacturing of the mechanical system for wireless communications and the power generation module. Another emphasis for the quarter was the development of the surface system and acoustic detector for the downhole tool for 2 way communications. The tasks accomplished during this report period were: (1) All detailed drawings for manufacturing of the wireless communications gauge and power generator were completed and the drawings were forward to a machine shop for manufacturing. (2) The power generator was incorporated to the mandrel of the wireless gauge reducing the length of the tool by 25% and manufacturing cost by about 35%. (3) The new piezoelectric acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly provides a new technique to manufacture large diameter piezoelectric based acoustic generators. (4) The acoustic two-way communications development progressed significantly. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the piezoelectric wafer assembly was designed and manufactured. The transformer has been received and it will go through testing and evaluation during the next quarter.

  16. Space nuclear power, propulsion, and related technologies.

    SciTech Connect (OSTI)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

  17. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Braatz, Brett G.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2013-09-01

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  18. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  19. TheHighCostofNuclearPower Why America Should Choose a Clean Energy Future

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Nuclear Power Companies are Counting on Consumers and Taxpayers to Bear the Risks of ReactorTheHighCostofNuclearPower Why America Should Choose a Clean Energy Future Over New Nuclear Reactors, CalPIRG Education Fund March 2009 The High Cost of Nuclear Power Why America Should Choose a Clean

  20. Nuclear Power: A Price Worth Paying For A Stable Climate? Will Cavendish & Robert Gross

    E-Print Network [OSTI]

    Nuclear Power: A Price Worth Paying For A Stable Climate? Will Cavendish & Robert Gross Thanks to the recent troubles at Sellafield, nuclear power has been in the news again. But focussing on BNFL alone." The case for nuclear is simple: nuclear power is CO2 free and its waste can be reprocessed. It already

  1. Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators

    E-Print Network [OSTI]

    Perreault, Dave

    energy conversion process. photons with energies above the PV diode bandgap can generate electron at more than two orders of magnitude higher energy densities than solar PV (as shown in Figure 1-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design

  2. Field Fabrication of Solar-Thermal Powered Steam Turbines for Generation of Mechanical Power

    E-Print Network [OSTI]

    investigate a solar thermal steamdriven turbine system and build and evaluate several versions in fieldField Fabrication of Solar-Thermal Powered Steam Turbines for Generation of Mechanical Power by Amy and repeatability necessary for regular people to design, manufacture, and install a system to convert solar

  3. Study on design of superconducting proton linac for accelerator driven subcritical nuclear power system

    E-Print Network [OSTI]

    Yu Qi; Xu Tao Guang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac (SCL) is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. It is constitute by a series of the superconducting accelerating cavities. The cavity geometry is determined by means of the electromagnetic field computation. The SCL main parameters are determined by the particle dynamics computation

  4. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    SciTech Connect (OSTI)

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

  5. Remote-site power generation opportunities for Alaska

    SciTech Connect (OSTI)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  6. 618 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 3, MAY 2004 Automotive Power Generation and Control

    E-Print Network [OSTI]

    Perreault, Dave

    618 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 3, MAY 2004 Automotive Power Generation developments in the application of power electronics to automotive power gener- ation and control. A new load be implemented within the existing manufacturing infrastructure. Index Terms--Automotive power generation, boost

  7. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  8. A Structure Exploiting Algorithm for Approximate Robust Optimal Control with Application to Power Generating Kites

    E-Print Network [OSTI]

    slowly driving the generator while flying fast in a crosswind direction. To achieve a periodic power

  9. Experimental results of a transmission line compression circuit for low impedance pulse power generation

    E-Print Network [OSTI]

    Nassini, V

    1996-01-01

    Experimental results of a transmission line compression circuit for low impedance pulse power generation

  10. Some aspects of nuclear power plant safety under war conditions

    SciTech Connect (OSTI)

    Stritar, A.; Mavko, B.; Susnik, J.; Sarler, B. (Jozef Stefan Inst., Ljubljana (Slovenia))

    1993-02-01

    In the summer of 1991, the Krsko nuclear power plant in Slovenia found itself in an area of military operations. This was probably the first commercial nuclear power plant to have been threatened by an attack by fighter jets. A number of never-before-asked questions had to be answered by the operating staff and supporting organizations. Some aspects of nuclear power plant safety under war conditions are described, such as the selection of the best plant operating state before the attack and the determination of plant system vulnerability and dose releases from the potentially damaged spent fuel in the spent-fuel pit. The best operating mode to which the plant should be brought before the attack is cold shutdown, and radiological consequences to the environment after the spent fuel is damaged and the water in the pit is lost are not very high. The problem of nuclear power plant safety under war conditions should be addressed in more detail in the future.

  11. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  12. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  13. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

    2010-08-04

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

  14. Nuclear Power - Control, Reliability and Human Factors 

    E-Print Network [OSTI]

    2011-01-01

    Reliability K s e n i i a Sapoz h n i k o v a and Roald Tayma n o v D.I.Mendeleyev Institute for Metrology, Russia 1. Introduction At present, a great number of embedded sens o r devi c es provi d e monito r i n g of operat i n g condi t io n... s and state of equi p me n t , includ i n g nucle a r react o r s of power plant s . The metrol o gi c a l reliab i li t y of meas uri n g instrum e n t s built in equi p me n t deter mi n e s the valid i t y of measure me nt infor ma t i o n . The qualit y...

  15. The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation

    E-Print Network [OSTI]

    Jaworsky, Christina A

    2013-01-01

    Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

  16. High Power Millimeter-Wave Signal Generation in Advanced SiGe and CMOS Process

    E-Print Network [OSTI]

    Lin, Hsin-Chang

    2015-01-01

    1.3 Millimeter-Wave Signal Generation 1.4 ThesisPower Millimeter-Wave Signal Generation in Advanced SiGe andPower Millimeter-Wave Signal Generation in Advanced SiGe and

  17. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  18. Coal gasification for power generation. 2nd ed.

    SciTech Connect (OSTI)

    NONE

    2006-10-15

    The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

  19. Peach Bottom and Vermont Yankee Nuclear Power Plants

    SciTech Connect (OSTI)

    NONE

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

  20. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 2

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  1. NNSA Administrator Addresses the Next Generation of Nuclear Security Professionals: Part 1

    ScienceCinema (OSTI)

    Thomas D'Agostino

    2010-09-01

    Administrator Thomas DAgostino of the National Nuclear Security Administration addressed the next generation of nuclear security professionals during the opening session of todays 2009 Department of Energy (DOE) Computational Science Graduate Fellowship Annual Conference. Administrator DAgostino discussed NNSAs role in implementing President Obamas nuclear security agenda and encouraged the computing science fellows to consider careers in nuclear security.

  2. Multimegawatt space nuclear power supply, Phase 1 Final report

    SciTech Connect (OSTI)

    Not Available

    1989-02-17

    This Specification establishes the performance, design, development, and test requirements for the Boeing Multimegawatt Space Nuclear Power System (MSNPS). The Boeing Multimegawatt Space Power System is part of the DOE/SDIO Multimegawatt Space Nuclear Power Program. The purpose of this program is to provide a space-based nuclear power system to meet the needs of SDIO missions. The Boeing MSNPS is a category 1 concept which is capable of delivering 10's of MW(e) for 100's of seconds with effluent permitted. A design goal is for the system to have growth or downscale capability for other power system concepts. The growth objective is to meet the category 3 capability of 100's of MW(e) for 100's of seconds, also with effluent permitted. The purpose of this preliminary document is to guide the conceptual design effort throughout the Phase 1 study effort. This document will be updated through out the study. It will thus result in a record of the development of the design effort.

  3. Using Backup Generators: Alternative Backup Power Options | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear EnergyPotomacCoolGenerators Using

  4. Nanodevices for generating power from molecules and batteryless sensing

    DOE Patents [OSTI]

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2014-07-15

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  5. Nuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear PowerNuclear Power''''''''s Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Littles Dirty Little Secret: Uranium MiningSecret:

    E-Print Network [OSTI]

    Sheridan, Jennifer

    ,000,000 2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 1 2 3 4 5 6 7 8 9 10 11 12 Coal[1] Petroleum Liquids[2] Petroleum Coke Natural Gas Other Gases[3] Nuclear Hydroelectric Conventional Other Renewables[4 Consumption Petroleum Coal Natural Gas Non-biogenic MSW and Geothermal Energy Subtotal http

  6. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas; Belles, Randy; Cetiner, Mustafa Sacit; Holcomb, David Eugene; Korsah, Kofi; Loebl, Andy; Mays, Gary T; Muhlheim, Michael David; Mullens, James Allen; Poore III, Willis P; Qualls, A L; Wilson, Thomas L; Waterman, Michael E.

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same technology, and (3) different architectures within the same technology. Using this convention, the first diversity usage family, designated Strategy A, is characterized by fundamentally diverse technologies. Strategy A at the system or platform level is illustrated by the example of analog and digital implementations. The second diversity usage family, designated Strategy B, is achieved through the use of distinctly different technologies. Strategy B can be described in terms of different digital technologies, such as the distinct approaches represented by general-purpose microprocessors and field-programmable gate arrays. The third diversity usage family, designated Strategy C, involves the use of variations within a technology. An example of Strategy C involves different digital architectures within the same technology, such as that provided by different microprocessors (e.g., Pentium and Power PC). The grouping of diversity criteria combinations according to Strategies A, B, and C establishes baseline diversity usage and facilitates a systematic organization of strategic approaches for coping with CCF vulnerabilities. Effectively, these baseline sets of diversity criteria constitute appropriate CCF mitigating strategies for digital safety systems. The strategies represent guidance on acceptable diversity usage and can be applied directly to ensure that CCF vulnerabilities identified through a D3 assessment have been adequately resolved. Additionally, a framework has been generated for capturing practices regarding diversity usage and a tool has been developed for the systematic assessment of the comparative effect of proposed diversity strategies (see Appendix A).

  7. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  8. US Central Station Nuclear Electric Generating Units: significant milestones. (Status as of April 1, 1980)

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Construction and operational milestones are tabulated for US nuclear power plants. Data are presented on nuclear steam supply system orders. A schedule of commercial operation through 1990 is given.

  9. Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new...

  10. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect (OSTI)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  11. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect (OSTI)

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  12. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect (OSTI)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

  13. SLAC Next-Generation High Availability Power Supply

    SciTech Connect (OSTI)

    Bellomo, P.; MacNair, D.; ,

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  14. Review of maintenance personnel practices at nuclear power plants

    SciTech Connect (OSTI)

    Chockie, A.D.; Badalamente, R.V.; Hostick, C.J.; Vickroy, S.C.; Bryant, J.L.; Imhoff, C.H.

    1984-05-01

    As part of the Nuclear Regulatory Commission (NRC) sponsored Maintenance Qualifications and Staffing Project, the Pacific Northwest Laboratory (PNL) has conducted a preliminary assessment of nuclear power plant (NPP) maintenance practices. As requested by the NRC, the following areas within the maintenance function were examined: personnel qualifications, maintenance training, overtime, shiftwork and staffing levels. The purpose of the assessment was to identify the primary safety-related problems that required further analysis before specific recommendations can be made on the regulations affecting NPP maintenance operations.

  15. Understanding the nature of nuclear power plant risk

    SciTech Connect (OSTI)

    Denning, R. S.

    2012-07-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  16. Integrated CMOS Energy Harvesting Converter with Digital Maximum Power Point Tracking for a Portable Thermophotovoltaic Power Generator

    E-Print Network [OSTI]

    Pilawa-Podgurski, Robert

    This paper presents an integrated maximum power point tracking system for use with a thermophotovoltaic (TPV) portable power generator. The design, implemented in 0.35 ?m CMOS technology, consists of a low-power control ...

  17. Viability of an expanded United States nuclear power program and its effects on energy markets

    E-Print Network [OSTI]

    Khan, Tanzeer S

    2006-01-01

    The four biggest energy sources in the United States are coal, crude oil, natural gas, and nuclear power. While coal and nuclear power are produced domestically, more than 70% of crude oil and 20% of natural gas is imported. ...

  18. Identification of good practices in the operation of nuclear power plants

    E-Print Network [OSTI]

    Chen, Haibo, 1975-

    2005-01-01

    This work developed an approach to diagnose problems and identify good practices in the operation of nuclear power plants using the system dynamics technique. The research began with construction of the ORSIM (Nuclear Power ...

  19. Nuclear power plant performance assessment pertaining to plant aging in France and the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2013-01-01

    The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

  20. Spin-on-doping for output power improvement of silicon nanowire array based thermoelectric power generators

    SciTech Connect (OSTI)

    Xu, B., E-mail: bin.xu09@imperial.ac.uk; Fobelets, K. [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, SW7 2BT London (United Kingdom)

    2014-06-07

    The output power of a silicon nanowire array (NWA)-bulk thermoelectric power generator (TEG) with Cu contacts is improved by spin-on-doping (SOD). The Si NWAs used in this work are fabricated via metal assisted chemical etching (MACE) of 0.01–0.02 ? cm resistivity n- and p-type bulk, converting ~4% of the bulk thickness into NWs. The MACE process is adapted to ensure crystalline NWs. Current-voltage and Seebeck voltage-temperature measurements show that while SOD mainly influences the contact resistance in bulk, it influences both contact resistance and power factor in NWA-bulk based TEGs. According to our experiments, using Si NWAs in combination with SOD increases the output power by an order of 3 under the same heating power due to an increased power factor, decreased thermal conductivity of the NWA and reduced Si-Cu contact resistance.