Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

China Guangdong Nuclear Power Company | Open Energy Information  

Open Energy Info (EERE)

Power Company Power Company Jump to: navigation, search Name China Guangdong Nuclear Power Company Place Guangzhou, China Coordinates 23.129075°, 113.264423° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.129075,"lon":113.264423,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Plant Engineering: Performance Diagnostic Test Program for the Nuclear Turbine Cycle at Korea Hydro & Nuclear Power Company  

Science Conference Proceedings (OSTI)

Currently, many power generating companies are challenged to reduce operating costs, and at the same time, the cost of unit unavailability can be significant in today's power markets. In the past decade, management of nuclear power plants, including Korea Hydro & Nuclear Power (KHNP), has been focused on reducing forced outage rates and nuclear-safety-related issues, with less attention paid to thermal performance. But recently, KHNP has been strongly challenged to increase unit thermal performance, as f...

2012-02-28T23:59:59.000Z

3

Pacific Gas & Electric Company, Diablo Canyon Nuclear ...  

Science Conference Proceedings (OSTI)

Pacific Gas & Electric Company, Diablo Canyon Nuclear Power Plant. NVLAP Lab Code: 100537-0. Address and Contact Information: ...

2013-11-08T23:59:59.000Z

4

Pacific Gas & Electric Company, Diablo Canyon Nuclear ...  

Science Conference Proceedings (OSTI)

Pacific Gas & Electric Company, Diablo Canyon Nuclear Power Plant. NVLAP Lab Code: 100537-0. Address and Contact Information: ...

2013-08-23T23:59:59.000Z

5

Conceivable new recycling of nuclear waste by nuclear power companies in their plants  

E-Print Network (OSTI)

We outline the basic principles and the needed experiments for a conceivable new recycling of nuclear waste by the power plants themselves to avoid its transportation and storage to a (yet unknown) dumping area. Details are provided in an adjoining paper and in patents pending.

Ruggero Maria Santilli

1997-04-09T23:59:59.000Z

6

Japanese power companies using more LNG to generate electricity ...  

U.S. Energy Information Administration (EIA)

... which led to the accident at Tokyo Electric Power Company's (TEPCO) Fukushima Daiichi nuclear power plant and subsequent outages at other plants.

7

Determination of compliance with PL 92-500 Section 316(b) for the Donald C. Cook Nuclear Power Plant of the Indiana and Michigan Power Company  

Science Conference Proceedings (OSTI)

Region III of the US Fish and Wildlife Service contracted with the Division of Environmental Impact Studies, Argonne National Laboratory, to make the 316(b) determination for the Donald C. Cook Nuclear Power Plant of the Indiana and Michigan Power Company and to make recommendations for improvement in intake design to facilitate compliance. To conduct this assessment, appropriate literature on screening systems and reports furnished by the applicant on intake design and operation and on ecological studies at the site were reviewed. Modifications of the location and design of the existing intake and possibilities of retrofitting with fine-mesh screening to screen larval forms of fishes were examined. It was determined that currently there is no dictated need for fine-mesh screening of intake flow at the D.C. Cook Nuclear Power Plant.

Sharma, R K; Freeman, III, R F

1980-04-01T23:59:59.000Z

8

Wisconsin River Power Company | Open Energy Information  

Open Energy Info (EERE)

River Power Company Jump to: navigation, search Name Wisconsin River Power Company Place Wisconsin Utility Id 20863 Utility Location Yes Ownership I NERC Location RFC NERC MRO Yes...

9

Holyoke Water Power Company | Open Energy Information  

Open Energy Info (EERE)

Holyoke Water Power Company Jump to: navigation, search Name Holyoke Water Power Company Place Massachusetts Utility Id 8779 Ownership I NERC Location NPCC NERC NPCC Yes Activity...

10

Vulcan Power Company | Open Energy Information  

Open Energy Info (EERE)

Bend, Oregon Zip 97702 Sector Geothermal energy Product Oregon-based geothermal power plant developer active in California. References Vulcan Power Company1 LinkedIn...

11

Nuclear Power  

E-Print Network (OSTI)

The world of the twenty first century is an energy consuming society. Due to increasing population and living standards, each year the world requires more energy and new efficient systems for delivering it. Furthermore, the new systems must be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. The goal of the book is to show the current state-of-the-art in the covered technical areas as well as to demonstrate how general engineering principles and methods can be applied to nuclear power systems.

Tsvetkov, Pavel

2010-08-01T23:59:59.000Z

12

PP-82 Vermont Electric Power Company, Inc. (VELCO) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Electric Power Company, Inc. (VELCO) PP-82 Vermont Electric Power Company, Inc. (VELCO) Presidental Permit authorizing Vermont Electric Power Company, Inc. (VELCO) to...

13

PP-43 Maine Electric Power Company, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Maine Electric Power Company, Inc. PP-43 Maine Electric Power Company, Inc. Presidential Permit authorizing Maine Electric Power Company, Inc. to construct, operate, and maintain...

14

EA-82 Vermont Electric Power Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82 Vermont Electric Power Company EA-82 Vermont Electric Power Company Order authorizing Vermont Electric Power Company to export electric energy to Canada EA-82 Vermont Electric...

15

PP-94 Central Power & Light Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Central Power & Light Company PP-94 Central Power & Light Company Presidental Permit authorizing Central Power & Light Company to construct, operate, and maintain electric...

16

PP-219 Central Power and Light Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19 Central Power and Light Company PP-219 Central Power and Light Company Presidential permit authorizing Central Power and Light Company to construct, operate, and maintain...

17

PP-78 Minnesota Power & Light Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Minnesota Power & Light Company PP-78 Minnesota Power & Light Company Presidential Permit authorizing Minnesota Power & Light Company to construct, operate, and maintain electric...

18

PP-6 Puget Sound Power & Light Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puget Sound Power & Light Company PP-6 Puget Sound Power & Light Company Presidential permit authorizing Puget Sound Power & Light Company to construct, operate, and maintain...

19

Milagro Power Company | Open Energy Information  

Open Energy Info (EERE)

Milagro Power Company Milagro Power Company Jump to: navigation, search Name Milagro Power Company Place Texas Utility Id 56551 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1570/kWh Commercial: $0.1230/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Milagro_Power_Company&oldid=411094" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

20

Nuclear power and nuclear weapons  

SciTech Connect

The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

Vaughen, V.C.A.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Obero Brasileira Power Company | Open Energy Information  

Open Energy Info (EERE)

search Name Obero Brasileira Power Company Place Brazil Sector Solar Product Joint venture developing a 50MW solar thermal power plant worth BRL 500m (USD 289m) in...

22

HL Power Company | Open Energy Information  

Open Energy Info (EERE)

HL Power Company HL Power Company Jump to: navigation, search Name HL Power Company Place Wendel, California Sector Biomass Product A power company located in California, the company main focus of energy is directed to biomass production. Coordinates 40.293339°, -79.687036° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.293339,"lon":-79.687036,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Health hazard evaluation report No. HHE-80-233-793, Davis Bessie Nuclear Power Station, Toledo Edison Company, United Engineers and Contractors Company (UE and C), Oak Harbor, Ohio  

Science Conference Proceedings (OSTI)

Personal air samples were analyzed and employees were given medical evaluations at Davis Bessie Nuclear Power Station (SIC-4911) in Oak Harbor, Ohio. Requests for evaluation were made by a union representative of the United Engineers and Contractors and a union representative of employees of Toledo Edison Company, working on site at the power station, to evaluate employee skin and scalp problems due to exposure to ceramic wood fibers. Preliminary surveys were conducted on September 24 and 25, 1980 and a follow-up survey was performed on October 16, 1980. Environmental evaluation consisted of gravimetric analyses of personal air samples for airborne ceramic wool fibers. A total of 400 production and maintenance workers and varying numbers of construction workers were exposed to the fibers during installation of insulation which was completed at the time of the survey. The three personal air samples showed no accumulation of particulates and fibers detected were nonrespirable. Medical evaluations were conducted in 52 workers and scalp scrapings were obtained from 43 workers. Thirty seven workers had histories suggestive of irritant dermatitis of the scalp; 24 workers had physical findings consistent with the diagnosis. Of the 43 scalp samples, 18 were contaminated with organisms of the gut, perineum, skin or respiratory tract. Dermatitis was directly related to the history of dust exposure. The authors conclude that a potential health hazard exists for employees from exposure to ceramic wool fiber. Recommendations include provision of handwashing facilities and protective clothing for employees, and installation of an impermeable covering for the ceramic wool fiber.

Cone, J.; Hartle, R.

1981-01-01T23:59:59.000Z

24

Ocean Renewable Power Company | Open Energy Information  

Open Energy Info (EERE)

Power Company Power Company Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean Renewable Power Company, LLC was founded in 2004 for the purpose of generating reliable, competitive, emission-free electricity from the energy resources of the oceans. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Hinson Power Company LLC | Open Energy Information  

Open Energy Info (EERE)

Hinson Power Company LLC Hinson Power Company LLC Jump to: navigation, search Name Hinson Power Company LLC Place Connecticut Utility Id 8936 Utility Location Yes Ownership R NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hinson_Power_Company_LLC&oldid=410830"

26

Kwig Power Company | Open Energy Information  

Open Energy Info (EERE)

Kwig Power Company Kwig Power Company Jump to: navigation, search Name Kwig Power Company Place Alaska Utility Id 10491 Utility Location Yes Ownership P NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6010/kWh Commercial: $0.4850/kWh Industrial: $0.4680/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Kwig_Power_Company&oldid=410955"

27

Texas Solar Power Company | Open Energy Information  

Open Energy Info (EERE)

Solar Power Company Solar Power Company Jump to: navigation, search Logo: Texas Solar Power Company Name Texas Solar Power Company Address 1703 W Koenig Ln Place Austin, Texas Zip 78756 Sector Solar Product Design, sales and installation of renewable energy equipment and systems Website http://www.txspc.com/ Coordinates 30.332798°, -97.736025° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.332798,"lon":-97.736025,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Frontier Power Company | Open Energy Information  

Open Energy Info (EERE)

Power Company Power Company Place Ohio Utility Id 6804 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial And Industrial Lighting And Power Service Commercial Large Power Service Residential Sales,Residential Sales Seasonal And Public Building Service Residential Average Rates Residential: $0.1160/kWh Commercial: $0.1180/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Frontier_Power_Company&oldid=410728"

29

Enforcement Letter, Controlled Power Company - WEL-2012-02 |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Company - WEL-2012-02 October 23, 2012 Enforcement Letter issued to Controlled Power Company related to an Electrical Shock Near Miss that occurred in the Radiological...

30

Joint Motion to Intervene of Northern States Power Company (Minnesota...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States Power Company (Minnesota) et al. on the Proposed Open Access Requirements Joint Motion to Intervene of Northern States Power Company (Minnesota) et al. on the...

31

Inland Power & Light Company (Idaho) | Open Energy Information  

Open Energy Info (EERE)

Power & Light Company (Idaho) Jump to: navigation, search Name Inland Power & Light Company Place Idaho Utility Id 8699 References EIA Form EIA-861 Final Data File for 2010 -...

32

Joint Maintenance Status Report of Potomac Electric Power Company...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC Joint Maintenance Status Report of Potomac Electric Power Company amd PJM...

33

Solar Power Company Limited SPC | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Solar Power Company Limited SPC Jump to: navigation, search Name Solar Power Company...

34

Guodian Hefeng Wind Power Development Company | Open Energy Informatio...  

Open Energy Info (EERE)

Hefeng Wind Power Development Company Jump to: navigation, search Name Guodian Hefeng Wind Power Development Company Place Huludao, Liaoning Province, China Sector Wind energy...

35

Ocean Renewable Power Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Renewable Power Company LLC Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean...

36

Texas-New Mexico Power Company - Nonresidential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas-New Mexico Power Company - Nonresidential Energy Efficiency Standard Offer Program Texas-New Mexico Power Company - Nonresidential Energy Efficiency Standard Offer Program...

37

Seahorse Power Company | Open Energy Information  

Open Energy Info (EERE)

Seahorse Power Company Seahorse Power Company Jump to: navigation, search Name Seahorse Power Company Place Needham, Massachusetts Zip 2492 Sector Solar Product Manufactures and markets the BigBelly solar powered trash compactor. Coordinates 42.28107°, -71.236054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.28107,"lon":-71.236054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

South Central Power Company | Open Energy Information  

Open Energy Info (EERE)

Central Power Company Central Power Company Place Ohio Utility Id 18085 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule GS General Service Schedule LP Large Power Service Schedule R Residential Service Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0973/kWh Industrial: $0.0749/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=South_Central_Power_Company&oldid=411543

39

Delta Power Company LLC | Open Energy Information  

Open Energy Info (EERE)

Delta Power Company LLC Delta Power Company LLC Jump to: navigation, search Name Delta Power Company LLC Place Morristown, New Jersey Zip NJ 07960 Product Develops, acquires, finances, and manages independent power projects throughout the US. Coordinates 44.555834°, -72.621905° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.555834,"lon":-72.621905,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Power Quality Improvement Methodology for Wires Companies  

Science Conference Proceedings (OSTI)

This report provides practical utility-side strategies for improving power quality. Much research has been done on the application of custom power devices to mitigate power quality events on transmission and distribution wires systems. However, these solutions can be costly and often benefit a limited number of customers. Many wires companies are looking for ways to improve the overall quality of their service using methods and equipment that are more traditional.

2003-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

42

Silvan Power Company | Open Energy Information  

Open Energy Info (EERE)

Silvan Power Company Silvan Power Company Jump to: navigation, search Name Silvan Power Company Place Bend, Oregon Sector Biomass Product Biomass plant developer active in California. Coordinates 44.05766°, -121.315549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.05766,"lon":-121.315549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Hemphill Power Light Company | Open Energy Information  

Open Energy Info (EERE)

Power Light Company Power Light Company Jump to: navigation, search Name Hemphill Power & Light Company Place Springfield, New Hampshire Sector Biomass Product Owner and operator of a 16MW biomass-fired generating plant in New Hampshire. Coordinates 42.640925°, -88.413644° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.640925,"lon":-88.413644,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Owners of nuclear power plants  

Science Conference Proceedings (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

45

Global nuclear power supply chains and the rise of China's nuclear industry  

E-Print Network (OSTI)

China has embarked on a massive expansion of nuclear power that may fundamentally change the global nuclear industry, for better or for worse. Some industry observers argue that the incumbent nuclear power companies are ...

Metzler, Florian

2012-01-01T23:59:59.000Z

46

Delmarva Power Light Company Delmarva Power | Open Energy Information  

Open Energy Info (EERE)

Power Light Company Delmarva Power Power Light Company Delmarva Power Jump to: navigation, search Name Delmarva Power & Light Company (Delmarva Power) Place Wilmington, Delaware Zip 19886 Product Delmarva Power, a subsidiary of Pepco Holdings, is an electricity and natural gas provider. Coordinates 42.866922°, -72.868494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866922,"lon":-72.868494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Nuclear Fusion Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Nuclear fusion reactors, if they can be made to work, promise virtually unlimited power for the indefinite future. This is because the fuel, isotopes of hydrogen, are...

48

International Power Girasolar joint company | Open Energy Information  

Open Energy Info (EERE)

Girasolar joint company Jump to: navigation, search Name International Power Girasolar joint company Sector Solar Product Joint venture announced between US IPWG and...

49

Nuclear Power and the Environment  

Reports and Publications (EIA)

This Nuclear Issue Paper discusses Nuclear Plant Wastes, Interactions of Fossil Fuel and Nuclear Power Waste Decisions, and the Environmental Position of Nuclear Power.

2013-05-30T23:59:59.000Z

50

Clearwater Power Company | Open Energy Information  

Open Energy Info (EERE)

Clearwater Power Company Clearwater Power Company Place Idaho Utility Id 3739 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Area Lighting Service Lighting Industrial Area Lighting Service Lighting Industrial Service 7.2 kV and Above Industrial Industrial Service below 7.2 kV Industrial Irrigation Service Commercial Large Commercial Service Commercial Outdoor Security Lighting Service 1000W Lighting

51

Rainbow Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

Rainbow Power Company Ltd Rainbow Power Company Ltd Jump to: navigation, search Name Rainbow Power Company Ltd Place Nimbin, New South Wales, Australia Zip 2480 Sector Hydro, Renewable Energy, Solar, Wind energy Product Manufacturer, distributor and retailer of renewable energy products, including solar, wind and hydro. Website http://www.rpc.com.au/ Coordinates -28.595261°, 153.222794° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-28.595261,"lon":153.222794,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Arava Power Company APC Ltd | Open Energy Information  

Open Energy Info (EERE)

Arava Power Company APC Ltd Arava Power Company APC Ltd Jump to: navigation, search Name Arava Power Company (APC) Ltd Place DN Eilot, Israel Zip 88840 Sector Solar Product Israel-based solar developer. Subsidiary of Global Sun Partners. References Arava Power Company (APC) Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Arava Power Company (APC) Ltd is a company located in DN Eilot, Israel . References ↑ "[ Arava Power Company (APC) Ltd]" Retrieved from "http://en.openei.org/w/index.php?title=Arava_Power_Company_APC_Ltd&oldid=342277" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

53

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Nuclear Power Background, Trends in Nuclear Power, The Nuclear Fuel Cycle...

54

VEA-0009 - In the Matter of American Electric Power Company,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 - In the Matter of American Electric Power Company, Inc. VEA-0009 - In the Matter of American Electric Power Company, Inc. This Decision and Order considers an Appeal filed by...

55

Response of the Potomac Electric Power Company to the Operating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Potomac Electric Power Company to the Operating Plan of Mirant Potomac River, L.L.C. Response of the Potomac Electric Power Company to the Operating Plan of Mirant Potomac...

56

Florida Power and Light Company | Open Energy Information  

Open Energy Info (EERE)

Power and Light Company Jump to: navigation, search Name Florida Power and Light Company Place Juno Beach, Florida Zip 33408 Product US utility serving 4.4 million customers in...

57

Harbin Wind Power Equipment Company | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Harbin Wind Power Equipment Company Jump to: navigation, search Name Harbin Wind Power Equipment...

58

Huaneng Shouguang Wind Power Company Limited | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Huaneng Shouguang Wind Power Company Limited Jump to: navigation, search Name Huaneng Shouguang Wind Power...

59

Interruptible load control for Taiwan Power Company  

SciTech Connect

Load management is the planning and implementation of those utility activities designed to influence customer use of electricity in ways that will produce desired changes in the utility's load shape. Interruptible load program is an option of load management which provides incentive rate to customers to interrupt or reduce the power demand during the system peak period or emergency condition. Therefore, how to design a proper incentive rate is the most important issue in implementing this program. This paper describes three alternatives designed for the interruptible load program, one of which was activated by Taiwan Power Company (Taipower) and some preliminary results were obtained. The effect of the interruptible load to the system peak demand reduction and the change of daily load curve for large industrial customers were analyzed. This paper estimates the avoided cost and design more appropriate incentive rate structure for interruptible load program.

Chen, C.S.; Leu, J.T. (Dept. of Electrical Engineering, National Sun Yat-Sen Univ., Kaohsiung (TW))

1990-05-01T23:59:59.000Z

60

PP-82-2 Vermont Electric Power Company, Inc. (VELCO) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Vermont Electric Power Company, Inc. (VELCO) PP-82-2 Vermont Electric Power Company, Inc. (VELCO) Presidential Permit authorizing Vermont Electric Power Company, Inc. (VELCO) to...

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PP-66-1 Vermont Electric Power Company, Inc. | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Vermont Electric Power Company, Inc. PP-66-1 Vermont Electric Power Company, Inc. Presidential Permit authorizing Vermont Electric Power Company, Inc. to construct, operate, and...

62

PP-66-2 Vermont Electric Power Company, Inc. | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Vermont Electric Power Company, Inc. PP-66-2 Vermont Electric Power Company, Inc. Presidential Permit authorizing Vermont Electric Power Company, Inc. to construct, operate and...

63

COSTS OF NUCLEAR POWER  

SciTech Connect

The discussion on the costs of nuclear power from stationary plants, designed primarily for the generation of electricity. deals with those plants in operation, being built, or being designed for construction at an early date. An attempt is made to consider the power costs on the basis of consistent definitions and assumptions for the various nuclear plants and for comparable fossil-fuel plants. Information on several new power reactor projects is included. (auth)

1961-01-01T23:59:59.000Z

64

Climate Change, Nuclear Power and Nuclear  

E-Print Network (OSTI)

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

65

DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jacobs Company for Nuclear Safety Violations Jacobs Company for Nuclear Safety Violations DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations August 4, 2005 - 2:36pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) today notified the Bechtel Jacobs Company (BJC) that it will fine the company $247,500 for violations of the department's nuclear safety requirements. The company is the department's contractor responsible for environmental cleanup and waste management at its Oak Ridge Reservation in Tennessee. "One of our top safety priorities is to improve the performance of subcontractors, and to do that we need to hold prime contractors responsible," said John Shaw, Assistant Secretary for Environment, Safety and Health. "Our goal is to have work conducted in a manner that protects

66

Powering the Nuclear Navy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

The National Nuclear Security Administration Powering the Nuclear Navy Home > Our Mission > Powering the Nuclear Navy Powering the Nuclear Navy The Naval Nuclear Propulsion Program...

67

Commercial nuclear power 1990  

Science Conference Proceedings (OSTI)

This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

Not Available

1990-09-28T23:59:59.000Z

68

Research of IPE Solution Applied to EPR Nuclear Power Project  

Science Conference Proceedings (OSTI)

A nuclear power company is currently in the process of constructing the advanced 3rd generation of EPR Nuclear Power Plant, and its corresponding information system is an overall integrated information management system based on the new concept design. ... Keywords: digital nuclear power plant, IPE solutions, comprehensive application

Daqiao Wang; Fangneng Hu; Yi Luo; Yi Ma

2012-07-01T23:59:59.000Z

69

Otter Tail Power Company - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Otter Tail Power Company - Commercial and Industrial Energy Otter Tail Power Company - Commercial and Industrial Energy Efficiency Grant Program Otter Tail Power Company - Commercial and Industrial Energy Efficiency Grant Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Heat Pumps Manufacturing Appliances & Electronics Program Info State Minnesota Program Type Utility Grant Program Rebate Amount Varies Provider Customer Service Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects. Possibilities include but are not limited to:

70

Potomac Electric Power Company's Motion to Intervene and Comment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Intervene and Comment in Support of Emergency Petition and Complaint Potomac Electric Power Company's Motion to Intervene and Comment in Support of Emergency Petition and...

71

An Overview of Ecosystem Services: Considerations for Electric Power Companies  

Science Conference Proceedings (OSTI)

This topical brief provides an overview of ecosystem services and discusses how electric power companies may leverage these services to increase corporate value and reduce risk.

2012-06-29T23:59:59.000Z

72

Otter Tail Power Company- Commercial & Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Otter Tail Power Company Rebate Program offers rebates to qualifying commercial, industrial, and agricultural customers for the installation of high-efficiency equipment upgrades. See the program...

73

PP-45-2 Northern States Power Company  

Energy.gov (U.S. Department of Energy (DOE))

Presidential Permit authorizing Northern States Power Company to construct, operate, and maintain elextric transmission facilities at the U.S. - Canada Border.

74

Otter Tail Power Company- Commercial & Industrial Energy Efficiency Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects....

75

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

76

Inland Power & Light Company | Open Energy Information  

Open Energy Info (EERE)

Power & Light Company Power & Light Company Jump to: navigation, search Name Inland Power & Light Company Address 10110 W. Hallett Road Place Washington Zip 99224 Utility Id 8699 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] [2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Contents 1 About 2 Energy Rates 3 Utility Rate Schedules 4 Average Rates 5 References About Inland Power & Light Company is a utility company located in Spokane, Washington, providing power over 38,000 customers. It is the largest cooperative in Washington state. Energy Rates As of April 1, 2010, these are the rates and fees at Inland Power and Light

77

Texas-New Mexico Power Company - Nonresidential Energy Efficiency Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas-New Mexico Power Company - Nonresidential Energy Efficiency Texas-New Mexico Power Company - Nonresidential Energy Efficiency Standard Offer Program Texas-New Mexico Power Company - Nonresidential Energy Efficiency Standard Offer Program < Back Eligibility Commercial Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Program Info State Texas Program Type Utility Rebate Program Rebate Amount Commercial Solutions, SCORE, and CitySmart Peak Energy Reduction Standard Offer: $165/kW Provider Texas New Mexico Power Texas-New Mexico Power's Commercial Solutions Program provides incentives

78

Virginia Electric & Power Company Electronic Mail Distribution  

E-Print Network (OSTI)

On June 29, 2007, the U.S. Nuclear Regulatory Commission (NRC) completed an inspection at your Surry Power Station. The enclosed inspection report documents the inspection results, which were discussed on June 28, 2007, with Mr. D. Jernigan, Site Vice President, and other members of your staff. The inspection examined activities conducted under your license as they relate to safety and compliance with the Commissions rules and regulations and with the conditions of your license. The inspectors reviewed selected procedures and records, observed activities, and interviewed personnel. Based on the results of this inspection, no findings of significance were identified. In accordance with 10 CFR 2.390 of the NRC's "Rules of Practice, " a copy of this letter and its enclosure will be available electronically for public inspection in the NRC Public Document Room or from the Publicly Available Records (PARS) component of NRC's document system (ADAMS). ADAMS is accessible from the NRC Web site at

Attn Mr; David A. Christian; Chief Nuclear Officer; Brian R. Bonser; Chris L. Funderburk; Donald E. Jernigan; Surry Power Station

2007-01-01T23:59:59.000Z

79

Sabotage at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

Purvis, James W.

1999-07-21T23:59:59.000Z

80

Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vogtle Nuclear Power Plant Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Just over 60 years ago, scientists in Arco, Idaho, successfully used nuclear energy to power four light bulbs, laying the foundation for U.S.

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Willwood Light & Power Company | Open Energy Information  

Open Energy Info (EERE)

Willwood Light & Power Company Willwood Light & Power Company Jump to: navigation, search Name Willwood Light & Power Company Place Wyoming Utility Id 21664 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.0778/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Willwood_Light_%26_Power_Company&oldid=412194" Categories: EIA Utility Companies and Aliases

82

The future of nuclear power  

SciTech Connect

Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs. (DWL)

Zeile, H.J.

1987-01-01T23:59:59.000Z

83

Fuel availability in nuclear power.  

E-Print Network (OSTI)

?? Nuclear power is in focus of attention due to several factors these days and the expression nuclear renaissance is getting well known. However, concerned (more)

Sderlund, Karl

2009-01-01T23:59:59.000Z

84

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

85

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

86

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

87

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

88

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

89

Florida Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

90

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

91

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

92

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

93

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

94

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

95

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

96

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

97

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

98

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

99

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

100

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

102

Texas-New Mexico Power Company - Residential Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas-New Mexico Power Company - Residential Energy Efficiency Texas-New Mexico Power Company - Residential Energy Efficiency Programs (Texas) Texas-New Mexico Power Company - Residential Energy Efficiency Programs (Texas) < Back Eligibility Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate 20% of TNMP's annual Residential Standard Offer Program incentive budget Program Info State Texas Program Type Utility Rebate Program Rebate Amount Energy Star Rated Home Builders: Custom Residential Large and Small Projects: $260; $0.08/kWh reduction

103

Resergence of U.S. Nuclear Power  

SciTech Connect

Over the past quarter century, things have not gone well for the nuclear industry. First came the Three Mile Island accident in America in 1979, then the disaster at the Chernobyl plant in Ukraine in 1986. In Japan, Tokyo Electric Power, the world's largest private electricity company, shut its 17 nuclear reactors after it was caught falsifying safety records to hide cracks at some of its plants in 2002. In addition, the attacks on September 11, 2001 were a sharp reminder that the risks of nuclear power generation were not only those inherent in the technology. But lately, prospects have brightened for the nuclear industry. Nuclear power is an important source of electricity in many countries. In 2003, 19 countries depended on nuclear power for at least 20 percent of their electricity generation. As of March 2005, there were 441 nuclear power reactors in operation around the world, and another 25 were under construction. Five new nuclear power plants began operation in 2004 - one each in China, Japan, and Russia and two in Ukraine. In addition, Canada?s Bruce 3 reactor was reconnected to the grid. Five nuclear power plants were permanently shut down in 2004 - one in Lithuania and four in the United Kingdom. Nuclear power is expected to see a revival in the next decade given the availability of uranium and the prospect of emission-free power generation, Also, with conventional energy sources such as oil and gas likely to see severe depletion over the next 30 years, the price of conventional power generation is set to rise significantly, which would put nuclear power generation in focus again. The report provides an overview of the opportunities for nuclear power in the U.S. electric industry and gives a concise look at the challenges faced by nuclear power, the ability of advanced nuclear reactors to address these challenges, and the current state of nuclear power generation. Topics covered in the report include: an overview of U.S. Nuclear Power including its history, the current market environment, and the future of nuclear power in the U.S.; an analysis of the key business factors that are driving renewed interest in nuclear power; an analysis of the barriers that are hindering the implementation of new nuclear power plants; a description of nuclear power technology including existing reactors, as well as 3rd and 4th generation reactor designs; a review of the economics of new nuclear power projects and comparison to other generation alternatives; a discussion of the key government initiatives supporting nuclear power development; profiles of the key reactor manufacturers participating in the U.S. nuclear power market; and, profiles of the leading U.S. utilities participating in the U.S. nuclear power market.

none

2006-02-15T23:59:59.000Z

104

Nuclear power and nuclear-weapons proliferation  

SciTech Connect

The danger that fissile isotopes may be diverted from nuclear power production to the construction of nuclear weapons would be aggravated by a switch to the plutonium breeder: but future uranium supplies are uncertain.

Moniz, E.J.; Neff, T.L.

1978-04-01T23:59:59.000Z

105

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2...

106

Central Maine Power Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Maine Power Company Smart Grid Project Maine Power Company Smart Grid Project Jump to: navigation, search Project Lead Central Maine Power Company Country United States Headquarters Location Augusta, Maine Recovery Act Funding $95858307 Total Project Value $191716614 Coverage Area Coverage Map: Central Maine Power Company Smart Grid Project Coordinates 44.3106241°, -69.7794897° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

107

Havana Power & Light Company | Open Energy Information  

Open Energy Info (EERE)

Havana Power & Light Company Havana Power & Light Company Jump to: navigation, search Name Havana Power & Light Company Place Florida Utility Id 8276 Utility Location Yes Ownership M NERC Location FRCC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Security Light Lighting Average Rates Residential: $0.1360/kWh Commercial: $0.1320/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Havana_Power_%26_Light_Company&oldid=410806

108

Redlands Water & Power Company | Open Energy Information  

Open Energy Info (EERE)

Redlands Water & Power Company Redlands Water & Power Company Jump to: navigation, search Name Redlands Water & Power Company Place Colorado Utility Id 15787 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Redlands_Water_%26_Power_Company&oldid=411435" Categories:

109

Potomac Electric Power Company's Motion for Leave to Answer and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Leave to Answer and Answer to Comments and Protests Potomac Electric Power Company's Motion for Leave to Answer and Answer to Comments and Protests Docket No. EO-05-01:...

110

Answer of Potomac Electric Power Company and PJM lnterconnection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of Environmental Quality Answer of Potomac...

111

Nuclear Power Advisory Meeting  

Science Conference Proceedings (OSTI)

This document combines the material previously included in the Instrumentation and Control (I&C) Briefing Book for the Nuclear Power Advisory Meeting (Electric Power Research Institute report 1023444) with the annual I&C Research Plan, replacing the latter document. This document contains key information on the I&C program and its projects, including: 1. A program executive summarya high-level document on the key activities of the I&C base program as well as its three supplemental groups 2. A consolidate...

2012-01-19T23:59:59.000Z

112

NUCLEAR BATTERY POWERED TIMERS  

SciTech Connect

During the period from May 1957 to July 1958, four nuclear batiery powered timers were fabricated and tested from two basic designs in the time ranges of onesecond, three-second, annd half-hour intervals. The timers were temperature-tested over a range of -65 to +165 F with accuracics over this temperature range from plus or minus 10 perceat to plus or minus 15 percent. Each unit has a volume of 10 cubic inches, and the timer can be initiated either by an explosive squib or a pull-out wire. At the end of the timing interval, the timer has ann output of 30,000 ergs. The cost of the program was ,000. From the results of this development program, it appears quite feasible to build operable nuclear battery powered timers on a production basis. (auth)

DesJardin, R.L.

1958-09-19T23:59:59.000Z

113

Evidence from U.S. Nuclear Power  

E-Print Network (OSTI)

For the first four decades of its existence the U.S. nuclear power industry was run by regulated utilities, with most companies owning only one or two reactors. Beginning in the late 1990s electricity markets in many states were deregulated and almost half of the nations 103 reactors were sold to independent power producers selling power in competitive wholesale markets. Deregulation has been accompanied by substantial market consolidation and today the three largest companies control more than one?third of all U.S. nuclear capacity. We find that deregulation and consolidation are associated with a 10 percent increase in operating efficiency, achieved primarily by reducing the frequency and duration of reactor outages. At average wholesale prices the value of this increased efficiency is approximately $2.5 billion annually and implies an annual decrease of almost 40 million metric tons of

Lucas W. Davis; Catherine Wolfram; Lucas W. Davis; Catherine Wolfram

2011-01-01T23:59:59.000Z

114

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

115

Yankee nuclear power station license renewal assessment  

Science Conference Proceedings (OSTI)

Nuclear power plants are initially licensed to operate for 40 years. Recent changes to US Nuclear Regulatory Commission regulations allow licenses to be renewed for up to 20 additional years. The new regulations require a comprehensive plant assessment to ensure continued effective aging management of equipment important to license renewal (ILR). Under the industry's lead plant program, Yankee Atomic Electric Company (YAEC) has assisted with development and demonstration of a generic license renewal assessment process. The generic assessment process developed under the lead plant program is the Nuclear Management and Resources Council methodology.

Hinkle, W.D. (Yankee Atomic Electric Co., Bolten, MA (United States))

1992-01-01T23:59:59.000Z

116

Inland Power & Light Company - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pumps (Installed in homes with Electric Zonal Heating): 1,500 Window Replacement: 3 per square foot Inland Power & Light offers a variety of rebates through the Conservation...

117

The Bowersock Mills and Power Company 1874  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydroelectric Energy The Bowersock Mills and Power Co., Lawrence, KS Hydroelectric Energy Potential for U.S. BMPC Plant At Forefront of Development Curve "In our estimates...

118

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

119

Southern Company Services Power Systems Development Facility  

E-Print Network (OSTI)

The Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, was established in 1995 to lead the United States ' effort to develop cost-competitive, environmentally acceptable, coal-based power plant technologies. The PSDF includes an engineering scale demonstration of key components of an Integrated Gasification

Roxann Leonard; Robert C. Lambrecht; Pannalal Vimalchand; Ruth Ann Yongue; Senior Engineer

2007-01-01T23:59:59.000Z

120

HOMOGENEOUS NUCLEAR POWER REACTOR  

DOE Patents (OSTI)

A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

King, L.D.P.

1959-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SEPCO - Solar Electric Power Company | Open Energy Information  

Open Energy Info (EERE)

SEPCO - Solar Electric Power Company SEPCO - Solar Electric Power Company Jump to: navigation, search Logo: SEPCO - Solar Electric Power Company Name SEPCO - Solar Electric Power Company Address 1521 SE Palm Court Place Stuart, Florida Zip 34994 Sector Solar Product Commercial Solar Lighting & Off Grid Solar Power Systems Year founded 1994 Number of employees 11-50 Company Type For Profit Phone number 772-220-6615 Website http://www.sepco-solarlighting Coordinates 27.170937°, -80.232438° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.170937,"lon":-80.232438,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Southern Company Services, Power Systems Development Facility  

E-Print Network (OSTI)

Lignite coal presents opportunities as well as challenges as a feedstock for an integrated gasification combined cycle power plant. It is relatively inexpensive, easily accessible for mining, highly reactive and thus readily converted to syngas, and it is abundantaccounting for nine percent of demonstrated U.S. coal reserves (EIA, 2007). On the other hand, lignite is characterized by high moisture and ash contents and low heating value compared to higher rank coals. While these physical

Johnny Dorminey; John Northington; Roxann Leonard; Ruth Ann Yongue

2009-01-01T23:59:59.000Z

123

Microturbine Generator Test at Northern States Power Company  

Science Conference Proceedings (OSTI)

The report summarizes the operation of two microturbine test units acquired by Northern States Power (NSP) Company in late summer 1996. The first unit operated on a daily load dispatch cycle, delivering power to an army ammunition plant. The second unit operated in a base-loaded cogeneration mode at a paper mill, delivering both power to NSP's substation serving the plant and exhaust heat to a paper drying process.

1997-11-24T23:59:59.000Z

124

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

125

Nantong Kailian Wind Power Company | Open Energy Information  

Open Energy Info (EERE)

Kailian Wind Power Company Kailian Wind Power Company Jump to: navigation, search Name Nantong Kailian Wind Power Company Place Nantong, Jiangsu Province, China Zip 226009 Sector Wind energy Product Engaged in the design and manufacture of wind turbines. Coordinates 32.087399°, 121.062218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.087399,"lon":121.062218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Idaho Power Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Idaho Power Company Idaho Power Company Country United States Headquarters Location Boise, Idaho Additional Benefit Places Oregon Recovery Act Funding $47,000,000.00 Total Project Value $94,000,000.00 Coverage Area Coverage Map: Idaho Power Company Smart Grid Project Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

127

Alwar Power Company Ltd APCL | Open Energy Information  

Open Energy Info (EERE)

Alwar Power Company Ltd APCL Alwar Power Company Ltd APCL Jump to: navigation, search Name Alwar Power Company Ltd. (APCL) Place Gurgaon, Haryana, India Zip 122002 Sector Biomass Product Gurgaon-based biomass project developer. Coordinates 28.55114°, 78.89427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.55114,"lon":78.89427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Indianapolis Power and Light Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Indianapolis Power and Light Company Indianapolis Power and Light Company Country United States Headquarters Location Indianapolis, Indiana Recovery Act Funding $20,000,000.00 Total Project Value $48,782,341.00 Coverage Area Coverage Map: Indianapolis Power and Light Company Smart Grid Project Coordinates 39.767016°, -86.156255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

129

Beijing LN Green Power Company | Open Energy Information  

Open Energy Info (EERE)

LN Green Power Company LN Green Power Company Jump to: navigation, search Name Beijing LN Green Power Company Place Beijing, Beijing Municipality, China Zip 100000 Sector Vehicles Product Attempting to transfer their experience in electric vehicles to fuel cells. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

PRESIDENTIAL PERMIT NORTHERN STATES POWER COMPANY ORDER NO. PP-231  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NORTHERN STATES POWER COMPANY NORTHERN STATES POWER COMPANY ORDER NO. PP-231 I. BACKGROUND The Office of Fossil Energy (FE) of the Department of Energy (DOE) has the responsibility for implementing Executive Order (EO) 10485, as amended by EO 12038, which requires the issuance of Presidential permits for the construction, operation, maintenance, and connection of electric transmission facilities at the United States international border. On November 2, 2000, Northern States Power Company (NSP) filed an application with the Office of Fossil Energy (FE) of the Department of Energy (DOE) for a Presidential permit to construct, operate, maintain, and connect an electric transmission line that would cross the U.S. border with Canada. NSP, doing business as Excel Energy Incorporated (Xcel), proposes to

131

Inland Power and Light Company - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inland Power and Light Company - Residential Energy Efficiency Inland Power and Light Company - Residential Energy Efficiency Rebate Programs Inland Power and Light Company - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Refrigerators/Freezers Recycling: $30 Electric Water Heaters: $25 Refrigerators/Freezers: $25 Clothes Washers: $20 - $50 Energy Star Site Built Home: $1,000 Northwest Energy Efficient Manufactured Home: $1,000 Air-source Heat Pumps (Installed in an All-Electric Home): $1,000

132

Bozrah Light & Power Company | Open Energy Information  

Open Energy Info (EERE)

Bozrah Light & Power Company Bozrah Light & Power Company Jump to: navigation, search Name Bozrah Light & Power Company Place Connecticut Utility Id 2089 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Farm Service Commercial General Service (GET Exempt), For Water Heating Industrial High Voltage Large General Service Commercial High Voltage Large General Service (GRT Exempt) Commercial Household Service Residential Large General Service (GET Exempt)- Primary Industrial Large General Service (GET Exempt)- Secondary Industrial

133

Heber Light & Power Company | Open Energy Information  

Open Energy Info (EERE)

Heber Light & Power Company Heber Light & Power Company Jump to: navigation, search Name Heber Light & Power Company Place Utah Utility Id 8366 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial-Net Metering(Avoided Cost Feed-In Rate) Commercial Commercial-Net Metering(Renewable Feed-In Rate) Commercial Public Lighting Lighting

134

Otter Tail Power Company - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Otter Tail Power Company - Commercial Energy Efficiency Rebate Otter Tail Power Company - Commercial Energy Efficiency Rebate Program Otter Tail Power Company - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate Water Heaters: $5,000 Lighting: over $4,500 must be preapproved Program Info State South Dakota Program Type Utility Rebate Program Rebate Amount Lighting (Hard-Wired Systems): $0.20/watt of demand reduction Lighting (Screw-In CFL/LED): $0.05/watt of demand reduction Motors: $20 - $3,000 Air Source Heat Pumps: $160 Geothermal Heat Pumps: $350 Water Heaters: $150 - $300; or $20/kw Thermal Storage: $20 - $40

135

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Loan Guarantee Applications for Nuclear Power Plant DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are

136

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Applications for Nuclear Power Plant Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are represented in the Part I applications. DOE also has received Part I

137

Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Risk Insurance for Nuclear Power Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building the next six new nuclear power plants in the United States to qualify for a portion of $2 billion in federal risk insurance. The rule will be available on DOE's web site soon. "Providing federal risk insurance is an important step in speeding the nuclear renaissance in this country," Secretary Bodman said. "Companies

138

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

139

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

140

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

142

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

measures founder and a nuclear reactor does fail, theafter that, the first nuclear reactor, Chicago Pile-1, wentword nuclear can be. Nuclear reactors in power plants are

Melville, Jonathan

2013-01-01T23:59:59.000Z

143

Huadian Inner Mongolia Kailu Wind Power Company Limited | Open Energy  

Open Energy Info (EERE)

Huadian Inner Mongolia Kailu Wind Power Company Limited Huadian Inner Mongolia Kailu Wind Power Company Limited Jump to: navigation, search Name Huadian Inner Mongolia Kailu Wind Power Company Limited Place Jinan, Inner Mongolia Autonomous Region, China Sector Wind energy Product Company engadged in the investment, construction, operation and management of wind power generation projects. Coordinates 36.65551°, 116.96701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.65551,"lon":116.96701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2tx Comanche Peak Unit 1, Unit 2 2,406 20,208 48.9 Luminant Generation Company LLC South Texas Project Unit 1, Unit 2 2,560 21,127 51.1 STP Nuclear Operating Co

145

Competitive economics of nuclear power  

Science Conference Proceedings (OSTI)

Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

Hellman, R.

1981-03-02T23:59:59.000Z

146

Nuclear power plant design analysis  

SciTech Connect

Information concerning the engineering aspects of the design of commercial nuclear power plants is presented. Topics discussed include: electric utility economics; nuclear plant cconomics; thermal-transport systems and core design; nuclear analysis methods; safcty requirements; fuel-system analysis; dcsign considerations; and optimization approaches. (DCC)

Sesonske, A.

1973-01-01T23:59:59.000Z

147

Tucson Electric Power Company Sahuarita-Nogales Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix A Appendix A Consultation Letters Appendix A- Consultation Letters A-1 APPENDIX A CONTENTS A-2 Letter from the State Historic Preservation Office regarding Certificate of Environmental Compatibility Case No. 111: The Proposed Tucson Electric Power Company (TEP) South Substation to Nogales Transmission Line, Pima and Santa Cruz Counties, Arizona A-6 Letter from Tetra Tech, Inc. to El Paso Natural Gas, regarding the Proposed Tucson Electric Power Transmission Line Adjacent to an El Paso Natural Gas Company Pipeline A-8 Letter from Tetra Tech, Inc. to the Drug Enforcement Administration, regarding the Proposed Tucson Electric Power Transmission Line near Nogales, Arizona A-10 Letter from Tetra Tech, Inc. to the U.S. Immigration and Naturalization Service, regarding the

148

Garland Light & Power Company | Open Energy Information  

Open Energy Info (EERE)

Company Company Jump to: navigation, search Name Garland Light & Power Company Place Wyoming Utility Id 6950 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE OVER 25 KVA Rate Code C Industrial GENERAL SERVICE SINGLE-PHASE Rate Code A Commercial IRRIGATION Rate Code B-25 Horsepower or less Commercial IRRIGATION Rate Code B-Over 25 Horsepower Industrial RESIDENTIAL TIME OF USE (Off-Peak) Rate Code D Residential Average Rates Residential: $0.1300/kWh Commercial: $0.1330/kWh

149

Wisconsin Power and Light Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

and Light Company and Light Company Country United States Headquarters Location Madison, Wisconsin Recovery Act Funding $3,200,000.00 Total Project Value $6,400,000.00 Coverage Area Coverage Map: Wisconsin Power and Light Company Smart Grid Project Coordinates 43.0730517°, -89.4012302° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

PowerSHIFT Energy Company Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Company Inc Energy Company Inc Jump to: navigation, search Name PowerSHIFT Energy Company Inc Place Casper, Wyoming Zip 82605 Sector Biofuels Product Wyoming-based biofuels producer. Coordinates 42.850095°, -106.327734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.850095,"lon":-106.327734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Department of Energy Releases Conditional Agreement for New Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conditional Agreement for New Nuclear Conditional Agreement for New Nuclear Power Plants Department of Energy Releases Conditional Agreement for New Nuclear Power Plants September 25, 2007 - 2:49pm Addthis Marks initial step for sponsors of new nuclear plants to qualify for up to $2 billion in federal risk insurance WASHINGTON, DC - The U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today released a Conditional Agreement for companies building new nuclear power plants in the United States to qualify for a portion of $2 billion in federal risk insurance. Risk insurance covers costs associated with certain regulatory or litigation-related delays - which are no fault of the company - that stall the start-up of these plants. Authorized by the Energy Policy Act of 2005 (EPAct), risk insurance provides incentive

152

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

since the Cold War, nuclear power plants are being plannedthe fuel used in nuclear power plants is almost completelya mere 43% believe that more nuclear power plants should be

Melville, Jonathan

2013-01-01T23:59:59.000Z

153

Nuclear power. Volume 2: nuclear power project management  

Science Conference Proceedings (OSTI)

The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables.

Not Available

1980-01-01T23:59:59.000Z

154

Otter Tail Power Company - Dollar Smart Financing Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loans may not exceed 80% of projects total cost Loans may not exceed 80% of projects total cost General Residential: $7,000 Geothermal for Residential: $20,000 Dual Fuel for Residential: $15,000 General Business: $25,000 Geothermal for Business: $40,000 Program Info State North Dakota Program Type Utility Loan Program Rebate Amount Minimum: $150 Provider Otter Tail Power Company Otter Tail Power Company's Dollar Smart Financing Program offers $150 - $40,000 loans to its residential and business customers. Customers who have satisfactory 12-month payment histories with Otter Tail or another utility may use the 8.5% interest rate loan to finance purchases of new electric technologies. Loans may not exceed 80 percent of the project's total cost, and the maximum residential loan is $7,000 with the exception of geothermal

155

Otter Tail Power Company - Dollar Smart Financing Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential: $20,000 Residential: $20,000 Commercial: $40,000 Program Info State South Dakota Program Type Utility Loan Program Rebate Amount Residential: $7,000 Residential Geothermal Heat Pump: $15,000 - $20,000 Commercial: $25,000 Commercial Geothermal Heat Pump: $40,000 Provider Otter Tail Power Company Otter Tail Power Company's Dollar Smart Financing Program offers loans of $150 - $40,000 to residential and business customers. Customers who have satisfactory 12-month payment histories with Otter Tail or another utility may use the 8.5% interest rate loan to finance purchases of new electric technologies. Loans may not exceed 80 percent of the project's total cost, and the maximum residential loan is $7,000 with the exception of geothermal heat pump installations and combination electric systems such as a thermal

156

Otter Tail Power Company - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Otter Tail Power Company - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Refrigeration/Cooking/Lighting: rebate will not exceed 75% of project cost Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Water Heaters: $150 - $300 Thermal Storage Units: $20 - $40/KW Insulation: up to $300 Refrigerator Recycling: $50 Air-Source Heat Pumps: $240/ton Geothermal Heat Pumps: $600/ton Lighting: In-store discount Provider Customer Service Otter Tail Power Company Rebate Program offers rebates to qualifying

157

Potomac Electric Power Company (PEPCO) Smart Grid Project (Maryland) | Open  

Open Energy Info (EERE)

Smart Grid Project (Maryland) Smart Grid Project (Maryland) Jump to: navigation, search Project Lead Potomac Electric Power Company (PEPCO) Country United States Headquarters Location Washington, District of Columbia Recovery Act Funding $104780549 Total Project Value $209561098 Coverage Area Coverage Map: Potomac Electric Power Company (PEPCO) Smart Grid Project (Maryland) Coordinates 38.8951118°, -77.0363658° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

158

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

Y. , & Kitazawa, K. (2012). Fukushima in review: A complexin new nuclear power stations after Fukushima. The Guardian.nuclear-power- stations-fukushima Hvistendahl, M. (2007,

Melville, Jonathan

2013-01-01T23:59:59.000Z

159

Nuclear Power Financial Indicators for a Competitive Market  

Science Conference Proceedings (OSTI)

Increasingly, nuclear power owners realize that a common set of critical performance indicators would promote the long-term operational and financial success of their plants in a competitive environment. Financial indicators identified in this report should prove crucial in valuing plant performance by the investment community and in setting quantifiable goals at all levels of a nuclear-generating company. This project was conceived and supported by the Nuclear Asset Management Users Group (NAMUG).

2001-08-24T23:59:59.000Z

160

Orient Green Power Company Ltd OGPL | Open Energy Information  

Open Energy Info (EERE)

Orient Green Power Company Ltd OGPL Orient Green Power Company Ltd OGPL Jump to: navigation, search Name Orient Green Power Company Ltd (OGPL) Place Chennai, Tamil Nadu, India Zip 600 095 Sector Biomass, Hydro, Wind energy Product Chennai-based firm involved in the development of biomass, wind and small hydro project. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

world-nuclear.org/info/Nuclear-Fuel-Cycle/Nuclear- Wastes/fuel sources; the fuel used in nuclear power plants isphase out both nuclear energy and fossil fuels at the same

Melville, Jonathan

2013-01-01T23:59:59.000Z

162

Executive Director for Operations RENEWAL OF FULL-POWER OPERATING LICENSE FOR PILGRIM NUCLEAR POWER STATION  

E-Print Network (OSTI)

This paper (1) requests that the Commission authorize the Director of the Office of Nuclear Reactor Regulation (NRR) to renew the operating license for Pilgrim Nuclear Power Station (PNPS) for an additional 20 years, and (2) informs the Commission of the results of the U.S. Nuclear Regulatory Commission (NRC) staffs review of the PNPS license renewal application (LRA) (Ref. 1) submitted by Entergy Nuclear Generation Company (Entergy Nuclear) and Entergy Nuclear Operations, Inc. (ENO) (owner and operator, respectively, of PNPS). In the Staff Requirements Memorandum for SECY-02-0088, Turkey Point Nuclear Plant, Units 3 and

R. W. Borchardt

2012-01-01T23:59:59.000Z

163

Portland Company to Receive $1.3 Million to Improve Hydro Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies Portland Company to Receive 1.3 Million to Improve Hydro Power Technologies September 15, 2009 -...

164

EA-1741: Seattle Steam Company Combined Heat and Power at Post...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown...

165

Reference: Additional Plant Systems Information Supporting the License Amendment Request to Permit Uprated Power Operation, Dresden Nuclear Power Station and Quad Cities Nuclear Power Station  

E-Print Network (OSTI)

2000 In the referenced letter, Commonwealth Edison Company, now Exelon Generation Company (EGC), LLC, submitted a request for changes to the operating licenses and Technical Specifications (TS) for Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, Units 1 and 2, to allow operation at uprated power levels. In a telephone conference on August 31, 2001, between representatives of EGC and Mr. L. W. Rossbach and other members of the NRC, the NRC requested additional information regarding these proposed changes. The attachment to this letter provides the requested information. Should you have any questions related to this letter, please contact Mr. Allan R. Haeger

K. A. Ainger

2001-01-01T23:59:59.000Z

166

Decommissioning in the mature nuclear power industry  

SciTech Connect

Procedures for decommissioning a nuclear power plant or a spent fuel reprocessing plant are described. (DCC)

Anderson, F.H.; Slansky, C.M.

1975-01-01T23:59:59.000Z

167

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

9. The Economist (2012). Nuclear power: The 30-year itch.Germany and France, the anti-nuclear movement has taken suchtime since the Cold War, nuclear power plants are being

Melville, Jonathan

2013-01-01T23:59:59.000Z

168

Nuclear power to the Pacific  

SciTech Connect

The nuclear power industry is increasingly being pressured to export reactors to the Third World. The experiences of the five ASEAN (Association of Southeast Asian Nations) are recounted. To date, only the Philippine Republic has formally committed itself to a nuclear generator. The Republic lacks oil and has only limited hydroelectric potential. Its geothermal energy program is being accelerated. It appears Indonesia will be the next ASEAN country ''to go nuclear'', hoping to have a nuclear plant on-line in 1985. The island of Singapore has been voicing a desire for a nuclear power plant, but the country does not have space for a plant. The possibility of a floating station has been mentioned, but the World Bank does not finance unproved projects. Singapore could obtain an island from Indonesia or share a plant with Malaysia if a plant were built on the mainland of the Malay peninsula. The Thai Energy Generating Authority (EGAT) is preparing ''to go nuclear'' with the emergence of a stable coalition rule in Bangkok; the financial restrictions are discussed. Thailand is diligently searching for its own oil and gas. The article closes by projecting the problem that could arise with IAEA having only 40 inspectors who are charged with monitoring nuclear power plants all over the world. The authors point out that the industrial countries themselves have proved wholly incapable of monitoring their own systems. (MCW)

Wasserman, H.; Wainer, A.

1976-11-01T23:59:59.000Z

169

Practice, power and learning in UK recorded music companies  

E-Print Network (OSTI)

,mid?line,lowpriceormailorderbundledproducts 7Ensuringthatthelabelhasalloftherightsrequiredtoassignthesongtoathirdpartyorforuseinin?house projects. 8Songsthatarenolongeractiveinthecharts. Practice, Power and Learning in UK Recorded Music Companies Rick... ,SalesandMarketingischanginginresponsetotransformations inmusicconsumerbehaviourtofocusonmanagingnewprocesseswhichengage consumers in unique ways. Traditionally, music consumers were treated as passive receivers of a generic sales and marketing message. Interactive...

Colbourne, Rick

2011-10-11T23:59:59.000Z

170

Nuclear Power Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Onofre Nuclear Generating Station Onofre Nuclear Generating Station San Onofre Nuclear Generating Station Bob Ashe-Everest Southern California Edison 10 Incoming New Fuel Inspecting New Fuel SONGS Unit 1 Fuel Storage SONGS Unit 1 Fuel Storage History History u Shipped 270 Fuel Assemblies (F/A) from Unit 1 to Morris, Illinois. u Transshipped 70 U1 F/As to U2 spent fuel pool (SFP). u Transshipped 118 U1 F/As to U3 SFP. SONGS ISFSI Loading SONGS ISFSI Loading u Moved 5 dry shielded canisters (DSC) from U3 SFP to the Independent Spent Fuel Storage Installation (ISFSI). Each DSC contains up to 24 F/As. u Moved 9 DSCs from U1 SFP to the ISFSI. u At total of 325 U1 F/As have been moved into dry storage to date. u Scheduled to move 3 DSCs from U2 SFP to the ISFSI May 2005. Canister into Cask FA being loaded into canister

171

HydroVenturi Ltd previously RV Power Company Ltd | Open Energy Information  

Open Energy Info (EERE)

HydroVenturi Ltd previously RV Power Company Ltd HydroVenturi Ltd previously RV Power Company Ltd Jump to: navigation, search Name HydroVenturi Ltd (previously RV Power Company Ltd) Place London, Greater London, United Kingdom Zip SW7 1NA Sector Marine and Hydrokinetic Product String representation "Established tho ... ating stations." is too long. Website http://www.hydroventuri.com References HydroVenturi Ltd (previously RV Power Company Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. HydroVenturi Ltd (previously RV Power Company Ltd) is a company located in London, Greater London, United Kingdom . References ↑ "[ HydroVenturi Ltd (previously RV Power Company Ltd)]"

172

Reactor Vessel Head Disposal Campaign for Nuclear Management Company  

SciTech Connect

After establishing a goal to replace as many reactor vessel heads as possible - in the shortest time and at the lowest cost as possible - Nuclear Management Company (NMC) initiated an ambitious program to replace the heads on all six of its pressurized water reactors. Currently, four heads have been replaced; and four old heads have been disposed of. In 2002, NMC began fabricating the first of its replacement reactor vessel heads for the Kewaunee Nuclear Plant. During its fall 2004 refueling outage, Kewaunee's head was replaced and the old head was prepared for disposal. Kewaunee's disposal project included: - Down-ending, - Draining, - Decontamination, - Packaging, - Removal from containment, - On-Site handling, - Temporary storage, - Transportation, - Disposal. The next two replacements took place in the spring of 2005. Point Beach Nuclear Plant (PBNP) Unit 2 and Prairie Island Nuclear Generating Plant (PINGP) Unit 2 completed their head replacements during their scheduled refueling outages. Since these two outages were scheduled so close to each other, their removal and disposal posed some unique challenges. In addition, changes to the handling and disposal programs were made as a result of lessons learned from Kewaunee. A fourth head replacement took place during PBNP Unit 1's refueling outage during the fall of 2005. A number of additional changes took place. All of these changes and challenges are discussed in the paper. NMC's future schedule includes PINGP Unit 1's installation in Spring 2006 and Palisades' installation during 2007. NMC plans to dispose of these two remaining heads in a similar manner. This paper presents a summary of these activities, plus a discussion of lessons learned. (authors)

Hoelscher, H.L.; Closs, J.W. [Nuclear Management Company, LLC, 700 First Street, Hudson, WI 54016 (United States); Johnson, S.A. [Duratek, Inc., 140 Stoneridge Drive, Columbia, SC 29210 (United States)

2006-07-01T23:59:59.000Z

173

Joint Motion to Intervene of Northern States Power Company (Minnesota) et al. on the Proposed Open Access Requirements  

Energy.gov (U.S. Department of Energy (DOE))

Joint motion to intervene of the Northern States Power Company (Minnesota), the Northern States Power Company (Wisconsin), and NRG Energy, Incl on the Proposed Open Access Requirements for...

174

Siemens Nuclear Power GmbH AREVA Nuclear Power | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Siemens Nuclear Power GmbH AREVA Nuclear Power Jump to: navigation, search Name Siemens Nuclear Power...

175

THE ECONOMICS OF NUCLEAR POWER  

SciTech Connect

Economic aspects of nuclear power development in the U. S. are tabulated and graphed. Included are figures on presently operating reactors as well as those contemplated or scheduled. Also a brief description of the objectives of short- and long-range programs is given as well as tables listing some of the characteristics of each reactor. (J.R.D.)

Lane, J.A.

1959-04-27T23:59:59.000Z

176

Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company  

Open Energy Info (EERE)

Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Henan Mingdu Wind Power Co Ltd aka He Nan Ming Du Feng Dian Limited Company Jump to: navigation, search Name Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company) Place Jiaozuo, Henan Province, China Sector Wind energy Product Wind turbine blades provider. References Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company) is a company located in Jiaozuo, Henan Province, China . References ↑ "[ Henan Mingdu Wind Power Co Ltd (aka He Nan Ming Du Feng Dian Limited Company)]" Retrieved from

177

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

178

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

179

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

180

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Agency regulating commercial nuclear power plants and other uses of nuclear materials, 0, 720, Lynne Robinson, 6/25/2007 9:29 AM by Lynne Robinson.

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear power high technology colloquium: proceedings  

Science Conference Proceedings (OSTI)

Reports presenting information on technology advancements in the nuclear industry and nuclear power plant functions have been abstracted and are available on the energy data base.

Not Available

1984-12-10T23:59:59.000Z

182

Quarterly Nuclear Power Deployment Scorecard - January 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Deployment Scorecard - January 2013 Power Deployment Scorecard - January 2013 Quarterly Nuclear Power Deployment Scorecard - January 2013 News Updates On October 22, 2012, Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused

183

Quarterly Nuclear Power Deployment Scorecard - January 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Deployment Scorecard - January 2013 Power Deployment Scorecard - January 2013 Quarterly Nuclear Power Deployment Scorecard - January 2013 News Updates On October 22, 2012, Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused

184

Shanghai Wind Power Company SWPC | Open Energy Information  

Open Energy Info (EERE)

SWPC SWPC Jump to: navigation, search Name Shanghai Wind Power Company (SWPC) Place Shanghai, Shanghai Municipality, China Sector Wind energy Product It is set up for running the construction work of Shanghai Chongming Island wind facility and Nanhui wind facility. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Otter Tail Power Company - Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program Energy Efficiency Rebate Program Otter Tail Power Company - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Commercial Water Heaters: $5,000 Program Info State North Dakota Program Type Utility Rebate Program Rebate Amount Residential Demand Control: $300/unit Water Heaters: $150 - $300 Commercial Water Heaters: $20/kW RDC Thermal Storage Units: $20/kW, up to 100 kW Deferred-load Thermal Storage Units: $20/kw, up to 200 kW, plus $10/kW for up to 1,000 additional kW Fixed-time-of-delivery Thermal Storage Units: $40/kw, up to 200 kW, plus $20/kW for up to 1,000 additional kW AC Controls: $7/month seasonally

186

Inland Power and Light Company - Agricultural Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural Energy Efficiency Agricultural Energy Efficiency Rebate Programs Inland Power and Light Company - Agricultural Energy Efficiency Rebate Programs < Back Eligibility Agricultural Savings Category Other Manufacturing Maximum Rebate Custom: 70% or project cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Flow controlling type nozzle for impact sprinklers: $4 Rebuilt or New Impact Sprinklers: $3.75 Nozzle for Impact Sprinkler: $1.50 Rotating Type Sprinklers: $4 Gasket: $2.75 Low-Pressure Regulators: $5 Low-Pressure Sprinklers: $4 Multiple Configuration Nozzles: $3 Multi-Trajectory Sprays: $4 Drains for Lines: $1 Hubs for Wheel-Lines: $14.50 "Goose Neck" Elbow for New Drop Tubes: $1.65 Drop Tubes: $3 Center Pivot Base Boot Gasket: $175

187

Potomac Electric Power Company (PEPCO) Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Country United States Headquarters Location Washington, District of Columbia Additional Benefit Places Maryland Recovery Act Funding $44580549 Total Project Value $89161098 Coverage Area Coverage Map: Potomac Electric Power Company (PEPCO) Smart Grid Project Coordinates 38.8951118°, -77.0363658° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

188

Tucson Electric Power Company Sahuarita-Nogales Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Fossil Energy U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, DC 20585 Cooperating Agencies: U.S. Department of the Interior Bureau of Land Management U.S. Department of Agriculture Forest Service COVER SHEET Responsible Agency: U.S. Department of Energy (DOE), Office of Fossil Energy (FE) Cooperating Agencies: U.S. Department of Agriculture Forest Service (USFS), U.S. Department of the Interior Bureau of Land Management (BLM) Title: Tucson Electric Power Company (TEP) Sahuarita-Nogales Transmission Line Final Environmental Impact Statement (EIS) Location: Pima and Santa Cruz Counties, Arizona Contacts: For additional information on this Final Environmental Impact Statement (EIS), contact: For general information on the DOE

189

Otter Tail Power Company - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Commercial and Industrial Energy Efficiency Rebate Program Otter Tail Power Company - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate Refrigeration/Cooking/Lighting: rebate will not exceed 75% of project cost Retrocommissioning: $20,000 Retrocommissioning: Building must have at least 40,000 sq ft of conditioned space Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Water Heating: $150 - $300 or $20/kW Thermal Storage: $20 - $40/kW Condensers: $25/HP - $100/HP

190

Tucson Electric Power Company Sahuarita-Nogales Transmission Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY Office of Fossil Energy U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, DC 20585 Cooperating Agencies: U.S. Department of the Interior Bureau of Land Management U.S. Department of Agriculture Forest Service Tucson Electric Power Company Sahuarita-Nogales Transmission Line Final Environmental Impact Statement January 2005 DOE/EIS - 0336 BLM Reference No. AZA 31746 SUMMARY Office of Fossil Energy U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, DC 20585 Cooperating Agencies: U.S. Department of the Interior Bureau of Land Management U.S. Department of Agriculture Forest Service COVER SHEET Responsible Agency: U.S. Department of Energy (DOE), Office of Fossil Energy (FE)

191

Nuclear power has a significant role in the European power ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ... Because nuclear power does not emit greenhouse gases, ...

192

Steam Reheat in Nuclear Power Plants.  

E-Print Network (OSTI)

??In this work, reheating steam from a commercial nuclear power plant is explored in order to increase efficiency and power output. A thermal source in (more)

Marotta, Paul John

2012-01-01T23:59:59.000Z

193

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

May 25, 2007 ... The United States Nuclear Power Industry is reawakening. ... for a New Generation of Power Plants", Materials Technology@TMS, May 2007.

194

Organizational learning at nuclear power plants  

E-Print Network (OSTI)

The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

Carroll, John S.

1991-01-01T23:59:59.000Z

195

Electric Power Produced from Nuclear Reactor | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor December 20, 1951 Arco, ID Electric Power Produced from Nuclear Reactor

196

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

PRESENTATONS: Reawakening of United States Nuclear Energy: Materials Challenges for a New Generation of Power Plants Presentations by Harold...

197

Groundwater Protection Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The nuclear power industry has entered into a voluntary initiative to implement groundwater monitoring programs at all nuclear power plant sites. This EPRI guideline provides essential technical guidance to nuclear power utilities on the necessary elements of a sound groundwater protection program.

2008-01-10T23:59:59.000Z

198

Nuclear Power PROS -`No' greenhouse gas emissions  

E-Print Network (OSTI)

Nuclear Power PROS -`No' greenhouse gas emissions -Fuel is cheep -High energy density (1 ton U = 16 abundant elements found in natural crustal rocks) Nuclear Power CONS -High capital cost due to meeting if there is a movement towards electric cars? -What if the high capital costs of a nuclear power plant were invested

Toohey, Darin W.

199

Time-Limited Aging Analysis Report for the Edwin I. Hatch Nuclear Power Plant  

Science Conference Proceedings (OSTI)

The option to operate a nuclear power plant beyond its initial license term of 40 years is an important factor in financial decisions and long-term planning for utility asset management and capital improvement. Southern Company has submitted an application for the renewal of its operating licenses for the E. I. Hatch Nuclear Power Plant. As part of the application preparation process, Southern Company has reviewed its design and licensing basis for Plant Hatch for time-limited, aging-related assumptions....

2000-04-11T23:59:59.000Z

200

Role of nuclear power in the Philippine power development program  

SciTech Connect

The reintroduction of nuclear power in the Philippines is favored by several factors such as: the inclusion of nuclear energy in the energy sector of the science and technology agenda for national development (STAND); the Large gap between electricity demand and available local supply for the medium-term power development plan; the relatively lower health risks in nuclear power fuel cycle systems compared to the already acceptable power systems; the lower environmental impacts of nuclear power systems compared to fossil fuelled systems and the availability of a regulatory framework and trained personnel who could form a core for implementing a nuclear power program. The electricity supply gap of 9600 MW for the period 1993-2005 could be partly supplied by nuclear power. The findings of a recent study are described, as well as the issues that have to be addressed in the reintroduction of nuclear power.

Aleta, C.R. [Philippine Nuclear Research Institite, Quezon City (Philippines)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Demonstration of Clyde Bergemann Water Cannons at Alabama Power Company's Plant Miller Unit 1  

Science Conference Proceedings (OSTI)

This report documents the findings of a demonstration of Clyde Bergemann Water Cannons at Alabama Power Company's Plant Miller Unit 1.

2004-11-08T23:59:59.000Z

202

Hawaiian Electric Company's Sun Power for Schools Program: The First 10 Years  

Science Conference Proceedings (OSTI)

Hawaiian Electric Company (HECO) and its subsidiary utilities Hawaii Electric Light Company (HELCO) and Maui Electric Company (MECO) collectively manage a green pricing program referred to as Sun Power for Schools. The objectives of the program are to demonstrate photovoltaic (PV) technology and operations, gain experience with green pricing programs, and provide educational benefits to Hawaiis public schools.

2009-08-28T23:59:59.000Z

203

Powering the Nuclear Navy | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Powering the Nuclear Navy Powering the Nuclear Navy Home > About Us > Our Programs > Powering the Nuclear Navy Powering the Nuclear Navy The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This mission requires the combination of fully trained U.S. Navy men and women with ships that excel in endurance, stealth, speed, and independence from supply chains. NNSA's Navy Reactors Program provides the design, development and operational support required to provide militarily effective nuclear propulsion plants and ensure their safe, reliable and long-lived operation. This budget requests more than $1 billion to power a modern nuclear Navy: Continuation of design and development work for the OHIO-class

204

Nuclear Physics A369 (1981) 47082 North-Holland Publishing Company  

E-Print Network (OSTI)

Nuclear Physics A369 (1981) 47082 © North-Holland Publishing Company VARIATIONAL CALCULATIONS OF ASYMMETRIC NUCLEAR MATTER I. E. LAGARIS and V. R. PANDHARIPANDE Deportment oJ'Phti'sics, Unic) Abstract: We report on variational calculations of the energy E(p, ?) of asymmetric nuclear matter having p

Lagaris, Isaac

205

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

May 7, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science, Nuclear ... This 'thermodynamic database for advanced nuclear fuels' was...

206

ALARA at nuclear power plants  

SciTech Connect

Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

Baum, J.W.

1990-01-01T23:59:59.000Z

207

International Energy Outlook 1999 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

nuclear.jpg (5137 bytes) nuclear.jpg (5137 bytes) Nuclear electricity generation remains flat in the IEO99 reference case, representing a declining share of the world’s total electricity consumption. Net reductions in nuclear capacity are projected for most industrialized nations. In 1997, a total of 2,276 billion kilowatthours of electricity was generated from nuclear power worldwide, providing 17 percent of the world’s electricity generation. Among the countries with operating nuclear power plants, national dependence on nuclear power for electricity varies greatly (Figure 53). Ten countries met at least 40 percent of their total electricity demand with generation from nuclear reactors. The prospects for nuclear power to maintain a significant share of worldwide electricity generation are uncertain, despite projected growth of

208

PROPOSED AMENDMENT TO THE NUCLEAR POWER PLANT  

E-Print Network (OSTI)

NOTE TO EDITORS: The Nuclear Regulatory Commission has received two reports from its independent Advisory Committee on Reactor Safeguards. The attached reports, in the form of letters, comment on a proposed amendment to the NRC's rule on license renewal for nuclear power plants and a proposed revision to the decommissioning rule for nuclear power reactors. Attachments:

T. S. Kress

1995-01-01T23:59:59.000Z

209

EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

741: Seattle Steam Company Combined Heat and Power at Post 741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington Summary This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This project has been cancelled. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 16, 2010 EA-1741: Draft Environmental Assessment Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington (June 2010)

210

Potomac Electric Power Company's Motion for Leave to Answer and Answer to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Leave to Answer and for Leave to Answer and Answer to Comments and Protests Potomac Electric Power Company's Motion for Leave to Answer and Answer to Comments and Protests Docket No. EO-05-01: Pursuant to Rules 212 and 213 of the Rules of Practice and Procedure of the Federal Energy Regulatory Commission ("FERC" or the "Commission"), 18 C.F.R. §§ 385.212 and 385.213 (2005), Potomac Electric Power Company ("Pepco") hereby (i) moves for leave to answer and (ii) answers certain of the comments and protests filed in the above-captioned proceeding. Potomac Electric Power Company's Motion for Leave to Answer and Answer to Comments and Protests More Documents & Publications Motion for Leave to Answer and Answer of Potomac Electric Power Company Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to

211

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

212

Otter Tail Power Company - DollarSmart Energy Efficiency Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Otter Tail Power Company - DollarSmart Energy Efficiency Loan Otter Tail Power Company - DollarSmart Energy Efficiency Loan Program Otter Tail Power Company - DollarSmart Energy Efficiency Loan Program < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate Residential: $20,000 Business: $100,000 Loans may not exceed 80% of the project's total cost Program Info State Minnesota Program Type Utility Loan Program Rebate Amount Residential: $150 - $20,000 Business: $150 - $100,000 Provider Otter Tail Power Company Otter Tail Power Company's DollarSmart Financing Program offers $150 -

213

FE-Docket No. 99-1: Petition to intervene of Calpine Power Services Company  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FE-Docket No. 99-1: Petition to intervene of Calpine Power Services FE-Docket No. 99-1: Petition to intervene of Calpine Power Services Company FE-Docket No. 99-1: Petition to intervene of Calpine Power Services Company Proposed open access requirement for international electric transmission facilities and delegation to the federal energy regulatory commission. Enclosed for filing are an original and fifteen copies of the petition to intervene of power service company in the above-captioned proceeding. FE-Docket No. 99-1: Petition to intervene of Calpine Power Services Company More Documents & Publications Application for Presidential Permit OE Docket No. PP-371 Northern Pass: Comments from Campton Conservation Commission Application for presidential permit OE Docket No. PP-230-4 International Transmission Company: Petition to Intervene Out of Time and Comments of

214

Joint Maintenance Status Report of Potomac Electric Power Company amd PJM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Maintenance Status Report of Potomac Electric Power Company Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC Docket No. EO-05-01: Potomac Electric Power Company ("Pepco") and PJM Interconnection, L.L.C. ("PJM") hereby jointly submit this Maintenance Report to advise you of the work completed and findings made during the maintenance outages for Pepco's two 230 kV circuits from the Palmers Comer to Potomac River substations pursuant to the December 20. 2006, Department of Energy ("DOE") Order No. 202-05-3. Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC More Documents & Publications Special Environmental Analysis For Actions Taken under U.S. Department of

215

Yankee Nuclear Power Station - analysis of decommissioning costs  

SciTech Connect

The preparation of decommissioning cost estimates for nuclear power generating stations has received a great deal of interest in the last few years. Owners are required by regulation to ensure that adequate funds are collected for the timely decommissioning of their facilities. The unexpected premature shutdown of several facilities and uncertainties associated with radioactive waste disposal and long-term spent-fuel storage, when viewed in the light of a deregulated electric utility industry, has caused many companies to reevaluate their decommissioning cost estimates. The decommissioning of the Yankee Nuclear Power Station represents the first large-scale project involving the complete decontamination and dismantlement of a commercial light water nuclear power generation facility in the United States. Since this pressurized water reactor operated for 32 yr at a respectable 74% lifetime capacity factor, the actual costs and resources required to decommission the plant, when compared with decommissioning estimates, will yield valuable benchmarking data.

Lessard, L.P. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

216

Y-12 honors companies, advocates for small-business success ...  

NLE Websites -- All DOE Office Websites (Extended Search)

companies, advocates for small-business success | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

217

The Fourth Generation of Nuclear Power  

SciTech Connect

The outlook for nuclear power in the U.S. is currently very bright. The economics, operations and safety performance of U.S. nuclear power plants is excellent. In addition, both the safety and economic regulation of nuclear power are being changed to produce better economic parameters for future nuclear plant operations and the licenses for plant operations are being extended to 60 years. There is further a growing awareness of the value of clean, emissions-free nuclear power. These parameters combine to form a firm foundation for continued successful U.S. nuclear plant operations, and even the potential In order to realize a bright future for nuclear power, we must respond successfully to five challenges: Nuclear power must remain economically competitive, The public must remain confident in the safety of the plants and the fuel cycle. Nuclear wastes and spent fuel must be managed and the ultimate disposition pathways for nuclear wastes must be politically settled. The proliferation potential of the commercial nuclear fuel cycle must continue to be minimized, and We must assure a sustained manpower supply for the future and preserve the critical nuclear technology infrastructure. The Generation IV program is conceived to focus the efforts of the international nuclear community on responding to these challenges.

Lake, James Alan

2000-11-01T23:59:59.000Z

218

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

219

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

220

Net energy from nuclear power  

SciTech Connect

An analysis of net energy from nuclear power plants is dependent on a large number of variables and assumptions. The energy requirements as they relate to reactor type, concentration of uranium in the ore, enrichment tails assays, and possible recycle of uranium and plutonium were examined. Specifically, four reactor types were considered: pressurized water reactor, boiling water reactor, high temperature gas-cooled reactor, and heavy water reactor (CANDU). The energy requirements of systems employing both conventional (current) ores with uranium concentration of 0.176 percent and Chattanooga Shales with uranium concentration of 0.006 percent were determined. Data were given for no recycle, uranium recycle only, and uranium plus plutonium recycle. Starting with the energy requirements in the mining process and continuing through fuel reprocessing and waste storage, an evaluation of both electrical energy requirements and thermal energy requirements of each process was made. All of the energy, direct and indirect, required by the processing of uranium in order to produce electrical power was obtained by adding the quantities for the individual processes. The energy inputs required for the operation of a nuclear power system for an assumed life of approximately 30 years are tabulated for nine example cases. The input requirements were based on the production of 197,100,000 MWH(e), i.e., the operation of a 1000 MW(e) plant for 30 years with an average plant factor of 0.75. Both electrical requirements and thermal energy requirements are tabulated, and it should be emphasized that both quantities are needed. It was found that the electricity generated far exceeded the energy input requirements for all the cases considered. (auth)

Rotty, R.M.; Perry, A.M.; Reister, D.B.

1975-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

222

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

223

Materials for Nuclear Power: Digital Resource Center - REPORT ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007... Nuclear Power Background, Trends in Nuclear Power, The Nuclear ... Science: Application to Fusion and Generation IV Fission Reactors

224

Nuclear power plant construction activity, 1988  

SciTech Connect

Nuclear Power Plant Construction Activity 1988 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1988. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

1989-06-14T23:59:59.000Z

225

Materials in Nuclear Power Plant Construction - TMS  

Science Conference Proceedings (OSTI)

139th Annual Meeting & Exhibition. February 14 - 18, 2010, Washington State Convention Center, Seattle, Washington USA. Materials in Nuclear Power. Plant ...

226

Laser Welding for Nuclear Power Systems  

Science Conference Proceedings (OSTI)

Enhancement of Intergranular Corrosion Resistance of TIG Welded and Laser- surface Melted SUS 304 for Nuclear Power Plants Evaluation of Nanofeature...

227

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Mar 5, 2008 ... An overview presentation covering drivers for the Nuclear Renaissance and the path forward for nucleaer power in the United States.

228

Nickel Alloys Used in Nuclear Power Systems  

Science Conference Proceedings (OSTI)

Abstract Scope, Nickel based alloys are used extensively in nuclear power ... of Zircaloy Liquidus and Solidus with an Instrumented Transvarestraint Test.

229

Materials for Nuclear Power A Brief Introduction  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... A brief introduction to the effects of irradiation on materials for the nuclear power industry. PDF article includes figures and useful links.

230

Materials for Nuclear Power: Digital Resource Center - WEBCAST ...  

Science Conference Proceedings (OSTI)

May 25, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

231

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

232

Materials for Nuclear Power: Digital Resource Center - JOM Article ...  

Science Conference Proceedings (OSTI)

Mar 15, 2009 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

233

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

234

Materials for Nuclear Power: Digital Resource Center - What long ...  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

235

Nuclear Power - Deployment, Operation and Sustainability  

E-Print Network (OSTI)

We are fortunate to live in incredibly exciting and incredibly challenging time. Energy demands due to economic growth and increasing population must be satisfied in a sustainable manner assuring inherent safety, efficiency and no or minimized environmental impact. These considerations are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. At the same time, catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, design requirements and facilitated growing interests in advanced nuclear energy systems. This book is one in a series of books on nuclear power published by InTech. It consists of six major sections housing twenty chapters on topics from the key subject areas pertinent to successful development, deployment and operation of nuclear power systems worldwide. The book targets everyone as its potential readership groups - students, researchers and practitioners - who are interested to learn about nuclear power.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

236

POWER SUPPLY EXPANSION AND THE NUCLEAR OPTION  

E-Print Network (OSTI)

the fact that eventually thermal plant is duplicated by CO -2 free nuclear power. Similarly), Autoproducing Power Plants in Poland: Technological Data, Warsaw 1993b. ______, Public Thermal Power Plants% of all generating capacity, 5.6 GW, is combined heat and power (CHP), or cogeneration, plant, which also

237

Nuclear power and nuclear-weapons proliferation  

SciTech Connect

Concern over the risk of nuclear proliferation has led to extensive reexamination of the technical, economic, and political assumptions underlying both national and international nuclear policies. An attempt is made in the present article to clarify the basic technical and political issues. The connections between various fuel cycles and their possible proliferation risks are discussed. As the resolution of the existing differing views on proliferation risks will be largely a political process, solutions to the problem are not proposed. (JSR)

Moniz, E.J.; Neff, T.L.

1978-04-01T23:59:59.000Z

238

Update on the Cost of Nuclear Power  

E-Print Network (OSTI)

We update the cost of nuclear power as calculated in the MIT (2003) Future of Nuclear Power study. Our main focus is on the changing cost of construction of new plants. The MIT (2003) study provided useful data on the cost ...

Parsons, John E.

2009-01-01T23:59:59.000Z

239

Materials for Nuclear Power: Digital Resource Center -- Articles and ...  

Science Conference Proceedings (OSTI)

... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science, Nuclear Engineering ... BOOK: Safety Related Issues of Spent Nuclear Fuel Storage ... A compilation of reports prepared by the Center for Nuclear Waste Regulatory...

240

Nuclear Power Plant Concrete Structures  

Science Conference Proceedings (OSTI)

A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

Basu, Prabir [International Atomic Energy Agency (IAEA)] [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF)] [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Power supply expansion and the nuclear option in Poland  

SciTech Connect

Poland is in the process of liberalizing and modernizing its electric power system. Given its heavy reliance on coal and a consequent history of often severe environmental externalities associated with power production, the nature of capacity expansion in Poland has important environmental and social implications. To better understand capacity expansion in Poland, we constructed a data set of the Polish power sector for use with the Elfin capacity expansion planning model. Using Elfin, we derived four scenarios and several sensitivities for new generating capacity construction. These scenarios simulate choices among several generic generating technologies made to achieve the lowest overall net present cost of operating the power system through 2015. We find that natural gas is a highly desirable fuel for future power generation in Poland, but primarily as a peaking resource. As the current system is inflexible and peaking capacity appears to be the most pressing need, this result is not surprising. However, when nuclear power is included as a generation option, natural gas is less desirable than the Polish Power Grid Company (PPGCo) has suggested, and, despite the PPGCo`s claims to the contrary, nuclear power cannot be ruled out in Poland on economic grounds alone. In the unconstrained Elfin scenarios, using PPGCo assumptions, nuclear power is attractive, especially after 2010. The attractiveness of nuclear generation proves sensitive to certain input variables, however, notably fixed operating and maintenance cost, and possible carbon taxes. Moreover, we find that the effectiveness of conservation efforts designed to reduce airborne emissions is limited under scenarios in which nuclear generation is adopted. 23 refs., 11 figs., 5 tabs.

Marnay, C.; Pickle, S.

1997-06-01T23:59:59.000Z

242

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

243

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

244

Portland Company to Receive $1.3 Million to Improve Hydro Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portland Company to Receive $1.3 Million to Improve Hydro Power Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies Portland Company to Receive $1.3 Million to Improve Hydro Power Technologies September 15, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu today awarded more than $1.3 million to Ocean Renewable Power Company in Portland, Maine to improve the efficiency, flexibility, and environmental performance of hydroelectric energy. The investment will further the nation's supply of domestic clean hydroelectricity through technological innovation and will advance research to maximize the nation's largest renewable energy source. "Hydropower is our largest source of renewable energy and it can play an even bigger role in the further. These investments will create jobs, cut

245

Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Answer of Potomac Electric Power Company and PJM lnterconnection, Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of Environmental Quality Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of Environmental Quality Docket No. EO-05-01: Pursuant to Rule 213 of the rules of Practice and Procedure of the Federal Energy Regulatory Commission ("FERC" or "Commission"), 18 C.F.R. § 385.213, Potomac Electric Power Company ("Pepco") and PJM Interconnection, L.L.C. ("PJM") hereby answer the Motion of Robert G. Bumley, Director the Commonwealth of Virginia Department of Environmental Quality To Deny the District of Columbia Public Service

246

VEA-0009 - In the Matter of American Electric Power Company, Inc. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 - In the Matter of American Electric Power Company, Inc. 09 - In the Matter of American Electric Power Company, Inc. VEA-0009 - In the Matter of American Electric Power Company, Inc. This Decision and Order considers an Appeal filed by American Electric Power Company, Inc. (AEP) from a determination issued on July 7, 1998, by the Office of Energy Efficiency and Renewable Energy (EE) of the Department of Energy (DOE), under provisions of 10 C.F.R. Part 490 (Alternative Fuel Transportation Program). In its determination, EE substantially denied a request filed by AEP for an exemption from the firm's 1998 Model Year (MY) alternative fuel vehicle (AFV) purchase requirements under the Part 490 program. If the present Appeal were granted, AEP would be exempted from its 1998 MY purchase requirements, as initially requested by the firm. As

247

Potomac Electric Power Company's Motion to Intervene and Comment in Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Power Company's Motion to Intervene and Comment in Electric Power Company's Motion to Intervene and Comment in Support of Emergency Petition and Complaint Potomac Electric Power Company's Motion to Intervene and Comment in Support of Emergency Petition and Complaint Docket No. EO-05-01. Docket No. EL05-145-000: Pursuant to Rules 211 and 214 of the Rules of Practice and Procedure of the Federal Energy Regulatory Commission ("FERC" or the "Commission"), 18 C.F.R. §§ 385.211 and 385.214 (2004), Potomac Electric Power Company ("Pepco") hereby moves to intervene in the above-captioned proceeding and supports the August 24, 2005 Emergency Petition and Complaint filed by the District of Columbia Public Service Commission ("DC PSC"). As discussed below, Mirant Corporation and its public utility subsidiaries (collectively,

248

Cheyenne Light, Fuel and Power Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Fuel and Power Company Smart Grid Project Light, Fuel and Power Company Smart Grid Project Jump to: navigation, search Project Lead Cheyenne Light, Fuel and Power Company Country United States Headquarters Location Cheyenne, Wyoming Recovery Act Funding $5,033,441.00 Total Project Value $10,066,882.00 Coverage Area Coverage Map: Cheyenne Light, Fuel and Power Company Smart Grid Project Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

249

VEA-0012 - In the Matter of American Electric Power Company, Inc. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 - In the Matter of American Electric Power Company, Inc. 12 - In the Matter of American Electric Power Company, Inc. VEA-0012 - In the Matter of American Electric Power Company, Inc. This Decision and Order considers an Appeal filed by American Electric Power Company, Inc. (AEP) from a determination issued on October 15, 1999, by the Office of Energy Efficiency and Renewable Energy (EE) of the Department of Energy (DOE), under provisions of 10 C.F.R. Part 490 (Alternative Fuel Transportation Program). In its determination, EE granted in part a request filed by AEP for an exemption from the firm's 1998 and 1999 Model Year (MY) alternative fuel vehicle (AFV) purchase requirements under the Part 490 program. If the present Appeal were granted, AEP would be granted exemptions from its 1998 MY purchase requirements, in addition

250

International Energy Outlook 2000 - Nuclear Power  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In the IEO2000 reference case, nuclear power represents a declining share of the world’s total electricity consumption from 1997 through 2020. Plant retirements are expected to produce net reductions in nuclear capacity in most of the industrialized nations. In 1998, a total of 2,291 billion kilowatthours of electricity was generated by nuclear power worldwide, providing 16 percent of the world’s total generation[1]. Among the countries with operating nuclear power plants, national dependence on nuclear energy for electricity varies greatly. Nine countries met at least 40 percent of total electricity demand with generation from nuclear reactors. Figure 68. Nuclear Shares of National Electricity Generation, 1998 [Sources] The prospects for nuclear power to maintain a significant share of

251

Korea Hydro & Nuclear Power Co., Ltd. Nuclear Power Plants: Construction and Technology Experience  

Science Conference Proceedings (OSTI)

The Korean nuclear power industry has grown rapidly since Kori Unit 1, the first Korean nuclear power plant (NPP), which began operation in April 1978. Following the technology developments of the nuclear power industry in 1980s, the first standard Korean nuclear plants (Ulchin Units 3 and 4) were constructed in the 1990s. At present, 20 NPP units operate in Korea16 pressurized water reactor (PWR) plants and four pressurized heavy water reactor (PHWR) plants; eight PWR units are under construction. This ...

2011-09-21T23:59:59.000Z

252

Public opinion factors regarding nuclear power  

Science Conference Proceedings (OSTI)

This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

Benson, B.

1991-12-31T23:59:59.000Z

253

Public opinion factors regarding nuclear power  

SciTech Connect

This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

Benson, B.

1991-01-01T23:59:59.000Z

254

The Role of Marketing at Duke Power Company  

E-Print Network (OSTI)

This paper examines the changes that have taken place in Duke Power's marketing philosophy, particularly in the industrial marketing sector. The emphasis has shifted from load management to strategic sales for boosting the use of off-peak power. Duke Power is implementing a number of programs and services that not only promote new ways to use electricity in industrial processes, but also promote economic development in its 20,000 square mile service area. These programs highlighted in this paper are as follows: Heat Recovery Systems Economic Development Industrial Customer Focus Program Power System Disturbance Policy Industrial Energy Audits Rates

Paules, W. R. Jr.

1987-09-01T23:59:59.000Z

255

Clean Coal Briefs The Ohio Power Company recently  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydroelec- tric power potential is estimated to be 220 GW, but cannot meet all future energy needs. Hydro also has the disadvantage of severe environ- mental disruption and...

256

Space nuclear power: a strategy for tomorrow  

SciTech Connect

Energy: reliable, portable, abundant and low cost will be a most critical factor, perhaps the sine qua non, for the unfolding of man's permanent presence in space. Space-based nuclear power, in turn, is a key technology for developing such space platforms and the transportation systems necessary to service them. A strategy for meeting space power requirements is the development of a 100-kW(e) nuclear reactor system for high earth orbit missions, transportation from Shuttle orbits to geosynchronous orbit, and for outer planet exploration. The component technology for this nuclear power plant is now underway at the Los Alamos National Laboratory. As permanent settlements are established on the Moon and in space, multimegawatt power plants will be needed. This would involve different technology similar to terrestrial nuclear power plants.

Buden, D.; Angelo, J. Jr.

1981-01-01T23:59:59.000Z

257

GEYSERS POWER COMPANY, LLC 10350 Socrates Mine Road  

E-Print Network (OSTI)

survey can be modified in Condition Biological Resources 5-4. The requirement for monitoring, for the Calistoga Power Plant since 1985. His last monitoring survey was in 2003. Mr. Nix of LandWatch recommends and through color infrared aerial imagery, indicates no significant irilpact of power plant drift

258

Quarterly Nuclear Power Deployment Scorecard - April 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Deployment Scorecard - April 2013 Power Deployment Scorecard - April 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 News Updates On November 20, 2012, the Department of Energy announced that it had selected the mPower America team, led by Babcock and Wilcox (B&W) partnered with Tennessee Valley Authority and Bechtel, as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. Negotiations with B&W are complete and the award is imminent. On March 11, 2013, the Department issued a follow-on solicitation open to other companies and manufacturers focused on furthering small modular reactor efficiency, operations and design. On January 10, 2013, NRC published the Final Environmental Impact Statement for the Enrico Fermi Unit 3 Combined License application. An

259

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

Nuclear Reactor Operational Status Tables (Information and data on nuclear power reactors Generation: by State and Reactor. Annual Energy Review, ...

260

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA)

snpt3ny6122 581 4,948 97.2 PWR R E Ginna Nuclear Power Plant Unit Summer Capacity (MW) Net Generation (Thousand MWh) Summer Capacity Factor (Percent) Type

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Workshop on nuclear power growth and nonproliferation  

Science Conference Proceedings (OSTI)

It is widely viewed that an expansion of nuclear power would have positive energy, economic and environmental benefits for the world. However, there are concerns about the economic competitiveness, safety and proliferation and terrorism risks of nuclear power. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security. In his Prague speech, President Obama stated: 'we should build a new framework for civil nuclear cooperation, including an international fuel bank, so that countries can access peaceful power without increasing the risks of proliferation. That must be the right of every nation that renounces nuclear weapons, especially developing countries embarking on peaceful programs. And no approach will succeed if it's based on the denial of rights to nations that play by the rules. We must harness the power of nuclear energy on behalf of our efforts to combat climate change, and to advance peace opportunity for all people.' How can the President's vision, which will rekindle a vigorous public debate over the future of nuclear power and its relation to proliferation, be realized? What critical issues will frame the reemerging debate? What policies must be put into place to address these issues? Will US policy be marked more by continuity or change? To address these and other questions, the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars will host a workshop on the future of nuclear power and nonproliferation.

Pilat, Joseph F [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

262

Nuclear Power - Operation, Safety and Environment  

E-Print Network (OSTI)

Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. At the same time, catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, design requirements and facilitated growing interests in advanced nuclear energy systems, next generation nuclear reactors, which are inherently capable to withstand natural disasters and avoid catastrophic consequences without any environmental impact. This book is one in a series of books on nuclear power published by InTech. Under the single-volume cover, we put together such topics as operation, safety, environment and radiation effects. The book is not offering a comprehensive coverage of the material in each area. Instead, selected themes are highlighted by authors of individual chapters representing contemporary interests worldwide. With all diversity of topics in 16 chapters, the integrated system analysis approach of nuclear power operation, safety and environment is the common thread. The goal of the book is to bring nuclear power to our readers as one of the promising energy sources that has a unique potential to meet energy demands with minimized environmental impact, near-zero carbon footprint, and competitive economics via robust potential applications. The book targets everyone as its potential readership groups - students, researchers and practitioners - who are interested to learn about nuclear power.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

263

Inland Power & Light Company- Agricultural Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

Inland Power offers a variety of incentives for agricultural/irrigation customers to save energy on participating farms. Rebates are available for a variety of sprinkler equipment (nozzles, gaskets...

264

Materials for Nuclear Power: Digital Resource Center ... - TMS  

Science Conference Proceedings (OSTI)

Materials for Nuclear Power, 0, 2175, Maureen Byko, 3/15/2009 8:21 PM ... A comprehensive introductory educational site about all forms of nuclear power, 0...

265

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

266

Guidance for Deployment of Mobile Technologies for Nuclear Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This...

267

DOE - Office of Legacy Management -- Hallam Nuclear Power Facility...  

Office of Legacy Management (LM)

Hallam Nuclear Power Facility - NE 01 FUSRAP Considered Sites Site: Hallam Nuclear Power Facility (NE.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site...

268

DOE - Office of Legacy Management -- Piqua Nuclear Power Facility...  

Office of Legacy Management (LM)

Piqua Nuclear Power Facility - OH 08 FUSRAP Considered Sites Site: Piqua Nuclear Power Facility (OH.08 ) Designated Name: Alternate Name: Location: Evaluation Year: Site...

269

Bettis and Knolls Atomic Power Laboratories | National Nuclear...  

National Nuclear Security Administration (NNSA)

Bettis and Knolls Atomic Power Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

270

Materials for Nuclear Power: Digital Resource Center ... - TMS  

Science Conference Proceedings (OSTI)

Materials for Nuclear Power, 0, 2161, Maureen Byko, 3/15/2009 8:21 PM ... A comprehensive introductory educational site about all forms of nuclear power, 0...

271

Renewing America's Nuclear Power Partnership for Energy Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth Renewing America's Nuclear Power Partnership for Energy Security and Economic Growth October 8,...

272

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... Topic Title: WEB RESOURCE: Virtual Nuclear Tourist! Nuclear Plants Around the ... Nuclear Power Plants Around the World.22 January 2006.

273

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

Jun 25, 2007 ... The NRC regulates commercial nuclear power plants and other uses of nuclear materials, such as in nuclear medicine, through licensing,...

274

BOOK: Environmental Degradation of Materials in Nuclear Power  

Science Conference Proceedings (OSTI)

Mar 28, 2007... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ... associated with spent fuel storage and radioactive waste disposal.

275

Japanese nuclear power and the Kyoto agreement  

E-Print Network (OSTI)

We find that, on an economic basis, nuclear power could make a substantial contribution for meeting the emissions target Japan agreed to in the Kyoto Protocol. It is unlikely however that the contribution would be as large ...

Babiker, Mustafa H.M.; Reilly, John M.; Ellerman, A. Denny.

276

Motion for Leave to Answer and Answer of Potomac Electric Power Company |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Leave to Answer and Answer of Potomac Electric Power for Leave to Answer and Answer of Potomac Electric Power Company Motion for Leave to Answer and Answer of Potomac Electric Power Company Docket No. EO-05-01: Pursuant to Rule 213 of the Commission's Rules of Practice and Procedure, 18 C.F.R. § 385.213, Potomac Electric Power Company ("Pepco") hereby moves for leave to answer and answers the Motion for Leave to File Consolidated Answer and Consolidated Answer of Robert G. Burnley, Director of the Commonwealth of Virginia Department of Environmental Quality filed on November 10, 2005 ("VDEQ Answer"). For the reasons detailed below, Pepco requests that the Commission reject VDEQ's Answer, or in the alternative, if the Commission accepts the VDEQ Answer, the Commission should also accept Pepco's answer to correct

277

Regulatory Process for Decommissioning Nuclear Power Reactors  

Science Conference Proceedings (OSTI)

The NRC revised decommissioning rule 10 CFR 50.82 in 1996 to make significant changes in the regulatory process for nuclear power plant licensees. This report provides a summary of ongoing federal agency and industry activities. It also describes the regulatory requirements applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning plan, and provides industry...

1998-03-26T23:59:59.000Z

278

Nuclear power plant construction activity, 1986  

SciTech Connect

Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

1987-07-24T23:59:59.000Z

279

Groundwater Protection Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The nuclear power industry has undertaken a Groundwater Protection Initiative at the Direction of the NEI Nuclear Strategic Issues Advisory Committee (NSIAC). This EPRI guideline provides essential technical guidance to utilities on the necessary elements of a sound groundwater protection program.

2007-11-27T23:59:59.000Z

280

Corrosion in the Nuclear Power Industry  

Science Conference Proceedings (OSTI)

...The U.S. nuclear industry generates approximately 20% of the electricity needs primarily from reactors designed and built over 30 years ago. Safety concerns continue to plague the industry. Severe cracks found at one nuclear power reactor (ca 2001) and the boric acid...

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

216 Journal of Nuclear Matertals 105(1982) 276-292 North-Holland Pubhshmg Company  

E-Print Network (OSTI)

216 Journal of Nuclear Matertals 105(1982) 276-292 North-Holland Pubhshmg Company A RATE THEORY ISdetnmental to their Integrity A srmplified rate theory is presented to explain existmg fission reactor swelhng data The theory 1sapphed also to fusion reactor conditions m both the steady-state and pulsed

Ghoniem, Nasr M.

282

QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY OCTOBER 2013 News Updates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 News Updates  Dominion has filed an updated integrated resource plan with Virginia and North Carolina State regulators; the plan sets an "earliest possible" in- service date of October 2024 for North Anna 3. Earlier this year, the company announced its intention to return to the General Electric-Hitachi (GEH) ESBWR reactor design with an amended Combined Operating License (COL) to be filed by the end of 2013.  Entergy announced that it will close its single unit Vermont Yankee nuclear power plant in late 2014; sustained low natural gas prices, financial impacts of cumulative regulations, and the wholesale market structure all contributed to the company's decision to shutter the plant. This is the fourth plant this year to announce decommissioning plans. Dominion's closure of its single unit Kewaunee plant also followed from low wholesale

283

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ct Millstone Unit 2, Unit 3 2,103 16,750 100.0 Dominion Nuclear Conn Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of components due to independent ...

284

Trends in Nuclear Power - TMS  

Science Conference Proceedings (OSTI)

An overview of FY 2007 programs for the Nuclear Energy Research Initiative, U. S. Department of Energy, 0, 805, Todd Osman, 6/13/2007 2:08 PM by Todd...

285

Nuclear Power Plant Design Project  

E-Print Network (OSTI)

................................................. 22 5.1.16 Decommissioning: AP600, HTGR, ALWR ............................................................................................................... 35 7.3.4 Decommissioning Cost #12;9 decommissioning. The long delayed nuclear waste disposal facility at Yucca Mountain is becoming

286

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2ar Arkansas Nuclear One Unit 1, Unit 2 1,835 15,023 100.0 Entergy Arkansas Inc 1 Plant 2 Reactors Owner Note: Totals may not equal sum of ...

287

Studies of Fourteen Nuclear-Powered Airplanes  

SciTech Connect

A representative series of aircraft which could be powered by a relatively low-temperature liquid-coolant-cycle nuclear power plant are described. Present aircraft such as the B-36, B-52, and B-47 bombers as well as new designs were investigated. Design and performance characteristics of all the aircraft are presented.

Hutton, J. N.; McCulloch, J. C.; Schmill, W. C.; Ward, W. H.

1952-09-01T23:59:59.000Z

288

Nuclear Power - System Simulations and Operation  

E-Print Network (OSTI)

At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the system-thinking approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

289

Kansas City Power & Light Company Smart Grid Host Site 2011 Progress Report  

Science Conference Proceedings (OSTI)

The Kansas City Power & Light Company (KCP&L) SmartGrid Demonstration Project is a component of an EPRI multi-year collaborative initiative with utility participants. The project focuses on integrating distributed energy resources (DER)such as demand response, storage, and distributed and renewable generationinto a virtual power plant. The ultimate goal is to advance widespread, efficient, and cost-effective deployment of utility and customer-side technologies in distribution and overall power system ope...

2012-02-28T23:59:59.000Z

290

Nuclear power in the Soviet Bloc  

SciTech Connect

The growth of Soviet Bloc nuclear power generation to the end of the century is evaluated on the basis of policy statements of objectives, past and current nuclear power plant construction, and trends in the potential for future construction. Central to this study is a detailed examination of individual reactor construction and site development that provides specific performance data not given elsewhere. A major commitment to nuclear power is abundantly clear and an expansion of ten times in nuclear electric generation is estimated between 1980 and 2000. This rate of growth is likely to have significant impact upon the total energy economy of the Soviet Bloc including lessening demands for use of coal, oil, and gas for electricity generation.

Davey, W.G.

1982-03-01T23:59:59.000Z

291

Peach Bottom and Vermont Yankee Nuclear Power Plants  

Science Conference Proceedings (OSTI)

A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

NONE

1992-12-31T23:59:59.000Z

292

Response of the Potomac Electric Power Company to the Operating Plan of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Potomac Electric Power Company to the Operating of the Potomac Electric Power Company to the Operating Plan of Mirant Potomac River, L.L.C. Response of the Potomac Electric Power Company to the Operating Plan of Mirant Potomac River, L.L.C. Docket No. EO-05-01: In sum, although Pepco agrees wilh DOE's directive that Mirant "should immediately take the necessary steps to implement Option A of the intermediate phase proposed in the implementation plan,") that Option does not satisfy the concerns identified by DOE in its decision and Order. Pepco agrees that Option B and olher options Ihat are more consistent with the DOE order need to be considered. and Pepco urges the DOE to implement a compliance plan Ihat fully meets the requirements of the DOE Potomac River Order and restores system reliability to the levels

293

Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vogtle Nuclear Power Plant -- As Vogtle Nuclear Power Plant -- As Prepared for Delivery Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for Delivery February 15, 2012 - 12:27pm Addthis It's great to be with all of you today. I want to acknowledge the many people who are playing a role here: Tom Fanning, President of Southern Company Paul Bowers, President and Chief Executive Officer of Georgia Power Tom Smith, Chief Executive Officer of Oglethorpe Power Bob Johnston, Chief Executive Officer of MEAG (Me-ag) Power Jim Bernhard, President and Chief Executive Officer of The Shaw Group Ric Perez, President of Westinghouse Operations Marv Fertel, President and Chief Executive Officer of the Nuclear Energy Institute; and Finally, all of the workers here, whose skill and expertise are

294

Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu's Remarks at Vogtle Nuclear Power Plant -- As Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for Delivery Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for Delivery February 15, 2012 - 12:27pm Addthis It's great to be with all of you today. I want to acknowledge the many people who are playing a role here: Tom Fanning, President of Southern Company Paul Bowers, President and Chief Executive Officer of Georgia Power Tom Smith, Chief Executive Officer of Oglethorpe Power Bob Johnston, Chief Executive Officer of MEAG (Me-ag) Power Jim Bernhard, President and Chief Executive Officer of The Shaw Group Ric Perez, President of Westinghouse Operations Marv Fertel, President and Chief Executive Officer of the Nuclear Energy Institute; and Finally, all of the workers here, whose skill and expertise are

295

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters  

Science Conference Proceedings (OSTI)

Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

Robert J. Goldston

2010-03-03T23:59:59.000Z

296

DECOMMISSIONING OF NUCLEAR POWER REACTORS  

E-Print Network (OSTI)

Decommissioning means permanently removing a nuclear facility from service and reducing radioactive material on the licensed site to levels that would permit termination of the NRC license. On June 27, 1988, the NRC issued general requirements on decommissioning that contained technical and financial criteria and dealt with planning needs, timing, funding mechanisms, and environmental review

unknown authors

2000-01-01T23:59:59.000Z

297

City of Burbank Water and Power, California (Utility Company) | Open Energy  

Open Energy Info (EERE)

Burbank Water and Power, California (Utility Company) Burbank Water and Power, California (Utility Company) (Redirected from Burbank Water and Power) Jump to: navigation, search Name City of Burbank Water and Power Place Burbank, California Utility Id 2507 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Burbank Water and Power Smart Grid Project was awarded $20,000,000 Recovery

298

Review: Nuclear Power Is Not the Answer by Helen Caldicott  

E-Print Network (OSTI)

Sciences, Pakistan. Helen Caldicott. Nuclear Power Is NotNuclear Information and Resource Service (http://www.nirs.org) Umar Karim Mirza , PakistanNuclear Power Is Not the Answer By Helen Caldicott Reviewed by Umar Karim Mirza Pakistan

Mirza, Umar Karim

2007-01-01T23:59:59.000Z

299

The Fukushima Nuclear Event and its Implications for Nuclear Power  

SciTech Connect

The combined strong earthquake and super tsunami of 12 March 2011 at the Fukushima nuclear power plant imposed the most severe challenges ever experienced at such a facility. Information regarding the plant response and status remains uncertain, but it is clear that severe damage has been sustained, that the plant staff have responded creatively and that the offsite implications are unlikely to be seriously threatening to the health, if not the prosperity, of the surrounding population. Re-examination of the regulatory constraints of nuclear power will occur worldwide, and some changes are likely, particularly concerning reliance upon active systems for achieving critical safety functions and concerning treatments of used reactor fuel. Whether worldwide expansion of the nuclear power economy will be slowed in the long run is perhaps unlikely and worth discussion.

Golay, Michael (MIT)

2011-07-06T23:59:59.000Z

300

Grid Reliability - An Electric Utility Company's Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Electric Utility Company's Perspective Marc Butts Southern Company Services 11/19/08 Topics * Business Continuity at Southern Company * NERC Cyber Security at Southern Company * Homeland Security at Southern Company * Physical recovery following a major outage * 5 questions to ask your local utility * Facing Realities 3 Service territory across four states: 120,000 square miles * Southern Linc * Southern Power * Southern Telecom * Southern Nuclear Other Subsidiaries: Serves approximately 4 million customers Business Continuity at Southern Company Southern Company Business Assurance Model Business Unit Management (Asset Owners) Southern Company Business Assurance Council Infrastructure Protection Business Continuity Incident Response * Identify critical assets * Design and implement

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nuclear Power - Control, Reliability and Human Factors  

E-Print Network (OSTI)

Advances in reactor designs, materials and human-machine interfaces guarantee safety and reliability of emerging reactor technologies, eliminating possibilities for high-consequence human errors as those which have occurred in the past. New instrumentation and control technologies based in digital systems, novel sensors and measurement approaches facilitate safety, reliability and economic competitiveness of nuclear power options. Autonomous operation scenarios are becoming increasingly popular to consider for small modular systems. This book belongs to a series of books on nuclear power published by InTech. It consists of four major sections and contains twenty-one chapters on topics from key subject areas pertinent to instrumentation and control, operation reliability, system aging and human-machine interfaces. The book targets a broad potential readership group - students, researchers and specialists in the field - who are interested in learning about nuclear power.

Tsvetkov, Pavel

2011-09-01T23:59:59.000Z

302

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2mi Donald C Cook Unit 1, Unit 2 2,069 15,646 52.8 Indiana Michigan Power Co Fermi Unit 2 1,085 7,738 26.1 Detroit Edison Co Palisades Unit 1 793 ...

303

Multiple microprocessor based nuclear reactor power monitor  

SciTech Connect

The reactor power monitor is a portable multiple-microprocessor controlled data acquisition device being built for the International Atomic Energy Association. Its function is to measure and record the hourly integrated operating thermal power level of a nuclear reactor for the purpose of detecting unannounced plutonium production. The monitor consists of a /sup 3/He proportional neutron detector, a write-only cassette tape drive and control electronics based on two INTEL 8748 microprocessors. The reactor power monitor operates from house power supplied by the plant operator, but has eight hours of battery backup to cover power interruptions. Both the hourly power levels and any line power interruptions are recorded on tape and in memory. Intermediate dumps from the memory to a data terminal or strip chart recorder can be performed without interrupting data collection.

Lewis, P.S.; Ethridge, C.D.

1979-01-01T23:59:59.000Z

304

Seismic Isolation of Nuclear Power Plants  

Science Conference Proceedings (OSTI)

With increasing public concern for seismic safety in general and research findings that indicate that seismic hazards may be larger than expected in many parts of the world, it would be prudent for the nuclear industry to consider more fully the potential benefits, costs, and impediments associated with applying seismic isolation more widely and to identify actions needed to develop practical and cost-effective guidelines for the application of seismic isolation to nuclear power plants (NPPs) and ...

2013-10-28T23:59:59.000Z

305

City of Burbank Water and Power, California (Utility Company) | Open Energy  

Open Energy Info (EERE)

Power, California (Utility Company) Power, California (Utility Company) Jump to: navigation, search Name City of Burbank Water and Power Place Burbank, California Utility Id 2507 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Burbank Water and Power Smart Grid Project was awarded $20,000,000 Recovery Act Funding with a total project value of $62,650,755.

306

Virtual environments for nuclear power plant design  

SciTech Connect

In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

1996-03-01T23:59:59.000Z

307

Nuclear power plant construction activity 1987  

SciTech Connect

This annual report published by the Energy Information Administration (EIA) presents data on nuclear power plant construction activity. The previous report, Nuclear Power Plant Construction Activity 1986, included data for units that, as of December 31, 1986, were (1) in the construction pipeline, (2) canceled, or (3) commercial operation as of December 31, 1986. The data in this report, which were collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction,'' update the data in the previous report to be current as of December 31, 1987. Three types of information are included: plant characteristics and ownership; construction costs; and construction schedules and milestone dates.

1988-06-09T23:59:59.000Z

308

Identification, Screening, and Evaluation of New Products and Services: Kansas City Power & Light Company  

Science Conference Proceedings (OSTI)

This study was commissioned to assist Kansas City Power & Light Company (KCP&L) in the identification, screening, and evaluation of new products and services to promote or sell to its end-use customers across all market sectors (e.g., residential, commercial, industrial, and agricultural).

2004-10-25T23:59:59.000Z

309

The Cost of Power Disturbances to Industrial and Digital Economy Companies June 2001 ID: 1006274  

Science Conference Proceedings (OSTI)

This report was originally published and is the sameas EPRI Product 1006274, The Cost of Power Disturbances to Industrial and Digital Economy Companies, (June 2001).The importance of reliable, high-quality electrical power continues to grow as society becomes ever more reliant on digital circuitry for everything from e-commerce to industrial process controllers to the onboard circuitry in toasters and televisions. With this shift to a digital society, business activities ...

2013-03-18T23:59:59.000Z

310

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA)

snpt3md6011 855 6,755 90.2 PWR 850 7,239 97.2 1,705 13,994 93.7 Calvert Cliffs Nuclear Power Plant Unit Type Data for 2010 PWR = Pressurized Light Water Reactor.

311

MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

Balent, R.

1963-03-12T23:59:59.000Z

312

Updated Costs for Decommissioning Nuclear Power Facilities  

Science Conference Proceedings (OSTI)

This update of 1978 NRC cost estimates--in 1984 dollars--also estimates the costs of several special manpower and licensing options for decommissioning nuclear power facilities. The fully developed methodology offers utilities a sound basis on which to estimate the costs of decommissioning specific plants.

1985-05-13T23:59:59.000Z

313

Groundwater Monitoring Guidance for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recent experience has shown that the initial design of nuclear power plant groundwater characterization programs can have a significant impact upon the resources needed to demonstrate regulatory compliance. This document provides technical experience and lessons learned in designing an optimized groundwater investigation program.

2005-09-06T23:59:59.000Z

314

Nuclear Power Technology for the Future  

DOE Green Energy (OSTI)

Ensuring sufficient energy for electricity, fresh water and transportation represents a major challenge for this century. Energy demand will increase dramatically as developing countries improve their standards of living. Nuclear power will become an increasingly important source of energy for production of electricity, fresh water and hydrogen as transportation fuel. Hydrocarbon sources of energy are not acceptable in the long term because of global warming and uneven supply. To ensure that nuclear power can meet this challenge, improved technologies are required to address the problems of nuclear waste, management of nuclear materials and safety as many more nuclear plants are built. These technologies are being developed at Argonne National Laboratory as part of the DOE international program of Generation IV reactors. Essential to meeting these challenges is the development of fast-spectrum nuclear reactors for which fuel and fission products are recycled to the reactor to be 'burned'. I will discuss work on fast-spectrum reactor and fuel-cycle design. The technologies discussed will be 'passively safe' reactor design and 'pyroprocessing' for fuel reprocessing.

Sackett, John I. (ANL)

2003-07-23T23:59:59.000Z

315

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

316

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... Topic Title: WEB RESOURCE: Nuclear Energy Institute Topic Summary: Timely coverage of developments in the the nuclear power industry

317

Overview of Trends in Nuclear Power Plant Sensors and Instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Nuclear Power Plant Sensors and Instrumentation SASAN BAKTIARI Nuclear Engineering Division Argonne National Laboratory Ph: (630) 252-8982 bakhtiati@anl.gov Abstract -...

318

Deputy Secretary Poneman Delivers Remarks on Nuclear Power at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ranging from preventing the proliferation of nuclear weapons and confronting North Korea, to power generation and operational safety at civil nuclear plants, to deep...

319

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

... (kWh). There were 65 nuclear power plants with 104 operating nuclear reactors that generated a total of 790 billion kilowatt-hours (kWh), ...

320

Space Nuclear Power: Opening the Final Frontier  

E-Print Network (OSTI)

Nuclear power sources have enabled or enhanced some of the most challenging and exciting space missions yet conducted, including missions such as the Pioneer flights to Jupiter, Saturn, and beyond; the Voyager flights to Jupiter, Saturn, Uranus, Neptune, and beyond; the Apollo lunar surface experiments; the Viking Lander studies of Mars; the Ulysses mission to study the polar regions of the Sun; the Galileo mission that orbited Jupiter; the Cassini mission orbiting Saturn and the recently launched New Horizons mission to Pluto. In addition, radioisotope heater units have enhanced or enabled the Mars exploration rover missions (Sojourner, Spirit and Opportunity). Since 1961, the United States has successfully flown 41 radioisotope thermoelectric generators (RTGs) and one reactor to provide power for 24 space systems. The former Soviet Union has reportedly flown at least 35 nuclear reactors and at least two RTGs to power 37 space systems. 1.

Gary L. Bennett

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report  

Science Conference Proceedings (OSTI)

This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

NONE

1994-06-01T23:59:59.000Z

322

Orcas Power and Light Company [fourth quarterly] technical progress report, July--September 1992  

DOE Green Energy (OSTI)

After a year of operating the G-Van, OPALCO concluded that the company transportation needs were not being met by the G-Van. The previous quarterly report mentioned battery problems with the Solectria (No. 51). This problem is one of reduced range and power and has been determined to be caused by one or more individual monoblock failures. The local Solectria representative and Solectria headquarters personnel have been aware of this unsatisfactory condition and are continuing their attempt to solve it. The Solectria and G-Van continue to be used intermittently by company personnel for errands and engineering trips. Generally, the smaller, compact size of the Solectria make it the most preferred by company drivers. Clearly the G-Van is not selected for use because of its size and weight. It is important to note that the driver dissatisfaction is not related to the fact that it is an electric van, but more its lack of maneuverability.

Not Available

1992-12-31T23:59:59.000Z

323

Orcas Power and Light Company [fourth quarterly] technical progress report, July--September 1992  

DOE Green Energy (OSTI)

After a year of operating the G-Van, OPALCO concluded that the company transportation needs were not being met by the G-Van. The previous quarterly report mentioned battery problems with the Solectria (No. 51). This problem is one of reduced range and power and has been determined to be caused by one or more individual monoblock failures. The local Solectria representative and Solectria headquarters personnel have been aware of this unsatisfactory condition and are continuing their attempt to solve it. The Solectria and G-Van continue to be used intermittently by company personnel for errands and engineering trips. Generally, the smaller, compact size of the Solectria make it the most preferred by company drivers. Clearly the G-Van is not selected for use because of its size and weight. It is important to note that the driver dissatisfaction is not related to the fact that it is an electric van, but more its lack of maneuverability.

Not Available

1992-01-01T23:59:59.000Z

324

Transactions of the fourth symposium on space nuclear power systems  

DOE Green Energy (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1987-01-01T23:59:59.000Z

325

Transactions of the fifth symposium on space nuclear power systems  

Science Conference Proceedings (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1988-01-01T23:59:59.000Z

326

Small break LOCA analysis for Maanshan nuclear power plant  

SciTech Connect

Since 1990, Taiwan Power Company has conducted a LWR LOCA technology transfer program on RELAP5YA computer code from Yankee Atomic Electric Company (YAEC). One objective of this program is to acquire the RELAP5YA computer code from YAEC for Taipower in-house licensing analysis. The RELAP5YA is a computer program developed at YAEC for analysing the dynamic behaviour of thermal-hydraulic systems, and it can cover most of the postulated accidents and transients in light water reactor systems. In this paper, Taipower`s engineers have performed a small break loss of coolant accidents analysis for Maanshan nuclear power plant. Thais action is used to perform the licensing actions for increasing the operation margin on the steam generator tube plugging. The result is shown that the steam generator tube can be plugged slightly without a reduction in safety margins. This analysis covers a spectrum of break size for a small break LOCA. For a complete spectrum of the transient and accident analysis, the large break LOCA and the non-LOCA analysis were performed by the fuel vendor for the reload safety evaluation.

Jer-Cherng Kang; Shou-Chuan Chiang; Lang-Chen Wang [Taiwan Power Company, Taipei (China)

1994-12-31T23:59:59.000Z

327

Management of National Nuclear Power Programs for assured safety  

SciTech Connect

Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

Connolly, T.J. (ed.)

1985-01-01T23:59:59.000Z

328

Coal and nuclear power: Illinois' energy future  

SciTech Connect

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

329

Japan depends significantly on nuclear power to meet its ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, ... the contribution of nuclear power to electricity production is more stable at 19% to 20%.

330

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters  

Science Conference Proceedings (OSTI)

Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

Robert J. Goldston

2011-04-28T23:59:59.000Z

331

Florida Power & Light Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Project Lead Florida Power & Light Company Country United States Headquarters Location Miami, Florida Recovery Act Funding $200,000,000.00 Total Project Value $578,347,232.00 Coverage Area Coverage Map: Florida Power & Light Company Smart Grid Project Coordinates 25.7742657°, -80.1936589° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

332

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... The "Inside a Nuclear Power Plant" section of this web page gives a brief and very basic introduction to the major systems in a nuclear power...

333

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS  

E-Print Network (OSTI)

SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi between those used to monitor the reactor coolant pump of a Pressurized Water Reactor (PWR) is considered Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

334

"Ensuring Nuclear Power is Both Peaceful and Plentiful" | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

"Ensuring Nuclear Power is Both Peaceful and Plentiful" "Ensuring Nuclear Power is Both Peaceful and Plentiful" September 21, 2010 - 6:33pm Addthis Secretary Chu speaks at the...

335

Recent Progress in U.S. Nuclear Power Plant Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Progress in U.S. Nuclear Power Plant Safety Speaker(s): Robert Budnitz Date: April 15, 2010 - 12:00pm Location: 90-3122 The U.S. commercial nuclear-power industry consists...

336

Nuclear power and prima facie duties towards future people  

Science Conference Proceedings (OSTI)

Before assessing the desirability of nuclear power we first need to narrow down the focus on its potential and its impediments. Within the technological possibilities of nuclear power production, I shall formulate two prima facie duties for safeguarding ...

Behnam Taebi

2009-05-01T23:59:59.000Z

337

Increasing Profits with Electric Industrial Vehicles: Alabama Power Company Electric Forklift Incentive Program  

Science Conference Proceedings (OSTI)

Alabama Power Company's Electric Transportation Department has increased its bottom line through an innovative electric forklift incentive program. This presentation outlines the key points of an EPRI Case Study (EPRI report no. 1006013) that documents the utility's strategy, implementation, and results. The presentation demonstrates 1) the value of the industrial electric vehicle market to the utility, and 2) how the industrial market can benefit your bottom line.

2001-08-24T23:59:59.000Z

338

Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993  

Science Conference Proceedings (OSTI)

This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

Not Available

1994-08-01T23:59:59.000Z

339

Can New Nuclear Power Plants be Project Financed?  

E-Print Network (OSTI)

manufacturing companies with sites in France contracted in 2010 for 24 year power contracts from EDF through a special purpose vehicle company called Exeltium.4 The Olkiluoto NPP under construction in Finland is backed by several long term power contracts... independent project company financed with equity from one or more sponsoring firms and non-recourse debt for the purpose of investing in a capital asset. The key feature of project financing is that a new company (known as a special purpose vehicle (SPV...

Taylor, Simon

340

Materials for Nuclear Power: Digital Resource Center - 15th Int'l ...  

Science Conference Proceedings (OSTI)

Apr 14, 2011... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ... 15th Int'l Conference on Environmental Degradation in Nuclear Power...

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NIST Processes to Help Build Next-Generation Nuclear Power ...  

Science Conference Proceedings (OSTI)

NIST Processes to Help Build Next-Generation Nuclear Power Plants. From NIST Tech Beat: June 2, 2009. ...

2011-04-04T23:59:59.000Z

342

Nuclear Power Plant NDE Challenges Past, Present, and Future  

Science Conference Proceedings (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship

S. R. Doctor

2007-01-01T23:59:59.000Z

343

Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE))

NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

344

Environmental Degradation of Materials in Nuclear Power Systems ...  

Science Conference Proceedings (OSTI)

Recapping the Environmental Degradation of Materials in Nuclear Power ... The conference hosted utility engineers, reactor vendor engineers, plant architect...

345

Engineering Fundamentals - Nuclear Power Plant Materials, Version 2.0  

Science Conference Proceedings (OSTI)

The Engineering Fundamentals - Nuclear Power Plant Materials (EF-Materials) Version 2.0 computer-based training module provides new-hire engineering personnel with an overview of the basic concepts of nuclear power plant materials. Graphics and interactive features are used to enhance learning.EF-Materials covers the basic terms and concepts related to nuclear power plant materials and provides information about the significance of material degradation issues in nuclear power plants. ...

2012-11-30T23:59:59.000Z

346

Environmental Degradation of Materials in Nuclear Power Systems ...  

Science Conference Proceedings (OSTI)

Environmental Degradation of Materials in Nuclear Power SystemsWater ... problems associated with spent fuel storage and radioactive waste disposal.

347

QUARTERLY NUCLEAR POWER DEPLOYMENT SUMMARY JANUARY 2014  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Updates available at: www.energy.gov/ne NEXT UPDATE - April 2014 Page 1 News Updates  Luminant has requested a suspension of the NRC's review of its Comanche Peak Combined Construction and Operating License (COL) application. The company cited impacts to the review schedule of the Mitsubishi Heavy Industries US Advanced Pressurized Water Reactor (US- APWR) due to the vendor's desire to refocus its resources to reactor restarts in Japan as well as low electricity prices driven by low natural gas prices as reasons for the suspension.  Unistar Nuclear Operating Co. has formally withdrawn its COL application from the NRC to build and operate Areva's U.S. EPR at its Nine Mile

348

Radiological characterization of Yankee Nuclear Power Station  

SciTech Connect

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is the determination of the extent of radiological contamination of the Yankee site. This paper describes the site radiological characterization program that has been implemented for decommissioning the Yankee plant. Radiological scoping surveys were completed to support submittal of a decommissioning plan to the U.S. Nuclear Regulatory Commission (NRC) by October 1, 1993. These surveys were designed to provide sufficient detail to estimate the extent of contamination, volume of radiological waste, activity of radiological waste, and personnel dose estimates for removal activities. Surveys were conducted both inside and on the grounds outside of the Yankee plant buildings. Survey results were combined with analytical evaluations to characterize the Yankee site.

Bellini, F.X.; Cumming, E.R.; Hollenbeck, P. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

349

A knowledge representation model for the nuclear power generation domain  

Science Conference Proceedings (OSTI)

A knowledge representation model for the nuclear power field is proposed. The model is a generalized production rule function inspired by a neural network approach that enables the representation of physical systems of nuclear power plants. The article ... Keywords: Knowledge representation, Nuclear power plant, Physical systems, Production rules

Thiago Tinoco Pires

2007-11-01T23:59:59.000Z

350

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

351

Nuclear power generation and fuel cycle report 1997  

SciTech Connect

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

1997-09-01T23:59:59.000Z

352

Executive Summary: Research in Nuclear PowerWorkshop on the Needs of the Next Generation of Nuclear Power Technology  

Science Conference Proceedings (OSTI)

Technical Paper / NSF Workshop on the Research Needs of the Next Generation Nuclear Power Technology / Fission Reactor

A. David Rossin; Kunmo Chung; K. L. Peddicord

353

Deregulation, Consolidation, and Efficiency: Evidence from U.S. Nuclear Power  

E-Print Network (OSTI)

Beginning in the late 1990s electricity markets in many U.S. states were deregulated and almost half of the nations 103 nuclear power reactors were sold to independent power producers. Deregulation has been accompanied by substantial market consolidation and today the three largest companies control one-third of U.S. nuclear capacity. We find that deregulation and consolidation are associated with a 10 percent increase in operating efficiency, achieved primarily by reducing the duration of reactor outages. At average wholesale prices this increased efficiency is worth $2.5 billion annually and implies an annual decrease of 35 million metric tons of carbon dioxide emissions.

Lucas W. Davis; Catherine Wolfram; Jel D

2011-01-01T23:59:59.000Z

354

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

355

Federal Power Act section 202(c) - Cross-Sound Cable Company, August 2003 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Federal Power Act section 202(c) - Cross-Sound Cable Company, August 2003 On August 14, 2003, in response to the blackout on that day in the Northeast and Upper Midwest areas of the United States, as well as portion of Canada, the New York Independent System Operator and ISO New England were directed to require Cross-Sound Cable Company to operate the Cross-Sound Cable and related facilities. The Expiration date on that order was September 1, 2003, but on August 28, 2003, it was extended "until such time as emergency identified in the order ceases to exist." An order terminating the emergency order was issued on May 7, 2004. 202(c) order 202-03-1 August 14, 2003 - CSC.pdf 202(c) order 202-03-2 August 28, 2003 - CSC.pdf 202(c) order 202-03-3 September 26, 2003 - CSC.pdf

356

Long range forecast of power demands on the Baltimore Gas and Electric Company system. Volume 1  

SciTech Connect

The report presents the results of an econometric forecast of peak and electric power demands for the Baltimore Gas and Electric Company (BGandE) through the year 2003. The report describes the methodology, the results of the econometric estimations and associated summary statistics, the forecast assumptions, and the calculated forecasts of energy usage and peak demand. Separate models were estimated for summer and winter residential electricity usage in both Baltimore city and the non-city portion of the BGandE service area. Equations were also estimated for commercial energy usage, industrial usage, streetlighting, and for losses plus Company use. Non-econometric techniques were used to estimate future energy use by Bethlehem Steel Corporation's Sparrows Point plant in Baltimore County, Conrail, and the Baltimore Mass Transit Administration underground rail system. Models of peak demand for summer and winter were also estimated.

Estomin, S.L.; Kahal, M.I.

1985-09-01T23:59:59.000Z

357

Intern experience at Dallas Power and Light Company: an internship report  

E-Print Network (OSTI)

A survey of the author's internship experience with the Dallas Power & Light Company during the period January, 1979 through January, 1980 is presented. During this one year internship, the author worked as an engineer in the Executive Department. The intent of this report is to demonstrate that this experience fulfills the requirements for the Doctor of Engineering internship. The author's activities during this period can be categorized into two major areas. First, technically oriented, in which he developed a model to project future electrical demands based on land usage, and a computer program that implements this model. Secondly, a selection of non-technical business oriented areas were investigated. The tasks in these areas offered him the opportunity to be exposed to the organization and operation of an investor owned public utility company and to gain experience in a non-academic business environment.

Fischer, Roger Lewis, 1945-

1980-05-01T23:59:59.000Z

358

Groundwater Protection Guidelines for Nuclear Power Plants: Revision 1  

Science Conference Proceedings (OSTI)

The United States nuclear power industry has undertaken a Groundwater Protection Initiative [NEI 07-07] at the direction of the Nuclear Energy Institute (NEI) Nuclear Strategic Issues Advisory Committee (NSIAC). International nuclear power plants implement groundwater protection programs to ensure appropriate management of on-site groundwater and protection of the public and environment. This Electric Power Research Institute (EPRI) guideline provides essential technical guidance to utilities on the ...

2013-10-29T23:59:59.000Z

359

Nuclear power generation and fuel cycle report 1996  

SciTech Connect

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

360

Power generation from nuclear reactors in aerospace applications  

SciTech Connect

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Power generation from nuclear reactors in aerospace applications  

SciTech Connect

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

362

Nuclear Power and the World's Energy Requirements  

E-Print Network (OSTI)

The global requirements for energy are increasing rapidly as the global population increases and the under-developed nations become more advanced. The traditional fuels used in their traditional ways will become increasingly unable to meet the demand. The need for a review of the energy sources available is paramount, although the subsequent need to develop a realistic strategy to deal with all local and global energy requirements is almost as important. Here attention will be restricted to examining some of the claims and problems of using nuclear power to attempt to solve this major question.

V. Castellano; R. F. Evans; J. Dunning-Davies

2004-06-10T23:59:59.000Z

363

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

364

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

DOE Green Energy (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

365

Determining Yankee Nuclear Power Station neutron activation  

Science Conference Proceedings (OSTI)

The Yankee nuclear power station located in Rowe, Massachusetts, permanently ceased power operations on February 26, 1992, after 31 yr of operation. Yankee has since initiated decommissioning planning activities. A significant component of these activities is a determination of the extent of radiological contamination of the Yankee site. Included in this effort was determination of the extent of neutron activation of plant components. This paper describes the determination of the neutron activation of the Yankee reactor vessel, associated internals, and surrounding structures. The Yankee reactor vessel is a 600-MW(thermal) stainless steel-lined, carbon steel vessel with stainless steel internal components designed by Westinghouse. The reactor vessel is surrounded and supported by a carbon steel neutron shield tank that was filled with chromated water during plant operation. A 5-ft-thick concrete biological shield wall surrounds the neutron shield tank. A project is under way to remove the reactor vessel internals from the reactor vessel.

Heider, K.J.; Morrissey, K.J. (Yankee Atomic Electric Co., Bolton, MA (United States))

1993-01-01T23:59:59.000Z

366

Prospects for U.S. Nuclear Power After Fukushima  

E-Print Network (OSTI)

The prospects for a revival of U.S. nuclear power were dim even before the tragic events at the Fukushima nuclear plant. Nuclear power has long been controversial because of concerns about nuclear accidents, proliferation risk, and the storage of spent fuel. These concerns are real and important. In the end, however, the key challenge for U.S. nuclear power is the high cost of construction for nuclear reactors. This article reviews the historical record of reactor orders and construction costs in the United States, highlighting some of the insights from the cancellations and cost overruns that have characterized the industry.

Lucas W. Davis; Lucas W. Davis

2011-01-01T23:59:59.000Z

367

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department Nuclear Systems Are Powering Mars Rover Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 12:14pm Addthis Washington, D.C. - The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

368

Energy Department Nuclear Systems Are Powering Mars Rover | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover Energy Department Nuclear Systems Are Powering Mars Rover November 28, 2011 - 2:00pm Addthis The Mars Science Laboratory rover, which launched from Cape Canaveral this weekend, is powered by nuclear systems developed by the U.S. Department of Energy (DOE), marking the 28th space mission supported by nuclear energy. This year also marks the 50th anniversary of nuclear-powered space exploration. To commemorate the launch, DOE released a new video highlighting this legacy and the Department's work designing these advanced systems. "For the last 50 years, this technology has supported the peaceful use of nuclear power for space exploration, helping to shape the world's understanding of our solar system," said U.S. Energy Secretary Steven

369

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

370

UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program  

SciTech Connect

The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

Wolfe, Lothar PhD

2000-03-01T23:59:59.000Z

371

Financial and ratepayer impacts of nuclear power plant regulatory reform  

SciTech Connect

Three reports - ''The Future Market for Electric Generating Capacity,'' ''Quantitative Analysis of Nuclear Power Plant Licensing Reform,'' and ''Nuclear Rate Increase Study'' are recent studies performed by the Los Alamos National Laboratory that deal with nuclear power. This presents a short summary of these three studies. More detail is given in the reports.

Turpin, A.G.

1985-01-01T23:59:59.000Z

372

Nuclear reactor power for an electrically powered orbital transfer vehicle  

DOE Green Energy (OSTI)

To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

1987-01-01T23:59:59.000Z

373

Microsoft PowerPoint - Why Nuclear Energy New Template  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Nuclear Energy? Why Nuclear Energy? Why Nuclear Energy? Nuclear energy already meets a significant share of the world's energy needs * There are 441 nuclear reactors in operation in 31 countries * These plants generate electricity for nearly a billion people, and account for 17% of the world's electricity production * The U.S. has 103 operating reactors producing 20% of the nation's electricity * Illinois leads all states with the highest share of nuclear (51%) * Technology significantly developed at Argonne forms the basis of all nuclear energy systems used worldwide Nuclear power is reliable and economical * In 2001, U.S. nuclear plants produced electricity for 1.68 cents per kilowatt-hour on average, second only to hydroelectric power among baseload generation options * U.S. nuclear power plant performance has steadily

374

License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning  

SciTech Connect

The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

375

VERMONT YANKEE NUCLEAR POWER STATION- NRC LICENSE  

E-Print Network (OSTI)

your application for a renewed license of your Vermont Yankee Nuclear Power Station. The enclosed report documents the result of the inspection which was discussed with members of your staff on May 24, 2007, at a publicly observed exit meeting conducted at the Latchis Theater in Brattleboro, VY. The purpose of this inspection was to examine the plant activities and documents that supported the application for a renewed license of the Vermont Yankee Nuclear Power Station. The inspection reviewed the screening and scoping of non-safety related systems, structures, and components, as required in 10 CFR 54.4(a)(2), and determined whether the proposed aging management programs are capable of reasonably managing the effects of aging. These NRC inspection activities constitute one of several inputs into the NRC review process for license renewal applications. The inspection team concluded screening and scoping of nonsafety-related systems, structures, and components, were implemented as required in 10 CFR 54.4(a)(2), and the aging management portions of the license renewal activities were conducted as described in the License Renewal Application. The inspection results supported a conclusion that the

Mr. Theodore; A. Sullivan

2007-01-01T23:59:59.000Z

376

Analysis of nuclear power plant construction costs  

SciTech Connect

The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

1986-01-01T23:59:59.000Z

377

Nuclear power and the public: an update of collected survey research on nuclear power  

SciTech Connect

The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

1981-12-01T23:59:59.000Z

378

Space nuclear power, propulsion, and related technologies.  

SciTech Connect

Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

Berman, Marshall

1992-01-01T23:59:59.000Z

379

Space nuclear power, propulsion, and related technologies.  

SciTech Connect

Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government organizations, and has already formed several cooperative alliances and agreements. Because of the synergism of multiple governmental and industrial sponsors of many programs, Sandia is frequently able to provide complex technical solutions in a relatively short time, and often at lower cost to a particular customer. They have listed a few ongoing programs at Sandia related to space nuclear technology as examples of the possible synergisms that could result from forming teams and partnerships with related technologies and objectives.

Berman, Marshall

1992-01-01T23:59:59.000Z

380

Expanding Options for Nuclear Power | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expanding Options for Nuclear Power Expanding Options for Nuclear Power Expanding Options for Nuclear Power April 15, 2013 - 10:12am Addthis The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to help accelerate the timelines for the commercialization and deployment of small modular reactor (SMR) technologies through the SMR Licensing Technical Support program. | Photo by the Energy Department. The development of clean, affordable nuclear power options is a key element of the Energy Department's Nuclear Energy Research and Development Roadmap. As a part of this strategy, a high priority of the Department has been to

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

President Obama Announces Loan Guarantees to Construct New Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantees to Construct New Nuclear Loan Guarantees to Construct New Nuclear Power Reactors in Georgia President Obama Announces Loan Guarantees to Construct New Nuclear Power Reactors in Georgia February 16, 2010 - 12:00am Addthis Washington D.C. --- Underscoring his Administration's commitment to jumpstarting the nation's nuclear power industry, President Obama today announced that the Department of Energy has offered conditional commitments for a total of $8.33 billion in loan guarantees for the construction and operation of two new nuclear reactors at a plant in Burke, Georgia. The project is scheduled to be the first U.S. nuclear power plant to break ground in nearly three decades. "To meet our growing energy needs and prevent the worst consequences of climate change, we need to increase our supply of nuclear power and today's

382

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Working Group Meeting Focuses on Nuclear Power International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009. An official from the U.S. Department of Energy (DOE) led the working group meeting. "As a key component of the international Global Nuclear Energy Partnership (GNEP) program, the Infrastructure Development Working Group supports the safe, secure and responsible use of nuclear energy," said

383

Nuclear Power: a Hedge against Uncertain Gas and Carbon Prices?  

E-Print Network (OSTI)

High fossil fuel prices have rekindled interest in nuclear power. This paper identifies specific nuclear characteristics making it unattractive to merchant generators in liberalised electricity markets, and argues that non-fossil fuel technologies...

Roques, Fabien A; Nuttall, William J; Newbery, David; de Neufville, Richard

2006-03-14T23:59:59.000Z

384

Novel Nuclear Powered Photocatalytic Energy Conversion  

DOE Green Energy (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

385

Nuclear power systems for Lunar and Mars exploration  

SciTech Connect

Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems - whether solar, chemical or nuclear - to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems were identified as critical needs for these missions. This paper discusses these mission scenarios, the concomitant power system requirements; the power system options considered and identifies the significant potential benefits of nuclear power for meeting the power needs of the above applications.

Sovie, R.J.; Bozek, J.M.

1994-09-01T23:59:59.000Z

386

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

387

Energy Department Nuclear Systems Are Powering Mars Rover  

NLE Websites -- All DOE Office Websites (Extended Search)

Affairs Media Contact: 202-586-4940 For Immediate Release: Monday, November 28, 2011 Energy Department Nuclear Systems Are Powering Mars Rover 2011 Marks 50th Anniversary of...

388

Materials for Nuclear Power: Digital Resource Center Text Topic - TMS  

Science Conference Proceedings (OSTI)

Mar 28, 2007 ... Scientists and engineers concerned with the environmental ... of Materials in Nuclear Power SystemsWater Reactors (Warrendale, PA: TMS,...

389

Moratorium on Construction of Nuclear Power Facilities (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

No construction shall commence on a fifth nuclear power facility until the Commissioner of Environmental Protection finds that the United States Government, through its authorized agency, has...

390

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network (OSTI)

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the...

391

How much electricity does a typical nuclear power plant generate ...  

U.S. Energy Information Administration (EIA)

How much electricity does a typical nuclear power plant generate? ... tariff, and demand charge data? How is electricity used in U.S. homes?

392

Materials for Nuclear Power: Digital Resource Center - ARTICLE ...  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... This article reviews how Albert Einstein revolutionized physics by...

393

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... NATO Science Series II:Mathematics, Physics and Chemistry, Vol.

394

Balance of Plant Corrosion Issues in Aging Nuclear Power Plants  

Science Conference Proceedings (OSTI)

... number of times, can be used to forecast the most probable number of leaks. ... Conditions for Long Term Operation of Nuclear Power Plants in Sweden.

395

Materials for Nuclear Power: Digital Resource Center -- Sandbox  

Science Conference Proceedings (OSTI)

New Messages, Rating, 15th Int'l Conference on Environmental Degradation in Nuclear Power Systems Program Preview, 0, 1413, Patti Dobranski, 4/14/2011...

396

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Dec 6, 2007 ... Nuclear power's prominence as a major energy source will continue over the next several decades, according to projections made by the...

397

Materials for Nuclear Power: A Brief Introduction - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... CITATION: Osman, T. M., "Materials for Nuclear Power: A Brief Introduction", Materials Technology@TMS, February 2007. Last Updated:...

398

Design Concept and Application of Small Nuclear Power Reactor  

Science Conference Proceedings (OSTI)

The outline of the recent design concepts and those features of the small nuclear power rector are described, including specifications, present design status, application and so on.

Minato, Akio [CRIEPI, Central Research Institute of Electric Power Industry, Tokyo (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy Systems (CRINES) Tokyo Institute of Technology 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2009-03-31T23:59:59.000Z

399

Need for process/radiochemists at nuclear power plants  

SciTech Connect

Viewgraphs are presented concerning the operating requirements for chemists at nuclear power plants. The number of positions available, job duties, and training requirements are reviewed.

Wymer, R.G.; Skrable, K.W.; Alexander, E.L.

1984-01-01T23:59:59.000Z

400

Materials for Nuclear Power: Digital Resource Center - SELECTED ...  

Science Conference Proceedings (OSTI)

Jul 6, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Instructions for Accessing Reports: Because of security features in...

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by...

402

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... PDFs of lecture notes and readings for this undergraduate course covering materials issues in nuclear power systems. Topics include:...

403

Materials for Nuclear Power: Digital Resource Center - TMS  

Science Conference Proceedings (OSTI)

Spacer 62115 users are registered to the Materials for Nuclear Power: Digital Resource Center forum. Spacer There are currently 0 users logged in. Spacer...

404

Guideline for Online Monitoring of Nuclear Power Plants: Volume 2  

Science Conference Proceedings (OSTI)

This report continues a series of guidelines that assist member utilities in developing an online monitoring (OLM) program for equipment condition assessment at nuclear power plants.

2011-12-16T23:59:59.000Z

405

MANAGING MODERNIZATION OF NUCLEAR POWER PLANT INSTRUMENTATION AND CONTROL SYSTEMS  

E-Print Network (OSTI)

Managing modernization of nuclear power plant instrumentation and control systems February 2004The originating Section of this publication in the IAEA was:

unknown authors

2003-01-01T23:59:59.000Z

406

Materials for Nuclear Power: Digital Resource Center -- Nuclear ...  

Science Conference Proceedings (OSTI)

WEB RESOURCE: Thermodynamics of Nuclear Fuels ... A brief introduction to nuclear physics, 0, 851, Lynne Robinson, 2/19/2007 9:38 AM by Lynne Robinson

407

Losses of Offsite Power at U.S. Nuclear Power Plants - 2011  

Science Conference Proceedings (OSTI)

This report describes the loss of offsite power experience at U.S. nuclear power plants during the year 2011 and provides insights into the causes of offsite power losses during the period 20022011.

2012-06-11T23:59:59.000Z

408

DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg  

SciTech Connect

DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

Koshcheev, L. A. [JSC 'NIIPT' (Russian Federation); Shul'ginov, N. G. [JSC 'SO EES' (Russian Federation)

2011-05-15T23:59:59.000Z

409

THE PLUTONIUM FEEDBACK APPROACH TO NUCLEAR POWER  

SciTech Connect

Nuclear parameter variations are presented for sodium graphite reactors using Pu-spiked natural U as fuel. The fuel feed is assumed to be natural U, and the important variables are the initial amount of excess reactivity, lattice spacing, and alpha , the ratio of Pu/sup 239/ to U/sup 235/ in the feed material. The system is called "steady state" in that the ratios, N/sub 40/N/sub 49/ = sigma /sub c(49)// sigma /sub a(40)/ and N/sub 41//N/sub 4 9/ = sigma /sub c(49)/ / sigma /sub a(41)/, obtained from setting the build-up equations to zero are assumed for the feed concentrations, and the feed material to the reactor is always the same. During irradiation, the U/sup 235/ and U/sup 238/ concentrations steadily decline while the Pu isotope concentrations initially increase, then decline. To ensure sufficient plutonium for feed material, it is necessary to remove the fuel from the reactor before the Pu content drops below its initial value. Although the reactivity variations presented were calculated specifically for sodium graphite reactors, they may be applied to any thermal reactor using Pu-spiked natural U as fuel. The reactivity changes are determined primarily by the fuel characteristics and are only slightly dependent on the other material in the reactor core. An analysis which estimates the effect of Pu feedback opcration fuel costs is given. (auth) in terms of nuclear power cost reduction are discussed (auth)

Roderick, C.

1955-04-15T23:59:59.000Z

410

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Study of Hydrogen Production at Existing Nuclear Power Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity announcement of the cost shared feasibility studies of nuclear energy based production of hydrogen using available technology. The objective of this activity is to select and conduct project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants More Documents & Publications https://e-center.doe.gov/iips/faopor.nsf/UNID/E67E46185A67EBE68 Microsoft Word - FOA cover sheet.doc Microsoft Word - hDE-FOA-0000092.rtf

411

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

412

The Potential for a Nuclear Renaissance: The Development of Nuclear Power Under Climate Change Mitigation Policies  

E-Print Network (OSTI)

, construction, commissioning, operation, modifications, and eventually decommissioning of a nuclear power plantA Comparison of International Regulatory Organizations and Licensing Procedures for New Nuclear the safety regulation and the licensing of new nuclear power plants. The paper considers both design safety

413

China's Nuclear Power Program: Options for the US  

Science Conference Proceedings (OSTI)

The issue of American nuclear cooperation with the People's Republic of China is examined with regards to political relations, commercial benefits to the United States, and nonproliferation. China's interest in nuclear power is examined, and its nuclear program is briefly reviewed from the 1950's to present. China's international nuclear relations with other countries are discussed, and implications for the United States examined, particularly with regards to China's intentions toward nuclear proliferation, danger of diversion of material for nuclear weapons, use of pressurized water reactor technology for Chinese naval reactors, and the terms of the nuclear cooperation agreement. (LEW)

Suttmeier, R.P.

1985-01-01T23:59:59.000Z

414

Optimization of Auxiliaries Consumption in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Operators of nuclear power plants face significant challenges to produce power more cost-effectively. One approach to producing power more cost-effectively is to reduce power consumption by auxiliary systems in the plant, leading to more power available for the grid. This report provides guidance for assessing auxiliary system performance and recommends approaches to reduce their power consumption. The report also presents results from questionnaires on auxiliary system consumption and, in some cases, ac...

2005-02-08T23:59:59.000Z

415

Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid  

Open Energy Info (EERE)

doing business as AEP Ohio) Smart Grid doing business as AEP Ohio) Smart Grid Demonstration Project Jump to: navigation, search Project Lead Columbus Southern Power Company (doing business as AEP Ohio) Country United States Headquarters Location Columbus, Ohio Recovery Act Funding $75,161,246.00 Total Project Value $150,322,492.00 Coordinates 39.9611755°, -82.9987942° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

416

Kansas City Power & Light Company Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

Demonstration Project Demonstration Project Jump to: navigation, search Project Lead Kansas City Power & Light Company Country United States Headquarters Location Kansas City, Missouri Recovery Act Funding $23,940,112.00 Total Project Value $48,125,315.00 Coordinates 39.0997265°, -94.5785667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

417

Nuclear Power in France Beyond the Myth  

E-Print Network (OSTI)

.8 Decommissioning E.2 Unsealed Nuclear Substances E.2.1 Nuclear Substance Lab Facilities E.3 Precautions Safety Officer C.4 Director of EH&S C.5 Project Directors C.6 Nuclear Substance Users D Radiation Safety Policies 13 D.1 ALARA Statement D.2 Policies ALARA Policy Laboratory Status Transfer/Shipment of Nuclear

Laughlin, Robert B.

418

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction  

E-Print Network (OSTI)

the feasibility of integrating a nuclear power plant with Steam- Assisted Gravity Drainage (SAGD), an oil region enhance the feasibility of using nuclear power plants to meet the energy needs [5]. Both mining Electricity A second production scenario is the cogeneration of thermal power and electricity to meet the #12

419

Present status and future development of Qinshan Nuclear Power Project  

Science Conference Proceedings (OSTI)

Qinshan 300 MWe Nuclear Power Project is the first domestically designed and constructed nuclear power plant in China. Given is a brief description of its progress in design work, equipment manufacture and site construction since the first structural concrete in March 1985. In Qinshan area four units of 600 MWe each are planned to be built with collaboration of proper foreign partners.

Yu, O.

1988-01-01T23:59:59.000Z

420

Nuclear Power Plant Fire-Modeling Applications Guide  

Science Conference Proceedings (OSTI)

This report replaces EPRI 1002981, Fire Modeling Guide for Nuclear Power Plant Applications, August 2002, as guidance for fire-modeling practitioners in nuclear power plants (NPPs). The report has benefited from insights gained since 2002 on the predictive capability of selected fire models to improve confidence in the use of fire modeling in NPP decision-making.

2009-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Groundwater Sampling and Analysis Sourcebook for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This sourcebook provides technical guidance and best practices for groundwater sampling and analysis at nuclear power plants. Robust sampling and analysis protocols are required to ensure accurate characterization of radionuclides in groundwater.BackgroundNuclear power plants implement groundwater protection programs to minimize contamination of on-site soil and groundwater, and to prevent the off-site migration of licensed material through groundwater ...

2012-09-25T23:59:59.000Z

422

Uranium Stocks in Slovenia for Nuclear Power Author: Matic Suhodolcan  

E-Print Network (OSTI)

Seminar Uranium Stocks in Slovenia for Nuclear Power Plant NEK Author: Matic Suhodolcan Supervisor and that reopening would make sense. We try to calculate the years of operating NEK only with uranium ore for reprocessing fuel. #12;Uranium Stocks in Slovenia for Slovenian Nuclear Power Plant NEK Matic Suhodolcan FMF 2

Prosen, Toma?

423

STATEMENT OF CONSIDERATIONS REQUEST BY ABB POWER T&D COMPANY INC., (T&D) FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ABB POWER T&D COMPANY INC., (T&D) FOR AN ABB POWER T&D COMPANY INC., (T&D) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-98GO10284; W(A)-98-016; CH-0982 The Petitioner, ABB Power T&D Company, Inc., and on behalf of its alliance team members, Air Products and Chemicals, Inc. (APCI) and Edison Technology Solutions (ETS), has requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced cooperative agreement. The cooperative agreement is entitled, "Development and Demonstration of a 10MVA High Temperature Superconducting Transformer." The objective of this cooperative agreement is to design, build, test, install, and monitor the performance of a prototype 10 MVA high temperature superconducting transformer (HTST). The

424

LIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS  

E-Print Network (OSTI)

of a nuclear reactor with feedback," in: Applied Problems in the Theory of Oscillations [in RussianLIMITED POWER BURSTS IN DISTRIBUTED MODELS OF NUCLEAR REACTORS M. V. Bazhenov and E. F. Sabaev UDC of Nuclear Reactors [in Russian], l~nergoatomizdat, Moscow (1990). F. R. Gantmakher and V. A. Yakubovich

Bazhenov, Maxim

425

How Brazil spun the atom [nuclear power reactors  

Science Conference Proceedings (OSTI)

This paper describes the Resende nuclear complex in Brazil which will house hundreds of uranium centrifuges to produce enriched uranium that will fuel its nuclear power reactors. By consistently fulfilling its obligations as a party to the Nuclear Non-Proliferation ...

E. Guizzo

2006-03-01T23:59:59.000Z

426

Nuclear Power 2010 Program: Combined Construction and Operating License &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power 2010 Program: Combined Construction and Operating Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States. As with all significant endeavors, there are lessons to be learned from the

427

KRS Chapter 278: Nuclear Power Facilities (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KRS Chapter 278: Nuclear Power Facilities (Kentucky) KRS Chapter 278: Nuclear Power Facilities (Kentucky) KRS Chapter 278: Nuclear Power Facilities (Kentucky) < Back Eligibility Commercial Construction Developer Investor-Owned Utility Municipal/Public Utility Utility Program Info State Kentucky Program Type Environmental Regulations Safety and Operational Guidelines Provider Kentucky Public Service Commission No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has identified and approved a demonstrable technology or means for the disposal of high-level nuclear waste. The provisions of this section shall not be construed as applying to or precluding the following nuclear-based technologies,

428

Inspection of Nuclear Power Plant Containment Structures  

SciTech Connect

Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

Graves, H.L.; Naus, D.J.; Norris, W.E.

1998-12-01T23:59:59.000Z

429

Program on Technology Innovation: Nuclear Power Generation Technologies  

Science Conference Proceedings (OSTI)

The United States and other countries are currently planning to expand their nuclear power electrical generation base in order to provide energy security and price stability while reducing greenhouse gas emissions. Since the existing fleet of nuclear plants was built during or before the 1970s, new plants will incorporate more advanced designs. This report documents the current status and potential for advanced nuclear power technology development and/or commercialization over the next 5 to 15 years.

2007-06-20T23:59:59.000Z

430

Assessment of Electromagnetic Interference Events in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report presents a study and analysis of reported electromagnetic interference (EMI-) related incidents in nuclear power plants. These incidents were gathered primarily from the total body of incidents reported to the Institute of Nuclear Power Operations (INPO) database, with a few incidents coming from U.S. Nuclear Regulatory Commission (NRC) reports. This report analyzes trends and common factors in these events. The analysis is intended to inform the estimation of risk from EMI and offer suggesti...

2011-12-23T23:59:59.000Z

431

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing of New Nuclear Projects Financing of New Nuclear Projects International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Financing of New Nuclear Projects December 15, 2009 - 1:09pm Addthis VIENNA, AUSTRIA - The multi-nation Infrastructure Development Working Group (IDWG) held its fifth meeting and also a workshop on the financing of international nuclear power projects in Vienna, Austria, on December 9-10, 2009. An official from the U.S. Department of Energy (DOE) led the working group meeting. "As a key component of the international Global Nuclear Energy Partnership (GNEP) program, the Infrastructure Development Working Group supports the safe, secure and responsible use of nuclear energy," said Assistant Secretary for Nuclear Energy Warren F. Miller, Jr. "The group

432

EXECUTIVE SUMMARY In March of2002, the FirstEnergy Nuclear Operating Company (FENOC) discovered a  

E-Print Network (OSTI)

significant degradation ofthe Davis-Besse Nuclear Power Station (the Station) reactor pressure vessel head and entered an extended shutdown. The Station was placed under the U.S. Nuclear Regulatory Commission's Inspection Manual Chapter 0350 process for restart. As part ofthe FENOC Restart Plan, the Station committed to perform an independent evaluation ofthe safety culture at Davis-Besse. This report describes the results ofan evaluation ofthe safety culture at the Davis-Besse Station conducted dUring February 2003. The primary objective ofthe evaluation was to provide information regarding the presence or absence ofsafety culture characteristics at Davis-Besse. Observations regarding the Station's safety culture characteristics and areas in need of improvement with respect to those characteristics are presented. Safety culture characteristics that are important for the existence ofa positive safety culture within a nuclear facility have been identified to include: Safety is a clearly recognized value in the organization. Accountability for safety in tbe organization is clear. Safety is integrated into aU activities in the organization.

unknown authors

2003-01-01T23:59:59.000Z

433

Application of wind power systems to the Service Area of the Minnesota Power and Light Company. Final report, July 1975--August 1976  

DOE Green Energy (OSTI)

Honeywell, in a joint effort with Minnesota Power and Light Company (MP and L), Boeing Vertol Company, and Dr. C.G. Justus, Georgia Institute of Technology, has conducted a regional application study of wind energy systems. Minnesota Power and Light Company, an investor-owned company with 853-MW owned capacity, has served as the case study subject utility. An initial system definition was developed based on available wind information and near-term wind turbine generator (WTG) technology. The system was tailored to fit MP and L's forecasted generation needs and the company's existing transmission and distribution system. Honeywell developed a WECS simulation to convert wind data to wind energy available for input to the utility's grid. The simulation was used to evaluate the performance of preliminary design wind turbine generators developed for ERDA/NASA by the General Electric Company and Kaman Aerospace Corporation, and to evaluate the performance of a wind turbine optimized for the Northern Minnesota wind regime and developed by the Boeing Vertol Company under subcontract to Honeywell.

Lindquist, O.H.; Malver, F.S.

1976-01-01T23:59:59.000Z

434

India's nuclear power program : a study of India's unique approach to nuclear energy.  

E-Print Network (OSTI)

??India is in the middle of the biggest expansion of nuclear power in its history, adding 20 GWe in the next 14 years in the (more)

Murray, Caitlin Lenore

2006-01-01T23:59:59.000Z

435

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA)

snpt2nj Oyster Creek Unit 1 615 4,601 14.0 Exelon Nuclear PSEG Hope Creek Generating Station Unit 1 1,161 9,439 28.8 PSEG Nuclear LLC PSEG Salem Generating Station

436

Needs assessment for career development programs in the Taiwan Power Company (TPC)  

E-Print Network (OSTI)

The harmonious meshing of employee career development needs and corporate missions, goals, and objectives is a necessity for the growth and maintenance of both the individual and the organization. This study was designed to investigate Taiwan Power Company (TPC) white-collar employees?? perceptions of career development program needs. The purposes of the study were (a) to identify the perceptions of career development program needs; (b) to explore the underlying constructs among current and future positions in regard to the employee??s perceptions of career development program needs; (c) to investigate the differences among perceptions of career development needs; (d) to determine whether or not differences among perceptions of career development program needs exist among respondents who differ in terms of gender, age, and education; and (e) to discover if individuals who differ in terms of job functions and job roles have different opinions on whether the selected career development programs were already provided or should be provided by the company.This study was conducted using a questionnaire. The data were collected from a stratified random sample of 1,636 white-collar employees in the TPC. A response rate of 82.5% resulted in a final sample of 1,351 respondents. The content validity of the questionnaire was established via expert opinion and the internal consistency of the instrument was calculated using Cronbach??s ??. Frequency counts, central tendencies and standard deviations were used in the descriptive analysis of the current and future position data. Principle factor analysis with Varimax rotation revealed six constructs for the current position data. Similar factor analytical results were obtained for the future position data. Two-way MANOVAs with Descriptive Discriminant Analysis and univariate ANOVAs, with REGWF when appropriate, were used to probe significant main effects. Chi-square tests were employed to answer the research questions regarding the perceptions of whether the 33 career development programs were already provided or should be provided by the company. Differences in terms of current and future positions were obtained for individuals who were classified by job function, job role, gender, age, and education. Twelve conclusions were generated and specific career development practices were suggested.

Lee, Yi-Hsuan

2006-05-01T23:59:59.000Z

437

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

438

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

energy is an important source of power, supplying 20 energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear nonproliferation controls. To develop viable technical solutions, these interdependent challenges must be addressed through tightly integrated multidisciplinary research and development efforts. Los Alamos National Laboratory is playing a key role in

439

Houston Lighting and Power Company's evaluation of coal gasification coproduction energy facilities  

SciTech Connect

In an effort to reduce the cost of electricity from Integral ed Gasification Combined Cycle (IGCC) Power Plants, the Electric Power Research Institute has embarked on a program to evaluate and potentially demonstrate a coal gasification-based coproduction energy facility. Houston Lighting Power Company (HL P) responded with a proposal in its ongoing effort to study emerging technologies for electricity production. HL P recognized the opportunities available to them in coproduction because of their close proximity to the world's largest petrochemical complex located on the Houston Ship Channel. Coparticipant utilities with HL P were Central and South West Services and TU Electric. Two sites were selected for study, a Houston Ship Channel site, utilizing barge-delivered Illinois No. 6 coal blended with petroleum coke, and to satisfy C SWS and TU needs, a central Texas site utilizing Texas lignite. Stone Webster Engineering and InterFact, Inc. were engineers and consulting partners in the study.Eight cases were developed to cover the various possibilities for coproduction. Four cases involved utilizing Texas lignite and four cases involved utilizing Illinois No. 6 as fuel blended with petroleum coke. The eight cases are described. Each of the cases utilized the Shell coal gasification process and were evaluated for either base load operation using two G.E. 7F gas turbines and a spare gasifier for chemicals production or for cyclic operationusing four G.E. 7EA gas turbines and no spare gasifier. The sum of the coproducts produced over all eight cases were electricity, methanol, ammonia, and urea, depending on location and economics.

Kern, E.E.; Havemann, S.D.; Chmielewski, R.G. (Houston Lighting and Power Co., TX (United States)); Baumann, P. (InterFact, Inc., Dallas, TX (United States)); Goelzer, A.R.; Karayel, R.; Keady, G.S.; Chernoff, B. (Stone and Webster Engineering Corp., Houston, TX (United States))

1992-12-01T23:59:59.000Z

440

Materials for Nuclear Power: Digital Resource Center -- Nuclear ...  

Science Conference Proceedings (OSTI)

WEB RESOURCE: Nuclear Science and Technology Lecture notes and presentations, 0, 779, Lynne Robinson, 2/19/2007 8:55 AM by Lynne Robinson.

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Materials for Nuclear Power: Digital Resource Center -- The Nuclear ...  

Science Conference Proceedings (OSTI)

REPORT: Technology and Applied R&D Needs for Advanced Nuclear Energy Systems A resource document for the Workshop on Basic Research Needs for...

442

Anhui Wuhu Nuclear Power Co | Open Energy Information  

Open Energy Info (EERE)

Wuhu Nuclear Power Co Wuhu Nuclear Power Co Jump to: navigation, search Name Anhui Wuhu Nuclear Power Co. Place Shenzhen, Guangdong Province, China Zip 518031 Product JV between Guangdong Nuclear Power Group (CGNPG) 51%, Anhui Province Energy Group (15%), Shenergy Co (20%) and Shanghai Electric Power Co (14%). Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Novel power system demonstrated for space travel | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel power system demonstrated for space travel | National Nuclear Novel power system demonstrated for space travel | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Novel power system demonstrated for space travel Novel power system demonstrated for space travel Posted By Office of Public Affairs John Bounds, Los Alamos National Laboratory

444

Novel power system demonstrated for space travel | National Nuclear  

National Nuclear Security Administration (NNSA)

Novel power system demonstrated for space travel | National Nuclear Novel power system demonstrated for space travel | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Novel power system demonstrated for space travel Novel power system demonstrated for space travel Posted By Office of Public Affairs John Bounds, Los Alamos National Laboratory

445

Sierra Pacific Power Company Alturas Transmission Line Project, Final Environmental Impact Report/Environmental Impact Statement. Volume 3: Appendices  

Science Conference Proceedings (OSTI)

Sierra Pacific Power Company has proposed the construction and operation of a 345,000 volt overhead electric power transmission line from Alturas, California to Reno, Nevada. This Environmental Impact Report/Environmental Impact Statement will assess the potential environmental impacts of the proposed project and alternatives. This report contains Appendices A--I which contain the following: glossary/abbreviations; scoping report; structure coordinate summary; air quality; biological resources; geology; noise; visual contrast rating forms; and cultural resources.

NONE

1995-11-01T23:59:59.000Z

446

Nuclear Power Plant Emergency Diesel Generator Tanks 1  

E-Print Network (OSTI)

Nuclear power provides about 20 % of the total electricity generated in the United States. In 2005, this was about 782 Billion kWh of the total electricity generation (EIA 2006). 2 As with fossil-fueled electricity generating plants, electricity in a nuclear power plant is produced by heated steam that drives a turbine generator. In a nuclear power plant, however, nuclear fission reactions in the core produce heat that is absorbed by a liquid that flows through the system and is converted to steam. Nuclear power plants are highly efficient and have become more so over the last 25 years. Operational efficiency (also referred to as plant performance or electricity production) can be measured by the capacity factor. The capacity factor is the ratio of the actual amount of electricity generated to the maximum possible amount that could be generated in a given period of time usually a year. Today, nuclear power plants operate at an average 90 % capacity factor (compared to 56 % in 1980) (EIA 2006a). Thus, although nuclear generating capacity has remained roughly constant since 1990, at about 99 gigawatts (or about 10 % of the total U.S. electric generating capacity), the amount of electricity produced has increased 33 % since that time because of increased capacity utilization. Nuclear plants have the highest capacity factors of

unknown authors

2006-01-01T23:59:59.000Z

447

Nuclear Power Generation and Fuel Cycle Report  

Reports and Publications (EIA)

Final issue. This report provides information and forecasts important to the domestic and world nuclear and uranium industries. 1997 represents the most recent publication year.

Dr. Zdenek D.

1997-09-01T23:59:59.000Z

448

The Decline and Death of Nuclear Power  

E-Print Network (OSTI)

Regulatory Commission (2012). NRC: Nuclear Security andRegulatory Commission (2013). NRC: New Reactors. nrc.gov.Regulatory Commission [US NRC], 2012). The NRC mandates

Melville, Jonathan

2013-01-01T23:59:59.000Z

449

Open Discussion Regarding Materials for Nuclear Power  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... What long-term nuclear waste storage solution do you believe to be most promising? A JOM Readers Survey Question, 0, 920, Todd Osman...

450

Global warming---The role for nuclear power  

SciTech Connect

Nuclear power is currently making an important contribution to our energy requirements. It provides 17% of the world's electricity today --- almost 20% in the US. Reducing the emissions of carbon dioxide over the next 30 to 50 years sufficiently to address the issue of global warming can only be accomplished by a combination of much improved energy efficiency, substantial growth in use of nuclear power, and substantial growth in use of renewable energy. This paper discusses new initiatives in the major nuclear technologies (LWR, HTGR, LMR) which are emerging from a fundamental reexamination of nuclear power in response to the challenges and opportunities in the 21st century. To fulfill its role, nuclear power must gain worldwide acceptance as a viable energy option. The use of modern technology and passive'' safety features in next-generation nuclear power plants offers the potential to simplify their design and operation, enhance their safety, and reduce the cost of electricity. With such improvements, we believe nuclear power can regain public confidence and make a significant contribution to our energy future. 24 refs., 2 figs., 1 tab.

Jones, J.E. Jr.; Fulkerson, W. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

451

Applicability of trends in nuclear safety analysis to space nuclear power systems  

SciTech Connect

A survey is presented of some current trends in nuclear safety analysis that may be relevant to space nuclear power systems. This includes: lessons learned from operating power reactor safety and licensing; approaches to the safety design of advanced and novel reactors and facilities; the roles of risk assessment, extremely unlikely accidents, safety goals/targets; and risk-benefit analysis and communication.

Bari, R.A.

1992-10-01T23:59:59.000Z

452

The Decommissioning of the Trino Nuclear Power Plant  

Science Conference Proceedings (OSTI)

Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise utilizes the full range of BNFL decommissioning experience and knowledge to develop a strategy, methodology and cost for the decommissioning of NPPs. Over the past year, a prompt decommissioning strategy for Trino has been developed. The strategy has been based on the principles of minimizing waste products that require long term storage, maximizing 'free release' materials and utilizing existing and regulatory approved technologies.

Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

2002-02-27T23:59:59.000Z

453

A simulation based real options approach for the investment evaluation of nuclear power  

Science Conference Proceedings (OSTI)

The investment of nuclear power has several uncertainties. This paper establishes a nuclear power investment evaluation model by employing real options theory with Monte Carlo method to evaluate the value of nuclear power plant from the perspective of ... Keywords: Least Squares Monte-Carlo, Nuclear accident, Nuclear power investment, Price mechanism, Real options

Lei Zhu

2012-11-01T23:59:59.000Z

454

Applying wind turbines and battery storage to defer Orcas Power and Light Company distribution circuit upgrades  

DOE Green Energy (OSTI)

The purpose of this study is to conduct a detailed assessment of the Orcas Power and Light Company (OPALCO) system to determine the potential for deferring the costly upgrade of the 25-kV Lopez- Eastsound circuit, by the application of a MW-scale wind farm and battery storage facilities as appropriate. Local wind resource data has been collected over the past year and used to determine MW-scale wind farm performance. This hourly wind farm performance data is used with measured hourly Eastsound load data, and recent OPALCO distribution system expansion plans and cost projections in performing this detailed benefit-cost assessment. The OPALCO distribution circuit expansion project and assumptions are described. MW-scale wind farm performance results are given. The economic benefit-cost results for the wind farm and battery storage applications on the OPALCO system using OPALCO system design criteria and cost assumptions are reported. A recalculation is presented of the benefit-cost results for similar potential wind farm and battery storage applications on other utility systems with higher marginal energy and demand costs. Conclusions and recommendations are presented.

Zaininger, H.W.; Barnes, P.R. [Zaininger Engineering Co., Inc., San Jose, CA (United States)

1997-03-01T23:59:59.000Z

456

Working Group Report on - Space Nuclear Power Systems and Nuclear Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Group Report on - Space Nuclear Power Systems and Nuclear Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even though one cannot anticipate the answers in basic research, the return on the public's investment can be maximized through long-range planning of the most promising avenues to explore and the resources needed to explore them." (p. v) "Pursuit of this goal entails developing new technologies and advanced facilities, educating young scientists, training a technical workforce, and contributing to the broader science and technology enterprise?." (p. vi) Ref:: "Nuclear Science: A Long Range Plan", DOE/NSF, Feb. 1996. The purpose of this effort is to develop the first iteration of a

457

Working Group Report on - Space Nuclear Power Systems and Nuclear Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Group Report on - Space Nuclear Power Systems and Nuclear Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D Working Group Report on - Space Nuclear Power Systems and Nuclear Waste Technology R&D "Even though one cannot anticipate the answers in basic research, the return on the public's investment can be maximized through long-range planning of the most promising avenues to explore and the resources needed to explore them." (p. v) "Pursuit of this goal entails developing new technologies and advanced facilities, educating young scientists, training a technical workforce, and contributing to the broader science and technology enterprise?." (p. vi) Ref:: "Nuclear Science: A Long Range Plan", DOE/NSF, Feb. 1996. The purpose of this effort is to develop the first iteration of a

458

Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivers Remarks on Nuclear Power at Tokyo Delivers Remarks on Nuclear Power at Tokyo American Center in Japan Deputy Secretary Poneman Delivers Remarks on Nuclear Power at Tokyo American Center in Japan December 15, 2011 - 4:14pm Addthis WASHINGTON, D.C. - Energy Deputy Secretary Daniel Poneman spoke at the Tokyo American Center today about nuclear power after Fukushima. Excerpts and full text of remarks, as prepared for delivery, are below: "As two of the nations responsible for pioneering the peaceful use of atomic energy, the United States and Japan share an opportunity - and a responsibility - to safely speed that transition. In fact, next week in the United States we will celebrate the 60th anniversary of the Experimental Breeder Reactor 1 in Idaho, which marked the first time that peaceful atomic energy was used to generate electricity. Our two nations

459

Howard Baker Center for Public Policy Nuclear Power Conference | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Ambassador Baker for that warm introduction and for all the good work you and the University of Tennessee are sponsoring through the Baker Center for Public Policy. I also want to thank Representative Hamilton and the Wilson Center for hosting this event on such an important topic. I'd like to talk with you this afternoon about the role nuclear power plays in our efforts to make America and the world more energy secure. Enhancing America's energy security has been a priority for President Bush since his first days in office. And it is central to my efforts as Secretary of Energy to help develop and

460

Nuclear Power 2010 Program: Combined Construction and Operating License &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power 2010 Program: Combined Construction and Operating Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States. As with all significant endeavors, there are lessons to be learned from the

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NREL: Energy Analysis - Nuclear Power Results - Life Cycle Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Power Results - Life Cycle Assessment Harmonization Nuclear Power Results - Life Cycle Assessment Harmonization Over the last 30 years, analysts have conducted life cycle assessments on the environmental impacts associated with a variety of nuclear power technologies and systems. These life cycle assessments have had wide-ranging results. To better understand greenhouse gas (GHG) emissions from nuclear power systems, NREL completed a comprehensive review and analysis of life cycle assessments focused on light water reactors (LWRs)-including both boiling water reactors (BWRs) and pressurized water reactors (PWRs)-published between 1980 and 2010. NREL developed and applied a systematic approach to review life cycle assessment literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions

462

Howard Baker Center for Public Policy Nuclear Power Conference | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference Howard Baker Center for Public Policy Nuclear Power Conference October 4, 2007 - 3:14pm Addthis Remarks as Prepared for Secretary Bodman Thank you, Ambassador Baker for that warm introduction and for all the good work you and the University of Tennessee are sponsoring through the Baker Center for Public Policy. I also want to thank Representative Hamilton and the Wilson Center for hosting this event on such an important topic. I'd like to talk with you this afternoon about the role nuclear power plays in our efforts to make America and the world more energy secure. Enhancing America's energy security has been a priority for President Bush since his first days in office. And it is central to my efforts as Secretary of Energy to help develop and

463

Risk-informed incident management for nuclear power plants  

E-Print Network (OSTI)

Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

Smith, Curtis Lee, 1966-

2002-01-01T23:59:59.000Z

464

A CCA-compliant nuclear power plant simulator kernel  

Science Conference Proceedings (OSTI)

This paper presents a parallel, component-oriented nuclear power plant simulator kernel. It is based on the high-performance computing oriented Common Component Architecture. The approach takes advantage of both the component paradigm and the parallel ...

Manuel Daz; Daniel Garrido; Sergio Romero; Bartolom Rubio; Enrique Soler; Jos M. Troya

2005-05-01T23:59:59.000Z

465

Mapping complexity sources in nuclear power plant domains  

E-Print Network (OSTI)

Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical for ensuring safe performance of both operators and the entire system. New ...

Sasangohar, Farzan

466

The role of computer systems in the nuclear power debate  

Science Conference Proceedings (OSTI)

One of the primary reasons for the current "decline" of nuclear power is that reactors have not operated reliably. This unreliability has raised questions of both safety and economics. Computer systems have been a part of this failure of technology. ...

Kevin W. Bowyer

1980-04-01T23:59:59.000Z

467

Extra-terrestrial nuclear power stations : transportation and operation  

E-Print Network (OSTI)

Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples ...

Kane, Susan Christine

2005-01-01T23:59:59.000Z

468

NDE Workforce Availability for the Nuclear Power Industry  

Science Conference Proceedings (OSTI)

The objective of this study was to assess the availability of qualified personnel to conduct nondestructive evaluation (NDE) tasks in nuclear power plants, through the year 2010. The study was initiated in response to the concern of the nuclear power industry about the future availability of the NDE workforce -- that there will be a gap between the quantity of qualified personnel required for in-service inspections and the workforce available to meet these requirements. The problem of predicting the natu...

2000-12-18T23:59:59.000Z

469

Welding and Fabrication Critical Factors for New Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Welding and fabrication processes employed for manufacture of critical nuclear power plant components may adversely affect material performance and can potentially increase susceptibility to known degradation mechanisms. This report identifies important welding and fabrication processes for specific materials, assesses their effects on potential degradation mechanisms, and identifies process enhancements that can improve long-term asset management of new nuclear plant components.

2009-12-08T23:59:59.000Z

470

Regional comparison of nuclear and fossil electric power generation costs  

SciTech Connect

Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures.

Bowers, H.I.

1984-01-01T23:59:59.000Z

471

Review of Polyimide Insulated Wire in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Because of its toughness and other desirable properties, Kapton insulated wire has been test-qualified for use in nuclear power plants; however, failures of this material in military aircraft have raised safety questions. This report identifies the conditions of proper use and handling that will ensure reliable functioning of the wire under nuclear plant operating and accident conditions.

1991-03-01T23:59:59.000Z

472

Material Sustainability Issues for the North American Electric Power Industry: Results of Research with Electric Power Companies and Stakeholders in the United States and Canada  

Science Conference Proceedings (OSTI)

This report presents results of research regarding sustainability issues faced by the electric power industry. Specifically, the research effort was directed toward identifying which sustainability issues affecting the power companies in North America are considered to be the most relevant, or material, and gathering perspectives on those issues from the industry and its stakeholders.The research team collected information from three sources: direct interviews with utility managers and ...

2013-04-25T23:59:59.000Z

473

Illinois Nuclear Profile - Clinton Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

474

Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM  

E-Print Network (OSTI)

Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM ROUNDTABLE Roundtable > Nuclear power and climate change Nuclear power, experts argue that all options should be considered--including nuclear power. But with nuclear power comes

Berry, R. Stephen

475

Groundwater and Soil Remediation Guidelines for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Groundwater and Soil Remediation Guidelines provides the nuclear power industry with technical guidance for evaluating the need for and timing of remediation of soil and/or groundwater contamination from onsite leaks, spills, or inadvertent releases to a) prevent migration of licensed material off-site and b) minimize decommissioning impacts.

2010-12-21T23:59:59.000Z

476

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants  

DOE Green Energy (OSTI)

Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 Produce Data and Analyses Task 2 Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 Commercial-Scale Hydrogen Production Task 4 Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

Stephen Schey

2009-07-01T23:59:59.000Z

477

Nuclear Power Generation and Fuel Cycle Report 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1997 September 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1997 ii The Nuclear Power Generation and Fuel Cycle Report is prepared by the U.S. Department of Energy's Energy Information Administration. Questions and comments concerning the contents of the report may be directed to:

478

Annex: Attributes of Proliferation Resistance for Civilian Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annex: Attributes of Proliferation Resistance for Civilian Nuclear Annex: Attributes of Proliferation Resistance for Civilian Nuclear Power Systems Annex: Attributes of Proliferation Resistance for Civilian Nuclear Power Systems The NERAC1 Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power Systems (TOPS) determined at its first meeting in November 1999 that a set of metrics was needed to judge proliferation resistance and to identify areas in which technical contributions could be useful. However, because of the time constraints imposed on the Task Force and the difficulty of developing quantifiable metrics, it was decided that a set of qualitative attributes could be developed and would be useful in providing a framework for both future discussions and for the development of a set of quantifiable

479

Energy Department Announces New Investments in Advanced Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Investments in Advanced Nuclear Energy Department Announces New Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

480

Energy Department Announces New Investments in Advanced Nuclear Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investments in Advanced Nuclear Investments in Advanced Nuclear Power Reactors Energy Department Announces New Investments in Advanced Nuclear Power Reactors June 27, 2013 - 2:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above strategy to accelerate clean energy leadership and to enable a low-carbon economy, the Energy Department today announced $3.5 million for four advanced nuclear reactor projects that go beyond traditional light water designs. These projects -- led by General Atomics, GE Hitachi, Gen4 Energy and Westinghouse -- will address key technical challenges to designing, building and operating the next generation of nuclear reactors. These steps support the President's plan to cut carbon pollution and spark innovation

Note: This page contains sample records for the topic "nuclear power company" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Institute of Nuclear Power Operations 1994 annual report  

SciTech Connect

This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1994 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry

NONE

1994-12-31T23:59:59.000Z

482

Institute of Nuclear Power Operations annual report, 1993  

SciTech Connect

This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

NONE

1993-12-31T23:59:59.000Z

483

Federal Power Act section 202(c) - Cross-Sound Cable Company, August 2002  

Energy.gov (U.S. Department of Energy (DOE))

On August 16, 2002, due to concerns regarding the availability of electricity on Long Island in the State of New York, a 202(c) order was issued directing Cross-Sound Cable Company to operate the...

484

Nuclear Systems Powering a Mission to Mars | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Powering a Mission to Mars Systems Powering a Mission to Mars Nuclear Systems Powering a Mission to Mars November 28, 2011 - 11:23am Addthis Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space exploration. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy Curiosity Mission: investigate whether the Gale Crater on Mars has ever offered environmental conditions that support the development of microbial life. This past weekend, the Mars Science Laboratory rover Curiosity launched from Cape Canaveral with the most advanced payload of scientific gear ever used on the red planet. Its mission: to investigate whether the Gale Crater on Mars has ever

485

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

486

Increasing Profits with Electric Industrial Vehicles: A Case Study on the Alabama Power Company Electric Forklift Incentive Program  

Science Conference Proceedings (OSTI)

In 1998, Alabama Power Company's Electric Transportation Department implemented a unique program that offered a financial incentive to dealers and distributors of electric material handling equipment for every electric lift truck sold. The goal was to increase charging revenue and improve the Electric Transportation Department's profitability contribution. After three years, the program has delivered a 44-to-1 return on investment, resulting in increased gross revenues of more than 7 million dollars and ...

2001-06-26T23:59:59.000Z

487

Advanced Cooling Options for Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Alternative power plant cooling systems exist that offer significant opportunity for reducing the amount of water used in power plant cooling. These systems include direct dry cooling using air-cooled condensers, indirect dry cooling using air-cooled heat exchangers paired with water-cooled surface condensers, and a variety of hybrid systems incorporating both dry and wet cooling elements. The water savings afforded by the use of these systems, however, comes at a price in the form of more expensive ...

2013-11-27T23:59:59.000Z

488

International Working Group Meeting Focuses on Nuclear Power Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Needs Needs International Working Group Meeting Focuses on Nuclear Power Infrastructure Development and Needs June 2, 2010 - 12:02pm Addthis VIENNA, Austria - The multi-nation Infrastructure Development Working Group (IDWG) of the Global Nuclear Energy Partnership (GNEP) held its sixth meeting on May 26-27, 2010, in Vienna, Austria. The two-day event included workshops on nuclear energy regulatory agency engagement and the infrastructure needs for international nuclear fuel service frameworks. Officials from the U.S. Department of Energy (DOE) and the U.K. Nuclear Decommissioning Authority co-chaired the working group meeting. "As a key component of the international Global Nuclear Energy Partnership program, the Infrastructure Development Working Group focuses

489

How many nuclear power plants are in the U.S. and where are they ...  

U.S. Energy Information Administration (EIA)

How many nuclear power plants are in the U.S. and where are they located? There are currently 65 commercially operating nuclear power plants with 104 nuclear reactors ...

490

A Case Study on the Effects of Distribution Line Capacitors on Substation Bus Voltage Regulated with a Load Tap Changing (LTC) Power Transformer: Southern Company Smart Grid Demonstration  

Science Conference Proceedings (OSTI)

This case study describes research to address the adverse effects of distribution capacitors on substation bus voltage with a load-tap-changing (LTC) power transformer. By adding fixed and switched capacitors to the distribution system, Southern Company is able to maintain an efficient distribution grid by providing the reactive power near the end-use devices consuming this power. However, pressure to improve the efficiency of the distribution system has resulted in Southern Company adding a large ...

2013-12-12T23:59:59.000Z

491

Radionuclides in United States commercial nuclear power reactors  

SciTech Connect

In the next ten to twenty years, many of the commercial nuclear power reactors in the United States will be reaching their projected lifetime of forty years. As these power plants are decommissioned, it seems prudent to consider the recycling of structural materials such as stainless steel. Some of these materials and components have become radioactive through either nuclear activation of the elements within the components or surface contamination with radioactivity form the operational activities. In order to understand the problems associated with recycling stainless steel from decommissioned nuclear power reactors, it is necessary to have information on the radionuclides expected on or in the contaminated materials. A study has been conducted of radionuclide contamination information that is available for commercial nuclear power reactors in the United States. There are two types of nuclear power reactors in commercial use in the United States, pressurized water reactors (PWRs) and boiling water reactors (BWRs). Before presenting radionuclide activities information, a brief discussion is given on the major components and operational differences for the PWRs and BWRs. Radionuclide co