National Library of Energy BETA

Sample records for nuclear plant site

  1. Early Site Permit Demonstration Program: Nuclear Power Plant Siting Database

    Energy Science and Technology Software Center (OSTI)

    1994-01-28

    This database is a repository of comprehensive licensing and technical reviews of siting regulatory processes and acceptance criteria for advanced light water reactor (ALWR) nuclear power plants. The program is designed to be used by applicants for an early site permit or combined construction permit/operating license (10CFRR522, Subparts A and C) as input for the development of the application. The database is a complete, menu-driven, self-contained package that can search and sort the supplied datamore » by topic, keyword, or other input. The software is designed for operation on IBM compatible computers with DOS.« less

  2. Method for assigning sites to projected generic nuclear power plants

    SciTech Connect (OSTI)

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  3. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  4. Reassessment of selected factors affecting siting of Nuclear Power Plants

    SciTech Connect (OSTI)

    Davis, R.E.; Hanson, A.L.; Mubayi, V.; Nourbakhsh, H.P.

    1997-02-01

    Brookhaven National Laboratory has performed a series of probabilistic consequence assessment calculations for nuclear reactor siting. This study takes into account recent insights into severe accident source terms and examines consequences in a risk based format consistent with the quantitative health objectives (QHOs) of the NRC`s Safety Goal Policy. Simplified severe accident source terms developed in this study are based on the risk insights of NUREG-1150. The results of the study indicate that both the quantity of radioactivity released in a severe accident as well as the likelihood of a release are lower than those predicted in earlier studies. The accident risks using the simplified source terms are examined at a series of generic plant sites, that vary in population distribution, meteorological conditions, and exclusion area boundary distances. Sensitivity calculations are performed to evaluate the effects of emergency protective action assumptions on the risk of prompt fatality and latent cancers fatality, and population relocation. The study finds that based on the new source terms the prompt and latent fatality risks at all generic sites meet the QHOs of the NRC`s Safety Goal Policy by margins ranging from one to more than three orders of magnitude. 4 refs., 17 figs., 24 tabs.

  5. Supplemnental Volume - Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplemental Volume Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS i Independent Oversight Assessment of Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant

  6. Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    1997-07-01

    The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation`s supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington.

  7. Concentration of Actinides in Plant Mounds at Safety Test Nuclear Sites in Nevada

    SciTech Connect (OSTI)

    David S. Shafer; Jenna Gommes

    2008-09-15

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around large shrubs and are common features in deserts in the southwestern United States. Believed to be an important factor in their formation, the shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, {sup 241}Am, and U in plant mounds at safety test sites. The NAEG studies found concentrations of these contaminants to be greater in shrub mounds than in the surrounding areas of desert pavement. For example, at Project 57 on the NTTR, it was estimated that 15 percent of the radionuclide inventory of the site was associated with shrub mounds, which accounted for 17 percent of the surface area of the site, a ratio of inventory to area of 0.85. At Clean Slate III at the TTR, 29 percent of the inventory was associated with approximately 32 percent of the site covered by shrub mounds, a ratio of 0.91. While the total inventory of radionuclides in intershrub areas was greater, the ratio of radionuclide inventory to area was 0.40 and 0.38, respectively, at the two sites. The comparison between the shrub mounds and adjacent desert pavement areas was made for only the top 5 cm since radionuclides at safety test sites are concentrated in the top 5 cm of intershrub areas. Not accounting for radionuclides associated with the shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. As part of its Environmental Restoration Soils Subproject, the U.S. Department of Energy (DOE), National Nuclear

  8. Energy Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today commended the Nuclear Regulatory Commission's decision to approve the first-ever Early Site Permit (ESP) for the Exelon Generation Company...

  9. Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Health, Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety

  10. Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America

    SciTech Connect (OSTI)

    Prasad, Rajiv; Hibler, Lyle F.; Coleman, Andre M.; Ward, Duane L.

    2011-11-01

    The purpose of this document is to describe approaches and methods for estimation of the design-basis flood at nuclear power plant sites. Chapter 1 defines the design-basis flood and lists the U.S. Nuclear Regulatory Commission's (NRC) regulations that require estimation of the design-basis flood. For comparison, the design-basis flood estimation methods used by other Federal agencies are also described. A brief discussion of the recommendations of the International Atomic Energy Agency for estimation of the design-basis floods in its member States is also included.

  11. Population dose commitments due to radioactive releases from nuclear power plant sites in 1986

    SciTech Connect (OSTI)

    Baker, D.A. )

    1989-10-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup -6} mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs.

  12. Population dose commitments due to radioactive releases from nuclear power plant sites in 1984

    SciTech Connect (OSTI)

    Baker, D.A.

    1988-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10/sup -6/ mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  13. Population dose commitments due to radioactive releases from nuclear power plant sites in 1985

    SciTech Connect (OSTI)

    Baker, D.A.

    1988-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commericial power reactors operating during 1985. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 61 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 73 person-rem to a low of 0.011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 200 person-rem for the 110 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 5 /times/ 10/sup /minus/6/ mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  14. Population dose commitments due to radioactive releases from nuclear power plant sites in 1982. Volume 4

    SciTech Connect (OSTI)

    Baker, D.A.; Peloquin, R.A.

    1986-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1982. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 51 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments from both liquid and airborne pathways ranged from a high of 30 person-rem to a low of 0.007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 130 person-rem for the 100 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 6 x 10/sup -7/ mrem to a high of 0.06 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  15. Site Selection & Characterization Status Report for Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Mark Holbrook

    2007-09-01

    In the near future, the US Department of Energy (DOE) will need to make important decisions regarding design and construction of the Next Generation Nuclear Plant (NGNP). One part of making these decisions is considering the potential environmental impacts that this facility may have, if constructed here at the Idaho National Laboratory (INL). The National Environmental Policy Act (NEPA) of 1969 provides DOE decision makers with a process to systematically consider potential environmental consequences of agency decisions. In addition, the Energy Policy Act of 2005 (Title VI, Subtitel C, Section 644) states that the 'Nuclear Regulatory Commission (NRC) shall have licensing and regulatory authority for any reactor authorized under this subtitle.' This stipulates that the NRC will license the NGNP for operation. The NRC NEPA Regulations (10 CFR Part 51) require tha thte NRC prepare an Environmental Impact Statement (EIS) for a permit to construct a nuclear power plant. The applicant is required to submit an Environmental report (ER) to aid the NRC in complying with NEPA.

  16. Dose commitments due to radioactive releases from nuclear power plant sites in 1989

    SciTech Connect (OSTI)

    Baker, D.A. )

    1993-02-01

    Population and individual radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1989. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 72 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is an estimate of individual doses which are compared with 10 CFR Part 50, Appendix I design objectives. The total collective dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 14 person-rem to a low of 0.005 person-rem for the sites with plants in operation and producing power during the year. The arithmetic mean was 1.2 person-rem. The total population dose for all sites was estimated at 84 person-rem for the 140 million people considered at risk. The individual dose commitments estimated for all sites were below the Appendix I design objectives.

  17. Population dose commitments due to radioactive releases from nuclear power plant sites in 1983

    SciTech Connect (OSTI)

    Baker, D.A.; Peloquin, R.A.

    1987-04-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1983. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 52 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 45 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 170 person-rem for the 100 million people considered at risk.

  18. Probabilistic Seismic Hazard Characterization and Design Parameters for the Sites of the Nuclear Power Plants of Ukraine

    SciTech Connect (OSTI)

    Savy, J.B.; Foxall, W.

    2000-01-26

    The U.S. Department of Energy (US DOE), under the auspices of the International Nuclear Safety Program (INSP) is supporting in-depth safety assessments (ISA) of nuclear power plants in Eastern Europe and the former Soviet Union for the purpose of evaluating the safety and upgrades necessary to the stock of nuclear power plants in Ukraine. For this purpose the Hazards Mitigation Center at Lawrence Livermore National Laboratory (LLNL) has been asked to assess the seismic hazard and design parameters at the sites of the nuclear power plants in Ukraine. The probabilistic seismic hazard (PSH) estimates were updated using the latest available data and knowledge from LLNL, the U.S. Geological Survey, and other relevant recent studies from several consulting companies. Special attention was given to account for the local seismicity, the deep focused earthquakes of the Vrancea zone, in Romania, the region around Crimea and for the system of potentially active faults associated with the Pripyat Dniepro Donnetts rift. Aleatory (random) uncertainty was estimated from the available data and the epistemic (knowledge) uncertainty was estimated by considering the existing models in the literature and the interpretations of a small group of experts elicited during a workshop conducted in Kiev, Ukraine, on February 2-4, 1999.

  19. T Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact ... and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage ...

  20. Site Map - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Site Map Page Content Pantex.com Mission & Strategies Mission National Security Nuclear Explosive Operations Nuclear Material Operations HE Operations Strategies Advance HE Center of Excellence Exemplify a High Reliability Organization Health & Safety Safety Training Occupational Medicine Contractor Safety Environment Environmental Projects & Operations Regulatory Compliance Waste Operations Environmental Management System Environmental Document Library Public Meetings Doing

  1. Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites in 1977

    SciTech Connect (OSTI)

    Baker, D. A.

    1980-10-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1977. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ, Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 220 person-rem to a low of 0.003 person-rem with an arithmetic mean of 16 person-rem. The total population dose for all sites was estimated at 700 person-rem for the 92 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10{sup -5} mrem to a high of 0.1 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  2. Population dose commitments due to radioactive releases from Nuclear-Power-Plant Sites in 1979

    SciTech Connect (OSTI)

    Baker, D.A.; Peloquin, R.A.

    1982-12-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1979. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 1300 person-rem to a low of 0.0002 person-rem with an arithmetic mean of 38 person-rem. The total population dose for all sites was estimated at 1800 person-rem for the 94 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 2 x 10/sup -6/ mrem to a high of 0.7 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  3. Population dose commitments due to radioactive releases from nuclear power plant sites in 1987

    SciTech Connect (OSTI)

    Baker, D.A. )

    1990-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1987. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 70 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for reach of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The site average individual dose commitment from all pathways ranged from a low of 2 {times} 10{sup {minus}6} mrem to a high of 0.009 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. However, licensee calculation of doses to the maximally exposed individual at some sites indicated values of up to approximately 100 times average individual doses (on the order of a few millirem per year). 2 refs., 2 figs., 7 tabs.

  4. Population dose commitments due to radioactive releases from nuclear-power-plant sites in 1978

    SciTech Connect (OSTI)

    Peloquin, R.A.; Schwab, J.D.; Baker, D.A.

    1982-06-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1978. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each site. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each site is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitment from both liquid and airborne pathways ranged from a high of 200 person-rem to a low of 0.0004 person-rem with an arithmetic mean of 14 person-rem. The total population dose for allsites was estimated at 660 person-rem for the 93 million people considered at risk. The average individual dose commitment from all pathways on a site basis ranged from a low of 3 x 10/sup -6/ mrem to a high of 0.08 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites.

  5. Site Map | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Home Site Map Front page Front page of National Nuclear Security Administration Main menu People Mission Powering the Nuclear Navy Concern for the Environment Protection of People Naval Nuclear Propulsion Plants Management and Administration Public Affairs More About NNSA's Naval Reactors Office Emergency Response Counterterrorism Recapitalizing Our Infrastructure Preventing Proliferation Managing the Stockpile Dismantlement and Disposition Stockpile Stewardship Program Quarterly Experiments

  6. sites | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sites | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  7. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  8. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  9. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant ...

  10. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  11. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  12. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  13. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  14. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  15. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  16. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  17. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  18. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  19. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  20. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  1. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  2. U Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities U Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration

  3. B Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H Reactor

  4. NUCLEAR POWER PLANT

    DOE Patents [OSTI]

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  5. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal ... Electric & Power Co" "2 Plants 4 Reactors","3,501","26,572",100.0 "Note: ...

  6. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  7. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  8. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  9. FTCP Site Specific Information - Nuclear Energy Oak Ridge Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Oak Ridge Site Office FTCP Site Specific Information - Nuclear Energy Oak Ridge Site Office Annual Workforce Analysis and Staffing Plan Report Calendar Year 2013...

  10. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  11. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration ...

  12. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant name..."8,291",62.4,"NextEra Energy Point Beach LLC" "2 Plants 3 Reactors","1,584","13,281",100.0

  13. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  14. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  15. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0

  16. Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in

  17. Vallecitos Nuclear Center, California, Site Fact Sheet

    Office of Legacy Management (LM)

    This fact sheet provides information about the Vallecitos Nuclear Center, California, ... Location of the Vallecitos Nuclear Center, California, Site Site Description and History ...

  18. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Calvert Cliffs Nuclear Power Plant Unit 1, Unit 2","1,705","13,994",100.0,"Calvert Cliffs Nuclear PP Inc" "1 Plant 2 Reactors","1,705","13,994",100.0 "Note: Totals

  19. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to

  20. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  1. Owners of Nuclear Power Plants

    SciTech Connect (OSTI)

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  2. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    The list indicates percentage ownership of commercial nuclear power plants by utility companies as of September 1, 1982. The list includes all plants licensed to operate, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review. Part I lists plants alphabetically with their associated applicants and percentage ownership. Part II lists applicants alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses.

  3. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...

    Energy Savers [EERE]

    Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 October ...

  4. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect (OSTI)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  5. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS).

  6. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...

  7. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0

  8. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Arkansas Nuclear One Unit 1, Unit 2","1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  9. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Millstone Unit 2, Unit 3","2,103","16,750",100.0,"Dominion Nuclear Conn Inc" "1 Plant 2 Reactors","2,103","16,750",100.0

  10. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Sequoyah Unit 1, Unit 2","2,278","18,001",64.9,"Tennessee Valley Authority" "Watts Bar Nuclear Plant Unit 1","1,123","9,738",35.1,"Tennessee Valley

  11. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Davis Besse Unit 1",894,"5,185",32.8,"FirstEnergy Nuclear Operating Company" "Perry Unit 1","1,240","10,620",67.2,"FirstEnergy Nuclear Operating Company" "2

  12. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net ...

  13. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear ...

  14. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  15. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net ...

  16. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 ...

  17. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit 2","1,097","9,241",100.0,"Energy Northwest" "1 Plant 1 Reactor","1,097","9,241",100.0

  18. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  19. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal sum of components due to independent ...

  20. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  1. Savannah River Site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Savannah River Site FY 2016 FY 2016 Performance Evaluation Plan, Savannah River Nuclear Solutions, LLC FY 2015 FY 2015 Performance Evaluation Report, Savannah River Nuclear ...

  2. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon

  3. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Diablo Canyon Unit 1, Unit 2","2,240","18,430",57.2,"Pacific Gas & Electric Co" "San Onofre Nuclear Generating Station Unit 2, Unit

  4. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon

  5. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Comanche Peak Unit 1, Unit 2","2,406","20,208",48.9,"Luminant Generation Company LLC" "South Texas Project Unit 1, Unit 2","2,560","21,127",51.1,"STP Nuclear

  6. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit 1",601,"4,451",100.0,"NextEra Energy Duane Arnold LLC" "1 Plant 1 Reactor",601,"4,451",100.0

  7. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name/Total Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (Pprcent)","Owner" "River Bend Unit 1",974,"8,363",44.9,"Entergy Gulf States - LA LLC" "Waterford 3 Unit 3","1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2

  8. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  9. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union Electric Co" "1 Plant 1 Reactor","1,190","8,996",100.0 "Note: Totals may not equal sum of components due to

  10. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Cooper Unit 1",767,"6,793",61.4,"Nebraska Public Power District" "Fort Calhoun Unit 1",478,"4,261",38.6,"Omaha Public Power District" "2 Plants 2

  11. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Palo Verde Unit 1, Unit 2, Unit 3","3,937","31,200",100.0,"Arizona Public Service Co" "1 Plant 3 Reactors","3,937","31,200",100.0 "Note: Totals may not equal sum of

  12. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Edwin I Hatch Unit 1, Unit 2","1,759","13,902",41.5,"Georgia Power Co" "Vogtle Unit 1, Unit 2","2,302","19,610",58.5,"Georgia Power Co" "2 Plants 4

  13. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant Project, October 2010 | Department of Energy Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 October 2010 Report for independent review of the nuclear safety culture at the Waste Treatment and Immobilization Plant (WTP) project at DOE's Hanford Site. This report provides the results of a

  14. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (OSTI)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  15. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Donald C Cook Unit 1, Unit 2","2,069","15,646",52.8,"Indiana Michigan Power Co" "Fermi Unit 2","1,085","7,738",26.1,"Detroit Edison Co" "Palisades Unit

  16. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Monticello Unit 1",554,"4,695",34.8,"Northern States Power Co - Minnesota" "Prairie Island Unit 1, Unit 2","1,040","8,783",65.2,"Northern States Power Co -

  17. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  18. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Crystal River Unit 3",860,0,"--","Progress Energy Florida Inc" "St Lucie Unit 1, Unit 2","1,678","12,630",52.8,"Florida Power & Light Co" "Turkey Point

  19. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State ...

  20. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  1. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,123","9,738",99.0,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,123","9,738",99.0 "Data for 2010" "PWR = Pressurized Light Water

  2. Advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  3. Nuclear Security Administration Nevada Site Office.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    man- ager for environmental monitoring for the National Nuclear Security Administration Nevada Site Office. ... who sup- port the Waste Management Division (WMD) Radioactive ...

  4. Site Information | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Site Information Facilities & Projects Nuclear Operations Environment, Safety & Health Safeguards & Security Performance & Quality Assurance Programs NEPA Reading Room

  5. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  6. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site ...

  7. Waste Treatment & Immobilization Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment & Immobilization Plant Office of River Protection About ORP ORP Projects & Facilities Tank Farms Waste Treatment & Immobilization Plant 242-A Evaporator 222-S Laboratory Newsroom Contracts & Procurements Contact ORP Waste Treatment & Immobilization Plant Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Waste Treatment Plant Overview Waste Treatment and Immobilization Plant Background Information The Hanford Site, located in

  8. EIS-0098: Pantex Plant Site, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of continuing construction and operations at the Pantex Plant in order to perform nuclear weapons assembly, stockpile monitoring, maintenance and retirements.

  9. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

    Energy Savers [EERE]

    Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge ... Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, ...

  10. Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

    1993-06-01

    Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

  11. Naval Nuclear Propulsion Plants | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    | (NNSA) Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces radiation, shielding is placed around the reactor to protect the crew. Despite close proximity to a reactor core, a typical crewmember receives less exposure to radiation than one who remains ashore and works in an office building. In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor

  12. Trinity Site- World's First Nuclear Explosion

    Office of Energy Efficiency and Renewable Energy (EERE)

    The world's first nuclear explosion occurred on July 16, 1945, when a plutonium implosion device was tested at a site located 210 miles south of Los Alamos on the barren plains of the Alamogordo...

  13. Pantex Plant | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Pantex Plant The Pantex Plant, near Amarillo, Texas, is charged with maintaining the safety, security and effectiveness of the nation's nuclear weapons stockpile. It is managed and operated by Consolidated Nuclear Security, LLC for the NNSA Production Office. Work performed at Pantex includes support of the nuclear weapons life extension programs; nuclear weapons dismantlement; the development, testing and fabrication of high explosive components; and interim storage and surveillance of

  14. Individualized Site Training | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Individualized Site Training U.S. Department of Energy / U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System Individualized Site Training NMMSS staff is available to conduct training at your facility at your request. This training can be comprehensive and/or tailored to specific needs of your facility. If you would like any NMMSS training to be conducted at your facility, please contact nmmss@hq.doe.gov. As always, NMMSS staff is available to assist

  15. Ten-Year Site Plans (TYSP) | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Infrastructure and Operations Ten-Year Site Plans (TYSP) The FY 2016-2025 TYSPs are planning documents and as such, represent possible paths to support configuration of the nuclear weapons complex. The TYSPs are not binding plans of action. Current Final TYSPs, FY2016-2025: Kansas City Plant TYSP Lawrence Livermore National Laboratory TYSP Los Alamos National Laboratory TYSP Nevada Field Office TYSP Office of Secure Transportation TYSP Pantex TYSP Sandia National Laboratories TYSP

  16. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Oyster Creek Unit 1",615,"4,601",14.0,"Exelon Nuclear" "PSEG Hope Creek Generating Station Unit 1","1,161","9,439",28.8,"PSEG Nuclear LLC" "PSEG Salem Generating

  17. EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear...

    Office of Environmental Management (EM)

    Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency April 14, 2016 - ...

  18. Safeguards Issues at Nuclear Reactors and Enrichment Plants ...

    Office of Scientific and Technical Information (OSTI)

    Safeguards Issues at Nuclear Reactors and Enrichment Plants Citation Details In-Document Search Title: Safeguards Issues at Nuclear Reactors and Enrichment Plants Authors: Boyer, ...

  19. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Office of Environmental Management (EM)

    Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis ...

  20. Safeguards Issues at Nuclear Reactors and Enrichment Plants ...

    Office of Scientific and Technical Information (OSTI)

    Safeguards Issues at Nuclear Reactors and Enrichment Plants Citation Details In-Document Search Title: Safeguards Issues at Nuclear Reactors and Enrichment Plants You are ...

  1. Career Map: Site/Plant Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site/Plant Manager Career Map: Site/Plant Manager A female plant manager reads site plans on large sheets of paper next to several electrical components. Site/Plant Manager Position Title Site/Plant Manager Alternate Title(s) n/a Education & Training Level Mid-level, Bachelor's degree preferred, not always required Education & Training Level Description Wind plant managers need at least a high school diploma and years of experience in renewable energy, mechanical, electrical, field

  2. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    and works in an office building. U.S. naval nuclear propulsion plants use a pressurized-water reactor design that has two basic systems: the primary system and the secondary...

  3. Extra-Territorial Siting of Nuclear Installations

    SciTech Connect (OSTI)

    Shea, Thomas E.; Morris, Frederic A.

    2009-10-07

    Arrangements might be created for siting nuclear installations on land ceded by a host State for administration by an international or multinational organization. Such arrangements might prove useful in terms of resolving suspicions of proliferation in troubled areas of the world, or as a means to introduce nuclear activities into areas where political, financial or technical capabilities might otherwise make such activities unsound, or as a means to enable global solutions to be instituted for major nuclear concerns (e.g., spent fuel management). The paper examines practical matters associated with the legal and programmatic aspects of siting nuclear installations, including diplomatic/political frameworks, engaging competent industrial bodies, protection against seizure, regulation to ensure safety and security, waste management, and conditions related to the dissolution of the extra-territorial provisions as may be agreed as the host State(s) achieve the capabilities to own and operate the installations. The paper considers the potential for using such a mechanism across the spectrum of nuclear power activities, from mining to geological repositories for nuclear waste. The paper considers the non-proliferation dimensions associated with such arrangements, and the pros and cons affecting potential host States, technology vendor States, regional neighbors and the international community. It considers in brief potential applications in several locations today.

  4. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation ...,"1,835","15,023",100.0,"Entergy Arkansas Inc" "1 Plant 2 Reactors","1,835","15,023",100.0

  5. Pantex Plant | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Pantex Plant On Womens Equality Day, we celebrate NNSA's talented Women in STEM New Pantex Plant sensors provide ample warning to protect NNSA operations from lightning NNSA is charged with making sure the nation's nuclear deterrent is safe, secure, and effective. That mission includes protecting the Nuclear Security Enterprise from forces of nature. One natural threat, lightning, can damage electronics and even degrade concrete buildings and... NNSA's systems administrators keep the computers

  6. Specialized Disposal Sites for Different Reprocessing Plant Wastes

    SciTech Connect (OSTI)

    Forsberg, Charles W.; Driscoll, Michael J.

    2007-07-01

    Once-through fuel cycles have one waste form: spent nuclear fuel (SNF). In contrast, the reprocessed SNF yields multiple wastes with different chemical, physical, and radionuclide characteristics. The different characteristics of each waste imply that there are potential cost and performance benefits to developing different disposal sites that match the disposal requirements of different waste. Disposal sites as defined herein may be located in different geologies or in a single repository containing multiple sections, each with different characteristics. The paper describes disposal options for specific wastes and the potential for a waste management system that better couples various reprocessing plant wastes with disposal facilities. (authors)

  7. Vascular Plants of the Hanford Site

    SciTech Connect (OSTI)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  8. Senior DOE Officials Visit Paducah Gaseous Diffusion Plant Site...

    Energy Savers [EERE]

    Senior DOE Officials Visit Paducah Gaseous Diffusion Plant Site Senior DOE Officials Visit Paducah Gaseous Diffusion Plant Site April 29, 2015 - 12:00pm Addthis EM Paducah site ...

  9. Office of Material Consolidation & Civilian Sites | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Material Consolidation & Civilian Sites The Office of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives. The Office of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives. The Office of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives. Material Protection, Control,

  10. NNSA Announces New Name for Test Site | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Announces New Name for Test Site August 23, 2010 LAS VEGAS -- National Nuclear Security ... incident involving nuclear materials and test the next generation of radiation detection ...

  11. National Nuclear Security Administration LOS ALAMOS SITE OFFICE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Security Administration LOS ALAMOS SITE OFFICE National Nuclear Security Administration CONTRACT MANAGEMENT PLAN For LOS ALAMOS NATIONAL LABORATORY CONTRACT NO....

  12. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine

  13. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boundary | Department of Energy IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary (296.54 KB) More Documents & Publications PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Remediation

  14. PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roster Systems | Department of Energy Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems (3.67 MB) More Documents & Publications PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - HSPD-12

  15. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.; Massaro, Lawrence M.; Jensen, Philip J.

    2014-10-01

    This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory; a description of the on-site infrastructure and conditions relevant to transportation of UNF and GTCC waste; an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information; and, an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site

  16. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  17. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Callaway Unit 1","1,190","8,996",100.0,"Union Electric Co" "1 Plant 1 Reactor","1,190","8,996",100.0 "Note: Totals may not equal sum of components due to ...

  18. Nuclear Rocket Development Station at the Nevada Test Site |...

    Office of Environmental Management (EM)

    Rocket Development Station at the Nevada Test Site Nuclear Rocket Development Station at the Nevada Test Site During the 1950s, the United States launched a nuclear rocket program ...

  19. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  20. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Brunswick Unit 1, Unit 2","1,858","14,808",36.3,"Progress Energy Carolinas Inc" "Harris Unit 1",900,"7,081",17.4,"Progress Energy Carolinas Inc" "McGuire

  1. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc"

  2. Remediation of Soil at Nuclear Sites

    SciTech Connect (OSTI)

    Holmes, R.; Boardman, C.; Robbins, R; Fox, Robert Vincent; Mincher, Bruce Jay

    2000-03-01

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste.

  3. Remediation of soil at nuclear sites

    SciTech Connect (OSTI)

    R. Holmes; C. Boardman; R. Robbins; R. Fox; B. J. Mincher

    2000-02-28

    As the major nuclear waste and decontamination and decommissioning projects progress, one of the remaining problems that faces the nuclear industry is that of site remediation. The range of contamination levels and contaminants is wide and varied and there is likely to be a significant volume of soil contaminated with transuranics and hazardous organic materials that could qualify as mixed TRU waste. There are many technologies that offer the potential for remediating this waste but few that tackle all or most of the contaminants and even fewer that have been deployed with confidence. This paper outlines the progress made in proving the ability of Supercritical Fluid Extraction as a method of remediating soil, classified as mixed (TRU) transuranic waste

  4. Los Alamos National Laboratory Steam Plant Project | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Solicitation Los Alamos National Laboratory Steam Plant Project Welcome to the National Nuclear Security Administration's website for the Los Alamos National Laboratory Site (LANL) M&O Energy Performance Saving Contract Competition. LANL is a premier national security research institution, located 35 miles northwest of Santa Fe, New Mexico, on 36 square miles of Department of Energy-owned property. Its mission is to develop and apply science and

  5. The Advanced BWR Nuclear Plant: Safe, economic nuclear energy

    SciTech Connect (OSTI)

    Redding, J.R.

    1994-12-31

    The safety and economics of Advanced BWR Nuclear Power Plants are outlined. The topics discussed include: ABWR Programs: status in US and Japan; ABWR competitiveness: safety and economics; SBWR status; combining ABWR and SBWR: the passive ABWR; and Korean/GE partnership.

  6. EIS-0064: Rocky Flats Plant Site, Jefferson County, Golden, Colorado (see also ERDA-1545-D)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the site specific environmental impacts of continuing to conduct nuclear weapons production activities at the Rocky Flats Plant; alternatives for the conduct of such activities; and environmental impacts of the U.S. policy to produce nuclear weapons.

  7. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  8. Probabilistic methods in seismic risk assessment for nuclear power plants: proceedings

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    The state-of-the-art in seismic risk analysis applied to the design and siting of nuclear power plants was addressed in this meeting. Presentations were entered individually into the date base. (ACR)

  9. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  10. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  11. News Release Closure of Russian Nuclear Plant.PDF

    National Nuclear Security Administration (NNSA)

    CONTACTS: FOR IMMEDIATE RELEASE Jonathan Kiell, 202586-7371 September 27, 2001 Date Set for Closure of Russian Nuclear Weapons Plant U.S. National Nuclear Security Administration ...

  12. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  13. Chu Visits Site of America's First New Nuclear Reactor in Three Decades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chu Visits Site of America's First New Nuclear Reactor in Three Decades Chu Visits Site of America's First New Nuclear Reactor in Three Decades February 15, 2012 - 2:12pm Addthis Just two days after the Department of Energy requested more than $770 million for nuclear energy in 2013, U.S. Secretary of Energy Steven Chu visited the Vogtle nuclear power plant in Waynesboro, Georgia and Oak Ridge National Laboratory to highlight the steps the Obama Administration is taking

  14. Chu Visits Site of America's First New Nuclear Reactor in Three Decades |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chu Visits Site of America's First New Nuclear Reactor in Three Decades Chu Visits Site of America's First New Nuclear Reactor in Three Decades February 15, 2012 - 12:40pm Addthis WASHINGTON, D.C. - Just two days after the Department of Energy requested more than $770 million for nuclear energy in 2013, U.S. Secretary of Energy Steven Chu visited the Vogtle nuclear power plant in Waynesboro, Georgia and Oak Ridge National Laboratory to highlight the steps the Obama

  15. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  16. NNSA Nuclear Security Sites Net 18 R&D 100 Awards | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Nuclear Security Sites Net 18 R&D 100 Awards The National Nuclear Security Administration is proud of the nation's nuclear security sites for receiving 18 of this year's R&D 100 Awards. The National Nuclear Security Administration is proud of the nation's nuclear security sites for receiving 18 of this year's R&D 100 Awards. The National Nuclear Security Administration is proud of the nation's nuclear security sites for receiving 18 of this year's

  17. Draft Site-Wide Environmental Impact Statement Nevada | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Draft Site-Wide Environmental Impact Statement Nevada Draft site-wide environmental impact statement for the continued operation of the DOE/NNSA Nevada National Security Site and off-site locations in the State of Nevada The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) is pleased to present the "Draft Site-Wide Environmental Impact Statement for the Continued Operation of the Department of Energy/National Nuclear

  18. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  19. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to

  20. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,855,"6,755",90.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  1. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date" 1,581,"4,948",97.2,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,581,"4,948",97.2

  2. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  3. SIMULATE-3 plant-site applications at Cofrentes NPP

    SciTech Connect (OSTI)

    Molina, D. ); Crespo, A. )

    1992-01-01

    Cofrentes nuclear power plant (NPP) is a General Electric boiling water reactor-6 reactor located in Spain and currently operating on cycle 7. Since 1989, several SIMULATE-3-based plant-site applications have been used to define target control rod patterns and for maneuver predictions. The actual calculational method involves the SIMULATE-3 code running on the main computer of the utility (IBERDROLA) at Madrid. Access from the plant site is provided through personal computers and communication devices. The general performance of the method is satisfactory, but experience has shown that several improvements could be made: using workstations to avoid dependence on the remote host computer, providing color graphic displays for input-output, and introducing an adaptive capability that would allow feedback with in-core instrumentation measurements. Future hardware configuration is being studied by IBERDROLA, while the other two improvements are under development by UITESA. Data management will be carried out by the PISCIS tool, a graphic interface based on X-Windows, which is being extended with additional color screens. Adaptive capability will be provided by the SIMULATE-3 adaptive system discussed in this paper. It is intended to be installed at Cofrentes on-line with the actual process computer.

  4. OST opens new logistics support site | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OST opens new logistics support site | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  5. Los Alamos Site Office Nuclear Maintenance Management Program...

    Office of Environmental Management (EM)

    Management Evaluations Activity Report for the Los Alamos Site Office Nuclear Maintenance Management Program Oversight Self-Assessment Dates of Activity : 11142011 - 11182011 ...

  6. Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – An innovative idea for cleaning up sodium in a decommissioned nuclear reactor at EM’s Idaho site grew from a carpool discussion.

  7. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Energy Savers [EERE]

    More Documents & Publications PIA - 10th International Nuclear Graphite Specialists Meeting registration web site PIA - HSPD-12 Physical and Logical Access System MOX Services ...

  8. National Nuclear Security Administration Los Alamos Site Office

    Office of Environmental Management (EM)

    National Nuclear Security Administration Los Alamos Site Office Los Alamos, New Mexico 87544 mrsm Mr. Ralph L. Phelps Chairman Northem New Mexico Citizens Advisory Board...

  9. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  10. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  11. Site Selection for Concrete Batch Plant to Support Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect (OSTI)

    Wike, L.D.

    2001-06-15

    WSRC conducted a site selection study to identify, assess, and rank candidate sites for an onsite concrete batch plant at the Savannah River Site in the vicinity of F-Area.

  12. Y-12 Removes Nuclear Materials from Two Facilities to Reduce Site's Nuclear

    National Nuclear Security Administration (NNSA)

    Footprint (Alpha 5 and 9720-38 No Longer Designated as Nuclear Facilities) | National Nuclear Security Administration | (NNSA) Removes Nuclear Materials from Two Facilities to Reduce Site's Nuclear Footprint (Alpha 5 and 9720-38 No Longer Designated as Nuclear Facilities) September 03, 2010 Microsoft Office document icon R-9-2

  13. Plutonium Uranium Extraction Plant (PUREX) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities Plutonium Uranium Extraction Plant (PUREX) About Us About ... and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage ...

  14. Reduction-Oxidation Plant (REDOX) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Reduction-Oxidation Plant (REDOX) About Us About Hanford Cleanup Hanford ... and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage ...

  15. Owners of nuclear power plants: Percentage ownership of commercial nuclear power plants by utility companies

    SciTech Connect (OSTI)

    Wood, R.S.

    1987-08-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of June 1, 1987. The list includes all plants licensed to operate, under construction, docked for NRC safety and environmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally canceled. In many cases, ownership may be in the process of changing as a result of altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified. Part I lists plants alphabetically with their associated applicants/licensees and percentage ownership. Part II lists applicants/licensees alphabetically with their associated plants and percentage ownership. Part I also indicates which plants have received operating licenses (OL's). Footnotes for both parts appear at the end of this document.

  16. Early Site Permit Demonstration Program: Plant parameters envelope report. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    The Early Site Permit (ESP) Demonstration Program is the nuclear industry`s initiative for piloting the early resolution of siting-related issues before the detailed design proceedings of the combined operating license review. The ESP Demonstration Program consists of three phases. The plant parameters envelopes task is part of Phase 1, which addresses the generic review of applicable federal regulations and develops criteria for safety and environmental assessment of potential sites. The plant parameters envelopes identify parameters that characterize the interface between an ALWR design and a potential site, and quantify the interface through values selected from the Utility Requirements Documents, vendor design information, or engineering assessments. When augmented with site-specific information, the plant parameters envelopes provide sufficient information to allow ESPs to be granted based on individual ALWR design information or enveloping design information for the evolutionary, passive, or generic ALWR plants. This document is expected to become a living document when used by future applicants.

  17. DECOMMISSIONING OF NUCLEAR FACILITIES IN GERMANY - STATUS AT BMBF SITES

    SciTech Connect (OSTI)

    Papp, R.; Komorowski, K.

    2002-02-25

    In a period of approximately 40 years prior to 1994, the German Federal Government had spent about {approx} 15 billion to promote nuclear technology. These funds were earmarked for R&D projects as well as demonstration facilities which took up operation between 1960 and 1980. These BMBF (Federal Ministry for Research) facilities were mainly located at the sites of the federal research centers at Juelich and Karlsruhe (the research reactors AVR, FR2, FRJ-1, KNK, and MZFR, the pilot reprocessing plant WAK) but included also the pilot plants SNR-300 and THTR-300 for fast breeder and high-temperature gas-cooled reactor development, respectively, and finally the salt mine Asse which had been used for waste emplacement prior to conversion into an underground research laboratory. In the meantime, almost all of these facilities were shut down and are now in a state of decommissioning and dismantling. This is mainly due to the facts that R&D needs are satisfied or do not exist any more and that, secondly, the lack of political consensus led to the cancellation of advanced nuclear technology.

  18. Lesson 7 - Waste from Nuclear Power Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing

  19. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Workers | Department of Energy Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC)

  20. Cesium Removal at Fukushima Nuclear Plant - 13215

    SciTech Connect (OSTI)

    Braun, James L.; Barker, Tracy A.

    2013-07-01

    The Great East Japan Earthquake that took place on March 11, 2011 created a number of technical challenges at the Fukushima Daiichi Nuclear Plant. One of the primary challenges involved the treatment of highly contaminated radioactive wastewater. Avantech Inc. developed a unique patent pending treatment system that addressed the numerous technical issues in an efficient and safe manner. Our paper will address the development of the process from concept through detailed design, identify the lessons learned, and provide the updated results of the project. Specific design and operational parameters/benefits discussed in the paper include: - Selection of equipment to address radionuclide issues; - Unique method of solving the additional technical issues associated with Hydrogen Generation and Residual Heat; - Operational results, including chemistry, offsite discharges and waste generation. Results show that the customized process has enabled the utility to recycle the wastewater for cooling and reuse. This technology had a direct benefit to nuclear facilities worldwide. (authors)

  1. Workers Demolish Metals Plant at Paducah Site | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demolish Metals Plant at Paducah Site Workers Demolish Metals Plant at Paducah Site February 21, 2013 - 12:00pm Addthis The Metals Plant is shown before workers removed panels from the structure ln 2012. The Metals Plant is shown before workers removed panels from the structure ln 2012. Workers remove panels from the Metals Plant in September 2012. Workers remove panels from the Metals Plant in September 2012. About half of the complex was demolished by the end of December 2012, ahead of

  2. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Secretary Chu to deliver remarks at new nuclear reactors site in Waynesboro, tour nuclear energy innovation hub in Oak Ridge

  3. Chu Visits Site of America�s First New Nuclear Reactor in Three Decades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2012 Chu Visits Site of America�s First New Nuclear Reactor in Three Decades Energy Secretary Announces New Nuclear Energy Research Grants and Next Steps on Used Fuel Recommendations WASHINGTON, D.C. � Just two days after the Department of Energy requested more than $770 million for nuclear energy in 2013, U.S. Secretary of Energy Steven Chu visited the Vogtle nuclear power plant in Waynesboro, Georgia and Oak Ridge National Laboratory to highlight the steps the Obama Administration is

  4. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect (OSTI)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  5. nevada national security site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nevada national security site NNSA Statement Regarding Nevada National Security Site Management & Operating Contract WASHINGTON - On August 26, 2016, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) awarded the contract for the management and operation of the Nevada National Security Site (NNSS) to Nevada Site Science Support and Technologies Corporation (NVS3T). The... NNSA Awards Nevada National Security Site Management & Operating Contract to NVS3T

  6. Rocky Flats Plant Site Environmental Report for 1992

    SciTech Connect (OSTI)

    Cirrincione, D.A.; Erdmann, N.L.

    1992-12-31

    The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.

  7. Industry Participation Sought for Design of Next Generation Nuclear Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant

  8. DOE Announces Loan Guarantee Applications for Nuclear Power Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction | Department of Energy Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The

  9. Savannah River Site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Tritium facilities at SRS to supply and process tritium, a radioactive form of hydrogen gas that is a vital component of nuclear weapons. The NNSA-SRS loads tritium and...

  10. Power plant emissions verified remotely at Four Corners sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power plant emissions verified remotely Power plant emissions verified remotely at Four Corners sites The study is the first to show that space-based techniques can successfully verify international regulations on fossil energy emissions. May 19, 2014 The Four Corners coal-fired power plant, near Farmington, N.M. is a major source of pollutants, with measurements confirmed by Los Alamos National Laboratory researchers. The Four Corners coal-fired power plant, near Farmington, N.M. is a major

  11. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  12. Global samples from nuclear contamination sites reveal unpredicted uranium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and plutonium behavior Global samples reveal unpredicted uranium and plutonium behavior Global samples from nuclear contamination sites reveal unpredicted uranium and plutonium behavior Knowing how a chemical in soil reacts and transforms over time in response to neighboring elements, weather and heat is essential in determining whether that chemical is hazardous. June 15, 2015 Workers on a cleanup site at DOE's Hanford Site in southeastern Washington State, one of several sites sampled for

  13. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  14. Idaho Site Taps Old World Process to Treat Nuclear Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    IDAHO FALLS, Idaho – The EM program at the Idaho site is using an age-old process to treat transuranic (TRU) waste left over from nuclear reactor experiments.

  15. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect (OSTI)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  16. Federal Register Notice: National Nuclear Security Administration Site-Wide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM) | Department of Energy Register Notice: National Nuclear Security Administration Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM) Federal Register Notice: National Nuclear Security Administration Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (SNL/NM) Federal Register / Vol. 76, No. 156 / Friday, August 12, 2011 / Notices.

  17. Nevada Test Site Contract Process Announced | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition | National Nuclear Security Administration | (NNSA) Nevada National Security Site Management and Operating (M&O) Contract Competition Contract Competition Home Page Welcome to the National Nuclear Security Administration's website for the Nevada National Security Site (NNSS) M&O Contract Competition. The NNSS is a geographically diverse outdoor testing, training, and evaluation complex situated on approximately 1,360 square miles. The facility helps ensure the security of

  18. Savannah River Site | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Savannah River Site NNSA operates facilities at the Savannah River Site to supply and process tritium, a radioactive form of hydrogen that is a key component of nuclear weapons. SRS loads tritium and non-tritium reservoirs; including reclamation of previously used tritium reservoirs, processing of reservoirs; recycling, extraction, and enrichment of tritium gas and lab operations. SRS also plays a critical role in NNSA's nonproliferation missions. SRS is run by Savannah River Nuclear Solutions.

  19. Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites

    Broader source: Energy.gov [DOE]

    In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites.

  20. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  1. Preproposal Conference & Site Tour | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Preproposal Conference & Site Tour Preproposal Conference and Site Tour, January 7, 2015 The preproposal conference and site tour will be held at Kansas City, Missouri on January 7, 2015. A recap of solicitation provision L-34 and additional details follow. L-34 PLANT TOUR AND PREPROPOSAL CONFERENCE A site tour to provide information regarding the mission and programs of the National Security Campus is planned to be held at the National Security Campus in Kansas

  2. National Nuclear Security Administration Nevada Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... classified low-level and mixed radioactive wastes from Department of Defense (DoD) sites. ... is directed by Statute." 6. ACRONYMS AEC DoD: DOE: ERDA LLW: NNSNNSO: M&O: MLLW: NSTec: ...

  3. Worker Involvement Improves Safety at Hanford Site's Plutonium Finishing Plant

    Broader source: Energy.gov [DOE]

    Employees at the Hanford site are working together to find new and innovative ways to stay safe at the Plutonium Finishing Plant, one of the site’s most complex decommissioning projects.

  4. Glovebox Removal at Hanford Site's Plutonium Finishing Plant Winding Down

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – At the Plutonium Finishing Plant on the Hanford Site, crews with EM contractor CH2M HILL Plateau Remediation Company are in the process of removing the last of the gloveboxes from the facility before demolition begins.

  5. Hanford Site Prepares for Completion of Plutonium Finishing Plant Demolition

    Office of Energy Efficiency and Renewable Energy (EERE)

    RICHLAND, Wash. – Work crews are nearly done preparing for the Plutonium Finishing Plant (PFP) demolition, a major remediation project that reduces risk to human health and the environment and lowers lifecycle costs for the Hanford Site.

  6. National Nuclear Security Administration, Nevada Site Offce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | National Nuclear Security Administration | (NNSA) Nation's Radiological Assistance Program teams practice emergency response Thursday, March 31, 2016 - 11:05am NNSA Blog Radiological Assistance Program (RAP) teams from around the country gathered in Albuquerque in late March as part of RAP Training for Emergency Response (RAPTER). This training consists of an intensive series of drills conducted four times a year to provide recertification for members of Department of Energy (DOE)/National

  7. Pinellas Plant annual site environmental report for calendar year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-10

    Martin Marietta Specialty Components, Inc., and the US Department of Energy are committed to successfully administering a high quality Environmental Management Program at the Pinellas Plant in Pinellas County, Florida. Part of this commitment includes accurately documenting and communicating to the Pinellas Plant stakeholder the results of their environmental compliance and monitoring activities. The Annual Site Environmental Report presents a comprehensive summary of the results of the environmental monitoring, waste management, and environmental restoration programs at the Pinellas Plant for 1993. This report also includes the plant`s performance in the areas of compliance with applicable regulatory requirements and standards and identifies major environmental management program initiatives and accomplishments for 1993.

  8. Rocky Flats Plant Site Environmental Report: 1993 Highlights

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The Rocky Flats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report.

  9. Plutonium Processing Plant Deactivated | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Plutonium Processing Plant Deactivated Plutonium Processing Plant Deactivated Hanford, WA The Plutonium Uranium Extraction Facility (PUREX), the largest of the Nation's Cold War plutonium processing plants, is deactivated a year ahead of schedule

  10. Savannah river site | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Savannah river site On Womens Equality Day, we celebrate NNSA's talented Women in STEM NNSA's systems administrators keep the computers running For Systems Administrator (SysAdmin) Day, meet some of the men & women keeping NNSA going. Thanks for all you do! Michelle Swinkels, Senior Systems and Network Technologist at NNSA's Lawrence Livermore National Laboratory What excites you about your work for NNSA? I'... NNSA innovation fuels space exploration Today, in accordance with a 1971

  11. Pinellas Plant annual site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    1996-05-01

    Lockheed Martin Specialty Components, Inc., and the US Department of Energy are committed to successfully administering a high-quality Environmental, Safety and Health Program at the Pinellas Plant in Pinellas County, Florida. Part of this commitment includes accurately documenting and communicating to the Pinellas Plant stakeholders the results of the Pinellas Plant`s environmental compliance and monitoring activities. The Annual Site Environmental Report presents a comprehensive summary of the results of the Environmental Monitoring, Waste Management, and Environmental Restoration Programs at the Pinellas Plant for 1995. This report also includes the plant`s performance in the areas of compliance with applicable regulatory requirements and standards and identifies major Environmental, Safety and Health Program initiatives and accomplishments for 1995. As a result of the end of the Department of Energy`s Defense Programs mission (weapons production) on September 30, 1994, considerable changes at the Pinellas Plant are occurring. The Department of Energy`s Environmental Management is now the landlord of the Pinellas Plant to facilitate the plant`s new mission of transition to alternate use in support of economic development and safe shutdown. The Department of Energy sold the Pinellas Plant to the Pinellas County Industry Council in March 1995, and it is leasing back a portion of the plant through September 1997, to complete the safe shutdown and transition activities.

  12. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.; Massaro, Lawrence M.; Jensen, Philip J.

    2015-09-30

    A preliminary evaluation of removing spent nuclear fuel (SNF) from 13 shutdown nuclear power reactor sites was conducted. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, San Onofre, and Vermont Yankee. The evaluation was divided into four components: (1) characterization of the SNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory, (2) a description of the on-site infrastructure and conditions relevant to transportation of SNF and GTCC waste, (3) an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing SNF and GTCC waste, including identification of gaps in information, and (4) an evaluation of the actions necessary to prepare for and remove SNF and GTCC waste. Every site was found to have at least one off-site transportation mode option for removing its SNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.

  13. Nuclear plant-aging research on reactor protection systems

    SciTech Connect (OSTI)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  14. Mesoscale to plant-scale models of nuclear waste reprocessing.

    SciTech Connect (OSTI)

    Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

    2010-09-01

    Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

  15. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Portsmouth Sites Advance Operations at DUF6 Plants Paducah and Portsmouth Sites Advance Operations at DUF6 Plants November 1, 2011 - 12:00pm Addthis First cylinder enters plant. First cylinder enters plant. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants First cylinder enters plant. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants Paducah and Portsmouth - Babcock & Wilcox Conversion Services (BWCS) began work at the Paducah and Portsmouth sites in

  16. Method To Monitor Nuclear Power Plant Risk from Transmission Grid Conditions

    SciTech Connect (OSTI)

    B. Gregg; K Canavan

    2004-10-30

    This report examines a method to monitor and trend the transmission grid in the local vicinity of a nuclear o other generating station. The method addresses the potential for a loss of off-site power following a plant trip or a loss-of-coolant accident.

  17. Nevada National Security Site | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Nevada National Security Site August 23, 2010 The primary mission of the National Nuclear Security Administration (NNSA) is to maintain the safety, security and effectiveness of the nation's nuclear deterrent through surveillance programs and life extension campaigns. Exercising the skills and capabilities required to accomplish that mission provide the nation with a unique capability to support a wide variety of additional national security missions. To maximize this potential, NNSA

  18. P.C. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; BWR...

    Office of Scientific and Technical Information (OSTI)

    Erosioncorrosion-induced pipe wall thinning in US Nuclear Power Plants Wu, P.C. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; BWR TYPE REACTORS; PIPES; CORROSION; EROSION;...

  19. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  20. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  1. Underground Facility at Nevada National Security Site | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Underground Facility at Nevada National Security Site The U1a Complex is an underground laboratory at the Nevada National Security Site used for dynamic experiments with special nuclear material (SNM) and other weapon materials. The Complex provides an infrastructure of high-bandwidth diagnostics, data acquisition, timing and firing, control and monitor systems capable of supporting experiments designed to acquire information on fundamental materials

  2. Plan for addressing issues relating to oil shale plant siting

    SciTech Connect (OSTI)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.

    1987-09-01

    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

  3. Seismic safety margins research program. Phase I. Final report: plant/site selection and data collection (Project I)

    SciTech Connect (OSTI)

    Chuang, T. Y.

    1981-05-01

    Project I of Phase I of the Seismic Safety Margins Research Program (SSMRP) comprised two parts: the selection of a representative nuclear power plant/site for study in Phase I and the collection of data needed by the other SSMRP projects. Unit 1 of the Zion Nuclear Power Plant in Zion, Illinois, was selected for the SSMRP Phase I studies. The Zion plant and its site were found to be reasonably representative of operating and future plants with regard to its nuclear steam supply system; the type of containment structure (prestressed concrete); its electrical capacity (1100 MWe); its location (the Midwest); the peak seismic accelaration used for design (0.17g); and the properties of the underlying soil (the low-strain shear-wave velocity is 1650 ft/s in a 50- to 100-ft-thick layer of soil overlying sedimentary bedrock).

  4. Portsmouth Gaseous Diffusion Plant annual site environmental report for 1993

    SciTech Connect (OSTI)

    Horak, C.M.

    1994-11-01

    This calendar year (CY) 1993 annual report on environmental monitoring of the US Department of Energy`s (DOE`s) Portsmouth Gaseous Diffusion Plant (Portsmouth) and its environs consists of three separate documents: a summary pamphlet for the general public; a more detail discussion and of compliance status, data, and environmental impacts (this document); and a volume of detailed data that is available on request. The objectives of this report are to report compliance status during 1993; provide information about the plant site and plant operations; report 1993 monitoring data for the installation and its environs that may have been affected by operations on the plant site; document information on input and assumptions used in calculations; provide trend analyses (where appropriate) to indicate increases and decreases in environmental impact, and provide general information on quality assurance for the environmental monitoring program.

  5. Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Touts Robust Economy | Department of Energy Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building

  6. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect (OSTI)

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  7. Nuclear Site Security in the Event of Terrorist Activity

    SciTech Connect (OSTI)

    Thomson, M.L.; Sims, J.

    2008-07-01

    This paper, presented as a poster, identifies why ballistic protection should now be considered at nuclear sites to counter terrorist threats. A proven and flexible form of multi purpose protection is described in detail with identification of trial results that show its suitability for this role. (authors)

  8. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect (OSTI)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  9. Technical considerations in repowering a nuclear plant for fossil fueled operation

    SciTech Connect (OSTI)

    Patti, F.J.

    1996-03-01

    Repowering involves replacement of the reactor by a fossil fuel source of steam. This source can be a conventional fossil fueled boiler or the heat recovery steam generator (HRSG) on a gas turbine exhaust. The existing steam turbine plant is used to the extent possible. Alternative fuels for repowering a nuclear plant are coal, natural gas and oil. In today`s world oil is not usually an alternative. Selection of coal or natural gas is largely a matter of availability of the fuel near the location of the plant. Both the fossil boiler and the HRSG produce steam at higher pressures and temperatures than the throttle conditions for a saturated steam nuclear turbine. It is necessary to match the steam conditions from the new source to the existing turbine as closely as possible. Technical approaches to achieve a match range from using a topping turbine at the front end of the cycle to attemperation of the throttle steam with feedwater. The electrical output from the repowered plant is usually greater than that of the original nuclear fueled design. This requires consideration of the ability to use the excess electricity. Interfacing of the new facility with the existing turbine plant requires consideration of facility layout and design. Site factors must also be considered, especially for a coal fired boiler, since rail and coal handling facilities must be added to a site for which these were not considered. Additional site factors that require consideration are ash handling and disposal.

  10. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  11. An Integrated Site-Wide Assessment of Nuclear Wastes to Remain at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Morse, J.G.; Bryce, R.W.; Hildebrand, R.D.; Kincaid, C.T.

    2004-10-06

    Since its creation in 1943 until 1988, the Hanford Site, a facility in the U.S. Department of Energy (DOE) nuclear weapons complex was dedicated to the production of weapons grade plutonium and other special nuclear materials. The Hanford Site is located in eastern Washington State and is bordered on the north and east by the Columbia River. Decades of creating fuel, irradiating it in reactors, and processing it to recover nuclear material left numerous waste sites that involved the discharge of contaminated liquids and the disposal of contaminated solid waste. Today, the primary mission of the Hanford Site is to safely cleanup and manage the site's legacy waste. A site-wide risk assessment methodology has been developed to assist the DOE, as well as state and federal regulatory agencies, in making decisions regarding needed remedial actions at past waste sites, and safe disposal of future wastes. The methodology, referred to as the System Assessment Capability (SAC), utilizes an integrated set of models that track potential contaminants from inventory through vadose zone, groundwater, Columbia River and air pathways to human and ecological receptors.

  12. Analysis of nuclear power plant component failures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  13. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites Prepared for U.S. Department of Energy Nuclear Fuels Storage and Transportation Planning Project Steven J. Maheras (PNNL) Ralph E. Best (PNNL) Steven B. Ross (PNNL) Kenneth A. Buxton (PNNL) Jeffery L. England (SRNL) Paul E. McConnell (SNL) Lawrence M. Massaro (FRA) Philip J. Jensen (PNNL) October 1, 2014 FCRD- NFST-2014-000091 Rev. 1 PNNL-22676 Rev. 4 DISCLAIMER This information was prepared as an account of work sponsored

  14. Waste Cleanup at DOE Nuclear Sites | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Research to Support Waste Cleanup at DOE Nuclear Sites Energy Frontier Research Centers ... Energy Department Awards 40 Million for Research to Support Waste Cleanup at DOE Nuclear ...

  15. NNSA Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty...

    National Nuclear Security Administration (NNSA)

    Sites Host Head of Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Friday, ... Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO); and NNSA ...

  16. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    "Seabrook Unit 1","1,247","10,910",100.0,"NextEra Energy Seabrook LLC" "1 Plant 1 Reactor","1,247","10,910",100.0 "Note: Totals may not equal sum of components due to ...

  17. Freedom of Information Act Related Sites | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Related Sites DOE Headquarters FOIA Page DOE Office of Hearings and Appeals Searchable index of FOIA and Privacy Act appeals A Citizen's Guide on Using the Freedom of Information Act and the Privacy Act of 1974 to Request Government Records Department of Justice (DOJ) Office of Information and Privacy Includes the DOJ Guide to the FOIA, Overview of the PA, Your Right to Federal Records, FOIA Updates, and FOIA Annual Reports Defense Nuclear Facilities Safety Board An

  18. NNSA Site Receives Award for Environmental Stewardship | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Site Receives Award for Environmental Stewardship April 30, 2009 WASHINGTON, DC - The National Nuclear Security Administration (NNSA) today congratulated its NNSA's Y-12 National Security Complex for receiving a prestigious White House Closing the Circle award, which recognizes federal leadership in environmental sustainability. Y-12 was honored for its innovation on pollution prevention. "I congratulate Y-12 for its continued support in maintaining

  19. Concept Paper Savannah River Nuclear Solutions, LLC Savannah River Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper Savannah River Nuclear Solutions, LLC Savannah River Site Aiken, SC 29808 Michael S. Navetta, PE Manager- Energy Park Initiative (803) 952-8806 michael.navetta@srs.gov U.S. EnergyFreedomCenter PREDECISIONAL DRAFT Today We Can Start To Unshackle America Decades of debate for ending America's dependence on foreign fossil fuels, climate change and environmentally positive energy has produced a myriad of technologies that independently offer a partial solution. Applying existing technologies

  20. Waste Treatment & Immobilization Plant Project - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment Plant About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor

  1. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect (OSTI)

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  2. Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes … October 2015

    Office of Environmental Management (EM)

    Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes October 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  3. Enterprise Assessments Assessment of Construction Quality at the Hanford Site Waste Treatment and Immobilization Plant … June 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Hanford Site Waste Treatment and Immobilization Plant June 2016 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  4. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  5. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1989-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  6. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Benkovitz, C.

    1981-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  7. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  8. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect (OSTI)

    Naus, D.J.; Oland, C.B.; Ellingwood, B.R.

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  9. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  10. Service experience and reliability improvement: Nuclear, fossil, and petrochemical plants

    SciTech Connect (OSTI)

    Bamford, W.H.; Cipolla, R.C.; Warke, W.R.; Onyewuenyi, O.A.; Bagnoli, D.; Phillips, J.H.; Prager, M.; Becht, C. IV

    1994-01-01

    This publication contains papers presented at the following four symposia conducted at the 1994 Pressure Vessels and Piping Conference in Minneapolis, Minnesota, June 19--23: Service Experience in Nuclear Plants; Risk-Based Inspection and Evaluation; Service Experience in Operating Fossil Power Plants; and Service Experience in Petrochemical Plants. These symposia were sponsored by the Materials and Fabrication and the Design and Analysis Committees of the ASME Pressure Vessels and Piping Division. The objective of these symposia was to disseminate information on issues and degradation that have resulted from the operation of nuclear, fossil, and petrochemical power plants, as well as related reliability issues. Thirty-nine papers have been processed separately for inclusion on the data base.