National Library of Energy BETA

Sample records for nuclear plant operators

  1. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Demazière, Christophe

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed of Reactor Physics SE-41296 Gothenburg, Sweden GABOR PÓR Budapest University of Technology and Economics H

  2. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed of Reactor Physics SE-41296 Gothenburg, Sweden GABOR PÓR Budapest University of Technology and Economics H

  3. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics, localization algorithm LOCALIZATION OF A VIBRATING CONTROL ROD PIN IN PRESSURIZED WATER REACTORS USING. The possibility of the localization of a vibrating control rod pin in a pressurized water reactor control assembly

  4. Construction or Extended Operation of Nuclear Plant (Vermont)

    Broader source: Energy.gov [DOE]

    Any petition for approval of construction of a nuclear energy generating plant within the state, or any petition for approval of the operation of a nuclear energy generating plant beyond the date...

  5. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  6. Nuclear power plant control room operator control and monitoring tasks

    SciTech Connect (OSTI)

    Bovell, C.R.; Beck, M.G. [Concord Associates, Inc., Knoxville, TN (United States); Carter, R.J. [Oak Ridge National Labs., TN (United States)

    1998-07-01

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters, graphic recorders, digital displays and counters, light indicators, visual and audio alarms, and cathode-ray tubes.

  7. Cognitive skill training for nuclear power plant operational decision making

    SciTech Connect (OSTI)

    Mumaw, R.J.; Swatzler, D.; Roth, E.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Thomas, W.A. [Quantum Technologies, Inc., Oak Brook, IL (United States)

    1994-06-01

    Training for operator and other technical positions in the commercial nuclear power industry traditionally has focused on mastery of the formal procedures used to control plant systems and processes. However, decisionmaking tasks required of nuclear power plant operators involve cognitive skills (e.g., situation assessment, planning). Cognitive skills are needed in situations where formal procedures may not exist or may not be as prescriptive, as is the case in severe accident management (SAM). The Westinghouse research team investigated the potential cognitive demands of SAM on the control room operators and Technical Support Center staff who would be most involved in the selection and execution of severe accident control actions. A model of decision making, organized around six general cognitive processes, was developed to identify the types of cognitive skills that may be needed for effective performance. Also, twelve SAM scenarios were developed to reveal specific decision-making difficulties. Following the identification of relevant cognitive skills, 19 approaches for training individual and team cognitive skills were identified. A review of these approaches resulted in the identification of general characteristics that are important in effective training of cognitive skills.

  8. COMPUTERIZATION OF NUCLEAR POWER PLANT EMERGENCY OPERATING PROCEDURES.

    SciTech Connect (OSTI)

    OHARA,J.M.; HIGGINS,J.; STUBLER,W.

    2000-07-30

    Emergency operating procedures (EOPs) in nuclear plants guide operators in handling significant process disturbances. Historically these procedures have been paper-based. More recently, computer-based procedure (CBP) systems have been developed to improve the usability of EOPs. The objective of this study was to establish human factors review guidance for CBP systems based on a technically valid methodology. First, a characterization of CBPs was developed for describing their key design features, including both procedure representation and functionality. Then, the research on CBPs and related areas was reviewed. This information provided the technical basis on which the guidelines were developed. For some aspects of CBPs the technical basis was insufficient to develop guidance; these aspects were identified as issues to be addressed in future research.

  9. EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environemental impact of a proposal to continue operation of the Pantex Plant and associated storage of nuclear weapon components. Alternatives considered include: ...

  10. Analysis of Nuclear Power Plant Operating Costs: A 1995 Update, An

    Reports and Publications (EIA)

    1995-01-01

    This report provides an analysis of nuclear power plant operating costs. The Energy Information Administration published three reports on this subject during the period 1988-1995.

  11. Identification of good practices in the operation of nuclear power plants

    E-Print Network [OSTI]

    Chen, Haibo, 1975-

    2005-01-01

    This work developed an approach to diagnose problems and identify good practices in the operation of nuclear power plants using the system dynamics technique. The research began with construction of the ORSIM (Nuclear Power ...

  12. Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon

    E-Print Network [OSTI]

    Boyer, Edmond

    Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon Gipsa of nuclear power plants. Unfortunately, today's policies present a major drawback. Indeed, these monitoring is illustrated through experimental data. 1. Introduction Nuclear power provides about 14% of the world

  13. Use of probabilistic risk assessment (PRA) in expert systems to advise nuclear plant operators and managers

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1988-01-01

    The use of expert systems in nuclear power plants to provide advice to managers, supervisors and/or operators is a concept that is rapidly gaining acceptance. Generally, expert systems rely on the expertise of human experts or knowledge that has been modified in publications, books, or regulations to provide advice under a wide variety of conditions. In this work, a probabilistic risk assessment (PRA)/sup 3/ of a nuclear power plant performed previously is used to assess the safety status of nuclear power plants and to make recommendations to the plant personnel. 5 refs., 1 fig., 2 tabs.

  14. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States) Oak Ridge National Lab., TN (United States))

    1990-01-01

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of noise'' data from TVA's Sequoyah Nuclear Power Plant, and (5) examination of the NRC's database of Letter Event Reports'' for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

  15. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-09-20

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

  16. Optimization and operation of a cementation plant in the Atucha I Nuclear Power Plant

    SciTech Connect (OSTI)

    Schifferdecker, H. [Kraftanlagen Energie- und Industrieanlagen Heidelberg (Germany)

    1995-12-31

    The quality of conditioned radioactive waste must constantly be improved to keep pace with technical progress. To meet these ever-increasing demands it is necessary to modernize existing plants for the treatment of radioactive waste. The Atucha I NPP has been in operation since 1974 and the cementation plant no longer conformed with today`s requirements regarding safe operation and product quality. The optimization of the plant mainly involved the execution of the following points: Dismantling of existing plant sections to enable the installation of new and supplementary components; Installation of new and supplementary plant sections (components); Integration of the new system into the existing plant; and Commissioning of the new plant and operation of the plant using the optimized process for the duration of 60 calendar days. 200 barrels were to be cemented during this period.

  17. An analysis of nuclear power plant operating costs: A 1995 update

    SciTech Connect (OSTI)

    1995-04-21

    Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

  18. NUCLEAR PLANT AND CONTROL

    E-Print Network [OSTI]

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: software require- ments, safety analysis, formal for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital

  19. Use of neural networks in the operation of nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

    1990-01-01

    Application of neural networks to the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (a) diagnosing specific abnormal conditions, (b) detection of the change of mode of operation, (c) signal validation, (d) monitoring of check valves, (e) modeling of the plant thermodynamics, (f) emulation of core reload calculations, (g) analysis of temporal sequences in NRC's licensee event report,'' (h) monitoring of plant parameters, and (i) analysis of plant vibrations. Each of these projects and its status are described briefly in this article. the objective of each of these projects is to enhance the safety and performance of nuclear plants through the use of neural networks. 6 refs.

  20. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  1. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  2. Annual radiological environmental monitoring report: Watts Bar Nuclear Plant, 1992. Operations Services/Technical Programs

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. Exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment as a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment.

  3. Nuclear criticality safety evaluation of large cylinder cleaning operations in X-705, Portsmouth Gaseous diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.; Lutz, H.F.

    1995-06-01

    This report evaluates nuclear criticality safety for large cylinder cleaning operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current cleaning procedures and required hardware/equipment is presented, and documentation for large cylinder cleaning operations is identified and described. Control parameters, design features, administrative controls, and safety systems relevant to nuclear criticality are discussed individually, followed by an overall assessment based on the Double Contingency Principle. Recommendations for enhanced safety are suggested, and issues for increased efficiency are presented.

  4. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  5. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  6. Development of a hybrid intelligent system for on-line real-time monitoring of nuclear power plant operations

    E-Print Network [OSTI]

    Yildiz, Bilge, 1976-

    2003-01-01

    A nuclear power plant (NPP) has an intricate operational domain involving systems, structures and components (SSCs) that vary in scale and complexity. Many of the large scale SSCs contribute to the lost availability in the ...

  7. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants. Summary

    SciTech Connect (OSTI)

    Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

    1990-12-31

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of ``noise`` data from TVA`s Sequoyah Nuclear Power Plant, and (5) examination of the NRC`s database of ``Letter Event Reports`` for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

  8. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  9. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  10. EEE 564 Interdisciplinary Nuclear Power Operations (3 hrs) Catalog Description: Nuclear power plant systems. Study of the interrelationship and propagation of

    E-Print Network [OSTI]

    Zhang, Junshan

    EEE 564 Interdisciplinary Nuclear Power Operations (3 hrs) Catalog Description: Nuclear power plant (Generation II) pressurized water reactors (PWRs) and boiling water reactors (BWRs) as well as the new Electric's advanced boiling water reactor (ABWR) and economic simplified boiling water reactor (ESBWR

  11. Lessons Learned on University Education Programs of Chemical Engineering Principles for Nuclear Plant Operations - 13588

    SciTech Connect (OSTI)

    Ryu, Jun-hyung

    2013-07-01

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a huge opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)

  12. Use of neural networks to identify transient operating conditions in nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.; Guo, Z.

    1989-01-01

    A technique using neural networks as a means of diagnosing specific abnormal conditions or problems in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of instrument readings, which can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault or problem. 3 refs., 2 figs., 4 tabs.

  13. System dynamics modeling for human performance in nuclear power plant operation

    E-Print Network [OSTI]

    Chu, Xinyuan

    2006-01-01

    Perfect plant operation with high safety and economic performance is based on both good physical design and successful organization. However, in comparison with the affection that has been paid to technology research, the ...

  14. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    SciTech Connect (OSTI)

    1995-08-01

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  15. Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

  16. Operating strategy generators for nuclear reactors

    SciTech Connect (OSTI)

    Solovyev, D. A., E-mail: and@est.mephi.ru; Semenov, A. A.; Shchukin, N. V. [National Research Nuclear University MEPhI (Russian Federation)

    2011-12-15

    Operating strategy generators, i.e., the software intended for increasing the efficiency of work of nuclear power plant operators, are discussed. The possibilities provided by the domestic and foreign operating-strategy generators are analyzed.

  17. The effects of stress on nuclear power plant operational decision making and training approaches to reduce stress effects

    SciTech Connect (OSTI)

    Mumaw, R.J.

    1994-08-01

    Operational personnel may be exposed to significant levels of stress during unexpected changes in plant state an plant emergencies. The decision making that identifies operational actions, which is strongly determined by procedures, may be affected by stress, and performance may be impaired. ER report analyzes potential effects of stress in nuclear power plant (NPP) settings, especially in the context of severe accident management (SAM). First, potential sources of stress in the NPP setting are identified. This analysis is followed by a review of the ways in which stress is likely to affect performance, with an emphasis on performance of cognitive skills that are linked to operational decision making. Finally, potential training approaches for reducing or eliminating stress effects are identified. Several training approaches have the potential to eliminate or mitigate stress effects on cognitive skill performance. First, the use of simulated events for training can reduce the novelty and uncertainty that can lead to stress and performance impairments. Second, training to make cognitive processing more efficient and less reliant on attention and memory resources can offset the reductions in these resources that occur under stressful conditions. Third, training that targets crew communications skills can reduce the likelihood that communications will fail under stress.

  18. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  19. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

  20. Advanced Pipe Replacement Procedure for a Defective CRDM Housing Nozzle Enables Continued Normal Operation of a Nuclear Power Plant

    SciTech Connect (OSTI)

    Gilmore, Geoff; Becker, Andrew [Climax Portable Machine Tools, Inc., 2712 East Second Street, Newberg, OR 97132 (United States)

    2006-07-01

    During the 2003 outage at the Ringhals Nuclear Plant in Sweden, a leak was found in the vicinity of a Control Rod Drive Mechanism (CRDM) housing nozzle at Unit 1. Based on the ALARA principle for radioactive contamination, a unique repair process was developed. The repair system includes utilization of custom, remotely controlled GTAW-robots, a CNC cutting and finishing machine, snake-arm robots and NDE equipment. The success of the repair solution was based on performing the machining and welding operations from the inside of the SCRAM pipe through the CRDM housing since accessibility from the outside was extremely limited. Before the actual pipe replacement procedure was performed, comprehensive training programs were conducted. Training was followed by certification of equipment, staff and procedures during qualification tests in a full scale mock-up of the housing nozzle. Due to the ingenuity of the overall repair solution and training programs, the actual pipe replacement procedure was completed in less than half the anticipated time. As a result of the successful pipe replacement, the nuclear power plant was returned to normal operation. (authors)

  1. Aging and service wear of air-operated valves used in safety-related systems at nuclear power plants

    SciTech Connect (OSTI)

    Cox, D.F.; McElhaney, K.L.; Staunton, R.H.

    1995-05-01

    Air-operated valves (AOVs) are used in a variety of safety-related applications at nuclear power plants. They are often used where rapid stroke times are required or precise control of the valve obturator is required. They can be designed to operate automatically upon loss of power, which is often desirable when selecting components for response to design basis conditions. The purpose of this report is to examine the reported failures of AOVs and determine whether there are identifiable trends in the failures related to predictable causes. This report examines the specific components that comprise a typical AOV, how those components fail, when they fail, and how such failures are discovered. It also examines whether current testing frequencies and methods are effective in predicting such failures.

  2. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  3. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  4. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  5. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  6. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  7. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  8. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  9. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  10. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  11. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  12. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  13. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  14. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  15. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  16. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  17. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  18. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  19. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  20. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  1. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  2. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  3. Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 12

    SciTech Connect (OSTI)

    Tam, P.S.

    1993-10-01

    Supplement No. 12 to the Safety Evaluation Report for the application filed by the Tennessee Valley Authority for license to operate Watts Bar Nuclear Plant, Units 1 and 2, Docket Nos. 50-390 and 50-391, located in Rhea County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation of (1) additional information submitted by the applicant since Supplement No. 11 was issued, and (2) matters that the staff had under review when Supplement No. 11 was issued.

  4. Safety evaluation report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 14

    SciTech Connect (OSTI)

    Tam, P.S.

    1994-12-01

    Supplement No. 14 to the Safety Evaluation Report for the application filed by the Tennessee Valley Authority for license to operate Watts Bar Nuclear Plant, Units 1 and 2, Docket Nos. 50-390 and 50-391, located in Rhea County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation with additional information submitted by the applicant since Supplement No. 13 was issued, and matters that the staff had under review when Supplement No. 13 was issued.

  5. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  6. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  7. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  8. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  9. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  10. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  11. MAAP nuclear operations support applications

    SciTech Connect (OSTI)

    Dion, D.R. [Pacific Gas & Electric Co., San Francisco, CA (United States)

    1996-12-31

    This paper discusses some applications of the modular accident analysis program (both MAAP3 and MAAP4) at the Pacific Gas & Electric Company (PG&E). MAAP is used to analyze the twin-unit Diablo Canyon nuclear power plant (DCPP). DCPP has two four-loop Westinghouse pressurized water reactors (PWRs). Although MAAP was extensively used to support the individual plant examination for DCPP and it is being used to support the development of a plant-specific severe accident management program, MAAP has also been a very useful tool in the areas of postevent analysis, engineering support, and operations support. This paper presents some examples of the use of MAAP in all these areas: the so-called non-severe-accident areas.

  12. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing OF ST. LUCIE-2 at FLORIDA POWER & LIGHT COMPANY · Robert E. Uhrig 1974-1986 ­ Vice President, Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  13. Nuclear Plant Data Bank

    SciTech Connect (OSTI)

    Booker, C.P.; Turner, M.R.; Spore, J.W.

    1986-01-01

    The Nuclear Plant Data Bank (NPDB) is being developed at the Los Alamos National Laboratory to assist analysts in the rapid and accurate creation of input decks for reactor transient analysis. The NPDB will reduce the time and cost of the creation or modification of a typical input deck. This data bank will be an invaluable tool in the timely investigation of recent and ongoing nuclear reactor safety analysis. This paper discusses the status and plans for the NPDB development and describes its anticipated structure and capabilities.

  14. Advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  15. Results and insights of internal fire and internal flood analyses of the Surry Unit 1 Nuclear Power Plant during mid-loop operations

    SciTech Connect (OSTI)

    Chu, Tsong-Lun; Musicki, Z.; Kohut, P.

    1995-12-01

    During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). The objectives of the program are to assess the risks of severe accidents initiated during plant operational states (POSs) other than full power operation and to compare the estimated core damage frequencies (CDFs), important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program includes that of a Level 3 PRA for internal events and a Level 1 PRA for seismically induced and internal fire and flood induced core damage sequences. This paper summarizes the results and highlights of the internal fire and flood analysis documented in Volumes 3 and 4 of NUREG/CR-6144 performed for the Surry plant during mid-loop operation.

  16. Plant Operational Status - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation | Center for GasPhysics Physics PrintPicturePlant

  17. Development and operativity of a real-time radiological monitoring network centered on the nuclear power plant of Almaraz (Spain)

    SciTech Connect (OSTI)

    Baeza, A.; Miro, C.; Puerto, J.A. del; Rio, M. del; Ortiz, F.; Paniagua, J.M.

    1993-12-01

    This work presents the hardware and software characteristics of the environmental surveillance radiological network that has been installed around the nuclear power station of Almaraz (Spain). A description is given of the program RADLINE which allows radiological data to be logged in real time, and a study is made of the operativity of the network and the methodology followed in establishing the radiological pre-alert and alert levels.

  18. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  19. Requirements for Computer Based-Procedures for Nuclear Power Plant Field Operators Results from a Qualitative Study

    SciTech Connect (OSTI)

    Katya Le Blanc; Johanna Oxstrand

    2012-05-01

    Although computer-based procedures (CBPs) have been investigated as a way to enhance operator performance on procedural tasks in the nuclear industry for almost thirty years, they are not currently widely deployed at United States utilities. One of the barriers to the wide scale deployment of CBPs is the lack of operational experience with CBPs that could serve as a sound basis for justifying the use of CBPs for nuclear utilities. Utilities are hesitant to adopt CBPs because of concern over potential costs of implementation, and concern over regulatory approval. Regulators require a sound technical basis for the use of any procedure at the utilities; without operating experience to support the use CBPs, it is difficult to establish such a technical basis. In an effort to begin the process of developing a technical basis for CBPs, researchers at Idaho National Laboratory are partnering with industry to explore CBPs with the objective of defining requirements for CBPs and developing an industry-wide vision and path forward for the use of CBPs. This paper describes the results from a qualitative study aimed at defining requirements for CBPs to be used by field operators and maintenance technicians.

  20. Nuclear Power Plant Design Project

    E-Print Network [OSTI]

    Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global) .................................................................... 14 4.4 High Temperature Gas Reactor

  1. Nuclear power plant construction activity, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-24

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

  2. Impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants. Case study: PWR during routine operations

    SciTech Connect (OSTI)

    Moeller, M.P.; Martin, G.F.; Haggard, D.L.

    1986-01-01

    The purpose of this report is to present data in support of evaluating the impact of fuel cladding failure events on occupational radiation exposure. To determine quantitatively whether fuel cladding failure contributes significantly to occupational radiation exposure, radiation exposure measurements were taken at comparable locations in two mirror-image pressurized-water reactors (PWRs) and their common auxiliary building. One reactor, Unit B, was experiencing degraded fuel characterized as 0.125% fuel pin-hole leakers and was operating at approximately 55% of the reactor's licensed maximum core power, while the other reactor, Unit A, was operating under normal conditions with less than 0.01% fuel pin-hole leakers at 100% of the reactor's licensed maximum core power. Measurements consisted of gamma spectral analyses, radiation exposure rates and airborne radionuclide concentrations. In addition, data from primary coolant sample results for the previous 20 months on both reactor coolant systems were analyzed. The results of the measurements and coolant sample analyses suggest that a 3560-megawatt-thermal (1100 MWe) PWR operating at full power with 0.125% failed fuel can experience an increase of 540% in radiation exposure rates as compared to a PWR operating with normal fuel. In specific plant areas, the degraded fuel may elevate radiation exposure rates even more.

  3. Risk-informed incident management for nuclear power plants

    E-Print Network [OSTI]

    Smith, Curtis Lee, 1966-

    2002-01-01

    Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

  4. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...

  5. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  6. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  7. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  8. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

  9. Nuclear Power Plant Construction Activity, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-08-13

    Nuclear Power Plant Construction Activity 1985 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1985. This Report, which is updated annually, was prepared to respond to the numerous requests received by the Energy Information Administration for the data collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction.''

  10. NUCLEAR POWER PLANT Nuclear power plants have safety and security procedures in place and

    E-Print Network [OSTI]

    NUCLEAR POWER PLANT ACCIDENTS Nuclear power plants have safety and security procedures in place and are closely monitored by the Nuclear Regulatory Commission (NRC). An accident at a nuclear power plant could of nuclear power plant accidents? Radioactive materials in the plume from the nuclear power plant can settle

  11. Configuration management in nuclear power plants

    E-Print Network [OSTI]

    2003-01-01

    Configuration management (CM) is the process of identifying and documenting the characteristics of a facility's structures, systems and components of a facility, and of ensuring that changes to these characteristics are properly developed, assessed, approved, issued, implemented, verified, recorded and incorporated into the facility documentation. The need for a CM system is a result of the long term operation of any nuclear power plant. The main challenges are caused particularly by ageing plant technology, plant modifications, the application of new safety and operational requirements, and in general by human factors arising from migration of plant personnel and possible human failures. The IAEA Incident Reporting System (IRS) shows that on average 25% of recorded events could be caused by configuration errors or deficiencies. CM processes correctly applied ensure that the construction, operation, maintenance and testing of a physical facility are in accordance with design requirements as expressed in the d...

  12. Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications

    E-Print Network [OSTI]

    Heljanko, Keijo

    and control (I&C) systems play a crucial role in the operation of nuclear power plants (NPP) and other safety of the environment is covered. The reactor emergency cooling system is in use in an operating nuclear power plant is a reactor emergency cooling system in an operating nuclear power plant. 2. MODEL CHECKING METHODOLOGY

  13. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  14. Simulation of operational transients in a VVER-1000 nuclear power plant using the RELAP5/MOD3.2 computer program 

    E-Print Network [OSTI]

    Moscalu, Dionisie Radu

    1999-01-01

    A RELAP5/MOD3.2 nodalization model of a VVER-1OOO (V-320) nuclear power plant was updated, improved and validated against available experimental data. The data included integrated test results obtained from actual power plant testing. The steady...

  15. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  16. Safety of Nuclear Explosive Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-07

    This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

  17. Utilizing 3D-visualization to apply compulsory ALARA principles in nuclear power plant design and day-to-day operation

    SciTech Connect (OSTI)

    Sanders, R. L.; Lake, J. E. [Oak Ridge National Laboratory, Computational Sciences and Engineering Div., Mail Stop 6085, One Bethel Valley Road, Oak Ridge, TN 37831 (United States)

    2006-07-01

    The development of an advanced visualization and simulation tool to support both design as well as day-to-day operation is presented. This tool exploits cutting edge computer graphics, physics-based effects modeling, virtual reality, and gaming technologies to establish a system that can eventually be used for the administrative planning and training of plant operators and design engineers. (authors)

  18. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  19. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  20. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering] [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering; Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering] [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1991-12-31

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  1. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. (Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering); Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering)

    1991-01-01

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  2. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  3. Cesium Removal at Fukushima Nuclear Plant - 13215

    SciTech Connect (OSTI)

    Braun, James L.; Barker, Tracy A. [Avantech Incorporated, 95A Sunbelt Blvd Columbia, SC 29203 (United States)] [Avantech Incorporated, 95A Sunbelt Blvd Columbia, SC 29203 (United States)

    2013-07-01

    The Great East Japan Earthquake that took place on March 11, 2011 created a number of technical challenges at the Fukushima Daiichi Nuclear Plant. One of the primary challenges involved the treatment of highly contaminated radioactive wastewater. Avantech Inc. developed a unique patent pending treatment system that addressed the numerous technical issues in an efficient and safe manner. Our paper will address the development of the process from concept through detailed design, identify the lessons learned, and provide the updated results of the project. Specific design and operational parameters/benefits discussed in the paper include: - Selection of equipment to address radionuclide issues; - Unique method of solving the additional technical issues associated with Hydrogen Generation and Residual Heat; - Operational results, including chemistry, offsite discharges and waste generation. Results show that the customized process has enabled the utility to recycle the wastewater for cooling and reuse. This technology had a direct benefit to nuclear facilities worldwide. (authors)

  4. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce...

  5. Use of expert systems in nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1989-01-01

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  6. Nuclear plant-aging research on reactor protection systems

    SciTech Connect (OSTI)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  7. Organizational learning at nuclear power plants

    E-Print Network [OSTI]

    Carroll, John S.

    1991-01-01

    The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

  8. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Millstone","Nuclear","Dominion Nuclear Conn Inc",2102.5 2,"Middletown","Petroleum","...

  9. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2365.7 2,"PSEG Linden...

  10. Some aspects of nuclear power plant safety under war conditions

    SciTech Connect (OSTI)

    Stritar, A.; Mavko, B.; Susnik, J.; Sarler, B. (Jozef Stefan Inst., Ljubljana (Slovenia))

    1993-02-01

    In the summer of 1991, the Krsko nuclear power plant in Slovenia found itself in an area of military operations. This was probably the first commercial nuclear power plant to have been threatened by an attack by fighter jets. A number of never-before-asked questions had to be answered by the operating staff and supporting organizations. Some aspects of nuclear power plant safety under war conditions are described, such as the selection of the best plant operating state before the attack and the determination of plant system vulnerability and dose releases from the potentially damaged spent fuel in the spent-fuel pit. The best operating mode to which the plant should be brought before the attack is cold shutdown, and radiological consequences to the environment after the spent fuel is damaged and the water in the pit is lost are not very high. The problem of nuclear power plant safety under war conditions should be addressed in more detail in the future.

  11. Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  12. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect (OSTI)

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-01-01

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant's training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  13. Regression analysis of technical parameters affecting nuclear power plant performances

    SciTech Connect (OSTI)

    Ghazy, R.; Ricotti, M. E.; Trueco, P.

    2012-07-01

    Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

  14. Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2004-01-01

    Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

  15. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    and works in an office building. U.S. naval nuclear propulsion plants use a pressurized-water reactor design that has two basic systems: the primary system and the secondary...

  16. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A.

    2012-07-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  17. The Politically Correct Nuclear Energy Plant

    E-Print Network [OSTI]

    is Sustainable - Coal, Oil and Natural Gas · Natural Gas is a Clean Fuel - relative to what - coal? · RenewablesThe Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology are "clean and free"... · Conservation with sacrifice will work · There is no solution to nuclear waste

  18. Neural networks and their application to nuclear power plant diagnosis

    SciTech Connect (OSTI)

    Reifman, J. [Argonne National Lab., IL (United States). Reactor Analysis Div.

    1997-10-01

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.

  19. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  20. Peach Bottom and Vermont Yankee Nuclear Power Plants

    SciTech Connect (OSTI)

    NONE

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

  1. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect (OSTI)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  2. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    SciTech Connect (OSTI)

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  3. Operations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientificOmbudsTestimony| National Nuclear Security

  4. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937 2,"Navajo","Coal","Salt River...

  5. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  6. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, Robert W. (Richland, WA)

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  7. Predicting the severity of nuclear power plant transients by using genetic and nearest neighbor algorithms

    SciTech Connect (OSTI)

    Lin, J.; Bartal, Y.; Uhrig, R.E.

    1995-03-01

    Nuclear power plant status is monitored by a human operator. To enhance the operator`s capability to diagnose the nuclear power plant status in case of a transient, several systems were developed to identify the type of the transient. Few of them addressed the further question: how severe is the transient? In this paper, we explore the possibility of predicting the severity of a transient using genetic algorithms and nearest neighbor algorithms after its type has been identified.

  8. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W.

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

  9. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  10. Sun-Sentinel How Florida's nuclear plants compare to Japan's

    E-Print Network [OSTI]

    Fernandez, Eduardo

    of Concerned Scientists, which opposes nuclear power, at a discussion with reporters. The group said fourSun-Sentinel How Florida's nuclear plants compare to Japan's By Julie Patel March 17, 2011 01:35 PM What went wrong at the Fukushima nuclear plant in Japan and how are Florida's nuclear plants prepared

  11. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  12. PHYSICAL PLANT OPERATING POLICY AND PROCEDURE

    E-Print Network [OSTI]

    Gelfond, Michael

    natural gas supply contract and gas transportation agreement when required for Texas Tech UniversityPHYSICAL PLANT OPERATING POLICY AND PROCEDURE PP/OP 05.09: Gas Supply and Transportation Contract, 2010 Page 2 PP/OP 05.09 d. Gas Transportation Agreement - Two main gas transportation lines serve

  13. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect (OSTI)

    Gray, L.W.

    1986-10-04

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  14. Nuclear thermal rocket engine operation and control

    SciTech Connect (OSTI)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs.

  15. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  16. Online Monitoring of Plant Assets in the Nuclear Industry

    SciTech Connect (OSTI)

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  17. Nuclear Power - Operation, Safety and Environment 

    E-Print Network [OSTI]

    2011-01-01

    for Advanced Reactors 47 P. F. Frutuoso e Melo, I. M. S. Oliveira and P. L. Saldanha Chapter 4 Geodetic Terrestrial Observations for the Determination of the Stability in the Kr?ko Nuclear Power Plant Region 71 S. Sav?ek, T. Ambro?i? and D. Kogoj Chapter... Experience in Nuclear Steam Reheat 3 Eugene Saltanov and Igor Pioro Chapter 2 Integrated Approach for Actual Safety Analysis 29 Francesco D?Auria, Walter Giannotti and Marco Cherubini Chapter 3 LWR Safety Analysis and Licensing and Implications...

  18. Incidents at nuclear power plants caused by the human factor

    SciTech Connect (OSTI)

    Mashin, V. A.

    2012-09-15

    Psychological analysis of the causes of incorrect actions by personnel is discussed as presented in the report 'Methodological guidelines for analyzing the causes of incidents in the operation of nuclear power plants.' The types of incorrect actions and classification of the root causes of errors by personnel are analyzed. Recommendations are made for improvements in the psychological analysis of causes of incorrect actions by personnel.

  19. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect (OSTI)

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-12-31

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant`s training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  20. Department of Mechanical and Nuclear Engineering Spring 2012 East Campus Power Plant Deaerator Optimization

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 East Campus Power Plant Deaerator Optimization Overview In the East Campus Power plant a new Deaerator system has been installed. Approach Understand the inner-workings and operations of the power plant and the Deaerator system. Visit

  1. Review of maintenance personnel practices at nuclear power plants

    SciTech Connect (OSTI)

    Chockie, A.D.; Badalamente, R.V.; Hostick, C.J.; Vickroy, S.C.; Bryant, J.L.; Imhoff, C.H.

    1984-05-01

    As part of the Nuclear Regulatory Commission (NRC) sponsored Maintenance Qualifications and Staffing Project, the Pacific Northwest Laboratory (PNL) has conducted a preliminary assessment of nuclear power plant (NPP) maintenance practices. As requested by the NRC, the following areas within the maintenance function were examined: personnel qualifications, maintenance training, overtime, shiftwork and staffing levels. The purpose of the assessment was to identify the primary safety-related problems that required further analysis before specific recommendations can be made on the regulations affecting NPP maintenance operations.

  2. Secretary Chu Visits Vogtle Nuclear Power Plant | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Visits Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to...

  3. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect (OSTI)

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  4. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  5. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  6. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  7. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    SciTech Connect (OSTI)

    Basu, A.

    1992-12-31

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company`s Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  8. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    SciTech Connect (OSTI)

    Basu, A.

    1992-01-01

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company's Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  9. Relative Movements for Design of Commodities in Nuclear Power Plants

    Broader source: Energy.gov [DOE]

    Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

  10. The effects of variable operation on RO plant performance

    E-Print Network [OSTI]

    Williams, Christopher Michael, S.M. Massachusetts Institute of Technology

    2011-01-01

    Optimizations of reverse osmosis (RO) plants typically consider steady state operation of the plant. RO plants are subject to transient factors that may make it beneficial to produce more water at one time than at another. ...

  11. EIS-0108: L-Reactor Operation, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) was prepared to provide environmental input into the proposed decision to restart L-Reactor operation at the Savannah River Plant (SRP). The Savannah River Plant is a major U.S. Department of Energy (DOE) installation for the production of defense nuclear materials. The proposed restart of L–Reactor would provide defense nuclear materials (i.e. , plutonium) to wet current and near-term needs for national defense purposes.

  12. Indicator system for advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  13. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  14. Nuclear power plant performance assessment pertaining to plant aging in France and the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2013-01-01

    The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

  15. ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS

    E-Print Network [OSTI]

    ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS: THE STARLITE STUDY Farrokh of operation for a tokamak power plant and the critical plasma physics and technology issues. During for fusion power plants was made. Five different regimes of operation were considered: (1) steady

  16. CRAD, Nuclear Reactor Facility Operations - December 4, 2014...

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) Nuclear Reactor Faclity Operations Criteria Review and Approach Document (EA CRAD 31-08, Rev....

  17. Aging management guideline for commercial nuclear power plants-pumps

    SciTech Connect (OSTI)

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D. [MDC-Ogden Environmental and Energy Services, Southfield, MI (United States)

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  18. Analysis of nuclear power plant construction costs

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  19. Assessment of the Effect of Different Isolation Systems on Seismic Response of a Nuclear Power Plant

    E-Print Network [OSTI]

    Wong, Jenna

    2014-01-01

    Diesel Generators." Nuclear Power International MagazineIsolation Structure for Nuclear Power Plant, Japan ElectricIsolation System for Nuclear Power Plants, JEAG 4614-2000,

  20. Prognostics Health Management and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Coble, Jamie B.; Meyer, Ryan M.; Bond, Leonard J.

    2013-12-01

    There is growing interest in longer-term operation of the current US nuclear power plant fleet. This paper will present an overview of prognostic health management (PHM) technologies that could play a role in the safe and effective operation of nuclear power plants during extended life. A case study in prognostics for materials degradation assessment, using laboratory-scale measurements, is briefly discussed, and technical gaps that need to be addressed prior to PHM system deployment for nuclear power life extension are presented.

  1. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    SciTech Connect (OSTI)

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

  2. Neural network recognition of nuclear power plant transients

    SciTech Connect (OSTI)

    Bartlett, E.B.; Danofsky, R.; Adams, J.; AlJundi, T.; Basu, A.; Dhanwada, C.; Kerr, J.; Kim, K.; Lanc, T.

    1993-02-23

    The objective of this report is to describe results obtained during the first year of funding that will lead to the development of an artificial neural network (ANN) fault - diagnostic system for the real - time classification of operational transients at nuclear power plants. The ultimate goal of this three-year project is to design, build, and test a prototype diagnostic adviser for use in the control room or technical support center at Duane Arnold Energy Center (DAEC); such a prototype could be integrated into the plant process computer or safety - parameter display system. The adviser could then warn and inform plant operators and engineers of plant component failures in a timely manner. This report describes the work accomplished in the first of three scheduled years for the project. Included herein is a summary of the first year's results as, well as individual descriptions of each of the major topics undertaken by the researchers. Also included are reprints of the articles written under this funding as well as those that were published during the funded period.

  3. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    SciTech Connect (OSTI)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants.

  4. Confirmatory Survey Results for the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant, Haddam, Connecticut

    SciTech Connect (OSTI)

    W. C. Adams

    2007-07-03

    The U.S. Nuclear Regulatory Commission (NRC) requested that the Oak Ridge Institute for Science and Education (ORISE) perform a confirmatory survey on the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant (HNP) in Haddam, Connecticut

  5. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  6. ATWS analysis for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect (OSTI)

    Dallman, R.J.; Jouse, W.C.

    1985-01-01

    Analyses of postulated Anticipated Transients Without Scram (ATWS) were performed at the Idaho National Engineering Laboratory (INEL). The Browns Ferry Nuclear Plant Unit 1 (BFNP1) was selected as the subject of this work because of the cooperation of the Tennessee Valley Authority (TVA). The work is part of the Severe Accident Sequence Analysis (SASA) Program of the US Nuclear Regulatory Commission (NRC). A Main Steamline Isolation Valve (MSIV) closure served as the transient initiator for these analyses, which proceeded a complete failure to scram. Results from the analyses indicate that operator mitigative actions are required to prevent overpressurization of the primary containment. Uncertainties remain concerning the effectiveness of key mitigative actions. The effectiveness of level control as a power reduction procedure is limited. Power level resulting from level control only reduce the Pressure Suppression Pool (PSP) heatup rate from 6 to 4F/min.

  7. Information Foraging in Nuclear Power Plant Control Rooms

    SciTech Connect (OSTI)

    R.L. Boring

    2011-09-01

    nformation foraging theory articulates the role of the human as an 'informavore' that seeks information and follows optimal foraging strategies (i.e., the 'information scent') to find meaningful information. This paper briefly reviews the findings from information foraging theory outside the nuclear domain and then discusses the types of information foraging strategies operators employ for normal and off-normal operations in the control room. For example, operators may employ a predatory 'wolf' strategy of hunting for information in the face of a plant upset. However, during routine operations, the operators may employ a trapping 'spider' strategy of waiting for relevant indicators to appear. This delineation corresponds to information pull and push strategies, respectively. No studies have been conducted to determine explicitly the characteristics of a control room interface that is optimized for both push and pull information foraging strategies, nor has there been empirical work to validate operator performance when transitioning between push and pull strategies. This paper explores examples of control room operators as wolves vs. spiders and con- cludes by proposing a set of research questions to investigate information foraging in control room settings.

  8. Human factors review for nuclear power plant severe accident sequence analysis

    SciTech Connect (OSTI)

    Krois, P.A.; Haas, P.M.

    1985-01-01

    The paper discusses work conducted to: (1) support the severe accident sequence analysis of a nuclear power plant transient based on an assessment of operator actions, and (2) develop a descriptive model of operator severe accident management. Operator actions during the transient are assessed using qualitative and quantitative methods. A function-oriented accident management model provides a structure for developing technical operator guidance on mitigating core damage preventing radiological release.

  9. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect (OSTI)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  10. Nuclear power plant Generic Aging Lessons Learned (GALL). Appendix B

    SciTech Connect (OSTI)

    Kasza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U.

    1996-12-01

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This report consists of Volume 2, which consists of the GALL literature review tables for the NUMARC Industry Reports reviewed for the report.

  11. DOE Orders Mirant Power Plant to Operate Under Limited Circumstances...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electricity from other generating sources. If the Mirant plant is not operational, an outage of the high voltage transmission lines could cause a blackout in the central District...

  12. QUOTIENTS, EXACTNESS AND NUCLEARITY IN THE OPERATOR SYSTEM CATEGORY

    E-Print Network [OSTI]

    QUOTIENTS, EXACTNESS AND NUCLEARITY IN THE OPERATOR SYSTEM CATEGORY ALI S. KAVRUK, VERN I. PAULSEN system category. We define operator system quotients and exactness in this setting and refine the notion of nuclearity by studying operator systems that preserve various pairs of tensor products. One of our main goals

  13. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . • . . . .

  14. Prognostics and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect (OSTI)

    Leonard J. Bond; Pradeep Ramuhalli; Magdy S. Tawfik; Nancy J. Lybeck

    2011-06-01

    Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and periodic in service inspection (ISI) for passive systems: there is growing interest in deploying on-line monitoring. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to and prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

  15. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  16. Nuclear Power 2010 Program: Combined Construction and Operating...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Power 2010 (NP 2010) Construction and Operating LicenseDesign Certification (COLDC) Demonstration program together with the financial incentives provided by the Energy...

  17. Use of artificial intelligence to enhance the safety of nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1988-01-01

    In the operation of a nuclear power plant, the sheer magnitude of the number of process parameters and systems interactions poses difficulties for the operators, particularly during abnormal or emergency situations. Recovery from an upset situation depends upon the facility with which the available raw data can be converted into and assimilated as meaningful knowledge. Plant personnel are sometimes affected by stress and emotion, which may have varying degrees of influence on their performance. Expert systems can take some of the uncertainty and guesswork out of their decisions by providing expert advice and rapid access to a large information base. Application of artificial intelligence technologies, particularly expert systems, to control room activities in a nuclear power plant has the potential to reduce operator error and improve power plant safety and reliability. 12 refs.

  18. Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant

    SciTech Connect (OSTI)

    Meijing Wu; Guozhang Shen [Qinshan Nuclear power company (China)

    2006-07-01

    The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

  19. Financial and ratepayer impacts of nuclear power plant regulatory reform

    SciTech Connect (OSTI)

    Turpin, A.G.

    1985-01-01

    Three reports - ''The Future Market for Electric Generating Capacity,'' ''Quantitative Analysis of Nuclear Power Plant Licensing Reform,'' and ''Nuclear Rate Increase Study'' are recent studies performed by the Los Alamos National Laboratory that deal with nuclear power. This presents a short summary of these three studies. More detail is given in the reports.

  20. Use of neurals networks in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (USA))

    1989-01-01

    A technique using neural networks as a means of diagnosing transients or abnormal conditions in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of sensor outputs or instrument readings that can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault, problem, or transient condition of the plant. A demonstration of the ability of this technique to identify causes of perturbations in the steam generator of a nuclear plant is presented. 3 refs., 4 figs.

  1. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  2. P.C. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; BWR...

    Office of Scientific and Technical Information (OSTI)

    Erosioncorrosion-induced pipe wall thinning in US Nuclear Power Plants Wu, P.C. 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; BWR TYPE REACTORS; PIPES; CORROSION; EROSION;...

  3. Survey of ambient electromagnetic and radio-frequency interference levels in nuclear power plants

    SciTech Connect (OSTI)

    Kercel, S.W.; Moore, M.R.; Blakeman, E.D.; Ewing, P.D.; Wood, R.T.

    1996-11-01

    This document reports the results of a survey of ambient electromagnetic conditions in representative nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research engaged the Oak Ridge National Laboratory (ORNL) to perform these measurements to characterize the electromagnetic interference (EMI) and radio-frequency interference (RFI) levels that can be expected in nuclear power plant environments. This survey is the first of its kind, being based on long-term unattended observations. The data presented in this report were measured at eight different nuclear units and required 14 months to collect. A representative sampling of power plant conditions (reactor type, operating mode, site location) monitored over extended observation periods (up to 5 weeks) were selected to more completely determine the characteristic electromagnetic environment for nuclear power plants. Radiated electric fields were measured over the frequency range of 5 MHz to 8 GHz. Radiated magnetic fields and conducted EMI events were measured over the frequency range of 305 Hz to 5 MHz. Highest strength observations of the electromagnetic ambient environment across all measurement conditions at each site provide frequency-dependent profiles for EMI/RFI levels in nuclear power plants.

  4. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    SciTech Connect (OSTI)

    NONE

    2000-08-01

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  5. The status of nuclear power plants in the People's Republic of China

    SciTech Connect (OSTI)

    Puckett, J.

    1991-05-01

    China's main energy source is coal, but transportation and environmental problems make that fuel less than desirable. Therefore, the Chinese, as part of an effort toward alternative energy sources, are developing nuclear power plants. In addition to providing a cleaner power source, development of nuclear energy would improve the Chinese economic condition and give the nation greater world status. China's first plants, at Qinshan and Daya Bay, are still incomplete. However, China is working toward completion of those reactors and planning the training and operating procedures needed to operate them. At the same time, it is improving its nuclear fuel exports. As they develop the capability for generating nuclear power, the Chinese seem to be aware of the accompanying quality and safety considerations, which they have declared to be first priorities. 50 refs., 7 figs.

  6. Infrastructure and Operations | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies....

  7. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect (OSTI)

    Zitney, S.E.

    2012-05-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  8. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S. Department of Energy's National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR{trademark}). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  9. State of the art review of radioactive waste volume reduction techniques for commercial nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    A review is made of the state of the art of volume reduction techniques for low level liquid and solid radioactive wastes produced as a result of: (1) operation of commercial nuclear power plants, (2) storage of spent fuel in away-from-reactor facilities, and (3) decontamination/decommissioning of commercial nuclear power plants. The types of wastes and their chemical, physical, and radiological characteristics are identified. Methods used by industry for processing radioactive wastes are reviewed and compared to the new techniques for processing and reducing the volume of radioactive wastes. A detailed system description and report on operating experiences follow for each of the new volume reduction techniques. In addition, descriptions of volume reduction methods presently under development are provided. The Appendix records data collected during site surveys of vendor facilities and operating power plants. A Bibliography is provided for each of the various volume reduction techniques discussed in the report.

  10. Initiating Event Rates at U.S. Nuclear Power Plants 1988–2013

    SciTech Connect (OSTI)

    John A. Schroeder; Gordon R. Bower

    2014-02-01

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant’s low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC’s Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  11. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    SciTech Connect (OSTI)

    Pete Jordan

    2010-09-01

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  12. Risk Framework for the Next Generation Nuclear Power Plant Construction 

    E-Print Network [OSTI]

    Yeon, Jaeheum 1981-

    2012-12-11

    sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

  13. Hydrodynamic analysis of the offshore floating nuclear power plant

    E-Print Network [OSTI]

    Strother, Matthew Brian

    2015-01-01

    Hydrodynamic analysis of two models of the Offshore Floating Nuclear Plant [91 was conducted. The OFNP-300 and the OFNP-1100 were both exposed to computer simulated sea states in the computer program OrcaFlex: first to ...

  14. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  15. Innovation that Improves Safety, Efficiency of Energy Plant Operations...

    Energy Savers [EERE]

    with an unprecedented high-tech look inside the operation of power plants, helping to lower costs and increase safety and efficiency. The R&D 100 awards, given annually by R&D...

  16. Application of PSA to review and define technical specifications for advanced nuclear power plants

    SciTech Connect (OSTI)

    Kim, I.S.; Samanta, P.K.; Reinhart, F.M.; Wohl, M.L.

    1995-11-01

    As part of the design certification process, probabilistic safety assessments (PSAS) are performed at the design stage for each advanced nuclear power plant. Among other usages, these PSAs are important inputs in defining the Technical Specifications (TSs) for these plants. Knowledge gained from their use in improving the TSs for operating nuclear power plants is providing methods and insights for using PSAs at this early stage. Evaluating the safety or the risk significance of the TSs to be defined for an advanced plant encompasses diverse aspects: (a) determining the basic limiting condition for operation (LCO); (b) structuring conditions associated with the LCO; (c) defining completion times (equivalent to allowed outage times in the TS for conventional plants); and, (d) prescribing required actions to be taken within the specified completion times. In this paper, we consider the use of PSA in defining the TSs for an advanced nuclear plant, namely General Electric`s Advanced Boiling Water Reactor (ABWR). Similar approaches are being taken for ABB-CE`s System 80+ and Westinghouse`s AP-600. We discuss the general features of an advanced reactor`s TS, how PSA is being used in reviewing the TSs, and we give an example where the TS submittal was reviewed using a PSA-based analysis to arrive at the requirements for the plant.

  17. AVESTAR Center for operational excellence of electricity generation plants

    SciTech Connect (OSTI)

    Zitney, S.

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

  18. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect (OSTI)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo; Kim, Juyoul; Kim, Juyub

    2013-07-01

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  19. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    SciTech Connect (OSTI)

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4.

  20. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect (OSTI)

    Jose Reyes

    2005-02-14

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  1. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect (OSTI)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  2. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  3. Davis PV plant operation and maintenance manual

    SciTech Connect (OSTI)

    1994-09-01

    This operation and maintenance manual contains the information necessary to run the Photovoltaics for Utility Scale Applications (PVUSA) test facility in Davis, California. References to more specific information available in drawings, data sheets, files, or vendor manuals are included. The PVUSA is a national cooperative research and demonstration program formed in 1987 to assess the potential of utility scale photovoltaic systems.

  4. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  5. Emergency Operations Training Academy | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Introduction Monitoring Division Mgr Training, Adv NARAC Dispersion Modeling NARAC Web Operations Overview of Consequence Management Overview of the DOENNSA Emergency...

  6. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

  7. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Basu, A.; Bartlett, E.B.

    1993-04-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a ``root`` network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, and other ``classifier`` network is trained to recognize the particular transient taking place. these networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at the Iowa Electric Light and Power Company`s Duane Arnold Energy Center (DAEC) operator training simulator.

  8. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Basu, A.; Bartlett, E.B.

    1993-01-01

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a root'' network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, and other classifier'' network is trained to recognize the particular transient taking place. these networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at the Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) operator training simulator.

  9. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach Nuclear Plant","Nuclear","NextEra Energy Point Beach LLC",1197 3,"Pleasant Prairie","Coal","Wisconsin...

  10. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    SciTech Connect (OSTI)

    Naus, Dan J

    2009-05-01

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  11. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  12. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  13. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  14. Nuclear Power - Deployment, Operation and Sustainability 

    E-Print Network [OSTI]

    2011-01-01

    a f t and surfa c e vesse l s . Even though speci a l snorke l devic e s were used to suck and exhaus t air to the subm a r i n e shallowl y submerge d below the water's surfac e, a nuclear reactor provides it with a theor e t i c a l l y infin i... t e su bmersion time. In addition, the high specific energy, or energy per unit weight of nuclear fuel, eliminat e s the need for consta n t refuel i n g by fleets of vulner a b l e tanke r s follo w i n g a fleet of surfa c e or subsur f a c e...

  15. Analysis of nuclear power plant component failures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  16. Use of probabilistic risk assessment in expert system usage for nuclear power plant safety

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1987-01-01

    The introduction of probability risk assessments (PRA's) to nuclear power plants in the Rasmussen Report (WASH-1400) gave us a means of evaluating the risk to the public associated with the operation of nuclear power plants, at least on a relative basis. While the choice of the ''source term'' and methodology in a PRA significantly influence the absolute probability and the consequences of core melt, comparison of two PRA calculations for two configurations of the same plant, carried out on a consistent basis, can be readily identify the increase in risk associated with going from one configuration of a plant to another by removing components or systems from service. This ratio of core melt probabilities (assuming no recovery of failed systems) obtained from two PRA calculations for different configurations was the criterion (called ''risk factor'') chosen as a basis for making a decision in an expert system as to what mitigating action, if any, would be taken to avoid a trip situation from developing. PRISIM was developed by JBF Associates of Knoxville under the sponsorship of the NRC as a system for Resident Inspectors at nuclear power plants to provide them with a relative safety status of the plant under all configurations. PRISIM calculated the risk factor---the ration of core melt probabilities of the plant under the current configuration relative to the normal configuration with all systems functioning---using an algorithm that emulates the results of the original PRA. It also presents time and core melt (assuming no recovery of systems or components).

  17. Cold Test Operation of the German VEK Vitrification Plant

    SciTech Connect (OSTI)

    Fleisch, J.; Schwaab, E.; Weishaupt, M. [WAK GmbH, Eggenstein-Leopoldshafen (Germany); Gruenewald, W.; Roth, G.; Tobie, W. [Forschungszentrum Karlsruhe, Institut fur Nukleare Entsorgung, Eggenstein-Leopoldshafen (Germany)

    2008-07-01

    In 2007 the German High-Level Liquid Waste (HLLW) Vitrification plant VEK (Verglasungseinrichtung Karlsruhe) has passed a three months integral cold test operation as final step before entering the hot phase. The overall performance of the vitrification process equipment with a liquid-fed ceramic glass melter as main component proved to be completely in line with the requirements of the regulatory body. The retention efficiency of main radioactive-bearing elements across melter and wet off-gas treatment system exceeded the design values distinctly. The strategy to produce a specified waste glass could be successfully demonstrated. The results of the cold test operation allow entering the next step of hot commissioning, i.e. processing of approximately 2 m{sup 3} of diluted HLLW. In summary: An important step of the VEK vitrification plant towards hot operation has been the performance of the cold test operation from April to July 2007. This first integral operation was carried out under boundary conditions and rules established for radioactive operation. Operation and process control were carried out following the procedure as documented in the licensed operational manuals. The function of the process technology and the safe operation could be demonstrated. No severe problems were encountered. Based on the positive results of the cold test, application of the license for hot operation has been initiated and is expected in the near future. (authors)

  18. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect (OSTI)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

  19. Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement- The Operator Viewpoints

    Broader source: Energy.gov [DOE]

    Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company

  20. Nuclear Power - System Simulations and Operation 

    E-Print Network [OSTI]

    2011-01-01

    Nuclear Codes 21 Antonella L. Costa, Patr?cia A. L. Reis, Clarysson A. M. Silva, Claubia Pereira, Maria Auxiliadora F. Veloso, Bruno T. Guerra, Humberto V. Soares and Amir Z. Mesquita Chapter 3 Development of an Appendix K Version of RELAP5-3D... 2 1 2 ( , , . . . , , , .. . , ); 1 , .. . ( , , . .. , , , . .. , ); 1 , .. . i i n k j j n k dy f y y y p p p t i n dt z g y y y p p p t j l = = = = where y: the state varia b l e s ; p: the input; z : the output variabl e s Somet i...

  1. Nuclear reactor characteristics and operational history

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb MarthroughFeet)Feet) YearThousand81Nuclear > U.S.

  2. Emergency Operations Training Academy | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M. Gelbard, 1969November

  3. Intelligent Component Monitoring for Nuclear Power Plants

    SciTech Connect (OSTI)

    Lefteri Tsoukalas

    2010-07-30

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  4. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

  5. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  6. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  7. Addressing employee concerns about welding in a nuclear power plant

    SciTech Connect (OSTI)

    Danko, J.C.; Hansen, D.D.; O'Leary, P.D.

    1988-03-01

    A leading utility contracted with EG and G Idaho to perform a comprehensive, independent evaluation of the utility's welding program with respect to the safety-related welds made at one of its nuclear power plants. The purpose of this paper is to review a number of the employee concerns and the technical basis for the disposition of these concerns. In addition, recommendations are presented that may help to prevent the recurrence of employee concerns in future nuclear power plant construction, and thereby costly delays may be avoided and welding productivity and quality improved.

  8. A best estimate method for the diagnosis and mitigation of multiple-failure transients in nuclear power plants 

    E-Print Network [OSTI]

    Martin, Robert Paul

    1989-01-01

    of uncertainty exists for a nuclear power plant operator during a transient situation. The expert reactor operator can respond to this information from experience, research, learning, or intuition; however, these concepts are not pro~le into a mechanistic.... These include a program for probabilistic risk assessment, '4 operauons analysis of the Savannah River reactors, ts automated monitoring of plant performance for the Oak Ridge National Laboratory High Flux Intensity Reactor, && and refuelling assistance...

  9. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

  10. Intergranular corrosion mechanism of ultra-low carbon type 304 stainless steel in a nuclear reprocessing plant

    SciTech Connect (OSTI)

    Ueno, Fumiyoshi; Kato, Chiaki; Motooka, Takafumi; Yamamoto, Masahiro [Japan Atomic Energy Agency Shirakata Shirane 2-4, Tokai-mura, Ibaraki pref., 319-1195 (Japan); Ichikawa, Shiro [Kobelco Research Institute, Inc. 1-5-5, Takatsukadai, Nishi-ku, Kobe city, 651-2271 (Japan)

    2007-07-01

    Corrosion of the components which contains nitric acid solution such as vessels, tanks and pipes is an important problem for a PUREX method nuclear fuel reprocessing plant. In Tokai Reprocessing Plant which was startup in 1977 as the first Japanese plant, several events caused by corrosion have been experienced for about 30 years operation. The second plant in Japan, Rokkasho Reprocessing Plant, will start commercial operation from 2007. For stable operation of Rokkasho plant, maintenance management of components will be important. Therefore, it is necessary to clarify the corrosion mechanism and to reflect the results of the research for a maintenance program of the plant adequately. If high burnup fuel will increase in future nuclear power plants, it will become necessary to reprocess the spent fuel which includes more fission products and transuranium from now. Then the study of corrosion mechanism and life evaluation will become more important problem. Authors were aimed for development of life evaluation method of components and clarification of intergranular corrosion mechanism of ultra-low carbon type 304 stainless steel in a nuclear fuel reprocessing plant. In this report, the results of long-term corrosion test in boiling nitric acid by using ultra-low carbon stainless steel made mock-up test apparatus was described. And then, the relation between corrosion rate change and intergranular corrosion behavior were discussed. (authors)

  11. Simulation and Optimization on Power Plant Operation Using SEGA's EOP Program 

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Turner, W. D.; Liu, M.

    2000-01-01

    The operation of a cogeneration power plant is complicated. The Energy Optimization Program (EOP, software made by SEGA, Inc.) was designed to simulate and optimize the operation of TAMU power plant. All major plant components were represented...

  12. Simulation and Optimization on Power Plant Operation Using Sega's EOP Program 

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Turner, W. D.; Liu, M.

    2000-01-01

    The operation of a cogeneration power plant is complicated. The Energy Optimization Program (EOP, software made by SEGA, Inc.) was designed to simulate and optimize the operation of TAMU power plant. All major plant components were represented...

  13. OPERATIONAL EXPERIENCE: UPGRADED MPC AND A SYSTEMS FOR THE RADIOCHEMICAL PLANT OF THE SIBERIAN CHEMICAL COMBINE

    SciTech Connect (OSTI)

    RODRIGUEZ,C.GOLOSKOKOV,I.FISHBONE,L.GOODEY,K.LOOMIS,M.CRAIN,B.JR.LARSEN,R.

    2003-07-18

    The success of reducing the risk of nuclear proliferation through physical protection and material control/accounting systems depends upon the development of an effective design that includes consideration of the objectives of the systems and the resources available to implement the design. Included among the objectives of the design are facility characterization, definition of threat, and identification of targets. When considering resources, the designer must consider funds available, rapid low-cost elements, technology elements, human resources, and the availability of resources to sustain operation of the end system. The Siberian Chemical Combine (SCC) is a multi-function nuclear facility located in the Tomsk region of Siberia, Russia. Beginning in 1996, SCC joined with the United States Department of Energy (US/DOE) Material Protection, Control, and Accounting (MPC&A) Program to develop and implement MPC&A upgrades for the Radiochemical, Chemical Metallurgical, Conversion, Uranium Enrichment, and Reactor Plants of the SCC. At the Radiochemical Plant the MPC&A design and implementation process has been largely completed for the Plutonium Storage Facility and related areas of the Radiochemical Plant. Design and implementation of upgrades for the Radiochemical Plant include rapid physical protection upgrades such as bricking up of doors and windows, and installation of security-hardened doors. Rapid material control and accounting upgrades include installation of modern balances and bar code equipment. Comprehensive MPC&A upgrades include the installation of access controls to sensitive areas of the Plant, alarm communication and display (AC&D) systems to detect and annunciate alarm conditions, closed circuit (CCTV) systems to assess alarm conditions, central and secondary alarm station upgrades that enable security forces to assess and respond to alarm conditions, material control and accounting upgrades that include upgraded physical inventory procedures, and destructive and nondestructive assay equipment to perform neutron and gamma measurements on nuclear materials in process or storage. These MPC&A upgrades have been in operation at the SCC Radiochemical Plant for between 2 and 3 years. The operational experience gained by SCC during this period is currently being evaluated by SCC and ''lessons learned'' will be considered both for continued operation of the Radiochemical Plant MPC&A systems and similar MPC&A systems that are currently being planned for other Plant Sites of the SCC.

  14. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  15. VOC Emission Control with the Brayton Cycle Pilot Plant Operations 

    E-Print Network [OSTI]

    Enneking, J. C.

    1992-01-01

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  16. Activities in Support of Continuing the Service of Nuclear Power Plant Safety-Related Concrete Structures

    SciTech Connect (OSTI)

    Naus, Dan J

    2014-01-01

    Nuclear power plant (NPP) concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status provided. Operating experience related to performance of the concrete structures is presented. Basic components of a program to manage aging of the concrete structures are identified and described: (1) Degradation mechanisms, damage models, and material performance; (2) Assessment and remediation: i.e., component selection, in- service inspection, non-destructive examinations, and remedial actions; and (3) Estimation of performance at present or some future point in time: i.e., application of structural reliability theory to the design and optimization of in-service inspection/maintenance strategies, and determination of the effects of degradation on plant risk. Finally, areas are noted where additional research would be of benefit to aging management of nuclear power plant concrete structures.

  17. Effects of dose limits reduction on the Argentine nuclear power plants

    SciTech Connect (OSTI)

    Palacios, E.; Curti, A.; Massera, G.; Spano, F.; Boutet, L. (Comision Nacional de Energia Atomica, Buenos Aires (Argentina))

    1993-11-01

    Occupational doses are evaluated in different stages of the fuel cycle and in the operation of nuclear power plants. Trends in individual dose distribution and collective doses are analyzed. The most contributive working conditions to collective dose are identified and the implications of dose limit reduction recommended by the ICRP in 1990 are assessed. It is concluded that no relevant difficulties should appear in accomplishing the new recommendations except for implementation at Atucha I, a nuclear power plant designed in the 1960s. Some options to reduce individual and collective doses in this plant are analyzed. The change of fuel channels by new ones free from cobalt is essential to get effective improvement of occupational exposures.

  18. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Braatz, Brett G.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2013-09-01

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  19. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  20. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    DENSITIES AROUND CALIFORNIA NUCLEAR POWER PLANT. le Iil _. .AROUND CALIFORNIA NUCLEAR POWER PLANTS Miles San OnofreIN CALIFORNIA The California Nuclear Power Plant Emergency

  1. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    the actual risk presented by nuclear power plants. Dependingyears): Average risk from a nuclear power plant during itssocietal risks from a system of 100 nuclear power plants due

  2. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    of radiological risk from nuclear power plants, One suchreservation in risk assessment for nuclear power plants isrisks to populations surrounding a nuclear power plant by

  3. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  4. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  5. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  6. How safe are nuclear plants. How safe should they be

    SciTech Connect (OSTI)

    Kouts, H.

    1988-01-01

    It has become customary to think about safety of nuclear plants in terms of risk as defined by the WASH-1400 study that some of the implications for the non-specialist escape our attention. Yet it is known that a rational program to understand safety, to identify unsafe events, and to use this kind of information or analysis to improve safety, requires us to use the methods of quantitative risk assessment. How this process can be made more understandable to a broader group of nontechnical people and how can a wider acceptance of the results of the process be developed have been questions under study and are addressed in this report. These are questions that have been struggled with for some time in the world of nuclear plant safety. The Nuclear Regulatory Commission examined them for several years as it moved toward developing a position on safety goals for nuclear plants, a requirement that had been assigned it by Congress. Opinion was sought from a broad spectrum of individuals, within the field of nuclear power and outside it, on the topic that was popularly called, ''How safe is safe enough.'' Views were solicited on the answer to the question and also on the way the answer should be framed when it was adopted. This report discusses the public policy and its implementation.

  7. kansas city plant | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReporteeo | National Nuclear Securityhr | National Nuclearplant |

  8. Kansas City Plant | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATIONIntroducingJobs2015Administration| National Nuclear

  9. Pantex Plant | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams forOrhanTheoretical MethodsENERGYPalmNuclear

  10. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  11. Pantex Plant | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPoster SessionPrograms |Y-12 reducesNationalPantex Plant

  12. Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

  13. General approach to assure compliance with ALARA guidelines on direct radiation from a nuclear power plant, January 1979-January 1982

    SciTech Connect (OSTI)

    Harding, W; Silver, C

    1983-06-01

    Nuclear Regulatory Commission guide lines specify 10 mrad per reactor as the total yearly direct (gamma) radiation dose at any point external to a nuclear power facility site boundary. Typically a nuclear utility submits only thermoluminescence dosimetry (TLD) data unaccompanied by corresponding core sample, ion chamber or other data or analyses to demonstrate compliance. This study considers a standard approach for analyzing the TLD data in terms of semiempirical physical constructs which allow the use of correlations among certain preoperational TLD data to predict or model operational period TLD measures (expected values) in the absence of the source (nuclear facility). These apriori models depend only upon their fit to the observed nonimpacted data for their verification. They are not veridical. The models are used to analyze a CaSO/sub 4/ (TM) thermoluminescence dosimetry system set up in a matrix about the nuclear plant and which records the terrestrial and cosmic radiation background as well as the nuclear plant contribution.

  14. Enhancing nuclear power plant performance through the use of artifical intelligence

    SciTech Connect (OSTI)

    Johnson, M.; Maren, A.; Miller, L.; Uhrig, R.; Upadhyaya, B.

    1989-06-15

    In the summer of 1988, the Department of Nuclear Engineering (NE) at the University of Tennessee (UT) in Knoxville was selected to carry out a research program in Enhancing the Operation of Nuclear Power plants through the use of Artificial Intelligence, This program is sponsored by the Department of Energy's Office of Energy Research under 10CFR605 for Nuclear Engineering Research. The objective of the research is to advance the state-of-the-art of nuclear power plant control, safety, management, and instrumentation systems through the use of artificial intelligence (AI) techniques, including both expert systems and neural networks. The emphasis will be placed on methods that can be implemented on a rapid or real-time basis. A second, but equally important, objective is to build a broadly based critical mass of expertise in the artificial intelligence, field that can be brought to bear on the technology of nuclear power plants. Both of these goals are being met. This overview and the attached technical reports describe the work that is being carried out. Although in some cases, the scope of the work differs somewhat from the specific tasks described in the original proposal, all activities are clearly within the overall scope of the contract.

  15. Enhancing nuclear power plant performance through the use of artifical intelligence. First annual report

    SciTech Connect (OSTI)

    Johnson, M.; Maren, A.; Miller, L.; Uhrig, R.; Upadhyaya, B.

    1989-06-15

    In the summer of 1988, the Department of Nuclear Engineering (NE) at the University of Tennessee (UT) in Knoxville was selected to carry out a research program in ``Enhancing the Operation of Nuclear Power plants through the use of Artificial Intelligence, This program is sponsored by the Department of Energy`s Office of Energy Research under 10CFR605 for Nuclear Engineering Research. The objective of the research is to advance the state-of-the-art of nuclear power plant control, safety, management, and instrumentation systems through the use of artificial intelligence (AI) techniques, including both expert systems and neural networks. The emphasis will be placed on methods that can be implemented on a rapid or real-time basis. A second, but equally important, objective is to build a broadly based critical mass of expertise in the artificial intelligence, field that can be brought to bear on the technology of nuclear power plants. Both of these goals are being met. This overview and the attached technical reports describe the work that is being carried out. Although in some cases, the scope of the work differs somewhat from the specific tasks described in the original proposal, all activities are clearly within the overall scope of the contract.

  16. Integrated deterministic and probabilistic safety analysis for safety assessment of nuclear power plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Di Maio, Francesco; Zio, Enrico; Smith, Curtis; Rychkov, Valentin

    2015-07-06

    The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore »activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less

  17. Measurements of uranium holdup in an operating gaseous diffusion enrichment plant

    SciTech Connect (OSTI)

    Augustson, R.H.; Walton, R.B.; Harris, R.; Harbarger, W.; Hicks, J.; Timmons, G.; Shissler, D.; Tayloe, R.; Jones, S.; Fields, L.

    1983-01-01

    Holdup of nuclear material in process equipment is one of the major sources of uncertainty in materials balances, particularly for high-throughput facilities with large equipment and extensive piping, such as gaseous diffusion uranium-enrichment plants. Locating and measuring the holdup while the plant is operating is a challenging problem because of background from the process material and the neighboring equipment. This paper reports NDA measurements performed at the Goodyear Atomic Gaseous Diffusion Plant, Portsmouth, Ohio, on enrichment equipment at the higher enrichment and (>10% /sup 235/U isotopic abundance) of the cascade. Both neutron and gamma-ray measurements were made to locate anomalously large deposits in converters and compressors and, within the limitations of the techniques, to quantify the amount of the deposit.

  18. Proceedings of the 2004 international congress on advances in nuclear power plants - ICAPP'04

    SciTech Connect (OSTI)

    NONE

    2004-07-01

    The 2004 International Congress on Advances in Nuclear Power Plants (ICAPP'04) provides a forum for the industry to exchange the latest ideas and research findings on nuclear plants from all perspectives. This conference builds on the success of last year's meeting held in Cordoba, Spain, and on the 2002 inaugural meeting held in Hollywood, Florida. Because of the hard work of many volunteers from around the world, ICAPP'04 has been successful in achieving its goal. More than 325 invited and contributed papers/presentations are part of this ICAPP. There are 5 invited plenary sessions and 70 technical sessions with contributed papers. The ICAPP'04 Proceedings contain almost 275 papers prepared by authors from 25 countries covering topics related to advances in nuclear power plant technology. The program by technical track deals with: 1 - Water-Cooled Reactor Programs and Issues (Status of All New Water-Cooled Reactor Programs; Advanced PWRs: Developmental Stage I; Advanced PWRs: Developmental Stage II; Advanced PWRs: Basic Design Stage; Advanced BWRs; Economics, Regulation, Licensing, and Construction; AP1000); 2 - High Temperature Gas Cooled Reactors (Pebble Bed Modular Reactors; Very High Temperature Reactors; HTR Fuels and Materials; Innovative HTRs and Fuel Cycles); 3 - Long Term Reactor Programs and Strategies (Supercritical Pressure Water Reactors; Lead-Alloy Fast Reactors; Sodium and Gas Fast Reactors; Status of Advanced Reactor Programs; Non-classical Reactor Concepts); 4 - Operation, Performance, and Reliability Management (Information Technology Effect on Plant Operation; Operation, Maintenance and Reliability; Improving Performance and Reducing O and M Costs; Plant Modernization and Retrofits); 5 - Plant Safety Assessment and Regulatory Issues (LOCA and non-LOCA Analysis Methodologies; LOCA and non-LOCA Plant Analyses; In-Vessel Retention; Containment Performance and Hydrogen Control; Advances in Severe Accident Analysis; Advances in Severe Accident Management; Ex-Vessel Debris Coolability and Steam Explosion: Theory and Modeling; Ex-Vessel Debris Coolability and Steam Explosion: Experiments and Supporting Analysis; PRA and Risk-informed Decision Making: Methodology; PRA and Risk-informed Decision Making: Advances in Practice; Use of CFD in Plant Safety Assessment and Related Regulatory Issues; Development and Application of Severe Accident Analysis Code); 6 - Thermal Hydraulic Analysis and Testing (Advances in Two-Phase Flow and Heat Transfer; Advances in CHF and Rod Bundle Thermal Hydraulics; CFD Applications to Water, Liquid Metal, and Gas Reactors; Separate Effects Thermal Hydraulic Experiments and Analysis; Integral Systems Thermal Hydraulic Experiments; Benchmark Analysis and Assessment; Natural Circulation Thermal Hydraulics; Thermal Striping and Thermal Stratification Studies); 7 - Core and Fuel Cycle Concepts and Experiments (Innovations in Core Designs; Advances in Core Design Methodology and Experimental Benchmarking; Advanced Fuel Cycles, Recycling, and Actinide Transmutation; Out of Core Fuel Cycle Issues); 8 - Material and Structural Issues (Structural and Materials Modeling and Analysis; Testing and Analysis of Structures and Materials; Advanced Issues in Welding and Materials; Fuel Design and Irradiation Issues for Next Generation Plants; Materials' Issues for Next Generation Plants); 9 - Nuclear Energy and Sustainability Including Hydrogen, Desalination, and Other Applications (Nuclear Energy Sustainability and Desalination; Nuclear Energy Application - Hydrogen); 10 - Space Power and Propulsion (Space Nuclear Power and Propulsion Systems; Nuclear Thermal Propulsion Concepts; Test and Design Methods; Instrumentation for Space Nuclear Reactors; Materials for Space Reactor Concepts)

  19. Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices

    E-Print Network [OSTI]

    Cizelj, Leon

    strength and injuries of human beings with nuclear power plant models used in probabilistic safetyVulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices Marko threats to a nuclear power plant in the year 1991 and after the 9/11 events in 2001. The methodology which

  20. Potential Threats from a Likely Nuclear Power Plant Accident: a Climatological Trajectory Analysis

    E-Print Network [OSTI]

    Chen, Shu-Hua

    in the near future as insecure nuclear power plants with a high risk of accidents remain in the regionPotential Threats from a Likely Nuclear Power Plant Accident: a Climatological Trajectory Analysis at the Metsamor Nuclear Power Plant would influence all of Turkey. Furthermore, vulnerable regions in Turkey after

  1. PLC-Based Safety Critical Software Development for Nuclear Power Plants

    E-Print Network [OSTI]

    PLC-Based Safety Critical Software Development for Nuclear Power Plants Junbeom Yoo1 , Sungdeok Cha development technique for nuclear power plants'I&C soft- ware controllers. To improve software safety, we in developing safety-critical control software for a Korean nuclear power plant, and experience to date has been

  2. A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems

    E-Print Network [OSTI]

    . INTRODUCTION Safety-critical systems (e.g. nuclear power plants and air- planes) require rigorous quality a domain-specific point of view. In the RPS (Reactor Protection System) in nuclear power plants, the mostA Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems Sanghyun Yoon

  3. Childhood leukaemia incidence below the age of 5 years near French nuclear power plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Childhood leukaemia incidence below the age of 5 years near French nuclear power plants D Laurier 1 living in the vicinity of nuclear power plants in Germany. We present herein results about the incidence of childhood leukaemia in the vicinity of nuclear power plants in France for the same age range. These results

  4. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect (OSTI)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  5. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    SciTech Connect (OSTI)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.

  6. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

  7. Identification of process controls for nuclear explosive operations

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Houghton, K.; Wilson, M.

    1998-12-01

    Nuclear explosive assembly/disassembly operations that are carried out under United States Department of Energy (DOE) purview are characterized by activities that primarily involve manual tasks. These process activities are governed by procedural and administrative controls that traditionally have been developed without a formal link to process hazards. This work, which was based on hazard assessment (HA) activities conducted as part of the W69 Integrated Safety Process (ISP), specifies an approach to identifying formal safety controls for controlling (i.e., preventing or mitigating) hazards associated with nuclear explosive operations. Safety analysis methods are used to identify controls, which then are integrated into a safety management framework to provide assurance to the DOE that hazardous activities are managed properly. As a result of the work on the W69 ISP dismantlement effort, the authors have developed an approach to identify controls and safety measures to improve the safety of nuclear explosive operations. The methodology developed for the W69 dismantlement effort is being adapted to the W76 ISP effort. Considerable work is still ongoing to address issues such as the adequacy or effectiveness of controls. DOE nuclear explosive safety orders and some historical insights are discussed briefly in this paper. The safety measure identification methodology developed as part of the W69 ISP dismantlement process then is summarized.

  8. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect (OSTI)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  9. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  10. Method of installing a control room console in a nuclear power plant

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  11. A survey of repair practices for nuclear power plant containment metallic pressure boundaries

    SciTech Connect (OSTI)

    Oland, C.B.; Naus, D.J.

    1998-05-01

    The Nuclear Regulatory Commission has initiated a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and leaktightness of metal containment vessels and steel liners of concrete containments in nuclear power plants. One of the program objectives is to identify repair practices for restoring metallic containment pressure boundary components that have been damaged or degraded in service. This report presents issues associated with inservice condition assessments and continued service evaluations and identifies the rules and requirements for the repair and replacement of nonconforming containment pressure boundary components by welding or metal removal. Discussion topics include base and welding materials, welding procedure and performance qualifications, inspection techniques, testing methods, acceptance criteria, and documentation requirements necessary for making acceptable repairs and replacements so that the plant can be returned to a safe operating condition.

  12. Devices and methods for managing noncombustible gasses in nuclear power plants

    DOE Patents [OSTI]

    Marquino, Wayne; Moen, Stephan C; Wachowiak, Richard M; Gels, John L; Diaz-Quiroz, Jesus; Burns, Jr., John C

    2014-12-23

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  13. Understanding the nature of nuclear power plant risk

    SciTech Connect (OSTI)

    Denning, R. S.

    2012-07-01

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  14. Nuclear electromagnetic charge and current operators in Chiral EFT

    SciTech Connect (OSTI)

    Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori; Piarulli, Maria; Schiavilla, Rocco; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  15. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

  16. Conceivable new recycling of nuclear waste by nuclear power companies in their plants

    E-Print Network [OSTI]

    Ruggero Maria Santilli

    1997-04-09

    We outline the basic principles and the needed experiments for a conceivable new recycling of nuclear waste by the power plants themselves to avoid its transportation and storage to a (yet unknown) dumping area. Details are provided in an adjoining paper and in patents pending.

  17. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect (OSTI)

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  18. Simulation and optimization of cogeneration power plant operation using an Energy Optimization Program 

    E-Print Network [OSTI]

    Zhou, Jijun

    2001-01-01

    The operation of a combined cycle cogeneration power plant system is complicated because of the complex interactions among components as well as the dynamic nature of the system. Studies of plant operation through experiments in such a sensitive...

  19. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    SciTech Connect (OSTI)

    Ellingwood, B.; Song, J. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two.

  20. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  1. Aging management guideline for commercial nuclear power plants-stationary batteries. Final report

    SciTech Connect (OSTI)

    Berg, R.; Shao, J.; Krencicki, G.; Giachetti, R. [Multiple Dynamics Corp., Southfield, MI (United States)

    1994-03-01

    The Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant stationary batteries important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  2. Leak before break application in French PWR plants under operation

    SciTech Connect (OSTI)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  3. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    SciTech Connect (OSTI)

    Clayton, Dwight A.; Poore, III, Willis P.

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  4. A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo

    E-Print Network [OSTI]

    A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div, conducted using a nuclear power plant shutdown system being developed in Korea, demonstrated (2001~2008) is to develop a suite of I&C software for use in the next generation Korean nuclear power

  5. Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities

    SciTech Connect (OSTI)

    Gregory Weatherby

    2012-05-01

    The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980’s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage managers are concerned with schedule and cost, union workers are concerned with performing work that is commensurate with their trade, and support functions (safety, quality assurance, and radiological controls, etc.) are concerned with performing the work within the plants controls and procedures. Approaches to outage management should be designed to increase the active participation of work groups and managers in making decisions that closed the gap between competing objectives and the potential for error and process inefficiency.

  6. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSING PROCESSPlanning for Nuclear Power Plants Determination of Accidentnuclear power plants . . . . . . . . . • . . . . .2.2.4.3.

  7. Guidelines for inservice testing at nuclear power plants

    SciTech Connect (OSTI)

    Campbell, P.

    1995-04-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

  8. United States Department of Energy`s reactor core protection evaluation methodology for fires at RBMK and VVER nuclear power plants. Revision 1

    SciTech Connect (OSTI)

    1997-06-01

    This document provides operators of Soviet-designed RBMK (graphite moderated light water boiling water reactor) and VVER (pressurized light water reactor) nuclear power plants with a systematic Methodology to qualitatively evaluate plant response to fires and to identify remedies to protect the reactor core from fire-initiated damage.

  9. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to developing technical basis to support acceptance criteria and set point decisions, particularly for advanced sensors which do not yet have a cumulative history of operating performance.

  10. Vitrification of Polyvinyl Chloride Waste from Korean Nuclear Power Plants

    SciTech Connect (OSTI)

    Sheng, Jiawei [Kyoto University (Japan); Choi, Kwansik [Nuclear Environment Technology Institute (Korea, Republic of); Yang, Kyung-Hwa [Nuclear Environment Technology Institute (Korea, Republic of); Lee, Myung-Chan [Nuclear Environment Technology Institute (Korea, Republic of); Song, Myung-Jae [Nuclear Environment Technology Institute (Korea, Republic of)

    2000-02-15

    Vitrification is considered as an economical and safe treatment technology for low-level radioactive waste (LLW) generated from nuclear power plants (NPPs). Korea is in the process of preparing for its first ever vitrification plant to handle LLW from its NPPs. Polyvinyl chloride (PVC) has the largest volume of dry active wastes and is the main waste stream to treat. Glass formulation development for PVC waste is the focus of study. The minimum additive waste stabilization approach has been utilized in vitrification. It was found that glasses can incorporate a high content of PVC ash (up to 50 wt%), which results in a large volume reduction. A glass frit, KEP-A, was developed to vitrify PVC waste after the optimization of waste loading, melt viscosity, melting temperature, and chemical durability. The KEP-A could satisfactorily vitrify PVC with a waste loading of 30 to 50 wt%. The PVC-frit was tolerant of variations in waste composition.

  11. Antineutrino flux from the Laguna Verde Nuclear Power Plant

    E-Print Network [OSTI]

    Marisol Chavez-Estrada; Alexis A. Aguilar-Arevalo

    2015-09-09

    We present a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in M\\'exico, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, that have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor cores.

  12. Antineutrino flux from the Laguna Verde Nuclear Power Plant

    E-Print Network [OSTI]

    Chavez-Estrada, Marisol

    2015-01-01

    We present a a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in M\\'exico, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, that have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor cores.

  13. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, J.G.

    1993-11-16

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  14. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, James G. (Clifton Park, NY)

    1993-01-01

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  15. Antineutrino flux from the Laguna Verde Nuclear Power Plant

    E-Print Network [OSTI]

    Marisol Chavez-Estrada; Alexis A. Aguilar-Arevalo

    2015-08-20

    We present a a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in M\\'exico, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, that have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor cores.

  16. NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J S; Probanz, B; Foster, K T; Simpson, M; Vogt, P; Aluzzi, F; Dillon, M; Homann, S

    2012-02-14

    This paper summarizes the activities of the National Atmospheric Release Advisory Center (NARAC) during the Fukushima Dai-ichi nuclear power plant crisis. NARAC provided a wide range of products and analyses as part of its support including: (1) Daily Japanese weather forecasts and hypothetical release (generic source term) dispersion predictions to provide situational awareness and inform planning for U.S. measurement data collection and field operations; (2) Estimates of potential dose in Japan for hypothetical scenarios developed by the Nuclear Regulatory Commission (NRC) to inform federal government considerations of possible actions that might be needed to protect U.S. citizens in Japan; (3) Estimates of possible plume arrival times and dose for U.S. locations; and (4) Plume model refinement and source estimation based on meteorological analyses and available field data. The Department of Energy/National Nuclear Security Administration (DOE/NNSA) deployed personnel to Japan and stood up 'home team' assets across the DOE complex to aid in assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. The DOE Nuclear Incident Team (NIT) coordinated response activities, while DOE personnel provided predictive modeling, air and ground monitoring, sample collection, laboratory analysis, and data assessment and interpretation. DOE deployed the Aerial Measuring System (AMS), Radiological Assistance Program (RAP) personnel, and the Consequence Management Response Team (CMRT) to Japan. DOE/NNSA home team assets included the Consequence Management Home Team (CMHT); National Atmospheric Release Advisory Center (NARAC); Radiation Emergency Assistance Center/Training Site (REAC/TS); and Radiological Triage. NARAC was activated by the DOE/NNSA on March 11, shortly after the Tohoku earthquake and tsunami occurred. The center remained on active operations through late May when DOE ended its deployment to Japan. Over 32 NARAC staff members, supplemented by other LLNL scientists, invested over 5000 person-hours of time and generated over 300 analyses and predictions.

  17. Comparison of Options for a Pilot Plant Fusion Nuclear Mission

    SciTech Connect (OSTI)

    Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Waganer, L; Titus, P

    2012-08-27

    A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.

  18. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  19. Development and validation of instantaneous risk model in nuclear power plant's risk monitor

    SciTech Connect (OSTI)

    Wang, J.; Li, Y.; Wang, F.; Wang, J.; Hu, L.

    2012-07-01

    The instantaneous risk model is the fundament of calculation and analysis in a risk monitor. This study focused on the development and validation of an instantaneous risk model. Therefore the principles converting from the baseline risk model to the instantaneous risk model were studied and separated trains' failure modes modeling method was developed. The development and validation process in an operating nuclear power plant's risk monitor were also introduced. Correctness of instantaneous risk model and rationality of converting method were demonstrated by comparison with the result of baseline risk model. (authors)

  20. REVIEW Of COMPUTERIZED PROCEDURE GUIDELINES FOR NUCLEAR POWER PLANT CONTROL ROOMS

    SciTech Connect (OSTI)

    David I Gertman; Katya Le Blanc; Ronald L Boring

    2011-09-01

    Computerized procedures (CPs) are recognized as an emerging alternative to paper-based procedures for supporting control room operators in nuclear power plants undergoing life extension and in the concept of operations for advanced reactor designs. CPs potentially reduce operator workload, yield increases in efficiency, and provide for greater resilience. Yet, CPs may also adversely impact human and plant performance if not designed and implemented properly. Therefore, it is important to ensure that existing guidance is sufficient to provide for proper implementation and monitoring of CPs. In this paper, human performance issues were identified based on a review of the behavioral science literature, research on computerized procedures in nuclear and other industries, and a review of industry experience with CPs. The review of human performance issues led to the identification of a number of technical gaps in available guidance sources. To address some of the gaps, we developed 13 supplemental guidelines to support design and safety. This paper presents these guidelines and the case for further research.

  1. Using Process Safety Management to improve plant operability

    SciTech Connect (OSTI)

    Sutton, I.S.

    1995-12-31

    The Process Safety Management (PSM) standard, 29 CFR 1910.119, was published in draft from in July 1990 and has been in force since May 1992. The standard requires that all companies that handle hazardous materials must have in place a management program to minimize the chance of accidents, and to reduce the consequences of such accidents should they occur. The purpose of this paper is to provide some preliminary guidance as to how PSM activities can be managed so that, as the compliance part of the work is completed, the best return on the investment can be achieved. One final point should be made about safety and operability. The two are closely linked, but they are not identical. In other words, a safety improvement program will almost certainly lead to reduced economic losses, similarly a reliability improvement program will almost certainly reduce injuries, but there are some differences that need to be taken account. These include: (1) Additional safety equipment may reduce reliability. (2) A reliable plant does not undergo many shutdowns. Therefore, operators have less practice with the implementation of shutdown and startup procedures than they would otherwise. (3) Unsafe engineering practices, such as the use of temporary bypasses and jumper lines, may increase operability, but they reduce safety.

  2. Model operating permits for natural gas processing plants

    SciTech Connect (OSTI)

    Arend, C. [Hydro-Search, Inc., Houston, TX (United States)

    1995-12-31

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  3. Incremental costs and optimization of in-core fuel management of nuclear power plants

    E-Print Network [OSTI]

    Watt, Hing Yan

    1973-01-01

    This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

  4. An examination of the pursuit of nuclear power plant construction projects in the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2011-01-01

    The recent serious reconsideration of nuclear power as a means for U.S. electric utilities to increase their generation capacity provokes many questions regarding the achievable success of future nuclear power plant ...

  5. Regulatory analysis for the resolution of Generic Safety Issue 29: Bolting degradation or failure in nuclear power plants

    SciTech Connect (OSTI)

    Chang, T.Y.

    1991-09-01

    Generic Safety Issue (GSI)-29 deals with staff concerns about public risk due to degradation or failure of safety-related bolting in nuclear power plants. The issue was initiated in November 1982. Value-impact studies of a mandatory program on safety-related bolting for operating plants were inconclusive: therefore, additional regulatory requirements for operating plants could not be justified in accordance with provisions of 10 CFR 50.109. In addition, based on operating experience with bolting in both nuclear and conventional power plants, the actions already taken through bulletins, generic letters, and information notices, and the industry-proposed actions, the staff concluded that a sufficient technical basis exists for the resolution of GSI-29. The staff further concluded that leakage of bolted pressure joints is possible but catastrophic failure of a reactor coolant pressure boundary joint that will lead to significant accident sequences is highly unlikely. For future plants, it was concluded that a new Standard Review Plant section should be developed to codify existing bolting requirements and industry-developed initiatives. 9 refs., 1 tab.

  6. Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control Approach

    E-Print Network [OSTI]

    Forsyth, Peter A.

    Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control of Waterloo, Waterloo ON, Canada N2L 3G1 Abstract. In this paper, we value hydroelectric power plant cash operational constraints may considerably overestimate the value of hydroelectric power plant cashflows. 1

  7. A review for identification of initiating events in event tree development process on nuclear power plants

    SciTech Connect (OSTI)

    Riyadi, Eko H.

    2014-09-30

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  8. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    SciTech Connect (OSTI)

    Hashemian, H.M. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-11-01

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line.

  9. Privatization of the gaseous diffusion plants and impacts on nuclear criticality safety administration

    SciTech Connect (OSTI)

    D`Aquila, D.M.; Holliday, R.T. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States); Dean, J.C. [Lockheed Martin Utility Services, Inc., Paducah, KY (United States)

    1996-12-31

    The Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) on July 1, 1993. The USEC is a government-owned business that leases those Gaseous Diffusion Plant (GDP) facilities at the Portsmouth, Ohio, and Paducah, Kentucky, sites from the U.S. Department of Energy (DOE) that are required for enriching uranium. Lockheed Martin Utility Services is the operating contractor for the USEC-leased facilities. The DOE has retained use of, and regulation over, some facilities and areas at the Portsmouth and Paducah sites for managing legacy wastes and environmental restoration activities. The USEC is regulated by the DOE, but is currently changing to regulation under the U.S. Nuclear Regulatory Commission (NRC). The USEC is also preparing for privatization of the uranium enrichment enterprise. These changes have significantly affected the nuclear criticality safety (NCS) programs at the sites.

  10. SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stephen Harrison

    2015-07-08

    The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.

  11. SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stephen Harrison

    The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.

  12. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    SciTech Connect (OSTI)

    Swain, A D; Guttmann, H E

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks.

  13. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

  14. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    SciTech Connect (OSTI)

    Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

    2012-08-01

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities identified by experts to improve upon the design of the DCS. A set of nine design recommendations was developed to address these potential issues. The design principles addressed the following areas: (1) color, (2) pop-up window structure, (3) navigation, (4) alarms, (5) process control diagram, (6) gestalt grouping, (7) typography, (8) terminology, and (9) data entry. Visuals illustrating the improved DCS displays accompany the design recommendations. These nine design principles serve as the starting point to a planned general DCS style guide that can be used across the U.S. nuclear industry to aid in the future design of effective DCS interfaces.

  15. Decision to reorganise or reorganising decisions? A First-Hand Account of the Decommissioning of the Phnix Nuclear Power Plant

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the Decommissioning of the Phénix Nuclear Power Plant Melchior Pelleterat de Borde, MINES ParisTech, Christophe Martin looks at the effect of ongoing organisational changes taking place in a nuclear power plant being campaigns, the Phénix nuclear power plant was taken out of service at the end of 2009. The plant has two

  16. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    SciTech Connect (OSTI)

    Kisner, Roger A; Mullens, James Allen; Wilson, Thomas L; Wood, Richard Thomas; Korsah, Kofi; Qualls, A L; Muhlheim, Michael David; Holcomb, David Eugene; Loebl, Andy

    2007-08-01

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  17. Site Selection & Characterization Status Report for Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Mark Holbrook

    2007-09-01

    In the near future, the US Department of Energy (DOE) will need to make important decisions regarding design and construction of the Next Generation Nuclear Plant (NGNP). One part of making these decisions is considering the potential environmental impacts that this facility may have, if constructed here at the Idaho National Laboratory (INL). The National Environmental Policy Act (NEPA) of 1969 provides DOE decision makers with a process to systematically consider potential environmental consequences of agency decisions. In addition, the Energy Policy Act of 2005 (Title VI, Subtitel C, Section 644) states that the 'Nuclear Regulatory Commission (NRC) shall have licensing and regulatory authority for any reactor authorized under this subtitle.' This stipulates that the NRC will license the NGNP for operation. The NRC NEPA Regulations (10 CFR Part 51) require tha thte NRC prepare an Environmental Impact Statement (EIS) for a permit to construct a nuclear power plant. The applicant is required to submit an Environmental report (ER) to aid the NRC in complying with NEPA.

  18. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Norm Stanley

    2011-02-01

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  19. Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants

    SciTech Connect (OSTI)

    O, J.M.; Higgins, J.; Stephen Fleger - NRC

    2011-09-19

    The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.

  20. Nuclear power plant Generic Aging Lessons Learned (GALL). Main report and appendix A

    SciTech Connect (OSTI)

    Kaza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U.

    1996-12-01

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This document is Volume 1, consisting of the executive summary, summary and observations, and an appendix listing the GALL literature review tables.

  1. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  2. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    DOE Patents [OSTI]

    Wroblewski, David (Mentor, OH); Katrompas, Alexander M. (Concord, OH); Parikh, Neel J. (Richmond Heights, OH)

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  3. Nuclear electric propulsion operational reliability and crew safety study

    SciTech Connect (OSTI)

    Karns, J.J.; Fragola, J.R.; Kahan, L.; Pelaccio, D. (Science Applications International Corporation, 8 W 40th St., 14th Floor, New York, New York 10018 (United States))

    1993-01-20

    The central purpose of this analysis is to assess the achievability'' of a nuclear electric propulsion (NEP) system in a given mission. Achievability'' is a concept introduced to indicate the extent to which a system that meets or achieves its design goals might be implemented using the existing technology base. In the context of this analysis, the objective is to assess the achievability of an NEP system for a manned Mars mission as it pertains to operational reliability and crew safety goals. By varying design parameters, then examining the resulting system achievability, the design and mission risk drivers can be identified. Additionally, conceptual changes in design approach or mission strategy which are likely to improve overall achievability of the NEP system can be examined.

  4. Developing and assessing accident management plans for nuclear power plants

    SciTech Connect (OSTI)

    Hanson, D.J.; Johnson, S.P.; Blackman, H.S.; Stewart, M.A. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1992-07-01

    This document is the second of a two-volume NUREG/CR that discusses development of accident management plans for nuclear power plants. The first volume (a) describes a four-phase approach for developing criteria that could be used for assessing the adequacy of accident management plans, (b) identifies the general attributes of accident management plans (Phase 1), (c) presents a prototype process for developing and implementing severe accident management plans (Phase 2), and (d) presents criteria that can be used to assess the adequacy of accident management plans. This volume (a) describes results from an evaluation of the capabilities of the prototype process to produce an accident management plan (Phase 3) and (b), based on these results and preliminary criteria included in NUREG/CR-5543, presents modifications to the criteria where appropriate.

  5. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  6. Pacific Basin Nuclear Conference (PBNC 2012), BEXCO, Busan, Korea, March 18 ~ 23, 2012 CHALLENGES OF CYBER SECURITY FOR NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    Kim, Kwangjo

    PBNC 2012 CHALLENGES OF CYBER SECURITY FOR NUCLEAR POWER PLANTS Kwangjo Kim KAIST, Daejeon, Korea.kim@kustar.ac.ae Abstract Nuclear Power Plants (NPPs) become one of the most important infrastructures in providing improvement. 1. Introduction Nuclear Power Plants (NPPs) become one of the most important infrastructures

  7. A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo

    E-Print Network [OSTI]

    Jee, Eunkyoung

    power reactor. Formal verification techniques such as model checking 1 Goal of KNICS consortium project in nuclear power plant's reactor protection systems. The software verification framework uses two differentA Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div

  8. Review of nuclear power plant offsite power source reliability and related recommended changes to the NRC rules and regulations

    SciTech Connect (OSTI)

    Battle, R.E.; Clark, F.H.; Reddoch, T.W.

    1980-05-01

    The NRC has stated its concern about the reliability of the offsite power system as the preferred emergency source and about the possible damage to a pressurized water reactor (PWR) that could result from a rapid decay of power grid frequency. ORNL contracted with NRC to provide technical assistance to establish criteria that can be used to evaluate the offsite power system for the licensing of a nuclear power plant. The results of many of the studies for this contract are recommendations to assess and control the power grid during operation. This is because most of the NRC regulations pertaining to the offsite power system are related to the design of the power grid, and we believe that additional emphasis on monitoring the power grid operation will improve the reliability of the nuclear plant offsite power supply. 46 refs., 10 figs.

  9. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo...

  10. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    the possible risk from nuclear power . it . is sufficient tothe Cancer Risk Due to Nuclear-Electric Power Generation",of Accident Risks in U.S. Commercial Nuclear Power Plants",

  11. License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning

    SciTech Connect (OSTI)

    Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

    2008-07-01

    The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

  12. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  13. Extending Sensor Calibration Intervals in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Shumaker, Brent; Hashemian, Hash

    2012-11-15

    Currently in the USA, sensor recalibration is required at every refueling outage, and it has emerged as a critical path item for shortening outage duration. International application of calibration monitoring, such as at the Sizewell B plant in UK, has shown that sensors may operate for eight years, or longer, within calibration tolerances. Online monitoring can be employed to identify those sensors which require calibration, allowing for calibration of only those sensors which need it. The US NRC accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no plants have been granted the necessary license amendment to apply it. This project addresses key issues in advanced recalibration methodologies and provides the science base to enable adoption of best practices for applying online monitoring, resulting in a public domain standardized methodology for sensor calibration interval extension. Research to develop this methodology will focus on three key areas: (1) quantification of uncertainty in modeling techniques used for calibration monitoring, with a particular focus on non-redundant sensor models; (2) accurate determination of acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and (3) the use of virtual sensor estimates to replace identified faulty sensors to extend operation to the next convenient maintenance opportunity.

  14. Concept of Operations for Nuclear Warhead Embedded Sensors

    SciTech Connect (OSTI)

    Rockett, P D; Koncher, T R

    2012-05-16

    Embedded arms-control-sensors provide a powerful new paradigm for managing compliance with future nuclear weapons treaties, where deployed warhead numbers will be reduced to 1000 or less. The CONOPS (Concept of Operations) for use with these sensors is a practical tool with which one may help define design parameters, including size, power, resolution, communications, and physical structure. How frequently must data be acquired and must a human be present? Will such data be acquired for only stored weapons or will it be required of deployed weapons as well? Will tactical weapons be subject to such monitoring or will only strategic weapons apply? Which data will be most crucial? Will OSI's be a component of embedded sensor data management or will these sensors stand alone in their data extraction processes? The problem space is massive, but can be constrained by extrapolating to a reasonable future treaty regime and examining the bounded options this scenario poses. Arms control verification sensors, embedded within the warhead case or aeroshell, must provide sufficient but not excessively detailed data, confirming that the item is a nuclear warhead and that it is a particular warhead without revealing sensitive information. Geolocation will be provided by an intermediate transceiver used to acquire the data and to forward the data to a central processing location. Past Chain-of-Custody projects have included such devices and will be primarily responsible for adding such indicators in the future. For the purposes of a treaty regime a TLI will be verified as a nuclear warhead by knowledge of (a) the presence and mass of SNM, (b) the presence of HE, and (c) the reporting of a unique tag ID. All of these parameters can be obtained via neutron correlation measurements, Raman spectroscopy, and fiber optic grating fabrication, respectively. Data from these sensors will be pushed out monthly and acquired nearly daily, providing one of several verification layers in depth, including on-site inspections, NTM, declarations, and semi-annual BCC meetings. Human intervention will not be necessary. The sheer numbers, small size, and wide distribution of warhead TLIs will mandate the added level of remote monitoring that Embedded Sensors can provide. This multilayer protection will limit the need to increase the frequency of OSIs, by adding confidence that declared TLIs remain as declared and that no undeclared items enter the regime without the other States Party's knowledge. Acceptance of Embedded arms control Sensor technologies will require joint development by all State's Parties involved. Principles of operation and robustness of technologies must be individually evaluated to sustain confidence in the strength of this system against attack. Weapons designers must be assured that these sensors will in no way impact weapon performance and operation, will not affect weapons security and safety, and will have a neutral impact upon weapon system surety. Each State's Party will need to conduct an in depth review of their weapons lifecycle to determine where moves may be reduced to minimize vulnerabilities and where random selection may be used to minimize the ability to make undeclared changes. In the end Verification is a political measure, not a technical one. If the potential users can gain sufficient confidence in the application of Embedded arms control Sensors, they could constitute the final layer of glue to hold together the next Nuclear Arms Control agreement.

  15. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect (OSTI)

    Griffith, George W.

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  16. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  17. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  18. A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo

    E-Print Network [OSTI]

    require safety demonstration. RPS software of APR-1400 advanced nuclear power reactor, in developmentA Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div-based software in nuclear reactor protection system (RPS). FBD programs are developed manually and revised

  19. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  20. Identification and Evaluation of Human Factors Issues Associated with Emerging Nuclear Plant Technology

    SciTech Connect (OSTI)

    O'Hara,J.M.; Higgins,J.; Brown, William S.

    2009-04-01

    This study has identified human performance research issues associated with the implementation of new technology in nuclear power plants (NPPs). To identify the research issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were prioritized into four categories based on evaluations provided by 14 independent subject matter experts representing vendors, utilities, research organizations and regulators. Twenty issues were categorized into the top priority category. The study also identifies the priority of each issue and the rationale for those in the top priority category. The top priority issues were then organized into research program areas of: New Concepts of Operation using Multi-agent Teams, Human-system Interface Design, Complexity Issues in Advanced Systems, Operating Experience of New and Modernized Plants, and HFE Methods and Tools. The results can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas to support the safe operation of new NPPs.

  1. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

  2. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

  3. Integrated head package cable carrier for a nuclear power plant

    DOE Patents [OSTI]

    Meuschke, Robert E. (Monroeville, PA); Trombola, Daniel M. (Murrysville, PA)

    1995-01-01

    A cabling arrangement is provided for a nuclear reactor located within a containment. Structure inside the containment is characterized by a wall having a near side surrounding the reactor vessel defining a cavity, an operating deck outside the cavity, a sub-space below the deck and on a far side of the wall spaced from the near side, and an operating area above the deck. The arrangement includes a movable frame supporting a plurality of cables extending through the frame, each connectable at a first end to a head package on the reactor vessel and each having a second end located in the sub-space. The frame is movable, with the cables, between a first position during normal operation of the reactor when the cables are connected to the head package, located outside the sub-space proximate the head package, and a second position during refueling when the cables are disconnected from the head package, located in the sub-space. In a preferred embodiment, the frame straddles the top of the wall in a substantially horizontal orientation in the first position, pivots about an end distal from the head package to a substantially vertically oriented intermediate position, and is guided, while remaining about vertically oriented, along a track in the sub-space to the second position.

  4. Severe Accident Sequence Analysis Program: Anticipated transient without scram simulations for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect (OSTI)

    Dallman, R J; Gottula, R C; Holcomb, E E; Jouse, W C; Wagoner, S R; Wheatley, P D

    1987-05-01

    An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented.

  5. Sodium Recycle Economics for Waste Treatment Plant Operations

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.

    2008-08-31

    Sodium recycle at the Hanford Waste Treatment Plant (WTP) would reduce the number of glass canisters produced, and has the potential to significantly reduce the cost to the U.S. Department of Energy (DOE) of treating the tank wastes by hundreds of millions of dollars. The sodium, added in the form of sodium hydroxide, was originally added to minimize corrosion of carbon-steel storage tanks from acidic reprocessing wastes. In the baseline Hanford treatment process, sodium hydroxide is required to leach gibbsite and boehmite from the high level waste (HLW) sludge. In turn, this reduces the amount of HLW glass produced. Currently, a significant amount of additional sodium hydroxide will be added to the process to maintain aluminate solubility at ambient temperatures during ion exchange of cesium. The vitrification of radioactive waste is limited by sodium content, and this additional sodium mass will increase low-activity waste-glass mass. An electrochemical salt-splitting process, based on sodium-ion selective ceramic membranes, is being developed to recover and recycle sodium hydroxide from high-salt radioactive tank wastes in DOE’s complex. The ceramic membranes are from a family of materials known as sodium (Na)—super-ionic conductors (NaSICON)—and the diffusion of sodium ions (Na+) is allowed, while blocking other positively charged ions. A cost/benefit evaluation was based on a strategy that involves a separate caustic-recycle facility based on the NaSICON technology, which would be located adjacent to the WTP facility. A Monte Carlo approach was taken, and several thousand scenarios were analyzed to determine likely economic results. The cost/benefit evaluation indicates that 10,000–50,000 metric tons (MT) of sodium could be recycled, and would allow for the reduction of glass production by 60,000–300,000 MT. The cost of the facility construction and operation was scaled to the low-activity waste (LAW) vitrification facility, showing cost would be roughly $150 million to $400 million for construction and $10 million to $40 million per year for operations. Depending on the level of aluminate supersaturation allowed in the storage tanks in the LAW Pretreatment Facility, these values indicate a return on investment of up to 25% to 60%.

  6. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  7. Conference committees Chairman of the conference "New Nuclear Power Plants in the Netherlands", June 21-22, 2011,

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Conference committees Chairman of the conference "New Nuclear Power Plants in the Netherlands Nuclear Power Plants, September 15-19, 2003, Kyoto, Japan. Session chairman GENES4/ANP2003 ,,International Conference on Global Environment and Advanced Nuclear Power Plants, September 15-19, 2003, Kyoto

  8. Optimum Operation of In-Plant Cogeneration Systems 

    E-Print Network [OSTI]

    Craw, I. A.; Foster, D.; Reidy, K. D.

    1987-01-01

    OF IN-PLANT COGENERATION SYSTEMS I.A. CRAW, D. FOSTER AND K.D. REIDY TENSA Services Houston, Texas ABSTRACT Selecting the best way to run large in-plant cogeneration systems to meet site electricity and steam demands at minimum cost is a highly... developed over a 20 year period culminating with real time data collection and performance monitoring and real time optimization for a variety of plants, including heat and power cogeneration plants. ICI has found that they have been able to use...

  9. Quiz # 7, STAT 383, Prof. Suman Sanyal, April 8, 2009 (Q2, Page 354) To decide whether the pipe welds in a nuclear power plant meet

    E-Print Network [OSTI]

    Sanyal, Suman

    welds in a nuclear power plant meet specifications, a random sample of welds is to be selected : µ nuclear power plants is to determine if welds

  10. The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience

    SciTech Connect (OSTI)

    Strunk, J.

    1996-12-31

    At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

  11. Interpolation of nuclear operators and a splitting theorem for exact sequences of Frechet spaces

    E-Print Network [OSTI]

    Vogt, Dietmar

    , as done by Petzsche [6], can be proved by using nuclear expansions of the maps. The present approachInterpolation of nuclear operators and a splitting theorem for exact sequences of Fr´echet spaces of the spaces is nuclear. Other proofs in this or similar cases can be found in Petzsche [6] and Vogt [12

  12. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect (OSTI)

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  13. Impact of Public Policy and Societal Risk Perception on U.S. Civilian Nuclear Power Plant Construction

    E-Print Network [OSTI]

    Ford, David N.

    Impact of Public Policy and Societal Risk Perception on U.S. Civilian Nuclear Power Plant permit applications for 26 new nuclear power reactors. However, the previous generation of U.S. civilian of nuclear plants. Results point to the critical role societal perceptions of nuclear power risk play

  14. Feature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M. Edwards and Asok Ray

    E-Print Network [OSTI]

    Ray, Asok

    monitoring of nuclear power plants (NPP) is one of the key issues addressed in nuclear energy safety researchFeature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M. Edwards and Asok Ray Department of Mechanical and Nuclear Engineering, The Pennsylvania State University

  15. Nuclear and Radiological Engineering and Medical Physics Programs

    E-Print Network [OSTI]

    Weber, Rodney

    Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

  16. Preliminary development of an integrated approach to the evaluation of pressurized thermal shock as applied to the Oconee Unit 1 Nuclear Power Plant

    SciTech Connect (OSTI)

    Burns, T J; Cheverton, R D; Flanagan, G F; White, J D; Ball, D G; Lamonica, L B; Olson, R

    1986-05-01

    An evaluation of the risk to the Oconee-1 nuclear plant due to pressurized thermal shock (PTS) has been Completed by Oak Ridge National Laboratory (ORNL). This evaluaion was part of a Nuclear Regulatory Commission (NRC) program designed to study the PTS risk to three nuclear plants: Oconee-1, a Babcock and Wilco reactor plant owned and operated by Duke Power Company; Calvert Cliffs-1, a Combustion Engineering reactor plant owned and operated by Baltimore Gas and Electric company; and H.B. Robinson-2, a Westinghouse reactor plant owned and operated by Carolina Power and Light Company. Studies of Calvert Cliffs-1 and H.B. Robinson-2 are still underway. The specific objectives of the Oconee-1 study were to: (1) provide a best estimate of the probability of a through-the-wall crack (TWC) occurring in the reactor pressure vessel as a result of PTS; (2) determine dominant accident sequences, plant features, operator and control actions and uncertainty in the PTS risk; and (3) evaluate effectiveness of potential corrective measures.

  17. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    SciTech Connect (OSTI)

    Boyer, Brian D

    2012-08-15

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  18. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect (OSTI)

    Lanc, T.L.

    1992-01-01

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  19. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect (OSTI)

    Lanc, T.L.

    1992-12-31

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  20. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  1. Operating costs and plant options analysis for the Shamokin fluidized bed boiler

    SciTech Connect (OSTI)

    Klett, M.G.; Dowdy, T.E.; Litman, R.

    1984-03-01

    This report presents the results of a study that examined the operating costs and options to improve the Shamokin Atmospheric Fluidized Bed Combustion Demonstration Plant located near Shamokin, Pennsylvania. The purpose of this study was to perform an operating cost analysis and compare the results with projected operating costs. An analysis was also made to identify possible cost savings options. Two base case scenarios were developed for this study: the first scenario assumed that the plant operated in a manner similar to operations during the extended test program; and the second scenario was concerned with two options. One option assumed upgrading the plant to achieve continuous full load operation, restarting, and used revised costs and revenues. The second assumed reconfiguring the plant for cogeneration.

  2. Contribution of Anticipated Transients Without Scram (ATWS) to core melt at United States nuclear power plants

    SciTech Connect (OSTI)

    Giachetti, R.T. (Giachetti (Richard T.), Ann Arbor, MI (USA))

    1989-09-01

    This report looks at WASH-1400 and several other Probabilistic Risk Assessments (PRAs) and Probabilistic Safety Studies (PSSs) to determine the contribution of Anticipated Transients Without Scram (ATWS) events to the total core melt probability at eight nuclear power plants in the United States. After considering each plant individually, the results are compared from plant to plant to see if any generic conclusions regarding ATWS, or core melt in general, can be made. 8 refs., 34 tabs.

  3. EEE 598 27074 Power Plant Control & Monitoring This class deals with the Dynamics, Control, and Operations of Electric Power Systems.

    E-Print Network [OSTI]

    Zhang, Junshan

    drives - constant / adjustable speed Power plant characteristics Steam plants - turbine dynamics - boiler configurations, dynamics, controls Gas turbines - control fundamentals - operational limits, constraints

  4. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    SciTech Connect (OSTI)

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-02-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intended to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.

  5. Aging assessment of surge protective devices in nuclear power plants

    SciTech Connect (OSTI)

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters.

  6. Status of radioiodine control for nuclear fuel reprocessing plants

    SciTech Connect (OSTI)

    Burger, L.L.; Scheele, R.D.

    1983-07-01

    This report summarizes the status of radioiodine control in a nuclear fuel reprocessing plant with respect to capture, fixation, and disposal. Where possible, we refer the reader to a number of survey documents which have been published in the last four years. We provide updates where necessary. Also discussed are factors which must be considered in developing criteria for iodine control. For capture from gas streams, silver mordenite and a silver nitrate impregnated silica (AC-6120) are considered state-of-the-art and are recommended. Three aqueous scrubbing processes have been demonstrated: Caustic scrubbing is simple but probably will not give an adequate iodine retention by itself. Mercurex (mercuric nitrate-nitric acid scrubbing) has a number of disadvantages including the use of toxic mercury. Iodox (hyperazeotropic nitric acid scrubbing) is effective but employs a very corrosive and hazardous material. Other technologies have been tested but require extensive development. The waste forms recommended for long-term storage or disposal are silver iodide, the iodates of barium, strontium, or calcium, and silver loaded sorbents, all fixed in cement. Copper iodide in bitumen (asphalt) is a possibility but requires testing. The selection of a specific form will be influenced by the capture process used.

  7. Operating and Maintaining a 465MW Cogeneration Plant 

    E-Print Network [OSTI]

    Theisen, R. E.

    1988-01-01

    experienced three total interruptions of their steam plant in early 1986, and in all cases, the automatic high pressure extraction system of the steam turbine generator quickly and evenly increased steam flow and maintained the chemical plant at capacity... of construction. DESIGN SUMMARY The plant consists of five 75,OOOkW Model PG7IIIE General Electric gas turbine generators. five three-pressure level Henry Vogt heat recovery boilers, one 137,000kW extraction/induction/ 237 condensing General Electric steam...

  8. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    SciTech Connect (OSTI)

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  9. Model of the deposition of colloidal crud particles on the fuel elements of nuclear power plants

    SciTech Connect (OSTI)

    Urrutia, G.A.; Blesa, M.A.; Maroto, A.J.G.; Passaggio, S.I.

    1983-06-01

    Experimental data on the adhesion of ..cap alpha..-Fe/sub 2/O/sub 3/ on large ZrO/sub 2/ pellets are presented and discussed in terms of the colloidal interactions of the two double layers. The pH dependence of adhesion is thus explained. The relevance of colloidal interactions of this type in reactor conditions is then discussed, through the evaluation of the impact of the existence of a potential barrier to deposition. This is discussed in terms of Beal's model, and the changes in the stopping distance for colloidal particles due to this barrier are evaluated. The influence of pH and particle size on deposition phenomena is also discussed. Predicted values for the deposition coefficient are compared with operational values from the Atucha Nuclear Power Plant.

  10. A Study of Outage Management Practices at Selected U.S. Nuclear Plants

    SciTech Connect (OSTI)

    Lin, James C. [ABSG Consulting Inc., Irvine, CA (United States)

    2002-07-01

    This paper presents insights gained from a study of the outage management practices at a number of U.S. nuclear plants. The objective of the study was to conduct an in-depth review of the current practices of outage management at these selected plants and identify important factors that have contributed to the recent success of their outage performance. Two BWR-4, three BWR-6, and two 3-loop Westinghouse PWR plants were selected for this survey. The results of this study can be used to formulate outage improvement efforts for nuclear plants in other countries. (author)

  11. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    E-Print Network [OSTI]

    Neklyudov, I M; Dikiy, N P; Ledenyov, O P; Lyashko, Yu V

    2013-01-01

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granule...

  12. A holistic investigation of complexity sources in nuclear power plant control rooms

    E-Print Network [OSTI]

    Sasangohar, Farzan

    2011-01-01

    The nuclear power community in the United States is moving to modernize aging power plant control rooms as well as develop control rooms for new reactors. New generation control rooms, along with modernized control rooms, ...

  13. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect (OSTI)

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  14. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  15. Maximizing nuclear power plant performance via mega-uprates and subsequent license renewal

    E-Print Network [OSTI]

    DeWitte, Jacob D. (Jacob Dominic)

    2014-01-01

    The goal of this thesis is to develop a methodology to evaluate the engineering and economic implications of maximizing performance of the United States' commercial fleet of nuclear power plants. This methodology addresses ...

  16. Tornado vs. Hurricane Which is More Critical for Design of U.S. Nuclear Power Plants?

    Broader source: Energy.gov [DOE]

    Tornado vs. Hurricane Which is More Critical for Design of U.S. Nuclear Power Plants? Javad Moslemian Sargent & Lundy, LLC U. S. Department of Energy Natural Phenomena Hazards Meeting October 21-22, 2014

  17. Probabilistic methods in seismic risk assessment for nuclear power plants: proceedings

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    The state-of-the-art in seismic risk analysis applied to the design and siting of nuclear power plants was addressed in this meeting. Presentations were entered individually into the date base. (ACR)

  18. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    SciTech Connect (OSTI)

    Greene, Sherrell R; Flanagan, George F; Borole, Abhijeet P

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  19. Accelerating progress toward operational excellence of fossil energy plants with CO2 capture

    SciTech Connect (OSTI)

    Zitney, S.; Liese, E.; Mahapatra, P.; Turton, R. Bhattacharyya, D.

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training And Research (AVESTARTM). The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This paper will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of an integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture.

  20. News Release Closure of Russian Nuclear Plant.PDF

    National Nuclear Security Administration (NNSA)

    plant in the closed city of Sarov, Russia - by the end of 2003. The Avangard plant will transition to civilian commercial uses. This effort is facilitated by the Department of...

  1. Summary and bibliography of safety-related events at boiling-water nuclear power plants as reported in 1980

    SciTech Connect (OSTI)

    McCormack, K.E.; Gallaher, R.B.

    1982-03-01

    This document presents a bibliography that contains 100-word abstracts of event reports submitted to the US Nuclear Regulatory Commission concerning operational events that occurred at boiling-water-reactor nuclear power plants in 1980. The 1547 abstracts included on microfiche in this bibliography describe incidents, failures, and design or construction deficiencies that were experienced at the facilities. These abstracts are arranged alphabetically by reactor name and then chronologically for each reactor. Full-size keyword and permuted-title indexes to facilitate location of individual abstracts are provided following the text. Tables that summarize the information contained in the bibliography are also provided. The information in the tables includes a listing of the equipment items involved in the reported events and the associated number of reports for each item. Similar information is given for the various kinds of instrumentation and systems, causes of failures, deficiencies noted, and the time of occurrence (i.e., during refueling, operation, testing, or construction).

  2. Energy Management of Chiller Plant for Improved Efficiency and Operation 

    E-Print Network [OSTI]

    Alexander, D. P.; Rice, L. S.

    1987-01-01

    stream_source_info ESL-IE-87-09-28.pdf.txt stream_content_type text/plain stream_size 27133 Content-Encoding ISO-8859-1 stream_name ESL-IE-87-09-28.pdf.txt Content-Type text/plain; charset=ISO-8859-1 ENERGY MANAGEMENT... Physical Plant Division Georgia Institute of Technology Atlanta, GA ABSTRACT This paper describes a success story on energy man agement of the chiller plant at Georgia Tech. A multilevel control and optimization method is implemented by using...

  3. Operating Experience of the 20-MW AFBC Pilot Plant 

    E-Print Network [OSTI]

    Stephens, E. A. Jr.

    1988-01-01

    into the Pilot Plant for testing. The basic 330 ESL-IE-88-09-60 Proceedings from the Tenth Annual Industrial Energy Technology Conference, Houston, TX, September 13-15, 1988 Fig. 2 Pilot Plant Boller and Major Subsystems configuration of the boiler and major... of the full-load performance tests have been run at 1530 0 F and 45-inch bed depth. This is the bed temperature for optimum sulfur capture (for Reed and Fredonia limestone) and the bed depth to ensure that all the in-bed tubes are covered...

  4. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies. Final report

    SciTech Connect (OSTI)

    Berg, R.; Stroinski, M.; Giachetti, R.

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein.

  5. Human factors design, verification, and validation for two types of control room upgrades at a nuclear power plant

    SciTech Connect (OSTI)

    Boring, Laurids Ronald

    2014-10-01

    This paper describes the NUREG-0711 based human factors engineering (HFE) phases and associated elements required to support design, verification and validation (V&V), and implementation of a new plant process computer (PPC) and turbine control system (TCS) at a representative nuclear power plant. This paper reviews ways to take a human-system interface (HSI) specification and use it when migrating legacy PPC displays or designing displays with new functionality. These displays undergo iterative usability testing during the design phase and then undergo an integrated system validation (ISV) in a full scope control room training simulator. Following the successful demonstration of operator performance with the systems during the ISV, the new system is implemented at the plant, first in the training simulator and then in the main control room.

  6. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  7. Example G Cost of construction of nuclear power plants Description of data

    E-Print Network [OSTI]

    Reid, Nancy

    Example G Cost of construction of nuclear power plants Description of data Table G.1 gives data it is possible that some manufacturer's subsidies might be hidden in the quoted capital costs. Table G.1 Data) CT Use of cooling tower (=1) BW Nuclear steam supply system manufactured by Babcock-Wilcox (=1) N

  8. Example G Cost of construction of nuclear power plants Description of data

    E-Print Network [OSTI]

    Reid, Nancy

    1 Example G Cost of construction of nuclear power plants Description of data Table G.1 gives and for which it is possible that some manufacturer's subsidies might be hidden in the quoted capital costs-east region (=1) CT Use of cooling tower (=1) BW Nuclear steam supply system manufactured by Babcock

  9. Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1

    E-Print Network [OSTI]

    Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1 2/ Brian A/ The method can be used to train evaluators to use explicit criteria (vividness, intactness and unity) to assess change in a setting's visual quality as the result of construction of a nuclear facility, or any

  10. The sequence coding and search system: An approach for constructing and analyzing event sequences at commercial nuclear power plants

    SciTech Connect (OSTI)

    Mays, G.T.

    1989-04-01

    The US Nuclear Regulatory Commission (NRC) has recognized the importance of the collection, assessment, and feedstock of operating experience data from commercial nuclear power plants and has centralized these activities in the Office for Analysis and Evaluation of Operational Data (AEOD). Such data is essential for performing safety and reliability analyses, especially analyses of trends and patterns to identify undesirable changes in plant performance at the earliest opportunity to implement corrective measures to preclude the occurrences of a more serious event. One of NRC's principal tools for collecting and evaluating operating experience data is the Sequence Coding and Search System (SCSS). The SCSS consists of a methodology for structuring event sequences and the requisite computer system to store and search the data. The source information for SCSS is the Licensee Event Report (LER), which is a legally required document. This paper describes the objective SCSS, the information it contains, and the format and approach for constructuring SCSS event sequences. Examples are presented demonstrating the use SCSS to support the analysis of LER data. The SCSS contains over 30,000 LERs describing events from 1980 through the present. Insights gained from working with a complex data system from the initial developmental stage to the point of a mature operating system are highlighted.

  11. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants - Final Technical Report

    SciTech Connect (OSTI)

    Ritterbusch, Stanley; Golay, Michael; Duran, Felicia; Galyean, William; Gupta, Abhinav; Dimitrijevic, Vesna; Malsch, Marty

    2003-01-29

    OAK B188 Summary of methods proposed for risk informing the design and regulation of future nuclear power plants. All elements of the historical design and regulation process are preserved, but the methods proposed for new plants use probabilistic risk assessment methods as the primary decision making tool.

  12. Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    : Boiling Water Reactor Reactor Manufacturer: General Electric Turbine Generator Manufacturer: General a nuclear power plant. Plant was Entergy, a Boiling Water Reactor (BWR) type. Built in the 80's, it has from the reactor is stored under water. An alternative storage is the dry cask storage which

  13. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    SciTech Connect (OSTI)

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  14. EA-0642: Operation of the Pinellas Plant Child Development Center/Partnership School

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a joint venture proposal to operate a Partnership School and Child Development Center at the U.S. Department of Energy's Pinellas Plant in New Mexico.

  15. A Systems Approach to Optimize the Operation of a Refrigeration Unit at a Chemical Plant 

    E-Print Network [OSTI]

    Papar, R.; Zugibe, K.; Heitler, J.

    2005-01-01

    This paper focuses on the ongoing system level analysis and the optimization results of two steamturbine driven refrigeration units at the Dow Chemical company Peroxymerics (PXC) plant located at St. Charles Operations in Hahnville, LA. Six-sigma...

  16. Using supply chain management techniques to make wind plant and energy storage operation more profitable

    E-Print Network [OSTI]

    Saran, Prashant

    2009-01-01

    Our research demonstrates that supply chain management techniques can improve the incremental gross profits of wind plant and storage operations by up to five times. Using Monte-Carlo simulation we create and test scenarios ...

  17. Extra-terrestrial nuclear power stations : transportation and operation

    E-Print Network [OSTI]

    Kane, Susan Christine

    2005-01-01

    Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples ...

  18. Assessment of LWR piping design loading based on plant operating experience

    SciTech Connect (OSTI)

    Svensson, P. O.

    1980-08-01

    The objective of this study has been to: (1) identify current Light Water Reactor (LWR) piping design load parameters, (2) identify significant actual LWR piping loads from plant operating experience, (3) perform a comparison of these two sets of data and determine the significance of any differences, and (4) make an evaluation of the load representation in current LWR piping design practice, in view of plant operating experience with respect to piping behavior and response to loading.

  19. U.S.-Russia MPC and A upgrades at the Beloyarsk Nuclear Power Plant

    SciTech Connect (OSTI)

    Saraev, O. [Beloyarsk Nuclear Power Plant, Zarechny (Russian Federation); Haase, M.; Smarto, C. [Dept. of Energy, Washington, DC (United States); Mikkelsen, K.; Heinberg, C. [Pacific Northwest National Labs., Richland, WA (United States); Showalter, R.; Soo Hoo, M. [Sandia National Labs., Albuquerque, NM (United States); Hatcher, C.; Forehand, M. [Los Alamos National Lab., NM (United States)

    1998-08-01

    During the January 1996 meeting of the Gore-Chernomyrdin Commission, the Beloyarsk Nuclear Power Plant (BNPP) was identified as one of the additional sites for cooperative projects on upgrading Materials Protection, Control and Accounting (MPC and A). Since June 1996, Sandia National Laboratories (SNL), Pacific Northwest National Laboratories (PNNL), and Los Alamos National Laboratory (LANL) have worked with BNPP to upgrade MPC and A at the facility. Some unique challenges were encountered because BNPP has an operating BN-600 600-Megawatt breeder reactor. SNL has been responsible for working with BNPP to implement physical protection upgrades to the Central Alarm Station, Fresh Fuel Storage building, Spent Fuel Storage Area, and Vehicle/Personnel Portal. In addition, improved communication equipment for the Ministry of the Interior (MVD) guards and training of personnel were provided. PNNL has been responsible for coordinating Material Control and Accounting (MC and A) upgrades at BNPP. PNNL, in conjunction with LANL, has implemented such MC and A upgrades as a computerized nuclear materials accounting system, training in MC and A elements, nondestructive assay instrumentation for fresh fuel, installation of a fork detector for measuring spent fuel, and installation of an underwater video camera for verification of spent fuel serial numbers.

  20. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Energy Savers [EERE]

    Projects, which exceeds the 2 billion in loan guarantees made available for this type of project in the June 30, 2008 solicitation. License applications for the nuclear...

  1. Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: A modeling study for

    E-Print Network [OSTI]

    Mousseau, Timothy A.

    Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from-model Death risks The accident at the Fukushima Daiichi Nuclear Power Plant (NPP) in Japan resulted with iodine isotopes and noble gasses) after nuclear releases. The main purpose is to provide preliminary

  2. Abstract--A novel methodology for economic evaluation of hydrogen storage for a mixed wind-nuclear power plant is

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    .e. transmission congestion. Index Terms--wind power, nuclear power, hydrogen storage, Hydrogen Economy, power power plant production (MW) NP : nuclear power plant production (MW) CP : electrolyzer consumption (MW with the market (kg) WIND ipwP ,, : wind-nuclear power consumed for wind scenario w and price scenario p in hour i

  3. H-coal pilot plant. Phase II. Construction. Phase III. Operation. Annual report No. 3

    SciTech Connect (OSTI)

    Not Available

    1981-02-04

    At the request of DOE Oak Ridge, ASFI agreed to assume responsibility for completion of Plant construction in December, 1979, at which time Badger Plants' on-site work was ended. This construction effort consisted of electric heat tracing and insulation of piping and instrumentation. At the close of the reporting period the work was completed, or was projected to be completed, within the ASFI budgeted amounts and by dates that will not impact Plant operations. Engineering design solutions were completed for problems encountered with such equipment as the High Pressure Letdown Valves; Slurry Block Valves; Slurry Pumps; the Bowl Mill System; the Dowtherm System; and the Ebullating Pump. A Corrosion Monitoring Program was established. With the exception of Area 500, the Antisolvent Deashing Unit, all operating units were commissioned and operated during the reporting period. Coal was first introduced into the Plant on May 29, 1980, with coal operations continuing periodically through September 30, 1980. The longest continuous coal run was 119 hours. A total of 677 tons of Kentucky No. 11 Coal were processed during the reporting period. The problems encountered were mechanical, not process, in nature. Various Environmental and Health programs were implemented to assure worker safety and protection and to obtain data from Plant operations for scientific analysis. These comprehensive programs will contribute greatly in determining the acceptability of long term H-Coal Plant operations.

  4. Development of nuclear power plant noise diagnostics into a processmeasuring method

    SciTech Connect (OSTI)

    Hessel, G.; Koppen, H.E.; Liewers, P.; Schumann, P.; Weib, F.P.

    1985-01-01

    Until now, the fact that specialists were necessary for performing noise diagnostic measurements as well as for interpreting the results has been the main impediment to a large-scale routine application of noise diagnostics to pressurized water reactors (PWRs). In order to develop noise diagnostics into a process-measuring method that can also be used by the operating crew, a higher degree of automation based on objective measuring and processing procedures is especially needed. At a working nuclear power plant with a PWR, a noise diagnostics system is being tested that largely meets these requirements. Well-known disturbances capable of causing damage to critical plant components are carefully tracked by automated devices, so-called monitors. Such disturbances are, e.g., occurrence of loose parts in the primary circuit, anomalously working coolant pumps, or impacting of control rods. An overall surveillance not dedicated to special processes and therefore with a lower degree of sensitivity is performed by means of pattern recognition methods on a computer.

  5. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for restoring the ability of degraded EPR to be compliant and resist fracture. The results of this research reveal that absorption of chemical treatments can lower the glass transition temperature and modulus of EPR. Chemical treatments pursued thus far have proven ineffective at restoring EPR strength and elongation at break. Future work will combine the plasticizer modalities found to successfully increase the volume of the EPR, reduce EPR glass transition temperature and reduce EPR modulus with promising chemistries that will repair the damage of the polymer, potentially using the plasticizer as a host for the new chemistry.

  6. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 1, FEBRUARY 2011 277 Anomaly Detection in Nuclear Power Plants via

    E-Print Network [OSTI]

    Ray, Asok

    by the U.S. Department of Energy under NERI-C Grant DE-FG07-07ID14895 and by NASA under Co- operative an automated con- dition monitoring system to assist the plant operator to detect the anomalies and isolate of physical interpretation, their reliability and computa- tional efficiency for condition monit

  7. Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing {sup 235}U, {sup 233}U, and {sup 232}Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons

    SciTech Connect (OSTI)

    Ioffe, B. L.; Kochurov, B. P. [Institute of Theoretical and Experimental Physics (Russian Federation)

    2012-02-15

    A physical design is developed for a gas-cooled heavy-water nuclear reactor intended for a project of a nuclear power plant. As a fuel, the reactor would employ thorium with a small admixture of enriched uranium that contains not more than 20% of {sup 235}U. It operates in the open-cycle mode involving {sup 233}U production from thorium and its subsequent burnup. The reactor meets the conditions of a nonproliferation of nuclear weapons: the content of fissionable isotopes in uranium at all stages of the process, including the final one, is below the threshold for constructing an atomic bomb, the amount of product plutonium being extremely small.

  8. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect (OSTI)

    Janeen Denise Robertson

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  9. The (safety-related) heat exchangers aging management guideline for commercial nuclear power plants, and developments since 1994

    SciTech Connect (OSTI)

    Clauss, J.M.

    1998-08-01

    The US Department of Energy (DOE), in cooperation with the Electric Power Research Institute (EPRI) and US nuclear power plant utilities, is preparing a series of aging management guidelines (AMGs) for commodity types of components (e.g., heat exchangers, electrical cable and terminations, pumps). Commodities are included in this series based on their importance to continued nuclear plant operation and license renewal. The AMGs contain a detailed summary of operating history, stressors, aging mechanisms, and various types of maintenance and surveillance practices that can be combined to create an effective aging management program. Each AMG is intended for use by the systems engineers and plant maintenance staff (i.e., an AMG is intended to be a hands-on technical document rather than a licensing document). The heat exchangers AMG, published in June 1994, includes the following information of interest to nondestructive examination (NDE) personnel: aging mechanisms determined to be non-significant for all applications; aging mechanisms determined to be significant for some applications; effective conventional programs for managing aging; and effective unconventional programs for managing aging. Since the AMG on heat exchangers was published four years ago, a brief review has been conducted to identify emerging regulatory issues, if any. The results of this review and lessons learned from the collective set of AMGs are presented.

  10. Joint Technical Operations Team | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Operations Team (JTOT) provides specialized technical capabilities in support of lead federal agencies to respond to weapons of mass destruction. Furthermore, the JTOT...

  11. 1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing

    E-Print Network [OSTI]

    Skogestad, Sigurd

    1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances Mehdi Panahi Sigurd Skogestad 18.10.2011 AIChE Annual Meeting #12;2M. Panahi, S. Skogestad ' Optimal Operation of a CO2

  12. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  13. Operation of Concentrating Solar Power Plants in the Western Wind and Solar Integration Phase 2 Study

    SciTech Connect (OSTI)

    Denholm, P.; Brinkman, G.; Lew, D.; Hummon, M.

    2014-05-01

    The Western Wind and Solar Integration Study (WWSIS) explores various aspects of the challenges and impacts of integrating large amounts of wind and solar energy into the electric power system of the West. The phase 2 study (WWSIS-2) is one of the first to include dispatchable concentrating solar power (CSP) with thermal energy storage (TES) in multiple scenarios of renewable penetration and mix. As a result, it provides unique insights into CSP plant operation, grid benefits, and how CSP operation and configuration may need to change under scenarios of increased renewable penetration. Examination of the WWSIS-2 results indicates that in all scenarios, CSP plants with TES provides firm system capacity, reducing the net demand and the need for conventional thermal capacity. The plants also reduced demand during periods of short-duration, high ramping requirements that often require use of lower efficiency peaking units. Changes in CSP operation are driven largely by the presence of other solar generation, particularly PV. Use of storage by the CSP plants increases in the higher solar scenarios, with operation of the plant often shifted to later in the day. CSP operation also becomes more variable, including more frequent starts. Finally, CSP output is often very low during the day in scenarios with significant PV, which helps decrease overall renewable curtailment (over-generation). However, the configuration studied is likely not optimal for High Solar Scenario implying further analysis of CSP plant configuration is needed to understand its role in enabling high renewable scenarios in the Western United States.

  14. NERI Final Project Report: On-Line Intelligent Self-Diagnostic Monitoring System for Next Generation Nuclear Power Plants

    SciTech Connect (OSTI)

    Bond, Leonard J.; Jarrell, Donald B.; Koehler, Theresa M.; Meador, Richard J.; Sisk, Daniel R.; Hatley, Darrel D.; Watkins, Kenneth S.; Chai, Jangbom; Kim, Wooshik

    2003-06-20

    This project provides a proof-of-principle technology demonstration for SDMS, where a distributed suite of sensors is integrated with active components and passive structures of types expected to be encountered in next generation nuclear power reactor and plant systems. The project employs state-of-the-art operational sensors, advanced stressor-based instrumentation, distributed computing, RF data network modules and signal processing to improve the monitoring and assessment of the power reactor system and gives data that is used to provide prognostics capabilities.

  15. Design, start up, and three years operating experience of an ammonia scrubbing, distillation, and destruction plant

    SciTech Connect (OSTI)

    Gambert, G.

    1996-12-31

    When the rebuilt Coke Plant started operations in November of 1992, it featured a completely new closed circuit secondary cooler, ammonia scrubbing, ammonia distillation, and ammonia destruction plants. This is the second plant of this type to be built in North America. To remove the ammonia from the gas, it is scrubbed with three liquids: Approximately 185 gallons/minute of cooled stripped liquor from the ammonia stills; Light oil plant condensate; and Optionally, excess flushing liquor. These scrubbers typically reduce ammonia content in the gas from 270 Grains/100 standard cubic feet to 0.2 Grains/100 standard cubic feet.

  16. SRNS | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    for careers in plant maintenance and operations at nuclear facilities by supporting Augusta Technical College's Nuclear Engineering Technology Program. http:1.usa.gov1uKSDdW...

  17. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    SciTech Connect (OSTI)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is used to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.

  18. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  19. Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60 years ago, scientists in Arco, Idaho successfully used nuclear energy to power four light bulbs. They laid the groundwork for decades of clean electricity and put the U.S. at...

  20. Nuclear norm minimization for the planted clique and biclique ...

    E-Print Network [OSTI]

    2009-01-21

    Jan 21, 2009 ... This problem was shown to be. NP-hard by Peeters [16]. In Sections 3 and 4, we relax these problems to convex optimization using the nuclear.

  1. Identification of performance indicators for nuclear power plants

    E-Print Network [OSTI]

    Sui, Yu, 1973-

    2001-01-01

    Performance indicators have been assuming an increasingly important role in the nuclear industry. An integrated methodology is proposed in this research for the identification and validation of performance indicators for ...

  2. Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:

    Office of Energy Efficiency and Renewable Energy (EERE)

    Nuclear power plants in the United States currently produce about 20 percent of the nation’s electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit...

  3. Use of fuel cells for improving on-site emergency power availability and reliability ad nuclear power plants

    E-Print Network [OSTI]

    Akkaynak, Derya

    2005-01-01

    To assure safe shutdown of a nuclear power plant, there must always be reliable means of decay heat removal provided, in last resort, by an Emergency Core Cooling System (ECCS). Currently the majority of nuclear power ...

  4. Cognitive decision errors and organization vulnerabilities in nuclear power plant safety management: Modeling using the TOGA meta-theory framework

    SciTech Connect (OSTI)

    Cappelli, M.; Gadomski, A. M.; Sepiellis, M.; Wronikowska, M. W.

    2012-07-01

    In the field of nuclear power plant (NPP) safety modeling, the perception of the role of socio-cognitive engineering (SCE) is continuously increasing. Today, the focus is especially on the identification of human and organization decisional errors caused by operators and managers under high-risk conditions, as evident by analyzing reports on nuclear incidents occurred in the past. At present, the engineering and social safety requirements need to enlarge their domain of interest in such a way to include all possible losses generating events that could be the consequences of an abnormal state of a NPP. Socio-cognitive modeling of Integrated Nuclear Safety Management (INSM) using the TOGA meta-theory has been discussed during the ICCAP 2011 Conference. In this paper, more detailed aspects of the cognitive decision-making and its possible human errors and organizational vulnerability are presented. The formal TOGA-based network model for cognitive decision-making enables to indicate and analyze nodes and arcs in which plant operators and managers errors may appear. The TOGA's multi-level IPK (Information, Preferences, Knowledge) model of abstract intelligent agents (AIAs) is applied. In the NPP context, super-safety approach is also discussed, by taking under consideration unexpected events and managing them from a systemic perspective. As the nature of human errors depends on the specific properties of the decision-maker and the decisional context of operation, a classification of decision-making using IPK is suggested. Several types of initial situations of decision-making useful for the diagnosis of NPP operators and managers errors are considered. The developed models can be used as a basis for applications to NPP educational or engineering simulators to be used for training the NPP executive staff. (authors)

  5. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    SciTech Connect (OSTI)

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

  6. Evaluation of the applicability of existing nuclear power plant regulatory requirements in the U.S. to advanced small modular reactors.

    SciTech Connect (OSTI)

    LaChance, Jeffrey L.; Wheeler, Timothy A.; Farnum, Cathy Ottinger; Middleton, Bobby D.; Jordan, Sabina Erteza; Duran, Felicia Angelica; Baum, Gregory A.

    2013-05-01

    The current wave of small modular reactor (SMR) designs all have the goal of reducing the cost of management and operations. By optimizing the system, the goal is to make these power plants safer, cheaper to operate and maintain, and more secure. In particular, the reduction in plant staffing can result in significant cost savings. The introduction of advanced reactor designs and increased use of advanced automation technologies in existing nuclear power plants will likely change the roles, responsibilities, composition, and size of the crews required to control plant operations. Similarly, certain security staffing requirements for traditional operational nuclear power plants may not be appropriate or necessary for SMRs due to the simpler, safer and more automated design characteristics of SMRs. As a first step in a process to identify where regulatory requirements may be met with reduced staffing and therefore lower cost, this report identifies the regulatory requirements and associated guidance utilized in the licensing of existing reactors. The potential applicability of these regulations to advanced SMR designs is identified taking into account the unique features of these types of reactors.

  7. Neural network recognition of nuclear power plant transients. First annual report, April 15, 1992--April 15, 1993, Revision 1

    SciTech Connect (OSTI)

    Bartlett, E.B.; Danofsky, R.; Adams, J.; AlJundi, T.; Basu, A.; Dhanwada, C.; Kerr, J.; Kim, K.; Lanc, T.

    1993-02-23

    The objective of this report is to describe results obtained during the first year of funding that will lead to the development of an artificial neural network (ANN) fault - diagnostic system for the real - time classification of operational transients at nuclear power plants. The ultimate goal of this three-year project is to design, build, and test a prototype diagnostic adviser for use in the control room or technical support center at Duane Arnold Energy Center (DAEC); such a prototype could be integrated into the plant process computer or safety - parameter display system. The adviser could then warn and inform plant operators and engineers of plant component failures in a timely manner. This report describes the work accomplished in the first of three scheduled years for the project. Included herein is a summary of the first year`s results as, well as individual descriptions of each of the major topics undertaken by the researchers. Also included are reprints of the articles written under this funding as well as those that were published during the funded period.

  8. Can New Nuclear Power Plants be Project Financed?

    E-Print Network [OSTI]

    Taylor, Simon

    plant & desalination plant 2007 2.8 Calyon, Citigroup, SMBC Abu Dhabi Water & Electricity Authority, International Power, Marubeni Sakhalin II, Russia Liquefied natural gas & oil development 2008 5.3 Japan Bank for International Cooperation... lenders. This third party would therefore need to be highly creditworthy, or receive guarantees from export credit agencies or similar state- backed entities. 3 http://www.horizonnuclearpower.com/ EPRG...

  9. Maine Yankee: Making the Transition from an Operating Plant to an Independent Spent Fuel Storage Installation (ISFSI)

    SciTech Connect (OSTI)

    Norton, W.; McGough, M. S.

    2002-02-26

    The purpose of this paper is to describe the challenges faced by Maine Yankee Atomic Power Company in making the transition from an operating nuclear power plant to an Independent Spent Fuel Storage Installation (ISFSI). Maine Yankee (MY) is a 900-megawatt Combustion Engineering pressurized water reactor whose architect engineer was Stone & Webster. Maine Yankee was put into commercial operation on December 28, 1972. It is located on an 820-acre site, on the shores of the Back River in Wiscasset, Maine about 40 miles northeast of Portland, Maine. During its operating life, it generated about 1.2 billion kilowatts of power, providing 25% of Maine's electric power needs and serving additional customers in New England. Maine Yankee's lifetime capacity factor was about 67% and it employed more than 450 people. The decision was made to shutdown Maine Yankee in August of 1997, based on economic reasons. Once this decision was made planning began on how to accomplish safe and cost effective decommissioning of the plant by 2004 while being responsive to the community and employees.

  10. NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944

    E-Print Network [OSTI]

    #12;#12;11 #12;2 NUCLEAR POWER AND RESEARCH REACTORS 1939 1942 1943 1944 Nuclear fission discovered 430 nuclear power reactors are operating in the world, and 103 nuclear power plants produce 20, naval reactors, and nuclear power plants. Oak Ridge experiments byArt Snell in 1944 showed that 10 tons

  11. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect (OSTI)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  12. Computer-based procedure for field activities: Results from three evaluations at nuclear power plants

    SciTech Connect (OSTI)

    Oxstrand, Johanna; bly, Aaron; LeBlanc, Katya

    2014-09-01

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

  13. NA 40 - Associate Administrator for Emergency Operations | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 2012 Guidance for HighNational NuclearSecurity

  14. Power to the People or Regulatory Ratcheting? Explaining the Success (or Failure) of Attempts to Site Commercial U.S. Nuclear Power Plants: 1954 -19961

    E-Print Network [OSTI]

    to Site Commercial U.S. Nuclear Power Plants: 1954 - 19961 7 April 2014 Eric Berndt2 and Daniel P. Aldrich to attempt siting nuclear power plant facilities in large numbers in the 1960s. By the late 1990s, more than the plant (Aron 1997). This study examines the outcomes of attempts to site commercial nuclear power plants

  15. A system-of-systems framework of Nuclear Power Plant Probabilistic Seismic Hazard Analysis by Fault Tree analysis and Monte Carlo simulation

    E-Print Network [OSTI]

    Boyer, Edmond

    A system-of-systems framework of Nuclear Power Plant Probabilistic Seismic Hazard Analysis by Fault consider the impacts produced on a nuclear power plant (the critical plant) embedded in the connected power simulation. As outcome of the analysis, the probability that the nuclear power plant reaches an unsafe state

  16. Modeling and numerical techniques for high-speed digital simulation of nuclear power plants

    SciTech Connect (OSTI)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1987-01-01

    Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses.

  17. Safeguards training course: Nuclear material safeguards for enrichment plants

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    The main objective of this course is to provide the course participants with the necessary skills to perform their inspection activities at enrichment plants. As background information, a variety of enrichment technologies will first be characterized and compared followed by a review of basic cascade, gas centrifuge, and gaseous diffusion theory. To focus on gas centrifuge and gaseous diffusion technology, the major components and system of gas centrifuge and gaseous diffusion enrichment plants including their function in routine LEU production will be identified. The objectives of safeguards at an enrichment plant, including those agreed to in the Hexapartite Safeguards Project, will then be described. Discussions will then focus on potential diversion scenarios at both a centrifuge and diffusion enrichment facility and applicable safeguards inspection activities for detecting these scenarios. This report presents a discussion on basic separation and cascade theory, uranium hexafluoride, and detailed separation theory, including gas centrifuge and gaseous diffusion.

  18. Safeguards training course: Nuclear material safeguards for enrichment plants

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    The main objective of this training course is to provide the course participants with the necessary skills to perform their inspection activities at enrichment plants. As background information, a variety of enrichment technologies will first be characterized and compared followed by a review of basic cascade, gas centrifuge, and gaseous diffusion theory. To focus on gas centrifuge and gaseous diffusion technology, the major components and systems of gas centrifuge and gaseous diffusion enrichment plants including their function in routine LEU production will be identified. The objectives of safeguards at an enrichment plant, including those agreed to in the Hexapartite Safeguards Project, will then be described. Discussion will then focus on potential diversion scenarios at both a centrifuge and diffusion enrichment facility and applicable safeguards inspection activities for detecting these scenarios.

  19. Applying Human-performance Models to Designing and Evaluating Nuclear Power Plants: Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    O'Hara, J.M.

    2009-11-30

    Human performance models (HPMs) are simulations of human behavior with which we can predict human performance. Designers use them to support their human factors engineering (HFE) programs for a wide range of complex systems, including commercial nuclear power plants. Applicants to U.S. Nuclear Regulatory Commission (NRC) can use HPMs for design certifications, operating licenses, and license amendments. In the context of nuclear-plant safety, it is important to assure that HPMs are verified and validated, and their usage is consistent with their intended purpose. Using HPMs improperly may generate misleading or incorrect information, entailing safety concerns. The objective of this research was to develop guidance to support the NRC staff's reviews of an applicant's use of HPMs in an HFE program. The guidance is divided into three topical areas: (1) HPM Verification, (2) HPM Validation, and (3) User Interface Verification. Following this guidance will help ensure the benefits of HPMs are achieved in a technically sound, defensible manner. During the course of developing this guidance, I identified several issues that could not be addressed; they also are discussed.

  20. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Supporting MELCOR calculations, Volume 6, Part 2

    SciTech Connect (OSTI)

    Kmetyk, L.N.; Brown, T.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-03-01

    To gain a better understanding of the risk significance of low power and shutdown modes of operation, the Office of Nuclear Regulatory Research at the NRC established programs to investigate the likelihood and severity of postulated accidents that could occur during low power and shutdown (LP&S) modes of operation at commercial nuclear power plants. To investigate the likelihood of severe core damage accidents during off power conditions, probabilistic risk assessments (PRAs) were performed for two nuclear plants: Unit 1 of the Grand Gulf Nuclear Station, which is a BWR-6 Mark III boiling water reactor (BWR), and Unit 1 of the Surry Power Station, which is a three-loop, subatmospheric, pressurized water reactor (PWR). The analysis of the BWR was conducted at Sandia National Laboratories while the analysis of the PWR was performed at Brookhaven National Laboratory. This multi-volume report presents and discusses the results of the BWR analysis. The subject of this part presents the deterministic code calculations, performed with the MELCOR code, that were used to support the development and quantification of the PRA models. The background for the work documented in this report is summarized, including how deterministic codes are used in PRAS, why the MELCOR code is used, what the capabilities and features of MELCOR are, and how the code has been used by others in the past. Brief descriptions of the Grand Gulf plant and its configuration during LP&S operation and of the MELCOR input model developed for the Grand Gulf plant in its LP&S configuration are given.

  1. The debate over re-licensing the Vermont Yankee nuclear power plant

    SciTech Connect (OSTI)

    Watts, Richard; Hines, Paul; Dowds, Jonathan

    2010-05-15

    In 2009, the NRC's Atomic Safety and Licensing Board approved a 20-year license extension for the Vermont Yankee Nuclear Power plant. Less than seven months later, the Vermont State Senate voted 26-4 to block the required certificate for public good. How did a plant seen as likely to be re-licensed become the first in 20 years to be rejected in a public vote? (author)

  2. Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint

    SciTech Connect (OSTI)

    Gevorgian, V.; Singh, M.; Muljadi, E.

    2011-12-01

    In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmission requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.

  3. Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.

    SciTech Connect (OSTI)

    Hill, Roger R.; Klise, Geoffrey Taylor; Balfour, John R.

    2015-01-01

    Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

  4. Threatened and endangered species evaluation for 75 licensed commercial nuclear power generating plants

    SciTech Connect (OSTI)

    Sackschewsky, M.R.

    1997-03-01

    The Endangered Species Act (ESA) of 1973, as amended, and related implementing regulations of the jurisdictional federal agencies, the U.S. Departments of Commerce and Interior, at 50 CFR Part 17. 1, et seq., require that federal agencies ensure that any action authorized, funded, or carried out under their jurisdiction is not likely to jeopardize the continued existence of any threatened or endangered species or result in the destruction or adverse modification of critical habitats for such species. The issuance and maintenance of a federal license, such as a construction permit or operating license issued by the U.S. Nuclear Regulatory Commission (NRC) for a commercial nuclear power generating facility is a federal action under the jurisdiction of a federal agency, and is therefore subject to the provisions of the ESA. The U.S. Department of the Interior (through the Fish and Wildlife Service), and the U.S. Department of Commerce, share responsibility for administration of the ESA. The National Marine Fisheries Service (NMFS) deals with species that inhabit marine environments and anadromous fish, while the U.S. Fish and Wildlife Service (USFWS) is responsible for terrestrial and freshwater species and migratory birds. A species (or other distinct taxonomic unit such as subspecies, variety, and for vertebrates, distinct population units) may be classified for protection as `endangered` when it is in danger of extinction within the foreseeable future throughout all or a significant portion of its range. A `threatened` classification is provided to those animals and plants likely to become endangered within the foreseeable future throughout all or a significant portion of their ranges. As of February 1997, there were about 1067 species listed under the ESA in the United States. Additionally there were approximately 125 species currently proposed for listing as threatened or endangered, and another 183 species considered to be candidates for formal listing proposals.

  5. Characteristic Operator Functions for Quantum Input-Plant-Output Models & Coherent Control

    E-Print Network [OSTI]

    J. E. Gough

    2015-01-09

    We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entries that are operators of the plant system. In this sense the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements, and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones, and eliminated.

  6. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  7. ESTIMATES FOR RELEASE OF RADIONUCLIDES FROM POTENTIALLY CONTAMINATED CONCRETE AT THE HADDAM NECK NUCLEAR PLANT.

    SciTech Connect (OSTI)

    SULLIVAN, T.

    2004-09-15

    Decommissioning of the Haddam Neck Nuclear Power Plant operated by Connecticut Yankee is in progress. Figure 1 shows a schematic of the Containment Building and Spent Fuel Pool (SFP) Building. Consideration is being given to leaving some subsurface concrete from the Containment, Spent Fuel and certain other buildings in place following NRC license termination. Characterization data of most of these structures show small amounts of residual contamination. The In-Core Sump area of the Containment Building has shown elevated levels of tritium, Co-60, Fe-55, and Eu-152 and lesser quantities of other radionuclides due to neutron activation of the concrete in this area. This analysis is provided to determine levels of residual contamination that will not cause releases to the groundwater in excess of the acceptable dose limits. The objective is to calculate a conservative relationship between the radionuclide concentration of subsurface concrete and the maximum groundwater concentration (pCi/L) for the concrete that may remain following license termination at Connecticut Yankee.

  8. Evaluation of station blackout accidents at nuclear power plants: Technical findings related to unresolved safety issue A-44: Final report

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    ''Station Blackout,'' which is the complete loss of alternating current (AC) electrical power in a nuclear power plant, has been designated as Unresolved Safety Issue A-44. Because many safety systems required for reactor core decay heat removal and containment heat removal depend on AC power, the consequences of a station blackout could be severe. This report documents the findings of technical studies performed as part of the program to resolve this issue. The important factors analyzed include: the fequency of loss of offsite power; the probability that emergency or onsite AC power supplies would be unavailable; the capability and reliability of decay heat removal systems independent of AC power; and the likelihood that offsite power would be restored before systems that cannot operate for extended periods without AC power fail, thus resulting in core damage. This report also addresses effects of different designs, locations, and operational features on the estimated frequency of core damage resulting from station blackout events.

  9. BWR ATWS simulations for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect (OSTI)

    Dallman, R.J.

    1984-01-01

    Under auspices of the US Nuclear Regulatory Commission, simulations of anticipated transients without scram (ATWS) in a boiling water reactor are being performed. A methodology has been developed to study the ATWS, and deterministic analyses have been conducted. Results are presented for one of the most probable (albeit hypothetical) sequences leading to core and containment damage. Areas presenting calculational uncertainties are identified, and requirements for their resolution are proposed.

  10. Nuclear Safety Research and Development Program Operating Plan | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t eof Energy Program Operating

  11. Protection of Operators and Environment - the Safety Concept of the Karlsruhe Vitrification Plant VEK

    SciTech Connect (OSTI)

    Fleisch, J.; Kuttruf, H.; Lumpp, W.; Pfeifer, W.; Roth, G.; Weisenburger, S.

    2002-02-26

    The Karlsruhe Vitrification Plant (VEK) plant is a milestone in decommissioning and complete dismantling of the former Karlsruhe Reprocessing Plant WAK, which is in an advanced stage of disassembly. The VEK is scheduled to vitrify approx. 70 m3 of the highly radioactive liquid waste (HLW) resulting from reprocessing. Site preparation, civil work and component manufacturing began in 1999. The building will be finalized by mid of 2002, hot vitrification operation is currently scheduled for 2004/2005. Provisions against damages arising from construction and operation of the VEK had to be made in accordance with the state of the art as laid down in the German Atomic Law and the Radiation Protection Regulations. For this purpose, the appropriate analysis of accidents and their external and internal impacts were investigated. During the detailed design phase, a failure effects analysis was carried out, in which single events were studied with respect to the objectives of protection and ensuring activity containment, limiting radioactive discharges to the environment and protecting of the staff. Parallel to the planning phase of the VEK plant a cold prototype test facility (PVA) covering the main process steps was constructed and operated at the Institut fuer Nukleare Entsorgung (INE) of FZK. This pilot operation served to demonstrate the process technique and its operation with a simulated waste solution, and to test the main items of equipment, but was conducted also to use the experimental data and experience to back the safety concept of the radioactive VEK plant. This paper describes the basis of the safety concept of the VEK plant and results of the failure effect analysis. The experimental simulation of the failure scenarios, their effect on the process behavior, and the controllability of these events as well as the effect of the results on the safety concept of VEK are discussed. Additionally, an overview of the actual status of civil work and manufacturing of the technical equipment is given.

  12. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    SciTech Connect (OSTI)

    Krichinsky, Alan M; Bates, Bruce E; Chesser, Joel B; Koo, Sinsze; Whitaker, J Michael

    2009-12-01

    This report describes an engineering-scale, mock UF6 feed and withdrawal (F&W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F&W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware, software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F&W system description. Continuous monitoring components on the mock F&W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF{sub 6} F&W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF{sub 6}. The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under plant operating conditions. The ultimate use of technologies tested on the engineering-scale test bed is to work with safeguards agencies to install them in operating plants (e.g., enrichment and fuel processing plants), thereby promoting new safeguards measures with minimal impact to operating plants. In addition, this system is useful in identifying features for new plants that can be incorporated as part of 'safeguards by design,' in which load cells and other monitoring technologies are specified to provide outputs for automated monitoring and inspector evaluation.

  13. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  14. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC`s current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  15. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect (OSTI)

    Camillo A. DiNunzio Framatome ANP DE& S; Dr. Abhinav Gupta Assistant Professor NCSU; Dr. Michael Golay Professor MIT Dr. Vincent Luk Sandia National Laboratories; Rich Turk Westinghouse Electric Company Nuclear Systems; Charles Morrow, Sandia National Laboratories; Geum-Taek Jin, Korea Power Engineering Company Inc.

    2002-11-30

    OAK-B135 This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  16. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Guss, P. P.

    2012-07-16

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  17. Analysis of Severe Accident Management Strategy for a BWR-4 Nuclear Power Plant

    SciTech Connect (OSTI)

    Wang, T.-C.; Wang, S.-J.; Teng, J.-T

    2005-12-15

    The Chinshan nuclear power plant (NPP) is a Mark-I boiling water reactor (BWR) NPP located in northern Taiwan. The Chinshan NPP severe accident management guidelines (SAMGs) were developed based on the BWR Owners Group Emergency Procedure Guidelines/Severe Accident Guidelines and were developed at the end of 2003. The MAAP4 code has been used as a tool to validate the SAMG strategies. The development process and characteristics of the Chinshan SAMGs are described. The T{sub 5}U{sub t}X{sub C} sequence, the highest core damage frequency in the probabilistic risk assessment insight of the Chinshan NPP, is cited as a reference case for SAMG validation. Not all safety injection systems are operated in the T{sub 5}U{sub t}X{sub C} sequence. The severe accident progression is simulated, and the entry condition of the SAMGs is described. Then, the T{sub 5}U{sub t}X{sub C} sequence is simulated with reactor pressure vessel (RPV) depressurization. Mitigation actions based on the Chinshan NPP SAMGs are then applied to demonstrate the effectiveness of the SAMGs. Sensitivity studies on RPV depressurization with the reactor water level and minimum RPV injection flow rate are also investigated in this study. Based on MAAP4 calculation and the default values of the parameters calculating the severe accident phenomena, the result shows that RPV depressurization before the reactor water level reaches one-fourth of the core water level can prevent the core from damage in the T{sub 5}U{sub t}X{sub C} sequence. The flow rate of two control rod drive pumps is enough to maintain the reactor water level above the top of active fuel and cool down the core in the T{sub 5}U{sub t}X{sub C} sequence without operator action.

  18. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.; Hines, Wes; Upadhyaya, Belle

    2012-07-17

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.

  19. Design issues concerning Iran`s Bushehr nuclear power plant VVER-1000 conversion

    SciTech Connect (OSTI)

    Carson, C.F.

    1996-12-31

    On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iran achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was {approx}80% complete and unit 2 was {approx}50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction.

  20. Near-term improvements for nuclear power plant control room annunciator systems. [PWR; BWR

    SciTech Connect (OSTI)

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700.

  1. Method of operating a coal predrying and heating plant in connection with a coking plant

    SciTech Connect (OSTI)

    Bocsanczy, J.; Knappstein, J.; Stalherm, D.

    1981-01-27

    A method of preparing and delivering coal to a coking plant comprises conveying the coal to the plant on a moving conveyor while an inert combustion gas is directed over the coal being conveyed. The combustion gas is generated by burning a fuel with air to produce a substantially inert combustion gas which is passed over the coal during its conveying and, thereafter, passed through a cooler for removing the moisture which has been picked up from the coal by the gas. The heating and predrying inert gases are advantageously generated by the direct combustion of air and fuel which are passed through flash dryer tubes and one or more separate separator systems and then delivered into a conveyor pipeline through which the coal is conveyed. A portion of the gases which are generated are also directed with a return gas to a filter for removal of any coal therefrom and to a cooler for removing the moisture picked up from the coal and then back into the stream for delivery to the conveyor for the coal. The inert gas may also be a gas which is circulated in heat exchange relationship with combustion gases which are generated by a combustion of the coal itself. In such a system, a portion of the combustion gases generated are also passed through a condenser or cooler and the cooled and dried waste gases are circulated over the coal being conveyed to the coking oven or its bunkers.

  2. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

    2008-01-01

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  3. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new for existent nuclear and wind power generation facilities. Keywords: hydrogen production, hydrogen storage, hydrogen economy, nuclear power, wind power, electricity markets, mixed-integer stochastic linear

  4. Development of the severe accident management guidelines (SAMG) for Ulchin Nuclear Power Plant Unit 3, 4, 5 and 6

    SciTech Connect (OSTI)

    Kim, Hyeong T.; Yoo, Hojong; Lim, Hyuk Soon; Park, Jong W.; Lim, Woosang; Oh, Seung Jong [Korea Hydro and Nuclear Power Co., Ltd., 103-16 Munji-Dong, Yusung-Gu, Daejeon, 305-380 (Korea, Republic of); Chung, Chang Hyun [Seoul National University (Korea, Republic of); Lee, Byung Chul [Future and Challenges, Inc (Korea, Republic of)

    2004-07-01

    This paper describes the development process of the severe accident management guidelines (SAMG) for Units 3, 4, 5 and 6 of Ulchin Nuclear Power Plant. The units are Korean Standard Nuclear Power (KSNP) plant, 1000 MWe class pressurized water reactor (PWR) with two loops of primary coolant system. The severe accident management guidelines for the units have been completed in 2002. The generic severe accident management guidance for Korean Standard Nuclear Power Plant has been used as the basis when developing Ulchin severe accident management guideline. Result of probabilistic safety assessment (PSA) for each unit was reviewed to integrate its insight into the SAMG. It indicates that each unit has a balanced design to any specific initiating events for core damage. Seven severe accident management strategies are applied in Ulchin SAMG. Seven strategies are (1) Inject into the steam generator (2) De-pressurize the RCS (3) Inject into the RCS (4) Inject into the containment (5) Control the fission product release into environment (6) Control the containment pressure and temperature and (7) Control hydrogen concentration in the containment. The range and capability of essential instrument for performing the strategies are assessed. Computational aids are developed to complement the unavailable instrument during the accident and to assist the operator's decision choosing strategies. To examine the ability of the SAMG to fulfill its intended function, small loss of coolant accident (SLOCA) with the failure of safety injection was selected as a reference scenario. The scenario was analyzed using MAAP code. The evaluation of the SAMG using this sequence has been successfully completed. (authors)

  5. Theoretical uncertainties in the nuclear matrix elements of neutrinoless double beta decay: The transition operator

    SciTech Connect (OSTI)

    Menéndez, Javier

    2013-12-30

    We explore the theoretical uncertainties related to the transition operator of neutrinoless double-beta (0???) decay. The transition operator used in standard calculations is a product of one-body currents, that can be obtained phenomenologically as in Tomoda [1] or Šimkovic et al. [2]. However, corrections to the operator are hard to obtain in the phenomenological approach. Instead, we calculate the 0??? decay operator in the framework of chiral effective theory (EFT), which gives a systematic order-by-order expansion of the transition currents. At leading orders in chiral EFT we reproduce the standard one-body currents of Refs. [1] and [2]. Corrections appear as two-body (2b) currents predicted by chiral EFT. We compute the effects of the leading 2b currents to the nuclear matrix elements of 0??? decay for several transition candidates. The 2b current contributions are related to the quenching of Gamow-Teller transitions found in nuclear structure calculations.

  6. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  7. Rebaselining seismic risks for resumption of Building 707 plutonium operations at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Elia, F. Jr.; Foppe, T.; Stahlnecker, E.

    1993-08-01

    Natural phenomena risks have been assessed for plutonium handling facilities at the Rocky Flats Plant, based on numerous studies performed for the Department of Energy Natural Phenomena Hazards Project. The risk assessment was originally utilized in the facilities Final Safety Analysis Reports and in subsequent risk management decisions. Plutonium production operations were curtailed in 1989 in order for a new operating contractor to implement safety improvements. Since natural phenomena events dominated risks to the public, a re-assessment of these events were undertaken for resumption of plutonium operations.

  8. COGEMA operating experience in the transportation of spent fuel, nuclear materials and radioactive waste

    SciTech Connect (OSTI)

    Bernard, H. [COGEMA, Velizy-Villacoublay (France)

    1993-12-31

    Were a spent fuel transportation accident to occur, no matter how insignificant, the public outcry could jeopardize both reprocessing operations and power plant operations for utilities that have elected to reprocess their spent fuel. Aware of this possibility, COGEMA has become deeply involved in spent fuel transportation to ensure that it is performed according to the highest standards of transportation safety. Spent fuel transportation is a vital link between the reactor site and the reprocessing plant. This paper gives an overview of COGEMA`s experience in the transportation of spent fuel.

  9. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    0.3 million * man-rem~ fuel reprocessing operations wouldServices Barnwell fuel reprocessing facility, as amendedLaboratory, "Siting of Fuel Reprocessing Plants and Waste

  10. Water use in the development and operation of geothermal power plants.

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir characteristics, and local climate have various effects on elements such as drilling rate, the number of production wells, and production flow rates. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, plant operations is where the vast majority of water consumption occurs. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or non-geothermal aquifer that is not returned to that resource. For the EGS scenarios, plant operations consume between 0.29 and 0.72 gal/kWh. The binary plant experiences similar operational consumption, at 0.27 gal/kWh. Far less water, just 0.01 gal/kWh, is consumed during operations of the flash plant because geofluid is used for cooling and is not replaced. While the makeup water requirements are far less for a hydrothermal flash plant, the long-term sustainability of the reservoir is less certain due to estimated evaporative losses of 14.5-33% of produced geofluid at operating flash plants. For the hydrothermal flash scenario, the average loss of geofluid due to evaporation, drift, and blowdown is 2.7 gal/kWh. The construction stage requires considerably less water: 0.001 gal/kWh for both the binary and flash plant scenarios and 0.01 gal/kWh for the EGS scenarios. The additional water requirements for the EGS scenarios are caused by a combination of factors, including lower flow rates per well, which increases the total number of wells needed per plant, the assumed well depths, and the hydraulic stimulation required to engineer the reservoir. Water quality results are presented in Chapter 5. The chemical composition of geofluid has important implications for plant operations and the potential environmental impacts of geothermal energy production. An extensive dataset containing more than 53,000 geothermal geochemical data points was compiled and analyzed for general trends and statistics for typical geofluids. Geofluid composition was found to vary significantly both among and within geothermal fields. Seven main chemical constituents were found to

  11. Start-up operations at the Fenton Hill HDR Pilot Plant

    SciTech Connect (OSTI)

    Ponden, R.F.

    1991-01-01

    With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

  12. Start-Up Operations at the Fenton Hill HDR Pilot Plant

    SciTech Connect (OSTI)

    Ponden, Raymond F.

    1992-03-24

    With the completion of the surface test facilities at Fenton Hill, the Hot Dry Rock (HDR) Geothermal Energy Program at Los Alamos is moving steadily into the next stage of development. Start-up operations of the surface facilities have begun in preparation for testing the Phase II reservoir and the initial steady-state phase of operations. A test program has been developed that will entail a number of operational strategies to characterize the thermal performance of the reservoir. The surface facilities have been designed to assure high reliability while providing the flexibility and control to support the different operating modes. This paper presents a review of the system design and provides a discussion of the preliminary results of plant operations and equipment performance.

  13. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    E-Print Network [OSTI]

    I. M. Neklyudov; A. N. Dovbnya; N. P. Dikiy; O. P. Ledenyov; Yu. V. Lyashko

    2013-06-21

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granules of the type of SKT3, in the AU1500 iodine air filter are also researched. The possible influences by the standing acoustic wave of air pressure in the iodine air filter on the spatial distribution of the chemical elements and their isotopes in the iodine air filter are discussed. The comprehensive analysis of obtained research results on the distribution of the adsorbed chemical elements and their isotopes in the absorber of iodine air filter is performed.

  14. Diversity Strategies for Nuclear Power Plant Instrumentation and Control Systems

    SciTech Connect (OSTI)

    Wood, Richard Thomas; Belles, Randy; Cetiner, Mustafa Sacit; Holcomb, David Eugene; Korsah, Kofi; Loebl, Andy; Mays, Gary T; Muhlheim, Michael David; Mullens, James Allen; Poore III, Willis P; Qualls, A L; Wilson, Thomas L; Waterman, Michael E.

    2010-02-01

    This report presents the technical basis for establishing acceptable mitigating strategies that resolve diversity and defense-in-depth (D3) assessment findings and conform to U.S. Nuclear Regulatory Commission (NRC) requirements. The research approach employed to establish appropriate diversity strategies involves investigation of available documentation on D3 methods and experience from nuclear power and nonnuclear industries, capture of expert knowledge and lessons learned, determination of best practices, and assessment of the nature of common-cause failures (CCFs) and compensating diversity attributes. The research described in this report does not provide guidance on how to determine the need for diversity in a safety system to mitigate the consequences of potential CCFs. Rather, the scope of this report provides guidance to the staff and nuclear industry after a licensee or applicant has performed a D3 assessment per NUREG/CR-6303 and determined that diversity in a safety system is needed for mitigating the consequences of potential CCFs identified in the evaluation of the safety system design features. Succinctly, the purpose of the research described in this report was to answer the question, 'If diversity is required in a safety system to mitigate the consequences of potential CCFs, how much diversity is enough?' The principal results of this research effort have identified and developed diversity strategies, which consist of combinations of diversity attributes and their associated criteria. Technology, which corresponds to design diversity, is chosen as the principal system characteristic by which diversity criteria are grouped to form strategies. The rationale for this classification framework involves consideration of the profound impact that technology-focused design diversity provides. Consequently, the diversity usage classification scheme involves three families of strategies: (1) different technologies, (2) different approaches within the same technology, and (3) different architectures within the same technology. Using this convention, the first diversity usage family, designated Strategy A, is characterized by fundamentally diverse technologies. Strategy A at the system or platform level is illustrated by the example of analog and digital implementations. The second diversity usage family, designated Strategy B, is achieved through the use of distinctly different technologies. Strategy B can be described in terms of different digital technologies, such as the distinct approaches represented by general-purpose microprocessors and field-programmable gate arrays. The third diversity usage family, designated Strategy C, involves the use of variations within a technology. An example of Strategy C involves different digital architectures within the same technology, such as that provided by different microprocessors (e.g., Pentium and Power PC). The grouping of diversity criteria combinations according to Strategies A, B, and C establishes baseline diversity usage and facilitates a systematic organization of strategic approaches for coping with CCF vulnerabilities. Effectively, these baseline sets of diversity criteria constitute appropriate CCF mitigating strategies for digital safety systems. The strategies represent guidance on acceptable diversity usage and can be applied directly to ensure that CCF vulnerabilities identified through a D3 assessment have been adequately resolved. Additionally, a framework has been generated for capturing practices regarding diversity usage and a tool has been developed for the systematic assessment of the comparative effect of proposed diversity strategies (see Appendix A).

  15. The Handbook of Applied Bayesian Analysis, Eds: Tony O'Hagan & Mike West, Oxford University Bayesian analysis and decisions in nuclear power plant

    E-Print Network [OSTI]

    Popova, Elmira

    Bayesian analysis and decisions in nuclear power plant maintenance Elmira Popova, David Morton, Paul Damien are then applied to solving an important problem in a nuclear power plant system at the South Texas Project (STP) Electric Generation Station. STP is one of the newest and largest nuclear power plants in the US

  16. Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air concentration and

    E-Print Network [OSTI]

    Boyer, Edmond

    Estimation of the caesium-137 source term from the Fukushima Daiichi nuclear power plant using during the accident of the Fukushima Daiichi nuclear power plant in March 2011. In Winiarek et al. (2012b source term from the Fukushima Daiichi nuclear power plant using a consistent joint assimilation of air

  17. U.S. Seafood Safe and Unaffected by Radiation Contamination from Japanese Nuclear Power Plant Incident; U.S. Monitoring Control Strategy Explained

    E-Print Network [OSTI]

    U.S. Seafood Safe and Unaffected by Radiation Contamination from Japanese Nuclear Power Plant about radiation contamination from the Japanese nuclear power plant incident and on the control potential routes by which seafood contaminated with radionuclides from the Japanese nuclear power plant

  18. Development, Application, and Implementation of RAMCAP to Characterize Nuclear Power Plant Risk From Terrorism

    SciTech Connect (OSTI)

    Gaertner, John P. [Electric Power Research Institute, 1300 Harris Boulevard, Charlotte, NC 28262 (United States); Teagarden, Grant A. [ERIN Engineering and Research (United States)

    2006-07-01

    In response to increased interest in risk-informed decision making regarding terrorism, EPRI and ERIN Engineering were selected by U.S. DHS and ASME to develop and demonstrate the RAMCAP method for nuclear power plant (NPP) risk assessment. The objective is to characterize plant-specific NPP risk for risk management opportunities and to provide consistent information for DHS decision making. This paper is an update of this project presented at the American Nuclear Society (ANS) International Topical Meeting on Probabilistic Safety Analysis (PSA05) in September, 2005. The method uses a characterization of risk as a function of Consequence, Vulnerability, and Threat. For each site, worst case scenarios are developed for each of sixteen benchmark threats. Nuclear RAMCAP hypothesizes that the intent of the perpetrator is to cause offsite radiological consequences. Specific targets are the reactor core, the spent fuel pool, and nuclear spent fuel in a dry storage facility (ISFSI). Results for each scenario are presented as conditional risk for financial loss, early fatalities and early injuries. Expected consequences for each scenario are quantified, while vulnerability is estimated on a relative likelihood scale. Insights for other societal risks are provided. Although threat frequencies are not provided, target attractiveness and threat deterrence are estimated. To assure efficiency, completeness, and consistency; results are documented using standard RAMCAP Evaluator software. Trial applications were successfully performed at four plant sites. Implementation at all other U.S. commercial sites is underway, supported by the Nuclear Sector Coordinating Council (NSCC). Insights from RAMCAP results at 23 U.S. plants completed to date have been compiled and presented to the NSCC. Results are site-specific. Physical security barriers, an armed security force, preparedness for design-basis threats, rugged design against natural hazards, multiple barriers between fuel and environment, accident mitigation capability, severe accident management procedures, and offsite emergency plans are risk-beneficial against all threat types. (authors)

  19. Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

  20. An analysis of processing methods and a comparison of operational efficiencies in ten Texas broiler processing plants 

    E-Print Network [OSTI]

    Gardner, Frederick Albert

    1955-01-01

    of workers used to perform the Job, In ylant C 2, g man equivalents were used to feed and water broilers, In plant D i8 man equivalents were used. Productivity in these two plants ranged from 1200 in plant C to 19/0 in ylant D. Xn plant J no labox.... OnIy two plants, F and H, felt that it was accessary to assign one man to supervise the reccivin?" operation. Genera'ly, the vorker assigned to supervise the receiving operation vas also given other Jobs to perform. PART XI DREGS XHG...

  1. Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon

    E-Print Network [OSTI]

    Record of Cycling Operation of the Natural Nuclear Reactor in the Oklo/Okelobondo Area in Gabon A billion yr old Oklo natural nuclear reactor. In addition to elevated abundances of fission-produced Zr, Ce nuclear chain reaction was predicted by Kuroda [1] 20 years before the remnants of the natural reactor

  2. SEP operating history of the Dresden Nuclear Power Station Unit 2

    SciTech Connect (OSTI)

    Mays, G.T.; Harrington, K.H.

    1983-01-01

    206 forced shutdowns and power reductions were reviewed, along with 631 reportable events and other miscellaneous documentation concerning the operation of Dresden-2, in order to indicate those areas of plant operation that compromised plant safety. The most serious plant challenge to plant safety occurred on June 5, 1970; while undergoing power testing at 75% power, a spurious signal in the reactor pressure control system caused a turbine trip followed by a reactor scram. Subsequent erratic water level and pressure control in the reactor vessel, compounded by a stuck indicator pen on a water level monitor-recorder and inability of the isolation condenser to function, led to discharge of steam and water through safety valves into the reactor drywell. No significant contamination was discharged. There was no pressure damage or the reactor vessel of the drywell containment walls. Six areas of operation that should be of continued concern are diesel generator failures, control rod and rod drive malfunctions, radioactive waste management/health physics program problems, operator errors, turbine control valve and EHC problems, and HPCI failures. All six event types have continued to recur.

  3. Analysis of hydrogen mitigation for degraded core accidents in the Sequoyah Nuclear Power Plant

    SciTech Connect (OSTI)

    Berman, M.; Sherman, M.P.; Cummings, J.C.; Baer, M.R.; Griffiths, S.K.

    1981-04-01

    The report presents the results of a scoping investigation to ascertain the effectiveness and practicability of three hydrogen control measures for the Sequoyah Nuclear Power Plant--deliberate ignition, water fogging, and Halon addition after accident initiation. The authors conclude that no one of these hydrogen control measures alone is clearly superior to the other under all accident conditions. Advantages and disadvantages were identified for all control measures. In addition to providing a basic discussion of how each measure works to mitigate or control hydrogen combustion, we have answered specific questions posed by the U. S. Nuclear Regulatory Commission.

  4. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    SciTech Connect (OSTI)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  5. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    ion","Nuclear","Exelon Nuclear",2277 4,"Quad Cities Generating Station","Nuclear","Exelon Nuclear",1819 5,"Baldwin Energy Complex","Coal","Dynegy Midwest Generation Inc",1775...

  6. An ISP-27 accident scenario for analysis of Krsko Nuclear Power Plant SBLOCA

    SciTech Connect (OSTI)

    Petelin, S.; Mavko, B.; Gortnar, O.; Parzer, I.

    1994-12-31

    The reactor safety analysis group of Jozef Stefan Institute (IJS) has participated in analyses of International Standard Problem 27 (ISP-27), which was based on test 9.1 b performed at the BETHSY experimental facility (France). In addition, we realized the ISP-27 transient scenario in the analysis of a small-break loss-of-coolant accident (SBLOCA) for Krsko nuclear power plant (NPP). The objective was to evaluate the effectiveness of the ISP-27 proposed accident management procedure for a real NPP and to compare the physical phenomena known from experimental background with the phenomena predicted by simulation of a real plant transient.

  7. Development and testing of an integrated signal validation system for nuclear power plants

    SciTech Connect (OSTI)

    Upadhyaya, B.R.; Kerlin, T.W.; Gaudio, P.J. Jr.

    1989-09-01

    Since the incident at Three Mile Island unit 2, computerized plant status display, implementation of human factors in control room design, and plant monitoring based on expert system technology have seen a tremendous growth. One such proposed operator assist device is a plant signal validation system. This system is used to check the consistency of redundant measurements (sensors) of selected process variables, estimate their expect values from plant-wide data, and detect, isolate and characterize the type of anomaly in the instrument channel outputs. In large process control systems signals from several hundred instrument channels are routed via data highways to control systems, protection (safety) systems and plant monitoring systems. The need of automated signal validation is necessary because of the large amount of information available, and as a result the operator's inability to validate information from many diverse sources. This is also useful for improved plant control (minimize challenges on control systems), minimizing plant downtime, and for predictive maintenance advising. 107 refs., 56 figs., 6 tabs.

  8. France gets nuclear fusion plant France will get to host the project to build a 10bn-euro (6.6bn) nuclear fusion reactor, in

    E-Print Network [OSTI]

    ) nuclear fusion reactor, in the face of strong competition from Japan. The International ThermonuclearFrance gets nuclear fusion plant France will get to host the project to build a 10bn-euro (£6.6bn Experimental Reactor (Iter) will be the most expensive joint scientific project after the International Space

  9. Nuclear power expansion: thinking about uncertainty

    SciTech Connect (OSTI)

    Holt, Lynne; Sotkiewicz, Paul; Berg, Sanford

    2010-06-15

    Nuclear power is one of many options available to achieve reduced carbon dioxide emissions. The real-option value model can help explain the uncertainties facing prospective nuclear plant developers in developing mitigation strategies for the development, construction, and operation of new nuclear plants. (author)

  10. Designing and Operating for Safeguards: Lessons Learned From the Rokkasho Reprocessing Plant (RRP)

    SciTech Connect (OSTI)

    Johnson, Shirley J.; Ehinger, Michael

    2010-08-07

    This paper will address the lessons learned during the implementation of International Atomic Energy Agency (IAEA) safeguards at the Rokkasho Reprocessing Plant (RRP) which are relevant to the issue of ‘safeguards by design’. However, those lessons are a result of a cumulative history of international safeguards experiences starting with the West Valley reprocessing plant in 1969, continuing with the Barnwell plant, and then with the implementation of international safeguards at WAK in Germany and TRP in Japan. The design and implementation of safeguards at RRP in Japan is the latest and most challenging that the IAEA has faced. This paper will discuss the work leading up to the development of a safeguards approach, the design and operating features that were introduced to improve or aid in implementing the safeguards approach, and the resulting recommendations for future facilities. It will provide an overview of how ‘safeguardability’ was introduced into RRP.

  11. A study of the effects of preventive maintenance and test on nuclear plant availability

    SciTech Connect (OSTI)

    Engel, R.J.; Kitzmiller, J.T.; McCutchan, D.A.

    1986-06-01

    The purpose of this study is to investigate the effect of selected maintenance, operations, and organizational factors in the management of nuclear power stations. The fundamental criteria used throughout the study in making the determination between good and bad practices is the effect on unit availability.

  12. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA

    SciTech Connect (OSTI)

    Khan, T.A.; Vulin, D.S.; Lane, S.G.; Baum, J.W. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    In the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants, the ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA. This is the sixth report in that series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of information databases of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from the use of robotics, to operational health physics, to water chemistry. Also included is material on the design, planning, and management of nuclear power stations, as well as on decommissioning and safe storage efforts. This report contains 266 abstracts along with subject and author indices. The author index is exclusively for this volume. The subject index contains headings for this volume in bold face, as well as reference to previous volumes. All information in this and previous volumes of the series is also available through our on-line information system called ACE (ALARA Center Exchange). ACE is accessible through fax machines or personal computers interfaced with modems. The bibliography database and other databases are kept current with new abstracts, information on research projects, and recent news of international events related to ALARA at nuclear power plants. Access to the system is provided freely to the ALARA community. For password certification, manuals, and other information about our system, please contact the ALARA CENTER, Building 703M, Brookhaven National Laboratory, Upton, NY 11973, or call (516) 282-3228.

  13. Improved assessment of population doses and risk factors for a nuclear power plant under accident conditions 

    E-Print Network [OSTI]

    Meyer, Christopher Martin

    1985-01-01

    result of an accident with the severity of those postulated in WASH-1400. These changes are nearly impossible to predict and even more difficult to quantify. For the purposes of this study, calculations will primarily be restricted to individual...IMPROVED ASSESSMENT OF POPULATION DOSES AND RISK FACTORS FOR A NUCLEAR PONER PLANT UNDER ACCIDENT CONDITIONS A Thesis by CHRISTOPHER MARTIN NEVER Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  14. POPCYCLE: a computer code for calculating nuclear and fossil plant levelized life-cycle power costs

    SciTech Connect (OSTI)

    Hardie, R.W.

    1982-02-01

    POPCYCLE, a computer code designed to calculate levelized life-cycle power costs for nuclear and fossil electrical generating plants is described. Included are (1) derivations of the equations and a discussion of the methodology used by POPCYCLE, (2) a description of the input required by the code, (3) a listing of the input for a sample case, and (4) the output for a sample case.

  15. Application of real time transient temperature (RT{sup 3}) program on nuclear power plant HVAC analysis

    SciTech Connect (OSTI)

    Cai, Y.; Tomlins, V.A.; Haskell, N.L.; Giffels, F.W.

    1996-08-01

    A database oriented technical analysis program (RT) utilizing a lumped parameter model combined with a finite difference method was developed to concurrently simulate transient temperatures in single or multiple room(s)/area(s). Analyses can be seen for postulated design basis events, such as, 10CFR50 Appendix-R, Loss of Coolant Accident concurrent with Loss of Offsite Power (LOCA/LOOP), Station BlackOut (SBO), and normal station operating conditions. The rate of change of the air temperatures is calculated by explicitly solving a series of energy balance equations with heat sources and sinks that have been described. For building elements with heat absorbing capacity, an explicit Forward Time Central Space (FTCS) model of one dimensional transient heat conduction in a plane element is used to describe the element temperature profile. Heat migration among the rooms/areas is considered not only by means of conduction but also by means of natural convection induced by temperature differences through openings between rooms/areas. The program also provides a means to evaluate existing plant HVAC system performance. The performance and temperature control of local coolers/heaters can be also simulated. The program was used to calculate transient temperature profiles for several buildings and rooms housing safety-related electrical components in PWR and BWR nuclear power plants. Results for a turbine building and reactor building in a BWR nuclear power plant are provided here. Specific calculational areas were defined on the basis of elevation, physical barriers and components/systems. Transient temperature profiles were then determined for the bounding design basis events with winter and summer outdoor air temperatures.

  16. EISPC White Paper on "State Approaches to Retention of Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    (EISPC) has released a white paper on "State Approaches to Retention of Nuclear Power Plants" that examines operational, economic, and policy pressure points affecting...

  17. Data base on dose reduction research projects for nuclear power plants. Volume 5

    SciTech Connect (OSTI)

    Khan, T.A.; Yu, C.K.; Roecklein, A.K.

    1994-05-01

    This is the fifth volume in a series of reports that provide information on dose reduction research and health physics technology or nuclear power plants. The information is taken from two of several databases maintained by Brookhaven National Laboratory`s ALARA Center for the Nuclear Regulatory Commission. The research section of the report covers dose reduction projects that are in the experimental or developmental phase. It includes topics such as steam generator degradation, decontamination, robotics, improvements in reactor materials, and inspection techniques. The section on health physics technology discusses dose reduction efforts that are in place or in the process of being implemented at nuclear power plants. A total of 105 new or updated projects are described. All project abstracts from this report are available to nuclear industry professionals with access to a fax machine through the ACEFAX system or a computer with a modem and the proper communications software through the ACE system. Detailed descriptions of how to access all the databases electronically are in the appendices of the report.

  18. Risk-informed public safety policy for seismic events in the vicinity of a nuclear power plant

    E-Print Network [OSTI]

    Afolayan Jejeloye, Olubukola

    2002-01-01

    Nuclear Power Plants (NPPs) are potentially vulnerable to accidents, which can either be internally or externally initiated. External events include natural events like tornadoes, hurricanes, and earthquakes. The purpose ...

  19. The potential role of new technology for enhanced safety and performance of nuclear power plants through improved service maintenance

    E-Print Network [OSTI]

    Achorn, Ted Glen

    1991-01-01

    Refinements in the safety and performance of nuclear power plants must be made to maintain public confidence and ensure competitiveness with other power sources. The aircraft industry, US Navy, and other programs have ...

  20. Comparative analysis of United States and French nuclear power plant siting and construction regulatory policies and their economic consequences

    E-Print Network [OSTI]

    Golay, Michael Warren.

    1977-01-01

    Despite the substantial commitments of time and money which are devoted to the nuclear power plant siting process, the effectiveness of the system in providing a balanced evaluation of the technical, environmental and ...