Sample records for nuclear plant operators

  1. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Powe

  2. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Demazière, Christophe

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed absorption cross-section behavior. Consequently, if NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;Demazière

  3. NUCLEAR PLANT OPERATIONS AND

    E-Print Network [OSTI]

    Pázsit, Imre

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: moderator temper- ature coefficient, reactivity co reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed. Consequently, if*E-mail: demaz@nephy.chalmers.se NUCLEAR TECHNOLOGY VOL. 140 NOV. 2002 147 #12;high-burnup fuel

  4. Construction or Extended Operation of Nuclear Plant (Vermont)

    Broader source: Energy.gov [DOE]

    Any petition for approval of construction of a nuclear energy generating plant within the state, or any petition for approval of the operation of a nuclear energy generating plant beyond the date...

  5. US nuclear power plant operating cost and experience summaries

    SciTech Connect (OSTI)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01T23:59:59.000Z

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  6. Nuclear power plant control room operators' performance research

    SciTech Connect (OSTI)

    Gray, L.H.; Haas, P.M.

    1984-01-01T23:59:59.000Z

    A research program is being conducted to provide information on the performance of nuclear power plant control room operators when responding to abnormal/emergency events in the plants and in full-scope training simulators. The initial impetus for this program was the need for data to assess proposed design criteria for the choice of manual versus automatic action for accomplishing safety-related functions during design basis accidents. The program also included studies of training simulator capabilities, of procedures and data for specifying and verifying simulator performance, and of methods and applications of task analysis.

  7. Nuclear power plant control room operator control and monitoring tasks

    SciTech Connect (OSTI)

    Bovell, C.R.; Beck, M.G. [Concord Associates, Inc., Knoxville, TN (United States); Carter, R.J. [Oak Ridge National Labs., TN (United States)

    1998-07-01T23:59:59.000Z

    Oak Ridge National Laboratory is conducting a research project the purpose of which is to develop the technical bases for regulatory review criteria for use in evaluating the safety implications of human factors associated with the use of artificial intelligence and expert systems, and with advanced instrumentation and control (I and C) systems in nuclear power plants (NPP). This report documents the results from Task 8 of that project. The primary objectives of the task was to identify the scope and type of control and monitoring tasks now performed by control-room operators. Another purpose was to address the types of controls and safety systems needed to operate the nuclear plant. The final objective of Task 8 was to identify and categorize the type of information and displays/indicators required to monitor the performance of the control and safety systems. This report also discusses state-of-the-art controls and advanced display devices which will be available for use in control-room retrofits and in control room of future plants. The fundamental types of control and monitoring tasks currently conducted by operators can be divided into four classifications: function monitoring tasks, control manipulation tasks, fault diagnostic tasks, and administrative tasks. There are three general types of controls used in today`s NPPs, switches, pushbuttons, and analog controllers. Plant I and C systems include components to achieve a number of safety-related functions: measuring critical plant parameters, controlling critical plant parameters within safety limits, and automatically actuating protective devices if safe limits are exceeded. The types of information monitored by the control-room operators consist of the following parameters: pressure, fluid flow and level, neutron flux, temperature, component status, water chemistry, electrical, and process and area radiation. The basic types of monitoring devices common to nearly all NPP control rooms include: analog meters, graphic recorders, digital displays and counters, light indicators, visual and audio alarms, and cathode-ray tubes.

  8. Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon

    E-Print Network [OSTI]

    Boyer, Edmond

    Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon Gipsa of nuclear power plants. Unfortunately, today's policies present a major drawback. Indeed, these monitoring safety constraints: nuclear power plants. Key components of such systems are motor-operated valves (MOVs

  9. Cognitive skill training for nuclear power plant operational decision making

    SciTech Connect (OSTI)

    Mumaw, R.J.; Swatzler, D.; Roth, E.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Thomas, W.A. [Quantum Technologies, Inc., Oak Brook, IL (United States)

    1994-06-01T23:59:59.000Z

    Training for operator and other technical positions in the commercial nuclear power industry traditionally has focused on mastery of the formal procedures used to control plant systems and processes. However, decisionmaking tasks required of nuclear power plant operators involve cognitive skills (e.g., situation assessment, planning). Cognitive skills are needed in situations where formal procedures may not exist or may not be as prescriptive, as is the case in severe accident management (SAM). The Westinghouse research team investigated the potential cognitive demands of SAM on the control room operators and Technical Support Center staff who would be most involved in the selection and execution of severe accident control actions. A model of decision making, organized around six general cognitive processes, was developed to identify the types of cognitive skills that may be needed for effective performance. Also, twelve SAM scenarios were developed to reveal specific decision-making difficulties. Following the identification of relevant cognitive skills, 19 approaches for training individual and team cognitive skills were identified. A review of these approaches resulted in the identification of general characteristics that are important in effective training of cognitive skills.

  10. EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environemental impact of a proposal to continue operation of the Pantex Plant and associated storage of nuclear weapon components. Alternatives considered include: ...

  11. Identification of good practices in the operation of nuclear power plants

    E-Print Network [OSTI]

    Chen, Haibo, 1975-

    2005-01-01T23:59:59.000Z

    This work developed an approach to diagnose problems and identify good practices in the operation of nuclear power plants using the system dynamics technique. The research began with construction of the ORSIM (Nuclear Power ...

  12. Nuclear Plant Feedwater Heater Handbook. Volume 3. Operation and maintenance guidelines. Final report

    SciTech Connect (OSTI)

    Bell, R.J.; Hardy, C.D. Jr.

    1985-06-01T23:59:59.000Z

    This document is the third part of a three-volume handbook covering closed feedwater heaters for nuclear electric power generating plants. This third volume covers the operation and maintenance of closed feedwater heaters. 11 refs., 23 figs., 5 tabs.

  13. EDF Nuclear Power Plants Operating Experience with MOX fuel

    SciTech Connect (OSTI)

    Thibault, Xavier [EDF Generation, Tour EDF Part Dieu - 9 rue des Cuirassiers B.P.3181 - 69402 Lyon Cedex 03 (France)

    2006-07-01T23:59:59.000Z

    EDF started Plutonium recycling in PWR in 1987 and progressively all the 20 reactors, licensed in using MOX fuel, have been loaded with MOX assemblies. At the origin of MOX introduction, these plants operated at full power in base load and the core management limited the irradiation time of MOX fuel assemblies to 3 annual cycles. Since 1995 all these reactors can operate in load follow mode. Since that time, a large amount of experience has been accumulated. This experience is very positive considering: - Receipt, handling, in core behaviour, pool storage and shipment of MOX fuel; - Operation of the various systems of the plant; - Environment impact; - Radioprotection; - Safety file requirements; - Availability for the grid. In order to reduce the fuel cost and to reach a better adequacy between UO{sub 2} fuel reprocessing flow and plutonium consumption, EDF had decided to improve the core management of MOX plants. This new core management call 'MOX Parity' achieves parity for MOX and UO{sub 2} assemblies in term of discharge burn-up. Compared to the current MOX assembly the Plutonium content is increased from 7,08% to 8,65% (equivalent to natural uranium enriched to respectively 3,25% and 3,7%) and the maximum MOX assembly burn-up moves from 42 to 52 GWd/t. This amount of burn-up is obtained from loading MOX assemblies for one additional annual cycle. Some, but limited, adaptations of the plant are necessary. In addition a new MOX fuel assembly has been designed to comply with the safety criteria taking into account the core management performances. These design improvements are based on the results of an important R and D program including numerous experimental tests and post-irradiated fuel examinations. In particular, envelope conditions compared to MOX Parity neutronic solicitations has been extensively investigated in order to get a full knowledge of the in reactor fuel behavior. Moreover, the operating conditions of the plant have been evaluated in many details and finally no important impact is anticipated. The industrial maturity of plutonium recycling activities is fully demonstrated and a new progress can be done with a complete confidence. The licensing process of 'MOX Parity' core management is in progress and its implementation on the 20 PWR is now expected at mid 2007. (author)

  14. Use of probabilistic risk assessment (PRA) in expert systems to advise nuclear plant operators and managers

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1988-01-01T23:59:59.000Z

    The use of expert systems in nuclear power plants to provide advice to managers, supervisors and/or operators is a concept that is rapidly gaining acceptance. Generally, expert systems rely on the expertise of human experts or knowledge that has been modified in publications, books, or regulations to provide advice under a wide variety of conditions. In this work, a probabilistic risk assessment (PRA)/sup 3/ of a nuclear power plant performed previously is used to assess the safety status of nuclear power plants and to make recommendations to the plant personnel. 5 refs., 1 fig., 2 tabs.

  15. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States) Oak Ridge National Lab., TN (United States))

    1990-01-01T23:59:59.000Z

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of noise'' data from TVA's Sequoyah Nuclear Power Plant, and (5) examination of the NRC's database of Letter Event Reports'' for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

  16. NUCLEAR PLANT AND CONTROL

    E-Print Network [OSTI]

    NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: software require- ments, safety analysis, formal, the missiles, and the digital protection systems embed- ded in nuclear power plants. Obviously, safety method SOFTWARE SAFETY ANALYSIS OF DIGITAL PROTECTION SYSTEM REQUIREMENTS USING A QUALITATIVE FORMAL

  17. Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-09-20T23:59:59.000Z

    This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

  18. U.S. Nuclear Power Plant Operating Cost and Experience Summaries

    SciTech Connect (OSTI)

    Reid, RL

    2003-09-18T23:59:59.000Z

    The ''U.S. Nuclear Power Plant Operating Cost and Experience Summaries'' (NUREG/CR-6577, Supp. 2) report has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants during 2000-2001. Costs incurred after initial construction are characterized as annual production costs, which represent fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications, which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operations summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from operating reports submitted by the licensees, the Nuclear Regulatory Commission (NRC) database for enforcement actions, and outage reports.

  19. Applicability of Operational Research Techniques in CANDU Nuclear Plant Maintenance

    SciTech Connect (OSTI)

    Doyle, E. Kevin [Bruce Power LP, Box 4000B12, Tiverton, Ont., N0G2T0 (Canada)

    2002-07-01T23:59:59.000Z

    As previously reported at ICONE 6 in New Orleans, 1996, and ICONE 9 in Niece, 2001, the use of various maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems. Innovative practices included greatly reducing Reliability Centered Maintenance (RCM) costs while maintaining the accuracy of the analysis. The optimization strategy has undergone further evolution and at the present an Integrated Maintenance Program (IMP) is being put in place. Further cost refinement of the station preventive maintenance strategy whereby decisions are based on statistical analysis of historical failure data is being evaluated. A wide range of Operational Research (OR) literature was reviewed for implementation issues and several encouraging areas were found that will assist in the current effort of evaluating maintenance optimization techniques for nuclear power production. The road ahead is expected to consist first of resolving 25 years of data issues and preserving the data via appropriate knowledge system techniques while post war demographics permit experts to input into the system. Subsequent analytical techniques will emphasize total simplicity to obtain the requisite buy in from Corporate Executives who possibly are not trained in Operational Research. Case studies of containment airlock seal failures are used to illustrate the direct applicability of stochastic processes. Airlocks and transfer chambers were chosen as they have long been known as high maintenance items. Also, the very significant financial consequences of this type of failure will help to focus the attention of Senior Management on the effort. Despite substantial investment in research, improvement in the design of the seal material or configuration has not been achieved beyond the designs completed in the 1980's. Overall, the study showed excellent agreement of the relatively quick stochastic methods with the maintenance programs produced at great cost over years of trial and error. The pivotal role of expert opinion via experienced users/problem owners/maintenance engineers in all phases of the method and its application was noted and will be explored in subsequent efforts. The results are displayed via economic alternatives to more easily attract the attention of Maintenance Managers. Graphical overviews of the data demonstrated that substantial insight can be gained by simply organizing the data into statistically meaningful arrays such as histograms. The conclusions highlight several very positive avenues to evaluate at this particular juncture in time. (author)

  20. Use of neural networks in the operation of nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

    1990-01-01T23:59:59.000Z

    Application of neural networks to the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (a) diagnosing specific abnormal conditions, (b) detection of the change of mode of operation, (c) signal validation, (d) monitoring of check valves, (e) modeling of the plant thermodynamics, (f) emulation of core reload calculations, (g) analysis of temporal sequences in NRC's licensee event report,'' (h) monitoring of plant parameters, and (i) analysis of plant vibrations. Each of these projects and its status are described briefly in this article. the objective of each of these projects is to enhance the safety and performance of nuclear plants through the use of neural networks. 6 refs.

  1. Knowledge and abilities catalog for nuclear power plant operators: boiling water reactors

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWR) (NUREG-1123) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog and Examiners' Handbook for Developing Operator Licensing Examinations (NUREG-1121) will cover those topics listed under Title 10, Code of Federal Regulations, Part 55. The BWR Catalog contains approximately 7000 knowledge and ability (K/A) statements for ROs and SROs at boiling water reactors. Each K/A statement has been rated for its importance to the safe operation of the plant in a manner ensuring personnel and public health and safety. The BWR K/A Catalog is organized into five major sections: Plant-wide Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Function, Emergency and Abnormal Plant Evolutions, Components, and Theory. The BWR Catalog represents a modification of the form and content of the K/A Catalog for Nuclear Power Plant Operators: Pressurized Water Reactors (NUREG-1122). First, categories of knowledge and ability statements have been redefined. Second, the scope of the definition of emergency and abnormal plant evolutions has been revised in line with a symptom-based approach. Third, K/As related to the operational applications of theory have been incorporated into the delineations for both plant systems and emergency and abnormal plant evolutions, while K/As pertaining to theory fundamental to plant operation have been delineated in a separate theory section. Finally, the components section has been revised.

  2. Online Condition Monitoring to Enable Extended Operation of Nuclear Power Plants

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Bond, Leonard J.; Ramuhalli, Pradeep

    2012-03-31T23:59:59.000Z

    Safe, secure, and economic operation of nuclear power plants will remain of strategic significance. New and improved monitoring will likely have increased significance in the post-Fukushima world. Prior to Fukushima, many activities were already underway globally to facilitate operation of nuclear power plants beyond their initial licensing periods. Decisions to shut down a nuclear power plant are mostly driven by economic considerations. Online condition monitoring is a means to improve both the safety and economics of extending the operating lifetimes of nuclear power plants, enabling adoption of proactive aging management. With regard to active components (e.g., pumps, valves, motors, etc.), significant experience in other industries has been leveraged to build the science base to support adoption for online condition-based maintenance and proactive aging management in the nuclear industry. Many of the research needs are associated with enabling proactive management of aging in passive components (e.g., pipes, vessels, cables, containment structures, etc.). This paper provides an overview of online condition monitoring for the nuclear power industry with an emphasis on passive components. Following the overview, several technology/knowledge gaps are identified, which require addressing to facilitate widespread online condition monitoring of passive components.

  3. Potential application of neural networks to the operation of nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E. [University of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Laboratory, TN (United States)

    1991-01-01T23:59:59.000Z

    The application of neural networks, a rapidly evolving technology used extensively in defense applications, to some of the problems of operating nuclear power plants is a logical complement to the expert systems currently being introduced in some of those plants. The potential applications of neural networks include, but are not limited to: (1) Diagnosing specific abnormal conditions. (2) Identifying nonlinear dynamics and transients. (3) Detecting the change of mode of operation. (4) Controlling temperature and pressure during start-up. (5) validating signals. (6) Plant-wide monitoring using autoassociative neural networks. (7) Monitoring of check valves. (8) Modeling the plant thermodynamics to increase efficiency. (9) Emulating core reload calculations. (10) Analyzing temporal sequences in the U.S. Nuclear Regulatory Commission Licensee Event Reports. (11) Monitoring plant parameters. (12) Analyzing vibrations in plants and rotating machinery. The work on such applications indicates that neural networks alone, or in conjunction with other advanced technologies, have the potential to enhance the safety, reliability, and operability of nuclear power plants. 36 refs.

  4. Design and operating guidelines for nuclear power plant condensers

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Recommendations and associated technical justifications are provided for the design and operation of condensate polishing systems. Both deep bed and powdered resin system are addressed. The objective of the guidelines is to ensure that impurity levels in the PWR secondary cycle are reduced to the minimum achievable levels through proper design and operation of the condensate polisher system. Reduction of the condensate polisher to the steam generators has been demonstrated to improve steam generator reliability and limit corrosion of steam generator materials. 19 refs., 12 figs., 4 tabs.

  5. Knowledges and abilities catalog for nuclear power plant operators: pressurized water reactors

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    This document catalogs roughly 5300 knowledges and abilities of reactor operators and senior reactor operators. It results from a reanalysis of much larger job-task analysis data base compiled by the Institute of Nuclear Power Operations (INPO). Knowledges and abilities are cataloged for 45 major power plant systems and 38 emergency evolutions, grouped according to 11 fundamental safety functions (e.g., reactivity control and reactor coolant system inventory control). With appropriate sampling from this catalog, operator licensing examinations having content validity can be developed. A structured sampling procedure for this catalog is under development by the Nuclear Regulatory Commission (NRC) and will be published as a companion document, ''Examiners' Handbook for Developing Operator Licensing Examinations'' (NUREG-1121). The examinations developed by using the catalog and handbook will cover those topics listed under Title 10, Code of Federal Regulations, Part 55.

  6. Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

  7. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  8. Development of a hybrid intelligent system for on-line real-time monitoring of nuclear power plant operations

    E-Print Network [OSTI]

    Yildiz, Bilge, 1976-

    2003-01-01T23:59:59.000Z

    A nuclear power plant (NPP) has an intricate operational domain involving systems, structures and components (SSCs) that vary in scale and complexity. Many of the large scale SSCs contribute to the lost availability in the ...

  9. A Systems Engineering Framework for Design, Construction and Operation of the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Edward J. Gorski; Charles V. Park; Finis H. Southworth

    2004-06-01T23:59:59.000Z

    Not since the International Space Station has a project of such wide participation been proposed for the United States. Ten countries, the European Union, universities, Department of Energy (DOE) laboratories, and industry will participate in the research and development, design, construction and/or operation of the fourth generation of nuclear power plants with a demonstration reactor to be built at a DOE site and operational by the middle of the next decade. This reactor will be like no other. The Next Generation Nuclear Plant (NGNP) will be passively safe, economical, highly efficient, modular, proliferation resistant, and sustainable. In addition to electrical generation, the NGNP will demonstrate efficient and cost effective generation of hydrogen to support the President’s Hydrogen Initiative. To effectively manage this multi-organizational and technologically complex project, systems engineering techniques and processes will be used extensively to ensure delivery of the final product. The technological and organizational challenges are complex. Research and development activities are required, material standards require development, hydrogen production, storage and infrastructure requirements are not well developed, and the Nuclear Regulatory Commission may further define risk-informed/performance-based approach to licensing. Detailed design and development will be challenged by the vast cultural and institutional differences across the participants. Systems engineering processes must bring the technological and organizational complexity together to ensure successful product delivery. This paper will define the framework for application of systems engineering to this $1.5B - $1.9B project.

  10. Applications of neural networks to monitoring and decision making in the operation of nuclear power plants. Summary

    SciTech Connect (OSTI)

    Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

    1990-12-31T23:59:59.000Z

    Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of ``noise`` data from TVA`s Sequoyah Nuclear Power Plant, and (5) examination of the NRC`s database of ``Letter Event Reports`` for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

  11. Work Domain Analysis and Operational Concepts for Advanced Nuclear Power Plants

    SciTech Connect (OSTI)

    Jacques Hugo

    2001-02-01T23:59:59.000Z

    The nuclear industry is currently designing and building a new generation of reactors that will differ in important respects from the older generation. Differences in new plants will include different structural, functional, and environmental aspects, all of which are likely to have a significant impact on the way these plants are operated. In order to meet economic and safety objectives, these new reactors will all use advanced technologies to some extent, including new materials and advanced digital instrumentation and control systems. Examples of these advances include distribution of load-following demand among multiple units, different product streams (steam, process heat, or electricity), increased use of passive safety systems, high levels of automation with humans in supervisory roles, integration of computerized procedures for control room and field work, and remote surveillance and on-line monitoring. New technologies will affect not only operational strategies, but will also require a new approach to how functions are allocated to humans or machines to ensure optimal performance. There is still much uncertainty about the effect of large scale changes in plant design on operations and human tasks, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. This uncertainty will remain until sound technical bases are developed for new operational concepts and strategies. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. Up-to-date models and guidance are required for the development of operational concepts for complex socio-technical systems. Designers need to be able to identify and evaluate specific human factors challenges related to non-traditional concepts of operations, and the associated changes in the allocation of functions to human and system agents. This paper describes how the classical Work Domain Analysis method was adapted to develop operational concept frameworks for new plants. This adaptation of the method is better able to deal with the uncertainty and incomplete information typical of first-of-a-kind designs. Practical examples are provided of the systematic application of the method in the operational analysis of sodium-cooled reactors. Insights from this application and its utility are reviewed and arguments for the formal adoption of Work Domain Analysis as a value-added part of the Systems Engineering process are presented.

  12. Wisconsin Nuclear Profile - Point Beach Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  13. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

  14. The Politically Correct Nuclear Energy Plant

    E-Print Network [OSTI]

    Transportation ? · Fuel Cells ? · Electric Cars ? · Solar Electric Cars · Natural Gas ? · Combo-Cars · Hydrogen Nuclear Plants Operating Very Well · But, Generating Companies not Interested in New Nuclear Plants

  15. Monitoring equipment environment during nuclear plant operation at Salem and Hope Creek generating stations

    SciTech Connect (OSTI)

    Blum, A.; Smith, R.J. [Public Service Electric and Gas Co., Hancocks Bridge, NJ (United States)

    1991-06-01T23:59:59.000Z

    Monitoring of environmental parameters has become a significant issue for operating nuclear power plants. While the long-term benefits of plant life extension programs are being pursued with comprehensive environmental monitoring programs, the potential effect of local hot spots at various plant locations needs to be evaluated for its effect on equipment degradation and shortening of equipment qualified life. A significant benefit can be experienced from temperature monitoring when a margin exists between the design versus actual operating temperature. This margin can be translated into longer equipment qualified life and significant reduction in maintenance activities. At PSE and G, the immediate need for monitoring environmental parameters is being accomplished via the use of a Logic Beach Bitlogger. The Bitlogger is a portable data loggings system consisting of a system base, input modules and a communication software package. Thermocouples are installed on selected electrical equipment and cables are run from the thermocouples to the input module of the Bitlogger. Temperature readings are taken at selected intervals, stored in memory, and downloaded periodically to a PC software program, i.e., Lotus. The data is formatted into tabular or graphical documents. Because of their versatility, Bitloggers are being used differently at the authors Nuclear facility. At the Salem Station (2 Units-4 loop Westinghouse PWR), a battery powered, fully portable, calibrated Bitlogger is located in an accessible area inside Containment where it monitors the temperature of various electrical equipment within the Pressurizer Enclosure. It is planned that close monitoring of the local hot spot temperatures in this area will allow them to adjust and reconcile the environmental qualification of the equipment.

  16. Use of neural networks to identify transient operating conditions in nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.; Guo, Z.

    1989-01-01T23:59:59.000Z

    A technique using neural networks as a means of diagnosing specific abnormal conditions or problems in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of instrument readings, which can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault or problem. 3 refs., 2 figs., 4 tabs.

  17. Knowledge and abilities catalog for nuclear power plant operators: Pressurized water reactors. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This document provides the basis for the development of content-valid licensing examinations for reactor operators and senior reactor operators. The examinations developed using the PWR catalog will cover those topics listed under Title 10, (ode of Federal Regulations Part 55. The PWR catalog contains approximately 5100 knowledge and ability (K/A) statements for reactor operators and senior reactor operators. The catalog is organized into six major sections: Catalog Organization; Generic Knowledge and Abilities; Plant Systems; Emergency and Abnormal Plant Evolutions; Components and Theory.

  18. System dynamics modeling for human performance in nuclear power plant operation

    E-Print Network [OSTI]

    Chu, Xinyuan

    2006-01-01T23:59:59.000Z

    Perfect plant operation with high safety and economic performance is based on both good physical design and successful organization. However, in comparison with the affection that has been paid to technology research, the ...

  19. Owners of nuclear power plants

    SciTech Connect (OSTI)

    Hudson, C.R.; White, V.S.

    1996-11-01T23:59:59.000Z

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  20. Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

  1. Nuclear power plant human computer interface design incorporating console simulation, operations personnel, and formal evaluation techniques

    SciTech Connect (OSTI)

    Chavez, C.; Edwards, R.M.; Goldberg, J.H.

    1993-12-31T23:59:59.000Z

    New CRT-based information displays which enhance the human machine interface are playing a very important role and are being increasingly used in control rooms since they present a higher degree of flexibility compared to conventional hardwired instrumentation. To prototype a new console configuration and information display system at the Experimental Breeder Reactor II (EBR-II), an iterative process of console simulation and evaluation involving operations personnel is being pursued. Entire panels including selector switches and information displays are simulated and driven by plant dynamical simulations with realistic responses that reproduce the actual cognitive and physical environment. Careful analysis and formal evaluation of operator interaction while using the simulated console will be conducted to determine underlying principles for effective control console design for this particular group of operation personnel. Additional iterations of design, simulation, and evaluation will then be conducted as necessary.

  2. Unit operations used to treat process and/or waste streams at nuclear power plants. [R

    SciTech Connect (OSTI)

    Godbee, H.W.; Kibbey, A.H.

    1980-01-01T23:59:59.000Z

    Estimates are given of the annual amounts of each generic type of LLW (i.e., Government and commerical (fuel cycle and non-fuel cycle)) that is generated at LWR plants. Many different chemical engineering unit operations used to treat process and/or waste streams at LWR plants include adsorption, evaporation, calcination, centrifugation, compaction, crystallization, drying, filtration, incineration, reverse osmosis, and solidification of waste residues. The treatment of these various streams and the secondary wet solid wastes thus generated is described. The various treatment options for concentrates or solid wet wastes, and for dry wastes are discussed. Among the dry waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting and shredding. Organic materials (liquids (e.g., oils or solvents) and/or solids), could be incinerated in most cases. The filter sludges, spent resins, and concentrated liquids (e.g., evaporator concentrates) are usually solidified in cement, or urea-formaldehyde or unsaturated polyester resins prior to burial. Incinerator ashes can also be incorporated in these binding agents. Asphalt has not yet been used. This paper presents a brief survey of operational experience at LWRs with various unit operations, including a short discussion of problems and some observations on recent trends.

  3. Operating strategy generators for nuclear reactors

    SciTech Connect (OSTI)

    Solovyev, D. A., E-mail: and@est.mephi.ru; Semenov, A. A.; Shchukin, N. V. [National Research Nuclear University MEPhI (Russian Federation)

    2011-12-15T23:59:59.000Z

    Operating strategy generators, i.e., the software intended for increasing the efficiency of work of nuclear power plant operators, are discussed. The possibilities provided by the domestic and foreign operating-strategy generators are analyzed.

  4. The effects of stress on nuclear power plant operational decision making and training approaches to reduce stress effects

    SciTech Connect (OSTI)

    Mumaw, R.J.

    1994-08-01T23:59:59.000Z

    Operational personnel may be exposed to significant levels of stress during unexpected changes in plant state an plant emergencies. The decision making that identifies operational actions, which is strongly determined by procedures, may be affected by stress, and performance may be impaired. ER report analyzes potential effects of stress in nuclear power plant (NPP) settings, especially in the context of severe accident management (SAM). First, potential sources of stress in the NPP setting are identified. This analysis is followed by a review of the ways in which stress is likely to affect performance, with an emphasis on performance of cognitive skills that are linked to operational decision making. Finally, potential training approaches for reducing or eliminating stress effects are identified. Several training approaches have the potential to eliminate or mitigate stress effects on cognitive skill performance. First, the use of simulated events for training can reduce the novelty and uncertainty that can lead to stress and performance impairments. Second, training to make cognitive processing more efficient and less reliant on attention and memory resources can offset the reductions in these resources that occur under stressful conditions. Third, training that targets crew communications skills can reduce the likelihood that communications will fail under stress.

  5. Advanced Pipe Replacement Procedure for a Defective CRDM Housing Nozzle Enables Continued Normal Operation of a Nuclear Power Plant

    SciTech Connect (OSTI)

    Gilmore, Geoff; Becker, Andrew [Climax Portable Machine Tools, Inc., 2712 East Second Street, Newberg, OR 97132 (United States)

    2006-07-01T23:59:59.000Z

    During the 2003 outage at the Ringhals Nuclear Plant in Sweden, a leak was found in the vicinity of a Control Rod Drive Mechanism (CRDM) housing nozzle at Unit 1. Based on the ALARA principle for radioactive contamination, a unique repair process was developed. The repair system includes utilization of custom, remotely controlled GTAW-robots, a CNC cutting and finishing machine, snake-arm robots and NDE equipment. The success of the repair solution was based on performing the machining and welding operations from the inside of the SCRAM pipe through the CRDM housing since accessibility from the outside was extremely limited. Before the actual pipe replacement procedure was performed, comprehensive training programs were conducted. Training was followed by certification of equipment, staff and procedures during qualification tests in a full scale mock-up of the housing nozzle. Due to the ingenuity of the overall repair solution and training programs, the actual pipe replacement procedure was completed in less than half the anticipated time. As a result of the successful pipe replacement, the nuclear power plant was returned to normal operation. (authors)

  6. Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

  7. New York Nuclear Profile - R E Ginna Nuclear Power Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

  8. Impact of Climate Change on Long Term Nuclear Power Plant Operation 

    E-Print Network [OSTI]

    Redwine, Adam B.

    2010-10-12T23:59:59.000Z

    individually, and their relevance and likely impact extrapolated for regions covered by the ten selected sites under examination. Thermodynamic eff ects are simulated with a plant analysis program known as PEPSE (Performance Evaluation of Plant Systems...

  9. Plant Operational Status - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll,Physics Physics An errorPlant

  10. Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology

    SciTech Connect (OSTI)

    Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

    1998-08-01T23:59:59.000Z

    The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

  11. Virginia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  12. Ohio Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  13. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  14. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  15. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  16. Texas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  17. Tennessee Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  18. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  19. Nebraska Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  20. Arizona Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  1. Maryland Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  2. Illinois Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  3. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  4. Wisconsin Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  5. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  6. Nuclear material operations manual

    SciTech Connect (OSTI)

    Tyler, R.P.

    1981-02-01T23:59:59.000Z

    This manual provides a concise and comprehensive documentation of the operating procedures currently practiced at Sandia National Laboratories with regard to the management, control, and accountability of nuclear materials. The manual is divided into chapters which are devoted to the separate functions performed in nuclear material operations-management, control, accountability, and safeguards, and the final two chapters comprise a document which is also issued separately to provide a summary of the information and operating procedures relevant to custodians and users of radioactive and nuclear materials. The manual also contains samples of the forms utilized in carrying out nuclear material activities. To enhance the clarity of presentation, operating procedures are presented in the form of playscripts in which the responsible organizations and necessary actions are clearly delineated in a chronological fashion from the initiation of a transaction to its completion.

  7. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    average value for nuclear plants) aFinal Envir. Statement (Statement, Koshkonong Nuclear Plant, August 1976. U. S.rem; operation of the nuclear plants themselves only *Other

  8. Sun-Sentinel How Florida's nuclear plants compare to Japan's

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Sun-Sentinel How Florida's nuclear plants compare to Japan's By Julie Patel March 17, 2011 01:35 PM What went wrong at the Fukushima nuclear plant in Japan and how are Florida's nuclear plants prepared to deal with similar problems? Nuclear operators in Florida say the biggest risk their plants face is from

  9. Psychological scaling of expert estimates of human error probabilities: application to nuclear power plant operation

    SciTech Connect (OSTI)

    Comer, K.; Gaddy, C.D.; Seaver, D.A.; Stillwell, W.G.

    1985-01-01T23:59:59.000Z

    The US Nuclear Regulatory Commission and Sandia National Laboratories sponsored a project to evaluate psychological scaling techniques for use in generating estimates of human error probabilities. The project evaluated two techniques: direct numerical estimation and paired comparisons. Expert estimates were found to be consistent across and within judges. Convergent validity was good, in comparison to estimates in a handbook of human reliability. Predictive validity could not be established because of the lack of actual relative frequencies of error (which will be a difficulty inherent in validation of any procedure used to estimate HEPs). Application of expert estimates in probabilistic risk assessment and in human factors is discussed.

  10. Safety evaluation report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 14

    SciTech Connect (OSTI)

    Tam, P.S.

    1994-12-01T23:59:59.000Z

    Supplement No. 14 to the Safety Evaluation Report for the application filed by the Tennessee Valley Authority for license to operate Watts Bar Nuclear Plant, Units 1 and 2, Docket Nos. 50-390 and 50-391, located in Rhea County, Tennessee, has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation with additional information submitted by the applicant since Supplement No. 13 was issued, and matters that the staff had under review when Supplement No. 13 was issued.

  11. CONSTRUCTION OF NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    CONSTRUCTION OF NUCLEAR POWER PLANTS A Workshop on "NUCLEAR ENERGY RENAISSANCE" Addressing WAS DEEPLY INVOLVED IN ALMOST EVERY ASPECT OF BUILDING THE PLANTS THROUGH · Quality Assurance · Nuclear IN CONSTRUCTION OF ST. LUCIE-2 #12;LESSONS LEARNED FROM St. Lucie-2 NUCLEAR POWER PLANTS CAN BE BUILT

  12. Nuclear Power Plant Design Project

    E-Print Network [OSTI]

    Nuclear Power Plant Design Project A Response to the Environmental and Economic Challenge Of Global.............................................................................................................. 4 3. Assessment of the Issues and Needs for a New Plant

  13. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  14. Pennsylvania Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  15. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  16. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  17. The Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Dr. David A. Petti

    2009-01-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950°C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

  18. Advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  19. Requirements for Computer Based-Procedures for Nuclear Power Plant Field Operators Results from a Qualitative Study

    SciTech Connect (OSTI)

    Katya Le Blanc; Johanna Oxstrand

    2012-05-01T23:59:59.000Z

    Although computer-based procedures (CBPs) have been investigated as a way to enhance operator performance on procedural tasks in the nuclear industry for almost thirty years, they are not currently widely deployed at United States utilities. One of the barriers to the wide scale deployment of CBPs is the lack of operational experience with CBPs that could serve as a sound basis for justifying the use of CBPs for nuclear utilities. Utilities are hesitant to adopt CBPs because of concern over potential costs of implementation, and concern over regulatory approval. Regulators require a sound technical basis for the use of any procedure at the utilities; without operating experience to support the use CBPs, it is difficult to establish such a technical basis. In an effort to begin the process of developing a technical basis for CBPs, researchers at Idaho National Laboratory are partnering with industry to explore CBPs with the objective of defining requirements for CBPs and developing an industry-wide vision and path forward for the use of CBPs. This paper describes the results from a qualitative study aimed at defining requirements for CBPs to be used by field operators and maintenance technicians.

  20. Kansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear net generation (percent)","Owner" "Wolf Creek Generating Station Unit 1","1,160","9,556",100.0,"Wolf Creek Nuclear Optg Corp" "1 Plant 1 Reactor","1,160","9,556",100.0...

  1. Vermont Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Vermont Yankee Unit 1",620,"4,782",100.0,"Entergy Nuclear Vermont Yankee" "1 Plant 1 Reactor",620,"4,782",100.0...

  2. Massachusetts Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    (percent)","Owner" "Pilgrim Nuclear Power Station Unit 1",685,"5,918",100.0,"Entergy Nuclear Generation Co" "1 Plant 1 Reactor",685,"5,918",100.0 "Note: Totals may not equal...

  3. Nuclear power plant construction activity, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-24T23:59:59.000Z

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors.

  4. Sensitivity analysis for the outages of nuclear power plants

    E-Print Network [OSTI]

    Kengy Barty

    2012-02-17T23:59:59.000Z

    Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the ...

  5. Risk-informed incident management for nuclear power plants

    E-Print Network [OSTI]

    Smith, Curtis Lee, 1966-

    2002-01-01T23:59:59.000Z

    Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

  6. North Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

  7. New Jersey Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  8. New York Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

  9. Nuclear Power Plant Construction Activity, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-08-13T23:59:59.000Z

    Nuclear Power Plant Construction Activity 1985 presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1985. This Report, which is updated annually, was prepared to respond to the numerous requests received by the Energy Information Administration for the data collected on Form EIA-254, ''Semiannual Report on Status of Reactor Construction.''

  10. Safety evaluation report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). Supplement No. 15

    SciTech Connect (OSTI)

    Tam, P.S.

    1995-06-01T23:59:59.000Z

    This report supplements the Safety Evaluation Report (SER), NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), Supplement No. 3 (January 1985), Supplement No. 4 (March 1985), Supplement No. 5 (November 1990), Supplement No. 6 (April 1991), Supplement No. 7 (September 1991), Supplement No. 8 (January 1992), Supplement No. 9 (June 1992), Supplement No. 10 (October 1992), Supplement No. 11 (April 1993), Supplement No. 12 (October 1993), Supplement No. 13 (April 1994), and Supplement No. 14 (December 1994) issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the outstanding and confirmatory items, and proposed license conditions identified in the SER.

  11. Virtual environments for nuclear power plant design

    SciTech Connect (OSTI)

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

    1996-03-01T23:59:59.000Z

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  12. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20T23:59:59.000Z

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  13. Nuclear Power Plant Concrete Structures

    SciTech Connect (OSTI)

    Basu, Prabir [International Atomic Energy Agency (IAEA)] [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF)] [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

    2013-01-01T23:59:59.000Z

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  14. Simulation of operational transients in a VVER-1000 nuclear power plant using the RELAP5/MOD3.2 computer program 

    E-Print Network [OSTI]

    Moscalu, Dionisie Radu

    1999-01-01T23:59:59.000Z

    A RELAP5/MOD3.2 nodalization model of a VVER-1OOO (V-320) nuclear power plant was updated, improved and validated against available experimental data. The data included integrated test results obtained from actual power plant testing. The steady...

  15. Simulation of operational transients in a VVER-1000 nuclear power plant using the RELAP5/MOD3.2 computer program

    E-Print Network [OSTI]

    Moscalu, Dionisie Radu

    1999-01-01T23:59:59.000Z

    A RELAP5/MOD3.2 nodalization model of a VVER-1OOO (V-320) nuclear power plant was updated, improved and validated against available experimental data. The data included integrated test results obtained from actual power plant testing. The steady...

  16. Safety of Nuclear Explosive Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-07T23:59:59.000Z

    This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

  17. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-08-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

  18. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-01-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

  19. South Carolina Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  20. Human-reliability data bank for nuclear-power-plant operations. Volume 2. A data-bank concept and system description

    SciTech Connect (OSTI)

    Comer, M.K.; Kozinsky, E.J.; Eckel, J.S.; Miller, D.P.

    1983-02-01T23:59:59.000Z

    The US Nuclear Regulatory Commission (NRC) is conducting a research program to determine the need for a human-reliability data bank unique to the nuclear industry. This report, in describing a proposed data bank, focuses primarily on four requirements: human-performance data collection, treatment, structuring (storage), and retrieval. Four data-collection methods are proposed: three are extensions to existing systems (i.e., Licensee Event Reports (LER), Nuclear Plant Reliability Data System (NPRDS), and Plant Incident Reports (PIR)); the fourth is a new system called the Nuclear Safety Reporting System (NSRS). Data treatment involves evaluating raw field data and data from other sources (e.g., training simulator, expert judgment, and performance modeling), and preparing them for entry into the data bank. Data structuring involves storage of data by equipment characteristics and human actions at the system, component, and individual control/display levels. Data retrieval uses a set of matrices based on the data-structuring taxonomy.

  1. Institute of Nuclear Power Operations annual report, 1993

    SciTech Connect (OSTI)

    NONE

    1993-12-31T23:59:59.000Z

    This annual report highlights the activities of the Institute of Nuclear Power Operations. The topics of the report include the president and chairmen`s joint message, overview of programs serving as the foundation for most of its activities, performance indicators for the US nuclear utility industry, and INPO`s 1993 financial reports and rosters. INPO has four technical cornerstone programs that serve as the foundation for most of its activities. (1) Evaluations of nuclear power plants operated by member utilities are conducted on a regularly scheduled basis. (2) INPO supports its member utilities in their work to achieve and maintain accreditation of training programs. (3) Events analysis programs identify and communicate lessons learned from plant events so utilities can take action to prevent similar events at their plants. (4) INPO helps members improve in nuclear operations areas through assistance programs and other activities that continually evolve to meet the changing needs of the nuclear industry.

  2. Mapping complexity sources in nuclear power plant domains

    E-Print Network [OSTI]

    Sasangohar, Farzan

    Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical for ensuring safe performance of both operators and the entire system. New ...

  3. Cycling operation of fossil plants

    SciTech Connect (OSTI)

    Devendorf, D.; Kulczycky, T.G. (Niagara Mohawk Power Corp., Syracuse, NY (USA))

    1991-05-01T23:59:59.000Z

    A necessity for many utilities today is the cycling of their fossil units. Fossil plants with their higher fuel costs are being converted to cycling operation to accommodate daily load swings and to decrease the overall system fuel costs. For a large oil-fired unit, such as Oswego Steam Station Unit 5, millions of dollars can be saved annually in fuel costs if the unit operates in a two-shift mode. However, there are also penalties attributable to cycling operation which are associated with availability and thermal performance. The objectives of Niagara Mohawk Power Corporation were to minimize the losses in availability and performance, and the degradation in the life of the equipment by incorporating certain cycling modifications into the unit. The objective of this project was to evaluate the effectiveness of three of these cycling modifications: (1) the superheater and turbine bypass (Hot Restart System), (2) the use of variable pressure operation, and (3) the full-flow condensate polishing system. To meet this objective, Unit 5 was tested using the cycling modifications, and a dynamic mathematical model of this unit was developed using the Modular Modeling System (MMS) Code from EPRI. This model was used to evaluate various operating modes and to assist in the assessment of operating procedures. 15 refs., 41 figs., 22 tabs.

  4. Plant nuclear bodies Peter J Shaw1

    E-Print Network [OSTI]

    Shaw, Peter

    Plant nuclear bodies Peter J Shaw1 and John WS Brown2 Knowledge of the organization bodies have been examined in plants, and recently, various other sub-nuclear domains that are involved. Until recently, the only plant nuclear bodies to be in any way characterized were the nucleolus [11

  5. Boron control system for a nuclear power plant

    SciTech Connect (OSTI)

    Brown, W.W.; Van der Schoot, M.R.

    1980-09-30T23:59:59.000Z

    Ion exchangers which reversibly store borate ions in a temperature dependent process are combined with evaporative boric acid recovery apparatus to provide a boron control system for controlling the reactivity of nuclear power plants. A plurality of ion exchangers are operated sequentially to provide varying amounts of boric acid to a nuclear reactor for load follow operations. Evaporative boric acid recovery apparatus is utilized for major changes in the boron concentration within the nuclear reactor.

  6. Some aspects of the decommissioning of nuclear power plants

    SciTech Connect (OSTI)

    Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

    2012-03-15T23:59:59.000Z

    The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

  7. U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

  8. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering] [Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering; Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering] [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

    1991-12-31T23:59:59.000Z

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  9. Nuclear power plant status diagnostics using artificial neural networks

    SciTech Connect (OSTI)

    Bartlett, E.B. (Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Mechanical Engineering); Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering)

    1991-01-01T23:59:59.000Z

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results.

  10. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  11. Sabotage at Nuclear Power Plants

    SciTech Connect (OSTI)

    Purvis, James W.

    1999-07-21T23:59:59.000Z

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  12. Cesium Removal at Fukushima Nuclear Plant - 13215

    SciTech Connect (OSTI)

    Braun, James L.; Barker, Tracy A. [Avantech Incorporated, 95A Sunbelt Blvd Columbia, SC 29203 (United States)] [Avantech Incorporated, 95A Sunbelt Blvd Columbia, SC 29203 (United States)

    2013-07-01T23:59:59.000Z

    The Great East Japan Earthquake that took place on March 11, 2011 created a number of technical challenges at the Fukushima Daiichi Nuclear Plant. One of the primary challenges involved the treatment of highly contaminated radioactive wastewater. Avantech Inc. developed a unique patent pending treatment system that addressed the numerous technical issues in an efficient and safe manner. Our paper will address the development of the process from concept through detailed design, identify the lessons learned, and provide the updated results of the project. Specific design and operational parameters/benefits discussed in the paper include: - Selection of equipment to address radionuclide issues; - Unique method of solving the additional technical issues associated with Hydrogen Generation and Residual Heat; - Operational results, including chemistry, offsite discharges and waste generation. Results show that the customized process has enabled the utility to recycle the wastewater for cooling and reuse. This technology had a direct benefit to nuclear facilities worldwide. (authors)

  13. Operating experience feedback report-reliability of safety-related steam turbine-driven standby pumps used in US commerical nuclear power plants

    SciTech Connect (OSTI)

    Boardman, J.R. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-01-01T23:59:59.000Z

    Pump failure experience is collected by two primary means: (1) Licensee Event Reports, and (2) Nuclear Plant Reliability Data System failure reports. Certain safety-related turbine-driven standby pumps were identified by these data systems as experiencing significant ongoing repetitive failures of their turbine drivers, resulting in low reliability of the pump units. The root causes of identified failures were determined, and actions to preclude these repetitive failures were identified. 5 refs., 1 tab.

  14. Balance of Plant Requirements for a Nuclear Hydrogen Plant

    SciTech Connect (OSTI)

    Bradley Ward

    2006-04-01T23:59:59.000Z

    This document describes the requirements for the components and systems that support the hydrogen production portion of a 600 megawatt thermal (MWt) Next Generation Nuclear Plant (NGNP). These systems, defined as the "balance-of-plant" (BOP), are essential to operate an effective hydrogen production plant. Examples of BOP items are: heat recovery and heat rejection equipment, process material transport systems (pumps, valves, piping, etc.), control systems, safety systems, waste collection and disposal systems, maintenance and repair equipment, heating, ventilation, and air conditioning (HVAC), electrical supply and distribution, and others. The requirements in this document are applicable to the two hydrogen production processes currently under consideration in the DOE Nuclear Hydrogen Initiative. These processes are the sulfur iodide (S-I) process and the high temperature electrolysis (HTE) process. At present, the other two hydrogen production process - the hybrid sulfur-iodide electrolytic process (SE) and the calcium-bromide process (Ca-Br) -are under flow sheet development and not included in this report. While some features of the balance-of-plant requirements are common to all hydrogen production processes, some details will apply only to the specific needs of individual processes.

  15. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01T23:59:59.000Z

    capacity and operating efficiency of nuclear plants [31,operating efficiency of nuclear plants in the past decades.cost of the fuel Nuclear Plant Capacity Factor Nuclear

  16. Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications

    E-Print Network [OSTI]

    Heljanko, Keijo

    C4.2 Formal Verification of Safety I&C System Designs: Two Nuclear Power Plant Related Applications and control (I&C) systems play a crucial role in the operation of nuclear power plants (NPP) and other safety is available. The use of model checking to verify two nuclear power plant related systems is described: an arc

  17. Use of expert systems in nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1989-01-01T23:59:59.000Z

    The application of technologies, particularly expert systems, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which expert systems can increase the efficiency and effectiveness of overall plant and corporate operations. This document presents a number of potential applications of expert systems in the nuclear power field. 36 refs., 2 tabs.

  18. Nuclear Power - Deployment, Operation and Sustainability

    E-Print Network [OSTI]

    . Tsvetkov p. cm. ISBN 978-953-307-474-0 free online editions of InTech Books and Journals can be found at www.intechopen.com Contents Preface IX Part 1 Nuclear Power Deployment 1 Chapter 1 Nuclear Naval Propulsion 3 Magdi... to successful development, deployment and operation of nuclear power systems worldwide: Nuclear Power Deployment 1. Nuclear Naval Propulsion 2. Deployment Scenarios for New Technologies 3. The Investment Evaluation of Third-Generation Nuclear Power - from...

  19. PHYSICAL PLANT OPERATING POLICY AND PROCEDURE

    E-Print Network [OSTI]

    Gelfond, Michael

    in this technology. REVIEW This Physical Plant Operating Policy/Procedure (PP/OP) will be reviewed in March of each Plant. Physical Plant's intention is to provide each employee reasonable access to the technology Plant technology will be a prime consideration. Requests for non-standard products will not be approved

  20. Arkansas Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 UFeet)nuclear power plants,

  1. Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches

    SciTech Connect (OSTI)

    Steven R. Sherman

    2007-06-01T23:59:59.000Z

    The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

  2. Future AI and Robotics Technology for Nuclear Plants Decommissioning

    E-Print Network [OSTI]

    Hu, Huosheng

    Future AI and Robotics Technology for Nuclear Plants Decommissioning Huosheng Hu and Liam Cragg to aid in decommissioning nuclear plants that have been used to process or store nuclear materials. Scope potential applications to nuclear plant decommissioning, namely Nanotechnology, Telepresence

  3. Organizational learning at nuclear power plants

    E-Print Network [OSTI]

    Carroll, John S.

    1991-01-01T23:59:59.000Z

    The Nuclear Power Plant Advisory Panel on Organizational Learning provides channels of communications between the management and organization research projects of the MIT International Program for Enhanced Nuclear Power ...

  4. Electromagnetic compatibility of nuclear power plants

    SciTech Connect (OSTI)

    Cabayan, H.S.

    1983-01-01T23:59:59.000Z

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  5. Some aspects of nuclear power plant safety under war conditions

    SciTech Connect (OSTI)

    Stritar, A.; Mavko, B.; Susnik, J.; Sarler, B. (Jozef Stefan Inst., Ljubljana (Slovenia))

    1993-02-01T23:59:59.000Z

    In the summer of 1991, the Krsko nuclear power plant in Slovenia found itself in an area of military operations. This was probably the first commercial nuclear power plant to have been threatened by an attack by fighter jets. A number of never-before-asked questions had to be answered by the operating staff and supporting organizations. Some aspects of nuclear power plant safety under war conditions are described, such as the selection of the best plant operating state before the attack and the determination of plant system vulnerability and dose releases from the potentially damaged spent fuel in the spent-fuel pit. The best operating mode to which the plant should be brought before the attack is cold shutdown, and radiological consequences to the environment after the spent fuel is damaged and the water in the pit is lost are not very high. The problem of nuclear power plant safety under war conditions should be addressed in more detail in the future.

  6. Two novel procedures for aggregating randomized model ensemble outcomes for robust signal reconstruction in nuclear power plants monitoring systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    reconstruction in nuclear power plants monitoring systems P. Baraldi1 , E. Zio1,* , G. Gola2 , D. Roverso2 , M importance for the safe and reliable operation of nuclear power plants. Auto-associative regression models of nuclear power plants for it allows the timely detection of malfunctions and anomalies during operation

  7. Operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  8. U.S. Forward Operating Base Applications of Nuclear Power

    SciTech Connect (OSTI)

    Dr. George Griffith

    2015-01-01T23:59:59.000Z

    Nuclear power was demonstrated and made practical so that it could support the military mission of powering ships and submarines. The critical mission benefits of almost unlimited air and fuel-independent power on submarines helped spur development of the nuclear power technology that still forms the basis for the modern nuclear power industry.i Potential production of large amounts of power with low-fuel volume inputs attracted military interest shortly after nuclear power was proven to be viable.ii The expected benefit of nuclear power plants at a forward operating base (FOB) is a significant reduction in the operational and transportation risks and cost required to power FOBs. The reduction in fuel and water volumes that need to be transported is viewed as particularly valuable during war time, when mission capability and reducing enemy exposure is considered much more important than cost. Paper reviews current reactor experience and previous small military reactor applications.

  9. aguirre nuclear plant: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Denmark December 1991 12;Abstract. A computer model of a simplified pressurized nuclear power plant a compute simulation of a simplified pressurized nuclear power plant model...

  10. RESEARCH PAPER Composition of the plant nuclear envelope: theme and

    E-Print Network [OSTI]

    Meier, Iris

    RESEARCH PAPER Composition of the plant nuclear envelope: theme and variations Iris Meier* Plant plants is only just beginning, fundamental differences from the animal nuclear envelope have already been to known plant regulatory pathways. Plant nuclear envelope composition The inner nuclear envelope A number

  11. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect (OSTI)

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-01-01T23:59:59.000Z

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant's training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  12. Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2004-01-01T23:59:59.000Z

    Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

  13. Nuclear Operations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project TapsDOERecovery NuclearSensor Nodes

  14. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01T23:59:59.000Z

    electricity generation capacity and operating efficiency of nuclear plants [Nuclear Plant Capacity Factor Nuclear Electricity Generationelectricity generation capacity and operating efficiency of nu- clear plants [

  15. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect (OSTI)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01T23:59:59.000Z

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  16. Aging assessment of large electric motors in nuclear power plants

    SciTech Connect (OSTI)

    Villaran, M.; Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)

    1996-03-01T23:59:59.000Z

    Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failure in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.

  17. Aging of safety class 1E transformers in safety systems of nuclear power plants

    SciTech Connect (OSTI)

    Roberts, E.W.; Edson, J.L.; Udy, A.C. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-02-01T23:59:59.000Z

    This report discusses aging effects on safety-related power transformers in nuclear power plants. It also evaluates maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission`s (NRC`s) Nuclear Plant-Aging Research approach. It investigates the materials used in transformer construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes transformer failure events reported in various databases, and evaluates maintenance practices. Databases maintained by the nuclear industry were analyzed to evaluate the effects of aging on the operation of nuclear power plants.

  18. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

    2012-07-01T23:59:59.000Z

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  19. Treatment of Radioactive Metallic Waste from Operation of Nuclear Power Plants by Melting - The German Way for a Consistent Recycling to Minimize the Quantity of Radioactive Waste from Operation and Dismantling for Disposal - 12016

    SciTech Connect (OSTI)

    Wegener, Dirk [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Kluth, Thomas [Siempelkamp Nukleartechnik GmbH, Krefeld (Germany)

    2012-07-01T23:59:59.000Z

    During maintenance of nuclear power plants, and during their decommissioning period, a large quantity of radioactive metallic waste will accrue. On the other hand the capacity for final disposal of radioactive waste in Germany is limited as well as that in the US. That is why all procedures related to this topic should be handled with a maximum of efficiency. The German model of consistent recycling of the radioactive metal scrap within the nuclear industry therefore also offers high capabilities for facilities in the US. The paper gives a compact overview of the impressive results of melting treatment, the current potential and further developments. Thousands of cubic metres of final disposal capacity have been saved. The highest level of efficiency and safety by combining general surface decontamination by blasting and nuclide specific decontamination by melting associated with the typical effects of homogenization. An established process - nationally and internationally recognized. Excellent connection between economy and ecology. (authors)

  20. PHYSICAL PLANT OPERATING POLICY AND PROCEDURE

    E-Print Network [OSTI]

    Gelfond, Michael

    PHYSICAL PLANT OPERATING POLICY AND PROCEDURE PP/OP 04.05: Development of Standard Labor Charge and Procedure (PP/OP) is to establish procedures for the development of a standard labor charge rate used when-600) ­ Account used to fund all maintenance and operation expenses for Custodial Services #12;June 7, 2010 Page 2

  1. Neural networks and their application to nuclear power plant diagnosis

    SciTech Connect (OSTI)

    Reifman, J. [Argonne National Lab., IL (United States). Reactor Analysis Div.

    1997-10-01T23:59:59.000Z

    The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.

  2. Dose reduction at nuclear power plants

    SciTech Connect (OSTI)

    Baum, J.W.; Dionne, B.J.

    1983-01-01T23:59:59.000Z

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  3. Aging of Class 1E batteries in safety systems of nuclear power plants

    SciTech Connect (OSTI)

    Edson, J.L.; Hardin, J.E.

    1987-07-01T23:59:59.000Z

    This report presents the results of a study of aging effects on safety-related batteries in nuclear power plants. The purpose is to evaluate the aging effects caused by operation within a nuclear facility and to evaluate maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission's (NRC's) Nuclear Plant-Aging Research approach and investigates the materials used in battery construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes battery-failure events reported in various data bases, and evaluates recommended maintenance practices. Data bases that were analyzed included the NRC's Licensee Event Report system, the Institute for Nuclear Power Operations' Nuclear Plant Reliability Data System, the Oak Ridge National Laboratory's In-Plant Reliability Data System, and The S.M. Stoller Corporation's Nuclear Power Experience data base.

  4. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Columbia Generating Station Unit...

  5. Iowa Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Duane Arnold Energy Center Unit...

  6. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J [ORNL; Burchell, Timothy D [ORNL; Corwin, William R [ORNL; Fisher, Stephen Eugene [ORNL; Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Morris, Robert Noel [ORNL; Moses, David Lewis [ORNL

    2008-12-01T23:59:59.000Z

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  7. Tennessee Nuclear Profile - Watts Bar Nuclear Plant

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun Jul AugSameWatts Bar Nuclear

  8. Nuclear Power - Deployment, Operation and Sustainability 

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    and Plutonium Denaturing as an Effective Method for Nuclear Fuel Proliferation Protection in Open and Closed Fuel Cycles 331 Kryuchkov E.F., Tsvetkov P.V., Shmelev A.N., Apse V.A., Kulikov G.G., Masterov S.V., Kulikov E.G. and Glebov V.B Part 5 Thorium 363... Talbot Laboratory, Urbana, Illinois USA 1. Introduction T h e largest experien c e in operatin g nuclear power plants has been in nuclear naval propulsi o n , particul a r l y aircraft carriers and subma r i n e s . This accumul a t e d exper i e n c...

  9. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect (OSTI)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01T23:59:59.000Z

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  10. Chiller Plant Design Goals Low operating cost

    E-Print Network [OSTI]

    3/9/09 1 2 Chiller Plant Design Goals · Low operating cost ­Energy Efficiency ­No full time staffing · Reliability ­24/7 ­ 365 ­Maintainability · Future expansion capability #12;3/9/09 2 3 Chiller T 4 Chiller Plant Electrical · Electrical ­N+1 transformer capacity ­4160 volt Compressor Motors

  11. Operations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and EvaluationOperational ManagementCenterOperations|

  12. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, Robert W. (Richland, WA)

    1984-01-01T23:59:59.000Z

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  13. Digital computer operation of a nuclear reactor

    DOE Patents [OSTI]

    Colley, R.W.

    1982-06-29T23:59:59.000Z

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  14. Missouri Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Callaway Unit 1","1,190","8,996",100.0,"Union...

  15. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"Syste...

  16. Predicting the severity of nuclear power plant transients by using genetic and nearest neighbor algorithms

    SciTech Connect (OSTI)

    Lin, J.; Bartal, Y.; Uhrig, R.E.

    1995-03-01T23:59:59.000Z

    Nuclear power plant status is monitored by a human operator. To enhance the operator`s capability to diagnose the nuclear power plant status in case of a transient, several systems were developed to identify the type of the transient. Few of them addressed the further question: how severe is the transient? In this paper, we explore the possibility of predicting the severity of a transient using genetic algorithms and nearest neighbor algorithms after its type has been identified.

  17. Enhancement of NRC station blackout requirements for nuclear power plants

    SciTech Connect (OSTI)

    McConnell, M. W. [United States Nuclear Regulatory Commission, Mail Stop: 012-H2, Washington, DC 20555 (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

  18. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect (OSTI)

    Not Available

    1983-04-01T23:59:59.000Z

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  19. PHYSICAL PLANT OPERATING POLICY AND PROCEDURE

    E-Print Network [OSTI]

    Gelfond, Michael

    of each year by the Superintendent for Building Maintenance and Construction Work Control, Director of the craftspeople under their control and related operation costs for the following specific Physical Plant shops) Superintendent of Heating and Air Conditioning (a) Electronic Maintenance (b) HVAC (c) Insulation/Asbestos

  20. PHYSICAL PLANT OPERATING POLICY AND PROCEDURE

    E-Print Network [OSTI]

    Gelfond, Michael

    natural gas supply contract and gas transportation agreement when required for Texas Tech UniversityPHYSICAL PLANT OPERATING POLICY AND PROCEDURE PP/OP 05.09: Gas Supply and Transportation Contract, 2010 Page 2 PP/OP 05.09 d. Gas Transportation Agreement - Two main gas transportation lines serve

  1. SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)

    E-Print Network [OSTI]

    SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

  2. Nuclear thermal rocket engine operation and control

    SciTech Connect (OSTI)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01T23:59:59.000Z

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs.

  3. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect (OSTI)

    Gray, L.W.

    1986-10-04T23:59:59.000Z

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  4. Floating nuclear power plant safety assurance principles

    SciTech Connect (OSTI)

    Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.

    1993-12-31T23:59:59.000Z

    In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described.

  5. News Release Closure of Russian Nuclear Plant.PDF

    National Nuclear Security Administration (NNSA)

    CONTACTS: FOR IMMEDIATE RELEASE Jonathan Kiell, 202586-7371 September 27, 2001 Date Set for Closure of Russian Nuclear Weapons Plant U.S. National Nuclear Security Administration...

  6. Date Set for Closure of Russian Nuclear Weapons Plant - NNSA...

    National Nuclear Security Administration (NNSA)

    Date Set for Closure of Russian Nuclear Weapons Plant - NNSA Is Helping Make It Happen | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  7. California Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric andIndustrial

  8. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSales (Million Cubic Feet)DecadeConnecticut

  9. Georgia Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty(Million CubicIndustrialCubicDecadeEdwin Inuclear

  10. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYearThousandFeet)Minnesota nuclear

  11. Online Monitoring of Plant Assets in the Nuclear Industry

    SciTech Connect (OSTI)

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01T23:59:59.000Z

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  12. Nuclear plant irradiated steel handbook

    SciTech Connect (OSTI)

    Oldfield, W.; Oldfield, F.M.; Lombrozo, P.M.; McConnell, P.

    1986-09-01T23:59:59.000Z

    This reference handbook presents selected information extracted from the EPRI reactor surveillance program database, which contains the results from surveillance program reports on 57 plants and 116 capsules. Tabulated data includes radiation induced temperature shifts, capsule irradiation conditions and statistical features of the Charpy V-notch curves. General information on the surveillance materials is provided and the Charpy V-notch energy results are presented graphically.

  13. Michigan Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYear Jan FebSamenuclear power plants,

  14. Nuclear power plant fault-diagnosis using artificial neural networks

    SciTech Connect (OSTI)

    Kim, Keehoon; Aljundi, T.L.; Bartlett, E.B.

    1992-12-31T23:59:59.000Z

    Artificial neural networks (ANNs) have been applied to various fields due to their fault and noise tolerance and generalization characteristics. As an application to nuclear engineering, we apply neural networks to the early recognition of nuclear power plant operational transients. If a transient or accident occurs, the network will advise the plant operators in a timely manner. More importantly, we investigate the ability of the network to provide a measure of the confidence level in its diagnosis. In this research an ANN is trained to diagnose the status of the San Onofre Nuclear Generation Station using data obtained from the plant`s training simulator. Stacked generalization is then applied to predict the error in the ANN diagnosis. The data used consisted of 10 scenarios that include typical design basis accidents as well as less severe transients. The results show that the trained network is capable of diagnosing all 10 instabilities as well as providing a measure of the level of confidence in its diagnoses.

  15. Florida Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty Vehicles,Year Jan Feb MarYeartotalFlorida

  16. Review of maintenance personnel practices at nuclear power plants

    SciTech Connect (OSTI)

    Chockie, A.D.; Badalamente, R.V.; Hostick, C.J.; Vickroy, S.C.; Bryant, J.L.; Imhoff, C.H.

    1984-05-01T23:59:59.000Z

    As part of the Nuclear Regulatory Commission (NRC) sponsored Maintenance Qualifications and Staffing Project, the Pacific Northwest Laboratory (PNL) has conducted a preliminary assessment of nuclear power plant (NPP) maintenance practices. As requested by the NRC, the following areas within the maintenance function were examined: personnel qualifications, maintenance training, overtime, shiftwork and staffing levels. The purpose of the assessment was to identify the primary safety-related problems that required further analysis before specific recommendations can be made on the regulations affecting NPP maintenance operations.

  17. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon

    1992-12-31T23:59:59.000Z

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  18. An artificial neutral network fault-diagnostic adviser for a nuclear power plant with error prediction

    SciTech Connect (OSTI)

    Kim, Keehoon.

    1992-01-01T23:59:59.000Z

    This thesis is part of an ongoing project at Iowa State University to develop ANN bases fault diagnostic systems to detect and classify operational transients at nuclear power plants.

  19. SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SIGNAL GROUPING FOR CONDITION MONITORING OF NUCLEAR POWER PLANT COMPONENTS Piero Baraldi Chevalier EDF R&D ­ Simulation and information Technologies for Power generation system Department 6, Quai Monitoring, Empirical Modeling, Power Plants, Safety Critical Nuclear Instrumentation, Autoassociative models

  20. Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant

    Broader source: Energy.gov [DOE]

    NNSA presentation on Radiological Assessment of effects from Fukushima Daiichi Nuclear Power Plant from May 13, 2011

  1. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    SciTech Connect (OSTI)

    Perkins, W.C.; Durant, W.S.; Dexter, A.H.

    1980-12-01T23:59:59.000Z

    The occurrence of certain potential events in nuclear fuel reprocessing plants could lead to significant consequences involving risk to operating personnel or to the general public. This document is a compilation of such potential initiating events in nuclear fuel reprocessing plants. Possible general incidents and incidents specific to key operations in fuel reprocessing are considered, including possible causes, consequences, and safety features designed to prevent, detect, or mitigate such incidents.

  2. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    SciTech Connect (OSTI)

    Basu, A.

    1992-12-31T23:59:59.000Z

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company`s Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  3. Nuclear power plant status diagnostics using a neural network with dynamic node architecture

    SciTech Connect (OSTI)

    Basu, A.

    1992-01-01T23:59:59.000Z

    This thesis is part of an ongoing project at Iowa State University to develop ANN based fault diagnostic systems to detect and classify operational transients at nuclear power plants. The project envisages the deployment of such an advisor at Iowa Electric Light and Power Company's Duane Arnold Energy Center nuclear power plant located at Palo, IA. This advisor is expected to make status diagnosis in real time, thus providing the operators with more time for corrective measures.

  4. EIS-0108: L-Reactor Operation, Savannah River Plant, Aiken, South Carolina

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) was prepared to provide environmental input into the proposed decision to restart L-Reactor operation at the Savannah River Plant (SRP). The Savannah River Plant is a major U.S. Department of Energy (DOE) installation for the production of defense nuclear materials. The proposed restart of L–Reactor would provide defense nuclear materials (i.e. , plutonium) to wet current and near-term needs for national defense purposes.

  5. The effects of variable operation on RO plant performance

    E-Print Network [OSTI]

    Williams, Christopher Michael, S.M. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Optimizations of reverse osmosis (RO) plants typically consider steady state operation of the plant. RO plants are subject to transient factors that may make it beneficial to produce more water at one time than at another. ...

  6. Paducah and Portsmouth Sites Advance Operations at DUF6 Plants...

    Office of Environmental Management (EM)

    Paducah and Portsmouth Sites Advance Operations at DUF6 Plants Paducah and Portsmouth Sites Advance Operations at DUF6 Plants November 1, 2011 - 12:00pm Addthis First cylinder...

  7. Operating Experience of the 20-MW AFBC Pilot Plant

    E-Print Network [OSTI]

    Stephens, E. A. Jr.

    -scale demonstration of atmospheric fluidized bed combustion (AFBC) with the construction and operation of the 20-MW AFBC Pilot Plant. The pilot plant was built to bridge the gap between the small process development units and utility-scale demonstration plants... the operation of the pilot plant has encouraged TVA and others to move forward with utility-scale demonstration of fluidized bed combustion. TVA's operating experience at the 20-MW AFBC Pilot Plant is discussed. [NTRODUCT ION The Tennessee Valley Authority...

  8. Indicator system for advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1993-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  9. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  10. Nuclear Power - System Simulations and Operation 

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    A&M University United States of America 1 Simulation and Simulators for Nuclear Power Generation J a n o s Sebe s ty e n Janos y MTA KFKI Atomic Energy Research Institute Hungary 1. Introduction T h i s chapte r deals with simula... t i o n , a very po werfu l tool in designi n g , constru c t i n g and operat i n g nuclea r power genera t i n g facili ti es . There are very differ e n t types of power plants , and the exampl e s mentio n e d in this chapte r or igin a t e from...

  11. Nuclear Power 2010 Program: Combined Construction and Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report Nuclear Power 2010 Program: Combined...

  12. Nuclear power plant performance assessment pertaining to plant aging in France and the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2013-01-01T23:59:59.000Z

    The effect of aging on nuclear power plant performance has come under increased scrutiny in recent years. The approaches used to make an assessment of this effect strongly influence the economics of nuclear power plant ...

  13. Sandia nuclear-power-plant siting study

    SciTech Connect (OSTI)

    Strip, D.R.; Aldrich, D.C.; Alpert, D.J.; Ostmeyer, R.M.; Sprung, J.L.

    1981-01-01T23:59:59.000Z

    NRC's Siting Analysis Branch requested Sandia National Laboratories to provide technical guidance for establishing (1) numerical criteria for population density and distribution surrounding future nuclear power plant sites and (2) standoff distances from plants for offsite hazards. The first task involved analyses in four areas, each of which could play a role in evaluating the impact of a siting policy. The four areas were risks from possible plant accidents, population distribution characteristics for existing sites, availability of sites, and socioeconomic impacts. The second task had two areas of concern: determination of which classes of offsite hazards are amenable to regulation by fixed standoff distances, and review of available models for the determination of appropriate standoff distances. Results, conclusions, and recommendations of the study are summarized.

  14. The Meteorological Monitoring program at a former nuclear weapons plant

    SciTech Connect (OSTI)

    Maxwell, D.R.; Bowen, B.M.

    1994-02-01T23:59:59.000Z

    The purpose of the Meteorological Monitoring program at Rocky Flats Plant (RFP) is to provide meteorological information for use in assessing the transport, and diffusion, and deposition of effluent actually or potentially released into the atmosphere by plant operations. Achievement of this objective aids in protecting health and safety of the public, employees, and environment, and directly supports Emergency Response programs at RFP. Meteorological information supports the design of environmental monitoring networks for impact assessments, environmental surveillance activities, remediation activities, and emergency responses. As the mission of the plant changes from production of nuclear weapons parts to environmental cleanup and economic development, smaller releases resulting from remediation activities become more likely. These possible releases could result from airborne fugitive dust, evaporation from collection ponds, or grass fires.

  15. Aging management guideline for commercial nuclear power plants-pumps

    SciTech Connect (OSTI)

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D. [MDC-Ogden Environmental and Energy Services, Southfield, MI (United States)

    1994-03-01T23:59:59.000Z

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  16. Nuclear Facility Operations | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinksNuclearOperations

  17. Analysis of nuclear power plant construction costs

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  18. Aging management guideline for commercial nuclear power plants - tanks and pools

    SciTech Connect (OSTI)

    Blocker, E.; Smith, S.; Philpot, L.; Conley, J.

    1996-02-01T23:59:59.000Z

    Continued operation of nuclear power plants for periods that extend beyond their original 40-year license period is a desirable option for many U.S. utilities. U.S. Nuclear Regulatory Commission (NRC) approval of operating license renewals is necessary before continued operation becomes a reality. Effective aging management for plant components is important to reliability and safety, regardless of current plant age or extended life expectations. However, the NRC requires that aging evaluations be performed and the effectiveness of aging management programs be demonstrated for components considered within the scope of license renewal before granting approval for operation beyond 40 years. Both the NRC and the utility want assurance that plant components will be highly reliable during both the current license term and throughout the extended operating period. In addition, effective aging management must be demonstrated to support Maintenance Rule (10 CFR 50.65) activities.

  19. Prognostics Health Management and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Coble, Jamie B.; Meyer, Ryan M.; Bond, Leonard J.

    2013-12-01T23:59:59.000Z

    There is growing interest in longer-term operation of the current US nuclear power plant fleet. This paper will present an overview of prognostic health management (PHM) technologies that could play a role in the safe and effective operation of nuclear power plants during extended life. A case study in prognostics for materials degradation assessment, using laboratory-scale measurements, is briefly discussed, and technical gaps that need to be addressed prior to PHM system deployment for nuclear power life extension are presented.

  20. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    SciTech Connect (OSTI)

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14T23:59:59.000Z

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant licensing.

  1. Vital area determination techniques at nuclear power plants

    SciTech Connect (OSTI)

    Pan, P.Y.

    1987-07-01T23:59:59.000Z

    This paper describes the vital area determination programs being conducted at the Los Alamos National Laboratory to support the Nuclear Regulatory Commission (NRC) in evaluating nuclear power plant licensees' compliance with safeguards/security requirements. These projects, the Vital Area Analysis (VAA) Program and the Vital Equipment Determination Techniques Research Study (VEDTRS), are designed to identify a plant's vital areas and to develop protection strategies against adversary threats in nuclear power plants.

  2. Nuclear power plant simulation facility evaluation methodology: handbook. Volume 1

    SciTech Connect (OSTI)

    Laughery, K.R. Jr.; Carter, R.J.; Haas, P.M.

    1986-01-01T23:59:59.000Z

    This report is Volume 1 of a two-part document which describes a project conducted to develop a methodology to evaluate the acceptability of nuclear power plant (NPP) simulation facilities for use in the simulator-based portion of NRC's operator licensing examination. The proposed methodology is to be utilized during two phases of the simulation facility life-cycle, initial simulator acceptance and recurrent analysis. The first phase is aimed at ensuring that the simulator provides an accurate representation of the reference NPP. There are two components of initial simulator evaluation: fidelity assessment and a direct determination of the simulation facility's adequacy for operator testing. The second phase is aimed at ensuring that the simulation facility continues to accurately represent the reference plant throughout the life of the simulator. Recurrent evaluation is comprised of three components: monitoring reference plant changes, monitoring the simulator's hardware, and examining the data from actual plant transients as they occur. Volume 1 is a set of guidelines which details the steps involved in the two life-cycle phases, presents an overview of the methodology and data collection requirements, and addresses the formation of the evaluation team and the preparation of the evaluation plan. 29 figs.

  3. Neural network recognition of nuclear power plant transients

    SciTech Connect (OSTI)

    Bartlett, E.B.; Danofsky, R.; Adams, J.; AlJundi, T.; Basu, A.; Dhanwada, C.; Kerr, J.; Kim, K.; Lanc, T.

    1993-02-23T23:59:59.000Z

    The objective of this report is to describe results obtained during the first year of funding that will lead to the development of an artificial neural network (ANN) fault - diagnostic system for the real - time classification of operational transients at nuclear power plants. The ultimate goal of this three-year project is to design, build, and test a prototype diagnostic adviser for use in the control room or technical support center at Duane Arnold Energy Center (DAEC); such a prototype could be integrated into the plant process computer or safety - parameter display system. The adviser could then warn and inform plant operators and engineers of plant component failures in a timely manner. This report describes the work accomplished in the first of three scheduled years for the project. Included herein is a summary of the first year's results as, well as individual descriptions of each of the major topics undertaken by the researchers. Also included are reprints of the articles written under this funding as well as those that were published during the funded period.

  4. Submerged Medium Voltage Cable Systems at Nuclear Power Plants...

    Office of Scientific and Technical Information (OSTI)

    Submerged Medium Voltage Cable Systems at Nuclear Power Plants: A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring. Re-direct Destination: In a...

  5. Sensitivity analysis for the outages of nuclear power plants

    E-Print Network [OSTI]

    2012-02-17T23:59:59.000Z

    Feb 17, 2012 ... Nuclear power plants must be regularly shut down in order to perform re- ... Thermal power stations, using expensive resources such as coal.

  6. Optimization Online - Nuclear norm minimization for the planted ...

    E-Print Network [OSTI]

    Brendan Ames

    2009-01-21T23:59:59.000Z

    Jan 21, 2009 ... Nuclear norm minimization for the planted clique and biclique problems. Brendan Ames(bpames ***at*** math.uwaterloo.ca) Stephen ...

  7. Confirmatory Survey Results for the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant, Haddam, Connecticut

    SciTech Connect (OSTI)

    W. C. Adams

    2007-07-03T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission (NRC) requested that the Oak Ridge Institute for Science and Education (ORISE) perform a confirmatory survey on the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant (HNP) in Haddam, Connecticut

  8. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    SciTech Connect (OSTI)

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01T23:59:59.000Z

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants.

  9. 1 INTRODUCTION High-head storage hydropower plants operate

    E-Print Network [OSTI]

    Floreano, Dario

    1 INTRODUCTION High-head storage hydropower plants operate their turbines during periods of high Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland ABSTRACT: High-head storage hydropower plants

  10. Electromagnetic Compatibility in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

    1999-08-29T23:59:59.000Z

    Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

  11. COMMERCIAL UTILITY PERSPECTIVES ON NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    SciTech Connect (OSTI)

    Jeffrey C. Joe; Ronald L. Boring; Julius J. Persensky

    2012-07-01T23:59:59.000Z

    Commercial nuclear power plants (NPPs) in the United States need to modernize their main control rooms (MCR). Many NPPs have done partial upgrades with some success and with some challenges. The Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program, and in particular the Advanced Instrumentation and Controls (I&C) and Information Systems Technologies Research and Development (R&D) Pathway within LWRS, is designed to assist commercial nuclear power industry with their MCR modernization efforts. As part of this framework, a survey was issued to utility representatives of the LWRS Program Advanced Instrumentation, Information, and Control Systems/Technologies (II&C) Utility Working Group to obtain their views on a range of issues related to MCR modernization, including: drivers, barriers, and technology options, and the effects these aspects will have on concepts of operations, modernization strategies, and staffing. This paper summarizes the key survey results and discusses their implications.

  12. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect (OSTI)

    Lynne M. Stevens

    2010-07-01T23:59:59.000Z

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  13. Pipe break frequency estimation for Nuclear Power Plants

    SciTech Connect (OSTI)

    Wright, R.E.; Steverson, J.A.; Zuroff, W.F.

    1987-05-01T23:59:59.000Z

    This study empirically develops frequencies of safety-significant pipe failures in commercial nuclear power plants (NPPs). Its primary purpose is to update the pipe break frequencies reported in the Reactor Safety Study, WASH-1400, which are used in many risk analyses. The study involved reviewing various data sources for actual piping failure events of significant magnitude. When extant in the documentation reviewed, information was extracted concerning conditional factors such as the system in which the failure occurred, operational mode of the plant, and size of the pipe involved to estimate conditional pipe break frequencies useful to risk analysts. Because of the high quality piping used in NPPs, there have been few significant pipe failures. An attempt was made to augment the analysis with synthetic data from a Delphi approach, but the wide uncertainty bounds on the resulting estimates rendered the results unsuitable for combining data.

  14. Steam Plant Operator (2nd Shift) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steam Plant Operator (2nd Shift) Department: Facilities Supervisor(s): Willam Gervasi Staff: L&S 5 Requisition Number: 1500061 Obtain the necessary skills and theoretical knowledge...

  15. Compiling Utility Requirements For New Nuclear Power Plant Project

    SciTech Connect (OSTI)

    Patrakka, Eero [Teollisuuden Voima Oy, 27160 Olkiluoto (Finland)

    2002-07-01T23:59:59.000Z

    Teollisuuden Voima Oy (TVO) submitted in November 2000 to the Finnish Government an application for a Decision-in-Principle concerning the construction of a new nuclear power plant in Finland. The actual investment decision can be made first after a positive decision has been made by the Government and the Parliament. Parallel to the licensing process, technical preparedness has been upheld so that the procurement process can be commenced without delay, when needed. This includes the definition of requirements for the plant and preliminary preparation of bid inquiry specifications. The core of the technical requirements corresponds to the specifications presented in the European Utility Requirement (EUR) document, compiled by major European electricity producers. Quite naturally, an amount of modifications to the EUR document are needed that take into account the country- and site-specific conditions as well as the experiences gained in the operation of the existing NPP units. Along with the EUR-related requirements concerning the nuclear island and power generation plant, requirements are specified for scope of supply as well as for a variety of issues related to project implementation. (author)

  16. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . • . . . .

  17. Operating-procedure system at Savannah River Plant

    SciTech Connect (OSTI)

    Tope, C.W.

    1981-05-01T23:59:59.000Z

    Three types of procedures are widely used at SRP: Du Pont Savannah Operating Logsheet, Du Pont Savannah Operating Procedure, and Plant Manual. This document briefly reviews originating of the procedures, their preparation, control, and indexing. (DLC)

  18. Prognostics and Life Beyond 60 for Nuclear Power Plants

    SciTech Connect (OSTI)

    Leonard J. Bond; Pradeep Ramuhalli; Magdy S. Tawfik; Nancy J. Lybeck

    2011-06-01T23:59:59.000Z

    Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and periodic in service inspection (ISI) for passive systems: there is growing interest in deploying on-line monitoring. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to and prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

  19. Prognostics and Life Beyond 60 Years for Nuclear Power Plants

    SciTech Connect (OSTI)

    Bond, Leonard J.; Ramuhalli, Pradeep; Tawfik, Magdy; Lybeck, Nancy

    2011-09-23T23:59:59.000Z

    Safe, secure, reliable and sustainable energy supply is vital for advanced and industrialized life styles. To meet growing energy demand there is interest in longer term operation (LTO) for the existing nuclear power plant fleet and enhancing capabilities in new build. There is increasing use of condition based maintenance (CBM) for active components and growing interest in deploying on-line monitoring instead of periodic in service inspection (ISI) for passive systems. Opportunities exist to move beyond monitoring and diagnosis based on pattern recognition and anomaly detection to prognostics with the ability to provide an estimate of remaining useful life (RUL). The adoption of digital I&C systems provides a framework within which added functionality including on-line monitoring can be deployed, and used to maintain and even potentially enhance safety, while at the same time improving planning and reducing both operations and maintenance costs.

  20. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    SciTech Connect (OSTI)

    Abbott, L [ed.

    1985-09-01T23:59:59.000Z

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  1. CRAD, Nuclear Reactor Facility Operations - December 4, 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) December 4, 2014 CRAD,...

  2. Use of artificial intelligence to enhance the safety of nuclear power plants

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1988-01-01T23:59:59.000Z

    In the operation of a nuclear power plant, the sheer magnitude of the number of process parameters and systems interactions poses difficulties for the operators, particularly during abnormal or emergency situations. Recovery from an upset situation depends upon the facility with which the available raw data can be converted into and assimilated as meaningful knowledge. Plant personnel are sometimes affected by stress and emotion, which may have varying degrees of influence on their performance. Expert systems can take some of the uncertainty and guesswork out of their decisions by providing expert advice and rapid access to a large information base. Application of artificial intelligence technologies, particularly expert systems, to control room activities in a nuclear power plant has the potential to reduce operator error and improve power plant safety and reliability. 12 refs.

  3. Nuclear Safety Risk Management in Refueling Outage of Qinshan Nuclear Power Plant

    SciTech Connect (OSTI)

    Meijing Wu; Guozhang Shen [Qinshan Nuclear power company (China)

    2006-07-01T23:59:59.000Z

    The NPP is used to planning maintenance, in-service inspection, surveillance test, fuel handling and design modification in the refueling outage; the operator response capability will be reduced plus some of the plant systems out of service or loss of power at this time. Based on 8 times refueling outage experiences of the Qinshan NPP, this article provide some good practice and lesson learned for the nuclear safety risk management focus at four safety function areas of Residual Heat Removal Capability, Inventory Control, Power availability and Reactivity control. (authors)

  4. The Daya Bay Nuclear Plant Project in the Light of International Environmental Law

    E-Print Network [OSTI]

    Mushkat, Roda

    1990-01-01T23:59:59.000Z

    result from locating a nuclear plant so close to the Hongat 1292 (1975). THE DA YA BAY NUCLEAR PLANT PROJECT national1986) (H.K. ). THE DA YA BAY NUCLEAR PLANT PROJECT IV. THE "

  5. Use of neurals networks in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (USA))

    1989-01-01T23:59:59.000Z

    A technique using neural networks as a means of diagnosing transients or abnormal conditions in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of sensor outputs or instrument readings that can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault, problem, or transient condition of the plant. A demonstration of the ability of this technique to identify causes of perturbations in the steam generator of a nuclear plant is presented. 3 refs., 4 figs.

  6. Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report

    SciTech Connect (OSTI)

    Ritterbusch, S.E.

    2000-08-01T23:59:59.000Z

    The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

  7. Optimum Operation of In-Plant Cogeneration Systems

    E-Print Network [OSTI]

    Craw, I. A.; Foster, D.; Reidy, K. D.

    which plant simulation model and a mathematical optimization package can determine the optimum settings for control variables of the power plant and eliminate uncertainties associated with achieving the minimum cost operation. TENSA Services.... The systems have been developed over a 20 year period culminating with real time data collection and performance monitoring and real time optimization for a variety of plants, including heat and power cogeneration plants. ICI has found that they have...

  8. Experience with Control Systems Modernization on Operating Nuclear Units (Kozloduy NPP VVER 1000)

    SciTech Connect (OSTI)

    Naydenov, Nayden [Kozloduy NPP (Bulgaria); Sechensky, Boyan [Westinghouse Energy Systems (Bulgaria)

    2006-07-01T23:59:59.000Z

    The paper describes the background, current implementation approach, design and testing strategy and experience on the largest ever modernization program for replacement of the Primary and Secondary Control Systems on operating units VVER 1000 (PWR) at Kozloduy Nuclear Power Plant in Bulgaria. (authors)

  9. Survey of ambient electromagnetic and radio-frequency interference levels in nuclear power plants

    SciTech Connect (OSTI)

    Kercel, S.W.; Moore, M.R.; Blakeman, E.D.; Ewing, P.D.; Wood, R.T.

    1996-11-01T23:59:59.000Z

    This document reports the results of a survey of ambient electromagnetic conditions in representative nuclear power plants. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research engaged the Oak Ridge National Laboratory (ORNL) to perform these measurements to characterize the electromagnetic interference (EMI) and radio-frequency interference (RFI) levels that can be expected in nuclear power plant environments. This survey is the first of its kind, being based on long-term unattended observations. The data presented in this report were measured at eight different nuclear units and required 14 months to collect. A representative sampling of power plant conditions (reactor type, operating mode, site location) monitored over extended observation periods (up to 5 weeks) were selected to more completely determine the characteristic electromagnetic environment for nuclear power plants. Radiated electric fields were measured over the frequency range of 5 MHz to 8 GHz. Radiated magnetic fields and conducted EMI events were measured over the frequency range of 305 Hz to 5 MHz. Highest strength observations of the electromagnetic ambient environment across all measurement conditions at each site provide frequency-dependent profiles for EMI/RFI levels in nuclear power plants.

  10. Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report

    SciTech Connect (OSTI)

    NONE

    2000-08-01T23:59:59.000Z

    OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

  11. The status of nuclear power plants in the People's Republic of China

    SciTech Connect (OSTI)

    Puckett, J.

    1991-05-01T23:59:59.000Z

    China's main energy source is coal, but transportation and environmental problems make that fuel less than desirable. Therefore, the Chinese, as part of an effort toward alternative energy sources, are developing nuclear power plants. In addition to providing a cleaner power source, development of nuclear energy would improve the Chinese economic condition and give the nation greater world status. China's first plants, at Qinshan and Daya Bay, are still incomplete. However, China is working toward completion of those reactors and planning the training and operating procedures needed to operate them. At the same time, it is improving its nuclear fuel exports. As they develop the capability for generating nuclear power, the Chinese seem to be aware of the accompanying quality and safety considerations, which they have declared to be first priorities. 50 refs., 7 figs.

  12. Leasing of Nuclear Power Plants With Using Floating Technologies

    SciTech Connect (OSTI)

    Kuznetsov, Yu.N.; Gabaraev, B.A.; Reshetov, V.A.; Moskin, V.A. [Federal State Unitary Enterprise, N.A. Dollezhal' Scientific-Research and Design Institute of Power Engineering (Russian Federation)

    2002-07-01T23:59:59.000Z

    The proposal to organize and realize the international program on leasing of Nuclear Power Plant (NPP) reactor compartments is brought to the notice of potential partners. The proposal is oriented to the construction of new NPPs or to replacement of worked-out reactor units of the NPPs in operation on the sites situated near water area and to the use of afloat technologies for construction, mounting and transportation of reactor units as a Reactor Compartment Block Module (RCBM). According to the offered project the RCBM is fabricated in factory conditions at the largest Russian defense shipbuilding plant - State Unitary Enterprise 'Industrial Association SEVMASHPREDPRIYATIE' (SEVMASH) in the city of Severodvinsk of the Arkhangelsk region. After completion of assembling, testing and preliminary licensing the RCBM is given buoyancy by means of hermetic sealing and using pontoons and barges. The RCBM delivery to the NPP site situated near water area is performed by sea route. The RCBM is brought to the place of its installation with the use of appropriate hydraulic structures (canals, shipping locks), then is lowered on the basement constructed beforehand and incorporated into NPP scheme, of which the components are installed in advance. Floating means can be detached from the RCBM and used repeatedly for other RCBMs. Further procedure of NPP commissioning and its operation is carried out according to traditional method by power company in the framework of RCBM leasing with enlisting the services of firm-manufacturer's specialists either to provide reactor plant operation and concomitant processes or to perform author's supervision of operation. After completion of lifetime and reactor unloading the RCBM is dismantled with using the same afloat technology and taken away from NPP site to sea area entirely, together with its structures (reactor vessel, heat exchangers, pumps, pipelines and other equipment). Then RCBM is transported by shipping route to a firm-manufacturer, for subsequent reprocessing, utilization and storage. Nuclear fuel and radioactive wastes are removed from NPP site also. Use of leasing method removes legal problems connected with the transportation of radioactive materials through state borders as the RCBM remains a property of the state-producer at all stages of its life cycle. (authors)

  13. Vehicle bomb protection for nuclear power plants

    SciTech Connect (OSTI)

    James, J.W.; Veatch, J.D.; Goldman, L.; Massa, R.

    1989-01-01T23:59:59.000Z

    The six-step methodology presented in this paper can be applied to nuclear power reactors to provide protection measures and considerations against vehicle bomb threats. The methodology provides a structured framework for examining the potential vulnerability of a plant to a postulated vehicle bomb and for developing contingency planning strategies for dealing with such a possibility. The six steps are as follows: (1) identify system options available to establish and maintain a safe reactor shutdown; (2) identify buildings or other structures containing critical components and equipment associated with each system option; (3) determine survival envelopes for the system options; (4) review site features to determine vehicle access approach paths and distances as they relate to the survival envelopes; (5) identify measures to limit or thwart vehicle access, and protect and preserve preferred system options; (6) prepare contingency plans and make advance arrangements for implementation of contingency measures for a vehicle bomb attack. Portions of this methodology related to blast effects from vehicle bombs on power reactor components are implemented using BombCAD, a proprietary computer-aided design (CAD)-based blast effects analysis technique.

  14. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect (OSTI)

    Zitney, S.E.

    2012-05-01T23:59:59.000Z

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  15. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-01-01T23:59:59.000Z

    To address challenges in attaining operational excellence for clean energy plants, the U.S. Department of Energy's National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR{trademark}). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  16. Dynamic alarm presentation in a nuclear plant control room

    DOE Patents [OSTI]

    Kenneth, Scarola (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1994-01-01T23:59:59.000Z

    The alarm activation set point and priority for a given, spatially fixed alarm tile can vary depending in part on the mode of plant operation.

  17. State of the art review of radioactive waste volume reduction techniques for commercial nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    A review is made of the state of the art of volume reduction techniques for low level liquid and solid radioactive wastes produced as a result of: (1) operation of commercial nuclear power plants, (2) storage of spent fuel in away-from-reactor facilities, and (3) decontamination/decommissioning of commercial nuclear power plants. The types of wastes and their chemical, physical, and radiological characteristics are identified. Methods used by industry for processing radioactive wastes are reviewed and compared to the new techniques for processing and reducing the volume of radioactive wastes. A detailed system description and report on operating experiences follow for each of the new volume reduction techniques. In addition, descriptions of volume reduction methods presently under development are provided. The Appendix records data collected during site surveys of vendor facilities and operating power plants. A Bibliography is provided for each of the various volume reduction techniques discussed in the report.

  18. Initiating Event Rates at U.S. Nuclear Power Plants 1988–2013

    SciTech Connect (OSTI)

    John A. Schroeder; Gordon R. Bower

    2014-02-01T23:59:59.000Z

    Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant’s low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC’s Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

  19. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    SciTech Connect (OSTI)

    Pete Jordan

    2010-09-01T23:59:59.000Z

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  20. PHYSICAL PLANT OPERATING POLICY AND PROCEDURE

    E-Print Network [OSTI]

    Gelfond, Michael

    , or grounds. PP/OP 08.13 #12;Page 2 2. Potential Sources of Storm Water Contamination a. West Cooling Tower delivered to the Central Heating and Cooling Plants by the City of Lubbock. b. Well Water: Water produced water system. e. Storm Water System: The system of underground and above ground drainage designed

  1. Report to the US Nuclear Regulatory Commission on Analysis and Evaluation of Operational Data, 1986

    SciTech Connect (OSTI)

    none,

    1987-05-01T23:59:59.000Z

    This annual report of the US Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data (AEOD) is devoted to the activities performed during calendar year 1986. Comments and observations are provided on operating experience at nuclear power plants and other NRC licensees, including results from selected AEOD studies; summaries of abnormal occurrences involving US nuclear plants; reviews of licensee event reports and their quality, reactor scram experience from 1984 to 1986, engineered safety features actuations, and the trends and patterns analysis program; and assessments of nonreactor and medical misadministration events. In addition, the report provides the year-end status of all recommendations included in AEOD studies, and listings of all AEOD reports issued from 1980 through 1986.

  2. International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6) Nara, Japan, October 4-8, 2004.

    E-Print Network [OSTI]

    The 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6 Junbeom Yoo, Suhyun Park, Hojung Bang, Taihyo Kim, Sungdeok Cha Korea Advanced Institute of Science for assuring quality of software. In the area of nuclear power plant control systems, testing on software

  3. Can New Nuclear Power Plants be Project Financed?

    E-Print Network [OSTI]

    Taylor, Simon

    This paper considers the prospects for financing a wave of new nuclear power plants (NPP) using project financing, which is used widely in large capital intensive infrastructure investments, including the power and gas sectors, but has...

  4. Risk Framework for the Next Generation Nuclear Power Plant Construction

    E-Print Network [OSTI]

    Yeon, Jaeheum 1981-

    2012-12-11T23:59:59.000Z

    sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

  5. Risk Framework for the Next Generation Nuclear Power Plant Construction 

    E-Print Network [OSTI]

    Yeon, Jaeheum 1981-

    2012-12-11T23:59:59.000Z

    sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

  6. Kansas City Plant | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  7. Source book for planning nuclear dual-purpose electric/distillation desalination plants

    SciTech Connect (OSTI)

    Reed, S.A.

    1981-02-01T23:59:59.000Z

    A source book on nuclear dual-purpose electric/distillation desalination plants was prepared to assist government and other planners in preparing broad evaluations of proposed applications of dual-purpose plants. The document is divided into five major sections. Section 1 presents general discussions relating to the benefits of dual-purpose plants, and spectrum for water-to-power ratios. Section 2 presents information on commercial nuclear plants manufactured by US manufacturers. Section 3 gives information on distillation desalting processes and equipment. Section 4 presents a discussion on feedwater pretreatment and scale control. Section 5 deals with methods for coupling the distillation and electrical generating plants to operate in the dual mode.

  8. Nuclear Power - Operation, Safety and Environment 

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. At the same time, ...

  9. Development of decontamination techniques for decommissioning commercial nuclear power plants

    SciTech Connect (OSTI)

    Ishikura, T.; Miwa, T.; Onozawa, T.; Ohtsuka, H. [Nuclear Power Engineering Corp., Tokyo (Japan). Plant and Components Dept.; Ishigure, K. [Univ. of Tokyo (Japan). Dept. of Quantum Engineering and System Science

    1993-12-31T23:59:59.000Z

    NUPEC has been developing various techniques to safely and efficiently decommission large commercial nuclear power plants. The development work, referred to as the verification tests, has been performed since 1982. The verification tests on decontamination techniques have focused on the reduction of both occupational radiation exposure and radioactive waste volume. Experiments on various decontamination methods have been carried out. Prospects of applying efficient decontamination techniques to commercial nuclear power plant decommissioning are bright due to the experimental results.

  10. In-Plant Reliability Data base for nuclear plant components. Interim report: diesel generators, batteries, chargers and inverters

    SciTech Connect (OSTI)

    Kahl, W.K.; Borkowski, R.J.

    1985-01-01T23:59:59.000Z

    The objective of the In-Plant Reliability Data (IPRD) program is to develop a comprehensive, component-specific reliability data base for probabilistic risk assessment and for other statistical analyses relevant to component reliability evaluations. This document is the product of a pilot study that was undertaken to demonstrate the methodology and feasibility of applying IPRDS techniques to develop and analyze the reliability characteristics of key electrical components in five nuclear power plants. These electrical components include diesel generators, batteries, battery chargers and inverters. The sources used to develop the data base and produce the component failure rates and mean repair times were the plant equipment lists, plant drawings, maintenance work requests, Final Safety Analysis Reports (FSARs), and interviews with plant personnel. The data spanned approximately 33 reactor-years of commercial operation.

  11. AVESTAR Center for operational excellence of electricity generation plants

    SciTech Connect (OSTI)

    Zitney, S.

    2012-01-01T23:59:59.000Z

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

  12. Energy Management of Chiller Plant for Improved Efficiency and Operation

    E-Print Network [OSTI]

    Alexander, D. P.; Rice, L. S.

    while meeting the operational requirements of plant chillers. The chiller energy management is an integrated part of total energy management system including the boilers. A uniform display is used for boilers, chillers, compressors, etc. Specific... displayed and organized so that the plant is easily manageable. With the outdated equipment, a major control system failure could generate discomfort. Furthermore, more manual observation and adjustments were required to provide a trouble-free operation...

  13. Utility & Regulatory Factors Affecting Cogeneration & Independent Power Plant Design & Operation

    E-Print Network [OSTI]

    Felak, R. P.

    UTILITY & REGULATORY FACTORS AFFECTiNG COGENERATION & INDEPENDENT POWER PLANT DESIGN & OPERATION Richard P. Felak General Electric Company Schenectady, New York ABSTRACT In specifying a cogeneration or independent power plant, the owner... should be especially aware of the influences which electric utilities and regulatory bodies will have on key parameters such as size, efficiency, design. reliability/ availabilitY, operating capabilities and modes, etc. This paper will note examples...

  14. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect (OSTI)

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)] [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Kim, Juyoul; Kim, Juyub [FNC Technology, 46 Tabsil-ro, Giheung-gu, Yongin 446-902 (Korea, Republic of)] [FNC Technology, 46 Tabsil-ro, Giheung-gu, Yongin 446-902 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  15. UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 of prototypical behaviors. Its performance is tested with respect to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault

  16. Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments

    SciTech Connect (OSTI)

    Jose Reyes

    2005-02-14T23:59:59.000Z

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  17. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect (OSTI)

    Heather D. Medema; Ronald K. Farris

    2012-09-01T23:59:59.000Z

    This report is a guidance document prepared for the benefit of commercial nuclear power plants’ (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  18. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    SciTech Connect (OSTI)

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01T23:59:59.000Z

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4.

  19. ISOLATION OF NUCLEAR DNA FROM PLANTS Based on Peterson et al. (1997), Plant Mol. Biol. Reptr. 15: 148-153.

    E-Print Network [OSTI]

    Ray, David

    1997-01-01T23:59:59.000Z

    ISOLATION OF NUCLEAR DNA FROM PLANTS Based on Peterson et al. (1997), Plant Mol. Biol. Reptr. 15 quantities of nuclear DNA from a wide variety of plants including pine, tomato, juniper, cypress, sorghum for plants in which polyphenols are a problem, although it has provided good results for every plant species

  20. Waste Minimization Policy at the Romanian Nuclear Power Plant

    SciTech Connect (OSTI)

    Andrei, V.; Daian, I.

    2002-02-26T23:59:59.000Z

    The radioactive waste management system at Cernavoda Nuclear Power Plant (NPP) in Romania was designed to maintain acceptable levels of safety for workers and to protect human health and the environment from exposure to unacceptable levels of radiation. In accordance with terminology of the International Atomic Energy Agency (IAEA), this system consists of the ''pretreatment'' of solid and organic liquid radioactive waste, which may include part or all of the following activities: collection, handling, volume reduction (by an in-drum compactor, if appropriate), and storage. Gaseous and aqueous liquid wastes are managed according to the ''dilute and discharge'' strategy. Taking into account the fact that treatment/conditioning and disposal technologies are still not established, waste minimization at the source is a priority environmental management objective, while waste minimization at the disposal stage is presently just a theoretical requirement for future adopted technologies . The necessary operational and maintenance procedures are in place at Cernavoda to minimize the production and contamination of waste. Administrative and technical measures are established to minimize waste volumes. Thus, an annual environmental target of a maximum 30 m3 of radioactive waste volume arising from operation and maintenance has been established. Within the first five years of operations at Cernavoda NPP, this target has been met. The successful implementation of the waste minimization policy has been accompanied by a cost reduction while the occupational doses for plant workers have been maintained at as low as reasonably practicable levels. This paper will describe key features of the waste management system along with the actual experience that has been realized with respect to minimizing the waste volumes at the Cernavoda NPP.

  1. Operating and Maintaining a 465MW Cogeneration Plant

    E-Print Network [OSTI]

    Theisen, R. E.

    OPERATING AND HAINTAINING A 465MW COGENERATION PLANT -- R. E. Theisen Plant Hanager CoGen Lyondell PSE Inc. Houston, Texas ABSTRACT The on-line av ilability of the five Fr me-7E gas turbine generators installed at the 465MW Lyondell... Cogeneration Plant was 90% and 95.2% respectively for the first two years of operation (1986-87). The 140~~ st am turbine generator availability was well over 98% each year. Such favorable results are due primarily to the (1) formal training programs...

  2. Davis PV plant operation and maintenance manual

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This operation and maintenance manual contains the information necessary to run the Photovoltaics for Utility Scale Applications (PVUSA) test facility in Davis, California. References to more specific information available in drawings, data sheets, files, or vendor manuals are included. The PVUSA is a national cooperative research and demonstration program formed in 1987 to assess the potential of utility scale photovoltaic systems.

  3. PHYSICAL PLANT OPERATING POLICY AND PROCEDURE

    E-Print Network [OSTI]

    Gelfond, Michael

    (s) they may operate. Only employees who hold a current and valid certification card for a specific forklift custodian who holds the forklift key and is responsible for scheduling its use. Assigned Number Make TCM Central Warehouse Central Warehouse 4 Clark Central Warehouse Central Warehouse 5 Towmotor ITC ITC

  4. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef [Los Alamos National Laboratory; Ewing, Tom [ANL; Dickman, Debbie [PNNL; Gavrilyuk, Victor [UKRAINE; Drapey, Sergey [UKRAINE; Kirischuk, Vladimir [UKRAINE; Strilchuk, Nikolay [UKRAINE

    2009-01-01T23:59:59.000Z

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  5. Emergency Operations Training Academy | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Introduction Monitoring Division Mgr Training, Adv NARAC Dispersion Modeling NARAC Web Operations Overview of Consequence Management Overview of the DOENNSA Emergency...

  6. Aging of concrete structures in nuclear power plants

    SciTech Connect (OSTI)

    Naus, D.J.; Pland, C.B. (Oak Ridge National Lab., TN (USA)); Arndt, E.G. (Nuclear Regulatory Commission, Washington, DC (USA))

    1991-01-01T23:59:59.000Z

    The Structural Aging (SAG) Program, sponsored by the US Nuclear Regulatory Commission (USNRC) and conducted by the Oak Ridge National Laboratory (ORNL), had the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant structures for continued service. The program consists of three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued service determinations. Major accomplishments under the SAG Program during the first two years of its planned five-year duration have included: development of a Structural Materials Information Center and formulation of a Structural Aging Assessment Methodology for Concrete Structures in Nuclear Power Plants. 9 refs.

  7. The Decommissioning of the Trino Nuclear Power Plant

    SciTech Connect (OSTI)

    Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

    2002-02-27T23:59:59.000Z

    Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise utilizes the full range of BNFL decommissioning experience and knowledge to develop a strategy, methodology and cost for the decommissioning of NPPs. Over the past year, a prompt decommissioning strategy for Trino has been developed. The strategy has been based on the principles of minimizing waste products that require long term storage, maximizing 'free release' materials and utilizing existing and regulatory approved technologies.

  8. Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc.

    E-Print Network [OSTI]

    Ervin, Elizabeth K.

    Tour of Entergy's Nuclear Power Plant in River Bend Owner: Entergy Gulf States Inc. Reactor Type a nuclear power plant. Plant was Entergy, a Boiling Water Reactor (BWR) type. Built in the 80's, it has of the veteran plant workers. The presentation gave the nuclear plant engineering basics and built

  9. Considerations in the evaluation of concrete structures for continued service in aged Nuclear Power Plants (NPPs)

    SciTech Connect (OSTI)

    Naus, D.; Marchbanks, M.; Oland, B.; Arndt, G.; Brown, T.

    1989-01-01T23:59:59.000Z

    Currently, there are /approximately/119 commercial nuclear power plants (NPPs) in the US either under construction, operating at low-to-full power, or awaiting an operating license. Together, these units have a net generating capacity of /approximately/110 GW(e). Assuming no life extension of present facilities, the operating licenses for these plants will start to expire in the middle of the next decade with Yankee Rowe being the first plant to attain this status. Where it is noted that with no life extension of facilities, a potential loss of electrical generating capacity in excess of 75 GW(e) could occur during the time period 2006 to 2020 when the operating licenses of 80 to 90 NPPs are scheduled to expire. A potential timely and cost-effective solution to meeting future electricity demand, which has worked well for non-nuclear generating plants, is to extend the service life (operating licenses) of existing NPPs. Since the concrete components in these plants provide a vital safety function, any continued service considerations must include an in-depth assessment of the safety-related concrete structures. 7 refs.

  10. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L. Boring

    2012-10-01T23:59:59.000Z

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  11. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach Nuclear Plant","Nuclear","NextEra Energy Point Beach LLC",1197 3,"Pleasant Prairie","Coal","Wisconsin...

  12. Aging management of containment structures in nuclear power plants

    SciTech Connect (OSTI)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [The Johns Hopkins Univ., Baltimore, MD (United States); Graves, H.L. III; Norris, W.E. [US Nuclear Regulatory Commission, Washington, DC (United States)

    1994-12-31T23:59:59.000Z

    Research is being conducted by ORNL under US Nuclear Regulatory Commission (USNRC) sponsorship to address aging management of nuclear power plant containment and other safety-related structures. Documentation is being prepared to provide the USNRC with potential structural safety issues and acceptance criteria for use in continued service evaluations of nuclear power plants. Accomplishments include development of a Structural Materials Information Center containing data and information on the time variation of 144 material properties under the influence of pertinent environmental stressors or aging factors, evaluation of models for potential concrete containment degradation factors, development of a procedure to identify critical structures and degradation factors important to aging management, evaluations of nondestructive evaluation techniques. assessments of European and North American repair practices for concrete, review of parameters affecting corrosion of metals embedded in concrete, and development of methodologies for making current condition assessments and service life predictions of new or existing reinforced concrete structures in nuclear power plants.

  13. Assessment of inservice conditions of safety-related nuclear plant structures

    SciTech Connect (OSTI)

    Ashar, H.; Bagchi, G.

    1995-06-01T23:59:59.000Z

    The report is a compilation from a number of sources of information related to the condition Of structures and civil engineering features at operating nuclear power plants in the United States. The most significant information came from the hands-on inspection of the six old plants (licensed prior to 1977) performed by the staff of the Civil Engineering and Geosciences Branch (ECGB) in the Division of Engineering of the Office of Nuclear Reactor Regulation. For the containment structures, most of the information related to the degraded conditions came from the licensees as part of the Licensing Event Report System (10 CFR 50.73), or as part of the requirement under limiting condition of operation of the plant-specific Technical Specifications. Most of the information related to the degradation of other Structures and civil engineering features was extracted from the industry survey, the reported incidents, and the plant visits. The report discusses the condition of the structures and civil engineering features at operating nuclear power plants and provides information that would help detect, alleviate, and correct the degraded conditions of the structures and civil engineering features.

  14. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01T23:59:59.000Z

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for managing the R&D program elements; (2) Developing a specific work package for the R&D activities to be performed during each government fiscal year; (3) Reporting the status and progress of the work based on committed deliverables and milestones; (4) Developing collaboration in areas of materials R&D of benefit to the NGNP with countries that are a part of the Generation IV International Forum; and (5) Ensuring that the R&D work performed in support of the materials program is in conformance with established Quality Assurance and procurement requirements. The objective of the NGNP Materials R&D Program is to provide the essential materials R&D needed to support the design and licensing of the reactor and balance of plant, excluding the hydrogen plant. The materials R&D program is being initiated prior to the design effort to ensure that materials R&D activities are initiated early enough to support the design process and support the Project Integrator. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge; thus, new materials and approaches may be required.

  15. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Basu, A.; Bartlett, E.B.

    1993-04-01T23:59:59.000Z

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a ``root`` network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, and other ``classifier`` network is trained to recognize the particular transient taking place. these networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at the Iowa Electric Light and Power Company`s Duane Arnold Energy Center (DAEC) operator training simulator.

  16. Backpropagation architecture optimization and an application in nuclear power plant diagnostics

    SciTech Connect (OSTI)

    Basu, A.; Bartlett, E.B.

    1993-01-01T23:59:59.000Z

    This paper presents a Dynamic Node Architecture (DNA) scheme to optimize the architecture of backpropagation Artificial Neural Networks (ANNs). This network scheme is used to develop an ANN based diagnostic adviser capable of identifying the operating status of a nuclear power plant. Specifically, a root'' network is trained to diagnose if the plant is in a normal operating condition or not. In the event of an abnormal condition, and other classifier'' network is trained to recognize the particular transient taking place. these networks are trained using plant instrumentation data gathered during simulations of the various transients and normal operating conditions at the Iowa Electric Light and Power Company's Duane Arnold Energy Center (DAEC) operator training simulator.

  17. Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications

    SciTech Connect (OSTI)

    Naus, Dan J [ORNL

    2009-05-01T23:59:59.000Z

    The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

  18. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2007-01-01T23:59:59.000Z

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  19. Next Generation Nuclear Plant Methods Technical Program Plan

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01T23:59:59.000Z

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  20. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    SciTech Connect (OSTI)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01T23:59:59.000Z

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  1. Operation technology of air treatment system in nuclear facilities

    E-Print Network [OSTI]

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01T23:59:59.000Z

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  2. New Hampshire Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Seabrook Unit 1","1,247","10,910",100.0,"NextEr...

  3. Analysis of nuclear power plant component failures

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  4. Our Operations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthisOurMission Creating

  5. emergency operations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian NuclearNational5/%2A en Office|3 Issue 25systems |team

  6. Use of probabilistic risk assessment in expert system usage for nuclear power plant safety

    SciTech Connect (OSTI)

    Uhrig, R.E.

    1987-01-01T23:59:59.000Z

    The introduction of probability risk assessments (PRA's) to nuclear power plants in the Rasmussen Report (WASH-1400) gave us a means of evaluating the risk to the public associated with the operation of nuclear power plants, at least on a relative basis. While the choice of the ''source term'' and methodology in a PRA significantly influence the absolute probability and the consequences of core melt, comparison of two PRA calculations for two configurations of the same plant, carried out on a consistent basis, can be readily identify the increase in risk associated with going from one configuration of a plant to another by removing components or systems from service. This ratio of core melt probabilities (assuming no recovery of failed systems) obtained from two PRA calculations for different configurations was the criterion (called ''risk factor'') chosen as a basis for making a decision in an expert system as to what mitigating action, if any, would be taken to avoid a trip situation from developing. PRISIM was developed by JBF Associates of Knoxville under the sponsorship of the NRC as a system for Resident Inspectors at nuclear power plants to provide them with a relative safety status of the plant under all configurations. PRISIM calculated the risk factor---the ration of core melt probabilities of the plant under the current configuration relative to the normal configuration with all systems functioning---using an algorithm that emulates the results of the original PRA. It also presents time and core melt (assuming no recovery of systems or components).

  7. Facts and Lessons of the Fukushima Nuclear Accident and Safety Improvement- The Operator Viewpoints

    Broader source: Energy.gov [DOE]

    Presenter: Akira Kawano, General Manager, Nuclear International Relations and Strategy Group, Nuclear Power and Plant Siting Administrative Department, Tokyo Electric Power Company

  8. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 1, FEBRUARY 2011 277 Anomaly Detection in Nuclear Power Plants via

    E-Print Network [OSTI]

    Ray, Asok

    in Nuclear Power Plants via Symbolic Dynamic Filtering Xin Jin, Student Member, IEEE, Yin Guo, Soumik Sarkar detection algorithm for condition monitoring of nuclear power plants, where symbolic feature extraction Innova- tive & Secure (IRIS) simulator of nuclear power plants, and its per- formance is evaluated

  9. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17T23:59:59.000Z

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  10. Ranking of four potential nuclear power plant sites in Iraq according to the collective dose criterion

    SciTech Connect (OSTI)

    Marouf, B.A.; Al-Kateeb, G.H.; Al-Ani, D.S. [and others

    1991-07-01T23:59:59.000Z

    The collective dose criterion was used to rank four potential nuclear power-plant sites. Baiji, Al-Mahzam, Al-Abbasia, and Abu-Dalaf. Atmospheric as well as aquatic releases of radionuclides into the environment from the VVER 440 nuclear power plant during normal operation were used to estimate the collective dose equivalents. The results indicated that the collective doses at Baiji, Al-Mahzam, Al-Abbasia, and Abu-Dalaf were 3.6 x 10{sup -2}, 4.7 x 10{sup -2}, 1.1 x 10{sup -1}, and 1.2 x 10{sup -1} man-Sv, respectively. Thus the order of preference is Baiji, Al-Mahzam, Al-Abbasia, and Abu-Dalaf. The effective dose equivalents to the highest exposed individual resulting from atmospheric as well as aquatic releases of radionuclides from the reactor at any one of the four potential nuclear power-plant sites would not exceed 2 x 10{sup -5} Sv/yr. Thus any one of the four sites is suitable for the operation of the 440 nuclear power plants. 27 refs., 1 tab.

  11. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-08-29T23:59:59.000Z

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

  12. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect (OSTI)

    Stephen Schey

    2009-07-01T23:59:59.000Z

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study include a process model and a N2H2 economic assessment model (both developed by the Idaho National Laboratory). Both models are described in this report. The N2H2 model closely tracked and provided similar results as the H2A model and was instrumental in assessing the effects of plant availability on price when operated in the shoulder mode for electrical pricing. Differences between the H2A and N2H2 model are included in this report.

  13. Largest U. S. gas processing plant begins operations

    SciTech Connect (OSTI)

    Mallet, M.W.

    1987-01-19T23:59:59.000Z

    Conoco Inc.'s and Tenneco Oil Co.'s new San Juan, N.M., gas processing plant near Bloomfield, N.M., is capable of making more NGL than any gas plant in the U.S. The plant, with a throughput capacity of 500 MMcfd, proved this when it began production this past November at a rate of 42,000 b/d of NGL. The jointly owned cryogenic plant was constructed by Conoco's natural gas products department, which operates the plant. Construction began in September 1985 and was completed in 13 months. Careful planning between Conoco and the two prime contractors, Pan West Constructors Inc. and Dresser Clark, facilitated a ''fast track'' construction schedule and an extremely smooth start-up.

  14. Intelligent Component Monitoring for Nuclear Power Plants

    SciTech Connect (OSTI)

    Lefteri Tsoukalas

    2010-07-30T23:59:59.000Z

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  15. Application of NUREG/CR-5999 interim fatigue curves to selected nuclear power plant components

    SciTech Connect (OSTI)

    Ware, A.G.; Morton, D.K.; Nitzel, M.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-03-01T23:59:59.000Z

    Recent test data indicate that the effects of the light water reactor (LWR) environment could significantly reduce the fatigue resistance of materials used in the reactor coolant pressure boundary components of operating nuclear power plants. Argonne National Laboratory has developed interim fatigue curves based on test data simulating LWR conditions, and published them in NUREG/CR-5999. In order to assess the significance of these interim fatigue curves, fatigue evaluations of a sample of the components in the reactor coolant pressure boundary of LWRs were performed. The sample consists of components from facilities designed by each of the four U.S. nuclear steam supply system vendors. For each facility, six locations were studied, including two locations on the reactor pressure vessel. In addition, there are older vintage plants where components of the reactor coolant pressure boundary were designed to codes that did not require an explicit fatigue analysis of the components. In order to assess the fatigue resistance of the older vintage plants, an evaluation was also conducted on selected components of three of these plants. This report discusses the insights gained from the application of the interim fatigue curves to components of seven operating nuclear power plants.

  16. Yeast-Plant Coupled Vector System for Identification of Nuclear Proteins1[OA

    E-Print Network [OSTI]

    Citovsky, Vitaly

    Yeast-Plant Coupled Vector System for Identification of Nuclear Proteins1[OA] Adi Zaltsman, Bu.G.) Nuclear proteins are involved in many critical biological processes within plant cells and, therefore nuclear localization. Thus, studies of plant nuclear proteins would be facilitated by a convenient

  17. Community emergency response to nuclear power plant accidents: A selected and partially annotated bibliography

    SciTech Connect (OSTI)

    Youngen, G.

    1988-10-01T23:59:59.000Z

    The role of responding to emergencies at nuclear power plants is often considered the responsibility of the personnel onsite. This is true for most, if not all, of the incidents that may happen during the course of the plant`s operating lifetime. There is however, the possibility of a major accident occurring at anytime. Major nuclear accidents at Chernobyl and Three Mile Island have taught their respective countries and communities a significant lesson in local emergency preparedness and response. Through these accidents, the rest of the world can also learn a great deal about planning, preparing and responding to the emergencies unique to nuclear power. This bibliography contains books, journal articles, conference papers and government reports on emergency response to nuclear power plant accidents. It does not contain citations for ``onsite`` response or planning, nor does it cover the areas of radiation releases from transportation accidents. The compiler has attempted to bring together a sampling of the world`s collective written experience on dealing with nuclear reactor accidents on the sate, local and community levels. Since the accidents at Three Mile Island and Chernobyl, that written experience has grown enormously.

  18. ASSESSING NUCLEAR POWER PLANT SAFETY AND RECOVERY FROM EARTHQUAKES USING A SYSTEM-OF-SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by Monte Carlo simulation the probability that the nuclear power plant enters in an unsafe stateASSESSING NUCLEAR POWER PLANT SAFETY AND RECOVERY FROM EARTHQUAKES USING A SYSTEM in which the plant is embedded. As a test system, we consider the impacts produced on a nuclear power plant

  19. Report on aging of nuclear power plant reinforced concrete structures

    SciTech Connect (OSTI)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01T23:59:59.000Z

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  20. Fire models for assessment of nuclear power plant fires

    SciTech Connect (OSTI)

    Nicolette, V.F.; Nowlen, S.P.

    1989-01-01T23:59:59.000Z

    This paper reviews the state-of-the-art in available fire models for the assessment of nuclear power plants fires. The advantages and disadvantages of three basic types of fire models (zone, field, and control volume) and Sandia's experience with these models will be discussed. It is shown that the type of fire model selected to solve a particular problem should be based on the information that is required. Areas of concern which relate to all nuclear power plant fire models are identified. 17 refs., 6 figs.

  1. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect (OSTI)

    G. O. Hayner; E.L. Shaber

    2004-09-01T23:59:59.000Z

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  2. Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR

    SciTech Connect (OSTI)

    Berry, D. L.

    1980-05-01T23:59:59.000Z

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

  3. Addressing employee concerns about welding in a nuclear power plant

    SciTech Connect (OSTI)

    Danko, J.C.; Hansen, D.D.; O'Leary, P.D.

    1988-03-01T23:59:59.000Z

    A leading utility contracted with EG and G Idaho to perform a comprehensive, independent evaluation of the utility's welding program with respect to the safety-related welds made at one of its nuclear power plants. The purpose of this paper is to review a number of the employee concerns and the technical basis for the disposition of these concerns. In addition, recommendations are presented that may help to prevent the recurrence of employee concerns in future nuclear power plant construction, and thereby costly delays may be avoided and welding productivity and quality improved.

  4. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

  5. Nuclear Power Plant Containment Pressure Boundary Research

    SciTech Connect (OSTI)

    Cherry, J.L.; Chokshi, N.C.; Costello, J.F.; Ellingwood, B.R.; Naus, D.J.

    1999-09-15T23:59:59.000Z

    Research to address aging of the containment pressure boundary in light-water reactor plants is summarized. This research is aimed at understanding the significant factors relating occurrence of corrosion, efficacy of inspection, and structural capacity reduction of steel containment and liners of concrete containment. This understanding will lead to improvements in risk-informed regulatory decision making. Containment pressure boundary components are described and potential aging factors identified. Quantitative tools for condition assessments of aging structures to maintain an acceptable level of reliability over the service life of the plant are discussed. Finally, the impact of aging (i.e., loss of shell thickness due to corrosion) on steel containment fragility for a pressurized water reactor ice-condenser plant is presented.

  6. Infrastructure and Operations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many yearsSandiaOperations |

  7. Operations Center | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and EvaluationOperational ManagementCenter | National

  8. Simulation and Optimization on Power Plant Operation Using SEGA's EOP Program

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Turner, W. D.; Liu, M.

    The operation of a cogeneration power plant is complicated. The Energy Optimization Program (EOP, software made by SEGA, Inc.) was designed to simulate and optimize the operation of TAMU power plant. All major plant components were represented...

  9. Simulation and Optimization on Power Plant Operation Using Sega's EOP Program 

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Turner, W. D.; Liu, M.

    2000-01-01T23:59:59.000Z

    The operation of a cogeneration power plant is complicated. The Energy Optimization Program (EOP, software made by SEGA, Inc.) was designed to simulate and optimize the operation of TAMU power plant. All major plant components were represented...

  10. Simulation and Optimization on Power Plant Operation Using Sega's EOP Program

    E-Print Network [OSTI]

    Zhou, J.; Deng, S.; Turner, W. D.; Liu, M.

    2000-01-01T23:59:59.000Z

    The operation of a cogeneration power plant is complicated. The Energy Optimization Program (EOP, software made by SEGA, Inc.) was designed to simulate and optimize the operation of TAMU power plant. All major plant components were represented...

  11. Managing aging in nuclear power plants: Insights from NRC maintenance team inspection reports

    SciTech Connect (OSTI)

    Fresco, A.; Subudhi, M.; Gunther, W.; Grove, E.; Taylor, J. [Brookhaven National Lab., Upton, NY (United States)

    1993-12-01T23:59:59.000Z

    A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of 67 of the reports issued on these in-depth team inspections were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant systems, structures, and components. Relevant information was extracted from these inspection reports and sorted into several categories, including Specific Aging Insights, Preventive Maintenance, Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified. The information also was sorted according to systems and components, including: Auxiliary Feedwater, Main Feedwater, High Pressure Injection for both BWRs and PWRs, Service Water, Instrument Air, and Emergency Diesel Generator Air Start Systems, and Emergency Diesel Generators Air Start Systems, emergency diesel generators, electrical components such as switchgear, breakers, relays, and motor control centers, motor operated valves and check valves. This information was compared to insights gained from the Nuclear Plant Aging Research (NPAR) Program. Attributes of plant maintenance programs where the NRC inspectors felt that improvement was needed to properly address the aging issue also are discussed.

  12. OPERATIONAL EXPERIENCE: UPGRADED MPC AND A SYSTEMS FOR THE RADIOCHEMICAL PLANT OF THE SIBERIAN CHEMICAL COMBINE

    SciTech Connect (OSTI)

    RODRIGUEZ,C.GOLOSKOKOV,I.FISHBONE,L.GOODEY,K.LOOMIS,M.CRAIN,B.JR.LARSEN,R.

    2003-07-18T23:59:59.000Z

    The success of reducing the risk of nuclear proliferation through physical protection and material control/accounting systems depends upon the development of an effective design that includes consideration of the objectives of the systems and the resources available to implement the design. Included among the objectives of the design are facility characterization, definition of threat, and identification of targets. When considering resources, the designer must consider funds available, rapid low-cost elements, technology elements, human resources, and the availability of resources to sustain operation of the end system. The Siberian Chemical Combine (SCC) is a multi-function nuclear facility located in the Tomsk region of Siberia, Russia. Beginning in 1996, SCC joined with the United States Department of Energy (US/DOE) Material Protection, Control, and Accounting (MPC&A) Program to develop and implement MPC&A upgrades for the Radiochemical, Chemical Metallurgical, Conversion, Uranium Enrichment, and Reactor Plants of the SCC. At the Radiochemical Plant the MPC&A design and implementation process has been largely completed for the Plutonium Storage Facility and related areas of the Radiochemical Plant. Design and implementation of upgrades for the Radiochemical Plant include rapid physical protection upgrades such as bricking up of doors and windows, and installation of security-hardened doors. Rapid material control and accounting upgrades include installation of modern balances and bar code equipment. Comprehensive MPC&A upgrades include the installation of access controls to sensitive areas of the Plant, alarm communication and display (AC&D) systems to detect and annunciate alarm conditions, closed circuit (CCTV) systems to assess alarm conditions, central and secondary alarm station upgrades that enable security forces to assess and respond to alarm conditions, material control and accounting upgrades that include upgraded physical inventory procedures, and destructive and nondestructive assay equipment to perform neutron and gamma measurements on nuclear materials in process or storage. These MPC&A upgrades have been in operation at the SCC Radiochemical Plant for between 2 and 3 years. The operational experience gained by SCC during this period is currently being evaluated by SCC and ''lessons learned'' will be considered both for continued operation of the Radiochemical Plant MPC&A systems and similar MPC&A systems that are currently being planned for other Plant Sites of the SCC.

  13. VOC Emission Control with the Brayton Cycle Pilot Plant Operations

    E-Print Network [OSTI]

    Enneking, J. C.

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  14. VOC Emission Control with the Brayton Cycle Pilot Plant Operations 

    E-Print Network [OSTI]

    Enneking, J. C.

    1992-01-01T23:59:59.000Z

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  15. Total safety: A new safety culture to integrate nuclear safety and operational safety

    SciTech Connect (OSTI)

    Saji, G. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Murphy, G.A. [ed.

    1991-07-01T23:59:59.000Z

    The creation of a complete and thorough safety culture is proposed for the purpose of providing additional assurance about nuclear safety and improving the performance of nuclear power plants. The safety philosophy developed a combination of the former hardware-oriented nuclear safety approach and recent operational safety concepts. The improvement of the latter, after TMI-2 and Chernobyl, has been proven very effective in reducing the total risk associated with nuclear power plants. The first part of this article introduces a {open_quotes}total safety{close_quotes} concept. This extends the concept of {open_quotes}nuclear safety{close_quotes} and makes it closer to the public perception of safety. This concept is defined by means of a taxonomy of total safety. The second part of the article shows that total safety can be achieved by integrating it into a modern quality assurance (QA) system since it is tailored to make implementation into a framework of QA easier. The author believes that the outstanding success experienced by various industries as a result of introducing the modern QA system should lead to its application for ensuring the safety and performance of nuclear facilities. 15 refs., 3 figs.

  16. Liquid metal cooled nuclear reactor plant system

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01T23:59:59.000Z

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  17. Activities in Support of Continuing the Service of Nuclear Power Plant Safety-Related Concrete Structures

    SciTech Connect (OSTI)

    Naus, Dan J [ORNL

    2014-01-01T23:59:59.000Z

    Nuclear power plant (NPP) concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The license renewal process in the U.S. is outlined and its current status provided. Operating experience related to performance of the concrete structures is presented. Basic components of a program to manage aging of the concrete structures are identified and described: (1) Degradation mechanisms, damage models, and material performance; (2) Assessment and remediation: i.e., component selection, in- service inspection, non-destructive examinations, and remedial actions; and (3) Estimation of performance at present or some future point in time: i.e., application of structural reliability theory to the design and optimization of in-service inspection/maintenance strategies, and determination of the effects of degradation on plant risk. Finally, areas are noted where additional research would be of benefit to aging management of nuclear power plant concrete structures.

  18. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

    2014-04-30T23:59:59.000Z

    This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  19. Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lin, Guang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Crawford, Susan L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Konomi, Bledar A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Braatz, Brett G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Coble, Jamie B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Shumaker, Brent [Analysis and Measurement Services Corp., Knoxville, TN (United States); Hashemian, Hash [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    2013-09-01T23:59:59.000Z

    This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

  20. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    DENSITIES AROUND CALIFORNIA NUCLEAR POWER PLANT. le Iil _. .AROUND CALIFORNIA NUCLEAR POWER PLANTS Miles San OnofreIN CALIFORNIA The California Nuclear Power Plant Emergency

  1. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    from the Rancho Seco nuclear plant was simulated, A total ofdistributions around the nuclear plant sites based on thegrowth surrounding nuclear plants after the issuance of the

  2. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    surrounding a nuclear plant, and they are stronglylocation for a nuclear plant, but it is the measures thatand consequences of nuclear plant accidents and would match

  3. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    S. Commercial Nuclear Power Plants. WASH-1400. October 1975.Content of for Nuclear Power Plants. Regulatory Guide 1.101.PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSING PROCESS

  4. Operating limit evaluation for disposal of uranium enrichment plant wastes

    SciTech Connect (OSTI)

    Lee, D.W.; Kocher, D.C.; Wang, J.C.

    1996-02-01T23:59:59.000Z

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

  5. Plutonium Processing Plant Deactivated | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative ofPlant 242-Z

  6. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10T23:59:59.000Z

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  7. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10T23:59:59.000Z

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  8. New Generation Nuclear Plant -- High Level Functions and Requirements

    SciTech Connect (OSTI)

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01T23:59:59.000Z

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  9. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16T23:59:59.000Z

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  10. Development of a checklist for evaluating emergency procedures used in nuclear power plants

    SciTech Connect (OSTI)

    Brune, R.L.; Weinstein, M.

    1981-05-01T23:59:59.000Z

    This report describes the process for developing a checklist to be used by US Nuclear Regulatory Commission Office of Inspection and Enforcement (I and E) inspectors during their evaluation of emergency procedures used in nuclear power plants. The objective of the checklist is to aid inspectors in identifying procedural characteristics that can lead to reactor operator performance deviations. Four nuclear power plants were surveyed to obtain a sample of procedures and related information for human factors evaluation. In addition, a human factors analysis of 890 LERs submitted during the period 1975 through 1978 was performed to identify the major categories of performance deviations associated with reactor operator activities. Checklist items aimed at preventing these performance deviations or facilitating their early detection were developed. The study findings supporting the procedures evaluation criteria comprising the checklist items are described in this report. A companion document, Checklist for Evaluating Emergency Procedures Used in Nuclear Power Plants, NUREG/CR-2005, SAND81-7074, has been prepared as a handbook for inspectors. It describes the checklist and provides instructions for its use. 24 figs.

  11. How safe are nuclear plants. How safe should they be

    SciTech Connect (OSTI)

    Kouts, H.

    1988-01-01T23:59:59.000Z

    It has become customary to think about safety of nuclear plants in terms of risk as defined by the WASH-1400 study that some of the implications for the non-specialist escape our attention. Yet it is known that a rational program to understand safety, to identify unsafe events, and to use this kind of information or analysis to improve safety, requires us to use the methods of quantitative risk assessment. How this process can be made more understandable to a broader group of nontechnical people and how can a wider acceptance of the results of the process be developed have been questions under study and are addressed in this report. These are questions that have been struggled with for some time in the world of nuclear plant safety. The Nuclear Regulatory Commission examined them for several years as it moved toward developing a position on safety goals for nuclear plants, a requirement that had been assigned it by Congress. Opinion was sought from a broad spectrum of individuals, within the field of nuclear power and outside it, on the topic that was popularly called, ''How safe is safe enough.'' Views were solicited on the answer to the question and also on the way the answer should be framed when it was adopted. This report discusses the public policy and its implementation.

  12. advanced mcr operators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for nuclear power and conducted. Overall, 36 participants operated a digital nuclear power plant control workstation simulation Cummings, Mary "Missy" 73 Operations and...

  13. Pantex Plant | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics OneOutreach EffortsSearch Welcome- Energy|

  14. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01T23:59:59.000Z

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  15. General approach to assure compliance with ALARA guidelines on direct radiation from a nuclear power plant, January 1979-January 1982

    SciTech Connect (OSTI)

    Harding, W; Silver, C

    1983-06-01T23:59:59.000Z

    Nuclear Regulatory Commission guide lines specify 10 mrad per reactor as the total yearly direct (gamma) radiation dose at any point external to a nuclear power facility site boundary. Typically a nuclear utility submits only thermoluminescence dosimetry (TLD) data unaccompanied by corresponding core sample, ion chamber or other data or analyses to demonstrate compliance. This study considers a standard approach for analyzing the TLD data in terms of semiempirical physical constructs which allow the use of correlations among certain preoperational TLD data to predict or model operational period TLD measures (expected values) in the absence of the source (nuclear facility). These apriori models depend only upon their fit to the observed nonimpacted data for their verification. They are not veridical. The models are used to analyze a CaSO/sub 4/ (TM) thermoluminescence dosimetry system set up in a matrix about the nuclear plant and which records the terrestrial and cosmic radiation background as well as the nuclear plant contribution.

  16. Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    Mapping Complexity Sources in Nuclear Power Plant Domains Understanding the sources of complexity in advanced Nuclear Power Plant (NPP) control rooms and their effects on human reliability is critical of complexity leveraging network theory. INTRODUCTION The nuclear power industry in United States has declined

  17. Enhancing nuclear power plant performance through the use of artifical intelligence

    SciTech Connect (OSTI)

    Johnson, M.; Maren, A.; Miller, L.; Uhrig, R.; Upadhyaya, B.

    1989-06-15T23:59:59.000Z

    In the summer of 1988, the Department of Nuclear Engineering (NE) at the University of Tennessee (UT) in Knoxville was selected to carry out a research program in Enhancing the Operation of Nuclear Power plants through the use of Artificial Intelligence, This program is sponsored by the Department of Energy's Office of Energy Research under 10CFR605 for Nuclear Engineering Research. The objective of the research is to advance the state-of-the-art of nuclear power plant control, safety, management, and instrumentation systems through the use of artificial intelligence (AI) techniques, including both expert systems and neural networks. The emphasis will be placed on methods that can be implemented on a rapid or real-time basis. A second, but equally important, objective is to build a broadly based critical mass of expertise in the artificial intelligence, field that can be brought to bear on the technology of nuclear power plants. Both of these goals are being met. This overview and the attached technical reports describe the work that is being carried out. Although in some cases, the scope of the work differs somewhat from the specific tasks described in the original proposal, all activities are clearly within the overall scope of the contract.

  18. Enhancing nuclear power plant performance through the use of artifical intelligence. First annual report

    SciTech Connect (OSTI)

    Johnson, M.; Maren, A.; Miller, L.; Uhrig, R.; Upadhyaya, B.

    1989-06-15T23:59:59.000Z

    In the summer of 1988, the Department of Nuclear Engineering (NE) at the University of Tennessee (UT) in Knoxville was selected to carry out a research program in ``Enhancing the Operation of Nuclear Power plants through the use of Artificial Intelligence, This program is sponsored by the Department of Energy`s Office of Energy Research under 10CFR605 for Nuclear Engineering Research. The objective of the research is to advance the state-of-the-art of nuclear power plant control, safety, management, and instrumentation systems through the use of artificial intelligence (AI) techniques, including both expert systems and neural networks. The emphasis will be placed on methods that can be implemented on a rapid or real-time basis. A second, but equally important, objective is to build a broadly based critical mass of expertise in the artificial intelligence, field that can be brought to bear on the technology of nuclear power plants. Both of these goals are being met. This overview and the attached technical reports describe the work that is being carried out. Although in some cases, the scope of the work differs somewhat from the specific tasks described in the original proposal, all activities are clearly within the overall scope of the contract.

  19. A Roadmap to Deploy New Nuclear Power Plants in the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume...

  20. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    SciTech Connect (OSTI)

    Durant, W.S.; Perkins, W.C.; Lee, R.; Stoddard, D.H.

    1982-05-20T23:59:59.000Z

    The Safety Technology Group is developing methodology that can be used to assess the risk of operating a plant to reprocess spent nuclear fuel. As an early step in the methodology, a preliminary hazards analysis identifies safety-related incidents. In the absence of appropriate safety features, these incidents could lead to significant consequences and risk to onsite personnel or to the public. This report is a compilation of potential safety-related incidents that have been identified in studies at SRL and in safety analyses of various commercially designed reprocessing plants. It is an expanded revision of the version originally published as DP-1558, Published December 1980.

  1. Development of a Flexible Computerized Management Infrastructure for a Commercial Nuclear Power Plant

    SciTech Connect (OSTI)

    Ali, Syed Firasat; Hajek, Brian K.; Usman, Shoaib

    2006-05-01T23:59:59.000Z

    The report emphasizes smooth transition from paper-based procedure systems (PBPSs) to computer-based procedure systems (CBPSs) for the existing commercial nuclear power plants in the U.S. The expected advantages and of the transition are mentioned including continued, safe and efficient operation of the plants under their recently acquired or desired extended licenses. The report proposes a three-stage survey to aid in developing a national strategic plan for the transition from PBPSs to CBPSs. It also includes a comprehensive questionnaire that can be readily used for the first stage of the suggested survey.

  2. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    SciTech Connect (OSTI)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01T23:59:59.000Z

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  3. Integrating Nuclear Energy to Oilfield Operations – Two Case Studies

    SciTech Connect (OSTI)

    Eric P. Robertson; Lee O. Nelson; Michael G. McKellar; Anastasia M. Gandrik; Mike W. Patterson

    2011-11-01T23:59:59.000Z

    Fossil fuel resources that require large energy inputs for extraction, such as the Canadian oil sands and the Green River oil shale resource in the western USA, could benefit from the use of nuclear power instead of power generated by natural gas combustion. This paper discusses the technical and economic aspects of integrating nuclear energy with oil sands operations and the development of oil shale resources. A high temperature gas reactor (HTGR) that produces heat in the form of high pressure steam (no electricity production) was selected as the nuclear power source for both fossil fuel resources. Both cases were based on 50,000 bbl/day output. The oil sands case was a steam-assisted, gravity-drainage (SAGD) operation located in the Canadian oil sands belt. The oil shale development was an in-situ oil shale retorting operation located in western Colorado, USA. The technical feasibility of the integrating nuclear power was assessed. The economic feasibility of each case was evaluated using a discounted cash flow, rate of return analysis. Integrating an HTGR to both the SAGD oil sands operation and the oil shale development was found to be technically feasible for both cases. In the oil sands case, integrating an HTGR eliminated natural gas combustion and associated CO2 emissions, although there were still some emissions associated with imported electrical power. In the in situ oil shale case, integrating an HTGR reduced CO2 emissions by 88% and increased natural gas production by 100%. Economic viabilities of both nuclear integrated cases were poorer than the non-nuclear-integrated cases when CO2 emissions were not taxed. However, taxing the CO2 emissions had a significant effect on the economics of the non-nuclear base cases, bringing them in line with the economics of the nuclear-integrated cases. As we move toward limiting CO2 emissions, integrating non-CO2-emitting energy sources to the development of energy-intense fossil fuel resources is becoming increasingly important. This paper attempts to reduce the barriers that have traditionally separated fossil fuel development and application of nuclear power and to promote serious discussion of ideas about hybrid energy systems.

  4. Development of a RELAP5-3D three-dimensional model of a VVER-1000 Nuclear Power Plant for analysis of a large-break loss-of-coolant accident 

    E-Print Network [OSTI]

    Clarno, Kevin Taylor

    2001-01-01T23:59:59.000Z

    of the three-dimensional sections of the reactor vessel consisted of ensuring geometrical fidelity with the design of the modeled plant, the Balacovo Unit 4, Nuclear Power Plant in Saratov, Russia. A stable operational steady-state was obtained...

  5. Targeting of PlantTargeting of Plant RanGAPRanGAP to the Nuclear Envelopeto the Nuclear Envelope Annkatrin Rose,Annkatrin Rose, ShalakaShalaka S. Patel, Iris MeierS. Patel, Iris Meier

    E-Print Network [OSTI]

    Meier, Iris

    Targeting of PlantTargeting of Plant RanGAPRanGAP to the Nuclear Envelopeto the Nuclear Envelope RanGAP1 and tomato MAF1. Plant RanGAP and MAF1 are targeted to the nuclear envelope in plant cells to be cytoplasmic. Plant RanGAP contains a N- terminal domain shared with the nuclear envelope protein MAF1 (cyan

  6. Identification of process controls for nuclear explosive operations

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Houghton, K.; Wilson, M.

    1998-12-01T23:59:59.000Z

    Nuclear explosive assembly/disassembly operations that are carried out under United States Department of Energy (DOE) purview are characterized by activities that primarily involve manual tasks. These process activities are governed by procedural and administrative controls that traditionally have been developed without a formal link to process hazards. This work, which was based on hazard assessment (HA) activities conducted as part of the W69 Integrated Safety Process (ISP), specifies an approach to identifying formal safety controls for controlling (i.e., preventing or mitigating) hazards associated with nuclear explosive operations. Safety analysis methods are used to identify controls, which then are integrated into a safety management framework to provide assurance to the DOE that hazardous activities are managed properly. As a result of the work on the W69 ISP dismantlement effort, the authors have developed an approach to identify controls and safety measures to improve the safety of nuclear explosive operations. The methodology developed for the W69 dismantlement effort is being adapted to the W76 ISP effort. Considerable work is still ongoing to address issues such as the adequacy or effectiveness of controls. DOE nuclear explosive safety orders and some historical insights are discussed briefly in this paper. The safety measure identification methodology developed as part of the W69 ISP dismantlement process then is summarized.

  7. A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo

    E-Print Network [OSTI]

    A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div, conducted using a nuclear power plant shutdown system being developed in Korea, demonstrated in nuclear power plant's reactor protection systems. The software verification framework uses two different

  8. Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector , Redouane Seraouib

    E-Print Network [OSTI]

    Boyer, Edmond

    Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector Machine Jie.zio@ecp.fr Abstract In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP monitoring, Nuclear power plant, Point prediction hal-00790421,version1-12Jun2013 Author manuscript

  9. ATP-dependent regulation of nuclear Ca2 levels in plant cells

    E-Print Network [OSTI]

    Shaw, Peter

    ATP-dependent regulation of nuclear Ca2 levels in plant cells Tom D. Bunney, Peter J. Shaw, Peter A in [Ca2+ ] occurs in the nuclear periphery. The occurrence of ATP-dependent Ca2+ uptake in plant nuclei rights reserved. Key words: Nucleus; Plant; Ca2 uptake; Signal transduction; Imaging; Nuclear pore

  10. Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Evolution of a Visual Impact Model to Evaluate Nuclear Plant Siting and Design Option1 2/ Brian A and economic options for the analysis of nuclear plant siting possibilities (Burnham 1974; Jones, April 1975 of nuclear plant siting options for the AEC. BNWL's multi-disciplinary impact evaluation pro- cedure required

  11. Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices

    E-Print Network [OSTI]

    Cizelj, Leon

    Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices Marko threats to a nuclear power plant in the year 1991 and after the 9/11 events in 2001. The methodology which strength and injuries of human beings with nuclear power plant models used in probabilistic safety

  12. Childhood leukaemia incidence below the age of 5 years near French nuclear power plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Childhood leukaemia incidence below the age of 5 years near French nuclear power plants D Laurier 1 living in the vicinity of nuclear power plants in Germany. We present herein results about the incidence of childhood leukaemia in the vicinity of nuclear power plants in France for the same age range. These results

  13. Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants

    E-Print Network [OSTI]

    Anitescu, Mihai

    Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 of Nuclear Reactor and Chemical Separation Plants ANL-AFCI-168 by G. Palmiotti, J. Cahalan, P. Pfeiffer, T;2 ANL-AFCI-168 Requirements for Advanced Simulation of Nuclear Reactor and Chemical Separation Plants G

  14. A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems

    E-Print Network [OSTI]

    A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems Sanghyun Yoon through safety analy- sis is strongly mandated for safety-critical systems. Nuclear plant protection. INTRODUCTION Safety-critical systems (e.g. nuclear power plants and air- planes) require rigorous quality

  15. PLC-Based Safety Critical Software Development for Nuclear Power Plants

    E-Print Network [OSTI]

    PLC-Based Safety Critical Software Development for Nuclear Power Plants Junbeom Yoo1 , Sungdeok Cha development technique for nuclear power plants'I&C soft- ware controllers. To improve software safety, we in developing safety-critical control software for a Korean nuclear power plant, and experience to date has been

  16. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect (OSTI)

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11T23:59:59.000Z

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  17. Visual inspection submersible for nuclear power plant

    SciTech Connect (OSTI)

    Kimura, M.; Okano, H.; Ozaki, O.; Shimada, H. [Toshiba Corp., Yokohama (Japan)

    1995-08-01T23:59:59.000Z

    Remotely Operated Vehicles (ROV) are currently in use for visual inspections within reactor pressure vessels (RPV). In boiling water reactors (BWR), there is a complex RPV consisting of structures which are not disassembled during outages. To inspect the large volume of the RPV and associated components, the inspection vehicle must be compact and easily maneuverable. Toshiba has developed an ROV for the purpose of visual inspections in BWRS. This paper describes this ROV, the most compact visual inspection submersible yet manufactured and used in a BWR.

  18. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Robert Bean; Casey Durst

    2009-10-01T23:59:59.000Z

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

  19. An Overview of strategic measures to assess workforce needs and ensure technology transfer to meet current and future nuclear power operations

    SciTech Connect (OSTI)

    Vincenti, J.R. [acuri.net, 1344 Curtin Street, State College, PA (United States); Stigers, R.A. [Senior Health Physicist-Radwaste, PPL Susquehanna, Berwick, PA (United States)

    2007-07-01T23:59:59.000Z

    Between 1956 and 1989, the number of operating commercial nuclear power plants in the United States increased from none to 109. With the exception of a few plants that were still in final construction, no new nuclear power plants were ordered in the United States as the new millennium began. In 2005, the federal government pronounced the need for new electric power generating systems during the first quarter of the 21. century. The need comes from a desire to curb our reliance on fossil fuels, as well as to provide for a cleaner environment. One of those fuel systems noted was nuclear energy. Given the time between the last active period of nuclear power plant development and construction, there is a need to supply a talented and well-prepared workforce to operate the new plants. It will also be necessary to assess the needs of our current fleet of operating nuclear power plants, of which many are in the process of re-licensing, yet also facing an aging plant workforce. This paper will review and discuss measures to assess diverse workforce needs and technology transfer to meet current licensing requirements as that of future nuclear power plant development in the United States. (authors)

  20. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01T23:59:59.000Z

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  1. Nuclear power plant security systems - The need for upgrades

    SciTech Connect (OSTI)

    Murskyj, M.P.; Furlow, C.H.

    1989-01-01T23:59:59.000Z

    Most perimeter security systems for nuclear power plants were designed and installed in the late 1970s or early 1980s. This paper explores the need to regularly evaluate and possibly upgrade a security system in the area of perimeter intrusion detection and surveillance. this paper discusses US Nuclear Regulatory Commission audits and regulatory effectiveness reviews (RERs), which have raised issues regarding the performance of perimeter security systems. The audits and RERs identified various degrees of vulnerability in certain aspects of existing perimeter security systems. In addition to reviewing the regulatory concerns, this paper discusses other reasons to evaluate and/or upgrade a perimeter security system.

  2. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect (OSTI)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  3. Evaluation of operational safety at Babcock and Wilcox Plants: Volume 2, Thermal-hydraulic results

    SciTech Connect (OSTI)

    Wheatley, P.D.; Davis, C.B.; Callow, R.A.; Fletcher, C.D.; Dobbe, C.A.; Beelman, R.J.

    1987-11-01T23:59:59.000Z

    The Nuclear Regulatory Commission has initiated a research program to develop a methodology to assess the operational performance of Babcock and Wilcox plants and to apply this methodology on a trial basis. The methodology developed for analyzing Babcock and Wilcox plants integrated methods used in both thermal-hydraulics and human factors and compared results with information used in the assessment of risk. The integrated methodology involved an evaluation of a selected plant for each pressurized water reactor vendor during a limited number of transients. A plant was selected to represent each vendor, and three transients were identified for analysis. The plants were Oconee Unit 1 for Babcock and Wilcox, H.B. Robinson Unit 2 for Westinghouse, and Calvert Cliffs Unit 1 for Combustion Engineering. The three transients were a complete loss of all feedwater, a small-break loss-of-coolant accident, and a steam-generator overfill with auxiliary feedwater. Included in the integrated methodology was an assessment of the thermal-hydraulic behavior, including event timing, of the plants during the three transients. Thermal-hydraulic results are presented in this volume (Volume 2) of the report. 26 refs., 30 figs., 7 tabs.

  4. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect (OSTI)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M. [Korea Hydro and Nuclear Power Co., LTD, 23, 106 gil, Yeongdong-daero, Gangnam-gu, 153-791 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to make the model more sophisticated as a 'semi-tailored model' so that it can be applied to a certain country reflecting its unique conditions. In accordance with its degree of established infrastructure, we can adjust or modify the model. Despite lots of benefits of using this model, there remain limitations such as time and budget constraints. These problems, however, can be addressed by cooperating with international organization such as the IAEA and other companies that share the same goal of helping newcomer countries introduce nuclear power. (authors)

  5. Auxiliary feedwater system risk-based inspection guide for the Point Beach nuclear power plant

    SciTech Connect (OSTI)

    Lloyd, R C; Moffitt, N E; Gore, B F; Vo, T V; Vehec, T A [Pacific Northwest Lab., Richland, WA (United States)

    1993-02-01T23:59:59.000Z

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Point Beach was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Point Beach plant.

  6. Auxiliary feedwater system risk-based inspection guide for the Ginna Nuclear Power Plant

    SciTech Connect (OSTI)

    Pugh, R.; Gore, B.F.; Vo, T.V.; Moffitt, N.E. (Pacific Northwest Lab., Richland, WA (United States))

    1991-09-01T23:59:59.000Z

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Ginna was selected as the eighth plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Ginna plant. 23 refs., 1 fig., 1 tab.

  7. OPERATOR PERFORMANCE IN LONG DURATION, LOW TASK LOAD CONTROL OPERATIONS

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    and conducted. Overall, 36 participants operated a digital nuclear power plant control workstation simulation In the United States, a major effort is underway to modernize existing nuclear power plants and their control rooms, as well as design new, advanced nuclear power plants. Current control rooms for nuclear power

  8. A Review of Information for Managing Aging in Nuclear Power Plants

    SciTech Connect (OSTI)

    WC Morgan; JV Livingston

    1995-09-01T23:59:59.000Z

    Age related degradation effects in safety related systems of nuclear power plants should be managed to prevent safety margins from eroding below the acceptable limits provided in plant design bases. The Nuclear Plant Aging Research (NPAR) Pro- gram, conducted under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, and other related aging management programs are developing technical information on managing aging. The aging management process central to these efforts consists of three key elements: 1) selecting structures, systems, and components (SSCs) in which aging should be controlled; 2) understanding the mechanisms and rates of degradation in these SSCs; and 3) managing degradation through effective inspection, surveillance, condition monitoring, trending, record keeping, mainten- ance, refurbishment, replacement, and adjustments in the operating environment and service conditions. This document concisely reviews and integrates information developed under the NPAR Program and other aging management studies and other available information related to understanding and managing age-related degradation effects and provides specific refer- ences to more comprehensive information on the same subjects.

  9. A realistic anticipated transient without scram evaluation of the Zorita nuclear power plant

    SciTech Connect (OSTI)

    Rebollo, L. (Union Fenosa, Madrid (Spain))

    1993-07-01T23:59:59.000Z

    A best-estimate methodology for analysis of an anticipated transient without scram (ATWS) in a pressurized water reactor (PWR) is applied to the simulation of the passive response to postulated ATWS scenarios of the Jose Cabrera (Zorita) nuclear power plant (NPP) owned and operated by Union Fenosa, which is the only Westinghouse PWR with a single coolant loop. A justification of the calculation hypotheses is included. The results of the specific studies are evaluated, and the conclusion is that the intrinsic safety margins of the original design of the plant guarantees the integrity of the fuel, primary circuit, and containment, without the need to incorporate an automatic ATWS mitigation system. Finally, a suitable plant-specific prototype emergency operating procedure is designed that is substantially different from the previous Zorita NPP procedure and from the generic procedure applicable to multiloop plants. This procedure is validated by simulating the operator-plant interface by means of a validation matrix including the scenarios presenting the most adverse dynamic modes foreseeable.

  10. Method of installing a control room console in a nuclear power plant

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1994-01-01T23:59:59.000Z

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  11. Nuclear electromagnetic charge and current operators in Chiral EFT

    SciTech Connect (OSTI)

    Girlanda, Luca [Università del Salento; Marcucci, Laura Elisa [Univ. Pisa; Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Piarulli, Maria [Department of Physics, Old Dominion University, Norfolk, VA; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, Michele

    2013-08-01T23:59:59.000Z

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  12. A survey of repair practices for nuclear power plant containment metallic pressure boundaries

    SciTech Connect (OSTI)

    Oland, C.B.; Naus, D.J. [Oak Ridge National Lab., TN (United States)

    1998-05-01T23:59:59.000Z

    The Nuclear Regulatory Commission has initiated a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and leaktightness of metal containment vessels and steel liners of concrete containments in nuclear power plants. One of the program objectives is to identify repair practices for restoring metallic containment pressure boundary components that have been damaged or degraded in service. This report presents issues associated with inservice condition assessments and continued service evaluations and identifies the rules and requirements for the repair and replacement of nonconforming containment pressure boundary components by welding or metal removal. Discussion topics include base and welding materials, welding procedure and performance qualifications, inspection techniques, testing methods, acceptance criteria, and documentation requirements necessary for making acceptable repairs and replacements so that the plant can be returned to a safe operating condition.

  13. Devices and methods for managing noncombustible gasses in nuclear power plants

    DOE Patents [OSTI]

    Marquino, Wayne; Moen, Stephan C; Wachowiak, Richard M; Gels, John L; Diaz-Quiroz, Jesus; Burns, Jr., John C

    2014-12-23T23:59:59.000Z

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  14. Decommissioning nuclear power plants - the wave of the future

    SciTech Connect (OSTI)

    Griggs, F.S. Jr. [Raytheon Engineers and Contractors, Cumberland City, TN (United States)

    1994-12-31T23:59:59.000Z

    The paper discusses the project controls developed in the decommissioning of a nuclear power plant. Considerations are given to the contaminated piping and equipment that have to be removed and the spent and used fuel that has to be disposed of. The storage issue is of primary concern here. The cost control aspects and the dynamics of decommissioning are discussed. The effects of decommissioning laws on the construction and engineering firms are mentioned. 5 refs.

  15. The Plant Cell, Vol. 10, 16371647, October 1998, www.plantcell.org 1998 American Society of Plant Physiologists The Plant U1 Small Nuclear Ribonucleoprotein Particle

    E-Print Network [OSTI]

    Reddy, A.S.N

    of Plant Physiologists The Plant U1 Small Nuclear Ribonucleoprotein Particle 70K Protein Interacts with TwoThe Plant Cell, Vol. 10, 1637­1647, October 1998, www.plantcell.org © 1998 American Society small nuclear ribonucleoprotein particle (U1 snRNP) 70K protein (U1-70K), one of the three U1 sn

  16. Understanding the nature of nuclear power plant risk

    SciTech Connect (OSTI)

    Denning, R. S. [Ohio State Univ., 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)

    2012-07-01T23:59:59.000Z

    This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

  17. Hydrogen Production from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    M. Patterson; C. Park

    2008-03-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

  18. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

  19. Simulation and optimization of cogeneration power plant operation using an Energy Optimization Program

    E-Print Network [OSTI]

    Zhou, Jijun

    2001-01-01T23:59:59.000Z

    The operation of a combined cycle cogeneration power plant system is complicated because of the complex interactions among components as well as the dynamic nature of the system. Studies of plant operation through experiments in such a sensitive...

  20. Conceivable new recycling of nuclear waste by nuclear power companies in their plants

    E-Print Network [OSTI]

    Ruggero Maria Santilli

    1997-04-09T23:59:59.000Z

    We outline the basic principles and the needed experiments for a conceivable new recycling of nuclear waste by the power plants themselves to avoid its transportation and storage to a (yet unknown) dumping area. Details are provided in an adjoining paper and in patents pending.

  1. Validation of seismic probabilistic risk assessments of nuclear power plants

    SciTech Connect (OSTI)

    Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1994-01-01T23:59:59.000Z

    A seismic probabilistic risk assessment (PRA) of a nuclear plant requires identification and information regarding the seismic hazard at the plant site, dominant accident sequences leading to core damage, and structure and equipment fragilities. Uncertainties are associated with each of these ingredients of a PRA. Sources of uncertainty due to seismic hazard and assumptions underlying the component fragility modeling may be significant contributors to uncertainty in estimates of core damage probability. Design and construction errors also may be important in some instances. When these uncertainties are propagated through the PRA, the frequency distribution of core damage probability may span three orders of magnitude or more. This large variability brings into question the credibility of PRA methods and the usefulness of insights to be gained from a PRA. The sensitivity of accident sequence probabilities and high-confidence, low probability of failure (HCLPF) plant fragilities to seismic hazard and fragility modeling assumptions was examined for three nuclear power plants. Mean accident sequence probabilities were found to be relatively insensitive (by a factor of two or less) to: uncertainty in the coefficient of variation (logarithmic standard deviation) describing inherent randomness in component fragility; truncation of lower tail of fragility; uncertainty in random (non-seismic) equipment failures (e.g., diesel generators); correlation between component capacities; and functional form of fragility family. On the other hand, the accident sequence probabilities, expressed in the form of a frequency distribution, are affected significantly by the seismic hazard modeling, including slopes of seismic hazard curves and likelihoods assigned to those curves.

  2. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect (OSTI)

    Mark Holbrook

    2010-09-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  3. Results of a nuclear power plant Application of a new technique for human error analysis (ATHEANA)

    SciTech Connect (OSTI)

    Forester, J.A.; Whitehead, D.W.; Kolaczkowski, A.M.; Thompson, C.M.

    1997-10-01T23:59:59.000Z

    A new method to analyze human errors has been demonstrated at a pressurized water reactor (PWR) nuclear power plant. This was the first application of the new method referred to as A Technique for Human Error Analysis (ATHEANA). The main goals of the demonstration were to test the ATHEANA process as described in the frame-of-reference manual and the implementation guideline, test a training package developed for the method, test the hypothesis that plant operators and trainers have significant insight into the error-forcing-contexts (EFCs) that can make unsafe actions (UAs) more likely, and to identify ways to improve the method and its documentation. A set of criteria to evaluate the {open_quotes}success{close_quotes} of the ATHEANA method as used in the demonstration was identified. A human reliability analysis (HRA) team was formed that consisted of an expert in probabilistic risk assessment (PRA) with some background in HRA (not ATHEANA) and four personnel from the nuclear power plant. Personnel from the plant included two individuals from their PRA staff and two individuals from their training staff. Both individuals from training are currently licensed operators and one of them was a senior reactor operator {open_quotes}on shift{close_quotes} until a few months before the demonstration. The demonstration was conducted over a 5 month period and was observed by members of the Nuclear Regulatory Commission`s ATHEANA development team, who also served as consultants to the HRA team when necessary. Example results of the demonstration to date, including identified human failure events (HFEs), UAs, and EFCs are discussed. Also addressed is how simulator exercises are used in the ATHEANA demonstration project.

  4. Impact of structural aging on seismic risk assessment of reinforced concrete structures in nuclear power plants

    SciTech Connect (OSTI)

    Ellingwood, B.; Song, J. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01T23:59:59.000Z

    The Structural Aging Program is addressing the potential for degradation of concrete structural components and systems in nuclear power plants over time due to aging and aggressive environmental stressors. Structures are passive under normal operating conditions but play a key role in mitigating design-basis events, particularly those arising from external challenges such as earthquakes, extreme winds, fires and floods. Structures are plant-specific and unique, often are difficult to inspect, and are virtually impossible to replace. The importance of structural failures in accident mitigation is amplified because such failures may lead to common-cause failures of other components. Structural condition assessment and service life prediction must focus on a few critical components and systems within the plant. Components and systems that are dominant contributors to risk and that require particular attention can be identified through the mathematical formalism of a probabilistic risk assessment, or PRA. To illustrate, the role of structural degradation due to aging on plant risk is examined through the framework of a Level 1 seismic PRA of a nuclear power plant. Plausible mechanisms of structural degradation are found to increase the core damage probability by approximately a factor of two.

  5. Educational/trainingEducational/training needs of Nuclear Powerneeds of Nuclear Power

    E-Print Network [OSTI]

    lesson ·· April 1979April 1979 ·· At the TMI nuclear plant,At the TMI nuclear plant, operators thatpeople running the plant that caused the accidentcaused the accident #12;The nuclear IndustryThe nuclearEducational/trainingEducational/training needs of Nuclear Powerneeds of Nuclear Power Industry [NPI

  6. Leak before break application in French PWR plants under operation

    SciTech Connect (OSTI)

    Faidy, C. [EDF SEPTEN, Villeurbanne (France)

    1997-04-01T23:59:59.000Z

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  7. Aging Management Guideline for commercial nuclear power plants: Electrical switchgear. Final report

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.; Schuler, K. [Ogden Environmental and Energy Services Co., Inc., Blue Bell, PA (United States)

    1993-07-01T23:59:59.000Z

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  8. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R. [Sandia National Labs., Albuquerque, NM (United States)

    1994-05-01T23:59:59.000Z

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  9. Aging management guideline for commercial nuclear power plants-stationary batteries. Final report

    SciTech Connect (OSTI)

    Berg, R.; Shao, J.; Krencicki, G.; Giachetti, R. [Multiple Dynamics Corp., Southfield, MI (United States)

    1994-03-01T23:59:59.000Z

    The Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant stationary batteries important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  10. AGE-RELATED DEGRADATION OF NUCLEAR POWER PLANT STRUCTURES AND COMPONENTS.

    SciTech Connect (OSTI)

    BRAVERMAN,J.

    1999-03-29T23:59:59.000Z

    This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what are the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk.

  11. Aging Management Guideline for commercial nuclear power plants: Motor control centers; Final report

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.; O`Hearn, E. [Ogden Environmental and Energy Services Co., Inc., Blue Bell, PA (United States)

    1994-02-01T23:59:59.000Z

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  12. Radioactive Releases Impact from Kozloduy Nuclear Power Plant, Bulgaria into the Environment

    SciTech Connect (OSTI)

    Genchev, G. T.; Kuleff, I.; Tanev, N. T.; Delistoyanova, E. S.; Guentchev, T.

    2002-02-26T23:59:59.000Z

    The aim of this paper is to present a general overview of the radioactive releases impact generated by Kozloduy Nuclear Power Plant (KNPP), Bulgaria to the environment and public. The liquid releases presented are known as the so called controlled water discharges, that are generated after reprocessing of the inevitable accumulated liquid radioactive waste in the plant operation process. The radionuclides containing in the liquid releases are given in the paper as a result of systematic measuring. Database for radiation doses evaluation on the public around Kozloduy NPP site is developed using IAEA LADTAP computerized program. The computer code LADTAP represents realization of a model that evaluates the public dose as a result of NPP releases under normal operation conditions. The results of this evaluation were the basic licensing document for a new liquid release limit.

  13. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01T23:59:59.000Z

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  14. Just In-Time Maintenance of Nuclear Power Plants

    SciTech Connect (OSTI)

    DR. Alexander G. Parlos

    2002-01-22T23:59:59.000Z

    The goal of this project has been to develop and demonstrate the feasibility of a new technology for maintenance engineering: a Just-In-Time Maintenance (JITM) system for rotating machines. The JITM system is based on several key developments at Texas A and M over the past ten years in emerging intelligent information technologies, which if integrated into a single system could provide a revolutionary approach in the way maintenance is performed. Rotating machines, such as induction motors, range from a few horse power (hp) to several thousand hp in size, and they are widely used in nuclear power plants and in other industries. Forced outages caused by induction motor failures are the reason for as much as 15% - 40% of production costs to be attributable to maintenance, whereas plant shutdowns caused by induction motor failures result in daily financial losses to the utility and process industries of $1 M or more. The basic components of the JITM system are the available machine sensors, that is electric current sensors and accelerometers, and the computational algorithms used in the analysis and interpretation of the occurring incipient failures. The JITM system can reduce the costs attributable to maintenance by about 40% and it can lower the maintenance budgets of power and process plants by about 35%, while requiring no additional sensor installation. As a result, the JITM system can improve the competitiveness of US nuclear utilities at minimal additional cost.

  15. The Plant Cell, Vol. 11, 14451456, August 1999, www.plantcell.org 1999 American Society of Plant Physiologists Light QualityDependent Nuclear Import of the Plant

    E-Print Network [OSTI]

    Schäfer, Eberhard

    Physiologists Light Quality­Dependent Nuclear Import of the Plant Photoreceptors Phytochrome A and B StefanThe Plant Cell, Vol. 11, 1445­1456, August 1999, www.plantcell.org © 1999 American Society of Plant Institute of Plant Biology, Biological Research Center, P.O. Box 521, H-6701 Szeged, Hungary The phytochrome

  16. A Cyber Security Self-Assessment Method for Nuclear Power Plants

    SciTech Connect (OSTI)

    Glantz, Clifford S.; Coles, Garill A.; Bass, Robert B.

    2004-11-01T23:59:59.000Z

    A cyber security self-assessment method (the Method) has been developed by Pacific Northwest National Laboratory. The development of the Method was sponsored and directed by the U.S. Nuclear Regulatory Commission. Members of the Nuclear Energy Institute Cyber Security Task Force also played a substantial role in developing the Method. The Method's structured approach guides nuclear power plants in scrutinizing their digital systems, assessing the potential consequences to the plant of a cyber exploitation, identifying vulnerabilities, estimating cyber security risks, and adopting cost-effective protective measures. The focus of the Method is on critical digital assets. A critical digital asset is a digital device or system that plays a role in the operation, maintenance, or proper functioning of a critical system (i.e., a plant system that can impact safety, security, or emergency preparedness). A critical digital asset may have a direct or indirect connection to a critical system. Direct connections include both wired and wireless communication pathways. Indirect connections include sneaker-net pathways by which software or data are manually transferred from one digital device to another. An indirect connection also may involve the use of instructions or data stored on a critical digital asset to make adjustments to a critical system. The cyber security self-assessment begins with the formation of an assessment team, and is followed by a six-stage process.

  17. Advanced Outage and Control Center: Strategies for Nuclear Plant Outage Work Status Capabilities

    SciTech Connect (OSTI)

    Gregory Weatherby

    2012-05-01T23:59:59.000Z

    The research effort is a part of the Light Water Reactor Sustainability (LWRS) Program. LWRS is a research and development program sponsored by the Department of Energy, performed in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The Outage Control Center (OCC) Pilot Project was directed at carrying out the applied research for development and pilot of technology designed to enhance safe outage and maintenance operations, improve human performance and reliability, increase overall operational efficiency, and improve plant status control. Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Unfortunately, many of the underlying technologies supporting outage control are the same as those used in the 1980’s. They depend heavily upon large teams of staff, multiple work and coordination locations, and manual administrative actions that require large amounts of paper. Previous work in human reliability analysis suggests that many repetitive tasks, including paper work tasks, may have a failure rate of 1.0E-3 or higher (Gertman, 1996). With between 10,000 and 45,000 subtasks being performed during an outage (Gomes, 1996), the opportunity for human error of some consequence is a realistic concern. Although a number of factors exist that can make these errors recoverable, reducing and effectively coordinating the sheer number of tasks to be performed, particularly those that are error prone, has the potential to enhance outage efficiency and safety. Additionally, outage management requires precise coordination of work groups that do not always share similar objectives. Outage managers are concerned with schedule and cost, union workers are concerned with performing work that is commensurate with their trade, and support functions (safety, quality assurance, and radiological controls, etc.) are concerned with performing the work within the plants controls and procedures. Approaches to outage management should be designed to increase the active participation of work groups and managers in making decisions that closed the gap between competing objectives and the potential for error and process inefficiency.

  18. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 2, APRIL 2010 807 Integrated Robust and Resilient Control of Nuclear

    E-Print Network [OSTI]

    Ray, Asok

    and Resilient Control of Nuclear Power Plants for Operational Safety and High Performance Xin Jin, Student & Secure (IRIS) simulator of nuclear power plants. Index Terms--Emergency operation, nuclear power plant Lyapunov equation. Reference Signals. Temperatures of the nuclear power plant. Sampling time. Controller

  19. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31T23:59:59.000Z

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to developing technical basis to support acceptance criteria and set point decisions, particularly for advanced sensors which do not yet have a cumulative history of operating performance.

  20. Guidelines for inservice testing at nuclear power plants

    SciTech Connect (OSTI)

    Campbell, P.

    1995-04-01T23:59:59.000Z

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

  1. NARAC Modeling During the Response to the Fukushima Dai-ichi Nuclear Power Plant Emergency

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J S; Probanz, B; Foster, K T; Simpson, M; Vogt, P; Aluzzi, F; Dillon, M; Homann, S

    2012-02-14T23:59:59.000Z

    This paper summarizes the activities of the National Atmospheric Release Advisory Center (NARAC) during the Fukushima Dai-ichi nuclear power plant crisis. NARAC provided a wide range of products and analyses as part of its support including: (1) Daily Japanese weather forecasts and hypothetical release (generic source term) dispersion predictions to provide situational awareness and inform planning for U.S. measurement data collection and field operations; (2) Estimates of potential dose in Japan for hypothetical scenarios developed by the Nuclear Regulatory Commission (NRC) to inform federal government considerations of possible actions that might be needed to protect U.S. citizens in Japan; (3) Estimates of possible plume arrival times and dose for U.S. locations; and (4) Plume model refinement and source estimation based on meteorological analyses and available field data. The Department of Energy/National Nuclear Security Administration (DOE/NNSA) deployed personnel to Japan and stood up 'home team' assets across the DOE complex to aid in assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. The DOE Nuclear Incident Team (NIT) coordinated response activities, while DOE personnel provided predictive modeling, air and ground monitoring, sample collection, laboratory analysis, and data assessment and interpretation. DOE deployed the Aerial Measuring System (AMS), Radiological Assistance Program (RAP) personnel, and the Consequence Management Response Team (CMRT) to Japan. DOE/NNSA home team assets included the Consequence Management Home Team (CMHT); National Atmospheric Release Advisory Center (NARAC); Radiation Emergency Assistance Center/Training Site (REAC/TS); and Radiological Triage. NARAC was activated by the DOE/NNSA on March 11, shortly after the Tohoku earthquake and tsunami occurred. The center remained on active operations through late May when DOE ended its deployment to Japan. Over 32 NARAC staff members, supplemented by other LLNL scientists, invested over 5000 person-hours of time and generated over 300 analyses and predictions.

  2. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, J.G.

    1993-11-16T23:59:59.000Z

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

  3. Float level switch for a nuclear power plant containment vessel

    DOE Patents [OSTI]

    Powell, James G. (Clifton Park, NY)

    1993-01-01T23:59:59.000Z

    This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

  4. Evaluation of aged concrete structures for continued service in nuclear power plants

    SciTech Connect (OSTI)

    Naus, D.J.; Marchbanks, M.F.; Arndt, E.G.

    1988-01-01T23:59:59.000Z

    Results are summarized of a study on concrete component aging and its significance relative to continued service of nuclear power plants (NPPs) beyond the initial period for which they were granted operating licenses. Progress is presented of a second study being conducted to identify and provide acceptance criteria for structural safety issues which the USNRC staff will need to address when applications are submitted for continued service of NPPs. Major activities under this program include: development of a materials property data base, establishment of structural component assessment and repair procedures, and development of a methodology for determination of structural reliability. 19 refs., 5 figs., 3 tabs.

  5. Evaluation of aged concrete structures for continued service in nuclear power plants

    SciTech Connect (OSTI)

    Naus, D.J.; Marchbanks, M.F.; Arndt, E.G.

    1988-01-01T23:59:59.000Z

    Results are summarized of a study on concrete component aging and its significance relative to continued service of nuclear power plants (NPPs) beyond the initial period for which they were granted operating licenses. Progress is presented of a second study being conducted to identify and provide acceptance criteria for structural safety issues which the USNRC staff will need to address when applications are submitted for continued service of NPPs. Major activities under this program include: development of a materials property data base, establishment of structural component assessment and repair procedures, and development of a methodology for determination of structural reliability.

  6. FRAMEWORK AND APPLICATION FOR MODELING CONTROL ROOM CREW PERFORMANCE AT NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Ronald L Boring; David I Gertman; Tuan Q Tran; Brian F Gore

    2008-09-01T23:59:59.000Z

    This paper summarizes an emerging project regarding the utilization of high-fidelity MIDAS simulations for visualizing and modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error associated with advanced control room equipment and configurations, (ii) the investigative determination of contributory cognitive factors for risk significant scenarios involving control room operating crews, and (iii) the certification of reduced staffing levels in advanced control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of cognition, elements of situation awareness, and risk associated with human performance in next generation control rooms.

  7. Development and validation of instantaneous risk model in nuclear power plant's risk monitor

    SciTech Connect (OSTI)

    Wang, J.; Li, Y.; Wang, F.; Wang, J.; Hu, L. [Inst. of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, Univ. of Science and Technology of China, Hefei, Anhui, 230031 (China)

    2012-07-01T23:59:59.000Z

    The instantaneous risk model is the fundament of calculation and analysis in a risk monitor. This study focused on the development and validation of an instantaneous risk model. Therefore the principles converting from the baseline risk model to the instantaneous risk model were studied and separated trains' failure modes modeling method was developed. The development and validation process in an operating nuclear power plant's risk monitor were also introduced. Correctness of instantaneous risk model and rationality of converting method were demonstrated by comparison with the result of baseline risk model. (authors)

  8. REVIEW Of COMPUTERIZED PROCEDURE GUIDELINES FOR NUCLEAR POWER PLANT CONTROL ROOMS

    SciTech Connect (OSTI)

    David I Gertman; Katya Le Blanc; Ronald L Boring

    2011-09-01T23:59:59.000Z

    Computerized procedures (CPs) are recognized as an emerging alternative to paper-based procedures for supporting control room operators in nuclear power plants undergoing life extension and in the concept of operations for advanced reactor designs. CPs potentially reduce operator workload, yield increases in efficiency, and provide for greater resilience. Yet, CPs may also adversely impact human and plant performance if not designed and implemented properly. Therefore, it is important to ensure that existing guidance is sufficient to provide for proper implementation and monitoring of CPs. In this paper, human performance issues were identified based on a review of the behavioral science literature, research on computerized procedures in nuclear and other industries, and a review of industry experience with CPs. The review of human performance issues led to the identification of a number of technical gaps in available guidance sources. To address some of the gaps, we developed 13 supplemental guidelines to support design and safety. This paper presents these guidelines and the case for further research.

  9. Model operating permits for natural gas processing plants

    SciTech Connect (OSTI)

    Arend, C. [Hydro-Search, Inc., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Major sources as defined in Title V of the Clean Air Act Amendments of 1990 that are required to submit an operating permit application will need to: Evaluate their compliance status; Determine a strategic method of presenting the general and specific conditions of their Model Operating Permit (MOP); Maintain compliance with air quality regulations. A MOP is prepared to assist permitting agencies and affected facilities in the development of operating permits for a specific source category. This paper includes a brief discussion of example permit conditions that may be applicable to various types of Title V sources. A MOP for a generic natural gas processing plant is provided as an example. The MOP should include a general description of the production process and identify emission sources. The two primary elements that comprise a MOP are: Provisions of all existing state and/or local air permits; Identification of general and specific conditions for the Title V permit. The general provisions will include overall compliance with all Clean Air Act Titles. The specific provisions include monitoring, record keeping, and reporting. Although Title V MOPs are prepared on a case-by-case basis, this paper will provide a general guideline of the requirements for preparation of a MOP. Regulatory agencies have indicated that a MOP included in the Title V application will assist in preparation of the final permit provisions, minimize delays in securing a permit, and provide support during the public notification process.

  10. Emptying of the Storage for Solid Radioactive Waste in the Greifswald Nuclear Power Plant

    SciTech Connect (OSTI)

    Hartmann, B.; Fischer, J.

    2002-02-26T23:59:59.000Z

    On the Greifswald site, 8 WWER 440 reactor units are located and also several facilities to handle fuel and radwaste. After the reunification of Germany, the final decision was taken to decommission all these Russian designed reactors. Thus, EWN is faced with a major decommissioning project in the field of nuclear power stations. One of the major tasks before the dismantling of the plant is the complete disposal of the operational waste. Among other facilities, a store for solid radioactive waste is located on the site, which has been filled over 17 years of operation of units 1 to 4. The paper presents the disposal technology development and results achieved. This activity is the first project in the operational history of the Russian type serial reactor line WWER-440.

  11. Suggested Courses for ME Students Interested in Nuclear Engineering: *For information on the Nuclear Engineering Minor, see: Nuclear Engineering Program

    E-Print Network [OSTI]

    Virginia Tech

    : Nuclear Power Plant Operations (3) - special studies course ­ no description available. Check Time Suggested Courses for ME Students Interested in Nuclear Engineering: *For information on the Nuclear Engineering Minor, see: Nuclear Engineering Program Required Courses: ME 4015-4016 ­ Engineering

  12. An examination of the pursuit of nuclear power plant construction projects in the United States

    E-Print Network [OSTI]

    Guyer, Brittany (Brittany Leigh)

    2011-01-01T23:59:59.000Z

    The recent serious reconsideration of nuclear power as a means for U.S. electric utilities to increase their generation capacity provokes many questions regarding the achievable success of future nuclear power plant ...

  13. Incremental costs and optimization of in-core fuel management of nuclear power plants

    E-Print Network [OSTI]

    Watt, Hing Yan

    1973-01-01T23:59:59.000Z

    This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

  14. Regulatory analysis for the resolution of Generic Safety Issue 29: Bolting degradation or failure in nuclear power plants

    SciTech Connect (OSTI)

    Chang, T.Y.

    1991-09-01T23:59:59.000Z

    Generic Safety Issue (GSI)-29 deals with staff concerns about public risk due to degradation or failure of safety-related bolting in nuclear power plants. The issue was initiated in November 1982. Value-impact studies of a mandatory program on safety-related bolting for operating plants were inconclusive: therefore, additional regulatory requirements for operating plants could not be justified in accordance with provisions of 10 CFR 50.109. In addition, based on operating experience with bolting in both nuclear and conventional power plants, the actions already taken through bulletins, generic letters, and information notices, and the industry-proposed actions, the staff concluded that a sufficient technical basis exists for the resolution of GSI-29. The staff further concluded that leakage of bolted pressure joints is possible but catastrophic failure of a reactor coolant pressure boundary joint that will lead to significant accident sequences is highly unlikely. For future plants, it was concluded that a new Standard Review Plant section should be developed to codify existing bolting requirements and industry-developed initiatives. 9 refs., 1 tab.

  15. Study of seismic design bases and site conditions for nuclear power plants

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    This report presents the results of an investigation of four topics pertinent to the seismic design of nuclear power plants: Design accelerations by regions of the continental United States; review and compilation of design-basis seismic levels and soil conditions for existing nuclear power plants; regional distribution of shear wave velocity of foundation materials at nuclear power plant sites; and technical review of surface-founded seismic analysis versus embedded approaches.

  16. Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report

    SciTech Connect (OSTI)

    L. J. Bond; S. R. Doctor; R. W. Gilbert; D. B. Jarrell; F. L. Greitzer; R. J. Meador

    2000-09-01T23:59:59.000Z

    OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities.

  17. A review for identification of initiating events in event tree development process on nuclear power plants

    SciTech Connect (OSTI)

    Riyadi, Eko H., E-mail: e.riyadi@bapeten.go.id [Center for Regulatory Assessment of Nuclear Installation and Materials, Nuclear Energy Regulatory Agency (BAPETEN), Jl. Gajah Mada 8 Jakarta 10120 (Indonesia)

    2014-09-30T23:59:59.000Z

    Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.

  18. On-line testing of calibration of process instrumentation channels in nuclear power plants. Phase 2, Final report

    SciTech Connect (OSTI)

    Hashemian, H.M. [Analysis and Measurement Services Corp., Knoxville, TN (United States)

    1995-11-01T23:59:59.000Z

    The nuclear industry is interested in automating the calibration of process instrumentation channels; this report provides key results of one of the sponsored projects to determine the validity of automated calibrations. Conclusion is that the normal outputs of instrument channels in nuclear plants can be monitored over a fuel cycle while the plant is operating to determine calibration drift in the field sensors and associated signal conversion and signal conditioning equipment. The procedure for on-line calibration tests involving calculating the deviation of each instrument channel from the best estimate of the process parameter that the instrument is measuring. Methods were evaluated for determining the best estimate. Deviation of each signal from the best estimate is updated frequently while the plant is operating and plotted vs time for entire fuel cycle, thereby providing time history plots that can reveal channel drift and other anomalies. Any instrument channel that exceeds allowable drift or channel accuracy band is then scheduled for calibration during a refueling outage or sooner. This provides calibration test results at the process operating point, one of the most critical points of the channel operation. This should suffice for most narrow-range instruments, although the calibration of some instruments can be verified at other points throughout their range. It should be pointed out that the calibration of some process signals such as the high pressure coolant injection flow in BWRs, which are normally off- scale during plant operation, can not be tested on-line.

  19. Department of Mechanical and Nuclear Engineering Spring 2012 Automatic Plant Watering System

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Automatic Plant Watering System Overview The goal of this project was to design an automatic plant watering system for commercial in the soil of household plants and delivery water to those plants on a need-only basis. The overall design

  20. Privatization of the gaseous diffusion plants and impacts on nuclear criticality safety administration

    SciTech Connect (OSTI)

    D`Aquila, D.M.; Holliday, R.T. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States); Dean, J.C. [Lockheed Martin Utility Services, Inc., Paducah, KY (United States)

    1996-12-31T23:59:59.000Z

    The Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) on July 1, 1993. The USEC is a government-owned business that leases those Gaseous Diffusion Plant (GDP) facilities at the Portsmouth, Ohio, and Paducah, Kentucky, sites from the U.S. Department of Energy (DOE) that are required for enriching uranium. Lockheed Martin Utility Services is the operating contractor for the USEC-leased facilities. The DOE has retained use of, and regulation over, some facilities and areas at the Portsmouth and Paducah sites for managing legacy wastes and environmental restoration activities. The USEC is regulated by the DOE, but is currently changing to regulation under the U.S. Nuclear Regulatory Commission (NRC). The USEC is also preparing for privatization of the uranium enrichment enterprise. These changes have significantly affected the nuclear criticality safety (NCS) programs at the sites.

  1. Feature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M. Edwards and Asok Ray

    E-Print Network [OSTI]

    Ray, Asok

    monitoring of nuclear power plants (NPP) is one of the key issues addressed in nuclear energy safety researchFeature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M is performed during each nuclear power plant refueling outage, which may not be cost effective [1

  2. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new : nuclear power plant production (MW) GP : total wind-nuclear power plant production (MW) EP : electrolyzerINTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR

  3. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    SciTech Connect (OSTI)

    Swain, A D; Guttmann, H E

    1983-08-01T23:59:59.000Z

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks.

  4. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect (OSTI)

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01T23:59:59.000Z

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

  5. Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System

    SciTech Connect (OSTI)

    Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

    2012-08-01T23:59:59.000Z

    The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities identified by experts to improve upon the design of the DCS. A set of nine design recommendations was developed to address these potential issues. The design principles addressed the following areas: (1) color, (2) pop-up window structure, (3) navigation, (4) alarms, (5) process control diagram, (6) gestalt grouping, (7) typography, (8) terminology, and (9) data entry. Visuals illustrating the improved DCS displays accompany the design recommendations. These nine design principles serve as the starting point to a planned general DCS style guide that can be used across the U.S. nuclear industry to aid in the future design of effective DCS interfaces.

  6. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect (OSTI)

    Norm Stanley

    2011-02-01T23:59:59.000Z

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  7. Abstract--A novel methodology for economic evaluation of hydrogen storage for a mixed wind-nuclear power plant is

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    -nuclear power plant is presented in this article in a context of a "Hydrogen Economy". The simulation power plant production (MW) NP : nuclear power plant production (MW) CP : electrolyzer consumption (MW, IEEE THE FEASIBILITY OF HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS #12;price scenario p

  8. Site Selection & Characterization Status Report for Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Mark Holbrook

    2007-09-01T23:59:59.000Z

    In the near future, the US Department of Energy (DOE) will need to make important decisions regarding design and construction of the Next Generation Nuclear Plant (NGNP). One part of making these decisions is considering the potential environmental impacts that this facility may have, if constructed here at the Idaho National Laboratory (INL). The National Environmental Policy Act (NEPA) of 1969 provides DOE decision makers with a process to systematically consider potential environmental consequences of agency decisions. In addition, the Energy Policy Act of 2005 (Title VI, Subtitel C, Section 644) states that the 'Nuclear Regulatory Commission (NRC) shall have licensing and regulatory authority for any reactor authorized under this subtitle.' This stipulates that the NRC will license the NGNP for operation. The NRC NEPA Regulations (10 CFR Part 51) require tha thte NRC prepare an Environmental Impact Statement (EIS) for a permit to construct a nuclear power plant. The applicant is required to submit an Environmental report (ER) to aid the NRC in complying with NEPA.

  9. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    SciTech Connect (OSTI)

    Kisner, Roger A [ORNL; Mullens, James Allen [ORNL; Wilson, Thomas L [ORNL; Wood, Richard Thomas [ORNL; Korsah, Kofi [ORNL; Qualls, A L [ORNL; Muhlheim, Michael David [ORNL; Holcomb, David Eugene [ORNL; Loebl, Andy [ORNL

    2007-08-01T23:59:59.000Z

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  10. A safety and regulatory assessment of generic BWR and PWR permanently shutdown nuclear power plants

    SciTech Connect (OSTI)

    Travis, R.J.; Davis, R.E.; Grove, E.J.; Azarm, M.A. [Brookhaven National Lab., Upton, NY (United States)

    1997-08-01T23:59:59.000Z

    The long-term availability of less expensive power and the increasing plant modification and maintenance costs have caused some utilities to re-examine the economics of nuclear power. As a result, several utilities have opted to permanently shutdown their plants. Each licensee of these permanently shutdown (PSD) plants has submitted plant-specific exemption requests for those regulations that they believe are no longer applicable to their facility. This report presents a regulatory assessment for generic BWR and PWR plants that have permanently ceased operation in support of NRC rulemaking activities in this area. After the reactor vessel is defueled, the traditional accident sequences that dominate the operating plant risk are no longer applicable. The remaining source of public risk is associated with the accidents that involve the spent fuel. Previous studies have indicated that complete spent fuel pool drainage is an accident of potential concern. Certain combinations of spent fuel storage configurations and decay times, could cause freshly discharged fuel assemblies to self heat to a temperature where the self sustained oxidation of the zircaloy fuel cladding may cause cladding failure. This study has defined four spent fuel configurations which encompass all of the anticipated spent fuel characteristics and storage modes following permanent shutdown. A representative accident sequence was chosen for each configuration. Consequence analyses were performed using these sequences to estimate onsite and boundary doses, population doses and economic costs. A list of candidate regulations was identified from a screening of 10 CFR Parts 0 to 199. The continued applicability of each regulation was assessed within the context of each spent fuel storage configuration and the results of the consequence analyses.

  11. Recommendations for NRC policy on shift scheduling and overtime at nuclear power plants

    SciTech Connect (OSTI)

    Lewis, P.M.

    1985-07-01T23:59:59.000Z

    This report contains the Pacific Northwest Laboratory's (PNL's) recommendations to the US Nuclear Regulatory Commission (NRC) for an NRC policy on shift scheduling and hours of work (including overtime) for control room operators and other safety-related personnel in nuclear power plants. First, it is recommended that NRC make three additions to its present policy on overtime: (1) limit personnel to 112 hours of work in a 14-day period, 192 hours in 28 days, and 2260 hours in one year; exceeding these limits would require plant manager approval; (2) add a requirement that licensees obtain approval from NRC if plant personnel are expected to exceed 72 hours of work in a 7-day period, 132 hours in 14 days, 228 hours in 28 days, and 2300 hours in one year; and (3) make the policy a requirement, rather than a nonbinding recommendation. Second, it is recommended that licensees be required to obtain NRC approval to adopt a routine 12-hour/day shift schedule. Third, it is recommended that NRC add several nonbinding recommendations concerning routine 8-hour/day schedules. Finally, because additional data can strengthen the basis for future NRC policy on overtime, five methods are suggested for collecting data on overtime and its effects. 44 refs., 10 tabs.

  12. Nuclear power plant Generic Aging Lessons Learned (GALL). Main report and appendix A

    SciTech Connect (OSTI)

    Kaza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U. [and others

    1996-12-01T23:59:59.000Z

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This document is Volume 1, consisting of the executive summary, summary and observations, and an appendix listing the GALL literature review tables.

  13. Updating Human Factors Engineering Guidelines for Conducting Safety Reviews of Nuclear Power Plants

    SciTech Connect (OSTI)

    O, J.M.; Higgins, J.; Stephen Fleger - NRC

    2011-09-19T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) programs of applicants for nuclear power plant construction permits, operating licenses, standard design certifications, and combined operating licenses. The purpose of these safety reviews is to help ensure that personnel performance and reliability are appropriately supported. Detailed design review procedures and guidance for the evaluations is provided in three key documents: the Standard Review Plan (NUREG-0800), the HFE Program Review Model (NUREG-0711), and the Human-System Interface Design Review Guidelines (NUREG-0700). These documents were last revised in 2007, 2004 and 2002, respectively. The NRC is committed to the periodic update and improvement of the guidance to ensure that it remains a state-of-the-art design evaluation tool. To this end, the NRC is updating its guidance to stay current with recent research on human performance, advances in HFE methods and tools, and new technology being employed in plant and control room design. This paper describes the role of HFE guidelines in the safety review process and the content of the key HFE guidelines used. Then we will present the methodology used to develop HFE guidance and update these documents, and describe the current status of the update program.

  14. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    DOE Patents [OSTI]

    Wroblewski, David (Mentor, OH); Katrompas, Alexander M. (Concord, OH); Parikh, Neel J. (Richmond Heights, OH)

    2009-09-01T23:59:59.000Z

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  15. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    None

    2005-01-01T23:59:59.000Z

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  16. achieving operational performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for nuclear power and conducted. Overall, 36 participants operated a digital nuclear power plant control workstation simulation Cummings, Mary "Missy" 51 Performance...

  17. Pacific Basin Nuclear Conference (PBNC 2012), BEXCO, Busan, Korea, March 18 ~ 23, 2012 CHALLENGES OF CYBER SECURITY FOR NUCLEAR POWER PLANTS

    E-Print Network [OSTI]

    Kim, Kwangjo

    .kim@kustar.ac.ae Abstract Nuclear Power Plants (NPPs) become one of the most important infrastructures in providing improvement. 1. Introduction Nuclear Power Plants (NPPs) become one of the most important infrastructures PBNC 2012 CHALLENGES OF CYBER SECURITY FOR NUCLEAR POWER PLANTS Kwangjo Kim KAIST, Daejeon, Korea

  18. ,"Plant","Primary Energy Source","Operating Company","Net Summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Bath County","Pumped Storage","Virginia Electric & Power Co",3003 2,"North...

  19. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    2006-10-18T23:59:59.000Z

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  20. Management of aging of nuclear power plant containment structures

    SciTech Connect (OSTI)

    Naus, D.; Oland, C.B. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.; Ellingwood, B. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering; Norris, W.E.; Graves, H.L. III [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

    1998-06-01T23:59:59.000Z

    Research addressing aging management of nuclear power plant concrete and steel containment structures is summarized. Accomplishments related to concrete containment structures include formation of a materials` property database; an aging assessment methodology to identify critical structures and degradation factors; guidelines and evaluation criteria for use in condition assessments; and a time-dependent reliability-based methodology for condition assessments and estimations of future performance. Under the steel containments and liners activity, a degradation assessment methodology has been developed, mathematical models that describe time-dependent changes in the containment due to aggressive environmental factors have been identified, and statistical data supporting the use of these models in time-dependent reliability analysis have been summarized.

  1. Concept of Operations for Nuclear Warhead Embedded Sensors

    SciTech Connect (OSTI)

    Rockett, P D; Koncher, T R

    2012-05-16T23:59:59.000Z

    Embedded arms-control-sensors provide a powerful new paradigm for managing compliance with future nuclear weapons treaties, where deployed warhead numbers will be reduced to 1000 or less. The CONOPS (Concept of Operations) for use with these sensors is a practical tool with which one may help define design parameters, including size, power, resolution, communications, and physical structure. How frequently must data be acquired and must a human be present? Will such data be acquired for only stored weapons or will it be required of deployed weapons as well? Will tactical weapons be subject to such monitoring or will only strategic weapons apply? Which data will be most crucial? Will OSI's be a component of embedded sensor data management or will these sensors stand alone in their data extraction processes? The problem space is massive, but can be constrained by extrapolating to a reasonable future treaty regime and examining the bounded options this scenario poses. Arms control verification sensors, embedded within the warhead case or aeroshell, must provide sufficient but not excessively detailed data, confirming that the item is a nuclear warhead and that it is a particular warhead without revealing sensitive information. Geolocation will be provided by an intermediate transceiver used to acquire the data and to forward the data to a central processing location. Past Chain-of-Custody projects have included such devices and will be primarily responsible for adding such indicators in the future. For the purposes of a treaty regime a TLI will be verified as a nuclear warhead by knowledge of (a) the presence and mass of SNM, (b) the presence of HE, and (c) the reporting of a unique tag ID. All of these parameters can be obtained via neutron correlation measurements, Raman spectroscopy, and fiber optic grating fabrication, respectively. Data from these sensors will be pushed out monthly and acquired nearly daily, providing one of several verification layers in depth, including on-site inspections, NTM, declarations, and semi-annual BCC meetings. Human intervention will not be necessary. The sheer numbers, small size, and wide distribution of warhead TLIs will mandate the added level of remote monitoring that Embedded Sensors can provide. This multilayer protection will limit the need to increase the frequency of OSIs, by adding confidence that declared TLIs remain as declared and that no undeclared items enter the regime without the other States Party's knowledge. Acceptance of Embedded arms control Sensor technologies will require joint development by all State's Parties involved. Principles of operation and robustness of technologies must be individually evaluated to sustain confidence in the strength of this system against attack. Weapons designers must be assured that these sensors will in no way impact weapon performance and operation, will not affect weapons security and safety, and will have a neutral impact upon weapon system surety. Each State's Party will need to conduct an in depth review of their weapons lifecycle to determine where moves may be reduced to minimize vulnerabilities and where random selection may be used to minimize the ability to make undeclared changes. In the end Verification is a political measure, not a technical one. If the potential users can gain sufficient confidence in the application of Embedded arms control Sensors, they could constitute the final layer of glue to hold together the next Nuclear Arms Control agreement.

  2. Review of nuclear power plant offsite power source reliability and related recommended changes to the NRC rules and regulations

    SciTech Connect (OSTI)

    Battle, R.E.; Clark, F.H.; Reddoch, T.W.

    1980-05-01T23:59:59.000Z

    The NRC has stated its concern about the reliability of the offsite power system as the preferred emergency source and about the possible damage to a pressurized water reactor (PWR) that could result from a rapid decay of power grid frequency. ORNL contracted with NRC to provide technical assistance to establish criteria that can be used to evaluate the offsite power system for the licensing of a nuclear power plant. The results of many of the studies for this contract are recommendations to assess and control the power grid during operation. This is because most of the NRC regulations pertaining to the offsite power system are related to the design of the power grid, and we believe that additional emphasis on monitoring the power grid operation will improve the reliability of the nuclear plant offsite power supply. 46 refs., 10 figs.

  3. A Literature Review on Ruthenium Behaviour in Nuclear Power Plant Severe Accidents

    E-Print Network [OSTI]

    Boyer, Edmond

    A Literature Review on Ruthenium Behaviour in Nuclear Power Plant Severe Accidents C. MUN , L Literature Review on Ruthenium Behaviour in Nuclear Power Plant Severe Accidents C. MUN a , L. CANTREL a , C Accidents Majeurs (DPAM), CEN Cadarache - France 1 b Commissariat à l'Energie Atomique (CEA), Direction de l'Energie

  4. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    Removal Equipment (nuclear plant) Turbine Building ClosedCooling Water System (nuclear plant) SteamReheater (nuclear plant) Inspection Water Induction

  5. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    SciTech Connect (OSTI)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  6. Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Main report and appendices, Volume 6, Part 1

    SciTech Connect (OSTI)

    Brown, T.D.; Kmetyk, L.N.; Whitehead, D.; Miller, L. [Sandia National Labs., Albuquerque, NM (United States); Forester, J. [Science Applications International Corp., Albuquerque, NM (United States); Johnson, J. [GRAM, Inc., Albuquerque, NM (United States)

    1995-03-01T23:59:59.000Z

    Traditionally, probabilistic risk assessments (PRAS) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Recent studies and operational experience have, however, implied that accidents during low power and shutdown could be significant contributors to risk. In response to this concern, in 1989 the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The program consists of two parallel projects being performed by Brookhaven National Laboratory (Surry) and Sandia National Laboratories (Grand Gulf). The program objectives include assessing the risks of severe accidents initiated during plant operational states other than full power operation and comparing the estimated risks with the risk associated with accidents initiated during full power operation as assessed in NUREG-1150. The scope of the program is that of a Level-3 PRA. The subject of this report is the PRA of the Grand Gulf Nuclear Station, Unit 1. The Grand Gulf plant utilizes a 3833 MWt BUR-6 boiling water reactor housed in a Mark III containment. The Grand Gulf plant is located near Port Gibson, Mississippi. The regime of shutdown analyzed in this study was plant operational state (POS) 5 during a refueling outage, which is approximately Cold Shutdown as defined by Grand Gulf Technical Specifications. The entire PRA of POS 5 is documented in a multi-volume NUREG report (NUREG/CR-6143). The internal events accident sequence analysis (Level 1) is documented in Volume 2. The Level 1 internal fire and internal flood analyses are documented in Vols 3 and 4, respectively.

  7. License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning

    SciTech Connect (OSTI)

    Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

  8. Underwater nuclear power plants: improved safety, environmental compatibility and efficiency

    SciTech Connect (OSTI)

    Galustov, K.Z.; Abadjyan, K.A.; Pavlov, A.B.

    1991-01-01T23:59:59.000Z

    The further development of nuclear power engineering depends on the creation of a new generation of nuclear power plant (NPP) projects that have a high degree of safety. Decisions ensuring secure NPP exploitation must be based on the possibility of eliminating or localizing accidents. Using environmental properties to achieve secure NPP exploitation and accident elimination leads to suggest the construction of NPPs in water. An efficient way to provide energy to remote coastal areas is through use of floatable construction of prefabricated units. Floatable construction raises the quality of works, reduces expenditures on industrial facilities, and facilities building conditions in districts with extreme climatic conditions. A type of NPP that is situated on a shelf with the reactor compartment placed at the sea bottom is proposed. The underwater location of the reactor compartment on the fixed depth allows the natural water environment conditions of natural hydrostatic pressure, heat transfer and circulation to provide NPP safety. An example of new concept for power units with under-water localization of the reactor compartment is provided by the double-block NPP in a VVER reactor.

  9. Extending Sensor Calibration Intervals in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Shumaker, Brent; Hashemian, Hash

    2012-11-15T23:59:59.000Z

    Currently in the USA, sensor recalibration is required at every refueling outage, and it has emerged as a critical path item for shortening outage duration. International application of calibration monitoring, such as at the Sizewell B plant in UK, has shown that sensors may operate for eight years, or longer, within calibration tolerances. Online monitoring can be employed to identify those sensors which require calibration, allowing for calibration of only those sensors which need it. The US NRC accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no plants have been granted the necessary license amendment to apply it. This project addresses key issues in advanced recalibration methodologies and provides the science base to enable adoption of best practices for applying online monitoring, resulting in a public domain standardized methodology for sensor calibration interval extension. Research to develop this methodology will focus on three key areas: (1) quantification of uncertainty in modeling techniques used for calibration monitoring, with a particular focus on non-redundant sensor models; (2) accurate determination of acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and (3) the use of virtual sensor estimates to replace identified faulty sensors to extend operation to the next convenient maintenance opportunity.

  10. Contract Specifications For Olkiluoto 3 Nuclear Power Plant

    SciTech Connect (OSTI)

    Patrakka, Eero [Teollisuuden Voima Oy, 27160 Olkiluoto (Finland)

    2004-07-01T23:59:59.000Z

    The Finnish Parliament ratified in May 2002 the application for a Decision-in- Principle (DIP) that was submitted by Teollisuuden Voima Oy (TVO) in November 2000 concerning the construction of a new nuclear power plant in Finland (FIN5). The bid inquiries for FIN5 were sent out by TVO in September 2002, requesting the bids by the end of March 2003. A contract with the plant supplier was signed in December 2003, implying the construction of a PWR of type EPR (European Pressurised Water Reactor) in Olkiluoto, called Olkiluoto 3 NPP. The preparation of Bid Inquiry Specifications (BIS) was initiated simultaneously with the filing of the application for DIP. The compilation of BIS was an evolutionary process, starting with the collection of relevant reference material, proceeding through the development of technical, administrative and commercial requirements, and ending with the consolidation of all documentation to a package containing the complete BIS. An intensive bid evaluation process started immediately after receiving the bids, accompanied by negotiations with the supplier candidates. The final Contract Specifications (CS) were constituted on the basis of the BIS supplemented with information contained in the bid and the outcome of the contract negotiations. (author)

  11. The expansion currently underway at Plant Vogtle is emblematic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total U. S. electricity generation. And more nuclear generation is on the way. At nearby Plant Vogtle, one of three Georgia nuclear stations operated by Southern Company,...

  12. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    SciTech Connect (OSTI)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01T23:59:59.000Z

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  13. Next Generation Nuclear Plant Research and Development Program Plan

    SciTech Connect (OSTI)

    P. E. MacDonald

    2005-01-01T23:59:59.000Z

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen production [DOE 2004] and energy conversion technologies programs are described elsewhere.

  14. Improved assessment of population doses and risk factors for a nuclear power plant under accident conditions 

    E-Print Network [OSTI]

    Meyer, Christopher Martin

    1985-01-01T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE August 1985 Major Subject: Nuclear Engineering IMPROVED ASSESSMENT OF POPULATION DOSES AND RISK FACTORS FOR A NUCLEAR POWER PLANT UNDER ACCIDENT CONDITIONS A Thesis by CHRISTOPHER MARTIN MEYER Approved... as to style and content by: G. A. Schlapper (Chair of Committee R. B. Ko zen (Member) R. R. Hart (Member) . Erdman (Head of Department) August 1985 ABSTRACT Improved Assessment of Population Doses and Risk Factors for a Nuclear Power Plant Under...

  15. Reproductive Life Events in the Population Living in the Vicinity of a Nuclear Waste Reprocessing Plant

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reproductive Life Events in the Population Living in the Vicinity of a Nuclear Waste Reprocessing: There is concern about the health of populations living close to nuclear waste reprocessing plants. We conducted a comparative study on reproductive life events in the general population living near the nuclear waste

  16. Thirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago

    E-Print Network [OSTI]

    Thirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago Representatives of more than 30 countries signed a deal on Tuesday to build the world's most advanced nuclear fusion reactor nuclear reactors, but critics argue it could be at least 50 years before a commercially viable reactor

  17. A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo

    E-Print Network [OSTI]

    Jee, Eunkyoung

    require safety demonstration. RPS software of APR-1400 advanced nuclear power reactor, in developmentA Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div-based software in nuclear reactor protection system (RPS). FBD programs are developed manually and revised

  18. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect (OSTI)

    J. K. Wright; R. N. Wright

    2010-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  19. Nuclear power plant transient diagnostics using artificial neural networks that allow ``don`t-know`` classifications

    SciTech Connect (OSTI)

    Bartal, Y.; Lin, J.; Uhrig, R.E. [Oak Ridge National Lab., TN (United States). Instrumentation and Controls Div.

    1995-06-01T23:59:59.000Z

    A nuclear power plant`s (NPP`s) status is usually monitored by a human operator. Any classifier system used to enhance the operator`s capability to diagnose a safety-critical system like an NPP should classify a novel transient as ``don`t-know`` if it is not contained within its accumulated knowledge base. In particular, the classifier needs some kind of proximity measure between the new data and its training set. Artificial neural networks have been proposed as NPP classifiers, the most popular ones being the multilayered perceptron (MLP) type. However, MLPs do not have a proximity measure, while learning vector quantization, probabilistic neural networks (PNNs), and some others do. This proximity measure may also serve as an explanation to the classifier`s decision in the way that case-based-reasoning expert systems do. The capability of a PNN network as a classifier is demonstrated using simulator data for the three-loop 436-MW(electric) Westinghouse San Onofre unit 1 pressurized water reactor. A transient`s classification history is used in an ``evidence accumulation`` technique to enhance a classifier`s accuracy as well as its consistency.

  20. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

  1. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

  2. Joint Technical Operations Team | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Render Safe Joint Technical Operations Team Joint Technical Operations Team JTOT Logo NNSA's Joint Technical Operations Team (JTOT) provides specialized technical...

  3. Integrated head package cable carrier for a nuclear power plant

    DOE Patents [OSTI]

    Meuschke, Robert E. (Monroeville, PA); Trombola, Daniel M. (Murrysville, PA)

    1995-01-01T23:59:59.000Z

    A cabling arrangement is provided for a nuclear reactor located within a containment. Structure inside the containment is characterized by a wall having a near side surrounding the reactor vessel defining a cavity, an operating deck outside the cavity, a sub-space below the deck and on a far side of the wall spaced from the near side, and an operating area above the deck. The arrangement includes a movable frame supporting a plurality of cables extending through the frame, each connectable at a first end to a head package on the reactor vessel and each having a second end located in the sub-space. The frame is movable, with the cables, between a first position during normal operation of the reactor when the cables are connected to the head package, located outside the sub-space proximate the head package, and a second position during refueling when the cables are disconnected from the head package, located in the sub-space. In a preferred embodiment, the frame straddles the top of the wall in a substantially horizontal orientation in the first position, pivots about an end distal from the head package to a substantially vertically oriented intermediate position, and is guided, while remaining about vertically oriented, along a track in the sub-space to the second position.

  4. The impact of offsite factors on the safety performance of small nuclear power plants

    SciTech Connect (OSTI)

    Baranaev, Yu.D.; Viktorov, A.N. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation)

    1991-01-01T23:59:59.000Z

    The results of an analysis of the influence of offsite factors on small nuclear power-plant (SNPP) safety performance during postulated severe accidents are presented. Given the plant locations in the immediate vicinity of residential areas and the impossibility of accomplishing the expeditious evacuation of the public, the risk caused by an SNPP severe accident may be considerably less than that for such an event in a large nuclear power plant. 3 refs., 3 figs., 5 tabs.

  5. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    SciTech Connect (OSTI)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01T23:59:59.000Z

    The risks involved in the routine release of /sup 85/Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of /sup 85/Kr. Instead of releasing the /sup 85/Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing /sup 85/Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from /sup 85/Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of /sup 85/Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for /sup 85/Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated /sup 3/H and /sup 14/C also encourage delaying implementation of the /sup 85/Kr recovery in the early plants.

  6. Aquatic impacts from operation of three midwestern nuclear power stations: Cooper Nuclear Station environmental appraisal report

    SciTech Connect (OSTI)

    Brice, J.R.

    1981-10-01T23:59:59.000Z

    Cooper Nuclear Station is located on the Nebraska side of the Missouri River in Nemaha County. The station utilizes a boiling water reactor and steam turbine generator to produce 778 MW (net) of electrical power. The cooling system is a once-through design that withdraws water from, and discharges to, the Missouri River. No significant adverse impacts to the biota of the Missouri River from the Cooper Nuclear Station discharge were detected. Localized effects in the vicinity of the discharge have been observed. These include changes in the diversity and productivity of phytoplankton, periphyton, and benthic invertebrates at certain times of the year. The station appears to entrain large numbers of catostomid larvae, but this loss is not reflected in the available commercial fisheries statistics. Large numbers of gizzard shad and freshwater drum are impinged annually by Cooper Nuclear Station, but neither of these species seem to be adversely affected. Bigmouth buffalo populations could potentially suffer losses, but as was the case with the other catostomids, commercial catches of bigmouth buffalo did not seem to be affected by station operation.

  7. Example G Cost of construction of nuclear power plants Description of data

    E-Print Network [OSTI]

    Reid, Nancy

    1 Example G Cost of construction of nuclear power plants Description of data Table G.1 gives reactor (LWR) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6

  8. Example G Cost of construction of nuclear power plants Description of data

    E-Print Network [OSTI]

    Reid, Nancy

    Example G Cost of construction of nuclear power plants Description of data Table G.1 gives data) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6 lines

  9. Department of Mechanical and Nuclear Engineering Spring 2012 East Campus Power Plant Deaerator Optimization

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 East Campus Power Plant Deaerator Optimization Overview In the East Campus Power plant a new Deaerator system has been installed which Deaerator is the most efficient and then make a recommendation to the plant of which one should

  10. Recent Improvement of Measurement Instrumentation to Supervise Nuclear Operations and to Contribute Input Data to 3D Simulation Code - 13289

    SciTech Connect (OSTI)

    Mahe, Charly; Chabal, Caroline [CEA, Nuclear Energy Division, Fuel Technology Development Unit, Simulation and Dismantling Technique Laboratory, Marcoule Center, BP 17171, 30207 Bagnols / Ceze (France)] [CEA, Nuclear Energy Division, Fuel Technology Development Unit, Simulation and Dismantling Technique Laboratory, Marcoule Center, BP 17171, 30207 Bagnols / Ceze (France)

    2013-07-01T23:59:59.000Z

    The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, the radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is used to quantify the activity of hot spots and can also then be entered in 3D models of nuclear plants to simulate intervention scenarios. Recent developments and results will be presented regarding this. Finally, thanks to a large amount of feedback, the interest of using complementary measurements will be discussed. In fact, the recent use of 3D simulation codes requires very accurate knowledge of nuclear plant radiological data. The use of coupled devices such as imaging devices, (gamma and alpha cameras), gamma spectrometry, dose rate mapping, collimated / un-collimated measurements and many other physical values gives an approach to the radiological knowledge of a process or plant with the lowest possible uncertainty. In line with this, the paper will conclude with the future developments and trials that could be assessed in that field of application. (authors)

  11. Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control Approach

    E-Print Network [OSTI]

    Forsyth, Peter A.

    Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control of Waterloo, Waterloo ON, Canada N2L 3G1 Abstract. In this paper, we value hydroelectric power plant cash. The power plant valuation problem under a ramping constraint is characterized as a bounded stochastic

  12. Pathway from the National Ignition Facility to an operational LIFE power plant

    E-Print Network [OSTI]

    Pathway from the National Ignition Facility to an operational LIFE power plant Presentation to AAAS next step, after NIF, is construction of a full-scale power plant NIF-1111-23807.ppt 4 #12 · PG&E · Southern Company · Wisconsin Energy · SSEB Power Plant Vendors Laser

  13. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  14. Behavior-based rules for fitness-for-duty assessment of nuclear power plant personnel

    SciTech Connect (OSTI)

    Kennedy, R.S.; Turnage, J.J.; Price, H.E.; Lane, N.E.

    1989-01-01T23:59:59.000Z

    The safe and reliable operation of nuclear power plants requires that plant personnel not be under the influence of any substance, legal or illegal, or mentally or physically impaired from any cause that in any way adversely affects their ability to safely and competently perform their duties. This goal has been formalized by the US Nuclear Regulatory Commission in their proposed rule for a fitness-for-duty program. The purpose of this paper is to describe a performance-based tool based on surrogate tests and dose equivalency methodologies that is a viable candidate for fitness-for-duty assessment. The automated performance test system (APTS) is a microcomputer-based human performance test battery that has been developed over a decade of research supported variously by the National Science Foundation, National Aeronautics and Space Administration, US Department of Energy, and the US Navy and Army. Representing the most psychometrically sound test from evaluations of over 150 well-known tests of basic psychomotor and cognitive skills, the battery provides direct prediction of a worker's fitness for duty. Twenty-four tests are suitable for use, and a dozen have thus far been shown to be sensitive to the effects of legal and illegal drugs, alcohol, fatigue, stress, and other causes of impairment.

  15. DATA-DRIVEN ON-LINE PREDICTION OF THE AVAILABLE RECOVERY TIME IN NUCLEAR POWER PLANT FAILURE SCENARIOS

    E-Print Network [OSTI]

    Boyer, Edmond

    -XADS). Key Words: Recovery Time, Emergency Accident Management, Nuclear Power Plant, Lead- Bismuth Eutectic e1 DATA-DRIVEN ON-LINE PREDICTION OF THE AVAILABLE RECOVERY TIME IN NUCLEAR POWER PLANT FAILURE [Øwre, 2001]. Yet, the problem of what kind of decision support to provide to nuclear power plant

  16. Abstract--Resins are used in nuclear power plants for water ultrapurification. Two approaches are considered in this work

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract--Resins are used in nuclear power plants for water ultrapurification. Two approaches in manufacturing ultrapure water for nuclear power plants. Resins allow the removal of ionic impurities to subparts-per-million. Thereby in nuclear power plants, resins contribute to guarantee personnel safety, to control feed system

  17. Conference committees Chairman of the conference "New Nuclear Power Plants in the Netherlands", June 21-22, 2011,

    E-Print Network [OSTI]

    Conference committees Chairman of the conference "New Nuclear Power Plants in the Netherlands Nuclear Power Plants, September 15-19, 2003, Kyoto, Japan. Session chairman GENES4/ANP2003 ,,International Conference on Global Environment and Advanced Nuclear Power Plants, September 15-19, 2003, Kyoto

  18. The new Kaiserstuhl coking plant: The heating system -- Design, construction and initial operating experience

    SciTech Connect (OSTI)

    Strunk, J.

    1996-12-31T23:59:59.000Z

    At the end of 1992 the new coke plant Kaiserstuhl in Dortmund/Germany with presently the largest coke ovens world-wide started its production operation in close linkage to the Krupp-Hoesch Metallurgical Works after about 35 months construction time. This plant incorporating comprehensive equipment geared to improve environmental protection is also considered as the most modern coke plant of the world. The heating-system and first results of operation will be presented.

  19. Nuclear and Radiological Engineering and Medical Physics Programs

    E-Print Network [OSTI]

    Weber, Rodney

    Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

  20. Next Generation Nuclear Plant Defense-in-Depth Approach

    SciTech Connect (OSTI)

    Edward G. Wallace; Karl N. Fleming; Edward M. Burns

    2009-12-01T23:59:59.000Z

    The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

  1. Quiz # 7, STAT 383, Prof. Suman Sanyal, April 8, 2009 (Q2, Page 354) To decide whether the pipe welds in a nuclear power plant meet

    E-Print Network [OSTI]

    Sanyal, Suman

    welds in a nuclear power plant meet specifications, a random sample of welds is to be selected : µ nuclear power plants is to determine if welds

  2. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect (OSTI)

    Patterson, M.W.

    1994-10-01T23:59:59.000Z

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  3. Nuclear-power-plant perimeter-intrusion alarm systems

    SciTech Connect (OSTI)

    Halsey, D.J.

    1982-04-01T23:59:59.000Z

    Timely intercept of an intruder requires the examination of perimeter barriers and sensors in terms of reliable detection, immediate assessment and prompt response provisions. Perimeter security equipment and operations must at the same time meet the requirements of the Code of Federal Regulations, 10 CFR 73.55 with some attention to the performance and testing figures of Nuclear Regulatory Guide 5.44, Revision 2, May 1980. A baseline system is defined which recommends a general approach to implementing perimeter security elements: barriers, lighting, intrusion detection, alarm assessment. The baseline approach emphasizes cost/effectiveness achieved by detector layering and logic processing of alarm signals to produce reliable alarms and low nuisance alarm rates. A cost benefit of layering along with video assessment is reduction in operating expense. The concept of layering is also shown to minimize testing costs where detectability performance as suggested by Regulatory Guide 5.44 is to be performed. Synthesis of the perimeter intrusion alarm system and limited testing of CCTV and Video Motion Detectors (VMD), were performed at E-Systems, Greenville Division, Greenville, Texas during 1981.

  4. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect (OSTI)

    Lanc, T.L.

    1992-01-01T23:59:59.000Z

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  5. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect (OSTI)

    Lanc, T.L.

    1992-12-31T23:59:59.000Z

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  6. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    SciTech Connect (OSTI)

    Boyer, Brian D [Los Alamos National Laboratory

    2012-08-15T23:59:59.000Z

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  7. The trend of digital control system design for nuclear power plants in Korea

    SciTech Connect (OSTI)

    Park, S. H.; Jung, H. Y.; Yang, C. Y.; Choe, I. N. [Korea Power Engineering Company, 360-9 Mabuk-Dong, Yongin-Si, Gyeonggi-Do, 446-713 (Korea, Republic of)

    2006-07-01T23:59:59.000Z

    Currently there are 20 nuclear power plants (NPPs) in operation, and 6 more units are under construction in Korea. The control systems of those NPPs have also been developed together with the technology advancement. Control systems started with On-Off control using the relay logic, had been evolved into Solid-State logic using TTL ICs, and applied with the micro-processors since the Yonggwang NPP Units 3 and 4 which started its construction in 1989. Multiplexers are also installed at the local plant areas to collect field input and to send output signals while communicating with the controllers located in the system cabinets near the main control room in order to reduce the field wiring cables. The design of the digital control system technology for the NPPs in Korea has been optimized to maximize the operability as well as the safety through the design, construction, start-up and operation experiences. Both Shin-Kori Units 1 and 2 and Shin-Wolsong Units 1 and 2 NPP projects under construction are being progressed at the same time. Digital Plant Control Systems of these projects have adopted multi-loop controllers, redundant loop configuration, and soft control system for the radwaste system. Programmable Logic Controller (PLC) and Distributed Control System (DCS) are applied with soft control system in Shin-Kori Units 3 and 4. This paper describes the evolvement of control system at the NPPs in Korea and the experience and design improvement through the observation of the latest failure of the digital control system. In addition, design concept and its trend of the digital control system being applied to the NPP in Korea are introduced. (authors)

  8. Table 1. Updated estimates of power plant capital and operating...

    U.S. Energy Information Administration (EIA) Indexed Site

    CT",85,10850,,973,7.34,15.45,"Y" "Advanced CT",210,9750,,676,7.04,10.37,"Y" "Fuel Cells",10,9500,,7108,0,43,"Y" " Uranium" "Dual Unit Nuclear",2234,"N...

  9. Microprocessor-based control systems application in nuclear power plant critical systems

    SciTech Connect (OSTI)

    Shah, M.R.; Nowak, J.B. (Sargent and Lundy, Chicago, IL (US))

    1992-01-01T23:59:59.000Z

    Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems in existing plants or design new power plants with microprocessor-based control systems.

  10. Confirmation of the seismic resistance of nuclear power plant equipment after assembly

    SciTech Connect (OSTI)

    Kaznovsky, P. S.; Kaznovsky, A. P.; Saakov, E. S.; Ryasnyj, S. I. [JSC 'Atomtehenergo' (Russian Federation)

    2013-05-15T23:59:59.000Z

    It is shown that the natural frequencies and damping decrements of nuclear power plant equipment can only be determined experimentally and directly at the power generation units (reactors) of nuclear power plants under real disassembly conditions for the equipment, piping network, thermal insulation, etc. A computational experimental method is described in which the natural frequencies and damping decrements are determined in the field and the seismic resistance is reevaluated using these values. This method is the basis of the standards document 'Methods for confirming the dynamic characteristics of systems and components of the generating units of nuclear power plants which are important for safety' prepared and introduced in 2012.

  11. Atmospheric dispersion and the radiological consequences of normal airborne effluents from a nuclear power plant

    SciTech Connect (OSTI)

    Fang, D.; Yang, L. [Tsinghua Univ., Beijing (China); Sun, C.Z. [Suhou Nuclear Research Inst., Suzhou (China)

    1995-01-01T23:59:59.000Z

    The relationship between the consequences of the normal exhaust of radioactive materials in air from nuclear power plants and atmospheric dispersion is studied. Because the source terms of the exhaust from a nuclear power plant are relatively low and their radiological consequences are far less than the corresponding authoritative limits, the atmospheric dispersion models, their various modifications, and selections of relevant parameters have few effects on those consequences. In the environmental assessment and siting, the emphasis should not be placed on the consequence evaluation of routine exhaust of nuclear power plants, and the calculation of consequences of the exhaust and atmospheric field measurements should be appropriately, simplified. 12 refs., 5 figs., 7 tabs.

  12. ASSESSMENT OF TOKAMAK PLASMA OPERATION MODES AS FUSION POWER PLANTS

    E-Print Network [OSTI]

    California at San Diego, University of

    disruptions 1 1/10 Demonstrate a closed tritium fuel cycle Yes Yes Must demonstrate operation at partial load

  13. Vulnerability of nuclear power plant structures to large external fires

    SciTech Connect (OSTI)

    Bennett, D.E.

    1983-08-01T23:59:59.000Z

    This report examines the inherent vulnerability of nuclear power plant structures to the thermal environments arising from large, external fires. The inherent vulnerability is the capacity of the concrete safety-related structures to absorb thermal loads without exceeding the appropriate thermal and structural design criteria. The potential sources of these thermal environments are large, offsite fires arising from accidents involving the transportation or storage of large quantities of flammable gases or liquids. A realistic thermal response analysis of a concrete panel was performed using three limiting criteria: temperature at the first rebar location, erosion and ablation of the front (exterior) surface due to high heat fluxes, and temperature at the back (interior) surface. The results of this analysis yield a relationship between incident heat flux and the maximum allowable exposure duration. Example calculations for the break of a 0.91 m (3') diameter high-pressure natural gas pipeline and a 1 m/sup 2/ hole in a 2-1/2 million gallon gasoline tank show that the resulting fires do not pose a significant hazard for ranges of 500 m or greater.

  14. Seismic fragility of nuclear power plant components (Phase II)

    SciTech Connect (OSTI)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Pepper, S.E. (Brookhaven National Lab., Upton, NY (USA))

    1990-02-01T23:59:59.000Z

    As part of the Component Fragility Program which was initiated in FY 1985, three additional equipment classes have been evaluated. This report contains the fragility results and discussions on these equipment classes which are switchgear, I and C panels and relays. Both low and medium voltage switchgear assemblies have been considered and a separate fragility estimate for each type is provided. Test data on cabinets from the nuclear instrumentation/neutron monitoring system, plant/process protection system, solid state protective system and engineered safeguards test system comprise the BNL data base for I and C panels (NSSS). Fragility levels have been determined for various failure modes of switchgear and I C panels, and the deterministic results are presented in terms of test response spectra. In addition, the test data have been evaluated for estimating the respective probabilistic fragility levels which are expressed in terms of a median value, an uncertainty coefficient, a randomness coefficient and an HCLPF value. Due to a wide variation of relay design and the fragility level, a generic fragility level cannot be established for relays. 7 refs., 13 figs., 12 tabs.

  15. Reassessment of selected factors affecting siting of Nuclear Power Plants

    SciTech Connect (OSTI)

    Davis, R.E.; Hanson, A.L.; Mubayi, V.; Nourbakhsh, H.P.

    1997-02-01T23:59:59.000Z

    Brookhaven National Laboratory has performed a series of probabilistic consequence assessment calculations for nuclear reactor siting. This study takes into account recent insights into severe accident source terms and examines consequences in a risk based format consistent with the quantitative health objectives (QHOs) of the NRC`s Safety Goal Policy. Simplified severe accident source terms developed in this study are based on the risk insights of NUREG-1150. The results of the study indicate that both the quantity of radioactivity released in a severe accident as well as the likelihood of a release are lower than those predicted in earlier studies. The accident risks using the simplified source terms are examined at a series of generic plant sites, that vary in population distribution, meteorological conditions, and exclusion area boundary distances. Sensitivity calculations are performed to evaluate the effects of emergency protective action assumptions on the risk of prompt fatality and latent cancers fatality, and population relocation. The study finds that based on the new source terms the prompt and latent fatality risks at all generic sites meet the QHOs of the NRC`s Safety Goal Policy by margins ranging from one to more than three orders of magnitude. 4 refs., 17 figs., 24 tabs.

  16. Testing of a naturally aged nuclear power plant inverter and battery charger

    SciTech Connect (OSTI)

    Gunther, W.E.

    1988-09-01T23:59:59.000Z

    A naturally aged inverter and battery charger were obtained from the Shippingport facility. This equipment was manufactured in 1974, and was installed at Shippingport in 1975 as part of a major plant modification. Testing was performed on this equipment under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program to evaluate the type and extent of degradation due to aging, and to determine the effectiveness of condition monitoring techniques which could be used to detect aging effects. Steady state testing was conducted over the equipment's entire operating range. Step load changes were also initiated in order to monitor the electrical response. During this testing, component temperatures were monitored and circuit waveforms analyzed. Results indicated that aging had not substantially affected equipment operation. On the other hand, when compared with original acceptance test data, the monitoring techniques employed were sensitive to changes in measurable component and equipment parameters indicating the viability of detecting degradation prior to catastrophic failure. 7 refs., 34 figs., 12 tabs.

  17. Review of Methods Related to Assessing Human Performance in Nuclear Power Plant Control Room Simulations

    SciTech Connect (OSTI)

    Katya L Le Blanc; Ronald L Boring; David I Gertman

    2001-11-01T23:59:59.000Z

    With the increased use of digital systems in Nuclear Power Plant (NPP) control rooms comes a need to thoroughly understand the human performance issues associated with digital systems. A common way to evaluate human performance is to test operators and crews in NPP control room simulators. However, it is often challenging to characterize human performance in meaningful ways when measuring performance in NPP control room simulations. A review of the literature in NPP simulator studies reveals a variety of ways to measure human performance in NPP control room simulations including direct observation, automated computer logging, recordings from physiological equipment, self-report techniques, protocol analysis and structured debriefs, and application of model-based evaluation. These methods and the particular measures used are summarized and evaluated.

  18. Features of adsorbed radioactive chemical elements and their isotopes distribution in iodine air filters AU-1500 at nuclear power plants

    E-Print Network [OSTI]

    Neklyudov, I M; Dikiy, N P; Ledenyov, O P; Lyashko, Yu V

    2013-01-01T23:59:59.000Z

    The main aim of research is to investigate the physical features of spatial distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the iodine air filters of the type of AU1500 in the forced exhaust ventilation systems at the nuclear power plant. The gamma activation analysis method is applied to accurately characterize the distribution of the adsorbed radioactive chemical elements and their isotopes in the granular filtering medium in the AU1500 iodine air filter after its long term operation at the nuclear power plant. The typical spectrum of the detected chemical elements and their isotopes in the AU1500 iodine air filter, which was exposed to the bremsstrahlung gamma quantum irradiation, produced by the accelerating electrons in the tantalum target, are obtained. The spatial distributions of the detected chemical element 127I and some other chemical elements and their isotopes in the layer of absorber, which was made of the cylindrical coal granule...

  19. Initial quantification of human error associated with specific instrumentation and control system components in licensed nuclear power plants

    SciTech Connect (OSTI)

    Luckas, W.J. Jr.; Lettieri, V.; Hall, R.E.

    1982-02-01T23:59:59.000Z

    This report provides a methodology for the initial quantification of specific categories of human errors made in conjunction with several instrumentation and control (I and C) system components operated, maintained, and tested in licensed nuclear power plants. The resultant human error rates (HER) provide the first real systems bases of comparison for the existing derived and/or best judgement equivalent set of such rates or probabilities. These calculated error rates also provide the first real indication of human performance as it relates directly to specific tasks in nuclear plants. This work of developing specific HERs is both an extension of and an outgrowth of the generic HERs developed for safety system pumpc and valves as reported in NUREG/CR-1880.

  20. Initial quantification of human error associated with specific instrumentation and control system components in licensed nuclear power plants

    SciTech Connect (OSTI)

    Luckas, W.J. Jr.; Lettieri, V.; Hall, R.E.

    1982-02-01T23:59:59.000Z

    This report provides a methodology for the initial quantification of specific categories of human errors made in conjunction with several instrumentation and control (I and C) system components operated, maintained, and tested in licensed nuclear power plants. The resultant human error rates (HER) provide the first real systems bases of comparison for the existing derived and/or best judgement equivalent set of such rates or probabilities. These calculated error rates also provide the first real indication of human performance as it relates directly to specific tasks in nuclear plants. This work of developing specific HERs is both an extension of and an outgrowth of the generic HERs developed for safety system pumps and valves as reported in NUREG/CR-1880.