Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Brookhaven Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Nuclear Physics Historically, nuclear physicists have studied the structure, characteristics, and behavior of the atomic nucleus and the nature of the nuclear force....

2

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Directorate Nuclear and Particle Physics (NPP) at BNL comprises the Collider-Accelerator Department (including the NASA Space Radiation Laboratory,...

3

NIST Nuclear Physics Data  

Science Conference Proceedings (OSTI)

Nuclear Physics Data. Radionuclide Half-Life Measurements Made at NIST; Atomic Weights and Isotopic Compositions. ... Physical Reference Data. ...

2010-10-05T23:59:59.000Z

4

(Nuclear theory). [Research in nuclear physics  

SciTech Connect

This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

Haxton, W.

1990-01-01T23:59:59.000Z

5

Nuclear Physics with trapped  

E-Print Network (OSTI)

Nuclear Physics with trapped atoms and ions #12;2/2/2013Dan Melconian #12;2/2/2013Dan Melconian Outline · Scope and applications of nuclear physics precision frontier compliments LHC properties and aquifers in the Sahara #12;2/2/2013Dan Melconian What is Nuclear Physics? · Began with the study

Boas, Harold P.

6

LANL | Physics | Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

of quantum chromodynamics Quantum chromodynamics is the theory that the strong nuclear force holds together the atomic nucleus. We lead experiments at the Relativistic...

7

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting 12-14 September 2006 Tuesday, 12 September Room 2-160, Bldg. 510 (Physics) 0900...

8

Whither Nuclear Physics ?  

E-Print Network (OSTI)

Nuclear Physics has had its ups and downs. However in recent years, bucked up by some new and often puzzling data, it has become a potentially very rich field. We review some of these exciting developments in a few important sectors of nuclear physics. Emphasis shall be on the study of exotic nuclei and the new physics that these nuclei are teaching us.

Syed Afsar Abbas

2008-01-07T23:59:59.000Z

9

Nuclear Physics Links  

NLE Websites -- All DOE Office Websites (Extended Search)

To Other Interesting Educational Pages Fusion in the Sun Other Berkeley Lab Nuclear Physics Web Pages Table of Isotopes Animated Glossary Viewing the Periodic Table of Elements...

10

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

at RHIC or the AGS should be submitted to the Associate Laboratory Director for Nuclear and Particle Physics, presently Steve Vigdor, Bldg. 510F, Brookhaven National...

11

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting June 15-16, 2009 Agenda Reference Documents Letter to Barbara Jacak and Nu Xu (129...

12

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven National Laboratory Nuclear and Particle Physics Program Advisory Committee Meeting 7-8 June 2012 Agenda Related Documents: PHENIX Beam Use Proposal, STAR Beam Use...

13

Nuclear Physics from QCD  

E-Print Network (OSTI)

Effective field theories provide a bridge between QCD and nuclear physics. I discuss light nuclei from this perspective, emphasizing the role of fine-tuning.

U. van Kolck

2008-12-20T23:59:59.000Z

14

PERSPECTIVES OF NUCLEAR PHYSICS  

E-Print Network (OSTI)

The organizers of this meeting have asked me to present perspectives of nuclear physics. This means to identify the areas where nuclear physics will be expanding in the next future. In six chapters a short overview of these areas will be given, where I expect that nuclear physics will develop quite fast: (1) Quantum Chromodynamics and effective field theories in the confinement region. (2) Nuclear structure at the limits. (3) High energy heavy ion collisions. (4) Nuclear astrophysics. (5) Neutrino physics. (6) Test of physics beyond the standard model by rare processes. After a survey over these six points I will pick out a few topics where I will go more in details. There is no time to give for all six points detailed examples. I shall discuss the following examples of the six topics mentionned above: (1) The perturbative chiral quark model and the nucleon ?-term. (2) VAMPIR (Variation After Mean field Projection In Realistic model spaces and with realistic forces) as an example of the nuclear structure renaissance. (3) Measurement of important astrophysical nuclear reactions in the Gamow peak. (4) The solar neutrino problem. As examples for testing new physics beyond the standard model by rare processes I had prepared to speak about the measurement of the electric neutron dipole moment and of the neutrinoless double beta decay. But the time is limited and so I have to skip these points, although they are extremely interesting.

Amand Faessler

2002-01-01T23:59:59.000Z

15

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA Brookhaven National Laboratory High Energy and Nuclear Physics Program Advisory Committee Meeting 23-24 March 2006 Thursday, 23 March Executive Session Room 2-160, Bldg. 510...

16

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Program Advisory Committee Meeting 21-22 June 2010 Agenda Submitted Proposals STAR Beam Use Proposal PHENIX Beam Use Proposal LoI: Feasibility Test of...

17

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Agenda Brookhaven Nuclear and Particle Physics Program Advisory Committee Meeting 6-8 June 2011 Reference Documents PAC Recommendations, 21-22 June 2010 Charge to PAC for...

18

Nuclear Physics Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion in the Sun Quark Matter 2004 Teacher Workshop - There are a number of presentations at a high school level which show the field of high energy nuclear physics - the search...

19

Perspectives of Nuclear Physics  

E-Print Network (OSTI)

The organizers of this meeting have asked me to present perspectives of nuclear physics. This means to identify the areas where nuclear physics will be expanding in the next future. In six chapters a short overview of these areas will be given, where I expect that nuclear physics willdevelop quite fast: A. Quantum Chromodynamics and effective field theories in the confinement region; B. Nuclear structure at the limits; C. High energy heavy ion collisions; D. Nuclear astrophysics; E. Neutrino physics; F. Test of physics beyond the standard model by rare processes. After a survey over these six points I will pick out a few topics where I will go more in details. There is no time to give for all six points detailed examples. I shall discuss the following examples of the six topics mentionned above: 1. The perturbative chiral quark model and the nucleon $\\Sigma$-term, 2. VAMPIR (Variation After Mean field Projection In Realistic model spaces and with realistic forces) as an example of the nuclear structure renais...

Faessler, A

2002-01-01T23:59:59.000Z

20

An Outlook on Nuclear Physics  

E-Print Network (OSTI)

A brief outlook on low-energy nuclear physics is presented. Selected recent developments in nuclear structure theory are highlighted and a few open questions are discussed.

A. B. Balantekin

2013-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

An Outlook on Nuclear Physics  

E-Print Network (OSTI)

A brief outlook on low-energy nuclear physics is presented. Selected recent developments in nuclear structure theory are highlighted and a few open questions are discussed.

Balantekin, A B

2013-01-01T23:59:59.000Z

22

Research in theoretical nuclear physics  

SciTech Connect

This report discusses topics in the following areas: Low energy nuclear reactions induced by light and heavy ions; medium energy physics; and nuclear structure. (LSP)

Udagawa, T.

1992-09-01T23:59:59.000Z

23

Nuclear & Particle Physics, Astrophysics, Cosmology  

NLE Websites -- All DOE Office Websites (Extended Search)

reality environment. Nuclear and particle physics, applied physics Animation of new reactor concept for deep space exploration 4:32 Animation of new reactor concept for deep...

24

Research in theoretical nuclear physics  

SciTech Connect

The work done during the past year covers three separate areas, low energy nuclear reactions intermediate energy physics, and nuclear structure studies. This manuscript summarizes our achievements made in these three areas.

Udagawa, T.

1991-10-01T23:59:59.000Z

25

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

NSAC Meeting, Bethesda, Maryland: 3-5 April 2005 US Nuclear Science web site (link to meeting) Brookhaven Presentations: Director's Remarks: Praveen Chaudhari Overview: Sam Aronson...

26

Nuclear physics and astrophysics  

SciTech Connect

We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

Schramm, D.N.; Olinto, A.V.

1992-09-01T23:59:59.000Z

27

Nuclear Physics Jobs  

Office of Science (SC) Website

about/jobs/ Below is a list of currently open about/jobs/ Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position announcements on USAJOBS.gov for more information. en {4D2B856C-39AE-4755-B38E-91319C75F8C9}https://www.usajobs.gov/GetJob/ViewDetails/358553800 Physicist Facilities & Project Management Division Job Title: Physicist Facilities & Project Management DivisionOffice: Nuclear PhysicsURL: USAjobs listingVacancy Number: 14-DE-SC-HQ-003Location: Germantown, MDOpened: 01/14/2014Closes:

28

Physics of Ultra-Peripheral Nuclear Collisions  

E-Print Network (OSTI)

Probes of Funda- mental Physics World Scienti?c, Singapore (H Theoretical Nuclear Physics: Nuclear Reactions, Wiley-CA, Hussein M and Muenzenberg G Physics of Radioactive Beams

Bertulani, Carlos A.; Klein, Spencer R.; Nystrand, Joakim

2005-01-01T23:59:59.000Z

29

Nuclear Physics of Neutron Stars  

E-Print Network (OSTI)

Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between the pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the special role that nuclear physics plays in constraining the EOS of cold baryonic matter and its impact on the properties of neutron stars.

J. Piekarewicz

2009-01-28T23:59:59.000Z

30

Nuclear Cluster Physics  

Science Conference Proceedings (OSTI)

Predictive power of theory needs good models and accurate calculation methods to solve the Schroedinger equations of the systems concerned. We present some examples of successful predictions based on the nuclear cluster models of light nuclei and hypernuclei and on the calculation methods that have been developed by Kyushu group.

Kamimura, Masayasu [RIKEN Nishina Center, RIKEN, Wako 351-0198 (Japan); Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan)

2011-05-06T23:59:59.000Z

31

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

E-Print Network (OSTI)

Requirements Workshop Nuclear Physics Program Office, DOEDOE Nuclear Physics Programs .. 6 Nuclear Physics Network Requirementsbandwidth and services requirements. 3 DOE Nuclear Physics

Tierney, Ed., Brian L

2008-01-01T23:59:59.000Z

32

Research in theoretical nuclear physics  

SciTech Connect

The work done during the past year or so may be divided into three separate areas, low energy nuclear reactions, intermediate energy physics and nuclear structure studies. In this paper, we shall separately summarize our achievements made in these three areas.

Udagawa, Takeshi.

1990-10-01T23:59:59.000Z

33

Nuclear Physics with Electroweak Probes  

E-Print Network (OSTI)

In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects.

Omar Benhar

2009-02-26T23:59:59.000Z

34

Theoretical nuclear physics  

SciTech Connect

This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the {triangle}-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to {bar p}p {yields} {bar {Lambda} {Lambda}} reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.

Rost, E.; Shephard, J.R.

1992-08-01T23:59:59.000Z

35

Nuclear Physics from Lattice QCD  

E-Print Network (OSTI)

We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.

S. R. Beane; W. Detmold; K. Orginos; M. J. Savage

2010-04-17T23:59:59.000Z

36

Nuclear physics from lattice simulations  

E-Print Network (OSTI)

We review recent lattice QCD activities with emphasis on the impact on nuclear physics. In particular, the progress toward the determination of nuclear and baryonic forces (potentials) using Nambu-Bethe-Salpeter (NBS) wave functions is presented. We discuss major challenges for multi-baryon systems on the lattice: (i) signal to noise issue and (ii) computational cost issue. We argue that the former issue can be avoided by extracting energy-independent (non-local) potentials from time-dependent NBS wave functions without relying on the ground state saturation, and the latter cost is drastically reduced by developing a novel "unified contraction algorithm." The lattice QCD results for nuclear forces, hyperon forces and three-nucleon forces are presented, and physical insights are discussed. Comparison to results from the traditional Luescher's method is given, and open issues to be resolved are addressed as well.

Doi, Takumi

2012-01-01T23:59:59.000Z

37

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

8-9 May 2008 Thursday, 8 May Room 2-160, Bldg. 510 (Physics) 0830 Executive Session Large Seminar Room, Bldg. 510 (Physics) (talk+questions) 0900 PHENIX FY09 Beam Use Proposal and...

38

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

29-30 March 2007 Thursday, 29 March Room 2-160, Bldg. 510 (Physics) 0900 Executive Session Large Seminar Room, Bldg. 510 (Physics) (talk+questions) 0930 R20 Search for Magnetic...

39

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

...T. Kirk 10:15 am Coffee Break 10:30 am Physics Department Overview (see note above)...S. Aronson 11:00 am...

40

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA DOE Annual High Energy Physics Program Review Brookhaven National Laboratory 17-19 April 2006 Monday, April 17 - Berkner Hall 15:00 Executive Session - Berkner B 16:30 Tour...

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

High Energy Physics Review, 22-23 April 2004 Click on an agenda item below to access a PDF version of the speaker's slides. NOTE: If your browser displays a blank page for any...

42

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

of detector ops. Plans for future running; how will VTX be exploited to deliver physics? B. Jacak (25+15) 10:30 Break 10:45 STAR New results and accomplishments Plans for...

43

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Perspective...T. Kirk 30 +10 9:40 am RHIC Experiments: Physics Department Perspective.....T. Ludlam 25+10 10:15 am Coffee Break 10:30 am CA-D...

44

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

- P. Chaudhari 09:15 am BNL Overview and Future Directions - S. Aronson 10:00 am Physics Department Overview - S. Dawson 10:30 am Coffee Break 10:45 am Overview of U.S. ATLAS...

45

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual DOENuclear Physics Review of RHIC Science and Technology July 6-8, 2005 Berkner Hall, BNL Agenda Wednesday, July 6 Berkner Room B 8:00 am DOE Executive Session 8:45 am...

46

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE RHIC Facility Operations Review, 28-30 June 2010. Annual DOE Review of High Energy Physics Science & Technology, 19-21 May 2010 Report of 2010 ATLAS Project Manager's Review,...

47

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Program Advisory Committee Meeting 3-5 November 2005 RHIC Mid-Term Strategic Plan: 2006-2011 (Interim Report) Beam Use Proposals BRAHMS PHENIX STAR Agenda Thursday, 3...

48

Nuclear Physics meets Biophysics: New Insights into ...  

Science Conference Proceedings (OSTI)

... Nuclear Physics meets Biophysics: New Insights into Macromolecules. Frank Heinrich, Institut fr Experimentelle Physik II, Universitt Leipzig. ...

49

Symmetry and Supersymmetry in Nuclear Physics  

E-Print Network (OSTI)

A survey of algebraic approaches to various problems in nuclear physics is given. Examples are chosen from pairing of many-nucleon systems, nuclear structure, fusion reactions below the Coulomb barrier, and supernova neutrino physics to illustrate the utility of group-theoretical and related algebraic methods in nuclear physics.

A. B. Balantekin

2007-11-05T23:59:59.000Z

50

Physical Security Systems | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Physical Security Systems | National Nuclear Security Administration Physical Security Systems | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Physical Security Systems Home > About Us > Our Programs > Nuclear Security > Physical Security Systems Physical Security Systems After the 9/11 terrorist attacks, NNSA took steps to protect its critical

51

Physical Security Systems | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Physical Security Systems | National Nuclear Security Administration Physical Security Systems | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Physical Security Systems Home > About Us > Our Programs > Nuclear Security > Physical Security Systems Physical Security Systems After the 9/11 terrorist attacks, NNSA took steps to protect its critical

52

Laboratory I | Nuclear Physics Division  

NLE Websites -- All DOE Office Websites (Extended Search)

CERN 73-11 CERN 73-11 Laboratory I | Nuclear Physics Division a 24 September 1973 ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE C E R N EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIGH-ACCURACY MEASUREMENTS OF THE CENTRE OF GRAVITY OF AVALANCHES IN PROPORTIONAL CHAMBERS G. Charpak, A. Jeavons, F. Sauli and R. Stubbs G E N E V A 1973 © Copyright CERN, Geneve, 1973 Propriety litteraire et scientiflque reservee pour tous les pays du monde Ce document ne peut etre reproduit ou traduit en tout ou en partie sans Tautonsation 6cnte du Directeur g6n6ral du CERN, titulaire du droit d'auteur. Dans les cas appropnes, et s'll s'agit d'utiliser le document a des fins non commerciales, cette autonsation sera volontiers accorded. Le CERN ne revendique pas la propnete des

53

DOE Nuclear Physics R&D Info  

Office of Scientific and Technical Information (OSTI)

DOE Nuclear Physics R&D Info While quarks and gluons are fairly well understood, how they fit together to create different types of matter is still a mystery. The DOE Nuclear...

54

Nuclear Physics from Lattice QCD  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics from Lattice QCD Physics from Lattice QCD Resources at NERSC Martin J. Savage, Robert Edwards and Chip Watson May 2011, Washington D.C. Science : 20 mins : Martin Savage Hardware : 15 mins : Chip Watson Code, Algorithms, Production : 35 mins : Robert Edwards (Massimo DiPierro) Topological Charge Density Thursday, May 26, 2011 Spin-pairing Shell-structure Vibrational and rotational excitations Λ QCD m u Λ QCD m d Λ QCD m s Λ QCD α e Small number of input parameters responsible for all of strongly interacting matter Quarks and Gluons Proton Nucleus The Structure and Interactions of Matter from Quantum Chromodynamics Thursday, May 26, 2011 Exa-Scale Computational Resources Nuclear Astrophysics Accelerator Physics

55

WEB RESOURCE: Office of Nuclear Physics - TMS  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This site offers a comprehensive overview of the US Department of Energy's Office of Nuclear Physics' activities and research facilities.

56

WEB RESOURCE: Nuclear Physics and Related Computational ...  

Science Conference Proceedings (OSTI)

Feb 6, 2007 ... This site provides presentations from the Nuclear Physics and Related Computational Science R&D for Advanced Fuel Cycles Workshop:

57

Comments on Nuclear and Particle Physics Paper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear and Particle Physics Manuscript Manuscript ps file S. Geer, Neutrino Factories - Physics Fig 1 ps file Fig 2 ps file Fig 3 ps file Fig 4 ps file Last updated August 2000 S....

58

Overview and Perspectives in Nuclear Physics  

E-Print Network (OSTI)

This presentation reviews recent guiding themes in the broad context of nuclear physics, from developments in chiral effective field theory applied to nuclear systems, via the phases and structures of QCD, to matter under extreme conditions in heavy-ion collisions and neutron stars.

Wolfram Weise

2008-01-09T23:59:59.000Z

59

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network (OSTI)

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Year Enrollment - Fall Semester Undergraduate Graduate #12; Nuclear Power Industry Radiological Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants

Weber, Rodney

60

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

R. D. McKeown

2013-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

McKeown, R D

2013-01-01T23:59:59.000Z

62

CHEMISTRY DEPARTMENT ORGANIZATION Nuclear & Particle Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

CHEMISTRY DEPARTMENT ORGANIZATION CHEMISTRY DEPARTMENT ORGANIZATION Nuclear & Particle Physics Associate Laboratory Director Berndt Mueller Basic Energy Sciences (BES) Associate Laboratory Director James Misewich Financial Support Angela Wefer Department Chair Alexander L. Harris Gregory Hall, Deputy Chair Jean Petterson, Sr. Administrative Assistant Quality Assurance Rep. Charles Gortakowski *Assoc. Laser Safety Officer (Jack Preses) Berndt Mueller Training Coordinator/ Records Management (Linda Sallustio) Dept. Systems Support & Cyber Security POC Mahendra Kahanda Berndt Mueller Basic Energy Sciences (BES) Nuclear & Particle Physics Neutrino & Nuclear Chemistry Minfang Yeh Gas-Phase Molecular Dynamics Gregory Hall Electron and Photo-

63

Materials Physics and Applications Division Lead | National Nuclear...  

National Nuclear Security Administration (NNSA)

Materials Physics and Applications Division Lead | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

64

22.101 Applied Nuclear Physics, Fall 2004  

E-Print Network (OSTI)

Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. ...

Yip, Sidney

65

Nuclear energy | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear energy Nuclear energy Subscribe to RSS - Nuclear energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time

66

22.02 Introduction to Applied Nuclear Physics, Spring 2003  

E-Print Network (OSTI)

This course concentrates on the basic concepts of nuclear physics with emphasis on nuclear structure and radiation interactions with matter. Included: elementary quantum theory; nuclear forces; shell structure of the ...

Molvig, Kim

67

Nuclear Thermal Rockets: The Physics of the Fission Reactor  

E-Print Network (OSTI)

Nuclear Thermal Rockets: The Physics of the Fission Reactor Shane D. Ross Control and Dynamical combustion are those powered by nuclear fission. Comparison of Chemical and Nuclear Rockets. Most existent.g., hydrogen and oxygen). In a nuclear rocket, or more precisely, a nuclear thermal rocket, the propellant

Ross, Shane

68

Nuclear physics aspects of double beta decay  

E-Print Network (OSTI)

Comprehensive description of the phenomenology of the $\\beta\\beta$ decay is given, with emphasis on the nuclear physics aspects. After a brief review of the neutrino oscillation results and of motivation to test the lepton number conservation, the mechanism of the $0\

Petr Vogel

2008-07-15T23:59:59.000Z

69

Nuclear Physics Laboratory 1980 annual report  

SciTech Connect

Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

Adelberger, E.G. (ed.) [ed.

1980-09-01T23:59:59.000Z

70

Research in Theoretical Nuclear Physics  

SciTech Connect

A theoretical study of problems relevant to the hadron physics program at Jefferson Laboratory and at other laboratories around the world.

Capstick, Simon; Robson, Don

2005-03-18T23:59:59.000Z

71

[Experimental nuclear physics]. Annual report 1988  

Science Conference Proceedings (OSTI)

This is the May 1988 annual report of the Nuclear Physics Laboratory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, the Laboratory`s booster linac project work, instrumentation, and computer systems. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1987-88 academic year, and publications. Refs., 27 figs., 4 tabs.

NONE

1988-05-01T23:59:59.000Z

72

PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-10  

E-Print Network (OSTI)

PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-10 10 11 12 13 14 15 16 17 18 19 neutron wavelength, D is given by: cE mM Mm 2 + = h D , (1.22) 1 Bell and Glasstone, Nuclear Reactor Theory, p. 392, 1970. #12;PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-11 Where m

Danon, Yaron

73

Dark Matter Studies Entrain Nuclear Physics  

E-Print Network (OSTI)

We review theoretically well-motivated dark-matter candidates, and pathways to their discovery, in the light of recent results from collider physics, astrophysics, and cosmology. Taken in aggregate, these encourage broader thinking in regards to possible dark-matter candidates --- dark-matter need not be made of "WIMPs," i.e., elementary particles with weak-scale masses and interactions. Facilities dedicated to nuclear physics are well-poised to investigate certain non-WIMP models. In parallel to this, developments in observational cosmology permit probes of the relativistic energy density at early epochs and thus provide new ways to constrain dark-matter models, provided nuclear physics inputs are sufficiently well-known. The emerging confluence of accelerator, astrophysical, and cosmological constraints permit searches for dark-matter candidates in a greater range of masses and interaction strengths than heretofore possible.

Susan Gardner; George Fuller

2013-03-19T23:59:59.000Z

74

Proton-rich nucleosynthesis and nuclear physics  

Science Conference Proceedings (OSTI)

Although the detailed conditions for explosive nucleosynthesis are derived from astrophysical modeling, nuclear physics determines fundamental patterns in abundance yields, not only for equilibrium processes. Focussing on the {nu}p- and the {gamma}-process, general nucleosynthesis features within the range of astrophysical models, but (mostly) independent of details in the modelling, are presented. Remaining uncertainties due to uncertain Q-values and reaction rates are discussed.

Rauscher, T.; Froehlich, C. [Dept. of Physics, University of Basel, 4056 Basel (Switzerland); Dept. of Physics, NCSU, Raleigh, NC 27695 (United States)

2012-11-12T23:59:59.000Z

75

DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1  

Science Conference Proceedings (OSTI)

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

76

DOE fundamentals handbook: Nuclear physics and reactor theory  

SciTech Connect

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

77

DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2  

SciTech Connect

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

78

Overturning of Parity Law in Nuclear Physics  

Science Conference Proceedings (OSTI)

... Cooling to the low temperature necessary for nuclear ... demagnetization of the paramagnetic salt, cerium magnesium nitrate, which supported ...

79

The Nuclear Physics of Neutron Stars  

E-Print Network (OSTI)

A remarkable fact about spherically-symmetric neutron stars in hydrostatic equilibrium - the so-called Schwarzschild stars - is that the only physics that they are sensitive to is the equation of state of neutron-rich matter. As such, neutron stars provide a myriad of observables that may be used to constrain poorly known aspects of the nuclear interaction under extreme conditions of density. After discussing many of the fascinating phases encountered in neutron stars, I will address how powerful theoretical, experimental, and observational constraints may be used to place stringent limits on the equation of state of neutron-rich matter.

J. Piekarewicz

2008-02-27T23:59:59.000Z

80

Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional  

E-Print Network (OSTI)

Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density of Sn and Pb nuclei are studied as test cases for the isospin dependence of the underlying interactions

Weise, Wolfram

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear safety | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

to prevent nuclear and radiation accidents or to limit their consequences. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

82

Lattice Gauge Theory for Nuclear Physics  

Science Conference Proceedings (OSTI)

Quantum Chromodynamcs (QCD) is now established as the theory of strong interactions. A plethora of hadronic physics phenomena can be explained and described by QCD. From the early days of QCD, it was clear that low energy phenomena require a non-perturbative approach. Lattice QCD is a non-perturbative formulation of QCD that is particularly suited for numerical calculations. Today, supercomputers have achieved performance cabable of performing calculations that allow us to understand complex phenomana that arise from QCD. In this talk I will review the most recent results, relevant to nuclear physics. In particular, I will focus on results relevant to the structure and interactions of hadrons. Finally, I will comment on the opportunities opening up as we approach the era of exaflop computing.

Konstantinos Orginos

2012-12-01T23:59:59.000Z

83

Nuclear chromodynamics is not the colorization of nuclear physics  

SciTech Connect

The successful description of nuclei in terms of nucleons, deltas and mesons provides an enormous challenge to QCD. It compels us to pursue our theoretical understanding of chromodynamics into the realm of multiple color singlets in order to examine the concept of color saturation. To pursue this theme, we examine the idea of nuclear transparency in the light of models for confinement and describe the formulation of lattice simulations sensitive to exchange forces. 22 refs., 7 figs.

Sivers, D.

1988-07-19T23:59:59.000Z

84

Nuclear Science--A Guide to the Nuclear Science Wall Chart 2003 Contemporary Physics Education Project (CPEP)  

E-Print Network (OSTI)

Nuclear Science--A Guide to the Nuclear Science Wall Chart ©2003 Contemporary Physics Education Project (CPEP) 7-1 Chapter 7 Nuclear Reactions Nuclear reactions and nuclear scattering are used, protons, alphas, or "heavy ions"), creates these reactions when they strike a target nucleus. Nuclear

85

Large Scale Computing and Storage Requirements for Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Science, Office of Advanced Scientific Computing Research (ASCR), Office of Nuclear Physics (NP), and the National Energy Research Scientific Computing Center (NERSC)...

86

EXPERIMENTAL AND CALCULATED RESEARCHES OF NUCLEAR-PHYSICS CHARACTERIST...  

National Nuclear Security Administration (NNSA)

1 Session 12: Engineering and Criticality Experimental And Calculated Researches of Nuclear-Physics Characteristics Of Assemblies Containing 237 Np + 239 Pu(98%) in The Core...

87

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

outlined in the 2011 DOE Strategic Plan. U.S. Departmentstrategic plans. Large Scale Computing and Storage Requirements for Nuclear Physics DOE

Gerber, Richard A.

2012-01-01T23:59:59.000Z

88

Chicago Business Features Argonne Woman in Nuclear Physics | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicago Business Features Argonne Woman in Nuclear Physics Chicago Business Features Argonne Woman in Nuclear Physics Chicago Business Features Argonne Woman in Nuclear Physics January 9, 2012 - 4:08pm Addthis Kawtar Hafidi is an experimental nuclear physicist, working in the medium energy physics group at Argonne. Image courtesy of Argonne National Laboratory. Kawtar Hafidi is an experimental nuclear physicist, working in the medium energy physics group at Argonne. Image courtesy of Argonne National Laboratory. Chicago Business has the scoop about Kawtar Hafidi, an Argonne National Laboratory nuclear physicist who just snagged the Association for Women in Science's 2011 Innovator Award for her research in the field of the color of quarks. Hafidi is one of many women in science who's changing the equation to accomplish the Department's mission. At Argonne, she leads

89

Princeton Plasma Physics Lab - Nuclear safety  

NLE Websites -- All DOE Office Websites (Extended Search)

safety Actions taken to safety Actions taken to prevent nuclear and radiation accidents or to limit their consequences. en Celebrating the 20th anniversary of the tritium shot heard around the world http://www.pppl.gov/news/2013/12/celebrating-20th-anniversary-tritium-shot-heard-around-world-2

Tensions rose in the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) as the seconds counted down. At stake was the first crucial test of a high-powered mixture of fuel for producing fusion energy. As the control-room clock reached "zero," a flash of light on a closed-circuit television monitor marked a historic achievement:

90

Joint Actinide Shock Physics Experimental Research | National Nuclear  

National Nuclear Security Administration (NNSA)

Actinide Shock Physics Experimental Research | National Nuclear Actinide Shock Physics Experimental Research | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Jasper Joint Actinide Shock Physics Experimental Research Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development >

91

Theoretical nuclear physics at Yale University  

SciTech Connect

Brief summaries of past and planned activities in the following areas are given: models of nuclear structure; models of hadronic structure; hot nuclei; chaos in nuclei; reactions and structure; dissipation, diffusion, and collective motion; and modeling equilibrium and nonequilibrium systems.

Not Available

1992-12-31T23:59:59.000Z

92

Nuclear physics from strong coupling QCD  

E-Print Network (OSTI)

The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.

Michael Fromm; Philippe de Forcrand

2009-12-14T23:59:59.000Z

93

Radioactive Ion Beam Physics and Nuclear Astrophysics in China  

E-Print Network (OSTI)

Based on the intermediate energy radioactive Ion Beam Line in Lanzhou (RIBLL) of Heavy Ion Research Facility in Lanzhou (HIRFL) and Low Energy Radioactive Ion Beam Line (GIRAFFE) of Beijing National Tandem Accelerator Lab (HI13), the radioactive ion beam physics and nuclear astrophysics will be researched in detail. The key scientific problems are: the nuclear structure and reaction for nuclear far from $\\beta$-stability line; the synthesize of new nuclides near drip lines and new super heavy nuclides; the properties of asymmetric nuclear matter with extra large isospin and some nuclear astro- reactions.

Y. G. Ma; X. Z. Cai; W. Q. Shen; W. L. Zhan; Y. L. Ye; W. P. Liu; G. M. Jin; X. H. Zhou; S. W. Xu; L. H. Zuo; S. J. Zhu; Z. H. Liu; J. Meng

2004-10-14T23:59:59.000Z

94

Reactor Physics and Fuel Cycle Analysis - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Bookmark and Share Reactor physics and fuel cycle analysis is a core competency of the Nuclear Engineering (NE) Division. The Division has played a major role in the design and analysis of advanced reactors, particularly liquid-metal-cooled reactors. NE researchers have concentrated on developing computer codes for

95

Testing the Physics of Nuclear Isomers  

SciTech Connect

For much of the past century, physicists have searched for methods to control the release of energy stored in an atom's nucleus. Nuclear fission reactors have been one successful approach, but finding other methods to capitalize on this potential energy source have been elusive. One possible source being explored is nuclear isomers. An isomer is a long-lived excited state of an atom's nucleus--a state in which decay back to the nuclear ground state is inhibited. The nucleus of an isomer thus holds an enormous amount of energy. If scientists could develop a method to release that energy instantaneously in a gamma-ray burst, rather than slowly over time, they could use it in a nuclear battery. Research in the late 1990s indicated that scientists were closer to developing such a method--using x rays to trigger the release of energy from the nuclear isomer hafnium-178m ({sup 178m}Hf). To further investigate these claims, the Department of Energy (DOE) funded a collaborative project involving Lawrence Livermore, Los Alamos, and Argonne national laboratories that was designed to reproduce those earlier results.

Hazi, A

2006-01-25T23:59:59.000Z

96

Intermediate energy nuclear physics with electrons  

SciTech Connect

Inclusive electron scattering has made an enormous contribution to our understanding of hadron and of nuclear structure and to defining the questions which are driving the field in new directions. With intense CW intermediate energy electron beams and with the opportunity to exploit spin observables, central contributions to many of the most crucial questions are anticipated. (AIP)

Moniz, E.J.

1987-10-10T23:59:59.000Z

97

Nuclear Instruments and Methods in Physics Research A 598 (2009  

NLE Websites -- All DOE Office Websites (Extended Search)

8,19; short X-ray pulse generation for light sources l'l|2-23 J. Shi et al. Nuclear lnstruments and Methods n Physics Research A 598 (2009) 388-393 '1.2. Emttance...

98

Interim report on long range plan for nuclear physics  

SciTech Connect

The interim report on the updated NSAC Long Range Plan for Nuclear Physics will be presented to the community for discussion and comment before submission to the funding agencies. The presentation will be coordinated by E. Moniz chair of NSAC.

1995-04-01T23:59:59.000Z

99

Accelerating Innovation: How Nuclear Physics Benefits Us All  

DOE R&D Accomplishments (OSTI)

Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

2011-00-00T23:59:59.000Z

100

Software: Reactor Physics and Fuel Cycle Analysis - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis > Analysis > Software Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Software Bookmark and Share An extensive powerful suite of computer codes developed and validated by the NE Division and its predecessor divisions at Argonne supports the development of fast reactors; many of these codes are also applicable to other reactor types. A brief description of these codes follows. Contact

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The Future of High Energy Nuclear Physics in Europe  

E-Print Network (OSTI)

In less than two years from now, the LHC at CERN will start operating with protons and later with heavy ions in the multi TeV energy range. With its unique physics potential and a strong, state-of-the complement of detectors, the LHC will provide the European, and in fact worldwide Nuclear Physics community, with a forefront facility to study nuclear matter under extreme conditions well into the next decade.

J. Schukraft

2006-02-14T23:59:59.000Z

102

Few-body problem and pion-nuclear physics. [Review  

SciTech Connect

Some of the pion-nuclear physics questions that pertain to pion-few-nucleon systems are explored. Those aspects of the problem which have relevance to the general study of pion-nuclear physics are emphasized, in particular the properties of the ..pi..-N interaction within a nucleus. Specific examples are restricted to elastic scattering from /sup 2/H, /sup 3/He, and /sup 4/He and selected single and double charge-exchange reactions.

Gibson, B.F.

1976-01-01T23:59:59.000Z

103

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network (OSTI)

Phys. A278 (1977) 387. NUCLEAR FISSION INDUCED BY ATOMICand J.R. Huizenga, in Nuclear Fission (Academic Press, Newvery soft nuclei, nuclear fission and heavy ion reactions.

Saxon, D.S.

2010-01-01T23:59:59.000Z

104

Nuclear and Particle Physics, Astrophysics and Cosmology : T...  

NLE Websites -- All DOE Office Websites (Extended Search)

applied and basic science, nuclear many-body theory, nuclear reaction theory, fission, nuclear data evaluation, processing and validation testing for applications that include...

105

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network (OSTI)

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics, Division of Nuclear Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden Email

Demazière, Christophe

106

Future directions in particle and nuclear physics at multi-GeV hadron beam facilities  

Science Conference Proceedings (OSTI)

This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

1993-11-01T23:59:59.000Z

107

Parity- and Time-Reversal Tests in Nuclear Physics  

E-Print Network (OSTI)

Nuclear physics tests of parity- and time-reversal invariance have both shaped the development of the Standard Model and provided key tests of its predictions. These studies now provide vital input in the search for physics beyond the Standard Model. We give a brief review of a few key experimental and theoretical developments in the history of this sub-field of nuclear physics as well as a short outlook, focusing on weak decays, parity-violation in electron scattering, and searches for permanent electric dipole moments of the neutron and neutral atoms.

Hertzog, David

2013-01-01T23:59:59.000Z

108

Additional improvements needed in physical security at nuclear powerplants  

Science Conference Proceedings (OSTI)

Since the middle 1970's, the Nuclear Regulatory Commission and powerplant operators have taken measures to reduce the vulnerability of powerplants to attempted acts of sabotage. GAO's evaluation disclosed that further improvements can be made by screening nuclear plant employees to reduce the number of potential saboteurs and strengthening the physical security systems to ensure their compatibility with other plant safety systems. The Commission has taken two initiatives addressing these improvements. Therefore, GAO is not making recommendations at this time.

Not Available

1983-07-13T23:59:59.000Z

109

New applications of renormalization group methods in nuclear physics  

E-Print Network (OSTI)

We review recent developments in the use of renormalization group (RG) methods in low-energy nuclear physics. These advances include enhanced RG technology, particularly for three-nucleon forces, which greatly extends the reach and accuracy of microscopic calculations. We discuss new results for the nucleonic equation of state with applications to astrophysical systems such as neutron stars, new calculations of the structure and reactions of finite nuclei, and new explorations of correlations in nuclear systems.

R. J. Furnstahl; K. Hebeler

2013-05-16T23:59:59.000Z

110

WORKSHOP ON NUCLEAR DYNAMICS  

E-Print Network (OSTI)

Physics of the Office of High Energy and Nuclear Physics ofPhysics of the Office of High Energy and Nuclear Physics ofPhysics of the Office of High Energy and Nuclear Physics of

Myers, W.D.

2010-01-01T23:59:59.000Z

111

Research in theoretical nuclear physics. Progress report, November 1, 1989--September 1992  

SciTech Connect

This report discusses topics in the following areas: Low energy nuclear reactions induced by light and heavy ions; medium energy physics; and nuclear structure. (LSP)

Udagawa, T.

1992-09-01T23:59:59.000Z

112

Engineering Fundamentals - Basic Atomic and Nuclear Physics, Version 2.0  

Science Conference Proceedings (OSTI)

The Basic Nuclear Physics and Reactor Theory module covers basic atomic structure, fission, radioactivity, reactor operation, and nuclear safety. This course will help new engineers understand how ...

2012-11-19T23:59:59.000Z

113

Accelerating Innovation: How Nuclear Physics Benefits Us All  

Science Conference Proceedings (OSTI)

From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

Not Available

2011-01-01T23:59:59.000Z

114

Supernovae as Nuclear and Particle Physics Laboratories  

Science Conference Proceedings (OSTI)

In the interior of supernovae, temperatures and densities exceed the range that is easily accessible by terrestrial experiments. With the improving sensitivities of neutrino and gravitational wave detectors, the chance of obtaining observations providing a deep view into the heart of a close-by supernova explosion is steadily increasing. Based on computational models, we investigate the imprint of the nuclear equation of state on the emission of neutrinos and gravitational waves. If a QCD phase transition to quark matter occurs during the immediate postbounce accretion phase, a strong second shock front is formed at a radius of order 10 km. Neutronized hadronic outer layers of the protoneutron star fall into it, are shock-heated, and lead to a rapid acceleration of the second shock wave. As soon as this shock reduces the electron degeneracy at the neutrinospheres, a sharp second neutrino burst is emitted, dominated by electron antineutrinos. Together with the abruptly increasing mean energies of {mu}- and {tau}-neutrinos, it may serve as a clear signature of the phase transition of the protoneutron star core to a more compact state.

Liebendoerfer, Matthias [Universitat Basel, Switzerland; Fischer, T. [University of Basel; Hempel, M. [Goethe University, Frankfurt, Germany; Mezzacappa, Anthony [ORNL; Pagliara, G. [Ruprecht-Karls-Universitaet, Heidelberg, Germany; Sagert, I. [Goethe University, Frankfurt, Germany; Schaffner-Bielich, J. [Ruprecht-Karls-Universitaet, Heidelberg, Germany; Scheidegger, Simon [Universitat Basel, Switzerland; Thielemann, Friedrich-Karl W. [Universitat Basel, Switzerland; Whitehouse, Stuart [Universitat Basel, Switzerland

2009-01-01T23:59:59.000Z

115

Physical Mechanism of Nuclear Reactions at Low Energies  

E-Print Network (OSTI)

The physical mechanism of nuclear reactions at low energies caused by spatial extension of electron is considered. Nuclear reactions of this type represent intra-electronic processes, more precisely, the processes occurring inside the area of basic localization of electron. Distinctive characteristics of these processes are defined by interaction of the own field produced by electrically charged matter of electron with free nuclei. Heavy nucleus, appearing inside the area of basic localization of electron, is inevitably deformed because of interaction of protons with the adjoining layers of electronic cloud, which may cause nuclear fission. If there occur "inside" electron two or greater number of light nuclei, an attractive force appears between the nuclei which may result in the fusion of nuclei. The intra-electronic mechanism of nuclear reactions is of a universal character. For its realization it is necessary to have merely a sufficiently intensive stream of free electrons, i.e. heavy electric current, and as long as sufficiently great number of free nuclei. This mechanism may operate only at small energies of translational motion of the centers of mass of nuclei and electron. Because of the existence of simple mechanism of nuclear reactions at low energies, nuclear reactor turns out to be an atomic delayed-action bomb which may blow up by virtue of casual reasons, as it has taken place, apparently, in Chernobyl. The use of cold nuclear reactions for production of energy will provide mankind with cheap, practically inexhaustible, and non-polluting energy sources.

V. P. Oleinik; Yu. D Arepjev

2003-06-09T23:59:59.000Z

116

Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 INSTRUMENTS  

E-Print Network (OSTI)

ELSEVIER Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 NUCLEAR INSTRUMENTS 8 METHODS IN PHYSICS REgtR?n Thermodynamics of dynamic nuclear polarization W.Th. Wenckebach Faculty ofApplied Physics, Delfr Unicersity of Technology, P.O.B. 5046, 2600 GA De& The Netherlands Abstract Dynamic nuclear

Dutz, Hartmut

117

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance Code  

Science Conference Proceedings (OSTI)

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code is a new, three-dimensional, multi-physics tool that uses state-of-the-art solution methods and validated nuclear fuel models to simulate the nominal operation and anticipated operational transients of nuclear fuel. The AMP Nuclear Fuel Performance code leverages existing validated material models from traditional fuel performance codes and the Scale/ORIGEN-S spent-fuel characterization code to provide an initial capability that is shown to be sufficiently accurate for a single benchmark problem and anticipated to be accurate for a broad range of problems. The thermomechanics-chemical foundation can be solved in a time-dependent or quasi-static approach with any variation of operator-split or fully-coupled solutions at each time step. The AMP Nuclear Fuel Performance code provides interoperable interfaces to leading computational mathematics tools, which will simplify the integration of the code into existing parallel code suites for reactor simulation or lower-length-scale coupling. A baseline validation of the AMP Nuclear Fuel Performance code has been performed through the modeling of an experiment in the Halden Reactor Project (IFA-432), which is the first validation problem incorporated in the FRAPCON Integral Assessment report.

Clarno, Kevin T [ORNL; Philip, Bobby [ORNL; Cochran, Bill [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Barai, Pallab [ORNL; Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL; Pannala, Sreekanth [ORNL; Dilts, Gary A [ORNL; Mihaila, Bogdan [ORNL; Yesilyurt, Gokhan [ORNL; Lee, Jung Ho [Argonne National Laboratory (ANL); Banfield, James E [ORNL; Berrill, Mark A [ORNL

2012-01-01T23:59:59.000Z

118

Health physics applications of nuclear safeguards radiation monitors  

SciTech Connect

Nuclear safeguards needs fostered the development of radiation monitors whose sensitivity and microprocessor-controlled logic permit detection of small, transient increases in environmental levels of gamma radiation. While this capability was originally developed to detect the diversion of the special nuclear materials /sup 235/U and plutonium, adaptation to health physics monitoring is straigthforward. Applications of the safeguards instruments range from small, handheld instruments used to monitor laundry of salvage-bound materials to more complex systems devoted to monitoring moving vehicles at entry/exit points. In addition to these health physics applications, other new applications for safeguards instruments are being considered.

Fehlau, P.E.; Dvorak, R.F.

1984-01-01T23:59:59.000Z

119

Nuclear physics with internal targets in electron storage rings  

Science Conference Proceedings (OSTI)

Two key experiments in nuclear physics will be discussed in order to illustrate the advantages of the internal target method and demonstrate the power of polarization techniques in electron scattering studies. The progress of internal target experiments will be discussed and the technology of internal polarized target development will be reviewed.

Roy J. Holt

1987-01-01T23:59:59.000Z

120

The Nuclear Physics of Solar and Supernova Neutrino Detection  

E-Print Network (OSTI)

This talk provides a basic introduction for students interested in the responses of detectors to solar, supernova, and other low-energy neutrino sources. Some of the nuclear physics is then applied in a discussion of nucleosynthesis within a Type II supernova, including the r-process and the neutrino process.

W. C. Haxton

1999-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

HAZARDS SUMMARY REPORT ON NUCLEAR PHYSICS LABORATORY AT CANEL  

SciTech Connect

ON NUCLEAR PHYSICS LABORATORY AT CANEL. The critical experiment facility at CANEL is described. Information of the mature of experimental assemblies and operations is included. Safety features of the building, equipment, and operations are pointed out. Possible accidents and the resulting hazards to surrounding areas are analyzed. The make-up of the surrounding area is described. (M.C.G.)

1955-10-13T23:59:59.000Z

122

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network (OSTI)

Nuclear Physics Laboratory, " New Brunswick, New J e r s e yNew Brunswick, New Jersey University of California, Los Angeles, California Los Alamos Scientific Laboratory,New Brunswick, NJ University of California at Los Angeles, Los Angeles, CA ^Los Alamos Scientific Laboratory,

Saxon, D.S.

2010-01-01T23:59:59.000Z

123

Resource Letter PSNAC-1: Physics and society: Nuclear arms control  

Science Conference Proceedings (OSTI)

This Resource Letter provides a guide to the literature on nuclear arms control for the nonspecialist. Journal articles and books are cited for the following topics: nuclear weapons

Alexander Glaser; Zia Mian

2008-01-01T23:59:59.000Z

124

Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review  

Science Conference Proceedings (OSTI)

The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

Redondo, Antonio [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

125

Nuclear fusion control-oriented plasma physics  

Science Conference Proceedings (OSTI)

The development of control techniques for the efficient and reliable operation of a fusion reactor is one of the most challenging issues nowadays and it would provide great advantages over existing energy sources: Unlimited fuel availability, no greenhouse ... Keywords: fusion control, plasma physics, tokamak modeling and simulation

Aitor J. Garrido; Izaskun Garrido; M. Goretti Sevillano-Berasategui; Mikel Alberdi; Modesto Amundarain; Oscar Barambones; Itziar Martija

2009-07-01T23:59:59.000Z

126

Hans Bethe, Powering the Stars, and Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hans Bethe, Energy Production in Stars, and Nuclear Physics Awards and Tributes · Resources with Additional Information Hans Bethe Courtesy of Cornell University "Hans Bethe was one of the great physicists not only of the twentieth century, but of all time. During his long life, he uncovered the secrets powering the stars, published the standard work on nuclear physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of genius and conscience."1 "Bethe headed the Theoretical (T) Division at Los Alamos [National Laboratory] from 1943 to 1946. Prior to joining the Manhattan Project, Bethe taught physics at Cornell University. ... It was during his early years at Cornell, before joining the Manhattan Project, that Bethe

127

Princeton Plasma Physics Lab - Nuclear energy  

NLE Websites -- All DOE Office Websites (Extended Search)

energy Energy that originates energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. en Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas http://www.pppl.gov/news/press-releases/2014/01/two-pppl-led-teams-win-increased-supercomputing-time-study-conditions

Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest

128

Nuclear weapons, nuclear effects, nuclear war  

SciTech Connect

This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

Bing, G.F.

1991-08-20T23:59:59.000Z

129

Nuclear Physics Related Brochures | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nuclear Physics Related Brochures and Videos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources Nuclear Physics Related Brochures and Videos Print Text Size: A A A RSS Feeds FeedbackShare Page Brochures Accelerating Innovation NP Highlights Image Accelerating Innovation (2011) .pdf file (1.2MB): How nuclear physics benefits us all

130

Collaborating Organizations - Nuclear Data Program, Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborating Organizations Collaborating Organizations Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Collaborating Organizations Bookmark and Share National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York. International Nuclear Structure and Decay Data Network, coordinated by IAEA, Vienna, Austria Heavy-Ion Nuclear Physics Group, Physics Division, Argonne National Laboratory, Argonne, Illinois. Nuclear Spectroscopy Group, Department of Nuclear Physics,

131

Physics and Engineering Models | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering...

132

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network (OSTI)

Energy Academla Slniea, Beijing, China We use nuclear field theory (nuclear theories ) and are of interest in connection with the understanding of Coulomb displacement energies.theory that accounts f o r the known bulk properties of nuclear matter, i t s saturation energy

Saxon, D.S.

2010-01-01T23:59:59.000Z

133

Nuclear Physics A549 (1992) 439-460 North-Holland  

E-Print Network (OSTI)

Nuclear Physics A549 (1992) 439-460 North-Holland odel calculations of doubly closed shell nuclei PHYSICS R In recent years much progress has been made in the development of the non- relativistic nuclear many-body theory aiming to describe the properties of all the nuclear systems, from deuterons

Lagaris, Isaac

134

Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point  

E-Print Network (OSTI)

for homeland security and defense applications. NSERC RESEARCH STRATEGY Cadets majoring in nuclear engineeringPyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point , Yaron Danonc , Brian Morettia , and Jeffrey Muskb a Department of Physics and Nuclear Engineering

Danon, Yaron

135

TEI Piraeus students' knowledge on the beneficial applications of nuclear physics: Nuclear energy, radioactivity - consequences  

E-Print Network (OSTI)

The recent nuclear accident in Japan revealed the confusion and the inadequate knowledge of the citizens about the issues of nuclear energy, nuclear applications, radioactivity and their consequences In this work we present the first results of an ongoing study which aims to evaluate the knowledge and the views of Greek undergraduate students on the above issues. A web based survey was conducted and 131 students from TEI Piraeus answered a multiple choice questionnaire with questions of general interest on nuclear energy, nuclear applications, radioactivity and their consequences. The survey showed that students, like the general population, have a series of faulty views on general interest nuclear issues. Furthermore, the first results indicate that our educational system is not so effective as source of information on these issues in comparison to the media and internet

Pilakouta, Mirofora

2011-01-01T23:59:59.000Z

136

LANL | Physics | Nuclear Weapons and Global Security Data Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Weapons and Global Security Data Analysis Nuclear Weapons and Global Security Data Analysis Physics Division applies advanced imaging techniques to many applications, from brain imaging to neutron imaging in inertial fusion to threat detection from airborne cameras. A particular strength is the quantitative analysis of penetrating radiography using techniques such as the Bayesian Inference Engine (BIE). An example from the Nuclear Event Analysis Team shows a test object (Figure 1) that is subsequently radiographed using the Dual-Axis Radiography Hydrodynamic Test (DARHT) facility. Figures 2 and 3 show the radiograph and the inferred density of the object using the BIE, which can be compared to the known object to determine accurate error estimation. Test object Figure 1. The test object consists of a 1 cm-radius cavity void surrounded by a 4.5 cm radius surrogate fissile material of tungsten, tantalum, or depleted uranium. This sphere is surrounded by a 6.5 cm-radius copper sphere. At is thickest point, the tantalum test object has an areal density of 180 g/cm2, equivalent to 9" of steel.

137

Atomic Physics Aspects of a Relativistic Nuclear Collider  

DOE Green Energy (OSTI)

Atomic collision cross sections involving bare uranium nuclei are large at relativistic energies and will affect the design and operation of a relativistic nuclear collider (RNC). The most significant may be production of electron-positron pairs and muon pairs ({approx} 10{sup 8} per sec. and 2000 per sec. respectively for a 100 GeV/nucleon collider with a luminosity of 10{sup 27} cm{sup 2} s{sup -1}). Although the pair production is a direct measure of the luminosity it is also a large source of background and capture of an electron from the pair by one of the nuclei will result in the loss of the ion. Another important loss mechanism is Coulomb excitation of the giant nuclear dipole and giant nuclear quadrupole resonances. Storing and colliding bare and highly-stripped uranium opens up new possibilities for novel atomic physics experiments and an alternate approach for present experiments. As examples, the use of a collider for experiments to study spontaneous decay of the super-critical state (both positron production and x-ray production) of quasi-atoms of atomic number Z > 172, and a storage-ring measurement of the ground state hyperfine structure of hydrogen like thallium as a test of quantum electrodynamics (QED) are discussed.

Gould, R.

1984-11-01T23:59:59.000Z

138

The r-process nucleosynthesis: Nuclear physics challenges  

SciTech Connect

About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

Goriely, S. [Institut d'Astronomie et d'Astrophysique, Universite Libre de Bruxelles Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

2012-10-20T23:59:59.000Z

139

Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995  

SciTech Connect

This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes.

Banerjee, M.K.; Griffin, J.J.

1995-06-01T23:59:59.000Z

140

Nuclear Physics Activities in Asia and ANPhA  

Science Conference Proceedings (OSTI)

On 18 July 2009 the Asian Nuclear Physics Association (ANPhA) has been officially launched in Beijing by the representatives from China, Korea, Japan and Vietnam. Since then Australia, India, Mongolia and Taiwan have joined to ANPhA and now the member country/region has increased to eight. Some activities and features on ANPhA are introduced. In addition, pleasant collaboration with Professor Arima by the author in regard to the Gamow-Teller quenching problem is also briefly mentioned.

Sakai, H. [RIKEN Nichina Center, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan)

2011-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

142

Theoretical studies in high energy nuclear physics. Progress report  

SciTech Connect

This paper is a progress report for the period 1-1-93 to 6-30-95 on a project primarily directed at the application of high energy physics techniques to nuclear structure studies, and the ability to study hadron dynamics through interactions with nuclear targets. This work has included the first legitimate QCD calculations of hard coherent diffractive processes off nucleon (nuclear) targets which established novel features of color transparency phenomenon not anticipated in the previous intuitive or QCD inspired model calculations and predicted the fast increase of the cross section for electroproduction of {rho}-mesons with increase of the energy, which was confirmed very recently by the first HERA data on this reaction. First theoretical demonstration that color transparency phenomenon for the hard diffractive processes follow from QCD in the kinematics when both x{yields}0 and Q{sup 2}{yields}{infinity}. Establishing the pattern of color (cross section) fluctuations in hadrons. Confirmed by the FNAL inelastic diffraction data. Finding that in realistic quark, skyrmion models of a hadron large momentum transfer elastic lepton-hadron scattering occurs through formation of small spatial size configurations. Discovering a novel class of color transparency sensitive double interaction processes which is complementary to quasielastic reactions originally suggested by S. Brodsky and A. Mueller. Adopting ideas suggested elsewhere for hadron initiated reactions they developed a method for taking into account nuclear correlations in (e,e{prime}p) reactions. Such an approach gives practical possibility to overcome ambiguities of optical model approximation used before and to reliably interpret color transparency effects at intermediate Q{sup 2}.

1995-08-01T23:59:59.000Z

143

Nuclear Astrophysics  

E-Print Network (OSTI)

Nuclear physics has a long and productive history of application to astrophysics which continues today. Advances in the accuracy and breadth of astrophysical data and theory drive the need for better experimental and theoretical understanding of the underlying nuclear physics. This paper will review some of the scenarios where nuclear physics plays an important role, including Big Bang Nucleosynthesis, neutrino production by our sun, nucleosynthesis in novae, the creation of elements heavier than iron, and neutron stars. Big-bang nucleosynthesis is concerned with the formation of elements with A nuclear physics inputs required are few-nucleon reaction cross sections. The nucleosynthesis of heavier elements involves a variety of proton-, alpha-, neutron-, and photon-induced reactions, coupled with radioactive decay. The advent of radioactive ion beam facilities has opened an important new avenue for studying these processes, as many involve radioactive species. Nuclear physics also plays an important role in neutron stars: both the nuclear equation of state and cooling processes involving neutrino emission play a very important role. Recent developments and also the interplay between nuclear physics and astrophysics will be highlighted.

Carl R. Brune

2005-02-28T23:59:59.000Z

144

Nuclear data for nuclear transmutation  

Science Conference Proceedings (OSTI)

Current status on nuclear data for the study of nuclear transmutation of radioactive wastes is reviewed

Hideo Harada

2009-01-01T23:59:59.000Z

145

A program in Medium-Energy Nuclear Physics  

SciTech Connect

This report discusses research on the following topics: single electron scattering; coincidence electron scattering; photonuclear reactions; pion scattering; and the GWU nuclear detector. (LSP).

Berman, B.L.

1991-01-01T23:59:59.000Z

146

A program in Medium-Energy Nuclear Physics  

SciTech Connect

This report discusses research on the following topics: single electron scattering; coincidence electron scattering; photonuclear reactions; pion scattering; and the GWU nuclear detector. (LSP).

Berman, B.L.

1991-12-31T23:59:59.000Z

147

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network (OSTI)

ture in nuclear reactions induced by deuteron. Ve tried tonuclear matter la practically impossible for a simple p wave coupling. But If ve

Saxon, D.S.

2010-01-01T23:59:59.000Z

148

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network (OSTI)

day experimental fusion devices and in nuclear reactors thatnuclear energy both for next-generation fission reactors and for fusion reactors

Gerber, Richard A.

2012-01-01T23:59:59.000Z

149

Energy recovery linacs in high-energy and nuclear physics  

Science Conference Proceedings (OSTI)

Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

2005-03-01T23:59:59.000Z

150

DOE Science Showcase - DOE Nuclear Physics R&D Info | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

DOE Nuclear Physics R&D Info DOE Nuclear Physics R&D Info While quarks and gluons are fairly well understood, how they fit together to create different types of matter is still a mystery. The DOE Nuclear Physics program's mission is to solve this mystery through theoretical and experimental research; the benefits to society range from fighting cancer to ensuring food safety to border protection. Find DOE research information on this topic from the OSTI databases and read about the Department's Nuclear Physics program. From the Databases Select a database to initiate a search. DOE Information Bridge DOE R&D Accomplishments Energy Citations Database ScienceCinema Science.gov WorldWideScience.org More information Accelerating Innovation: How nuclear physics benefits us all About DOE's Nuclear Physics Program

151

http://arXiv.org/physics/0507088 Teaching About Nature's Nuclear Reactors  

E-Print Network (OSTI)

http://arXiv.org/physics/0507088 Teaching About Nature's Nuclear Reactors J. Marvin Herndon reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating

Learned, John

152

Nuclear Physics A369 (1981) 47082 North-Holland Publishing Company  

E-Print Network (OSTI)

Nuclear Physics A369 (1981) 47082 © North-Holland Publishing Company VARIATIONAL CALCULATIONS OF ASYMMETRIC NUCLEAR MATTER I. E. LAGARIS and V. R. PANDHARIPANDE Deportment oJ'Phti'sics, Unic) Abstract: We report on variational calculations of the energy E(p, ?) of asymmetric nuclear matter having p

Lagaris, Isaac

153

Nuclear Physics A531 (1991) 253-284 North-Holland  

E-Print Network (OSTI)

Nuclear Physics A531 (1991) 253-284 North-Holland F E ATIO SINGLE-PARTICLE STRENGTH A E VA SHELL with what is expected from depletions calculated in infinite nuclear matter. Inclusion of higher order terms interacting Fermi systems. The interest in nuclear spectral functions has been revived by recent accurate (,e

Seevinck, Michiel

154

Nuclear Physics A 781 (2007) 317341 Symmetry energies, pairing energies, and mass  

E-Print Network (OSTI)

Nuclear Physics A 781 (2007) 317­341 Symmetry energies, pairing energies, and mass equations J of the respective mass equation since symmetry energies are related to the curvature of the nuclear mass surface.10.Dr; 21.10.Hw; 21.30.Fe; 21.60.-n Keywords: NUCLEAR STRUCTURE Z = 1­118; analyzed isobaric analog

O'Donnell, Tom

155

Daniel E. Archer Ph.D., Experimental Nuclear Structure Physics, Florida State University, 1996  

E-Print Network (OSTI)

in radiation detectors for Homeland Security, the NMIS ­ Nuclear materials Identification System, and CMTB Highway Patrol in an effort to secure California borders against the nuclear threat; and acting as LeadDaniel E. Archer Ph.D., Experimental Nuclear Structure Physics, Florida State University, 1996 M

156

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests  

E-Print Network (OSTI)

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests, ECT*-Trento, 29 August - 2 September, 2011

Curceanu, C; Milotti, E

2011-01-01T23:59:59.000Z

157

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests  

E-Print Network (OSTI)

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests, ECT*-Trento, 29 August - 2 September, 2011

C. Curceanu; J. Marton; E. Milotti

2011-12-06T23:59:59.000Z

158

[Electromagnetic studies of nuclear structure and reactions]. [Nuclear Physics Group, Univ. of New Hampshire  

SciTech Connect

The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of [sup 16]O(e,e[prime]p), [sup 12]C(e,e[prime]pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in [sup 12]C(e,e[prime]p[sub 0]) and [sup 16]O(e,e[prime]p[sub 0]), comparison of the [sup 12]C(e, e[prime]p[sub 0]) and [sup 16]O(e,e[prime]p[sub 3]) reactions, quadrupole strength in the [sup 16]O(e,e[prime][alpha][sub 0]) reaction, quadrupole strength in the [sup 12]C(e,e[prime][alpha]) reaction, analysis of the [sup 12]C(e,e[prime]p[sub 1]) and [sup 16]O(e,e[prime]p[sub 3]) angular distributions, analysis of the [sup 40]Ca(e,e[prime]x) reaction at low q, analysis of the higher-q [sup 12]C(e,e[prime]x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments).

Not Available

1992-01-01T23:59:59.000Z

159

Superallowed nuclear beta decay: Precision measurements for basic physics  

Science Conference Proceedings (OSTI)

For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

Hardy, J. C. [Cylotron Institute, Texas A and M University, College station, TX, 77843-3366 (United States)

2012-11-20T23:59:59.000Z

160

Nuclear Physics (NP) Homepage | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

NP Home NP Home Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Accelerating Innovation .pdf file (1.2MB) Nuclear Physics supports the experimental and theoretical research needed to create a roadmap of matter that will help unlock the secrets of how the universe and everything in it is put together.Read More .pdf file (1.2MB) Accelerating Innovation What is Nuclear Physics? .pdf file (1.2MB) Nuclear physicists study the fundamental building blocks of matter, from

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Reconversion of nuclear weapons  

E-Print Network (OSTI)

The nuclear predicament or nuclear option. Synopsis of three lectures : 1- The physical basis of nuclear technology. Physics of fission. Chain reaction in reactors and weapons. Fission fragments. Separration of isotopes. Radiochemistry.2- Nuclear reactors with slow and fast neutrons. Power, size, fuel and waste. Plutonium production. Dose rate, shielding and health hazard. The lessons of Chernobyl3- Nuclear weapons. Types, energy, blast and fallout. Fusion and hydrogen bombs. What to do with nuclear weapons when you cannot use them? Testing. Nonmilittary use. Can we get rid of the nuclear weapon? Nuclear proliferation. Is there a nuclear future?

Kapitza, Sergei P

1993-01-01T23:59:59.000Z

162

RELATIVISTIC NUCLEAR COLLISIONS: THEORY  

E-Print Network (OSTI)

Effects in Relativistic Nuclear Collisions", Preprint LBL-Pion Interferometry of Nuclear Collisions. 18.1 M.Gyulassy,was supported by the Office of Nuclear Physics of the U.S.

Gyulassy, M.

2010-01-01T23:59:59.000Z

163

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

164

Nuclear power and nuclear weapons  

SciTech Connect

The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

Vaughen, V.C.A.

1983-01-01T23:59:59.000Z

165

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOEs Office of Advanced Scientific Computing Research (ASCR) and DOEs Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSCs continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called case studies, of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, multi-core environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

166

The Role of Nuclear Physics in Understanding the Cosmos and the Origin of Elements  

E-Print Network (OSTI)

This popular lecture, given in the conference celebrating contributions of Akito Arima to physics on the occasion of his 80th anniversary, outlines the role of nuclear physics in understanding the origin of elements.

Balantekin, A B

2011-01-01T23:59:59.000Z

167

The Role of Nuclear Physics in Understanding the Cosmos and the Origin of Elements  

SciTech Connect

This popular lecture, given in the conference celebrating contributions of Akito Arima to physics on the occasion of his 80th anniversary, outlines the role of nuclear physics in understanding the origin of elements.

Balantekin, A. B. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)

2011-05-06T23:59:59.000Z

168

Nuclear explosions  

Science Conference Proceedings (OSTI)

A summary of the physics of a nuclear bomb explosion and its effects on human beings is presented at the level of a sophomore general physics course without calculus. It is designed to supplement a standard text for such a course and problems are included.

A. A. Broyles

1982-01-01T23:59:59.000Z

169

Related Resources - Nuclear Data Program, Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

170

Publications: Other Resources - Nuclear Data Program - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

171

Publications 2005 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

172

Publications 2003 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

173

Contacts - Nuclear Data Program, Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

174

Publications 2001 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

175

Publications 2004 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

176

Publications 2009 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

177

Nuclear Criticality Safety: Current Activities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

178

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

179

Nuclear Systems Analysis - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

180

Publications 2011 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

182

PEBBLE-BED NUCLEAR REACTOR SYSTEM PHYSICS AND FUEL UTILIZATION  

E-Print Network (OSTI)

The Generation IV Pebble Bed Modular Reactor (PMBR) design may be used for electricity production, co-generation applications (industrial heat, hydrogen production, desalination, etc.), and could potentially eliminate some high level nuclear wastes. Because of these advantages, as well as the ability to build cost-effective small-to-medium sized reactors, this design is currently being considered for construction in many countries, from Japan, where test reactors are being analyzed, to China. The use of TRISO-coated micro-particles as a fuel in these reactors leads to multi-heterogeneity physics features that must be properly treated and accounted for. Inherent interrelationships of neutron interactions, temperature effects, and structural effects, further challenge computational evaluations of High Temperature Reactors (HTRs). The developed models and computational techniques have to be validated in code-to-code and, most importantly, code-to-experiment benchmark studies. This report quantifies the relative accuracy of various multi-heterogeneity treatments in whole-core 3D models for parametric studies of Generation IV Pebble Bed Modular Reactors as well as provide preliminary results of the PBMR performance analysis. Data is gathered from two different models, one based upon a benchmark for the African PBMR-400 design, and another based on the PROTEUS criticality experiment, since the African design is a more realistic power reactor, but the PROTEUS experiment model can be used for calculations that cannot be performed on the more complex model. Early data was used to refine final models, and the resulting final models were used to conduct parametric studies on composition and geometry optimization based on pebble bed reactor physics in order to improve fuel utilization.

Kelly, Ryan 1989-

2011-05-01T23:59:59.000Z

183

Nuclear Physics and National Security in an Age of Terrorism  

E-Print Network (OSTI)

the `Little Boy' design of the nuclear bomb dropped on Hiroshima. The fissile, 235 U is shown in red Is Radiation? · Emission or release of energy from atomic nuclei in the form of sub-atomic particles like photons, electrons, or other atomic nuclei. · There is natural background radiation all around us

Gilfoyle, Jerry

184

Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH  

E-Print Network (OSTI)

role increasing the ``cold fusion'' probability in electronic molecules whose nuclear constituents have. Therefore, widths of such resonances giving a probability of a fusion of the nu­ clear constituents for the molecules LiD and H 2 O. There exists also a well­known exam­ ple [?] of muon catalyzed fusion of deuteron

185

Nuclear Many-Body Physics Where Structure And Reactions Meet  

E-Print Network (OSTI)

The path from understanding a simple reaction problem of scattering or tunneling to contemplating the quantum nuclear many-body system, where structure and continuum of reaction-states meet, overlap and coexist, is a complex and nontrivial one. In this presentation we discuss some of the intriguing aspects of this route.

Naureen Ahsan; Alexander Volya

2009-06-24T23:59:59.000Z

186

Nuclear Reactions  

E-Print Network (OSTI)

Nuclear reactions generate energy in nuclear reactors, in stars, and are responsible for the existence of all elements heavier than hydrogen in the universe. Nuclear reactions denote reactions between nuclei, and between nuclei and other fundamental particles, such as electrons and photons. A short description of the conservation laws and the definition of basic physical quantities is presented, followed by a more detailed account of specific cases: (a) formation and decay of compound nuclei; (b)direct reactions; (c) photon and electron scattering; (d) heavy ion collisions; (e) formation of a quark-gluon plasma; (f) thermonuclear reactions; (g) and reactions with radioactive beams. Whenever necessary, basic equations are introduced to help understand general properties of these reactions. Published in Wiley Encyclopedia of Physics, ISBN-13: 978-3-527-40691-3 - Wiley-VCH, Berlin, 2009.

C. A. Bertulani

2009-08-22T23:59:59.000Z

187

LongBaseline Neutrino Physics and Astrophysics Institute for Nuclear Theory Summer Program 2010  

E-Print Network (OSTI)

LongBaseline Neutrino Physics and Astrophysics Institute for Nuclear Theory Summer Program 2010 for Nuclear Theory Summer Program 2010 Robert J. Wilson 8/11/2010Page 2 Wednesday August 11th Session 6 PWG C520 14:00 Solar, Geo, and Reactor Neutrinos N. Tolich (Washington) 14:30 Q&A Guests/PWG Session 8

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

188

Nuclear Reactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactions Nuclear reactions and nuclear scattering are used to measure the properties of nuclei. Reactions that exchange energy or nucleons can be used to measure the energies of...

189

Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE))

Nuclear Safety information site that provides assistance and resources to field elements in implementation of requirements and resolving nuclear safety, facility safety, and quality assurance issues.

190

Nuclear Materials  

Science Conference Proceedings (OSTI)

Materials and Fuels for the Current and Advanced Nuclear Reactors III ... response of oxide ceramics for nuclear applications through experiment, theory, and...

191

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

Science Conference Proceedings (OSTI)

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.

Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

2008-11-10T23:59:59.000Z

192

6 Nuclear Fuel Designs  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Message from the Director 2 Nuclear Power & Researrh Reactors 3 Discovery of Promethium 4 Nuclear Isotopes 4 Nuclear Medicine 5 Nuclear Fuel Processes & Software 6 Nuclear Fuel Designs 6 Nuclear Safety 7 Nuclear Desalination 7 Nuclear Nonproliferation 8 Neutron Scattering 9 Semiconductors & Superconductors 10 lon-Implanted Joints 10 Environmental Impact Analyses 11 Environmental Quality 12 Space Exploration 12 Graphite & Carbon Products 13 Advanced Materials: Alloys 14 Advanced Materials: Ceramics 15 Biological Systems 16 Biological Systems 17 Computational Biology 18 Biomedical Technologies 19 Intelligent Machines 20 Health Physics & Radiation Dosimetry 21 Radiation Shielding 21 Information Centers 22 Energy Efficiency: Cooling & Heating

193

Nuclear Physics from QCD: The Anticipated Impact of Exa?Scale Computing  

Science Conference Proceedings (OSTI)

I discuss highlights in the progress that is being made toward calculating processes of importance in nuclear physics from QCD using high performance computing. As exa?scale computing resources are expected to become available around 2017

Martin J. Savage

2011-01-01T23:59:59.000Z

194

Nuclear Medicine CT Angiography  

E-Print Network (OSTI)

Nuclear Medicine CT Angiography Stress Testing Rotation The Nuclear Medicine/CT angiography. Understand the indications for exercise treadmill testing and specific nuclear cardiology tests, safe use patient and learn the importance of physical and pharmacologic stress in nuclear cardiology 3. Interpret

Ford, James

195

Nuclear Matter and Nuclear Dynamics  

E-Print Network (OSTI)

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

196

Nuclear scales  

Science Conference Proceedings (OSTI)

Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

Friar, J.L.

1998-12-01T23:59:59.000Z

197

Nuclear Instruments and Methods in Physics Research A 533 (2004) 612 Erratum to ``Dead time and pileup in pulsed parametric  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 533 (2004) 612 Erratum Erratum to ``Dead time Danon?, Bryndol Sones, Robert Block Department of Mechanical Aerospace and Nuclear Engineering

Danon, Yaron

198

Fusion Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research...

199

Nuclear Analytical Chemistry Portal  

Science Conference Proceedings (OSTI)

NIST Home > Nuclear Analytical Chemistry Portal. Nuclear Analytical Chemistry Portal. ... see all Nuclear Analytical Chemistry news ... ...

2010-08-02T23:59:59.000Z

200

Nuclear Models  

SciTech Connect

The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

2010-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Guidebook to nuclear reactors  

SciTech Connect

A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

Nero, A.V. Jr.

1976-05-01T23:59:59.000Z

202

Future of Nuclear Data for Nuclear Astrophysics  

Science Conference Proceedings (OSTI)

Nuclear astrophysics is an exciting growth area in nuclear science. Because of the enormous nuclear data needs of this field

Michael S. Smith

2005-01-01T23:59:59.000Z

203

Nuclear Detonation Detection | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Nuclear Nonproliferation Program Offices > Office of Nonproliferation Research & Development > Nuclear Detonation Detection Nuclear Detonation Detection Develop, Demonstrate, and...

204

Countering Nuclear Terrorism | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Countering Nuclear Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

205

Chernobyl Nuclear Accident | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Chernobyl Nuclear Accident | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

206

Materials for Nuclear Power: Digital Resource Center -- Nuclear ...  

Science Conference Proceedings (OSTI)

WEB RESOURCE: Thermodynamics of Nuclear Fuels ... A brief introduction to nuclear physics, 0, 851, Lynne Robinson, 2/19/2007 9:38 AM by Lynne Robinson

207

Reactor physics teaching and research in the Swiss nuclear engineering master  

Science Conference Proceedings (OSTI)

Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

Chawla, R. [Swiss Federal Inst. of Technology EPFL, CH-1015 Lausanne (Switzerland); Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland)

2012-07-01T23:59:59.000Z

208

ELSEVIER Nuclear Instruments and Methods in Physics Research A 403 (1998) 43 l-441 INSTRUMENTS  

E-Print Network (OSTI)

ELSEVIER Nuclear Instruments and Methods in Physics Research A 403 (1998) 43 l-441 INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A Theory of neutron fluctuations in source-driven subcritical systems I. P&At*, Y. Yamane' Department of Reactor Ph>aics, Chalmers Unicrrsi[\\' oj Technolo~~~. S-41-7 96

Pázsit, Imre

209

Nuclear Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE) Sourcebook. We have evolved and improved! The core mission of the Sourcebook has not changed, however. Our purpose is to facilitate interaction among faculty, students, industry, and government agencies to accomplish nuclear research, teaching and service activities. Since 1986 we have compiled critical information on nuclear

210

Nuclear forces  

Science Conference Proceedings (OSTI)

These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach

2013-01-01T23:59:59.000Z

211

Tests of Micro-Pattern Gaseous Detectors for Active1 Target Time Projection Chambers in nuclear physics2  

E-Print Network (OSTI)

Tests of Micro-Pattern Gaseous Detectors for Active1 Target Time Projection Chambers in nuclear the gas used as the detection medium10 is also a target for nuclear reactions, have been used for a wide variety of11 nuclear physics applications since the eighties. Improvements in MPGD (Mi-12 cro Pattern

Recanati, Catherine

212

Nuclear Instruments and Methods in Physics Research A 582 (2007) 629637 Monte Carlo and analytical models of neutron detection with organic  

E-Print Network (OSTI)

unfolding, which have a variety of applications, including nuclear nonproliferation and homeland security materials in applications such as nuclear nonproliferation, homeland security, and basic physics research

Pázsit, Imre

213

Nuclear data uncertainty propagation in a lattice physics code using stochastic sampling  

SciTech Connect

A methodology is presented for 'black box' nuclear data uncertainty propagation in a lattice physics code using stochastic sampling. The methodology has 4 components: i) processing nuclear data variance/covariance matrices including converting the native group structure to a group structure 'compatible' with the lattice physics code, ii) generating (relative) random samples of nuclear data, iii) perturbing the lattice physics code nuclear data according to the random samples, and iv) analyzing the distribution of outputs to estimate the uncertainty. The scheme is described as implemented at PSI, in a modified version of the lattice physics code CASMO-5M, including all relevant practical details. Uncertainty results are presented for a BWR pin-cell at hot zero power conditions and a PWR assembly at hot full power conditions with depletion. Results are presented for uncertainties in eigenvalue, 1-group microscopic cross sections, 2-group macroscopic cross sections, and isotopics. Interesting behavior is observed with burnup, including a minimum uncertainty due to the presence of fertile U-238 and a global effect described as 'synergy', observed when comparing the uncertainty resulting from simultaneous and one-at-a-time variations of nuclear data. (authors)

Wieselquist, W.; Vasiliev, A.; Ferroukhi, H. [Paul Scherrer Institut, 5232 Villigen (Switzerland)

2012-07-01T23:59:59.000Z

214

CBT: Basic Atomic and Nuclear Physics Module, Version 1.0.03/2004  

Science Conference Proceedings (OSTI)

The Computer Based Training (CBT) Basic Atomic and Nuclear Physics Module, Version 1.0 (Without Tests) 03/2004 is a computer-based course that follows the curriculum outlined in INPO's Guidelines for Training and Qualification of Engineering Personnel, ACAD 98-004. This product is a derivative of EPRI product 1003509, Computer Based Training Basic Atomic and Nuclear Physics Module Version 1.0. It contains the same instructional material; however, the pretests and posttests included in that product have b...

2004-04-09T23:59:59.000Z

215

Nuclear Deterrence  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Deterrence Nuclear Deterrence Nuclear Deterrence LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 A B-2 Spirit bomber refuels from a KC-135 Stratotanker A B-2 Spirit bomber refuels from a KC-135 Stratotanker. Contact Operator Los Alamos National Laboratory (505) 667-5061 Charlie McMillan, Director: "For the last 70 years there has not been a world war, and I have to think that our strong deterrent has something to do with that fact." Mission nuclear weapons Charlie McMillan, Director of Los Alamos National Laboratory 1:06 Director McMillan on nuclear deterrence While the role and prominence of nuclear weapons in U.S. security policy

216

Searching for an Attractive Force in Holographic Nuclear Physics  

E-Print Network (OSTI)

We are looking for a holographic explanation of nuclear forces, especially the attractive forces. Recently, the repulsive hard core of a nucleon-nucleon potential was obtained in the Sakai-Sugimoto model, and we show that a generalized version of that model -- with an asymmetric configuration of the flavor D8 branes -- also has an attractive potential. While the repulsive potential stems from the Chern-Simons interactions of the U(2) flavor gauge fields in 5D, the attractive potential is due to a coupling of the gauge fields to a scalar field describing fluctuations of the flavor branes' geometry. At intermediate distances r between baryons -- smaller than R_KK=O(1)/M_{omega meson} but larger than the radius rho=R_KK/sqrt('t Hooft coupling) of the instanton at the core of a baryon -- both the attractive and the repulsive potentials behave as 1/r^2, but the attractive potential is weaker: Depending on the geometry of the flavor D8 branes, the ratio C=-V_attr/V_rep ranges from 0 to 1/9. The 5D scalar fields also affect the isovector tensor and spin-spin forces, and the overall effect is similar to the isoscalar central forces: V(r)->(1-C)*V(r). At longer ranges $r\\gtrsim R_{\\rm KK}$, we find that the attractive potential decays faster than the repulsive potential, so the net potential is always repulsive. This unrealistic behavior may be peculiar to the Sakai-Sugimoto-like models, or it could be a general problem of the large N_c limit inherent in holography.

Vadim S. Kaplunovsky; Jacob Sonnenschein

2010-03-12T23:59:59.000Z

217

Workshop on the Role of the Nuclear Physics Research Community in Combating Terrorism: Scientific Posters  

DOE Data Explorer (OSTI)

This 2002 workshop brought together members of the nation's nuclear physics research community with expertise in nuclear physics, detector development, and accelerator development from DOE and NSF laboratories and universities, with terrorism experts from government agencies familiar with technologies, strategies and policy for the combat of terrorism. The focus of the workshop included conventional explosive and weapon detection and radiological and nuclear threats. Each of these topics included research for field applications, detector and accelerator research in transportation (air, surface, maritime), detector and accelerator research in laboratory forensic detection and preventive measures against clandestine activities [Copied, with editing, from http://www.sc.doe.gov/np/homeland/descript.html]. Of the 45 posters presented at the workshop, 35 have been made available in PDF format on this webpage. The 62 page report from the workshop is also available at http://www.sc.doe.gov/np/homeland/index.html.

218

NUCLEAR CHEMISTRY ANNUAL REPORT 1970  

SciTech Connect

Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

Authors, Various

1971-05-01T23:59:59.000Z

219

Nuclear Instruments and Methods in Physics Research A 544 (2005) 225235 Neutralized transport experiment  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 544 (2005) 225­235 Neutralized transport. Good agreement has been observed with theory and experiment throughout the study. r 2005 Elsevier B a reactor chamber to an inertial confinement fusion (ICF) target. The present generation of indirect

Gilson, Erik

220

Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1992--June 30 , 1993  

SciTech Connect

Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. The section on Hadrons in Nuclei reports research into the ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate decreases in nuclear matter, and this is responsible for the decrease of the nucleon`s mass. The section on the Structure of Hadrons reports progress in understanding the structure of the nucleon. These results cover widely different approaches -- lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. Progress in Relativistic Nuclear Physics is reported on electromagnetic interactions in a relativistic bound state formalism, with applications to elastic electron scattering by deuterium, and on application of a two-body quasipotential equation to calculate the spectrum of mesons formed as bound states of a quark and antiquark. A Lorentz-invariant description of the nuclear force suggests a decrease of the nucleon`s mass in the nuclear medium similar to that found from QCD sum rules. Calculations of three-body bound states with simple forms of relativistic dynamics are also discussed. The section on Heavy Ion Dynamics and Related Processes describes progress on the (e{sup +}e{sup {minus}}) problem and heavy-on dynamics. In particular, the sharp electrons observed in {beta}{sup +} irradiation of heavy atoms have recently been subsumed into the ``Composite Particle Scenario,`` generalizing the ``(e{sup +}e{sup {minus}}-Puzzle`` of the pairs from heavy ion collisions to the ``Sharp Lepton Problem.``

Griffin, J.J.; Cohen, T.D.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

New directions for nuclear physics: a personal view  

SciTech Connect

A review is given of theoretical and experimental high energy physics, and possible future directions of study are pointed out. (JFP)

Goldhaber, M.

1976-01-01T23:59:59.000Z

222

Nuclear Energy  

Nuclear Energy Environmental Mgmt. Study Objectives: Respond to the pressing need to refine existing corrosion models: Predict performance in wide range of environments

223

Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Nuclear reactors created not only large amounts of plutonium needed for the weapons programs, but a variety of other interesting and useful radioisotopes. They produced...

224

Nuclear Astrophysics  

Science Conference Proceedings (OSTI)

I review progress that has been made in nuclear astrophysics over the past few years and summarize some of the questions that remain. Topics selected include solar neutrinos

W. C. Haxton

2006-01-01T23:59:59.000Z

225

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Table 17. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by contract type in delivery year, 2012

226

Nuclear Weapons  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear science that has had a significant global influence. Following the observation of fission products of uranium by Hahn and Strassmann in 1938, a uranium fission weapon...

227

NUCLEAR ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

could improve the economic and safety performance of these advanced reactors. Nuclear power can reduce GHG emissions from electricity production and possibly in co-generation...

228

Nuclear Forces and Nuclear Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Forces and Nuclear Systems Forces and Nuclear Systems Our goal is to achieve a description of nuclear systems ranging in size from the deuteron to nuclear matter and neutron stars using a single parameterization of the nuclear forces. Our work includes both the construction of two- and three-nucleon potentials and the development of many-body techniques for computing nuclear properties with these interactions. Detailed quantitative, computationally intense studies are essential parts of this work. In the last decade we have constructed several realistic two- and three-nucleon potential models. The NN potential, Argonne v18, has a dominant charge-independent piece plus additional charge-dependent and charge-symmetry-breaking terms, including a complete electromagnetic interaction. It fits 4301 pp and np elastic scattering data with a chi**2

229

Nuclear Weapons Journal Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Weapons Journal Archive Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue...

230

Nonreactor Nuclear Facilities Division  

NLE Websites -- All DOE Office Websites (Extended Search)

role in developing science and technology for nuclear power programs, nuclear propulsion, nuclear medicine, and the nation's nuclear weapon program among others. Many...

231

Compound nuclear decay and the liquid to vapor phase transition: a physical picture  

E-Print Network (OSTI)

Analyses of multifragmentation in terms of the Fisher droplet model (FDM) and the associated construction of a nuclear phase diagram bring forth the problem of the actual existence of the nuclear vapor phase and the meaning of its associated pressure. We present here a physical picture of fragment production from excited nuclei that solves this problem and establishes the relationship between the FDM and the standard compound nucleus decay rate for rare particles emitted in first-chance decay. The compound thermal emission picture is formally equivalent to a FDM-like equilibrium description and avoids the problem of the vapor while also explaining the observation of Boltzmann-like distribution of emission times. In this picture a simple Fermi gas thermometric relation is naturally justified and verified in the fragment yields and time scales. Low energy compound nucleus fragment yields scale according to the FDM and lead to an estimate of the infinite symmetric nuclear matter critical temperature between 18 a...

Moretto, L G; Phair, L

2005-01-01T23:59:59.000Z

232

Nuclear hadrodynamics  

Science Conference Proceedings (OSTI)

The role of hadron dynamics in the nucleus is illustrated to show the importance of nuclear medium effects in hadron interactions. The low lying hadron spectrum is considered to provide the natural collective variable for nuclear systems. Recent studies of nucleon?nucleon and delta?nucleon interactions are reviewed

D. F. Geesaman

1984-01-01T23:59:59.000Z

233

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network (OSTI)

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

Stocker, H.

2012-01-01T23:59:59.000Z

234

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

Management & Safeguards System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials...

235

Nuclear Materials Management & Safeguards System | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Jobs Our Jobs Working at NNSA Blog Nuclear Materials Management & Safeguards System Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management &...

236

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

Energy Transmission say for Nuclear Fuel Assemblies 4.1Facilities Spent nuclear fuel is another example wherein intact spent nuclear fuel would be a technological

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

237

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

and Diablo Canyon 2 nuclear reactors. Data were taken fromCapacity Operation of nuclear reactors for power generationby the operation of nuclear reactors. Therefore, ap-

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

238

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System...

239

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

240

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

that are of interest for nuclear security applications. Theof interest to nuclear security. To either make theseother targets of nuclear security interest, such kilogram-

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear Halos  

Science Conference Proceedings (OSTI)

We show that extreme nuclear halos are caused only by pairs of s?wave neutrons (or single s?wave neutrons) and that such states occur much more frequently in the periodic table than previously believed. Besides lingering long near zero neutron separation energy such extreme halos have very remarkable properties: they can contribute significantly to the nuclear density at more than twice the normal nuclear radius and their spreading width can be very narrow. The properties of these states are primarily determined by the thickness of the nuclear surface in the mean?free nuclear potential and thus their importance increases greatly as we approach the neutron drip line. We discuss what such extreme halos are

Erich Vogt

2010-01-01T23:59:59.000Z

242

Nuclear Plant Dynamics and Safety - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis > Nuclear Plant Dynamics and Safety Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Nuclear Plant Dynamics and Safety Bookmark and Share Activities in Nuclear Plant Dynamics and Safety research and development fulfill a primary goal of the Nuclear Engineering (NE) Division to promote improvements in safe and reliable operation of present and future

243

Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995  

SciTech Connect

Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.

Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

1995-12-31T23:59:59.000Z

244

Department of Energy Issues Requests for Applications for Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemistry, Health Physics, Nuclear Materials Science, Radiochemistry, Applied Nuclear Physics, and Nuclear Policy at universities and colleges located in the U.S....

245

from Savannah River Nuclear Solutions, LLC NEWS SRNS Partners with Georgialina Physical Therapy Associates to  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners with Georgialina Physical Therapy Associates to Partners with Georgialina Physical Therapy Associates to Bring Services to SRS Employees AIKEN, S.C. - April 25, 2013 - The days of long drives, even longer wait times, and work challenges associated with ongoing physical therapy appointments are drawing to an end for Savannah River Site (SRS) employees thanks to a partnership between Savannah River Nuclear Solutions, LLC (SRNS) and Georgialina Physical Therapy (GPT) Associates. Together, the companies have launched a new program to provide a range of physical therapy services to all SRS employees. "Any SRS employee can schedule an appointment with us at our on-site location," said Brett Brannon, co-owner, Georgialina Physical Therapy Associates. "We provide the same services at our SRS clinic that we do in any of our

246

The Bevatron and its Place in Nuclear Physics  

DOE Green Energy (OSTI)

A sprawling group of buildings on an impressive campus site in the Berkeley hills provides the home of the Radiation Laboratory of the University of California. A succession of large accelerators has been built there, the latest of which is the Bevatron. It is the largest and highest-energy accelerator in operation at the present time. It was built and is operated under contract with the United States Atomic Energy Commission. It is of the type known as a proton synchrotron, of which there are two others in operation, one at the University of Birmingham, England, whose energy is 1 Bev (billion electron volts), and another at the Brookhaven National Laboratory, known as the Cosmotron, which operates at 3 Bev. The Bevatron accelerates protons (stripped nuclei of hydrogen atoms) to an energy of 6.2 Bev. The design was started in 1947 under the direction of Professor E. O. Lawrence, and although it was the product of collaboration of a large group of physicists and engineers, the original conception was due to William Brobeck who also contributed more than any other individual. A working quarter-scale model was built and operated in 1948 and 1949 to verify the correctness of the design concept. Construction of the full-scale machine was completed in five years, and operation began in the spring of 1954. A period of adjustment and tuning up followed, and since September 1954 it has been the center of a most active and profitable program in high-energy physics. One new particle has been discovered, and an abundance of previously rare and poorly understood particles (heavy mesons and hyperons) has been provided for study. The program has had participants from laboratories all over the United States and from a half dozen other countries, in addition to the staff at the University of California. This article first describes the Bevatron and its operation, and then discusses a portion of the research program. The principles of the machine and its early history were given in ''The Bevatron'', by Lloyd Smith, Scientific American, February 1951.

Lofgren, E.J.

1956-04-06T23:59:59.000Z

247

UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report  

SciTech Connect

This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup #25;0}, 2{pi}{sup #25;}0, 3{pi}{sup #25;0}, {eta}#17;, {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4#25;. It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, Gâ??parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta}#17;,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta}#17; and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup #4;â??}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and nonâ??coherent #25;0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the #25;{pi}{sup 0} final state and exclusive for background such as 2#25;{pi}{sup 0}.

B.M.K. Nefkens (Principal Investigator, ed.); J. Goetz; A. Lapik; M. Korolija; S. Prakhov; A. Starostin (ed.)

2011-05-18T23:59:59.000Z

248

Countering Nuclear Terrorism and Trafficking | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

249

Nuclear Forensics | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

250

Nuclear Incident Team | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

251

Nuclear / Radiological Advisory Team | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

252

Nuclear Safeguards | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

253

Nuclear Controls | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

254

Nuclear Nonproliferation Treaty | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

255

Nuclear Verification | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Verification | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

256

Climate Change, Nuclear Power and Nuclear  

E-Print Network (OSTI)

Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

257

Nuclear Magnetic Resonance Laboratory  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance Laboratory. ... A 600 MHz Nuclear Magnetic Resonance Spectrometer. Analytical Data Compilation Reference Materials. ...

2012-10-01T23:59:59.000Z

258

arXiv:submit/0451583[physics.gen-ph]8Apr2012 Including Nuclear Degrees of Freedom in a Lattice  

E-Print Network (OSTI)

arXiv:submit/0451583[physics.gen-ph]8Apr2012 Including Nuclear Degrees of Freedom in a Lattice and Engineering, University of Engineering and Technology. Lahore, Pakistan Abstract. Motivated by many condensed matter and nuclear systems are described initially on the same footing. Since it may be possible

Williams, Brian C.

259

Nuclear Chirality  

Science Conference Proceedings (OSTI)

Nuclear chirality is a novel manifestation of spontaneous symmetry breaking resulting from an orthogonal coupling of angular momentum vectors in triaxial nuclei. Three perpendicular angular momenta can form two systems of opposite handedness; the time reversal operator

Krzysztof Starosta

2005-01-01T23:59:59.000Z

260

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Table 21. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2008-2012

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nuclear Materials  

Science Conference Proceedings (OSTI)

Assessing the Thermal Stability of Bulk Metallic Glasses for Nuclear Waste Applications by K. Hildal, J.H. Perepezko, and L. Kaufman, $10.00 ($10.00), $25.00.

262

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

1962-10-23T23:59:59.000Z

263

Nuclear Nonproliferation  

Science Conference Proceedings (OSTI)

With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

Atkins-Duffin, C E

2008-12-10T23:59:59.000Z

264

Compound nuclear decay and the liquid to vapor phase transition: a physical picture  

E-Print Network (OSTI)

Analyses of multifragmentation in terms of the Fisher droplet model (FDM) and the associated construction of a nuclear phase diagram bring forth the problem of the actual existence of the nuclear vapor phase and the meaning of its associated pressure. We present here a physical picture of fragment production from excited nuclei that solves this problem and establishes the relationship between the FDM and the standard compound nucleus decay rate for rare particles emitted in first-chance decay. The compound thermal emission picture is formally equivalent to a FDM-like equilibrium description and avoids the problem of the vapor while also explaining the observation of Boltzmann-like distribution of emission times. In this picture a simple Fermi gas thermometric relation is naturally justified and verified in the fragment yields and time scales. Low energy compound nucleus fragment yields scale according to the FDM and lead to an estimate of the infinite symmetric nuclear matter critical temperature between 18 and 27 MeV depending on the choice of the surface energy coefficient of nuclear matter.

L. G. Moretto; J. B. Elliott; L. Phair

2005-07-08T23:59:59.000Z

265

Nuclear Physics  

Office of Science (SC) Website

aboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

266

International Cooperation on Safety of Nuclear Plants - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

267

Current R&D Activities in Nuclear Criticality Safety - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

268

NUCLEAR DATA AND MEASUREMENTS REPORTS 161-180 - Nuclear Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

269

Analysis Tools for Nuclear Criticality Safety - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

270

Countering Nuclear Terrorism | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Countering Nuclear Terrorism | National Nuclear Security Administration Countering Nuclear Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Countering Nuclear Terrorism Home > Our Mission > Countering Nuclear Terrorism Countering Nuclear Terrorism NNSA provides expertise, practical tools, and technically informed policy

271

REACTOR AND SHIELD PHYSICS. Comprehensive Technical Report, General Electric Direct-Air-Cycle, Aircraft Nuclear Propulsion Program.  

SciTech Connect

This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume describes the experimental and theoretical work accomplished in the areas of reactor and shield physics.

Edwards, W.E.; Simpson, J.D.

1962-01-01T23:59:59.000Z

272

Final Progress Report to the Department of Energy's Office of Science on the Committee on Nuclear Physics  

SciTech Connect

The Committee on Nuclear Physics (CNP), under the National Research Council's Board on Physics and Astronomy (BPA), conducted an assessment of the field as part of the BPA's survey of physics in the last decade, titled ''Physics in a New Era.'' The CNP report was published by the National Academy Press in early 1999 under the title ''Nuclear Physics: The Core of Matter, The Fuel of Stars.''

Board on Physics and Astronomy

2001-01-01T23:59:59.000Z

273

Organization - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

274

Achievements: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

275

GKTC ACTIVITIES TO PROVIDE NUCLEAR MATERIAL PHYSICAL PROTECTION, CONTROL AND ACCOUNTING TRAINING FOR 2011-2012  

Science Conference Proceedings (OSTI)

The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed training needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly describes the practical efforts applied to the provision of physical protection specialists advanced training in Ukraine and real results on the way to implement such efforts in 2011-2012.

Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr; Gavrilyuk-Burakova, Anna; Diakov, Oleksii; Drapey, Sergiy; Proskurin, Dmitry; Dickman, Deborah A.; Ferguson, Ken

2011-10-01T23:59:59.000Z

276

Nuclear Science References Database  

E-Print Network (OSTI)

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

B. Pritychenko; E. B?tk; B. Singh; J. Totans

2013-02-27T23:59:59.000Z

277

Pioneering the nuclear age  

SciTech Connect

This paper reviews the historical aspects of nuclear physics. The scientific aspects of the early transuranium elements are discussed and arms control measures are reviewed. 11 refs., 14 figs. (LSP)

Seaborg, G.T.

1988-09-01T23:59:59.000Z

278

Nuclear Power  

E-Print Network (OSTI)

The world of the twenty first century is an energy consuming society. Due to increasing population and living standards, each year the world requires more energy and new efficient systems for delivering it. Furthermore, the new systems must be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. The goal of the book is to show the current state-of-the-art in the covered technical areas as well as to demonstrate how general engineering principles and methods can be applied to nuclear power systems.

Tsvetkov, Pavel

2010-08-01T23:59:59.000Z

279

SC e-journals, Nuclear  

Office of Scientific and Technical Information (OSTI)

Nuclear Nuclear Annals of Nuclear Energy Annual Review of Nuclear and Particle Science Atomic Data & Nuclear Data Tables Atomic Energy BMC Medical Physics - OAJ Cancer Prevention Journals Portal Cancer Prevention Research Cancer Reviews Online Dose Response Energy & Environmental Science Energy Policy EURASIP Journal on Advances in Signal Processing - OAJ EURASIP Journal on Bioinformatics and Systems Biology - OAJ EURASIP Journal on Embedded Systems (2006 forward) - OAJ Fuel Fusion Engineering and Design Fusion Nuclear Society Health Physics IETE Journal of Research - OAJ International Journal of Cancer International Journal of Low Radiation International Journal of Microwave Science and Technology - OAJ International Journal of Radiation Biology Journal of Cancer Eqidemiology - OAJ

280

DOE-HDBK-1019/2-93; DOE Fundamentals Handbook Nuclear Physics and Reactor Theory Volume 2 of 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-93 2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK NUCLEAR PHYSICS AND REACTOR THEORY Volume 2 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal., Springfield, VA 22161. Order No. DE93012223 DOE-HDBK-1019/1-93 NUCLEAR PHYSICS AND REACTOR THEORY ABSTRACT The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE-HDBK-1019/1-93; DOE Fundamentals Handbook Nuclear Physics and Reactor Theory Volume 1 of 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-93 1-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK NUCLEAR PHYSICS AND REACTOR THEORY Volume 1 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the National Technical Information Services, U.S. Department of Commerce, 5285 Port Royal., Springfield, VA 22161. Order No. DE93012221 DOE-HDBK-1019/1-93 NUCLEAR PHYSICS AND REACTOR THEORY ABSTRACT The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear

282

Nuclear Data Program - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Program Data Program Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program We contribute to the development of comprehensive nuclear reactions and nuclear structure databases, including nuclear data measurement, analysis, modeling and evaluation methodologies, that are implemented in basic science research and advanced nuclear technologies. Bookmark and Share Recent Events Nuclear Structure 2012 Conference Argonne National Laboratory hosted the

283

Powering the Nuclear Navy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

The National Nuclear Security Administration Powering the Nuclear Navy Home > Our Mission > Powering the Nuclear Navy Powering the Nuclear Navy The Naval Nuclear Propulsion Program...

284

National Nuclear Data Center Nuclear Energy  

E-Print Network (OSTI)

National Nuclear Data Center and Nuclear Energy Pavel Oblozinsky National Nuclear Data Center;National Nuclear Data Center Probably the oldest active organization at BNL History · Founded in 1952 as Sigma Center, neutron cross sections · Changed to National Nuclear Data Center in 1977 · 40 staff

285

Midwest Nuclear Compact (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

The Midwest Nuclear Compact establishes a Midwest Nuclear Board to cooperatively evaluate and make recommendations regarding the development of nuclear technology, distribute information about...

286

Nuclear | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has been providing the energy for deep space...

287

NUCLEAR PROXIMITY FORCES  

E-Print Network (OSTI)

One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

Randrup, J.

2011-01-01T23:59:59.000Z

288

Nuclear | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has...

289

Models for Type I X-Ray Bursts with Improved Nuclear Physics  

DOE Green Energy (OSTI)

Multi-zone models of Type I X-ray bursts are presented that use an adaptive nuclear reaction network of unprecedented size, up to 1300 isotopes, for energy generation and include the most recent measurements and estimates of critical nuclear physics. Convection and radiation transport are included in calculations that carefully follow the changing composition in the accreted layer, both during the bursts themselves and in their ashes. Sequences of bursts, up to 15 in one case, are followed for two choices of accretion rate and metallicity, up to the point where quasi-steady state is achieved. For M = 1.75 x 10{sup -9} M{sub {circle_dot}} yr{sup -1} (and M = 3.5 x 10{sup -10} M{sub {circle_dot}} yr{sup -1}, for low metallicity), combined hydrogen-helium flashes occur. These bursts have light curves with slow rise times (seconds) and long tails. The rise times, shapes, and tails of these light curves are sensitive to the efficiency of nuclear burning at various waiting points along the rp-process path and these sensitivities are explored. Each displays ''compositional inertia'' in that its properties are sensitive to the fact that accretion occurs onto the ashes of previous bursts which contain left-over hydrogen, helium and CNO nuclei.

Woosley, S E; Heger, A; Cumming, A; Hoffman, R D; Pruet, J; Rauscher, T; Schatz, H; Brown, B A; Wiescher, M; Fisker, J L

2004-02-02T23:59:59.000Z

290

BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities  

Science Conference Proceedings (OSTI)

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

2012-03-01T23:59:59.000Z

291

A health physics program for operation with failed nuclear fuel; Dealing with fleas  

SciTech Connect

The San Onofre Unit 3 nuclear plant suffered fuel cladding failures during its first fuel cycle. As a result, primary systems and parts of the station were contaminated with fleas--tiny highly radioactive, and highly mobile fuel fragments. This article describes the special health physics practices needed to control flea contamination and to evaluate skin doses when personnel contaminations occur. Included are descriptions of a modified Eberline RO-2 ion chamber survey instrument with enhance flea detection capabilities and a laundry monitor that is used to check protective clothing for fleas.

Warnock, R.V.; Cooper, T.L.; Bray, L.G.; Goldin, E.M.; Knapp, P.J.; Lewis, M.N.; Rigby, W.F. (Southern California Edison Co., San Onofre Nuclear Generating Station, San Clemente, CA (US))

1987-07-01T23:59:59.000Z

292

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

293

Nuclear Chemistry at BNL 1947-66  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry in the Chemistry Department. The National Laboratories were spawned from the Manhattan Project. Not coincidentally, nuclear chemistry and nuclear physics burgeoned...

294

Nuclear Modifications of Parton Distribution Functions.  

E-Print Network (OSTI)

??This dissertation addresses a central question of modern nuclear physics: howdoes the behavior of fundamental degrees of freedom (quarks and gluons) change in the nuclear (more)

Adeluyi, Adeola Adeleke

2009-01-01T23:59:59.000Z

295

Advanced Reactor Development and Technology - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Nuclear Data Program Advanced Reactor Development Overview Advanced Fast Reactor...

296

REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS  

SciTech Connect

Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical analysis. The fuel assembly was modeled using MONTEBURNS(MCNP5/ ORIGEN2.2) and MCNPX/CINDER90. The results from the models have been compared to each other and to the measured data.

Nichols, T.; Beals, D.; Sternat, M.

2011-07-18T23:59:59.000Z

297

Nuclear ferromagnetism  

Science Conference Proceedings (OSTI)

The possibility of producing ordered states of nuclear spins by DNP followed by ADRF was first demonstrated in 1969. The spins of 19F in a crystal of CaF2 were cooled below one microdegree (with the applied field along the [100] axis) and their antiferromagnetic ordering was exhibited through the characteristic behaviour of their transverse and (later) longitudinal susceptibilities.

A. Abragam

1975-01-01T23:59:59.000Z

298

NUCLEAR REACTOR  

DOE Patents (OSTI)

A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

Treshow, M.

1961-09-01T23:59:59.000Z

299

Nuclear Terrorism.  

SciTech Connect

As pointed out by several speakers, the level of violence and destruction in terrorist attacks has increased significantly during the past decade. Fortunately, few have involved weapons of mass destruction, and none have achieved mass casualties. The Aum Shinrikyo release of lethal nerve agent, sarin, in the Tokyo subway on March 20, 1995 clearly broke new ground by crossing the threshold in attempting mass casualties with chemical weapons. However, of all weapons of mass destruction, nuclear weapons still represent the most frightening threat to humankind. Nuclear weapons possess an enormous destructive force. The immediacy and scale of destruction are unmatched. In addition to destruction, terrorism also aims to create fear among the public and governments. Here also, nuclear weapons are unmatched. The public's fear of nuclear weapons or, for that matter, of all radioactivity is intense. To some extent, this fear arises from a sense of unlimited vulnerability. That is, radioactivity is seen as unbounded in three dimensions - distance, it is viewed as having unlimited reach; quantity, it is viewed as having deadly consequences in the smallest doses (the public is often told - incorrectly, of course - that one atom of plutonium will kill); and time, if it does not kill you immediately, then it will cause cancer decades hence.

Hecker, Siegfried S.

2001-01-01T23:59:59.000Z

300

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor is described that includes spaced vertical fuel elements centrally disposed in a pressure vessel, a mass of graphite particles in the pressure vessel, means for fluidizing the graphite particles, and coolant tubes in the pressure vessel laterally spaced from the fuel elements. (AEC)

Post, R.G.

1963-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

Starr, C.

1963-01-01T23:59:59.000Z

302

Nuclear chemistry. Annual report, 1974  

SciTech Connect

The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

Conzett, H.E.; Edelstein, N.M.; Tsang, C.F. (eds.)

1975-07-01T23:59:59.000Z

303

Neutrino nuclear response and photo nuclear reaction  

E-Print Network (OSTI)

Photo nuclear reactions are shown to be used for studying neutrino/weak nuclear responses involved in astro-neutrino nuclear interactions and double beta decays. Charged current weak responses for ground and excited states are studied by using photo nuclear reactions through isobaric analog states of those states, while neutral current weak responses for excited states are studied by using photo nuclear reactions through the excited states. The weak interaction strengths are studied by measuring the cross sections of the photo nuclear reactions, and the spin and parity of the state are studied by measuring angular correlations of particles emitted from the photo nuclear reactions. Medium-energy polarized photons obtained from laser photons scattered off GeV electrons are very useful. Nuclear responses studied by photo nuclear reactions are used to evaluate neutrino/weak nuclear responses, i.e. nuclear beta and double beta matrix elements and neutrino nuclear interactions, and to verify theoretical calculation...

Ejiri, H; Boswell, M; Young, A

2013-01-01T23:59:59.000Z

304

Neutrino nuclear response and photo nuclear reaction  

E-Print Network (OSTI)

Photo nuclear reactions are shown to be used for studying neutrino/weak nuclear responses involved in astro-neutrino nuclear interactions and double beta decays. Charged current weak responses for ground and excited states are studied by using photo nuclear reactions through isobaric analog states of those states, while neutral current weak responses for excited states are studied by using photo nuclear reactions through the excited states. The weak interaction strengths are studied by measuring the cross sections of the photo nuclear reactions, and the spin and parity of the state are studied by measuring angular correlations of particles emitted from the photo nuclear reactions. Medium-energy polarized photons obtained from laser photons scattered off GeV electrons are very useful. Nuclear responses studied by photo nuclear reactions are used to evaluate neutrino/weak nuclear responses, i.e. nuclear beta and double beta matrix elements and neutrino nuclear interactions, and to verify theoretical calculations for them.

H. Ejiri; A. I. Titov; M. Boswell; A. Young

2013-11-10T23:59:59.000Z

305

Nuclear Fission: Reaction to the Discovery in 1939  

E-Print Network (OSTI)

and A. v. Grosse, "Nuclear fission of separated uraniumThe mechanism of nuclear fission," Physical Review, 56 (1liberated in the nuclear fission of uranium," Nature, 143 (

Hodes, Elizabeth; Tiddens, Adolph; Badash, Lawrence

1985-01-01T23:59:59.000Z

306

National Nuclear Data Center | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

on nuclear structure and nuclear reactions, evaluates them employing nuclear physics theory and expertise in evaluating experimental techniques to provide recommended results,...

307

NUCLEI: Nuclear Computational Low-Energy Initiative | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

NUCLEI: Nuclear Computational Low-Energy Initiative NUCLEI: Nuclear Computational Low-Energy Initiative This project seeks to advance large-scale nuclear physics compoutations in...

308

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Topic Summary: A comprehensive glossary for nuclear chemistry, nuclear physics and nuclear engineering. Created On: 2/16/2007 2:04 PM, Topic View:.

309

PION, LIGHT FRAGMENT AND ENTROPY PRODUCTION IN NUCLEAR COLLISIONS  

E-Print Network (OSTI)

description of high energy nuclear collisions requires thefragments in high energy nuclear collisions. The calculatedof the Office of High Energy and Nuclear Physics of the U.S.

Stocker, Horst

2013-01-01T23:59:59.000Z

310

NUCLEAR CHEMISTRY DIV. ANNUAL REPORT 1980-81  

E-Print Network (OSTI)

Polarization Phenomena in Nuclear Physics-1980, AIP Conf.Barrett and D.F. Jackson, Nuclear Sizes and Structure, (K Production in Relativistic Nuclear Collisions A. Shor, K.

Cerny, J.

2010-01-01T23:59:59.000Z

311

Facilities and Programs, Experimental Resources for Nuclear Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Laboratory U University of California Davis - Crocker Nuclear Laboratory University of Kentucky Lexington - Low Energy Nuclear Physics University of Maryland -...

312

Nuclear Forensics | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Forensics | National Nuclear Security Administration Forensics | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Forensics Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Nuclear Forensics Nuclear Forensics Forensics Operations The National Technical Nuclear Forensics (NTNF) program is a Homeland Security Council and National Security

313

Nuclear Detonation Detection | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Research and Development > Nuclear Detonation Detection Nuclear Detonation Detection NNSA builds the nation's operational sensors that monitor the entire planet from space to...

314

Why Nuclear Energy?  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear Why nuclear energy? energy? Nuclear energy already meets a significant share of the Nuclear energy already meets a significant share of the world world' 's energy needs s...

315

Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)  

DOE Data Explorer (OSTI)

The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

None

316

Civilian Nuclear Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Civilian Nuclear Programs Civilian Nuclear Programs Civilian Nuclear Programs Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Bruce Robinson (505) 667-1910 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Programs Office is the focal point for nuclear energy research and development and next-generation repository science at Los Alamos National Laboratory. The Civilian Nuclear Programs Office manages projects funded by the Department of Energy's offices of Nuclear Energy Environmental Management Nuclear Regulatory Commission

317

EXPERIMENTAL AND CALCULATED RESEARCHES OF NUCLEAR-PHYSICS CHARACTERISTICS OF ASSEMBLIES CONTAINING [237Np + 239Pu(98%)] IN TH  

National Nuclear Security Administration (NNSA)

And Calculated Researches of Nuclear-Physics Characteristics And Calculated Researches of Nuclear-Physics Characteristics Of Assemblies Containing [ 237 Np + 239 Pu(98%)] in The Core and Reflector of Natural Uranium V.I.Gavrilov, I.Yu.Drozdov, N.V.Zavialov, V.I.Il'in, A.A.Kajgorodov, M.I.Kuvshinov, A.V.Panin Russian Federal Nuclear Center All-Russia Scientific Research Institute of Experimental Physics Neptunium 237 seems to be a promising material as a core component of such systems as pulsed reactors [2] and cascade blankets for electronuclear facilities [1]. To realize calculated simulation of such facilities it is required to know neutron-physics data for the materials included. In this respect 237 Np is a little-studied material. Thus, the rated values of critical mass for a "bare" sphere of

318

Proposal for a High Energy Nuclear Database  

E-Print Network (OSTI)

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munitys ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

319

ANS Nuclear Historic Landmark  

Science Conference Proceedings (OSTI)

... NCNR declared a Nuclear Historic Landmark by the American Nuclear Society. The NIST Center for Neutron Research ...

320

WORKSHOP ON NUCLEAR DYNAMICS  

E-Print Network (OSTI)

L. Wilets, "Theories of Nuclear Fission", Clarendon Press,of the nuclear force, result in lower calculated fission

Myers, W.D.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

322

Nuclear Analytical Methods  

Science Conference Proceedings (OSTI)

... Nuclear Analytical Methods. Research activities in the Nuclear Analytical Methods Group are focused on the science that ...

323

Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities  

Science Conference Proceedings (OSTI)

The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOEs Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

2009-09-01T23:59:59.000Z

324

Nuclear rockets  

SciTech Connect

A systems analysis is made of a class of nuclear-propelled rockets in combination with chemical boosters. Various missions are considered including the delivery of 5000-lb payload 5500 nautical miles, the placement of a satellite in an orbit about the earth and the delivery of a payload to escape velocity. The reactors considered are of the heterogeneous type utilizing graphite fuel elements in a matrix of Be or hydrogenous moderator. Liquid hydrogen and ammonia are considered as propellants. Graphical results are presented which show the characteristics and performance of the nuclear rockets as the design parameters are varied. It should be emphasized that this report is not in any sense intended as a handbook of rocket parameters; it is intended only as a guide for determining areas of interest.

York, H.F.; Biehl, A.T.

1955-04-26T23:59:59.000Z

325

NUCLEAR REACTOR  

DOE Patents (OSTI)

High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

Grebe, J.J.

1959-07-14T23:59:59.000Z

326

Nuclear Instruments and Methods in Physics Research A 452 (2000) 256}265 On the signi"cance of the energy correlations of  

E-Print Network (OSTI)

the energy correlations, i.e. the 260 I. Pa& zsit et al. / Nuclear Instruments and Methods in Physics neutrons with source energy E, i.e. (E)" # # l l Q 3 dE E . (34) 262 I. Pa& zsit et al. / Nuclear determination of the two-point energy distribution with coincidence 264 I. Pa& zsit et al. / Nuclear Instruments

Pázsit, Imre

327

Nuclear Instruments and Methods in Physics Research A 513 (2003) 585595 The RPI multiplicity detector response to g-ray cascades  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 513 (2003) 585­595 The RPI multiplicity's Republic of China b Department of Mechanical, Aerospace and Nuclear Engineering, Rensselear Polytechnic and the decay properties of the compound nuclear levels at excitations near the threshold for neutron emission

Danon, Yaron

328

Nuclear physics and astrophysics. Progress report, July 15, 1991--June 15, 1992  

SciTech Connect

We have investigated a variety of research topics on the interface of nuclear physics and astrophysics during the past year. We have continued our study of dihyperon states in dense matter and have started to make a connection between their properties in the core of neutron stars with the ongoing experimental searches at Brookhaven National Laboratory. We started to build a scenario for the origin of gamma-ray bursts using the conversion of neutron stars to strange stars close to an active galactic nucleous. We have been reconsidering the constraints due to neutron star cooling rates on the equation of state for high density matter in the light, of recent findings which show that the faster direct Urca cooling process is possible for a range of nuclear compositions. We have developed a model for the formation of primordial magnetic fields due to the dynamics of the quark-hadron phase transition. Encouraged by the most recent observational developments, we have investigated the possible origin of the boron and beryllium abundances. We have greatly improved the calculations of the primordial abundances of these elements I>y augmenting the reaction networks and by updating the most recent experimental nuclear reaction rates. Our calculations have shown that the primordial abundances are much higher than previously thought but that the observed abundances cannot be explained by primordial sources alone. We have also studied the origin of the boron and beryllium abundances due to cosmic ray spallation. Finally, we have continued to address the solar neutrino problem by investigating the impact of astrophysical uncertainties on the MSW solution for a full three-family treatment of MSW mixing.

Schramm, D.N.; Olinto, A.V.

1992-09-01T23:59:59.000Z

329

Nuclear Hydrogen Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

330

Nuclear Nonproliferation Program Offices | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

331

Nuclear Nonproliferation Program Offices | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

332

Nuclear Systems Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Criticality Safety Irradiation Experiment Development and Execution Robotics & Remote Systems Engineering and Applications Thermal & Hydraulic Experiments & Analysis Used Nuclear Fuel Storage, Transportation, and Disposal Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Nuclear Systems Technology SHARE Nuclear Systems Technology Nuclear Systems Technology Image 2 ORNL has had historic involvement in a broad set of nuclear research areas: irradiated materials and isotopes R&D, fission and fusion reactors development, neutron scattering, fuel enrichment, used fuel recycling and disposal, etc. The skills and knowledge required to succeed in these research areas often cultivated core areas of expertise in which ORNL is

333

Nuclear / Radiological Advisory Team | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

/ Radiological Advisory Team | National Nuclear Security / Radiological Advisory Team | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear / Radiological Advisory Team Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations > Nuclear / Radiological Advisory Team Nuclear / Radiological Advisory Team

334

EVALUATION METHODOLOGY FOR PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION OF GENERATION IV NUCLEAR ENERGY SYSTEMS: AN OVERVIEW.  

SciTech Connect

This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: (1) System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. (2) Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. (3) Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include information important to the evaluation methodology users and to the decisions of a proliferant State or adversary. They are first evaluated for segments and then aggregated for complete pathways. Results are aggregated as appropriate to permit pathway comparisons and system assessment. The paper highlights the current achievements in the development of the Proliferation Resistance and Physical Protection Evaluation Methodology. The way forward is also briefly presented together with some conclusions.

BARI, R.; ET AL.

2006-03-01T23:59:59.000Z

335

Evaluation Methodology For Proliferation Resistance And Physical Protection Of Generation IV Nuclear Energy Systems: An Overview  

SciTech Connect

This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: 1.System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. 2.Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. 3.Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include information important to the evaluation methodology users and to the decisions of a proliferant State or adversary. They are first evaluated for segments and then aggregated for complete pathways. Results are aggregated as appropriate to permit pathway comparisons and system assessment. The paper highlights the current achievements in the development of the Proliferation Resistance and Physical Protection Evaluation Methodology. The way forward is also briefly presented together with some conclusions.

T. Bjornard; R. Bari; R. Nishimura; P. Peterson; J. Roglans; D. Bley; J. Cazalet; G.G.M. Cojazzi; P. Delaune; M. Golay; G. Rendad; G. Rochau; M. Senzaki; I. Therios; M. Zentner

2006-05-01T23:59:59.000Z

336

The design of high-speed data transmission method for a small nuclear physics DAQ system  

E-Print Network (OSTI)

A large number of data need to be transmitted in high-speed between Field Programmable Gate Array (FPGA) and Advanced RISC Machines 11 micro-controller (ARM11) when we design a small data acquisition (DAQ) system for nuclear experiments. However, it is a complex problem to beat the target. In this paper, we will introduce a method which can realize the high-speed data transmission. By this way, FPGA is designed to acquire massive data from Front-end electronics (FEE) and send it to ARM11, which will transmit the data to other computer through the TCP/IP protocol. This paper mainly introduces the interface design of the high-speed transmission between FPGA and ARM11, the transmission logic of FPGA and the driver program of ARM11. The research shows that the maximal transmission speed between FPGA and ARM11 by this way can reach 50MB/s theoretically, while in nuclear physics experiment, the system can acquire data with the speed of 2.2MB/s.

Zhou, Wenxiong; Nan, Gangyang; Zhang, Jianchuan

2013-01-01T23:59:59.000Z

337

The AMS Measurements and Its Applications in Nuclear Physics at China Institute of Atomic Energy (CIAE)  

SciTech Connect

Accelerator Mass Spectrometry (AMS), initiated in late 1970s at McMaster university based on the accelerator and detector technique, has long been applied in the studies on archaeology, geology, and cosmology, as a powerful tool for isotope dating. The advantages of AMS in the analysis of rare nuclides by direct counting of the atoms, small sample size and relatively free from the interferences of molecular ions have been well documented. This paper emphasizes that AMS can not only be used for archaeology, geology, environment, biology and so on, but also served as a unique tool for nuclear physics research. In this paper, the determination of the half-lives of {sup 79}Se, the measurements of the cross-sections of {sup 93}Nb(n,2n){sup 92g}Nb and {sup 238}U(n,3n){sup 236}U reactions, the detection and determination of ultratrace impurities in neutrino detector materials, and the measurement of the fission product nuclide {sup 126}Sn, are to be introduced, as some of examples of AMS applications in nuclear research conducted in AMS lab of China Institute of Atomic Energy. Searching for superheavy nuclides by using AMS is being planned.

Jiang Shan; Shen Hongtao; He Ming; Dong Kejun; He Guozhu; Wang Xianggao; Yuan Jian; Wang Wei; Wu Shaoyong [China Institute of Atomic Energy, P.O.Box 275-80, Beijing 102413 (China); Ruan Xiangdong; Wu Weimin [College of Physics, Guangxi University, Nanning 530004 (China)

2010-05-12T23:59:59.000Z

338

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

Young, G.

1963-01-01T23:59:59.000Z

339

Nuclear Photonics  

E-Print Network (OSTI)

With new gamma-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest with 10^13 g/s and a bandwidth of Delta E_g/E_g ~10^-3, a new era of g-beams with energies Duke Univ., USA) with 10^8 g/s and Delta E_g/E_g~0.03. Even a seeded quantum FEL for g-beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused g-beams. We describe a new experiment at the g-beam of the ILL reactor (Grenoble), where we observed for the first time that the index of refraction for g-beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for g-beams are being developed. Thus we have to optimize the system of the g-beam facility, the g-beam optics and g-detectors. We can trade g-intensity for band width, going down to Delta E_g/E_g ~ 10^-6 and address individual nuclear levels. 'Nuclear photonics' stresses the importance of nuclear applications. We can address with g-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, g-beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to micron resolution using Nucl. Reson. Fluorescence for detection with eV resolution and high spatial resolution. We discuss the dominating M1 and E1 excitations like scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

D. Habs; M. M. Guenther; M. Jentschel; P. G. Thirolf

2012-01-21T23:59:59.000Z

340

Nuclear Physics User Facilities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

NP User Facilities NP User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 NP User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Nuclear Physics program supports the operation of the following national scientific user facilities: Relativistic Heavy Ion Collider (RHIC): External link RHIC at Brookhaven National Laboratory External link is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GTRI: Reducing Nuclear Threats | National Nuclear Security Administrat...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Nuclear Threats | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

342

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the...

343

Nuclear Weapons Testing Resumes | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

> Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test...

344

Nuclear Waste Policy Act Signed | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

> Nuclear Waste Policy Act Signed Nuclear Waste Policy Act Signed January 07, 1983 Washington, DC Nuclear Waste Policy Act Signed President Reagan signs the Nuclear Waste...

345

National Nuclear SecurityAdministration's Nuclear ExplosiveSafety...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Nuclear SecurityAdministration's Nuclear ExplosiveSafety Study Program, IG-0581 National Nuclear SecurityAdministration's Nuclear ExplosiveSafety Study Program, IG-0581 To...

346

Regulation of nuclear envelope breakdown by the nuclear pore complex;.  

E-Print Network (OSTI)

??In higher eukaryotes, each time a cell divides dramatic changes occur at the nuclear periphery. The nuclear envelope, nuclear pore complexes, and nuclear lamina must (more)

Prunuske, Amy Jeanette

2006-01-01T23:59:59.000Z

347

WEB RESOURCE: Nuclear Materials and Nuclear Fuel/Waste  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

348

American Journal of Physics Resource Letters - The Future of Nuclear Power  

SciTech Connect

This Resource Letter is intended to summarize the status of nuclear power in the world today, prospects of significant expansion of nuclear power over the next several decades, the planning of and forecasts for the addition of new power reactors, and issues surrounding the addition of these new reactors. Owing to the breadth of this subject, the list of references includes journal articles, web pages, and reports to guide the reader on the subject. The subject of nuclear power and its related issues are dynamic, so the most current information is likely to be found on reputable websites.

Parks, Cecil V [ORNL; Flanagan, George F [ORNL; Kulynych, George E [ORNL

2010-01-01T23:59:59.000Z

349

International Nuclear Security  

SciTech Connect

This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

Doyle, James E. [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

350

Nuclear effects in atomic transitions  

E-Print Network (OSTI)

Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

Plffy, Adriana

2011-01-01T23:59:59.000Z

351

Nuclear Security Enterprise | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Enterprise | National Nuclear Security Administration Enterprise | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Security Enterprise Home > About Us > Our Programs > Defense Programs > Nuclear Security Enterprise Nuclear Security Enterprise The Nuclear Security Enterprise (NSE) mission is to ensure the Nation sustains a safe, secure, and effective nuclear deterrent through the

352

Innovations in Nuclear Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations in Nuclear Infrastructure Innovations in Nuclear Infrastructure and Education (INIE) Innovations in Nuclear Infrastructure and Education (INIE) Presented to the Nuclear Energy Research Advisory Committee Crystal City, Virginia John Gutteridge Director, University Programs Office of Nuclear Energy, Science and Technology September 30 - October 1, 2002 Office of Nuclear Energy, Science and Technology Gutteridge/Sep-Oct_02 INIE-NERAC.ppt (2) INIE The Stimuli .... INIE The Stimuli .... 6 Declining number of operating university research/training reactors 6 Dwindling student population in nuclear engineering 6 Closing or loss of identity of university nuclear engineering programs 6 Looming shortage of nuclear engineering graduates 6 Threat of additional reactor closures -- Cornell, Michigan, MIT

353

Capabilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Waste Form and Repository Performance Modeling Nuclear Systems Technologies Nuclear Criticality Safety Research Reactor Analysis System Process Monitoring,...

354

National Nuclear Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Radiation Dose Evaluated Nuclear (reaction) Data File Experimental nuclear reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and Publications US Nuclear Data Program Cross Section Evaluation Working Group Nuclear data networks Basic properties of atomic nuclei Parameters & thermal values Basic properties of atomic nuclei Internal Radiation Dose Evaluated Nuclear (reaction) Data File Experimental nuclear reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and Publications US Nuclear Data Program Cross Section Evaluation Working Group Nuclear data networks Basic properties of atomic nuclei Parameters & thermal values Basic properties of atomic nuclei Homepage BNL Home Site Index - Go USDNP and CSEWG November 18-22! USNDP CSEWG Agenda Thanks for attending! EXFOR 20,000 Milestone EXFOR Milestone 20,000 experimental works are now in the EXFOR database!

355

Nuclear Data | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Data SHARE Nuclear Data Nuclear Data ORNL is a recognized, international leader in nuclear data research and development (R&D) to support nuclear applications analyses. For more...

356

Nuclear Power and the Environment  

Reports and Publications (EIA)

This Nuclear Issue Paper discusses Nuclear Plant Wastes, Interactions of Fossil Fuel and Nuclear Power Waste Decisions, and the Environmental Position of Nuclear Power.

2013-05-30T23:59:59.000Z

357

Workshop materials from the 2nd international training course on physical protection of nuclear facilities and materials, Module 13  

Science Conference Proceedings (OSTI)

This course is intended for representatives of countries where nuclear power is being developed and whose responsibilities include the preparation of regulation and the design and evaluation of physical protection systems. This is the second of two volumes; the first volume is SAND-79-1090. (DLC)

Martin, F. P. [ed.

1980-04-01T23:59:59.000Z

358

J. Bahcall/Nuclear Physics B (Proc. Suppl.) 48 (1996) 281283 281 Ray Davis: The Scientist and the Man  

E-Print Network (OSTI)

J. Bahcall/Nuclear Physics B (Proc. Suppl.) 48 (1996) 281­283 281 Ray Davis: The Scientist a reactor. He showed that reac- tor anti-neutrinos are not absorbed by chlorine, ¯e + 37 Cl e- + 37 Ar the discovery of solar neutrinos and provided further evidence for a discrepancy between theory and observation

Bahcall, John

359

Nuclear Instruments and Methods in Physics Research A 564 (2006) 400404 Cross-section measurements for 239  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 564 (2006) 400­404 Cross-section measurements the feasibility of measuring neutron-induced fission cross-section on samples with 10 ng of fissile actinides that are available on ultra-small quantities. Furthermore, results on neutron-induced alpha emission show

Danon, Yaron

360

Nuclear Instruments and Methods in Physics Research A 554 (2005) 494499 Micro-pocket fission detectors (MPFD) for  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 554 (2005) 494­499 Micro-pocket fission detectors (MPFD) for in-core neutron flux monitoring Douglas S. McGregor?, Martin F. Ohmes, Rylan E. Ortiz. The prototype devices have been coated with a natural uranyl- nitrate to provide a neutron reactive coating

Shultis, J. Kenneth

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THE ROLE OF DEEP INELASTIC PROCESSES IN NUCLEAR PHYSICS: EXPERIMENTAL AND THEORETICAL ASPECTS OF DEEP INELASTIC REACTIONS  

E-Print Network (OSTI)

of spectro- scopical data, nuclear fission for a long timein fission, faced physicists with a large scale nuclearfission of the heavy partner in the Coulomb and nuclear

Moretto, L.G.

2010-01-01T23:59:59.000Z

362

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

Christy, R.F.

1958-07-15T23:59:59.000Z

363

Nuclear Instruments and Methods in Physics Research A 566 (2006) 598608 The number distribution of neutrons and gamma photons generated in a  

E-Print Network (OSTI)

that are based on nuclear physics constants (fission neutron and gamma photon multi- plicities), weighted by nonNuclear Instruments and Methods in Physics Research A 566 (2006) 598­608 The number distribution of neutrons and gamma photons generated in a multiplying sample Andreas Enqvista,?, Imre Pa´ zsita , Sara

Pázsit, Imre

364

WEB RESOURCE: Nuclear Engineering Materials - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... "Nuclear Engineering Materials." Engineering Physics Department, College of Engineering. University of Wisconsin-Madison, Fall 2006.

365

Dynamic Adaptive Multimesh Refinement for Coupled Physics Equations Applicable to Nuclear Engineering  

E-Print Network (OSTI)

The processes studied by nuclear engineers generally include coupled physics phenomena (Thermal-Hydraulics, Neutronics, Material Mechanics, etc.) and modeling such multiphysics processes numerically can be computationally intensive. A way to reduce the computational burden is to use spatial meshes that are optimally suited for a specific solution; such meshes are obtained through a process known as Adaptive Mesh Refinement (AMR). AMR can be especially useful for modeling multiphysics phenomena by allowing each solution component to be computed on an independent mesh (Multimesh AMR). Using AMR on time dependent problems requires the spatial mesh to change in time as the solution changes in time. Current algorithms presented in the literature address this concern by adapting the spatial mesh at every time step, which can be inefficient. This Thesis proposes an algorithm for saving computational resources by using a spatially adapted mesh for multiple time steps, and only adapting the spatial mesh when the solution has changed significantly. This Thesis explores the mechanisms used to determine when and where to spatially adapt for time dependent, coupled physics problems. The algorithm is implemented using the Deal.ii fiinite element library [1, 2], in 2D and 3D, and is tested on a coupled neutronics and heat conduction problem in 2D. The algorithm is shown to perform better than a uniformly refined static mesh and, in some cases, a mesh that is spatially adapted at every time step.

Dugan, Kevin

2013-08-01T23:59:59.000Z

366

NUCLEAR DEFORMATION ENERGIES  

E-Print Network (OSTI)

J.R. Nix, Theory of Nuclear Fission and Superheavy Nuclei,energy maps relevant for nuclear fission and nucleus-nucleusin connection with nuclear fission. The need for a better

Blocki, J.

2009-01-01T23:59:59.000Z

367

NUCLEAR STRUCTURE DATABASE  

E-Print Network (OSTI)

d UNIVERSITY OF CALIFORNIA NUCLEAR STRUCTURE DATABASE R. B.IS UNLfflfTEO LBL-11089 NUCLEAR STRUCTURE DATABASE by R.B.and E. Browne June 1980 Nuclear Science Division University

Firestone, R.B.

2010-01-01T23:59:59.000Z

368

Asians Resist Nuclear Threat  

E-Print Network (OSTI)

Midway carries soma 100 nuclear weapons and the missiles onthe removal of U. S. nuclear weapons from Asia. It is ti-aeof U. S. tactical nuclear weapons This set the figure for

Schirmer, Daniel Boone

1981-01-01T23:59:59.000Z

369

WORKSHOP ON NUCLEAR DYNAMICS  

E-Print Network (OSTI)

Complete Events in Medium-Energy Nuclear Collisions" C-Y.+ corrections. (A) The nuclear potential-energy problem isquantum dynamics in high-energy nuclear collisions. We have

Myers, W.D.

2010-01-01T23:59:59.000Z

370

Nuclear Security 101 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

101 | National Nuclear Security Administration 101 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Nuclear Security 101 Fact Sheet Nuclear Security 101 Mar 23, 2012 The goal of United States Government's nuclear security programs is to prevent the illegal possession, use or transfer of nuclear material,

371

Nuclear Security | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Security Home > About Us > Our Programs > Nuclear Security Nuclear Security The Office of Defense Nuclear Security (DNS) is responsible for the development and implementation of security programs for NNSA. In this capacity, DNS is the NNSA line management organization responsible for

372

Nuclear Security 101 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

101 | National Nuclear Security Administration 101 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Nuclear Security 101 Fact Sheet Nuclear Security 101 Mar 23, 2012 The goal of United States Government's nuclear security programs is to prevent the illegal possession, use or transfer of nuclear material,

373

Nuclear Security | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Security Home > About Us > Our Programs > Nuclear Security Nuclear Security The Office of Defense Nuclear Security (DNS) is responsible for the development and implementation of security programs for NNSA. In this capacity, DNS is the NNSA line management organization responsible for

374

Nuclear Structure and Nuclear Reactions | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

value of 92.16 MeV and the point rms radius is 2.35 fm vs 2.33 from experiment. Nuclear Structure and Nuclear Reactions PI Name: James Vary PI Email: jvary@iastate.edu...

375

Nuclear Structure and Nuclear Reactions | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

the ab initio no-core full configuration approach," Phys. Rev. C 86, 034325 (2012) Nuclear Structure and Nuclear Reactions PI Name: James Vary PI Email: jvary@iastate.edu...

376

Nuclear power and nuclear-weapons proliferation  

SciTech Connect

The danger that fissile isotopes may be diverted from nuclear power production to the construction of nuclear weapons would be aggravated by a switch to the plutonium breeder: but future uranium supplies are uncertain.

Moniz, E.J.; Neff, T.L.

1978-04-01T23:59:59.000Z

377

Nuclear Quadrupole Moments and Nuclear Shell Structure  

DOE R&D Accomplishments (OSTI)

Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

Townes, C. H.; Foley, H. M.; Low, W.

1950-06-23T23:59:59.000Z

378

NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.  

SciTech Connect

The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

PRITYCHENKO, B.

2006-06-05T23:59:59.000Z

379

Nuclear Fuel Cycle & Vulnerabilities  

Science Conference Proceedings (OSTI)

The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

Boyer, Brian D. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

380

Nuclear Systems Modeling and Design Analysis - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis CAPABILITIES Overview Nuclear Systems Modeling and Design Analysis Nuclear Systems Technologies Risk and Safety Assessments Nonproliferation and National Security Materials Testing Engineering Computation & Design Engineering Experimentation Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Capabilities Nuclear Systems Modeling and Design Analysis Bookmark and Share Reactor Physics and Fuel Cycle Analysis Reactor Physics and Fuel Cycle Analysis We have played a major role in the design and analysis of most existing and past reactor types and of many

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nuclear Systems Technologies - Nuclear Engineering Division ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments involved: Research & Test Reactor | Engineering Development and Applications "Decommissioning of Nuclear Facilities" training courses Argonne Decommissioning Training...

382

Publications 2000 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Publications 2011 Publications 2010 Publications 2009...

383

Nuclear Operations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering...

384

NUCLEAR PROXIMITY FORCES  

E-Print Network (OSTI)

theory describing the structure of the nuclear surface region, so that one may take two flat nuclear surfaces and calculate their interaction energy

Randrup, J.

2011-01-01T23:59:59.000Z

385

Sustainable Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Enabling a Sustainable Nuclear Energy Future Since its inception, Argonne R&D has supported U.S. Department of Energy nuclear programs and initiatives, including today's...

386

Nuclear Safety Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Directives Nuclear and Facility Safety Policy Rules Nuclear Safety Workshops Technical Standards Program Search Approved Standards Recently Approved RevCom...

387

Nuclear Sites Map  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal. Each...

388

Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management's Yucca Mountain Project and the Office of Nuclear Energy's Advanced Fuel Cycle Initiative (AFCI) and Global Nuclear Energy Partnership (GNEP) programs. Efforts...

389

Nuclear Nonproliferation Programs | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and development to 'boots-on-the-ground' implementation. This work ranges from uranium fuel cycle research to detection technologies and nuclear forensics. The nuclear...

390

Nuclear Fuels - Modeling  

Science Conference Proceedings (OSTI)

Mar 12, 2012... for the Current and Advanced Nuclear Reactors: Nuclear Fuels - Modeling .... Using density functional theory (DFT), we have predicted that...

391

Theoretical studies in nuclear reactions and nuclear structure. Progress report  

Science Conference Proceedings (OSTI)

Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

Not Available

1992-05-01T23:59:59.000Z

392

Theoretical studies in nuclear reactions and nuclear structure  

Science Conference Proceedings (OSTI)

Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

Not Available

1992-05-01T23:59:59.000Z

393

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network (OSTI)

the National Nuclear Security Administration, US Departmentof Energys National Nuclear Security Administration (NNSA)

Quiter, Brian

2012-01-01T23:59:59.000Z

394

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network (OSTI)

Security of the National Nuclear Security Administration, USof Energys National Nuclear Security Administration (NNSA)

Quiter, Brian

2012-01-01T23:59:59.000Z

395

Departments - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments Departments Welcome Organization Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Bookmark and Share Departments Think, explore, discover, innovate. Engineering Analysis Engineering Analysis The Engineering Analysis Department activities focus on development and application of new and innovative analysis methods for both nuclear and non-nuclear systems... [more] Nuclear Systems Analysis Nuclear Systems Analysis The Nuclear Systems Analysis Department activities concentrate on Reactor & Fuel Cycle Analysis,Simulation and Methods, Applied Physics & Nuclear Data, and Criticality Safety... [more]

396

Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.  

SciTech Connect

This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

2008-03-01T23:59:59.000Z

397

Office of Nuclear Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Safety (HS-30) Office of Nuclear Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us

398

THE NUCLEAR SURFACE D. F. JACKSON  

E-Print Network (OSTI)

in calculations of more fundamental properties or in analyses of other data; (ii) to test theories of the nuclearTHE NUCLEAR SURFACE D. F. JACKSON Dept. of Physics, University of Surrey, Guildford, U.K. Abstract. -- Nuclear scattering and reactions which give information on the nuclear surface are described

Paris-Sud XI, Université de

399

Nuclear multifragmentation critical exponents  

SciTech Connect

In a recent Letter, cited in a reference, the EoS collaboration presented data of fragmentation of 1 A GeV gold nuclei incident on carbon. By analyzing moments of the fragment charge distribution, the authors claim to determine the values of the critical exponents {gamma}, {beta}, and {tau} for finite nuclei. These data represent a crucial step forward in the understanding of the physics of nuclear fragmentation. However, as shown in this paper, the analysis presented in the cited reference is not sufficient to support the claim that the critical exponents for nuclear fragmentation have been unambiguously determined.

Bauer, W. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[National Superconducting Cyclotron Lab., East Lansing, MI (United States); Friedman, W.A. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

1995-12-31T23:59:59.000Z

400

Nuclear Masses in Astrophysics  

E-Print Network (OSTI)

Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.

Christine Weber; Klaus Blaum; Hendrik Schatz

2008-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Report to the American Physical Society by the study group on nuclear fuel cycles and waste management  

SciTech Connect

Utilization of nuclear fuels and management of nuclear wastes have become major topics of public discussion. Under the auspices of the American Physical Society this study was undertaken as an independent evaluation of technical issues in the use of fissionable materials in nuclear fuel cycles, together with their principal economic, environmental, health and safety implications. Reprocessing and recycling in light water reactors were examined, along with technical measures proposed as possible safeguards; advanced reactor fuel cycles were also studied for their resource and safeguards implications. Much of the work of the group centered on the principal alternatives for disposal of radioactive wastes and control of effluents. The group examined the research and development programs sponsored by government agencies along with associated relationships among agencies and between government and private industry. Available information was also considered on nuclear fuel resources, and on important economic and environmental aspects of the various fuel cycles in order to strive for a balanced comparative study. The report presents many conclusions on various aspects of the nuclear fuel cycles and also provides recommendations concerning present utilization and future improvement of fuel cycle technology.

APS Study Group Participants; Hebel, L.C. Chairman; Christensen, E.L.; Donath, F.A.; Falconer, W.E.; Lidofsky, L.J.; Moniz, E.J.; Moss, T.H.; Pigford, R.L.; Pigford, T.H.; Rochlin, G.I.; Silsbee, R.H.; Wrenn, M.E.

1978-01-01T23:59:59.000Z

402

Analysis of Experiments Exhibiting Time-Varying Nuclear Decay Rates: Systematic Effects or New Physics?  

E-Print Network (OSTI)

Since the 1930s, and with very few exceptions, it has been assumed that the process of radioactive decay is a random process, unaffected by the environment in which the decaying nucleus resides. There have been instances within the past few decades, however, where changes in the chemical environment or physical environment brought about small changes in the decay rates. But even in light of these instances, decaying nuclei that were undisturbed or un-"pressured" were thought to behave in the expected random way, subject to the normal decay probabilities which are specific to each nuclide. Moreover, any "non-random" behavior was assumed automatically to be the fault of the detection systems, the environment surrounding the detectors, or changes in the background radiation to which the detector was exposed. Recently, however, evidence has emerged from a variety of sources, including measurements taken by independent groups at Brookhaven National Laboratory, Physikalisch-Technische Bundesanstalt, and Purdue University, that indicate there may in fact be an influence that is altering nuclear decay rates, albeit at levels on the order of $10^{-3}$. In this paper, we will discuss some of these results, and examine the evidence pointing to the conclusion that the intrinsic decay process is being affected by a solar influence.

Jere H. Jenkins; Ephraim Fischbach; Peter A. Sturrock; Daniel W. Mundy

2011-06-08T23:59:59.000Z

403

Ion beam development for the needs of the JYFL nuclear physics programme  

SciTech Connect

The increased requirements towards the use of higher ion beam intensities motivated us to initiate the project to improve the overall transmission of the K130 cyclotron facility. With the facility the transport efficiency decreases rapidly as a function of total beam intensity extracted from the JYFL ECR ion sources. According to statistics, the total transmission efficiency is of the order of 10% for low beam intensities (I{sub total}{<=}0.7 mA) and only about 2% for high beam intensities (I{sub total}>1.5 mA). Requirements towards the use of new metal ion beams for the nuclear physics experiments have also increased. The miniature oven used for the production of metal ion beams at the JYFL is not able to reach the temperature needed for the requested metal ion beams. In order to fulfill these requirements intensive development work has been performed. An inductively and a resistively heated oven has successfully been developed and both are capable of reaching temperatures of about 2000 deg. C. In addition, sputtering technique has been tested. GEANT4 simulations have been started in order to better understand the processes involved with the bremsstrahlung, which gives an extra heat load to cryostat in the case of superconducting ECR ion source. Parallel with this work, a new advanced ECR heating simulation program has been developed. In this article we present the latest results of the above-mentioned projects.

Koivisto, H.; Suominen, P.; Ropponen, T.; Ropponen, J.; Koponen, T.; Savonen, M.; Toivanen, V.; Wu, X.; Machicoane, G.; Stetson, J.; Zavodszky, P.; Doleans, M.; Spaedtke, P.; Vondrasek, R.; Tarvainen, O. [Department of Physics, University of Jyvaeskylae, FIN-40014 University of Jyvaeskylae (Finland); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Gesellschaft fur Schwerionenforschung (GSI), Darmstadt D-64291 (Germany); Argonne National Laboratory, Argonne, Illinois 60439 (United States); Los Alamos National Laboratory, Los Alamos, 87545 New Mexico (United States)

2008-02-15T23:59:59.000Z

404

Radio Frequency Phototube, Optical Clock and Precise Measurements in Nuclear Physics  

E-Print Network (OSTI)

Recently a new experimental program of novel systematic studies of light hypernuclei using pionic decay was established at JLab (Study of Light Hypernuclei by Pionic Decay at JLab, JLab Experiment PR-08-012). The highlights of the proposed program include high precision measurements of binding energies of hypernuclei by using a high resolution pion spectrometer, HpiS. The average values of binding energies will be determined within an accuracy of ~10 keV or better. Therefore, the crucial point of this program is an absolute calibration of the HpiS with accuracy 10E-4 or better. The merging of continuous wave laser-based precision optical-frequency metrology with mode-locked ultrafast lasers has led to precision control of the visible frequency spectrum produced by mode-locked lasers. Such a phase-controlled mode-locked laser forms the foundation of an optical clock or femtosecond optical frequency comb (OFC) generator, with a regular comb of sharp lines with well defined frequencies. Combination of this technique with a recently developed radio frequency (RF) phototube results in a new tool for precision time measurement. We are proposing a new time-of-flight (TOF) system based on an RF phototube and OFC technique. The proposed TOF system achieves 10 fs instability level and opens new possibilities for precise measurements in nuclear physics such as an absolute calibration of magnetic spectrometers within accuracy 10E-4 - 10E-5.

Amur Margaryan

2009-10-16T23:59:59.000Z

405

Concluding remarks. International Conference on Nuclear Physics, Berkeley, California, August 1980  

SciTech Connect

Not a conference summary, these concluding remarks consider five major themes that were illuminated during the conference and the problems within them that need to be resolved in the future. The five topics considered and the following: new degrees of freedom (single-particle motion, giant resonances, nuclear molecular resonances, nuclear matter, kaon-produced hypernuclei, implications of the bag model and quantum chromodynamics), new forms of matter, new reaction mechanisms (direct vs compound-nucleus reactions, heavy-ion reactions), new aspects of the weak interactions in nuclei (weak neutral currents, P invariance), and new symmetries. 4 figures. (RWR)

Feshbach, H.

1980-10-01T23:59:59.000Z

406

JETS OF NUCLEAR MATTER FROM HIGH ENERGY HEAVY ION COLLISIONS  

E-Print Network (OSTI)

of the Office of High Energy and Nuclear Physics of the U.S.distributions and energy flux in violent nuclear collisions.of the Office of High Energy and Nuclear Physics of the U.S.

Stocker, H.

2013-01-01T23:59:59.000Z

407

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

Pennell, William E. (Greensburg, PA); Rowan, William J. (Monroeville, PA)

1977-01-01T23:59:59.000Z

408

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

NUCLEAR PLANT OPERATIONS AND CONTROL KEYWORDS: neutron flux, cur- rent noise, vibration diagnostics: Swedish Nuclear Power Inspectorate SE- 10658 Stockholm, Sweden. NUCLEAR TECHNOLOGY VOL. 131 AUG. 2000 239 by the Swedish Nuclear Power Inspectorate, contract 14.5-980942-98242. REFERENCES 1. A. M. WEINBERG and H. C

Pázsit, Imre

409

Focus Article Nuclear winter  

E-Print Network (OSTI)

Focus Article Nuclear winter Alan Robock Nuclear winter is the term for a theory describing the climatic effects of nuclear war. Smoke from the fires started by nuclear weapons, especially the black, sooty smoke from cities and industrial facilities, would be heated by the Sun, lofted into the upper

Robock, Alan

410

Nuclear Security & Safety  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department is working to enhance nuclear security through defense, nonproliferation, and environmental efforts.

411

Availability and Nuclear Properties  

Science Conference Proceedings (OSTI)

...Availability and Nuclear Properties The first six transplutonium metals, americium (Am), curium (Cm), berkelium

412

Defense and nuclear technologies  

SciTech Connect

Fulfilling our national security and stockpile stewardship responsibilities requires tremendous scientific and technical breadth: from esoteric theoretical physics and computational modeling to materials science and precision engineering. Because there exists no broad industrial or university base from which to draw expertise in nuclear weapon science and technology, we rely heavily on formal peer reviews and informal exchanges with our sister laboratory at Los Alamos. LLNL has an important, long-term role in the nation`s nuclear weapons program. We are responsible for four of the ten weapon systems in the enduring US stockpile (three of nine after 2002), including the only systems that incorporate all modern safety features. For years to come, we will be responsible for these weapons and for the problems that will inevitably arise. Our nuclear expertise will also play a crucial role as the US attempts to deal effectively with the threat of nuclear proliferation. This past year brought the culmination of our response to profound changes in the nation`s defense needs as we restructured and refocused our activities to address the Administration`s goal of reducing global nuclear danger. We made major contributions to important national security issues in spite of severe fiscal constraints.

NONE

1995-01-01T23:59:59.000Z

413

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards GNEP will help prevent misuse of civilian nuclear facilities for nonpeaceful purposes by developing enhanced safeguards programs and technologies. International nuclear safeguards are integral to implementing the GNEP vision of a peaceful expansion of nuclear energy and demonstration of more proliferation-resistant fuel cycle technologies. Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet Global Nuclear Energy Partnership Fact Sheet - Demonstrate Small-Scale

414

Nuclear pairing: basic phenomena revisited  

E-Print Network (OSTI)

I review the phenomena associated with pairing in nuclear physics, most prominently the ubiquitous presence of odd-even mass differences and the properties of the excitation spectra, very different for even-even and odd-A nuclei. There are also significant dynamical effects of pairing, visible in the inertias associated with nuclear rotation and large-amplitude shape deformation.

Bertsch, G F

2012-01-01T23:59:59.000Z

415

Nuclear Physics Aspects of Cold Fusion Experiments: Scientific Summary after ICCF-7  

E-Print Network (OSTI)

The circumstance that I made the scientific summary on Nuclear Products in Cold Fusion Experiments also after ICCF-6 1 gives to me the opportunity of combining the comparison of the results from two subsequent conferences and of discussing globally the impressive achievements gained in these last three years.

T. Bressani

1998-01-01T23:59:59.000Z

416

Nuclear power plants: Ecology and health physics. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning ecological and health aspects related to nuclear power plants. References cover radiation protection, occupational exposure, reactor safety and shielding, reactor accidents, and radiation measuring instruments. Genetic radiation effects, radiation-induced neoplasms, and radiation contaminants are examined. (Contains 50-250 citations and includes a subject term index and title list.)

NONE

1995-08-01T23:59:59.000Z

417

Physics of Ultra-Relativistic Nuclear Collisions with Heavy Beams at LHC Energy  

E-Print Network (OSTI)

We discuss current plans for experiments with ultra-relativistic nuclear collisions with heavy beams at LHC energy ($\\sqrt{s} = 5.5$ TeV/nucleon pair). Emphasis will be placed on processes which are unique to the LHC program. They include event-by-event interferometry, complete spectroscopy of the $\\Upsilon$ resonances, and open charm and open beauty measurements.

Peter Braun-Munzinger

1999-08-18T23:59:59.000Z

418

Nuclear Deployment Scorecards | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiatives Nuclear Reactor Technologies Nuclear Deployment Scorecards Nuclear Deployment Scorecards January 1, 2014 Quarterly Nuclear Deployment Scorecard - January 2014 The...

419

Major Programs - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance Program International Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form...

420

Executive Bios: Christopher Grandy - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nuclear Engineering Division of Argonne National Laboratory:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

422

Fuel Cycle Technologies Program - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

423

International Safety Projects - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

424

The Dawn of the Nuclear Age  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

425

Facility Safety Assessment - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

426

Computer Facilities - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

427

Advanced Computation & Visualization - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

428

Steam Generator Tube Integrity Facilities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

429

Safety - Vulnerability Assessment Team - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

430

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Nuclear Power Background, Trends in Nuclear Power, The Nuclear Fuel Cycle...

431

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Reactor Technologies Fuel Cycle Technologies International Nuclear Energy Policy and Cooperation Nuclear...

432

Nuclear data for astrophysics Michael S. Smitha  

E-Print Network (OSTI)

1 Nuclear data for astrophysics Michael S. Smitha a Physics Division, Oak Ridge National Laboratory of the chemi- cal elements, the inner workings of our Sun, and the evolution of stars, crucial nuclear datasets in this field are, unfortunately, insufficient to keep pace with the latest nuclear physics measurements

433

Nuclear Forensic Reference Materials (RM) for Attribution of ...  

Science Conference Proceedings (OSTI)

... Nuclear Materials Fuel cycles Limit fissile material production Reactor conversion Securing SNM Reliable inventories Physical Security ...

2012-12-06T23:59:59.000Z

434

Nuclear Instruments and Methods in Physics Research A 562 (2006) 771773 Measurements of (n,a) cross-section of small samples using  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 562 (2006) 771­773 Measurements of (n National Nuclear Data Center (NNDC), Upton, NY 11973-5000, USA d CEA-DAM, BP 12, 91680 Bruye(n,a)3 H cross-section as a feasibility test for further work. The LSDS consists of a 1.2 m cube of lead

Danon, Yaron

435

The Nuclear Science References Database  

E-Print Network (OSTI)

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

Pritychenko, B; Singh, B; Totans, J

2013-01-01T23:59:59.000Z

436

Nuclear and Radiological Material Security | National Nuclear...  

National Nuclear Security Administration (NNSA)

to intensive site security efforts, NNSA is also working to build international standards and criteria for nuclear and radiological security. This includes NNSA's work to...

437

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

438

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

439

Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station  

U.S. Energy Information Administration (EIA) Indexed Site

Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License...

440

Arkansas Nuclear Profile - Arkansas Nuclear One  

U.S. Energy Information Administration (EIA) Indexed Site

Nuclear One" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Criticality Safety Nuclear Criticality Safety Overview Experience Analysis Tools Current NCS Activities Current R&D Activities DOE Criticality Safety Support Group (CSSG) Other...

442

Nuclear / Radiological Advisory Team | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

advice for both domestic and international nuclear or radiological incidents. It is led by a Senior Energy Official who runs the NNSA field operation and who coordinates NNSA...

443

Dynamics of nuclear envelope and nuclear pore complex formation  

E-Print Network (OSTI)

Limited expression of nuclear pore membrane glycoprotein 210suggests cell-type specific nuclear pores in metazoans. Expand Dultz, E. (2008). Nuclear pore complex assembly through

Anderson, Daniel J.

2008-01-01T23:59:59.000Z

444

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

2004. The nuclear fuel cycle: A challenge forhave mastered parts of the nuclear fuel cycle, but have notprovision of fuel-cycle services, in which nuclear capable

Kroenig, Matthew

2006-01-01T23:59:59.000Z

445

Ground-Based Nuclear Detonation Detection | National Nuclear...  

National Nuclear Security Administration (NNSA)

Ground-Based Nuclear Detonation Detection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

446

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

447

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

of nuclear proliferation: a quantitative test. Journal ofINTERNATIONAL NUCLEAR ASSISTANCE DATA To test this strategictheory of nuclear proliferation faces a difficult test in

Kroenig, Matthew

2006-01-01T23:59:59.000Z

448

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

nature of the nuclear recipients security environment. ThisKeywords: Nuclear weapons proliferation; security; securitynature of the nuclear recipients security environment. This

Kroenig, Matthew

2006-01-01T23:59:59.000Z

449

Nuclear Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Science Accelerator Science Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Home » Science at NERSC » Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of matter. This includes discovering the origins of nuclei and identifying the forces that transform matter. Specific topics include: Nuclear astrophysics and the synthesis of nuclei in stars and elsewhere in the cosmos; Nuclear forces and quantum chromodynamics (QCD), the quantum field

450

Nuclear rotations  

Science Conference Proceedings (OSTI)

An analysis of the gamma-ray spectra produced using the quantum mechanical rotational energy formula is presented for nuclei with large angular momentum. This analysis is suitable for quantum mechanics modern physics

G. F. Bertsch; R. V. F. Janssens

1997-01-01T23:59:59.000Z

451

National Center for Nuclear Security: The Nuclear Forensics Project (F2012)  

Science Conference Proceedings (OSTI)

These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nations verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

Klingensmith, A. L.

2012-03-21T23:59:59.000Z

452

Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization

B. T. Rearden; W. J. Anderson; G. A. Harms

453

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

009-0270-y Is Nuclear Energy the Solution? Milton H. Saier &in the last 50 years, nuclear energy subsidies have totaledadministration, the Global Nuclear Energy Partnership (GNEP)

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

454

Peace, Stability, and Nuclear Weapons  

E-Print Network (OSTI)

in South Asia, Pakistans nuclear military capability, alongof the nuclear club: India, Pakistan, and North Korea. Ifand then India became nuclear powers, and Pakistan naturally

Waltz, Kenneth N.

1995-01-01T23:59:59.000Z

455

nuclear energy legislation on track  

Science Conference Proceedings (OSTI)

07/8 - NUCLEAR ENERGY LEGISLATION ON TRACK ... the safety and economic viability of nuclear power, the management of nuclear waste, the advancement...

456

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

clear; second, nuclear power plants are stated terroristinvesting in new nuclear power plants because they do notas things stand, new nuclear power plants will not be cost

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

457

Is Nuclear Energy the Solution?  

E-Print Network (OSTI)

radioactive spent nuclear fuel is stored at commercialmost polluting part of the nuclear fuel cycle. It would notthe reprocessing of spent nuclear fuel will face technical,

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

458

Reactor Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

459

NUCLEAR SCIENCE ANNUAL REPORT 1975  

E-Print Network (OSTI)

Gove and A. H. Wapstra, Nuclear Data Tables 11, 127 (1972).P. Jackson, Chalk River Nuclear Laboratories Report (1975)national Conference on Nuclear Structure and Spec troscopy,

Authors, Various

2010-01-01T23:59:59.000Z

460

Counterterrorism and Counterproliferation | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

America's nuclear agenda, which affirms the central importance of the Nuclear Non-Proliferation Treaty." - President Obama on the Nuclear Posture Review, April 6, 2010 "The...

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nuclear Databases: National Resource Nuclear databases consists of carefully organized scientific  

E-Print Network (OSTI)

Nuclear Databases: National Resource Nuclear databases consists of carefully organized scientific information that has been gathered over 50 years of low-energy nuclear physics research worldwide. These powerful databases have enormous value and they represent a genuine national resource. Six core nuclear

Homes, Christopher C.

462

JPRS report: Nuclear developments, [June 28, 1989  

Science Conference Proceedings (OSTI)

Partial contents include: Nuclear Power; Qinshan Plant; Nuclear Weapons; Nuclear Power Plants; Nuclear Waste; Nuclear Policy; Decontamination Devices; and Environmental Protection.

NONE

1989-06-28T23:59:59.000Z

463

Neutron Detectors for Detection of Nuclear Materials at LANL...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

464

Materials for Nuclear Power: Digital Resource Center -- Articles and ...  

Science Conference Proceedings (OSTI)

BOOK: Safety Related Issues of Spent Nuclear Fuel Storage ... ARTICLES: High- Radiation Nuclear Waste Disposal ... S. Zhu, et. al., Applied Physics Letters.

465

Neutron Detectors for Detection of Nuclear Materials at LANL...  

Office of Science (SC) Website

Neutron Detectors for Detection of Nuclear Materials at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff...

466

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition Year 6 Nuclear Power 2010 6 Major Program Developments 6 FY 2003 Budget Request Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (3) Nuclear Power 2010 Nuclear Power 2010 Nuclear Power 2010 is a new R&D initiative announced by Secretary Abraham on February 14, 2002. This initiative is designed to clear the way for the construction of new nuclear power plants by 2010. Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (4) Can We Build New U.S. Reactors By 2010? Yes! Can We Build New U.S. Reactors By 2010? Yes! Can Be Deployed by 2010

467

Semipalatinsk Nuclear Tests - Springer  

Science Conference Proceedings (OSTI)

3.1 Tower used for measurements of nuclear weapon effects near ground zero. 3.1 A Brief ... atomic bomb. This output is 6% of all the nuclear explosions in.

468

Nuclear Imaging instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Imaging instrumentation Advances in gamma-ray detection and imaging have increased the pace of discovery in a broad cross-section of the sciences ranging from nuclear...

469

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS  

E-Print Network (OSTI)

NUCLEAR SPIN ISOSPIN RESPONSES FOR LOW-ENERGY NEUTRINOS Hiroyasu EJIRI Nuclear Physics Laboratory Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka, 567 Japan. E-mail address: ejiri@rcnp.osaka-u.ac.jp (H. Ejiri). Physics Reports 338 (2000) 265}351 Nuclear spin isospin responses for low

Washington at Seattle, University of

470

Environmentally Assisted Cracking: Nuclear  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2014. Symposium, Environmentally Assisted Cracking: Nuclear. Sponsorship. Organizer(s)...

471

Idaho Site Nuclear Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Nuclear Facilities Idaho Idaho National Laboratorys (INL) Idaho Closure Project (ICP) This page was last updated on May 16...

472

WIPP Nuclear Facilities Transparency  

NLE Websites -- All DOE Office Websites (Extended Search)

Transparency Technologies Other Transparency Activities Sandia National Laboratories Cooperative Monitoring Center (CMC) in conjunction with WIPP is providing this Nuclear...

473

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

coupled and complex systems like nuclear weapons arsenals.The complex technology required to build nuclear weapons is

Kroenig, Matthew

2006-01-01T23:59:59.000Z

474

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network (OSTI)

of the Institute of Nuclear Material Management, Tucson, AZ,Assay, Institute of Nuclear Materials Management 51st Annual

Quiter, Brian

2012-01-01T23:59:59.000Z

475

NNSA: Working To Prevent Nuclear Terrorism | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

476

Office of Nuclear Warhead Protection | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Warhead Protection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

477

GTRI's Nuclear and Radiological Material Removal | National Nuclear...  

National Nuclear Security Administration (NNSA)

Removal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

478

The Office of Nuclear Detonation Detection (NDD) | National Nuclear...  

National Nuclear Security Administration (NNSA)

Detonation Detection (NDD) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

479

Nuclear Safeguards and Security | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

480

NUCLEAR REACTORS  

DOE Patents (OSTI)

An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

1961-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear physics nuclear" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nuclear Technology Programs  

SciTech Connect

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1990-10-01T23:59:59.000Z

482

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed--has been benchmarked against measurements.30 At the Ringhals nuclear power plant, this measurement is car a measurement performed at the PWR Unit 4 of the Ring hals Nuclear Power Plant was available to us

Demazière, Christophe

483

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed reactivity effects--has been benchmarked against measurements.30 At the Ringhals nuclear power plant a measurement performed at the PWR Unit 4 of the Ring- hals Nuclear Power Plant was available to us

Demazière, Christophe

484

Nuclear Shadowing and Diffraction  

E-Print Network (OSTI)

The relation between diffraction in lepton-proton collisions and shadowing of nuclear structure functions which arises from Gribov inelastic shadowing, is described. A model realizing such relation, which produces a parameter-free description of experimental data on nuclear structure functions at small $x$, is presented. The application to the description of multiplicities in nuclear collisions is discussed and related to other approaches.

J. L. Albacete; N. Armesto; A. Capella; A. B. Kaidalov; C. A. Salgado

2004-10-12T23:59:59.000Z

485

NUCLEAR REACTOR CONTROL SYSTEM  

DOE Patents (OSTI)

A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

1959-11-01T23:59:59.000Z

486

THE ENERGY-DEPENDENT SINGLE NUCLEON POTENTIAL IN A RELATIVISTIC FIELD THEORY OF NUCLEAR MATTER  

E-Print Network (OSTI)

Physics of the Office of High Energy and Nuclear Physics ofPhysics of the Office of High Energy and Nuclear Physics ofthe Director, Office of Energy Research, Divison of Nuclear

Muller, K.-H.

2012-01-01T23:59:59.000Z

487

NUCLEAR SCIENCE DIVISION ANNUAL REPORT 1979-1980  

E-Print Network (OSTI)

high energy nuclear collisions. Application of HFB theory totheory that accounts for the known bulk properties of nuclear matter, i t s saturation energyenergy options. Sane neutron star physics involving nuclear theory.

Cerny, J.

2010-01-01T23:59:59.000Z

488

Testimonials | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Testimonials | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our...

489

Reorganization bolsters nuclear nonproliferation capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of...

490

FOIA | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

491

NUCLEAR MATERIALS ACCOUNTING SYSTEMSMODERNIZATION INITIATIVE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR MATERIALS ACCOUNTING SYSTEMSMODERNIZATION INITIATIVE, IG-0556 NUCLEAR MATERIALS ACCOUNTING SYSTEMSMODERNIZATION INITIATIVE, IG-0556 The Department of Energy (Department),...

492

Nonproliferation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear...

493

Training | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

494

Engineering Development & Applications - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies (FCT) Generation IV (Gen IV) Nuclear Energy Program Decontamination and Decommissioning Nuclear Regulatory Research Facilities Environmentally Assisted Cracking...

495

Counterterrorism | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

496

Vocabulary | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

497

Pantex | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

498

Awards | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

499

Policy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

500

Supercomputers | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...