National Library of Energy BETA

Sample records for nuclear physics np

  1. Nuclear Physics (NP) Homepage | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NP Home Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » Accelerating Innovation .pdf file (1.2MB) Nuclear Physics supports the experimental and theoretical research needed

  2. NP2010: An Assessment and Outlook for Nuclear Physics

    SciTech Connect (OSTI)

    Lancaster, James

    2014-05-22

    This grant provided partial support for the National Research Council’s (NRC) decadal survey of nuclear physics. This is part of NRC’s larger effort to assess and discuss the outlook for different fields in physics and astronomy, Physics 2010, which takes place approximately every ten years. A report has been prepared as a result of the study that is intended to inform those who are interested about the current status of research in this area and to help guide future developments of the field. A pdf version of the report is available for download, for free, at http://www.nap.edu/catalog.php?record_id=13438. Among the principal conclusions reached in the report are that the nuclear physics program in the United States has been especially well managed, principally through a recurring long-range planning process conducted by the community, and that current opportunities developed pursuant to that planning process should be exploited. In the section entitled “Building the Foundation for the Future,” the report notes that attention needs to be paid to certain elements that are essential to the continued vitality of the field. These include ensuring that education and research at universities remain a focus for funding and that a plan be developed to ensure that forefront-computing resources, including exascale capabilities when developed, be made available to nuclear science researchers. The report also notes that nimbleness is essential for the United States to remain competitive in a rapidly expanding international nuclear physics arena and that streamlined and flexible procedures should be developed for initiating and managing smaller-scale nuclear science projects.

  3. Implementation status of the extreme light infrastructure - nuclear physics (ELI-NP) project

    SciTech Connect (OSTI)

    Gales, S. Zamfir, N. V.

    2015-02-24

    The Project Extreme Light Infrastructure (ELI) is part of the European Strategic Forum for Research Infrastructures (ESFRI) Roadmap. ELI will be built as a network of three complementary pillars at the frontier of laser technologies. The ELI-NP pillar (NP for Nuclear Physics) is under construction near Bucharest (Romania) and will develop a scientific program using two 10 PW lasers and a Compton back-scattering high-brilliance and intense gamma beam, a marriage of laser and accelerator technology at the frontier of knowledge. In the present paper, the technical description of the facility, the present status of the project as well as the science, applications and future perspectives will be discussed.

  4. QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP),

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP), Bethesda MD, April 29-30, 2014 NY Center for Computational Science 2 Defining questions of nuclear physics research in US: Nuclear Science Advisory Committee (NSAC) "The Frontiers of Nuclear Science", 2007 Long Range Plan "What are the phases of strongly interacting matter and what roles do they play in the cosmos ?" "What does QCD predict for

  5. Positron production at extreme light infrastructure – nuclear physics (ELI-NP)

    SciTech Connect (OSTI)

    Oprisa, A. Balascuta, S. Ur, C. A.

    2015-02-24

    Applied and material physics studies with positron beams of Fermi–surfaces, defects, interfaces etc. offer excellent diagnostics tools. At ELI-NP, an intense γ beam of about 10{sup 11} photons/s with energies up to 3.5 MeV will be used to generate a positron beam via pair production in a tungsten converter target. To obtain a high intensity beam of moderated positrons the design of the positron source is of high importance. The design of a dedicated positron source at ELI–NP is being investigated based on extensive GEANT4 simulations. The goal of the simulations is to optimize the geometry of the target and the gamma beam collimation. We present here the characteristics of the positron beam obtained for different geometries of the converter target.

  6. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics /science-innovation/_assets/images/icon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad

  7. Shape Matters in Nuclear Physics Collisions | U.S. DOE Office...

    Office of Science (SC) Website

    Shape Matters in Nuclear Physics Collisions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory ...

  8. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs Office of Science Nuclear Physics science-innovationassetsimagesicon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that ...

  9. NP Committees of Visitors | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Committees of Visitors Nuclear Physics (NP) NP Home About Organization Chart .pdf file (31KB) Staff NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear ...

  10. Nuclear Physics Accelerator Technology Yields New Process for Producing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boron-Nitride Nanotubes | U.S. DOE Office of Science (SC) Nuclear Physics Accelerator Technology Yields New Process for Producing Boron-Nitride Nanotubes Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  11. NP Early Career Opportunities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NP Early Career Opportunities Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Reviews NP Early Career Opportunities NP Early Career Opportunities Archives Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S.

  12. Nuclear Physics Related Brochures | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Related Brochures and Videos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P:

  13. NP Early Career Opportunities Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Funding Opportunities » NP Early Career Opportunities » NP Early Career Opportunities Archives Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Reviews NP Early Career Opportunities NP Early Career Opportunities Archives Nuclear Science Advisory Committee (NSAC)

  14. Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Nuclear Wallet Cards at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science ...

  15. Strong field physics and QED experiments with ELI-NP 2×10PW laser beams

    SciTech Connect (OSTI)

    Turcu, I. C. E. Balascuta, S. Negoita, F.; Jaroszynski, D.; McKenna, P.

    2015-02-24

    The ELI-NP facility will focus a 10 PW pulsed laser beam at intensities of ∼10{sup 23} W/cm{sup 2} for the first time, enabling investigation of the new physical phenomena at the interfaces of plasma, nuclear and particle physics. The electric field in the laser focus has a maximum value of ∼10{sup 15} V/m at such laser intensities. In the ELI-NP Experimental Area E6, we propose the study of Radiation Reaction, Strong Field Quantum Electrodynamics (QED) effects and resulting production of Ultra-bright Sources of Gamma-rays which could be used for nuclear activation. Two powerful, synchronized 10 PW laser beams will be focused in the E6 Interaction Chamber on either gas or solid targets. One 10 PW beam is the Pump-beam and the other is the Probe-beam. The focused Pump beam accelerates the electrons to relativistic energies. The accelerated electron bunches interact with the very high electro-magnetic field of the focused Probe beam. The layout of the experimental area E6 will be presented with several options for the experimental configurations.

  16. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  17. Streamlining the Nuclear Force | U.S. DOE Office of Science ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Streamlining the Nuclear Force Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee ...

  18. Probing Nuclear Reactions in Stars | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Probing Nuclear Reactions in Stars Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee ...

  19. NP-NearFinal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NP / ASCR Requirements Workshop May 26 and 27, 2011 LARGE SCALE COMPUTING AND STORAGE REQUIREMENTS Nuclear Physics Large Scale Computing and Storage Requirements for Nuclear Physics i Large Scale Computing and Storage Requirements for Nuclear Physics ii DISCLAIMER This report was prepared as an account of a workshop sponsored by the U.S. Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees or officers, makes any warranty, express or

  20. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Privacy and Security Notice Skip over navigation Search the JLab Site Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Nuclear Physics Program Physics Home Events Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics

  1. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman: Science Overview and the Experimental Program ppt | pdf Tony Thomas: Nuclear Physics ...

  2. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hall A Hall B Hall C Hall D Physics Departments Administrative Office Data Acquisition Group Detector & Imaging Group Electronics Group User Liaison Nuclear Physics Program HALL A ...

  3. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Nuclear Physics Program Physics Home Seminars & Colloquia Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks

  4. Barnes_NP_Program_Office_Research_Directions_V2.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timothy J. Hallman Associate Director for Nuclear Physics DOE Office of Science NP-NERSC Meeting on: Large Scale Computing and Storage Requirements for Nuclear Physics (NP): Target 2017 April 29-30, 2014 Bethesda, MD Ted Barnes DOE/NP Program Manager, Nuclear Data & Nuclear Theory Computing NP Program Office Research Directions n.b. Many slides c/o T. Hallman, "NP Overview" presentation to NSAC, 4/24/2014. NSAC Meeting December 119 2013 DOE Nuclear Physics Mission Statement 2

  5. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics science-innovationassetsimagesicon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and ...

  6. Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of...

    Office of Science (SC) Website

    Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  7. Benefits of NP | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefits of NP Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information »

  8. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colloquium Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Accelerator and Experimental Schedule Memos & Information Short Term Schedule (MCC Whiteboard) Nominal Dates for Bi-annual Beam Time Requests Forms for Beam Time Requests and Experiment

  9. NP Committees of Visitors | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NP Committees of Visitors Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings NSAC Members Charges/Reports Charter .pdf file (78KB) NP Committees of Visitors Federal Advisory Committees NP Home NP Committees of Visitors Print Text Size: A A A FeedbackShare Page DOE/NSF Nuclear Science Advisory Committee (NSAC) » The links below provide an archive of Nuclear Physics (NP) Committees of Visitors (COV) reports and responses. 2013 NSAC COV Report on NP Program .pdf file (1.8MB) NP Response

  10. NP Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Rotman, Lauren; Tierney, Brian

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  11. Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Scientists from across the country and around the world use the Thomas Jefferson National Accelerator Facility to advance mankind's understanding of the atom's nucleus. To probe nuclei, scientists use continuous beams of high-energy electrons from the lab's Continuous Electron Beam Accelerator Facility, or CEBAF, and the advanced particle-detection and ultra-high-speed data acquisition equipment in CEBAF's four experimental halls. Jefferson Lab has both theoretical and

  12. Nuclear Physics Review

    SciTech Connect (OSTI)

    Walker-Loud, Andre

    2014-11-01

    Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

  13. High Energy Physics and Nuclear Physics Network Requirements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High Energy Physics and Nuclear Physics Network Requirements Citation Details In-Document Search Title: High Energy Physics and Nuclear Physics Network ...

  14. Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

    Office of Scientific and Technical Information (OSTI)

    constraints from Big Bang nucleosynthesis Bedaque, P; Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEUTERIUM; FIELD THEORIES; NUCLEAR PHYSICS; NUCLEOSYNTHESIS;...

  15. Nuclear Physics: Recent Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Physics Topics: ...

  16. DOE-NP SBIR/STTR Exchange Meeting 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    4 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » Small Business

  17. Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group Citation Details In-Document Search Title: Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group ...

  18. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Experiment ...

  19. Neutrinos in Nuclear Physics

    SciTech Connect (OSTI)

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  20. Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group...

    Office of Scientific and Technical Information (OSTI)

    Physics & Modeling, AFC R&D Nuclear Physics Working Group Citation Details In-Document Search Title: Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group You are ...

  1. High Energy Physics and Nuclear Physics Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily reliant on transoceanic connectivity, which is subject to longer term service disruptions than terrestrial connectivity. The network engineering aspects of undersea connectivity will continue to be a significant part of the planning, deployment, and operation of the data analysis infrastructure for HEP and NP experiments for the foreseeable future. Given their critical dependency on networking services, the experiments have expressed the need for tight integration (both technically and operationally) of the domestic and the transoceanic parts of the network infrastructure that supports the experiments. 4. The datasets associated with simulations continue to increase in size, and the need to move these datasets between analysis centers is placing ever-increasing demands on networks and on data management systems at the supercomputing centers. In addition, there is a need to harmonize cybersecurity practice with the data transfer performance requirements of the science. This report expands on these points, and addresses others as well. The report contains a findings section in addition to the text of the case studies discussed during the review.

  2. High Performance Computing and Storage Requirements for Nuclear Physics: Target 2017

    SciTech Connect (OSTI)

    Gerber, Richard; Wasserman, Harvey

    2015-01-20

    In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to characterize high performance computing (HPC) and storage requirements for NP research through 2017. This review is the 12th in a series of reviews held by NERSC and Office of Science program offices that began in 2009. It is the second for NP, and the final in the second round of reviews that covered the six Office of Science program offices. This report is the result of that review

  3. Large Scale Computing and Storage Requirements for Nuclear Physics Research

    SciTech Connect (OSTI)

    Gerber, Richard A.; Wasserman, Harvey J.

    2012-03-02

    IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOE’s Office of Advanced Scientific Computing Research (ASCR) and DOE’s Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSC’s continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called “case studies,” of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, “multi-core” environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

  4. Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of low energy fission: fragment properties Younes, W; Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Abstract not provided Lawrence Livermore National Laboratory...

  5. Nuclear and Particle Physics, Astrophysics, and Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear and Particle Physics, Astrophysics, and Cosmology Providing scientific and technical leadership in fundamental and applied theoretical research on nuclear, particle, ...

  6. physical security | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical security | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  7. Laboratory I | Nuclear Physics Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERN 73-11 Laboratory I | Nuclear Physics Division a 24 September 1973 ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE C E R N EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIGH-ACCURACY MEASUREMENTS OF THE CENTRE OF GRAVITY OF AVALANCHES IN PROPORTIONAL CHAMBERS G. Charpak, A. Jeavons, F. Sauli and R. Stubbs G E N E V A 1973 © Copyright CERN, Geneve, 1973 Propriety litteraire et scientiflque reservee pour tous les pays du monde Ce document ne peut etre reproduit ou traduit en tout ou en

  8. [Experimental nuclear physics]. Final report

    SciTech Connect (OSTI)

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  9. Source Physics Experiment | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source Physics Experiment | National Nuclear Security Administration Facebook Twitter ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home Source Physics Experiment Source ...

  10. Nuclear Physics Long Range Plan | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Long Range Plan June 26, 2014 For a couple of years now, we have been waiting to get started on the next nuclear physics long range plan (LRP). What does that mean? ...

  11. Intriguing Trends in Nuclear Physics Articles Authorship

    SciTech Connect (OSTI)

    Pritychenko, B.

    2014-11-06

    A look at how authorship of physics publications (particularly nuclear publications) have changed throughout the decades by comparing data mined from the National Nuclear Data Center (NNDC) with observations.

  12. Nuclear Physics: User/Researcher Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Operations Orientation CEBAF @ 12GeV CEBAF Status Screen Conferences, Workshops, and Summer Schools Nuclear Physics CUGA Archive Directory of Members Member ...

  13. Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report

    SciTech Connect (OSTI)

    Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

    2008-11-10

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.

  14. Physics (selected articles). [Nuclear fusion

    SciTech Connect (OSTI)

    Shiyao, Z.; Zesheng, C.; Xiaolung, X.; Qiang, H.

    1982-09-01

    Controlled nuclear fusion as a new energy source was investigated. It will be possible in the 1980's to obtain thermal nuclear ignition, and in the early 2000's nuclear fusion may be used to supplement the energy shortage. It is predicted that in the 2000's nuclear fusion will occupy an important position as a global source of energy.

  15. Theoretical Nuclear Physics - Research - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theoretical Nuclear Physics By addressing this elastic scattering indirect technique, we hope that more accurate measurements of elastic scattering data will provide very important astrophysical information. Progress toward understanding the structure and behavior of strongly interacting many-body systems requires detailed theoretical study. The theoretical physics program concentrates on the development of fundamental and phenomenological models of nuclear behavior. In some systems, the

  16. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks ... Additional Information Computing at JLab Operations Logbook Physics Topics: Archived Talks ...

  17. Nuclear and Particle Physics, Astrophysics, and Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weapons Testing Resumes Nuclear Weapons Testing Resumes Washington, DC The Soviet Union breaks the nuclear test moratorium and the United States resumes testing

    2 Nuclear and Particle Physics, Astrophysics, and Cosmology Providing scientific and technical leadership in fundamental and applied theoretical research on nuclear, particle, astrophysics, and cosmology theory and simulations Leadership Group Leader Joe Carlson Email Deputy Group Leader Gerry Hale Email Contact Us Administrator Kay

  18. J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI...

    Office of Scientific and Technical Information (OSTI)

    years of nuclear fission: Nuclear data and measurements series Lynn, J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI; FISSION BARRIER; FISSION; HISTORICAL ASPECTS;...

  19. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    SciTech Connect (OSTI)

    Gai, Moshe

    2015-02-24

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC) will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.

  20. Applications of Nuclear Science Archives | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Applications of Nuclear Science » Applications of Nuclear Science Archives Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence

  1. NP Open Funding Opportunities

    Office of Science (SC) Website

    - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en 8BF3F791-EE84-4768-BCDF-E...

  2. Nuclear Physics and the New Standard Model

    SciTech Connect (OSTI)

    Ramsey-Musolf, Michael J. [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States) and Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2010-08-04

    Nuclear physics studies of fundamental symmetries and neutrino properties have played a vital role in the development and confirmation of the Standard Model of fundamental interactions. With the advent of the CERN Large Hadron Collider, experiments at the high energy frontier promise exciting discoveries about the larger framework in which the Standard Model lies. In this talk, I discuss the complementary opportunities for probing the 'new Standard Model' with nuclear physics experiments at the low-energy high precision frontier.

  3. Approaching Problems in Particle and Nuclear Physics with Time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approaching Problems in Particle and Nuclear Physics with Time-Dependent Quantum Mechanics (Wednesday, Jan 20) Approaching Problems in Particle and Nuclear Physics with...

  4. Nuclear Physics: The Ultracold Neutron Source (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Physics: The Ultracold Neutron Source Citation Details In-Document Search Title: Nuclear Physics: The Ultracold Neutron Source Authors: Kippen, Karen E. ...

  5. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The ...

  6. Nuclear Physics: The Ultracold Neutron Source (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Physics: The Ultracold Neutron Source Citation Details In-Document Search Title: Nuclear Physics: The Ultracold Neutron Source Authors: Kippen, Karen E. 1 ; Clayton, ...

  7. Nuclear Physics: The Ultracold Neutron Source (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Physics: The Ultracold Neutron Source Citation Details In-Document Search Title: Nuclear Physics: The Ultracold Neutron Source You are accessing a ...

  8. collisions'' Ulrich W. Heinz 73 NUCLEAR PHYSICS AND RADIATION...

    Office of Scientific and Technical Information (OSTI)

    Theory of ultra-relativistic heavy-ion collisions'' Ulrich W. Heinz 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear Theory, Relativistic Heavy-Ion Collisions, Quark-Gluon...

  9. Chicago Business Features Argonne Woman in Nuclear Physics |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chicago Business Features Argonne Woman in Nuclear Physics Chicago Business Features Argonne Woman in Nuclear Physics January 9, 2012 - 4:08pm Addthis Kawtar Hafidi is an ...

  10. About Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics is an important pursuit because the study of the nucleus of the atom is at the heart of our ability to understand the universe. It provides answers and expands our...

  11. Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group Citation Details In-Document Search Title: Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group Authors: Talou, Patrick [1] ; Rising, Michael [2] + Show Author Affiliations Los Alamos National Laboratory UNM Publication Date: 2012-05-03 OSTI Identifier: 1053873 Report Number(s): LA-UR-12-21076 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource

  12. Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown

  13. Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P:

  14. Improved Design of Nuclear Reactor Control System | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Improved Design of Nuclear Reactor Control System Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  15. Neutron Detectors for Detection of Nuclear Materials at LANL| U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Neutron Detectors for Detection of Nuclear Materials at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000

  16. Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nuclear Wallet Cards at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613

  17. Applications of Nuclear Science | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications of Nuclear Science Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  18. Nuclear Physics Division Theoretical Study Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CEBIT 67-18 Nuclear Physics Division Theoretical Study Division 11 July 1967 ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE C E R N EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE K°K° SYSTEM G. Charpak, CERN, Geneva, Switzerland, and M. Gourdin, Faculty des Sciences, Orsay, Prance. Lectures delivered at the Matscience Institute, Madras, India, December 1966 and January 1967 G E N E V A 1967 (C) Copyright CERN, Geneve, 1967 Propriety litteraire et scientifique r&ervee pour tous les

  19. The nuclear physics of neutron stars

    SciTech Connect (OSTI)

    Piekarewicz, J.

    2014-05-09

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  20. American particle and nuclear physics planning

    SciTech Connect (OSTI)

    Montgomery, Hugh E.

    2014-10-01

    In the United States the planning process relevant to future deep inelastic scattering involves both the high energy physics and nuclear physics funding and the two communities. In Canada there is no such split between the communities. Within the past two years there have been several planning initiatives and there may be more to come. We review the current status of both the planning and the plans.

  1. Nuclear Physics Laboratory 1980 annual report

    SciTech Connect (OSTI)

    Adelberger, E.G.

    1980-09-01

    Research progress is reported in the following areas: astrophysics and cosmology, fundamental symmetries, nuclear structure and reactions, radiative capture, medium energy physics, heavy ion reactions, research by outside users, accelerators and ion sources, instrumentation and experimental techniques, and computers and computing. Publications are listed. (WHK)

  2. New Horizons on the Nuclear Landscape | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Horizons on the Nuclear Landscape Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 06.01.12 New Horizons on the Nuclear Landscape New calculations have quantified the

  3. Nuclear Reaction Cross Sections Database at BNL | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Reaction Cross Sections Database at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  4. Nuclear Resonance Fluorescence at MIT | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Resonance Fluorescence at MIT Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  5. Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...

    Office of Science (SC) Website

    Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  6. Research in theoretical nuclear and neutrino physics. Final report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino ...

  7. [Experimental nuclear physics]. Annual report 1988

    SciTech Connect (OSTI)

    1988-05-01

    This is the May 1988 annual report of the Nuclear Physics Laboratory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, the Laboratory`s booster linac project work, instrumentation, and computer systems. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1987-88 academic year, and publications. Refs., 27 figs., 4 tabs.

  8. [Experimental nuclear physics]. Annual report 1989

    SciTech Connect (OSTI)

    1989-04-01

    This is the April 1989 annual report of the Nuclear Physics Labortaory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, computer systems, instrumentation, and the Laboratory`s booster linac work. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1988-1989 academic year, and publications. Refs., 23 figs., 3 tabs.

  9. Nuclear Physics: Experiment Research - Call for Beam Time Requests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks ... Jefferson Lab Users Group From : Nuclear Physics Experiment Scheduling Committee Subject: ...

  10. Materials Physics and Applications Division Lead | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Physics and Applications Division Lead | National Nuclear Security Administration Facebook ... Home About Us Our People In The Spotlight Toni Taylor Materials Physics and ...

  11. Fission Younes, W; Gogny, D 73 NUCLEAR PHYSICS AND RADIATION...

    Office of Scientific and Technical Information (OSTI)

    in a Time-Dependent Microscopic Theory of Fission Younes, W; Gogny, D 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Abstract not provided Lawrence Livermore National Laboratory...

  12. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect (OSTI)

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  13. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect (OSTI)

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  14. Quantum Monte Carlo methods for nuclear physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  15. Quantum Monte Carlo methods for nuclear physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  16. Lattice Gauge Theory for Nuclear Physics

    SciTech Connect (OSTI)

    Konstantinos Orginos

    2012-12-01

    Quantum Chromodynamcs (QCD) is now established as the theory of strong interactions. A plethora of hadronic physics phenomena can be explained and described by QCD. From the early days of QCD, it was clear that low energy phenomena require a non-perturbative approach. Lattice QCD is a non-perturbative formulation of QCD that is particularly suited for numerical calculations. Today, supercomputers have achieved performance cabable of performing calculations that allow us to understand complex phenomana that arise from QCD. In this talk I will review the most recent results, relevant to nuclear physics. In particular, I will focus on results relevant to the structure and interactions of hadrons. Finally, I will comment on the opportunities opening up as we approach the era of exaflop computing.

  17. DOE fundamentals handbook: Nuclear physics and reactor theory

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  18. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  19. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  20. Physics of Ultra-Peripheral Nuclear Collisions

    SciTech Connect (OSTI)

    Bertulani, Carlos A.; Klein, Spencer R.; Nystrand, Joakim

    2005-02-02

    Moving highly-charged ions carry strong electromagnetic fields which act as a field of photons. In collisions at large impact parameters, hadronic interactions are not possible, and the ions interact through photon-ion and photon-photon collisions known as ultra-peripheral collisions (UPC). Hadron colliders like the Relativistic Heavy Ion Collider (RHIC), the Tevatron and the Large Hadron Collider (LHC) produce photonuclear and two-photon interactions at luminosities and energies beyond that accessible elsewhere; the LHC will reach a {gamma}p energy ten times that of the Hadron-Electron Ring Accelerator (HERA). Reactions as diverse as the production of anti-hydrogen, photoproduction of the {rho}{sup 0}, transmutation of lead into bismuth and excitation of collective nuclear resonances have already been studied. At the LHC, UPCs can study many types of ''new physics''.

  1. Parker, J.L. 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL...

    Office of Scientific and Technical Information (OSTI)

    for plutonium and americium-241 decay corrections Sampson, T.E.; Parker, J.L. 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; AMERICIUM 241; DECAY; PLUTONIUM;...

  2. Nuclear safety | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safety Subscribe to RSS - Nuclear safety Actions taken to prevent nuclear and radiation ... NSTX Upgrade Like a new passenger jet or power plant, the National Spherical Torus ...

  3. Princeton Plasma Physics Lab - Nuclear safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safety Actions taken to prevent nuclear and radiation accidents or to limit their consequences. en COLLOQUIUM: Technical Aspects of the Iran Nuclear Agreement http:www.pppl.gov...

  4. Research in theoretical nuclear and neutrino physics. Final report

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Research in theoretical nuclear and neutrino physics. Final report Citation Details In-Document Search Title: Research in theoretical nuclear and neutrino physics. Final report The main focus of the research supported by the nuclear theory grant DE-FG02-04ER41319 was on studying parton dynamics in high-energy heavy ion collisions, perturbative approach to charm production and its contribution to atmospheric neutrinos, application of

  5. DNP 2015: APS Division of Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    requests to be added to the electronic distribution list for d n n s e n t i n e l can be sent to dnnoutreach@nnsa.doe.gov. Vol. I, No. 1  defeNse by other meaNs us departmeNt of eNergy (doe) NatIoNal Nuclear securIty admINIstratIoN (NNsa) defeNse Nuclear NoNprolIferatIoN (dNN) National Nuclear Security Administration ENERGY U.S. DEPARTMENT OF 3 DNN Organization Looks to the Future 4 Nuclear Smuggling Detection and Deterrence-Integrating Detection and Law Enforcement 6 Field Training

  6. Nuclear Physics Technology Saves Lives | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Technology Saves Lives January 11, 2006 Listen to this story Ribbon With early ... Group, headed by Stan Majewski, is part of the Physics Division here at Jefferson Lab. ...

  7. Quantrum chaos and statistical nuclear physics

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This book contains 33 selections. Some of the titles are: Chaotic motion and statistical nuclear theory; Test of spectrum and strength fluctuations with proton resonances; Nuclear level densities and level spacing distributions; Spectral statistics of scale invariant systems; and Antiunitary symmetries and energy level statistics.

  8. Jefferson Lab Nuclear Physics Events: Seminars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Physics Colloquia Physics Seminars Theory Seminars Graduate Student Seminars Summer Detector & Computer Lecture Series Conference Listings JLab Event Calendar Physics Events: Seminars Subject: Why the proton radius is smaller in Virginia Speaker: Douglas Higinbotham Jefferson Lab Date: Friday, May 13, 2016 Time: 11:00 a.m. Place: CEBAF Center Auditorium Abstract: Recent Muonic hydrogen Lamb shift measurements have determined the proton's charge radius to be 0.84 fm, a result

  9. Theoretical nuclear physics at Yale University

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Brief summaries of past and planned activities in the following areas are given: models of nuclear structure; models of hadronic structure; hot nuclei; chaos in nuclei; reactions and structure; dissipation, diffusion, and collective motion; and modeling equilibrium and nonequilibrium systems.

  10. Accelerating Innovation: How Nuclear Physics Benefits Us All

    DOE R&D Accomplishments [OSTI]

    2011-01-01

    Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

  11. Hans Bethe, Powering the Stars, and Nuclear Physics

    Office of Scientific and Technical Information (OSTI)

    Hans Bethe, Energy Production in Stars, and Nuclear Physics Awards and Tributes * Resources with Additional Information Hans Bethe Courtesy of Cornell University "Hans Bethe was one of the great physicists not only of the twentieth century, but of all time. During his long life, he uncovered the secrets powering the stars, published the standard work on nuclear physics, built atomic weapons, and called for a halt to their proliferation. Bethe's dual legacy is one of genius and

  12. Random matrices and chaos in nuclear physics: Nuclear structure

    SciTech Connect (OSTI)

    Weidenmueller, H. A.; Mitchell, G. E. [Max-Planck-Institut fuer Kernphysik, D-69029 Heidelberg (Germany); North Carolina State University, Raleigh, North Carolina 27695 (United States) and Triangle Universities Nuclear Laboratory, Durham, North Carolina 27706 (United States)

    2009-04-15

    Evidence for the applicability of random-matrix theory to nuclear spectra is reviewed. In analogy to systems with few degrees of freedom, one speaks of chaos (more accurately, quantum chaos) in nuclei whenever random-matrix predictions are fulfilled. An introduction into the basic concepts of random-matrix theory is followed by a survey over the extant experimental information on spectral fluctuations, including a discussion of the violation of a symmetry or invariance property. Chaos in nuclear models is discussed for the spherical shell model, for the deformed shell model, and for the interacting boson model. Evidence for chaos also comes from random-matrix ensembles patterned after the shell model such as the embedded two-body ensemble, the two-body random ensemble, and the constrained ensembles. All this evidence points to the fact that chaos is a generic property of nuclear spectra, except for the ground-state regions of strongly deformed nuclei.

  13. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    SciTech Connect (OSTI)

    Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

    1993-11-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

  14. University of Washington, Nuclear Physics Laboratory annual report, 1995

    SciTech Connect (OSTI)

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995.

  15. Nuclear Physics Laboratory, University of Washington annual report

    SciTech Connect (OSTI)

    1998-04-01

    The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics. These activities are conducted locally and at remote sites. The current programs include in-house research using the local tandem Van de Graaff and superconducting linac accelerators and non-accelerator research in solar neutrino physics at the Sudbury Neutrino Observatory in Canada and at SAGE in Russia, and gravitation as well as user-mode research at large accelerators and reactor facilities around the world. Summaries of the individual research projects are included. Areas of research covered are: fundamental symmetries, weak interactions and nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; ultra-relativistic heavy ions; and atomic and molecular clusters.

  16. Nuclear energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy Subscribe to RSS - Nuclear energy Energy that originates from the splitting of uranium atoms in a process called fission. This is distinct from a process called fusion where energy is released when atomic nuclei combine or fuse. A major upgrade of the Lithium Tokamak Experiment at PPPL will explore liquid lithium as a first wall for hot plasmas A promising experiment that encloses hot, magnetically confined plasma in a full wall of liquid lithium is undergoing a $2 million upgrade at the

  17. Nuclear chromodynamics is not the colorization of nuclear physics

    SciTech Connect (OSTI)

    Sivers, D.

    1988-07-19

    The successful description of nuclei in terms of nucleons, deltas and mesons provides an enormous challenge to QCD. It compels us to pursue our theoretical understanding of chromodynamics into the realm of multiple color singlets in order to examine the concept of color saturation. To pursue this theme, we examine the idea of nuclear transparency in the light of models for confinement and describe the formulation of lattice simulations sensitive to exchange forces. 22 refs., 7 figs.

  18. Large Scale Production Computing and Storage Requirements for Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics: Target 2017 Large Scale Production Computing and Storage Requirements for Nuclear Physics: Target 2017 NPicon.png This invitation-only review is organized by the Department of Energy's Offices of Nuclear Physics (NP) and Advanced Scientific Computing Research (ASCR) and by NERSC. The goal is to determine production high-performance computing, storage, and services that will be needed for NP to achieve its science goals through 2017. The review brings together DOE Program Managers,

  19. Accelerating Innovation: How Nuclear Physics Benefits Us All

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

  20. Ushasi Datta Pramanik Saha Institute Of Nuclear Physics, Kolkata , India

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei Ushasi Datta Pramanik Saha Institute Of Nuclear Physics, Kolkata , India 100 years after discovery of the nucleus by Rutherford, the limits of the existence of the nuclei are still uncertain. Study of nuclear shell structure around the drip line and validation of the theoretical predictions with the experimental data may provide important information on nucleon-nucleon

  1. Project Engineer (Nuclear/Mechanical Engineer) | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Project Engineer (Nuclear/Mechanical Engineer) Department: Engineering Supervisor(s): Douglas Loesser Staff: ENG 5--7 Requisition Number: 1600242 Position Summary: The Princeton University Plasma Physics Laboratory, is a world-renowned fusion energy research center under contract with the U. S. Department of Energy. Its Mechanical Engineering Division (MED) is seeking to hire a Nuclear/Mechanical Engineer in the Engineering Analysis Branch of the MED. It is expected an early assignment

  2. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    SciTech Connect (OSTI)

    Redondo, Antonio

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  3. Ab initio calculation of the $$np \\to d ³$$ radiative capture process

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beane, Silas R.; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.

    2015-09-24

    In this study, lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture processmore » $$np \\to d\\gamma$$, and the photo-disintegration processes $$\\gamma^{(\\ast)} d \\to np$$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of $$m_\\pi \\sim 450$$ and 806 MeV, and are combined with pionless nuclear effective field theory to determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross section of $$\\sigma^{lqcd}(np\\to d\\gamma)=332.4({\\tiny \\begin{array}{l}+5.4 \\\\ - 4.7\\end{array}})\\ mb$$ is obtained at an incident neutron speed of $$v=2,200\\ m/s$$, consistent with the experimental value of $$\\sigma^{expt}(np \\to d\\gamma) = 334.2(0.5)\\ mb$$.« less

  4. Joint Actinide Shock Physics Experimental Research | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Joint Actinide Shock Physics Experimental Research The JASPER gas gun at the Nevada National Security Site is used to fire a projectile at a plutonium target. The shock wave produced by the impact passes through the plutonium, and diagnostic equipment measures the properties of the shocked plutonium. Shock physics experiments such as this are critical to maintaining the safety and security of the nation's stockpile in the absence of underground nuclear testing. For

  5. Method for separating actinides. [Patent application; stripping of Np from organic extractant

    DOE Patents [OSTI]

    Friedman, H.A.; Toth, L.M.

    1980-11-10

    An organic solution used for processing spent nuclear reactor fuels is contacted with an aqueous nitric acid solution to strip Np(VI), U(VI), and Pu(IV) from the organic solution into the acid solution. The acid solution is exposed to ultraviolet light, which reduces Np(VI) to Np(V) without reducing U(VI) and Pu(IV). Since the solubility of Np(V) in the organic solution is much lower than that of Np(VI), U(VI), and Pu(IV), a major part of the Np is stripped from the organic solution while leaving most of the U and Pu therein.

  6. Uncertainty quantification in lattice QCD calculations for nuclear physics

    SciTech Connect (OSTI)

    Beane, Silas R.; Detmold, William; Orginos, Kostas; Savage, Martin J.

    2015-02-05

    The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.

  7. Laboratory for Nuclear Science. High Energy Physics Program

    SciTech Connect (OSTI)

    Milner, Richard

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  8. Jefferson Lab Strategic Planning Experimental Nuclear Physics Division Town Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Strategic Planning Experimental Nuclear Physics Division Town Meeting December 08, 2011 - CEBAF Center Auditorium Agenda 08:30 - 08:35 Charge Bob McKeown 08:35 - 08:45 (5 + 5) Introduction Rolf Ent (Mission Statement, Scope of Current activities, Synergy) 08:45 - 09:00 (10 + 5) 12-GeV Upgrade: "<5 years" scientific program Glenn Young (Machine + Hall Equipment, Approved Experiments) 09:00 - 09:40 12-GeV Upgrade: "5-10 year" scientific program (5 + 5) Hall A

  9. The r-process nucleosynthesis: Nuclear physics challenges

    SciTech Connect (OSTI)

    Goriely, S.

    2012-10-20

    About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

  10. Annual Continuation And Progress Report For Nuclear Theory At Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Ormand, W. E.; Quaglioni, S.; Schunck, N.; Vogt, R.; Vranas, P.

    2015-10-26

    Nuclear Theory research under the auspices of the Department of Energy (DOE) Office of Nuclear Physics (NP) is conducted within several funding sources and projects. These include base funding, and early career award, and a collaborative SciDAC-­3 award that is jointly funded by DOE/NP and the Advanced Simulations and Computations (ASC) effort within the National Nuclear Security Agency (NNSA). Therefore, this annual report is organized within the three primary sections covering these projects.

  11. Yukiko-NP-NERSCWorkshop.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NP/NERSC Requirements Gathering Workshop Yukiko Sekine Program Manager, Facilities Division Advanced Scientific Computing Research Office of Science, DOE May 26 & 27, 2011 Advanced Scientific Computing Research Topics for Discussion * Goal and Outcome of this Workshop * Other approaches to NERSC requirements gathering * Benefits of SC/HQ-centric requirements gathering for NERSC resources in the context of Programmatic mission needs * NERSC requirements gathering workshop schedule * Past

  12. Annual report of the Nuclear Physics Laboratory, University of Washington

    SciTech Connect (OSTI)

    Snover, K.; Fulton, B.

    1996-04-01

    The Nuclear Physics Laboratory of the University of Washington has for over 40 years supported a broad program of experimental physics research. Some highlights of the research activities during the past year are given. Work continues at a rapid pace toward completion of the Sudbury Neutrino Observatory in January 1997. Following four years of planning and development, installation of the acrylic vessel began last July and is now 50% complete, with final completion scheduled for September. The Russian-American Gallium Experiment (SAGE) has completed a successful {sup 51}Cr neutrino source experiment. The first data from {sup 8}B decay have been taken in the Mass-8 CVC/Second Class Current study. The analysis of the measured barrier distributions for Ca-induced fission of prolate {sup 192}Os and oblate {sup 194}Pt has been completed. In a collaboration with a group from the Bhabha Atomic Research Centre they have shown that fission anisotropies at energies well above the barrier are not influenced by the mass asymmetry of the entrance channel relative to the Businaro-Gallone critical asymmetry. They also have preliminary evidence at higher bombarding energy that noncompound nucleus fission scales with the mean square angular momentum, in contrast to previous suggestions. The authors have measured proton and alpha particle emission spectra from the decay of A {approximately} 200 compound nuclei at excitation energies of 50--100 MeV, and used these measurements to infer the nuclear temperature. The investigations of multiparticle Bose-Einstein interferometry have led to a new algorithm for putting Bose-Einstein and Coulomb correlations of up to 6th order into Monte Carlo simulations of ultra-relativistic collision events, and to a new fast algorithm for extracting event temperatures.

  13. Nuclear physics detector technology applied to plant biology research

    SciTech Connect (OSTI)

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  14. Thin-thick hydrogen target for nuclear physics

    SciTech Connect (OSTI)

    Gheller, J.-M.; Juster, F.-P.; Authelet, G.; Relland, J.

    2014-01-29

    In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

  15. A Program in Medium-Energy Nuclear Physics

    SciTech Connect (OSTI)

    Feldman, Gerald

    2015-03-23

    We report here on the final stages of the Berman grant. The study of the spectrum and properties of the excited states of the nucleon (the N* states) is one of the highest-priority goals of nuclear physics and one of the major programs of Jefferson Lab, especially in Hall B. We have most recently focused our attention on exclusive studies (in both spin and strangeness) of the neutron in the deuteron. Our g13 experiment, “Production of Kaons from the Deuteron with Polarized Photons” [Nadel-Turonski (2006)], was carried out between October 2006 and June 2007. This experiment was done using both linearly and circularly polarized photons, mainly to try to unscramble the multitude of wide and overlapping N* states and to measure their properties by studying in fine detail their decays into strange-particle reaction channels. To this end, one of our students, Edwin Munevar, has analyzed the γn→K+Σ- reaction channel for his Ph.D. topic. The strangeness-production channels constitute the subject of the original GW group’s g13 proposal. But the g13 data set, by virtue of its statistics, polarization, and kinematic coverage, is ideally suited for many other reaction channels as well. Among these is the azimuthal angular asymmetry for deuteron photodisintegration, which was analyzed by another of our students, Nicholas Zachariou, for his Ph.D. topic, with help from Nickolay Ivanov (from the Yerevan Physics Institute in Armenia). This study required a deuterium target and a linearly polarized photon beam.

  16. Research in theoretical nuclear and neutrino physics. Final report

    Office of Scientific and Technical Information (OSTI)

    ANNIHILATION; FLAVOR MODEL; SUPERNOVAE; QUANTUM CHROMODYNAMICS; HEAVY ION REACTIONS; SUN; NUCLEAR THEORY; CONVERSION; CHARM PARTICLES; PROGRESS REPORT; NONLUMINOUS MATTER; STAR...

  17. Recent advances in nuclear fission theory: pre- and post-scission physics

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Recent advances in nuclear fission theory: pre- and post-scission physics Citation Details In-Document Search Title: Recent advances in nuclear fission theory: pre- and post-scission physics Recent advances in the modeling of the nuclear fission process for data evaluation purposes are reviewed. In particular, it is stressed that a more comprehensive approach to fission data is needed if predictive capability is to be achieved. The link between pre-

  18. Covariant Spectator Theory of np scattering: Deuteron magnetic moment and form factors

    SciTech Connect (OSTI)

    Gross, Franz L.

    2014-06-01

    The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high precision fits to $np$ scattering data. Included in the calculation are a new class of isoscalar $np$ interaction currents which are automatically generated by the nuclear force model used in these fits. After normalizing the wave functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components, gives 0.863(2), while model WJC-2 with very small $P$-state components gives 0.864(2) These are about 1\\% larger than the measured value of the moment, 0.857 n.m., giving a new prediction for the size of the $\\rho\\pi\\gamma$ exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear dynamics. The physical significance of these results is discussed, and general formulae for the deuteron form factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are given.

  19. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    SciTech Connect (OSTI)

    Negoita, F. Gugiu, M. Petrascu, H. Petrone, C. Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; and others

    2015-02-24

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr{sub 3}(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  20. HEP/NP Requirements Review 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NP Program Offices. These requirements will serve as input to the ESnet architecture and planning processes, and will help ensure that ESnet continues to provide world-class...

  1. Nuclear Physics: Experiment Research - Call for Beam Time Requests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop the goals for each acceleratorphysics running cycle, develop the schedule for ... The Scheduling Committee will consider the physics priority of each experiment, together ...

  2. Nuclear Physics: The Ultracold Neutron Source Kippen, Karen E...

    Office of Scientific and Technical Information (OSTI)

    Physics: The Ultracold Neutron Source Kippen, Karen E. Los Alamos National Laboratory Los Alamos National Laboratory; Clayton, Steven Los Alamos National Laboratory Los...

  3. DOE Science Showcase - DOE Nuclear Physics R&D Info | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy, Office of Scientific and Technical Information DOE Nuclear Physics R&D Info While quarks and gluons are fairly well understood, how they fit together to create different types of matter is still a mystery. The DOE Nuclear Physics program's mission is to solve this mystery through theoretical and experimental research; the benefits to society range from fighting cancer to ensuring food safety to border protection. Find DOE research information on this topic from the OSTI databases

  4. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics Citation Details In-Document Search Title: Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1 keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on

  5. Physics and Engineering Models | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Physics and Engineering Models Models are mathematical equations and tables that describe physical entities and processes; and are the vehicle by which new scientific understanding is written into the integrated codes. This subprogram funds the critical skills charged with the development, initial validation, and incorporation of new models into the Integrated Codes. Model development converts the results of theories and experiments into simulation capabilities and is inextricably linked to the

  6. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N3LO.« less

  7. Outage management and health physics issue, 2009

    SciTech Connect (OSTI)

    Agnihotri, Newal

    2009-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles include the following: Planning and scheduling to minimize refueling outage, by Pat McKenna, AmerenUE; Prioritizing safety, quality and schedule, by Tom Sharkey, Dominion; Benchmarking to high standards, by Margie Jepson, Energy Nuclear; Benchmarking against U.S. standards, by Magnox North, United Kingdom; Enabling suppliers for new build activity, by Marcus Harrington, GE Hitachi Nuclear Energy; Identifying, cultivating and qualifying suppliers, by Thomas E. Silva, AREVA NP; Creating new U.S. jobs, by Francois Martineau, Areva NP. Industry innovation articles include: MSL Acoustic source load reduction, by Amir Shahkarami, Exelon Nuclear; Dual Methodology NDE of CRDM nozzles, by Michael Stark, Dominion Nuclear; and Electronic circuit board testing, by James Amundsen, FirstEnergy Nuclear Operating Company. The plant profile article is titled The future is now, by Julia Milstead, Progress Energy Service Company, LLC.

  8. JINA Workshop Nuclear Physics in Hot Dense Dynamic Plasmas

    SciTech Connect (OSTI)

    Kritcher, A L; Cerjan, C; Landen, O; Libby, S; Chen, M; Wilson, B; Knauer, J; Mcnabb, D; Caggiano, J; Bleauel, D; Weideking, M; Kozhuharov, C; Brandau, C; Stoehlker, T; Meot, V; Gosselin, G; Morel, P; Schneider, D; Bernstein, L A

    2011-03-07

    Measuring NEET and NEEC is relevant for probing stellar cross-sections and testing atomic models in hot plasmas. Using NEEC and NEET we can excite nuclear levels in laboratory plasmas: (1) NIF: Measure effect of excited nuclear levels on (n,{gamma}) cross-sections, 60% and never been measured; (2) Omega, Test cross-sections for creating these excited levels via NEEC and NEET. Will allow us to test models that estimate resonance overlap of atomic states with the nucleus: (1) Average Atom model (AA) (CEA&LLNL), single average wave-function potential; (2) Super Transition Array (STA) model (LLNL), More realistic individual configuration potentials NEET experimental data is scarce and not in a plasma environment, NEEC has not yet been observed.

  9. HEP/NP Requirements Review 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP/NP Requirements Review 2013 Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Documents and Background Materials FAQ for Case Study Authors BER Requirements Review 2015 ASCR Requirements Review 2015 Previous Reviews HEP/NP Requirements Review 2013 HEP Attendees 2013 FES Requirements Review 2014 BES Requirements Review 2014 Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  10. Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei

    SciTech Connect (OSTI)

    Fogli, G. L.; Rotunno, A. M. [Dipartimento Interateneo di Fisica 'Michelangelo Merlin', Via Amendola 173, 70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Lisi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy)

    2009-07-01

    Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a few nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.

  11. Local Map | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nuclear Physics (NP) NP Home About Organization Chart .pdf file (31KB) Staff NP Budget NP Committees of Visitors Directions Local Map Jobs Labs & Universities Nuclear Physics ...

  12. Jobs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nuclear Physics (NP) NP Home About Organization Chart .pdf file (31KB) Staff NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related ...

  13. LITERATURE REVIEW: REDUCTION OF NP(V) TO NP (IV)-ALTERNATIVES TO FERROUS SULFAMATE

    SciTech Connect (OSTI)

    Kessinger, G.; Kyser, E.; Almond, P.

    2009-09-28

    The baseline approach to control of Np oxidation in UREX and PUREX separation processes is the reduction of Np(V) and Np(VI) to Np(IV) using ferrous sulfamate. Use of this reagent results in increased sulfur and iron concentrations in the liquid waste streams from the process. Presence of these two elements, especially sulfur, increases the complexity of the development of wasteforms for immobilizing these effluents. Investigations are underway to identify reductants that eliminate sulfur and iron from the Np reduction process. While there are a variety of chemical reductants that will reduce Np to Np(IV) in nitric acid media, the reaction rates for most are so slow that the reductants are not be feasible for use in an operating plant process. In an attempt to identify additional alternatives to ferrous sulfamate, a literature search and review was performed. Based on the results of the literature review, it is concluded that photochemical and catalytic processes should also be investigated to test the utility of these two approaches. The catalytic process could be investigated for use in conjunction with chemical oxidants to speed the reaction rates for reductants that react slowly, but would otherwise be appropriate replacements for ferrous sulfamate. The photochemical approach, which has received little attention during the past few decades, also shows promise, especially the photocatalytic approach that includes a catalyst, such as Pt supported on SiC, which can be used in tandem with an oxidant, for Np reduction.

  14. NP-MHTGR Fuel Development Program Results

    SciTech Connect (OSTI)

    Maki, John Thomas; Petti, David Andrew; Hobbins, Richard Redfield; McCardell, Richard K.; Shaber, Eric Lee; Southworth, Finis Hio

    2002-10-01

    In August 1988, the Secretary of Energy announced a strategy to acquire New Production Reactor capacity for producing tritium. The strategy involved construction of a New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) where the Idaho National Engineering and Environmental Laboratory (INEEL) was selected as the Management and Operations contractor for the project. Immediately after the announcement in August 1988, tritium target particle development began with the INEEL selected as the lead laboratory. Fuel particle development was initially not considered to be on a critical path for the project, therefore, the fuel development program was to run concurrently with the design effort of the NP-MHTGR.

  15. LOW-ENERGY NUCLEAR PHYSICS NATIONAL HPC INITIATIVE: BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)

    SciTech Connect (OSTI)

    Bulgac, A

    2013-03-27

    This document is a summary of the physics research carried out by the University of Washington centered group. Attached are reports for the previous years as well as the full exit report of the entire UNEDF collaboration.

  16. UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report

    SciTech Connect (OSTI)

    B.M.K. Nefkens; J. Goetz; A. Lapik; M. Korolija; S. Prakhov; A. Starostin

    2011-05-18

    This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup #25;0}, 2{pi}{sup #25;}0, 3{pi}{sup #25;0}, {eta}#17;, {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4#25;. It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, Gâ??parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta}#17;,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta}#17; and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup #4;â??}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and nonâ??coherent #25;0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the #25;{pi}{sup 0} final state and exclusive for background such as 2#25;{pi}{sup 0}.

  17. Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995

    SciTech Connect (OSTI)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1995-12-31

    Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.

  18. NP Committees of Visitors | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    NSAC COV Report on NP Program .pdf file (1.8MB) NP Response to NSAC COV Report on NP .pdf file (56KB) 2010 NSAC COV Report on NP Program .pdf file (410KB) NP Response to NSAC COV ...

  19. Gamma beam system at ELI-NP

    SciTech Connect (OSTI)

    Ur, Calin Alexandru

    2015-02-24

    The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.

  20. Final Report 10th Conference on the Intersections of Particle and Nuclear Physics

    SciTech Connect (OSTI)

    Marshak, Marvin L.

    2013-11-03

    The 10th Conference on the Intersections of Particle and Nuclear Physics was held in LaJolla, California on May 26 to May 31, 2009. The Conference Proceedings are published by the American Institute of Physics in Volume 1182 of the AIP Conference Proceedings (ISBN: 978-0-7354-0723-7). The Proceedings include papers from each of the Conference Presenters and a detailed schedule of talks at the Conference. The Table of Contents of the Conference Proceedings is available at http://scitation.aip.org/content/aip/proceeding/aipcp/1182. Support by the U.S. Department of Energy and by DOE Laboratories was essential to the success of the Conference.

  1. Large-x connections of nuclear and high-energy physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Accardi, Alberto

    2013-11-20

    I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. Particular attention is devoted to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.

  2. Barnes_NP_Program_Office_Research_Directions_V2.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...optimizes resources DOENP is the largest supporter of nuclear physics in the U.S. and operates large National User ... of hadrons; exotics, hadron structure HPC e.g.: zero ...

  3. On-Line Physical Property Process Measurements for Nuclear Fuel Recycling

    SciTech Connect (OSTI)

    Pappas, Richard A.; Bond, Leonard J.; Greenwood, Margaret S.; Hostick, Cody J.

    2007-07-01

    The Global Nuclear Energy Partnership (GNEP) is looking to close the nuclear fuel cycle and demonstrate key fuel recycling technologies, while at the same time reducing proliferation risks. A key element of GNEP is the demonstration of the uranium extraction (UREX) +1a process, and potentially other fuel reprocessing schemes. Advanced recycling of nuclear fuel will require improved on-line monitoring and process control. Advanced ultrasonic sensor technology can be a critical component of a process quality control strategy that is designed to determine the sources of variability and minimize their impact on the quality of the end product. PNNL ultrasonic devices and methodologies, many of which were initially developed and deployed to address the needs of the DOE Hanford site, provide on-line physical property measurement useful in optimizing plant capacity, assuring cost-effective analyses, and satisfying direct sampling requirements.. A select collection of PNNL ultrasonic technology is discussed in this context. (authors)

  4. PIK M.S. Onegin Petersburg Nuclear Physics Institute 2015 Super Heavy Elements Symposium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    possibilities of heavy actinide isotopes production in high-flux reactor PIK M.S. Onegin Petersburg Nuclear Physics Institute 2015 Super Heavy Elements Symposium Reactor PIK 2011 - Criticality reached 2013 - Construction finished 2014 - 2017 Licensing and neutron stations and installation construction 2018 - Power operation scheduled The maximum heat output 100 MW Heat transfer agent water Reflector heavy water Number of horizontal experimental channels 10 Number inclined experimental channels 6

  5. High energy-density physics: From nuclear testing to the superlasers

    SciTech Connect (OSTI)

    Campbell, E.M.; Holmes, N.C.; Libby, S.B.; Remington, B.A.; Teller, E.

    1995-10-20

    We describe the role for the next-generation ``superlasers`` in the study of matter under extremely high energy density conditions, in comparison to previous uses of nuclear explosives for this purpose. As examples, we focus on three important areas of physics that have unresolved issues which must be addressed by experiment: Equations of state, hydrodynamic mixing, and the transport of radiation. We will describe the advantages the large lasers will have in a comprehensive experimental program.

  6. Jefferson Lab, a forefront U.S. Department of Energy nuclear physics research fa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab, a forefront U.S. Department of Energy nuclear physics research facility, provides world- class, unique research capabilities and innovative technologies to serve an international scientific user community. Specifically, the laboratory's mission is to: * deliver discovery-caliber research by exploring the atomic nucleus and its fundamental constituents, including precise tests of their interactions; * apply advanced particle accelerator, detector and other technologies to develop new basic

  7. EA-165 NP Energy INC. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order authorizing NP Energy INC to export electric energy to Canada. PDF icon EA-165 NP Energy INC. More Documents & Publications EA-162 PP&L, Inc EA-163 Duke Energy Trading and ...

  8. 2013 Workshop on Isotope Federal Supply and Demand | U.S. DOE...

    Office of Science (SC) Website

    Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP ...

  9. 2012 Workshop on Isotope Federal Supply and Demand | U.S. DOE...

    Office of Science (SC) Website

    Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP ...

  10. 2015 Workshop on Isotope Federal Supply and Demand | U.S. DOE...

    Office of Science (SC) Website

    Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP ...

  11. 2014 Workshop on Isotope Federal Supply and Demand | U.S. DOE...

    Office of Science (SC) Website

    Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP ...

  12. Agenda/Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP ...

  13. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    SciTech Connect (OSTI)

    Moon, Chang-Bum

    2014-04-15

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  14. BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities

    SciTech Connect (OSTI)

    J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

    2012-03-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

  15. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; Pawlowski, Roger; Toth, Alex; Kelley, C. T.; Evans, Thomas; Philip, Bobby

    2016-04-01

    Here we evaluate the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product was developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK andmore » Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Finally, both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  16. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on MaterialsCondensed ...

  17. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group (PDG) Organizations American Institute of Physics (AIP) American Physical Society (APS) Institute of Physics (IOP) SPIE - International society for optics and photonics Top...

  18. Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report

    SciTech Connect (OSTI)

    William Anderson; James Tulenko; Bradley Rearden; Gary Harms

    2008-09-11

    The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

  19. MHK Technologies/Neptune Proteus NP1000 | Open Energy Information

    Open Energy Info (EERE)

    Neptune Proteus NP1000.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK ProjectsNeptune Renewable...

  20. Laminin receptor specific therapeutic gold nanoparticles (198AuNP...

    Office of Scientific and Technical Information (OSTI)

    prostate cancer Citation Details In-Document Search Title: Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer ...

  1. NP Budget | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NP Budget Budget Budget Home About Budget by Program ASCR Budget BES Budget BER Budget FES Budget HEP Budget NP Budget WDTS Budget SLI Budget S&S Budget SCPD Budget GAO Audit Reports External Links Contact Information Budget U.S. Department of Energy SC-41/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3541 F: (301) 903-9524 More Information » Budget by Program NP Budget Print Text Size: A A A FeedbackShare Page The following links contain NP's budget

  2. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on MaterialsCondensed Matter, ...

  3. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Groups - Session 1 - Focus on Physics 1: Nuclear Structure (Auditorium) ... Working Groups - Session 1 - Focus on Physics Nuclear Structure Nuclear reactions and ...

  4. MOX and MOX with 237Np/241Am Inert Fission Gas Generation Comparison in ATR

    SciTech Connect (OSTI)

    G. S. Chang; M. Robel; W. J. Carmack; D. J. Utterbeck

    2006-06-01

    The treatment of spent fuel produced in nuclear power generation is one of the most important issues to both the nuclear community and the general public. One of the viable options to long-term geological disposal of spent fuel is to extract plutonium, minor actinides (MA), and potentially long-lived fission products from the spent fuel and transmute them into short-lived or stable radionuclides in currently operating light-water reactors (LWR), thus reducing the radiological toxicity of the nuclear waste stream. One of the challenges is to demonstrate that the burnup-dependent characteristic differences between Reactor-Grade Mixed Oxide (RG-MOX) fuel and RG-MOX fuel with MA Np-237 and Am 241 are minimal, particularly, the inert gas generation rate, such that the commercial MOX fuel experience base is applicable. Under the Advanced Fuel Cycle Initiative (AFCI), developmental fuel specimens in experimental assembly LWR-2 are being tested in the northwest (NW) I-24 irradiation position of the Advanced Test Reactor (ATR). The experiment uses MOX fuel test hardware, and contains capsules with MOX fuel consisting of mixed oxide manufactured fuel using reactor grade plutonium (RG-Pu) and mixed oxide manufactured fuel using RG-Pu with added Np/Am. This study will compare the fuel neutronics depletion characteristics of Case-1 RG-MOX and Case-2 RG-MOX with Np/Am.

  5. A Physics-Based Approach to Discriminate Low-Yield Nuclear Events: The Source Physics Experiments (SPE)

    SciTech Connect (OSTI)

    Snelson, C. M.; Chipman, V.; White, R. L.; Emmit, R. F.; Townsend, M. J.; Sussman, A.

    2013-10-17

    This presentation provides an overview of the Source Physics Experiments (SPE) conducted at the Nevada National Security Site.

  6. Future directions of accelerator-based NP and HEP facilities

    SciTech Connect (OSTI)

    Roser, T.

    2011-07-24

    Progress in particle and nuclear physics has been closely connected to the progress in accelerator technologies - a connection that is highly beneficial to both fields. This paper presents a review of the present and future facilities and accelerator technologies that will push the frontiers of high-energy particle interactions and high intensity secondary particle beams.

  7. Precise Measurement of Strontium-82 Radioactivity in the Sr-Rb...

    Office of Science (SC) Website

    Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business ...

  8. Awake Animal Imaging at BNL | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Awake Animal Imaging at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science ...

  9. High Performance Computing at TJNAF| U.S. DOE Office of Science...

    Office of Science (SC) Website

    Performance Computing at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science ...

  10. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science ...

  11. Workshop materials from the 2nd international training course on physical protection of nuclear facilities and materials, Module 13

    SciTech Connect (OSTI)

    Martin, F. P.

    1980-04-01

    This course is intended for representatives of countries where nuclear power is being developed and whose responsibilities include the preparation of regulation and the design and evaluation of physical protection systems. This is the second of two volumes; the first volume is SAND-79-1090. (DLC)

  12. Subatomic Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Subatomic Physics We play a major role in large-scale scientific collaborations around the world, performing nuclear physics experiments that advance the understanding of the ...

  13. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics user facilities and resources Lujan Neutron Scattering Center Proton ... battlefield MRI, which uses ultra-low-field magnetic resonance imaging to create images of ...

  14. 24052_NP_ESnet_Cover_150_v3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Requirements Report of the Nuclear Physics Network Requirements Workshop Conducted August 25 and 26, 2011 ESnet Energy Sciences Network 2 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or

  15. High power femtosecond lasers at ELI-NP

    SciTech Connect (OSTI)

    Dabu, Razvan

    2015-02-24

    Specifications of the high power laser system (HPLS) designed for nuclear physics experiments are presented. Configuration of the 2 × 10 PW femtosecond laser system is described. In order to reach the required laser beam parameters, advanced laser techniques are proposed for the HPLS: parametric amplification and cross-polarized wave generation for the intensity contrast improvement and spectral broadening, acousto-optic programmable filters to compensate for spectral phase dispersion, optical filters for spectrum management, combined methods for transversal laser suppression.

  16. Ferro- and antiferro-magnetism in (Np, Pu)BC

    SciTech Connect (OSTI)

    Klimczuk, T.; Kozub, A. L.; Griveau, J.-C.; Colineau, E.; Wastin, F.; Falmbigl, M.; Rogl, P.

    2015-04-01

    Two new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of (Np,Pu)BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below T{sub N} = 44 K, whereas ferromagnetic ordering was found for NpBC below T{sub C} = 61 K. Heat capacity measurements prove the bulk character of the observed magnetic transition for both compounds. The total energy electronic band structure calculations support formation of the ferromagnetic ground state for NpBC and the antiferromagnetic ground state for PuBC.

  17. NP Budget | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Print Text Size: A A A FeedbackShare Page The following links contain NP's budget request to Congress for current and prior years: FY2017 Budget Request to Congress .pdf file ...

  18. FES BER HEP NP BES ASCR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2015 NERSC Science Highlights Science Highlights December 2015 Chemistry Simula'ons run at NERSC lead to the predic'on of a new phase of superionic ice, a special form of ice that could exist on Uranus and Neptune (Roberto Car , Princeton U., Nature Comm.) Fusion Energy 3D simula'ons run at NERSC help gain new insights into fusion plasma behavior that will improve the ability to stabilize a tokamak reactor (S. Jardin , Princeton Plasma Physics Lab, Phys. Rev. Lett.) High Energy &

  19. Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

  20. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community ...

  1. Progress on Production of Alpha-emitting Radioisotopes for Cancer...

    Office of Science (SC) Website

    Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact ...

  2. Modeling Cosmic Nucleosynthesis | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Modeling Cosmic Nucleosynthesis Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee ...

  3. SBIR/STTR Exchange Meeting November 6-7, 2013 | U.S. DOE Office...

    Office of Science (SC) Website

    November 6-7, 2013 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research ...

  4. Nidc Orgchart | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nidc Orgchart Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community ...

  5. Relativistic Heavy Ion Collider (RHIC) | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Relativistic Heavy Ion Collider (RHIC) Nuclear Physics (NP) NP Home About Research ... Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee ...

  6. European Labs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    European Labs Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research Small ...

  7. Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at...

    Office of Science (SC) Website

    Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear ...

  8. Education of First Responders at Yale | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Education of First Responders at Yale Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of ...

  9. News and Resources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    News and Resources Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) ...

  10. Solved: The Case of the Missing "Excited" Nucleons | U.S. DOE...

    Office of Science (SC) Website

    Solved: The Case of the Missing "Excited" Nucleons Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science ...

  11. Radiation Imaging Detectors for Plant Photosynthesis Research...

    Office of Science (SC) Website

    Radiation Imaging Detectors for Plant Photosynthesis Research Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear ...

  12. SBIR STTR Exchange Meeting 2011 | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Meeting 2011 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research Small ...

  13. STAR Heavy Flavor Tracker Detects Signs of Charm at RHIC | U...

    Office of Science (SC) Website

    STAR Heavy Flavor Tracker Detects Signs of Charm at RHIC Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear ...

  14. Shades of Perfection in Perfect Liquids | U.S. DOE Office of...

    Office of Science (SC) Website

    Shades of Perfection in Perfect Liquids Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory ...

  15. sbir sttr exchange mtg 2012 | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    SBIRSTTR Exchange Meeting October 1-2, 2012 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business ...

  16. Supercomputing on a Budget | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Supercomputing on a Budget Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) ...

  17. Major Gains in Ion Production for Radioactive Beams | U.S. DOE...

    Office of Science (SC) Website

    Major Gains in Ion Production for Radioactive Beams Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science ...

  18. Databases | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Databases Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community ...

  19. Reports | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Reports Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources ...

  20. SBIR STTR Exchange Mtg 2010 | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Mtg 2010 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research Small ...

  1. Protons Hog the Momentum in Neutron-Rich Nuclei | U.S. DOE Office...

    Office of Science (SC) Website

    Protons Hog the Momentum in Neutron-Rich Nuclei Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science ...

  2. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Nuclear Physics (NP) NP Home About Research Facilities User Facilities Project ... Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee ...

  3. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    4 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources ...

  4. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    3 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources ...

  5. What Is the Size of the Atomic Nucleus? | U.S. DOE Office of...

    Office of Science (SC) Website

    What Is the Size of the Atomic Nucleus? Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory ...

  6. SBIR/STTR Exchange Meeting August 6-7, 2015 | U.S. DOE Office...

    Office of Science (SC) Website

    5 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research Small Business ...

  7. Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL...

    Office of Science (SC) Website

    Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear ...

  8. SBIR/STTR Exchange Meeting August 6-7, 2014 | U.S. DOE Office...

    Office of Science (SC) Website

    4 Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research Small Business ...

  9. Reaching Back Towards the Big Bang | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Reaching Back Towards the Big Bang Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee ...

  10. Full Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Agenda Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) ...

  11. Protons and Neutrons for Testing at LBNL | U.S. DOE Office of...

    Office of Science (SC) Website

    Protons and Neutrons for Testing at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of ...

  12. Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities

    SciTech Connect (OSTI)

    T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

    2009-09-01

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOEs Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

  13. Chemical Explosion Experiments to Improve Nuclear Test Monitoring [Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; Mellors, Robert J.; Patton, Howard J.; Sussman, Aviva J.; Townsend, Margaret J.; Walter, William R.

    2013-07-02

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less

  14. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    SciTech Connect (OSTI)

    Cochran, John Russell; Ouchi, Yuichiro; Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  15. Uncertainty minimization in NMR measurements of dynamic nuclear polarization of a proton target for nuclear physics experiments

    SciTech Connect (OSTI)

    Keller, Dustin M.

    2013-11-01

    A comprehensive investigation into the measurement uncertainty in polarization produced by Dynamic Nuclear Polarization is outlined. The polarization data taken during Jefferson Lab experiment E08-007 is used to obtain error estimates and to develop an algorithm to minimize uncertainty of the measurement of polarization in irradiated View the ^14NH_3 targets, which is readily applied to other materials. The target polarization and corresponding uncertainties for E08-007 are reported. The resulting relative uncertainty found in the target polarization is determined to be less than or equal to 3.9%.

  16. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  17. nuclear

    National Nuclear Security Administration (NNSA)

    2%2A en U.S-, Japan Exchange Best Practices on Nuclear Emergency Response http:nnsa.energy.govmediaroompressreleasesu.s-japan-exchange-best-practices-nuclear-emergency-respon...

  18. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 11 References References for A = 11: A = 11 (Nuclear Physics A880 (2012)) A = 11 (Nuclear Physics A506 (1990)) A = 11 (Nuclear Physics A433 (1985)) A = 11 (Nuclear Physics A336 (1980)) A = 11 (Nuclear Physics A248 (1975)) A = 11 (Nuclear Physics A114 (1968)) A = 11 (Nuclear Physics 11 (1959)) Last modified on 29

  19. Relevance of β-delayed neutron data for reactor, nuclear physics and astrophysics applications

    SciTech Connect (OSTI)

    Kratz, Karl-Ludwig

    2015-02-24

    Initially, yields (or abundances) and branching ratios of β-delayed neutrons (βdn) from fission products (P{sub n}-values) have had their main importance in nuclear reactor control. At that time, the six-group mathematical approximation of the time-dependence of βdn-data in terms of the so-called 'Keepin groups' was generally accepted. Later, with the development of high-resolution neutron spectroscopy, βdn data have provided important information on nuclear-structure properties at intermediate excitation energy in nuclei far from stability, as well as in nuclear astrophysics. In this paper, I will present some examples of the βdn-studies performed by the Kernchemie Mainz group during the past three decades. This work has been recognized as an example of 'broad scientific diversity' which has led to my nomination for the 2014 Hans A. Bethe prize.

  20. Quantum Chromodynamics and nuclear physics at extreme energy density. Progress report, May 1992--April 1993

    SciTech Connect (OSTI)

    Mueller, B.

    1993-05-15

    This report discusses research in the following topics: Hadron structure physics; relativistic heavy ion collisions; finite- temperature QCD; real-time lattice gauge theory; and studies in quantum field theory.

  1. Kinetic studies of the [NpO? (CO?)?]?? ion at alkaline conditions using C NMR

    SciTech Connect (OSTI)

    Panasci, Adele F.; Harley, Stephen J.; Zavarin, Mavrik; Casey, William H.

    2014-04-21

    Carbonate ligand-exchange rates on the [NpO? (CO?)?]?? ion were determined using a saturation-transfer C nuclear magnetic resonance (NMR) pulse sequence in the pH range of 8.1 ? pH ? 10.5. Over the pH range 9.3 ? pH ? 10.5, which compares most directly with previous work of Stout et al.,1 we find an average rate, activation energy, enthalpy, and entropy of k298ex = 40.6(4.3) s?, Ea =45.1(3.8) kJ mol?, ?H = 42.6(3.8) kJ mol?, and ?S = -72(13) J mol? K?, respectively. These activation parameters are similar to the Stout et al. results at pH 9.4. However, their room-temperature rate at pH 9.4, k298ex = 143(1.0) s?, is ~3 times faster than what we experimentally determined at pH 9.3: k298ex = 45.4(5.3) s?. Our rates for [NpO? (CO?)?]?? are also faster by a factor of ~3 relative to the isoelectronic [UO?(CO?)?]?? as reported by Brucher et al.2 of k298ex = 13(3) s?. Consistent with results for the [UO?(CO?)?]?? ion, we find evidence for a proton-enhanced pathway for carbonate exchange for the [NpO?(CO?)?]?? ion at pH < 9.0.

  2. AREVA NP Cr{sub 2}O{sub 3}-doped fuel development for BWRs

    SciTech Connect (OSTI)

    Delafoy, C.; Dewes, P.; Miles, T.

    2007-07-01

    The search for improvements in nuclear fuel cycle economics results in increasing demands for fuel discharged burnup and reliability, plant maneuverability and power up-rating. To achieve these objectives without any reduction of safety margins, fuel design and materials that enable enhanced performance capabilities have been developed or are under investigations. Research on fuel pellets focuses on the modification of the microstructure to increase fission product retention and pellet mechanical compliance. Currently, production of the desired large grain viscoplastic UO{sub 2} fuel microstructures has been extensively investigated by AREVA NP through the use of doping elements. This track is nowadays a worldwide working field. In this area, AREVA NP has launched the development of a new UO{sub 2} fuel pellet obtained by optimum chromium oxide doping. The purpose of this paper is first to present the current results with the AREVA NP optimized chromia doped fuel and to discuss the key advantages in terms of fuel performance for BWR applications. In particular, the development relies on ramp testing results, fuel temperature and fission gas release values acquired at high burnup and high power levels. Second, the paper focuses on the qualification process implemented by AREVA NP to assess the margins of the optimized Cr{sub 2}O{sub 3}-doped UO{sub 2} fuel towards safety criteria at high burnup and the risk of PCI failure, as well as to develop calculation tools to support design. The driving force in this qualification plan is to gain the accurate knowledge of the optimized doped fuel behavior under normal, transient and anticipated accident conditions. To support this effort, irradiation campaigns are under progress in PWR and BWR plants to cover a wide range of existing operating conditions and to anticipate future demands. Considering only the BWR part, the program has successfully run since 2005 and is designed to obtain data up to high burnup, at least 70 GWd/tU. The aim is to define the range of operational conditions for application of chromia-doped fuel in combination with LTP2 non-liner cladding as an alternative to the present standard Fe-enhanced Zr liner cladding. (authors)

  3. Modeling of Some Physical Properties of Zirconium Alloys for Nuclear Applications in Support of UFD Campaign

    SciTech Connect (OSTI)

    Michael V. Glazoff

    2013-08-01

    Zirconium-based alloys Zircaloy-2 and Zircaloy-4 are widely used in the nuclear industry as cladding materials for light water reactor (LWR) fuels. These materials display a very good combination of properties such as low neutron absorption, creep behavior, stress-corrosion cracking resistance, reduced hydrogen uptake, corrosion and/or oxidation, especially in the case of Zircaloy-4. However, over the last couple of years, in the post-Fukushima Daiichi world, energetic efforts have been undertaken to improve fuel clad oxidation resistance during off-normal temperature excursions. Efforts have also been made to improve upon the already achieved levels of mechanical behavior and reduce hydrogen uptake. In order to facilitate the development of such novel materials, it is very important to achieve not only engineering control, but also a scientific understanding of the underlying material degradation mechanisms, both in working conditions and in storage of used nuclear fuel. This report strives to contribute to these efforts by constructing the thermodynamic models of both alloys; constructing of the respective phase diagrams, and oxidation mechanisms. A special emphasis was placed upon the role of zirconium suboxides in hydrogen uptake reduction and the atomic mechanisms of oxidation. To that end, computational thermodynamics calculations were conducted concurrently with first-principles atomistic modeling.

  4. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 13 References References for A = 13: A = 13 (Nuclear Physics A523 (1991)) A = 13 (Nuclear Physics A449 (1986)) A = 13 (Nuclear Physics A360 (1981)) A = 13 (Nuclear Physics A268 (1976)) A = 13 (Nuclear Physics A152 (1970)) A = 13 (Nuclear Physics 11 (1959)) A = 13 (Reviews of Modern Physics 27 (1955); incomplete) Last modified on 28

  5. SC e-journals, Nuclear

    Office of Scientific and Technical Information (OSTI)

    Nuclear Annals of Nuclear Energy Annual Review of Nuclear and Particle Science Atomic Data & Nuclear Data Tables Atomic Energy BMC Medical Physics - OAJ Cancer Prevention Journals ...

  6. Physical and mechanical metallurgy of zirconium alloys for nuclear applications: a multi-scale computational study

    SciTech Connect (OSTI)

    Michael V. Glazoff

    2014-10-01

    In the post-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry is going to continue using advanced zirconium cladding materials in the foreseeable future, it become critical to gain fundamental understanding of the several interconnected problems. First, what are the thermodynamic and kinetic factors affecting the oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings (if any) could be used in order to gain extremely valuable time at off-normal conditions, e.g., when temperature exceeds the critical value of 2200°F? Thirdly, the kinetics of oxidation of such protective coating or braiding needs to be quantified. Lastly, even if some degree of success is achieved along this path, it is absolutely critical to have automated inspection algorithms allowing identifying defects of cladding as soon as possible. This work strives to explore these interconnected factors from the most advanced computational perspective, utilizing such modern techniques as first-principles atomistic simulations, computational thermodynamics of materials, diffusion modeling, and the morphological algorithms of image processing for defect identification. Consequently, it consists of the four parts dealing with these four problem areas preceded by the introduction and formulation of the studied problems. In the 1st part an effort was made to employ computational thermodynamics and ab initio calculations to shed light upon the different stages of oxidation of ziraloys (2 and 4), the role of microstructure optimization in increasing their thermal stability, and the process of hydrogen pick-up, both in normal working conditions and in long-term storage. The 2nd part deals with the need to understand the influence and respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher T’s). For that goal, a description of the advanced plasticity model is outlined featuring the non-associated flow rule in hcp materials including Zr. The 3rd part describes the kinetic theory of oxidation of the several materials considered to be perspective coating materials for Zr alloys: SiC and ZrSiO4. In the 4th part novel and advanced projectional algorithms for defect identification in zircaloy coatings are described. In so doing, the author capitalized on some 12 years of his applied industrial research in this area. Our conclusions and recommendations are presented in the 5th part of this work, along with the list of used literature and the scripts for atomistic, thermodynamic, kinetic, and morphological computations.

  7. A short note on physical properties to irradiated nuclear fuel by means of X-ray diffraction and neutron scattering techniques

    SciTech Connect (OSTI)

    Abdullah, Yusof Husain, Hishamuddin; Hak, Cik Rohaida Che; Alias, Nor Hayati; Yusof, Mohd Reusmaazran; Kasim, Norasiah Ab; Zali, Nurazila Mat; Mohamed, Abdul Aziz

    2015-04-29

    For nuclear reactor applications, understanding the evolution of the fuel materials microstructure during irradiation are of great importance. This paper reviews the physical properties of irradiated nuclear fuel analysis which are considered to be of most importance in determining the performance behavior of fuel. X-rays diffraction was recognize as important tool to investigate the phase identification while neutron scattering analyses the interaction between uranium and other materials and also investigation of the defect structure.

  8. Challenges to Integration of Safety and Reliability with Proliferation Resistance and Physical Protection for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    H. Khalil; P. F. Peterson; R. Bari; G. -L. Fiorini; T. Leahy; R. Versluis

    2012-07-01

    The optimization of a nuclear energy system's performance requires an integrated consideration of multiple design goals - sustainability, safety and reliability (S&R), proliferation resistance and physical protection (PR&PP), and economics - as well as careful evaluation of trade-offs for different system design and operating parameters. Design approaches motivated by each of the goal areas (in isolation from the other goal areas) may be mutually compatible or in conflict. However, no systematic methodology approach has yet been developed to identify and maximize synergies and optimally balance conflicts across the possible design configurations and operating modes of a nuclear energy system. Because most Generation IV systems are at an early stage of development, design, and assessment, designers and analysts are only beginning to identify synergies and conflicts between PR&PP, S&R, and economics goals. The close coupling between PR&PP and S&R goals has motivated early attention within the Generation IV International Forum to their integrated consideration to facilitate the optimization of their effects and the minimization of potential conflicts. This paper discusses the status of this work.

  9. Accelerators for Testing Radiation Tolerances of Electronics...

    Office of Science (SC) Website

    Accelerators for Testing Radiation Tolerances of Electronics at TAMU Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of ...

  10. Heavy-ion Accelerators for Testing Microelectronic Components...

    Office of Science (SC) Website

    Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of ...

  11. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A 5 References References for A 5: A 5 (Nuclear Physics A708 (2002)) A 5 (Nuclear Physics A490 (1988)) A 5 (Nuclear Physics A413 (1984)) A 5 (Nuclear Physics A320...

  12. Project of a Super Charm-Tau factory at the Budker Institute of Nuclear Physics in Novosibirsk

    SciTech Connect (OSTI)

    Bondar, A. E.

    2013-09-15

    A project of a Super Charm-Tau factory is being developed at the Budker Institute of Nuclear Physics (Siberian Branch, Russian Academy of Sciences) in Novosibirsk. The electron-positron collider to be employed will operate at c.m. energies in the range between 2 and 5 GeV at an unprecedentedly high luminosity of 10{sup 35} cm{sup -2} s{sup -1} with a longitudinal electron polarization at the beam-interaction point. The main objective of experiments at the Super Charm-Tau factory is to study processes involving the production and properties of charmed quarks and tau leptons. A high luminosity of this setup will make it possible to obtain a statistical data sample that will be three to four orders of magnitude vaster than that from any other experiment performed thus far. Experiments at this setup are assumed to be sensitive to effects of new physics beyond the Standard Model. Investigations to be carried out at the Super-Charm-Tau factory will supplement future experiments at Super-B factories under construction in Italy and in Japan.

  13. Physics-based multiscale coupling for full core nuclear reactor simulation

    SciTech Connect (OSTI)

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; Zou, Ling; Martineau, Richard C.

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different data exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license

  14. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; Slaughter, Andrew E.; Andrš, David; Wang, Yaqi; Short, Michael P.; Perez, Danielle M.; Tonks, Michael R.; Ortensi, Javier; et al

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  15. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  16. High Current Energy Recovery Linac at BNL | U.S. DOE Office of...

    Office of Science (SC) Website

    Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  17. PROCEEDINGS OF THE RIKEN BNL RESEARCH CENTER WORKSHOP ON LARGE SCALE COMPUTATIONS IN NUCLEAR PHYSICS USING THE QCDOC, SEPTEMBER 26 - 28, 2002.

    SciTech Connect (OSTI)

    AOKI,Y.; BALTZ,A.; CREUTZ,M.; GYULASSY,M.; OHTA,S.

    2002-09-26

    The massively parallel computer QCDOC (QCD On a Chip) of the RIKEN BNL Research Center (RI3RC) will provide ten-teraflop peak performance for lattice gauge calculations. Lattice groups from both Columbia University and RBRC, along with assistance from IBM, jointly handled the design of the QCDOC. RIKEN has provided $5 million in funding to complete the machine in 2003. Some fraction of this computer (perhaps as much as 10%) might be made available for large-scale computations in areas of theoretical nuclear physics other than lattice gauge theory. The purpose of this workshop was to investigate the feasibility and possibility of using a supercomputer such as the QCDOC for lattice, general nuclear theory, and other calculations. The lattice applications to nuclear physics that can be investigated with the QCDOC are varied: for example, the light hadron spectrum, finite temperature QCD, and kaon ({Delta}I = 1/2 and CP violation), and nucleon (the structure of the proton) matrix elements, to name a few. There are also other topics in theoretical nuclear physics that are currently limited by computer resources. Among these are ab initio calculations of nuclear structure for light nuclei (e.g. up to {approx}A = 8 nuclei), nuclear shell model calculations, nuclear hydrodynamics, heavy ion cascade and other transport calculations for RHIC, and nuclear astrophysics topics such as exploding supernovae. The physics topics were quite varied, ranging from simulations of stellar collapse by Douglas Swesty to detailed shell model calculations by David Dean, Takaharu Otsuka, and Noritaka Shimizu. Going outside traditional nuclear physics, James Davenport discussed molecular dynamics simulations and Shailesh Chandrasekharan presented a class of algorithms for simulating a wide variety of femionic problems. Four speakers addressed various aspects of theory and computational modeling for relativistic heavy ion reactions at RHIC. Scott Pratt and Steffen Bass gave general overviews of how qualitatively different types of physical processes evolve temporally in heavy ion reactions. Denes Molnar concentrated on the application of hydrodynamics, and Alex Krasnitz on a classical Yang-Mills field theory for the initial phase. We were pleasantly surprised by the excellence of the talks and the substantial interest from all parties. The diversity of the audience forced the speakers to give their talks at an understandable level, which was highly appreciated. One particular bonus of the discussions could be the application of highly developed three-dimensional astrophysics hydrodynamics codes to heavy ion reactions.

  18. Funding Opportunities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Opportunities Nuclear Physics (NP) NP Home About Research Facilities Science Highlights ... Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear ...

  19. Closed Lab Announcements | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Lab Announcements Nuclear Physics (NP) NP Home About Research Facilities Science ... Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear ...

  20. Closed Funding Opportunity Announcements (FOAs) | U.S. DOE Office...

    Office of Science (SC) Website

    Funding Opportunity Announcements (FOAs) Nuclear Physics (NP) NP Home About Research ... Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear ...

  1. Effect of 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) on Partitioning of Np and Pu to Synthetic Boehmite

    SciTech Connect (OSTI)

    Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.

    2009-05-01

    The effect of 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) on sorption of Np(V) and Pu(V) to synthetic boehmite ({gamma}-AlOOH) was examined a function of time and pH (between 4 to 11). Sorption of both elements in boehmite suspensions (1 M NaCl, 600 mg L{sup -1} boehmite) increased with increasing pH. Sorption edges for neptunium and plutonium occurred at approximately pH 8.0 and 6.6, respectively. After steady state partitioning was reached, HEDPA was added to the neptunium-boehmite and plutonium-boehmite suspensions. Neptunium and plutonium partitioning appears to be primarily affected by the formation of soluble Np:HEDPA and Pu:HEDPA complexes, the dissolution of boehmite promoted by HEDPA, and the precipitation of Np:HEDPA and Pu:HEDPA colloids. The results are discussed in terms of applicability of HEDPA-promoted dissolution as a waste reduction method in the treatment of sludge phases contained within high-level nuclear waste storage tanks.

  2. Report on Lessons Learned from the NP 2010 Early Site Permit Program FINAL REPORT

    SciTech Connect (OSTI)

    2008-03-26

    This report provides a summary of lessons learned from the demonstration of the licensing process for three Early Site Permit (ESP) applications supported as part of the Department of Energy’s (DOE) Nuclear Power 2010 (NP 2010) program. The ESP process was established by the Nuclear Regulatory Commission (NRC) to enable completion of the site evaluation component of nuclear power plant licensing under 10 CFR Part 52 before a utility makes a decision to build a plant. Early Site Permits are valid for 10 to 20 years and can be renewed for an additional 10 to 20 years. NRC review of an ESP application addresses site safety issues, environmental protection issues, and plans for coping with emergencies. Successful completion of the ESP process will establish that a site is suitable for possible future construction and operation of a nuclear power plant. Most importantly, an ESP resolves significant site-related safety and environmental issues early in the decision process and helps achieve acceptance by the public. DOE competitively selected Dominion Nuclear Energy North Anna, LLC (Dominion); System Energy Resources, Inc. (an Entergy subsidiary); and Exelon Generation Company, LLC (Exelon) in 2002 to demonstrate the ESP process and provided cost-shared support through the NP 2010 program. Dominion pursued an ESP for the North Anna site in Virginia; System Energy Resources, Inc. pursued an ESP for the Grand Gulf site in Mississippi; and Exelon pursued an ESP for the Clinton site in Illinois. After successfully demonstrating the process, the NRC issued an ESP for Clinton on March 17, 2007; Grand Gulf on April 5, 2007; and North Anna on November 27, 2007. As with all successful projects, there are lessons to be learned from the NP 2010 early site permitting demonstration that can help improve future implementation guidance documents and regulatory review standards. In general, these lessons pertain to the effectiveness of the regulatory process, experience related to guidance for developing and reviewing ESP applications, issues involving ESP plant parameters, and suggestions for future ESP applicants. The development, submittal, and issuance of these first ESPs under DOE’s NP 2010 program started the momentum to exercise NRC’s new 10 CFR Part 52 licensing process. Several key questions that define critical issues regarding the effectiveness of regulations pertaining to ESPs have been identified and summarized in this report. However, the final resolution of whether the ESP component of the Part 52 process significantly contributes to the predictability in nuclear power plant licensing requires more experience and time, such as the completion of the ongoing combined Construction and Operating License (COL) process for the North Anna and Grand Gulf sites. The three ESP project participants prepared and submitted to DOE lessons learned reports from their experience in developing, submitting, and receiving an ESP. This document summarizes these reports, which are appended hereto. The Nuclear Energy Institute (http://www.nei.org/) and NRC (http://www.nrc.gov/) have also prepared reports regarding their perspectives on lessons learned during the ESP process. Their documents can be accessed on their respective web sites. Following is a summary of the lessons learned from the NP 2010 ESP projects. Effectiveness of the ESP Process: In general, the ESP process is expected (subject to demonstration of the ESP finality provisions in the North Anna and Grand Gulf ESPs) to provide high value for applicants as a site banking and risk mitigation strategy. However, several aspects of the initial process, such as NRC hearings and determining an acceptable approach to the NRC’s Emergency Planning requirements, proved challenging for the applicants. Project Execution: Initial regulatory and industry guidance for planning and executing an ESP application program proved to be insufficient to address NRC’s document review expectations. However, continuous communication between NRC and the applicants helped establish an acceptable framework for the applications and resulted in the successful issuance of three ESPs. Still, formal guidance from both NRC and industry is needed for issues involving merchant plants; data collection issues; and interactions between NRC, the public, and the applicants. Specific Plant Parameter Issues: The use of the Plant Parameter Envelope (PPE) approach, when the applicant has not yet chosen a reactor technology, proved to be a major source of confusion between applicants and NRC. This issue had also been a topic of discussion during the NRC ESP hearings. Based upon North Anna and Grand Gulf COLA experiences, the need should be evaluated for future NRC guidance pertaining to the PPE approach to clarify these issues. In addition, NRC, applicants, and industry spent considerable time and resources deciding how to employ new seismic analysis approaches. Future guidance in this area would also be very useful. Best Project Practices: A variety of good practices were identified, such as using specific project tracking and milestone items, handling very large documents electronically, employing a formal and rigorous document review process, and sharing large files across organizational sites. This report also includes a set of general recommendations to assist future ESP applicants. Several recommendations highlight the need for NRC and industry to continue to work together to improve the ESP process.

  3. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 12 References References for A = 12: A = 12 (Nuclear Physics A506 (1990)) A = 12 (Nuclear Physics A433 (1985)) A = 12 (Nuclear Physics A336 (1980)) A = 12 (Nuclear Physics A248 (1975)) A = 12 (Nuclear Physics A114 (1968)) A = 12 (Nuclear Physics 11 (1959)) Last modified on 24 February 2016

  4. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 14 References References for A = 14: A = 14 (Nuclear Physics A523 (1991)) A = 14 (Nuclear Physics A449 (1986)) A = 14 (Nuclear Physics A360 (1981)) A = 14 (Nuclear Physics A268 (1976)) A = 14 (Nuclear Physics A152 (1970)) A = 14 (Nuclear Physics 11 (1959)) Last modified on 05 October

  5. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 15 References References for A = 15: A = 15 (Nuclear Physics A523 (1991)) A = 15 (Nuclear Physics A449 (1986)) A = 15 (Nuclear Physics A360 (1981)) A = 15 (Nuclear Physics A268 (1976)) A = 15 (Nuclear Physics A152 (1970)) A = 15 (Nuclear Physics 11 (1959)) Last modified on 19

  6. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 16 References References for A = 16: A = 16 (Nuclear Physics A564 (1993)) A = 16 (Nuclear Physics A460 (1986)) A = 16 (Nuclear Physics A375 (1982)) A = 16 (Nuclear Physics A281 (1977)) A = 16 (Nuclear Physics A166 (1971)) A = 16 (Nuclear Physics 11 (1959)) Last modified on 01 June 2015

  7. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 17 References References for A = 17: A = 17 (Nuclear Physics A564 (1993)) A = 17 (Nuclear Physics A460 (1986)) A = 17 (Nuclear Physics A375 (1982)) A = 17 (Nuclear Physics A281 (1977)) A = 17 (Nuclear Physics A166 (1971)) A = 17 (Nuclear Physics 11 (1959)) Last modified on 16 June 2015

  8. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 18 References References for A = 18: A = 18 (Nuclear Physics A595 (1995)) A = 18 (Nuclear Physics A475 (1987)) A = 18 (Nuclear Physics A392 (1983)) A = 18 (Nuclear Physics A300 (1978)) A = 18 (Nuclear Physics A190 (1972)) A = 18 (Nuclear Physics 11 (1959)) Last modified on 22

  9. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 19 References References for A = 19: A = 19 (Nuclear Physics A595 (1995)) A = 19 (Nuclear Physics A475 (1987)) A = 19 (Nuclear Physics A392 (1983)) A = 19 (Nuclear Physics A300 (1978)) A = 19 (Nuclear Physics A190 (1972)) A = 19 (Nuclear Physics 11 (1959)) Last modified on 13

  10. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 20 References References for A = 20: A = 20 (Nuclear Physics A636 (1998)) A = 20 (Nuclear Physics A475 (1987)) A = 20 (Nuclear Physics A392 (1983)) A = 20 (Nuclear Physics A300 (1978)) A = 20 (Nuclear Physics A190 (1972)) A = 20 (Nuclear Physics 11 (1959)) Last modified on 02 May

  11. Annual Continuation And Progress Report For Low-Energy Nuclear Physics Research At Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Scielzo, N. D.; Wu, C.

    2015-10-27

    (I)In this project, the Beta-­decay Paul Trap, an open-­geometry RFQ ion trap that can be instrumented with sophisticated radiation detection arrays, is used for precision β-­decay studies. Measurements of β-­decay angular correlations, which are sensitive to exotic particles and other phenomena beyond the Standard Model (SM) of particle physics that may occur at the TeV-­energy scale, are being performed by taking advantage of the favorable properties of the mirror 8Li and 8B β± decays and the benefits afforded by using trapped ions. By detecting the β and two α particles emitted in these decays, the complete kinematics can be reconstructed. This allows a simultaneous measurement of the β-­n, β-­n-­α, and β-α correlations and a determination of the neutrino energy and momentum event by event. In addition, the 8B neutrino spectrum, of great interest in solar neutrino oscillation studies, can be determined in a new way. Beta-­delayed neutron spectroscopy is also being performed on neutron-­rich isotopes by studying the β-­decay recoil ions that emerge from the trap with high efficiency, good energy resolution, and practically no backgrounds. This novel technique is being used to study isotopes of mass-­number A~130 in the vicinity of the N=82 neutron magic number to help understand the rapid neutron-­capture process (r-­process) that creates many of the heavy isotopes observed in the cosmos. (II)A year-long CHICO2 campaign at ANL/ATLAS together with GRETINA included a total of 10 experiments, seven with the radioactive beams from CARIBU and three with stable beams, with 82 researchers involved from 27 institutions worldwide. CHICO2 performed flawlessly during this long campaign with achieved position resolution matching to that of GRETINA, which greatly enhances the sensitivity in the study of nuclear γ-­ray spectroscopy. This can be demonstrated in our results on 144Ba and 146Ba where the octupole deformation is evident from the measured B(E3; 3-→0+) strengths that significantly greater than the theoretical predictions. We anticipate that CHICO2 will continue to be a viable charged-­particle detector for the research need of the low-­energy nuclear physics community.

  12. ARCADIA{sup R} - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    SciTech Connect (OSTI)

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas; Thareau, Sebastien

    2007-07-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code system ARCADIA{sup R} and concludes on customer benefits. ARCADIA{sup R} is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA{sup R} system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)

  13. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics justification: The main focus of the HELIOS research program is the study of ... Physics justification: Spectroscopy following the decay of nuclear ground states and ...

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... equipped with the instruments required for precision nuclear and atomic physics research. ... Mass Analyzer (FMA), an atomic physics beam line, and two general purpose beam lines. ...

  15. ORISE: Health physics services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas ...

  16. Summer Schools in Nuclear and Radiochemistry

    SciTech Connect (OSTI)

    Silber, Herbert B.

    2013-06-20

    The ACS Summer Schools in Nuclear and Radiochemistry (herein called “Summer Schools”) were funded by the U.S. Department of Energy and held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio is needed due to the intense nature of the six-week program. To broaden the students’ perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program. The Department of Energy’s Office of Basic Energy Sciences (BES) renewed the five-year proposal for the Summer Schools starting March 1, 2007, with contributions from Biological and Environmental Remediation (BER) and Nuclear Physics (NP). This Final Technical Report covers the Summer Schools held in the years 2007-2011.

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is supported by the Office of Nuclear Physics of the Department of Energy. The Users ... main goals and is aligned with i the US Nuclear Physics long-range plan priorities. ...

  18. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition, the role of ATLAS for the low-energy nuclear physics community needs to be ... The facility and its users are encouraged by the DOE Office of Nuclear Physics to look ...

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS User Group shall be formed from the members of the nuclear physics, nuclear chemistry and atomic physics community who are past, present, or potential users of the ATLAS ...

  20. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Requirements for Experimental Areas Ladder safety is one of the most cited hazards at Jefferson Lab. It stands to reason that something as familiar to all of us as a ladder could easily be taken for granted. However, here, you are not changing a bulb in the middle of your kitchen. There are many unique circumstances at JLab that you may not be aware of. For this reason prior to using a ladder at Jefferson Lab you are required to take SAF 307 Ladder Safety Awareness. The class is only

  1. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Work Areas Equipment Staging Building Test Lab TEDF

  2. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Access for Students Guidelines for student working in Experimental Halls: No one under 18 (student or otherwise) may work in the halls No high school student may work outside regular working hours Under graduates working outside regular hours must be approved by the DSO Graduate students are onsidered users During the first three months working in conjunction with JLab or user staff, undergraduate students 18 and over may be allowed to work in the halls (following all standard rules

  3. Nuclear Physics using NIF

    SciTech Connect (OSTI)

    Bernstein, L A; Bleuel, D L; Caggiano, J A; Cerjan, C; Gostic, J; Hatarik, R; Hartouni, E; Hoffman, R D; Sayre, D; Schneider, D G; Shaughnessy, D; Stoeffl, W; Yeamans, C; Greife, U; Larson, R; Hudson, M; Herrmann, H; Kim, Y H; Young, C S; Mack, J; Wilson, D; Batha, S; Hoffman, N; Langenbrunner, J; Evans, S

    2011-09-28

    The National Ignition Facility (NIF) is the world's premier inertial confinement fusion facility designed to achieve sustained thermonuclear burn (ignition) through the compression of hydrogen isotopic fuels to densities in excess of 10{sup 3} g/cm{sup 3} and temperatures in excess of 100 MK. These plasma conditions are very similar to those found in the cores of Asymptotic Giant Branch (AGB) stars where the s-process takes place, but with a neutron fluence per year 10{sup 4} times greater than a star. These conditions make NIF an excellent laboratory to measure s-process (n,{gamma}) cross sections in a stellar-like plasma for the first time. Starting in Fall 2009, NIF has been operating regularly with 2-4 shots being performed weekly. These experiments have allowed the first in situ calibration of the detectors and diagnostics needed to measure neutron capture, including solid debris collection and prompt {gamma}-ray detection. In this paper I will describe the NIF facility and capsule environment and present two approaches for measuring s-process neutron capture cross sections using NIF.

  4. Nuclear Physics Jobs

    Office of Science (SC) Website

    aboutjobs Below is a list of currently open federal employment opportunities in the Office of Science. Prospective applicants should follow the links to the formal position...

  5. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator and Experimental Schedule Beam Time Request Form Experiment Scheduling and General Information Radiation Budget Form (pdf) Interactive beam request form (for contact...

  6. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 10 References References for A = 10: A = 10 (Nuclear Physics A745 (2004)) A = 10 (Nuclear Physics A490 (1988)) A = 10 (Nuclear Physics A413 (1984)) A = 10 (Nuclear Physics A320 (1979)) A = 10 (Nuclear Physics A227 (1974)) A = 10 (Nuclear Physics 78 (1966)) A = 10 (Corrections and Supplements Reference List of (1966LA04)) A = 10 (Nuclear Physics 11 (1959)) Last modified on 10 March 2016

  7. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 6 References References for A = 6: A = 6 (Nuclear Physics A708 (2002)) A = 6 (Nuclear Physics A490 (1988)) A = 6 (Nuclear Physics A413 (1984)) A = 6 (Nuclear Physics A320 (1979)) A = 6 (Nuclear Physics A227 (1974)) A = 6 (Nuclear Physics 78 (1966)) A = 6 (Corrections and Supplements Reference List of (1966LA04)) A = 6 (Nuclear Physics 11 (1959)) Last modified on 20

  8. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 8 References References for A = 8: A = 8 (Nuclear Physics A745 (2004)) A = 8 (Nuclear Physics A490 (1988)) A = 8 (Nuclear Physics A413 (1984)) A = 8 (Nuclear Physics A320 (1979)) A = 8 (Nuclear Physics A227 (1974)) A = 8 (Nuclear Physics 78 (1966)) A = 8 (Corrections and Supplements Reference List of (1966LA04)) A = 8 (Nuclear Physics 11 (1959)) Last modified on 16 February 2016

  9. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 9 References References for A = 9: A = 9 (Nuclear Physics A745 (2004)) A = 9 (Nuclear Physics A490 (1988)) A = 9 (Nuclear Physics A413 (1984)) A = 9 (Nuclear Physics A320 (1979)) A = 9 (Nuclear Physics A227 (1974)) A = 9 (Nuclear Physics 78 (1966)) A = 9 (Corrections and Supplements Reference List of (1966LA04)) A = 9 (Nuclear Physics 11 (1959)) Last modified on 25 February 2016

  10. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-23

    This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

  11. Research in theoretical nuclear physics. Progress report and research proposal, 1980-1981. [School of Physics and Astronomy, Univ. of Minnesota

    SciTech Connect (OSTI)

    Bayman, Benjamin F.; Ellis, P. J.; Tang, Y. C.

    1980-09-01

    Research performed during 1980 (and proposed for 1981) is summarized briefly in this administrative report. The main theme of the research is the mechanisms of light- and heavy-ion nuclear reactions and the relation between microscopic theories and phenomenological models. A publication list and budget are included. (RWR)

  12. Celebrating Innovation with National Nuclear Science Week | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Did you know that nuclear science is used in archeology, food safety and nuclear medicine? ... tools in the areas of nuclear physics, nuclear chemistry and nuclear engineering. ...

  13. Superconducting laser photocathode RF gun at BNL | U.S. DOE Office...

    Office of Science (SC) Website

    Superconducting laser photocathode RF gun at BNL Nuclear Physics (NP) NP Home About ... Applications of Nuclear Science Archives Superconducting laser photocathode RF gun at BNL ...

  14. Department of Energy Issues Requests for Applications for Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering, Electrical Engineering, Chemistry, Health Physics, Nuclear Materials ... also included, such as Nuclear Power Technology, Nuclear Maintenance Technology, ...

  15. Researcher, Los Alamos National Laboratory - Applied Physics...

    National Nuclear Security Administration (NNSA)

    Applied Physics Division | National Nuclear Security Administration Facebook Twitter ... Researcher, Los Alamos National Laboratory - Applied Physics Division Stephen Becker ...

  16. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. ...

  17. Enhanced conversion efficiency in wide-bandgap GaNP solar cells...

    Office of Scientific and Technical Information (OSTI)

    Enhanced conversion efficiency in wide-bandgap GaNP solar cells Citation Details In-Document Search This content will become publicly available on October 12, 2016 Title: Enhanced...

  18. NP User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NP User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User

  19. Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg)

    Office of Scientific and Technical Information (OSTI)

    show efficacy in treating prostate cancer (Journal Article) | SciTech Connect Journal Article: Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer Citation Details In-Document Search Title: Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer Systemic delivery of therapeutic agents to solid tumors is hindered by vascular and interstitial barriers. We hypothesized that

  20. LabView Based Nuclear Physics Laboratory experiments as a remote teaching and training tool for Latin American Educational Centers

    SciTech Connect (OSTI)

    Sajo-Bohus, L.; Greaves, E. D.; Barros, H.; Gonzalez, W.; Rangel, A.

    2007-10-26

    A virtual laboratory via internet to provide a highly iterative and powerful teaching tool for scientific and technical discipline is given. The experimenter takes advantage of a virtual laboratory and he can execute nuclear experiment at introductory level e.g. Gamma ray detection with Geiger-Mueller Counter at remote location using internet communication technology.

  1. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science/Nuclear Chemistry Nuclear Physics The 10-MV tandem accelerator at CAMS provides a platform for conducting nuclear physics experiment both for basic science and lab mission-related programs. For example, we performed a new cross section measurement of the astrophysically important reaction 40Ca(a,g)44Ti in which high purity CaO targets were irradiated with helium ions at several different discrete energies. The reaction rate was measured on-line via prompt gamma ray spectroscopy

  2. Nonproliferation Graduate Program | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    students with academic specializations in International Affairs, Political Science, Economics, Chemical Sciences, Physics, Nuclear Science, Nuclear Engineering and Engineering. ...

  3. Carl A. Gagliardi PHYSICS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Gagliardi PHYSICS Fundamental interactions and nuclear astrophysics - Fellow, American Physical Society - Distinguished Achievement Award in Teaching, AFS, - Texas A&M John C. Hardy PHYSICS Fundamental interactions and exotic nuclei - Fellow, Royal Society of Canada - Fellow, American Physical Society Che Ming Ko PHYSICS Theoretical hadron physics and heavy-ion collisions - Humboldt Research Award - Fellow, American Physical Society Joseph B. Natowitz CHEMISTRY Heavy-ion reaction

  4. 20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.

    SciTech Connect (OSTI)

    Ramirez, Amanda Ann

    2008-09-01

    The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

  5. PHYSICAL INVENTORY LISTING | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHYSICAL INVENTORY LISTING PHYSICAL INVENTORY LISTING Form supports nuclear materials control and accountability. PDF icon PHYSICAL INVENTORY LISTING More Documents & Publications ...

  6. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 3 References References for A = 3: A = 3 (Nuclear Physics A848 (2010)) A = 3 (Nuclear Physics A474 (1987)) Last modified on 20 May 2014

  7. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Almost all of the observable matter in the universe is in the plasma state. Formed at high temperatures, plasmas consist of freely moving ions and free electrons. They are often called the "fourth state of matter" because their unique physical properties distinguish them from solids, liquids and gases. Plasma densities and temperatures vary widely, from the cold gases of interstellar space to the extraordinarily hot, dense cores of stars and inside a detonating nuclear

  8. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 7 References References for A = 7: A = 7 (Nuclear Physics A708 (2002)) A = 7 (Nuclear Physics A490 (1988)) A = 7 (Nuclear Physics A413 (1984)) A = 7 (Nuclear Physics A320 (1979)) A = 7 (Nuclear Physics A227 (1974)) A = 7 (Nuclear Physics 78 (1966)) A = 7 (Corrections and Supplements Reference List of (1966LA04)) A = 7 (Nuclear Physics 11 (1959)) A = 7 (Reviews of Modern Physics 27 (1955); incomplete) A = 7 (Reviews of Modern Physics 24 (1952); incomplete) Last modified on 04

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Nuclear Physics at the Department of Energy to upgrade the capabilities of ATLAS in the area of physics with rare isotopes. A copy of the proposal for the CAlifornium...

  10. 3D reconstruction of nuclear reactions using GEM TPC with planar readout

    SciTech Connect (OSTI)

    Bihałowicz, Jan Stefan

    2015-02-24

    The research program of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) laboratory under construction in Magurele, Romania facilities the need of developing a gaseous active-target detector providing 3D reconstruction of charged products of nuclear reactions induced by gamma beam. The monoenergetic, high-energy (E{sub γ} > 19 MeV) gamma beam of intensity 10{sup 13}γ/s allows studying nuclear reactions in astrophysics. A Time Projection Chamber with crossed strip readout (eTPC) is proposed as one of the imaging detectors. The special feature of the readout electrode structure is a 2D reconstruction based on the information read out simultaneously from three arrays of strips that form virtual pixels. It is expected to reach similar spatial resolution as for pixel readout at largely reduced cost of electronics. The paper presents the current progress and first results of the small scale prototype TPC which is a one of implementation steps towards eTPC detector proposed in the Technical Design Report of Charged Particles Detection at ELI-NP.

  11. Determining the 239Np(n,f) cross section using the surrogate ratio method

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Determining the 239Np(n,f) cross section using the surrogate ratio method Citation Details In-Document Search Title: Determining the 239Np(n,f) cross section using the surrogate ratio method Authors: Czeszumska, A. ; Angell, C. T. ; Burke, J. T. ; Scielzo, N. D. ; Norman, E. B. ; Austin, R. A. E. ; Boutoux, G. ; Casperson, R. J. ; Chodash, P. ; Hughes, R. O. ; Mattoon, C. M. ; Méot, V. ; Munson, J. ; Phair, L. ; Ressler, J. J. ; Roig, O.

  12. Physics Division annual report - 1998

    SciTech Connect (OSTI)

    1999-09-07

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

  13. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect (OSTI)

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.

  14. Nuclear Science Advisory Committee Issues Plan for U.S. Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Advisory Committee Issues Plan for U.S. Nuclear Physics Research WASHINGTON, DC - October 15, 2015 - Today, the Nuclear Science Advisory Committee, or NSAC,...

  15. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  16. Basic physical and chemical information needed for development...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 61 RADIATION PROTECTION AND DOSIMETRY; 62 RADIOLOGY AND NUCLEAR MEDICINE; TRANSPORT THEORY; MONTE CARLO METHOD; ...

  17. Biomedical Instrumentation and Imaging at TJNAF | U.S. DOE Office...

    Office of Science (SC) Website

    Biomedical Instrumentation and Imaging at TJNAF Nuclear Physics (NP) NP Home About ... for instrumentation development and testing, a long-term CRADA with Dilon ...

  18. Land Mine Detection at TJNAF | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Land Mine Detection at TJNAF Nuclear Physics (NP) NP Home About Research Facilities ... One very promising application is in national security: scientists are testing whether ...

  19. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    SciTech Connect (OSTI)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.

  20. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than othermore » solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less

  1. Post-Irradiation Examination of 237Np Targets for 238Pu Production

    SciTech Connect (OSTI)

    Morris, Robert Noel [ORNL; Baldwin, Charles A [ORNL; Hobbs, Randy W [ORNL; Schmidlin, Joshua E [ORNL

    2015-01-01

    Oak Ridge National Laboratory is recovering the US 238Pu production capability and the first step in the process has been to evaluate the performance of a 237Np target cermet pellet encased in an aluminum clad. The process proceeded in 3 steps; the first step was to irradiate capsules of single pellets composed of NpO2 and aluminum power to examine their shrinkage and gas release. These pellets were formed by compressing sintered NpO2 and aluminum powder in a die at high pressure followed by sintering in a vacuum furnace. Three temperatures were chosen for sintering the solution precipitated NpO2 power used for pellet fabrication. The second step was to irradiate partial targets composed of 8 pellets in a semi-prototypical arrangement at the two best performing sintering temperatures to determine which temperature gave a pellet that performed the best under the actual planned irradiation conditions. The third step was to irradiate ~50 pellets in an actual target configuration at design irradiation conditions to assess pellet shrinkage and gas release, target heat transfer, and dimensional stability. The higher sintering temperature appeared to offer the best performance after one cycle of irradiation by having the least shrinkage, thus keeping the heat transfer gap between the pellets and clad small minimizing the pellet operating temperature. The final result of the testing was a target that can meet the initial production goals, satisfy the reactor safety requirements, and can be fabricated in production quantities. The current focus of the program is to verify that the target can be remotely dissembled, the pellets dissolved, and the 238Pu recovered. Tests are being conducted to examine these concerns and to compare results to code predictions. Once the performance of the full length targets has been quantified, the pellet 237Np loading will be revisited to determine if it can be increased to increase 238Pu production.

  2. The reduction of Np(VI) and Pu(VI) by organic chelating agents.

    SciTech Connect (OSTI)

    Reed, D.T.; Aase, S.B.; Banaszak, J.E.

    1998-03-19

    The reduction of NpO{sup 2+} and PuO{sub 2}{sup 2+} by oxalate. citrate, and ethylenediaminetetraacetic acid (EDTA) was investigated in low ionic strength media and brines. This was done to help establish the stability of the An(VI) oxidation state in the presence of organic complexants. The stability of the An(VI) oxidation state depended on the pH and relative strength of the various oxidation state-specific complexes. At low ionic strength and pH 6, NpO{sub 2}O{sup 2+} was rapidly reduced to form NpO{sub 2}{sup +} organic complexes. At longer times, Np(IV) organic complexes were observed in the presence of citrate. PuO{sub 2}{sup 2+} was predominantly reduced to Pu{sup 4+}, resulting in the formation of organic complexes or polymeric/hydrolytic precipitates. The relative rates of reduction to the An(V) complex were EDTA > citrate > oxalate. Subsequent reduction to An(IV) complexes, however, occurred in the following order: citrate > EDTA > oxalate because of the stability of the An(V)-EDTA complex. The presence of organic complexants led to the rapid reduction of NpO{sub 2}{sup 2+} and PuO{sub 2}P{sup 2+} in G-seep brine at pHs 5 and 7. At pHs 8 and 10 in ERDA-6 brine, carbonate and hydrolytic complexes predominated and slowed down or prevented the reduction of An(VI) by the organics present.

  3. Am phases in the matrix of a UPuZr alloy with Np, Am, and rare-earth elements

    SciTech Connect (OSTI)

    Janney, Dawn E.; Kennedy, J. Rory; Madden, James W.; OHolleran, Thomas P.

    2015-01-01

    Phases and microstructures in the matrix of an as-cast U-Pu-Zr alloy with 3 wt% Am, 2% Np, and 8% rare-earth elements were characterized by scanning and transmission electron microscopy. The matrix consists primarily of two phases, both of which contain Am: ?-(U, Np, Pu, Am) (~70 at% U, 5% Np, 14% Pu, 1% Am, and 10% Zr) and ?-(U, Np, Pu, Am)Zr2 (~25% U, 2% Np, 10-15% Pu, 1-2% Am, and 55-60 at% Zr). These phases are similar to those in U-Pu-Zr alloys, although the Zr content in ?-(U, Np, Pu, Am) is higher than that in ?-(U, Pu) and the Zr content in ?-(U, Np, Pu, Am)Zr2 is lower than that in ?-UZr2. Nanocrystalline actinide oxides with structures similar to UO2 occurred in some areas, but may have formed by reactions with the atmosphere during sample handling. Planar features consisting of a central zone of ?-(U, Np, Pu, Am) bracketed by zones of ?-(U, Np, Pu, Am)Zr2 bound irregular polygons ranging in size from a few micrometers to a few tens of micrometers across. The rest of the matrix consists of elongated domains of ?-(U, Np, Pu, Am) and ?-(U, Np, Pu, Am)Zr2. Each of these domains is a few tens of nanometers across and a few hundred nanometers long. The domains display strong preferred orientations involving areas a few hundred nanometers to a few micrometers across.

  4. THE EFFECT OF THE {sup 14}N(p, {gamma}){sup 15}O REACTION ON THE BLUE LOOPS IN INTERMEDIATE-MASS STARS

    SciTech Connect (OSTI)

    Halabi, Ghina M.; El Eid, Mounib F.; Champagne, Arthur

    2012-12-10

    We present stellar evolutionary sequences of stars in the mass range 5-12 M{sub Sun }, having solar-like initial composition. The stellar models are obtained using updated input physics, including recent rates of thermonuclear reactions. We investigate the effects of a modification of the {sup 14}N(p, {gamma}){sup 15}O reaction rate, as suggested by recent evaluations, on the formation and extension of the blue loops encountered during the evolution of the stars in the above mass range. We find that a reduced {sup 14}N(p, {gamma}){sup 15}O rate, as described in the text, has a striking impact on the physical conditions of burning and mixing during shell hydrogen burning when the blue loops are formed. In particular, we find that the efficiency of shell hydrogen burning is crucial for the formation of an extended blue loop. We show that a significantly reduced {sup 14}N(p, {gamma}){sup 15}O rate affects severely the extension of the blue loops and the time spent by the star in the blue part of the Hertzsprung-Russell diagram in the mass range 5-7 M{sub Sun} if the treatment of convection is based on the Schwarzschild criterion only. In this case, envelope overshooting helps to restore well-extended blue loops as supported by the observations of the Cepheid stars. If core overshooting is included during the core hydrogen and core helium burning phases, the loop formation and its properties depend on how this overshooting is treated for a given stellar mass range, as well as on its efficiency.

  5. ORISE: Health physics services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas for the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), as well as other federal and state agencies. From radiological facility audits and reviews to dose modeling and technical evaluations, ORISE is nationally-recognized for its health physics support to decontamination and decommissioning

  6. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

  7. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

  8. New Physics Search in the LHCb Era

    SciTech Connect (OSTI)

    Hurth, Tobias; ,

    2010-06-11

    The authors present theoretical and experimental preparations for an indirect search for new physics (NP) using the rare decay {bar B}{sub d} {yields} {bar K}*{sup 0}{mu}{sup +}{mu}{sup -}. They design new observables with very small theoretical uncertainties and good experimental resolution.

  9. Labs & Universities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Labs & Universities Nuclear Physics (NP) NP Home About Organization Chart .pdf file (31KB) Staff NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  10. About | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Nuclear Physics (NP) NP Home About Organization Chart .pdf file (31KB) Staff NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  11. Staff | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Nuclear Physics (NP) NP Home About Organization Chart .pdf file (31KB) Staff NP Budget NP Committees of Visitors Directions Jobs Labs & Universities Nuclear Physics Related Brochures Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  12. Static electric dipole polarizabilities of An{sup 5+/6+} and AnO{sub 2}{sup +/2+} (An = U, Np, and Pu) ions

    SciTech Connect (OSTI)

    Parmar, Payal E-mail: kipeters@wsu.edu Peterson, Kirk A. E-mail: kipeters@wsu.edu; Clark, Aurora E. E-mail: kipeters@wsu.edu

    2014-12-21

    The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An{sup 5+/6+} and AnO{sub 2}{sup +/2+}) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (?5 a.u.{sup 3}) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (?{sub zz}) of the polarizability for the lowest ? levels corresponding to the ground electronic states are (in a.u.{sup 3}) 44.15 and 41.17 for UO{sub 2}{sup +} and UO{sub 2}{sup 2+}, respectively, 45.64 and 41.42 for NpO{sub 2}{sup +} and NpO{sub 2}{sup 2+}, respectively, and 47.15 for the PuO{sub 2}{sup +} ion.

  13. Radiogenic p-isotopes from type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites

    SciTech Connect (OSTI)

    Travaglio, C.; Gallino, R.; Rauscher, T.; Dauphas, N.; Rpke, F. K.; Hillebrandt, W. E-mail: claudia.travaglio@b2fh.org

    2014-11-10

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae (SNe Ia) with different metallicities. The predicted abundances of the short-lived radioactive isotopes {sup 92}Nb, {sup 97,} {sup 98}Tc, and {sup 146}Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and {sup 13}C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SN Ia to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNe Ia in the production of {sup 92}Nb and {sup 146}Sm. We find that, if standard Chandrasekhar-mass SNe Ia are at least 50% of all SN Ia, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  14. Nuclear Science Advisory Committee (NSAC) Homepage | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Home Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings NSAC Members Charges/Reports Charter .pdf file (78KB) NP Committees of Visitors Federal Advisory Committees NP Home REACHING FOR THE HORIZON The 2015 LONG RANGE PLAN for NUCLEAR SCIENCERead More NSAC Long Range Plan Play/Pause banners Print Text Size: A A A FeedbackShare Page Additional Information Contact NSAC: Email: sc.np@science.doe.gov Phone: 301-903-3613 NSAC DFO: Dr. Timothy J. Hallman Committee Manager:

  15. Department of Energy Issues Requests for Applications for Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications for Nuclear-Related Science and Engineering Scholarships and Fellowships Department ... Chemistry, Health Physics, Nuclear Materials Science, Radiochemistry, Applied ...

  16. Dipole-dipole broadening of Rb ns-np microwave transitions

    SciTech Connect (OSTI)

    Park, Hyunwook; Tanner, P. J.; Claessens, B. J.; Shuman, E. S.; Gallagher, T. F.

    2011-08-15

    The dipole-dipole broadening of ns-np microwave transitions of cold Rb Rydberg atoms in a magneto-optical trap has been recorded for 28{<=}n{<=}51. Since the electric dipole transition matrix elements scale as n{sup 2}, a broadening rate scaling as n{sup 4} is expected and a broadening rate of 8.2x10{sup -15}n{sup 4} MHz cm{sup 3} is observed. The observed broadening is smaller than expected from a classical picture due to the spin-orbit interaction in the np atoms. The broadened resonances are asymmetric and cusp shaped, and their line shapes can be reproduced by a diatomic model which takes into account the dipole-dipole interaction, including the spin-orbit interaction, the strengths of the allowed microwave transitions, and the distribution of the atomic spacings in the trap.

  17. nuclear bombs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear bombs

  18. nuclear fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear fusion

  19. nuclear reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear reactors

  20. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator...

    Office of Scientific and Technical Information (OSTI)

    Nuclear and Accelerator Physics Citation Details In-Document Search Title: Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics FLUKA is a general purpose ...

  1. NBL Program Office Jobs

    Office of Science (SC) Website

    Resources » John Negele (MIT) Awarded Feshbach Prize for Theoretical Nuclear Physics Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000

  2. John Negele Awarded Feshbach Prize | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources » John Negele (MIT) Awarded Feshbach Prize for Theoretical Nuclear Physics Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000

  3. International Nuclear Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    International Nuclear Security The International Nuclear Security program collaborates with partners world-wide to improve the security of proliferation-sensitive materials, particularly weapons-usable nuclear material in both civilian and non-civilian use in key countries. As part of these efforts, INS works with partner countries to: Upgrade and sustain physical security and material control and accounting systems; Develop national-level nuclear security infrastructure in areas such as

  4. Nuclear Physics from Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Lattice QCD Resources at NERSC Martin J. Savage, Robert Edwards and Chip Watson May 2011, Washington D.C. Science : 20 mins : Martin Savage Hardware : 15 mins : Chip Watson Code, Algorithms, Production : 35 mins : Robert Edwards (Massimo DiPierro) Topological Charge Density Thursday, May 26, 2011 Spin-pairing Shell-structure Vibrational and rotational excitations Λ QCD m u Λ QCD m d Λ QCD m s Λ QCD α e Small number of input parameters responsible for all of strongly interacting matter

  5. Procedures for Nuclear Physics Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Phase (Users and Experimental Hall responsibility) Fabricate equipment to design. Test individual elements of the equipment to verify performance and operations...

  6. NM (United States)] 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS...

    Office of Scientific and Technical Information (OSTI)

    Clayton, Steven Los Alamos National Lab. (LANL), Los Alamos, NM (United States) 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

  7. Basic physical and chemical information needed for development...

    Office of Scientific and Technical Information (OSTI)

    (i.e., statistical physics and physical kinetics in the language of the Landau school). ... Country of Publication: United States Language: English Subject: 73 NUCLEAR PHYSICS AND ...

  8. Physics Flash August 2014 (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: Nuclear Physics & Radiation Physics(73); Physics of Elementary Particles & Fields(72);...

  9. Physics division annual report 2006.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  10. Probing new physics in the neutrinoless double beta decay using electron angular correlation

    SciTech Connect (OSTI)

    Ali, A.; Borisov, A. V.; Zhuridov, D. V. [Deutsches Elektronen-Synchrotron, DESY, 22607 Hamburg (Germany); Faculty of Physics, Moscow State University, 119991 Moscow (Russian Federation)

    2007-11-01

    The angular correlation of the electrons emitted in the neutrinoless double beta decay (0{nu}2{beta}) is presented using a general Lorentz invariant effective Lagrangian for the leptonic and hadronic charged weak currents. We show that the coefficient K in the angular correlation d{gamma}/dcos{theta}{proportional_to}(1-Kcos{theta}) is essentially independent of the nuclear matrix element models and present its numerical values for the five nuclei of interest ({sup 76}Ge, {sup 82}Se, {sup 100}Mo, {sup 130}Te, and {sup 136}Xe), assuming that the 0{nu}2{beta} decays in these nuclei are induced solely by a light Majorana neutrino, {nu}{sub M}. This coefficient varies between K=0.81 (for the {sup 76}Ge nucleus) and K=0.88 (for the {sup 82}Se and {sup 100}Mo nuclei), calculated taking into account the effects from the nucleon recoil, the S and P waves for the outgoing electrons and the electron mass. Deviation of K from its values derived here would indicate the presence of new physics (NP) in addition to a light Majorana neutrino, and we work out the angular coefficients in several {nu}{sub M}+NP scenarios for the {sup 76}Ge nucleus. As an illustration of the correlations among the 0{nu}2{beta} observables (half-life T{sub 1/2}, the coefficient K, and the effective Majorana neutrino mass ||) and the parameters of the underlying NP model, we analyze the left-right symmetric models, taking into account current phenomenological bounds on the right-handed W{sub R}-boson mass and the left-right mixing parameter {zeta}.

  11. A measurement of. Delta. sigma. sub L (np), the difference between neutron-proton total cross sections in pure longitudinal spin states

    SciTech Connect (OSTI)

    Beddo, M.E.

    1990-10-01

    A measurement off {Delta}{sigma}{sub L}(np), the difference between neutron-proton total cross sections in pure longitudinal spin states, is described. The results will help determine the isospin-zero (I = 0) scattering amplitudes, which are not well known above laboratory energies of 500 MeV, whereas the isospin-one (I = 1) amplitudes are fairly well-determined to 1 GeV. Data points were taken at the Los Alamos Meson Physics Facility (LAMPF) at Los Alamos, New Mexico, for five neutron beam energies: 484, 568, 634,720 and 788 MeV; they are the first in this energy range. Polarized neutrons were produced by charge-exchange of polarized protons on a liquid deuterium target (LD{sub 2}). Large-volume neutron counters detected the neutrons that passed through a polarized proton target. The counters subtended a range of solid angles large enough to allow extrapolation of the scattered neutrons to 0{degree}. Two modifications to the LAMPF accelerator system which were made for this work are described. They included a beam buncher,'' which modified the normal rf-time structure of the proton beam and allowed for the selection of peak-energy neutrons by time-of-flight means, and a computerized beam steering program, which reduced systematic effects due to beam motion at the LD{sub 2} target. The experimental values of {Delta}{sigma}{sub L}(np) are found to be consistent with other np data, including preliminary data from SIN and Saclay, but not with some results from Argonne which used a polarized proton beam and a polarized deuteron target. The I = 0 component was extracted from {Delta}{sigma}{sub L}(np) using existing pp data (I = 1), with the unexpected result that {Delta}{sigma}{sub L}(I = 0) was found to be essentially identical in shape to {Delta}{sigma}{sub L}(I = 1). The significance of this is not yet understood.

  12. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This symposium celebrates the contributions of Edward G. Bilpuch to nuclear physic and to the Triangle Universities Nuclear Laboratory (TUNL), which is a U.S. Department of Energy Center of Excellence in Nuclear Physics. Dr. Bilpuch was a Henry W. Newson Professor of Physics at Duke University, a member of the first generation of nuclear physicists who founded TUNL and the longest-term director of TUNL.

  13. Physics Division progress report for period ending September 30, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  14. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE...

    Office of Science (SC) Website

    Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  15. Edward Purcell and Nuclear Magnetic Resonance (NMR)

    Office of Scientific and Technical Information (OSTI)

    Nuclear Magnetic Resonance (NMR) Resources with Additional Information Edward M. Purcell was awarded the 1952 Nobel Prize in Physics for his "development of new methods for nuclear ...

  16. Physics Division annual review, April 1, 1991--March 31, 1992

    SciTech Connect (OSTI)

    Henning, W.F.

    1992-08-01

    This report contains brief discusses on topics in the following areas: Research at atlas; operation and development of atlas; medium-energy nuclear physics and weak interactions; theoretical nuclear physics; and atomic and molecular physics research.

  17. DOE/NSF Nuclear Science Advisory Committee Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 15-16, 2015 | U.S. DOE Office of Science (SC) October 15-16, 2015 Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings NSAC Members Charges/Reports Charter .pdf file (78KB) NP Committees of Visitors Federal Advisory Committees NP Home Meetings DOE/NSF Nuclear Science Advisory Committee Meeting October 15-16, 2015 Print Text Size: A A A FeedbackShare Page Thursday, October 15, 2015 9:00am - 9:10am Welcome and Introduction Donald Geesaman, NSAC Chair Argonne National Laboratory

  18. DOE/NSF Nuclear Science Advisory Committee Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thursday, July 16, 2015 | U.S. DOE Office of Science (SC) Thursday, July 16, 2015 Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings NSAC Members Charges/Reports Charter .pdf file (78KB) NP Committees of Visitors Federal Advisory Committees NP Home Meetings DOE/NSF Nuclear Science Advisory Committee Meeting Thursday, July 16, 2015 Print Text Size: A A A FeedbackShare Page Thursday, July 16, 2015 8:00am - 8:15am Welcome and Introduction Donald Geesaman, NSAC Chair Argonne National

  19. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Data National Nuclear Data Center Chart of Nuclides ENSDF ENDF CNS SAID Program MAID Anlysis Government Agencies DOE Office of Science NSF FastLane Research.gov Grants.gov Professional Organizations American Physical Society Division of Nuclear Physics Useful Links

  20. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    SciTech Connect (OSTI)

    Tome, Carlos N; Caro, J A; Lebensohn, R A; Unal, Cetin; Arsenlis, A; Marian, J; Pasamehmetoglu, K

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

  1. physics-based-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical security Physical Security Systems After the 9/11 terrorist attacks, NNSA took steps to protect its critical facilities from vehicle bombs and strengthened its facilities against attacks. NNSA has begun consolidating its nuclear weapons material which reduces the number of targets to be protected. It has hardened its

    Physics-based High-Resolution Numerical Modeling of Bridge Foundation Scour

  2. AREVA NP next generation fresh UO{sub 2} fuel assembly shipping cask: SCALE - CRISTAL comparisons lead to safety criticality confidence

    SciTech Connect (OSTI)

    Doucet, M.; Landrieu, M.; Montgomery, R.; O' Donnell, B.

    2007-07-01

    AREVA NP as a worldwide PWR fuel provider has to have a fleet of fresh UO{sub 2} shipping casks being agreed within a lot of countries including USA, France, Germany, Belgium, Sweden, China, and South Africa - and to accommodate foreseen EPR Nuclear Power Plants fuel buildings. To reach this target the AREVA NP Fuel Sector decided to develop an up-to-date shipping cask (so called MAP project) gathering experience feedback of the today fleet and an improved safety allowing the design to comply with international regulations (NRC and IAEA) and local Safety Authorities. Based on pre design features a safety case was set up to highlight safety margins. Criticality hypothetical accidental assumptions were defined: - Preferential flooding; - Fuel rod lattice pitch expansion for full length of fuel assemblies; - Neutron absorber penalty; -... Well known computer codes, American SCALE package and French CRISTAL package, were used to check configurations reactivity and to ensure that both codes lead to coherent results. Basic spectral calculations are based on similar algorithms with specific microscopic cross sections ENDF/BV for SCALE and JEF2.2 for CRISTAL. The main differences between the two packages is on one hand SCALE's three dimensional fuel assembly geometry is described by a pin by pin model while an homogenized fuel assembly description is used by CRISTAL and on the other hand SCALE is working with either 44 or 238 neutron energy groups while CRISTAL is with a 172 neutron energy groups. Those two computer packages rely on a wide validation process helping defining uncertainties as required by regulations in force. The shipping cask with two fuel assemblies is designed to maximize fuel isolation inside a cask and with neighboring ones even for large array configuration cases. Proven industrial products are used: - Boral{sup TM} as neutron absorber; - High density polyethylene (HDPE) or Nylon as neutron moderator; - Foam as thermal and mechanical protection. The cask is designed to handle the complete AREVA NP fuel assembly types from the 14x14 to the 18x18 design with a {sup 235}U enrichment up to 5.0% enriched natural uranium (ENU) and enriched reprocessed uranium (ERU). After a brief presentation of the computer codes and the description of the shipping cask, calculation results and comparisons between SCALE and CRISTAL will be discussed. (authors)

  3. NUCLEAR REACTORS

    DOE Patents [OSTI]

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  4. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    SciTech Connect (OSTI)

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  5. Measurements of delayed neutron decay constants and fission yields from {sup 235}U, {sup 237}Np, {sup 241}Am, and {sup 243}Am

    SciTech Connect (OSTI)

    Saleh, H.H.; Parish, T.A.; Raman, S.; Shinohara, Nobuo

    1997-01-01

    Isotopes of the higher actinide elements are produced as a result of successive radiative capture reactions in the uranium fuel of nuclear reactors. Typically, these transuranic isotopes decay through long chains, have long half-lives, and dominate the long-term toxicity of spent reactor fuel. One of the options for high level waste management is to remove the higher actinide elements from spent fuel by chemical processing, to load them into new special fuel elements, and to transmute them by neutron-induced fission into shorter-lived fission fragments. Reactors designed to achieve high actinide fission (transmutation) rates are called actinide burners. In such reactors, the actinide wastes would constitute much of the fissionable fuel. Due to the high transuranic isotope loadings in the fuel of actinide burners, the neutronic properties of the higher actinide isotopes will have a significant effect on the criticality and safety characteristics of such reactors. While there is an extensive operational database for reactors fueled with uranium and plutonium, operating experience with fuel containing large amounts of actinide wastes is quite limited. Two important neutronic properties of actinide burner cores are their reactivity and their delayed neutron fraction. Both of these properties will be strongly influenced by the neutronic characteristics of the actinide waste isotopes. Here, delayed neutron yields and decay constants for {sup 235}U, {sup 237}Np, {sup 241}Am, and {sup 243}Am were measured at the Texas A and M University TRIGA reactor using a fast pneumatic transfer system. The detection system consisted of an array of BF{sub 3} proportional counters embedded in a polyethylene cylinder. The measured values of the total delayed neutron yield per 100 fissions from thermal neutron-induced fission of {sup 235}U, {sup 237}Np, {sup 241}Am, and {sup 243}Am were determined to be 1.59 {+-} 0.04, 1.29 {+-} 0.04, 0.49 {+-} 0.02, and 0.84 {+-} 0.04, respectively.

  6. TUNL Nuclear Data Project, HTML Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A = 4 References References for A = 4: A = 4 (Nuclear Physics A541 (1992)) Last modified on 02 October 2012

  7. A conceptual design of an electron spectrometer for ELI-NP

    SciTech Connect (OSTI)

    Balascuta, S. Turcu, I. C. E.

    2015-02-24

    We present the geometry and field parameters of an Electron Spectrometer (ES) with two dipole magnets, considered for electron energy measurements at the High Fields QED experimental area at ELI-NP. The first magnet is a 2 meter long permanent magnet, placed inside the Interaction Chamber (IC). The second magnet is a 1.5 meters long electromagnet, placed outside IC. The pulsed electron beam will be produced by the 10 PW pulsed Laser, ‘pump-beam’, focused into one meter long capillary low density plasma cell. A second 10 PW pulsed Laser, ‘probe-beam’, will interact with the relativistic electron bunch providing the strong electromagnetic field. The ES will measure the subtle changes in the electron energy spectrum as a result of the electron beam interaction with the probe-beam field.

  8. Impact of low-dose electron irradiation on $$n^{+}p$$ silicon strip sensors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adam, W.

    2015-08-28

    The response of n+p silicon strip sensors to electrons from a 90Sr source was measured using a multi-channel read-out system with 25 ns sampling time. The measurements were performed over a period of several weeks, during which the operating conditions were varied. The sensors were fabricated by Hamamatsu Photonics on 200 μm thick float-zone and magnetic-Czochralski silicon. Their pitch was 80 μm, and both p-stop and p-spray isolation of the n+ strips were studied. The electrons from the 90Sr source were collimated to a spot with a full-width-at-half-maximum of 2 mm at the sensor surface, and the dose rate inmore » the SiO2 at the maximum was about 50 Gy(SiO2)/d. After only a few hours of making measurements, significant changes in charge collection and charge sharing were observed. Annealing studies, with temperatures up to 80 °C and annealing times of 18 h showed that the changes can only be partially annealed. The observations can be qualitatively explained by the increase of the positive oxide-charge density due to the ionization of the SiO2 by the radiation from the β source. TCAD simulations of the electric field in the sensor for different oxide-charge densities and different boundary conditions at the sensor surface support this explanation. As a result, the relevance of the measurements for the design of n+p strip sensors is discussed.« less

  9. DOE/NSF Nuclear Science Advisory Committee Meeting April 24-25, 2014 | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Office of Science (SC) DOE/NSF Nuclear Science Advisory Committee Meeting April 24-25, 2014 Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings NSAC Members Charges/Reports Charter .pdf file (78KB) NP Committees of Visitors Federal Advisory Committees NP Home Meetings DOE/NSF Nuclear Science Advisory Committee Meeting April 24-25, 2014 Print Text Size: A A A FeedbackShare Page DoubleTree by Hilton Ballroom AB 8120 Wisconsin Avenue, Bethesda, Maryland Thursday, April 24, 2014

  10. 2008 Workshop on The Nation's Needs for Isotopes: Present and Future |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) 08 Workshop on The Nation's Needs for Isotopes: Present and Future Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown

  11. 2012 Workshop on Isotope Federal Supply and Demand | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) 2 Workshop on Isotope Federal Supply and Demand Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  12. 2013 Workshop on Isotope Federal Supply and Demand | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) 3 Workshop on Isotope Federal Supply and Demand Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  13. 2014 Workshop on Isotope Federal Supply and Demand | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) 4 Workshop on Isotope Federal Supply and Demand Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  14. 2015 Workshop on Isotope Federal Supply and Demand | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) 5 Workshop on Isotope Federal Supply and Demand Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  15. Agenda | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    2 Workshop on Isotope Federal Supply and Demand » Agenda Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC

  16. Agenda/Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    3 Workshop on Isotope Federal Supply and Demand » Agenda/Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  17. Agenda/Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    4 Workshop on Isotope Federal Supply and Demand » Agenda/Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  18. Agenda/Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    5 Workshop on Isotope Federal Supply and Demand » Agenda/Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  19. Full Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Agenda / Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301)

  20. Working Group Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Working Group Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F:

  1. Community Resources | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E:

  2. Archives | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Archives Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources NP Workforce Survey Results .pdf file (182KB) Links News Archives Databases Reports Workshops Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833

  3. Local structure in solid solutions of stabilised zirconia with actinide dioxides (UO{sub 2}, NpO{sub 2})

    SciTech Connect (OSTI)

    Walter, Marcus; Somers, Joseph; Bouexiere, Daniel; Rothe, Joerg

    2011-04-15

    The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond shows only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.

  4. Nuclear Data Needs and Capabilities for Applications

    SciTech Connect (OSTI)

    Brown, D.

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  5. PHYSICAL SCIENCES, Physics Phase

    Office of Scientific and Technical Information (OSTI)

    SCIENCES, Physics Phase competition in trisected superconducting dome I. M. Vishik, 1, 2 M Hashimoto, 3 R.-H. He, 4 W. S. Lee, 1, 2 F. Schmitt, 1, 2 D. H. Lu, 3 R. G. Moore, 1...

  6. Additional Requirements and Guidance for Digital Data Management | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Opportunities » Additional Requirements and Guidance for Digital Data Management Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Reviews NP Early Career Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact

  7. Physics Division progress report for period ending June 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  8. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Nuclear Physics (NP) NP Home About Research Facilities User Facilities Argonne Tandem Linac Accelerator System (ATLAS) Continuous Electron Beam Accelerator Facility (CEBAF) Relativistic Heavy Ion Collider (RHIC) Project Development Isotope Program Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave.,

  9. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics (P-24) is committed to scientific excellence in basic and applied research. Our breadth and depth in experimental high energy density physics and plasma physics is ...

  11. NNSA conducts second seismic source physics experiment | National...

    National Nuclear Security Administration (NNSA)

    conducts second seismic source physics experiment | National Nuclear Security ... Home NNSA Blog NNSA conducts second seismic source physics experiment NNSA conducts ...

  12. Physics Flash February 2015 (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Physics Flash February 2015 Authors: Kippen, ... Country of Publication: United States Language: English Subject: Nuclear Physics & ...

  13. Rapid fusion method for the determination of Pu, Np, and Am in large soil samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    A new rapid sodium hydroxide fusion method for the preparation of 10-20 g soil samples has been developed by the Savannah River National Laboratory (SRNL). The method enables lower detection limits for plutonium, neptunium, and americium in environmental soil samples. The method also significantly reduces sample processing time and acid fume generation compared to traditional soil digestion techniques using hydrofluoric acid. Ten gram soil aliquots can be ashed and fused using the new method in 1-2 hours, completely dissolving samples, including refractory particles. Pu, Np and Am are separated using stacked 2mL cartridges of TEVA and DGA Resin and measured using alpha spectrometry. The method can be adapted for measurement by inductively-coupled plasma mass spectrometry (ICP-MS). Two 10 g soil aliquots of fused soil may be combined prior to chromatographic separations to further improve detection limits. Total sample preparation time, including chromatographic separations and alpha spectrometry source preparation, is less than 8 hours.

  14. Rapid fusion method for the determination of Pu, Np, and Am in large soil samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    A new rapid sodium hydroxide fusion method for the preparation of 10-20 g soil samples has been developed by the Savannah River National Laboratory (SRNL). The method enables lower detection limits for plutonium, neptunium, and americium in environmental soil samples. The method also significantly reduces sample processing time and acid fume generation compared to traditional soil digestion techniques using hydrofluoric acid. Ten gram soil aliquots can be ashed and fused using the new method in 1-2 hours, completely dissolving samples, including refractory particles. Pu, Np and Am are separated using stacked 2mL cartridges of TEVA and DGA Resin and measuredmore » using alpha spectrometry. The method can be adapted for measurement by inductively-coupled plasma mass spectrometry (ICP-MS). Two 10 g soil aliquots of fused soil may be combined prior to chromatographic separations to further improve detection limits. Total sample preparation time, including chromatographic separations and alpha spectrometry source preparation, is less than 8 hours.« less

  15. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  16. UNIRIB: Physics Topics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics Research Capitalizing on the strengths of nine collaborating research universities and the world-class equipment available at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL), the University Radioactive Ion Beam (UNIRIB) consortium is conducting research at the forefront of nuclear physics. UNIRIB, a division of the Oak Ridge Institute for Science and Education (ORISE), brings together researchers from around the world to study the

  17. LANSCE Weapons Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 LANSCE Weapons Physics Fortune 500 companies and weapons designers alike rely on our internationally recognized nuclear physics and materials science expertise as well as our one-of-a-kind experimental tools. Contact Us Group Leader Gus Sinnis Email Deputy Group Leader Fredrik Tovesson Email Deputy Group Leader and Experimental Area Manager Charles Kelsey Email Group Office (505) 665-5390 Time Projection Chamber at LANSCE Researcher making measurements of fission cross sections on the Time

  18. Palm Physics Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Palm Physics Page ** We no longer support this website. This is a preliminary group of Palm applications/databases that are intended to serve the interests of atomic, nuclear and particle physics. Applications Periodic Table: Shareware version of the periodic table with basic chemical properties of the elements.(Download) Particle Data Book: From the Particle Data Group at LBL. (Download) Heavy Ion Fusion Calculator: Compute available energy, Coulomb energy, maximum angular momentum for compound

  19. Proceedings of the international conference on nuclear physics, August 24-30, 1980, Berkeley, California. Volume 1. Abstracts. [Berkeley, California, August 24-30, 1980 (abstracts only)

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This volume contains all abstracts (931) received by the conference organizers before June 20, 1980. The abstracts are grouped according to the following topics: nucleon-nucleon interactions, free and in nuclei; distribution of matter, charge, and magnetism; exotic nuclei and exotic probes; giant resonances and other high-lying excitations; applications of nuclear science; nuclei with large angular momentum and deformation; heavy-ion reactions and relaxation phenomena; new techniques and instruments; pion absorption and scattering by nuclei; and miscellaneous. Some of these one-page abstracts contain data. A complete author index is provided. (RWR)

  20. Nuclear annihilation by antinucleons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2016-01-25

    We examine the momentum dependence ofmore » $$\\bar p$$$p$ and $$\\bar n$$$p$ annihilation cross sections by considering the transmission through a nuclear potential and the $$\\bar p p$$ Coulomb interaction. Compared to the $$\\bar n p$$ annihilation cross section, the $$\\bar p p$$ annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below $$p_{\\rm lab} <$$ 500 MeV/$c$$, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP {\\bb 30}, 423 (1956)] at $$p_{\\rm lab}\\sim 500$ MeV/$c$. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $$\\bar n$$ and $$\\bar p$$ interaction with nuclei and the results compare well with experimental data.« less

  1. Naval Nuclear Propulsion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion

  2. Joint Actinide Shock Physics Experimental Research | National...

    National Nuclear Security Administration (NNSA)

    Shock physics experiments such as this are critical to maintaining the safety and security of the nation's stockpile in the absence of underground nuclear testing. For more ...

  3. TANK 40 FINAL SB5 CHEMICAL CHARACTERIZATION RESULTS PRIOR TO NP ADDITION

    SciTech Connect (OSTI)

    Bannochie, C.; Click, D.

    2010-01-06

    A sample of Sludge Batch 5 (SB5) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). This sample was also analyzed for chemical composition including noble metals. Prior to radionuclide inventory analyses, a final sample of the H-canyon Np stream will be added to bound the Np addition anticipated for Tank 40. These analyses along with the WAPS radionuclide analyses will help define the composition of the sludge in Tank 40 that is currently being fed to DWPF as SB5. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB5 sample was transferred from the shipping container into a 4-L high density polyethylene vessel and solids allowed to settle overnight. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 239 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon{reg_sign} vessels and four in Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Due to the use of Zr crucibles and Na in the peroxide fusions, Na and Zr cannot be determined from this preparation. Additionally, other alkali metals, such as Li and K that may be contaminants in the Na{sub 2}O{sub 2} are not determined from this preparation. Three Analytical Reference Glass - 14 (ARG-1) standards were digested along with a blank for each preparation. The ARG-1 glass allows for an assessment of the completeness of each digestion. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma - atomic emission spectroscopy (ICPAES) analysis, inductively coupled plasma - mass spectrometry (ICP-MS) analysis of masses 81-209 and 230-252, and cold vapor atomic absorption (CV-AA) analysis for Hg. Equivalent dilutions of the peroxide fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB5 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES. Weighted dilutions of slurry were submitted for ion chromatography (IC), total inorganic carbon/total organic carbon (TIC/TOC), and total base analyses. The following conclusions were drawn from the analytical results reported here: (1) The elemental ratios of the major elements for the SB5 WAPS sample, whose major Tank 51 Qualification sample component underwent Al dissolution, are similar to those measured for the SB4 WAPS sample. (2) The elemental composition of this sample and the analyses conducted here are reasonable and consistent with DWPF batch data measurements in light of DWPF pre-sample concentration and SRAT product heel contributions to the DWPF SRAT receipt analyses. (3) Fifty percent of the sulfur in the SB5 WAPS sample is insoluble, and this represents a significantly larger fraction than that observed in previous sludge batches. (4) The noble metal and Ag concentrations predicted from the measured values for the Tank 51 Confirmation sample and Tank 40 SB4 WAPS sample using a two-thirds Tank 51, one-third Tank 40 heel blend ratio used to arrive at the final SB5 composition, agree with the values for the Tank 40 SB5 WAPS sample measured for this report.

  4. Continuous Electron Beam Accelerator Facility (CEBAF) | U.S....

    Office of Science (SC) Website

    Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy ...

  5. Nuclear Data Sheets for A=243

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nesaraja, Caroline D; McCutchan, Elizabeth A.

    2014-09-30

    We present available information pertaining to the nuclear structure of all nuclei with mass numbers A=243. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given. When there are insufficient data, expected values from systematics of nuclear properties or/and theoretical calculations are quoted. Unexpected or discrepant experimental results are also noted. A summary and compilation of the discovery of various isotopes in this mass region is given in 2013Fr02 (243Np, 243Pu, 243Am, 243Cm, 243Bk, and 243Cf), 2011Me01 (243Es), and 2013Th02 (243Fm).

  6. Physics Teachers Workshop

    ScienceCinema (OSTI)

    Huggins, DaNel; Calhoun, John; Palmer, Alyson; Thorpe, Steve; Vanderveen, Anne;

    2013-05-28

    INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

  7. Nuclear Power 2010 Program: Combined Construction and Operating License & Design Certification Demonstration Projects Lessons Learned Report

    Broader source: Energy.gov [DOE]

    The Nuclear Power 2010 (NP 2010) Construction and Operating License/Design Certification (COL/DC) Demonstration program together with the financial incentives provided by the Energy Policy Act of 2005 are the two primary reasons why a number of license applications for new nuclear construction are before the NRC today, and why the first new nuclear plants in over 30 years are under construction in the United States.

  8. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  9. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › Updated EIA survey provides data on spent nuclear fuel in the United

  10. Measurements of plutonium, 237Np, and 137Cs in the BCR 482 lichen reference material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lavelle, Kevin B.; Miller, Jeffrey L.; Hanson, Susan K.; Connick, William B.; Spitz, Henry B.; Glover, Samuel E.; Oldham, Warren J.

    2015-10-01

    Select anthropogenic radionuclides were measured in lichen reference material, BCR 482. This material was originally collected in Axalp, Switzerland in 1991 and is composed of the epiphytic lichen Pseudevernia furfuracea. Samples from three separate bottles of BCR 482 were analyzed for uranium, neptunium, and plutonium isotopes by inductively coupled plasma mass spectrometry (ICP-MS) and analyzed for cesium-137 by gamma-ray spectrometry. The isotopic composition of the radionuclides measured in BCR 482 suggests contributions from both global fallout resulting from historical nuclear weapons testing and more volatile materials released following the Chernobyl accident.

  11. Spin-glass behavior of A Fe sub 4 Al sub 8 ( A =Th,U,Np) intermetallics

    SciTech Connect (OSTI)

    Gal, J. Nuclear Research Center, 84190 Beer-Sheva Physik Department E15, Technische Universitaet Muenchen, D-8046 Garchingbei Muenchen ); Yaar, I.; Regev, D.; Fredo, S.; Shani, G.; Arbaboff, E. Nuclear Research Center, 84190 Beer-Sheva ); Potzel, W.; Aggarwal, K.; Pereda, J.A.; Kalvius, G.M. ); Litterst, F.J. Physik Department E15, Technische Universitaet Muenchen, D-8046 Garching bei Muenchen ); Schaefer, W.; Will, G. Kernforschonganlage, D-5170 Juelich )

    1990-11-01

    Combined ac- and dc-susceptibility, neutron-diffraction, and Moessbauer studies of UFe{sub 4}Al{sub 8}, NpFe{sub 4}Al{sub 8}, and ThFe{sub 4}Al{sub 8} argue for the establishment of a spin-glass (SG) state below {ital T}{sub SG}({ital B}{r arrow}0){approx}130, 120, and 110 K, respectively. The SG temperature {ital T}{sub SG}({ital B}) decreases with application of external magnetic field {ital B}. The ac susceptibility ({chi}{sub ac}) shows a sharp cusp at {ital T}{sub SG}({ital B}{approx}0). The isothermal and thermoremanent magnetization differ markedly and show temperature-dependent irreversibilities below {ital T}{sub SG}({ital B}). The Moessbauer spectra reveal onset of hyperfine splitting, indicating frozen spins below {ital T}{sub SG}(0). The neutron-diffraction studies of UFe{sub 4}Al{sub 8} and NpFe{sub 4}Al{sub 8} show that after switching off the external magnetic field greater than 3 T the U and Np momenta (2{ital a} site) are frozen parallel to the direction of the external field. We label the freezing temperature under high external fields {ital T}{sub OG}, and show that it serves as the upper limit of {ital T}{sub SG}({ital B}) with {ital T}{sub SG}({ital B}{r arrow}0){r arrow}{ital T}{sub OG}. For concentrated SG systems, {ital T}{sub SG}(0) is a reproducible value, independent of the observation time window, which indicates a true thermodynamic phase transition; the cusp in {chi}{sub ac}, however, is not necessarily a confirmation for the establishment of a SG state.

  12. Co-operativity among defect sites in AnO2+ and An4O9 (An = U, Np or Pu)

    SciTech Connect (OSTI)

    Andersson, Anders David; Lezama Pacheco, Juan; Uberuaga, Blas P; Conradson, Steven D

    2008-01-01

    Actinide dioxides derived from the AnO{sub 2} fluorite lattice are of high technological relevance due to their application in nuclear reactor fuels. Oxidation of AnO{sub 2} compounds emerges as a central theme in fuel fabrication, reactor operation, long-term storage forms for both spent fuels and surplus weapons materials, and environmental actinide migration. In this paper, we use density functional theory calculations to study the oxidation of uranium, neptunium and plutonium dioxides, AnO{sub 2} (An = U, Np or Pu), in O{sub 2} and O{sub 2}/H{sub 2}O environments. We pay particular attention to the formation of oxygen clusters (co-operativity) in AnO{sub 2+x} and how this phenomenon govern oxidation thermodynamics and the development of ordered An{sub 4}O{sub 9} compounds. The so-called split di-interstitial, which is composed of two nearest neighbor octahedral oxygen interstitials that are distorted in such a way that they dislocate one regular fluorite lattice oxygen ion to form a cluster of triangular geometry, is predicted to be the fundamental building block of the most stable cluster configurations. We also identify how the formation of oxygen defect clusters and the degree of oxidation in AnO{sub 2+x} are both governed by the characer of the An-5f to excess O-2p charger transfer, i.e. the charge transfer to the O-2p orbitals of the interstitial-like (+x) ions, and the ability of the excess O-2p orbitals to hybridize with regular fluorite lattice ions.

  13. Nuclear Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Forensics AMS is a Powerful Tool for Nuclear Forensics Nuclear forensics, which can be applied to both interdicted materials and debris from a nuclear explosion, is the application of laboratory analysis and interpretation to provide technical conclusions (provenance, design, etc.) about a nuclear device or interdicted nuclear material. Nuclear forensic analysts can build confidence in their conclusions by employing multiple signatures that collectively minimize the subset of possible

  14. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting registration web site PIA - HSPD-12 Physical and Logical Access System PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS

  15. Inertial Confinement Fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and scientific understanding in high energy density physics (HEDP) necessary to ensure a safe, secure, and effective nuclear weapons stockpile without underground testing. ...

  16. Edward Purcell and Nuclear Magnetic Resonance (NMR)

    Office of Scientific and Technical Information (OSTI)

    Edward Mills Purcell and Nuclear Magnetic Resonance (NMR) Resources with Additional Information Edward M. Purcell was awarded the 1952 Nobel Prize in Physics for his "development...

  17. Outage managment and health physics issue, 2008

    SciTech Connect (OSTI)

    Agnihotri, Newal (ed.)

    2008-05-15

    The focus of the May-June issue is on outage management and health physics. Major articles include: Outage optimization initiatives, by George B. Beam, AREVA NP, Inc.; New plant based on excellent track records, by Jim Scarola, Progress Energy; Meeting customer needs and providing environmental benefits, by Peter S. Hastings, Duke Energy; Plants with 3-D design, by Jack A. Bailey, Tennessee Valley Authority; and Highest quality with exceptional planning, by Jason A. Walls, Duke Energy. Industry innovation articles include: Integrated exposure reduction plan, by Ed Wolfe, Exelon; Performance-based radiation worker training, by Joe Giuffre and Timothy Vriezerma, American Electric Power.

  18. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics| NC-State Physics| UNC-Chapel Hill Physics| Graduate Education at TUNL - Students from Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill perform collaborative research on a wide variety of topics. There are approximately 40 graduate students conducting research projects on a wide variety of topics that include nuclear astrophysics, fundamental symmetries, neutrino physics, weak interactions, few-nucleon, sub-nucleon, and many-body

  19. Frontiers for Discovery in High Energy Density Physics

    SciTech Connect (OSTI)

    Davidson, R. C.; Katsouleas, T.; Arons, J.; Baring, M.; Deeney, C.; Di Mauro, L.; Ditmire, T.; Falcone, R.; Hammer, D.; Hill, W.; Jacak, B.; Joshi, C.; Lamb, F.; Lee, R.; Logan, B. G.; Melissinos, A.; Meyerhofer, D.; Mori, W.; Murnane, M.; Remington, B.; Rosner, R.; Schneider, D.; Silvera, I.; Stone, J.; Wilde, B.; Zajc. W.

    2004-07-20

    The report is intended to identify the compelling research opportunities of high intellectual value in high energy density physics. The opportunities for discovery include the broad scope of this highly interdisciplinary field that spans a wide range of physics areas including plasma physics, laser and particle beam physics, nuclear physics, astrophysics, atomic and molecular physics, materials science and condensed matter physics, intense radiation-matter interaction physics, fluid dynamics, and magnetohydrodynamics

  20. Planetary Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planetary Physics Some of the most intriguing NIF experiments test the physics believed to determine the structures of planets down to their cores, both in our solar system and ...

  1. Accelerator Mass Spectrometry | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Accelerator Mass Spectrometry at ANL and ORNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585

  2. Accelerators for Testing Radiation Tolerances of Electronics at TAMU | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Accelerators for Testing Radiation Tolerances of Electronics at TAMU Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown

  3. Atom Trap Trace Analysis at ANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Atom Trap Trace Analysis at ANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  4. Awake Animal Imaging at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Awake Animal Imaging at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613

  5. Beryllium-7 Implantation in Plastics for Prosthesis Wear Studies | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Beryllium-7 Implantation in Plastics for Prosthesis Wear Studies Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building

  6. Biomedical Instrumentation and Imaging at TJNAF | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Biomedical Instrumentation and Imaging at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  7. Boron-Nitride (BN) Nanotubes (BNNT) at TJNAF| U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Boron-Nitride (BN) Nanotubes (BNNT) at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington,

  8. Carbon Nanotubes and Nano-Structure Manufacturing at TJNAF | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Carbon Nanotubes and Nano-Structure Manufacturing at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000

  9. Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at LBNL | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown

  10. Diamond Amplified Photocathode at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Diamond Amplified Photocathode at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  11. Education of First Responders at Yale | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Education of First Responders at Yale Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  12. Electron cooling simulation software at BNL | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Electron cooling simulation software at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC

  13. Energy Recovered Light Source Technology at TJNAF | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  14. Energy Recovery Linac cavity at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Recovery Linac cavity at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613

  15. Free Electron Laser Program Program at TJNAF| U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Free Electron Laser Program Program at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington,

  16. Heavy-ion Accelerators for Testing Microelectronic Components at LBNL |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy

  17. High Current Energy Recovery Linac at BNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Current Energy Recovery Linac at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  18. High Performance Computing at TJNAF| U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Performance Computing at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  19. High Power Superconducting Continuous Wave Linacs for Protons and

    Office of Science (SC) Website

    Heavy-Ions| U.S. DOE Office of Science (SC) Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy

  20. High Purity Germanium Detectors at LBNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Purity Germanium Detectors at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  1. Ion Sources for High Energy Ion Implantation at BNL | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Ion Sources for High Energy Ion Implantation at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave.,

  2. Land Mine Detection at TJNAF | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Land Mine Detection at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613

  3. Low Energy Ion Implantationin Semiconductor Manufacturing | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000

  4. Magnetic Resonance Imaging at Princeton, UofV, and UNH | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Magnetic Resonance Imaging at Princeton, UofV, and UNH Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence

  5. Muon Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Muon Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F:

  6. Nasa Space Radiation Laboratory (NSRL) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nasa Space Radiation Laboratory (NSRL) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P:

  7. Precise Measurement of Strontium-82 Radioactivity in the Sr-Rb PET

    Office of Science (SC) Website

    Generator | U.S. DOE Office of Science (SC) Precise Measurement of Strontium-82 Radioactivity in the Sr-Rb PET Generator Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of

  8. Proton Radiography at LANL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Proton Radiography at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613

  9. Protons and Neutrons for Testing at LBNL | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Protons and Neutrons for Testing at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P:

  10. QCDOC -Quantum Chromodynamics on a Chip at BNL | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) QCDOC -Quantum Chromodynamics on a Chip at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington,

  11. Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Radioisotopes for Medical Diagnostics and Cancer Therapy at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building

  12. Silicon Photomultiplier Arrays at TJNAF| U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Silicon Photomultiplier Arrays at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P:

  13. Superconducting laser photocathode RF gun at BNL | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Superconducting laser photocathode RF gun at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  14. Nuclear spectroscopic studies. Progress report

    SciTech Connect (OSTI)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  15. Post detonation nuclear forensics

    SciTech Connect (OSTI)

    Davis, Jay

    2014-05-09

    The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

  16. Diabaticity of nuclear motion: problems and perspectives

    SciTech Connect (OSTI)

    Nazarewicz, W [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)] [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States)

    1992-12-31

    The assumption of adiabatic motion lies in foundations of many models of nuclear collective motion. To what extend can nuclear modes be treated adiabatically? Due to the richness and complexity of the nuclear many-body problem there is no unique answer to this question. The challenges of nuclear collective dynamics invite exciting interactions between several areas of physics such as nuclear structure, field theory, nonlinear dynamics, transport theory, and quantum chaos.

  17. Nuclear electromagnetic charge and current operators in Chiral EFT

    SciTech Connect (OSTI)

    Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori; Piarulli, Maria; Schiavilla, Rocco; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  18. nuclear security

    National Nuclear Security Administration (NNSA)

    3%2A en Shaping the future of nuclear detection http:nnsa.energy.govblogshaping-future-nuclear-detection

    Learning techniques to combat nuclear trafficking, touring the...

  19. Nuclear Science

    Energy Savers [EERE]

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  20. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solicitation for Proposals to Perform Nuclear Physics Research at the High Intensity Gamma Ray Source (HIGS) - 2016 Submission Deadline:: February 15, 2016 The HIGS PAC will meet at HIGS on March 7, 2016. This is the annual call for proposals for nuclear-physics experiments at the High Intensity Gamma-ray Source (HIGS). These proposals will be reviewed by the HIGS Program Advisory Committee (PAC). The review of proposals will take place on March 7, 2016. Experiments which are approved by the

  1. Physics Division annual review, April 1, 1988--March 31, 1989

    SciTech Connect (OSTI)

    Thayer, K.J.

    1989-08-01

    This document discusses the following main topics: Research at Atlas; Operation and Development of Atlas; Medium-Energy Nuclear Physics and Weak Interactions; Theoretical Nuclear Physics; Interactions of Fast Atomic and Molecular Ions with Solid and Gaseous Targets; Atomic Physics at Synchrotron Light Sources; Atomic Physics at Atlas and the ECR Source; Theoretical Atomic Physics; High-Resolution Laser-rf Spectroscopy of Atomic and Molecular Beams; and Fast Ion-Beam/Laser Studies of Atomic and Molecular Structure.

  2. Physics Division annual report, April 1, 1993--March 31, 1994

    SciTech Connect (OSTI)

    Thayer, K.J.; Henning, W.F.

    1994-08-01

    This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research.

  3. nuclear enterprise

    National Nuclear Security Administration (NNSA)

    Outlines Accomplishments in Stockpile Stewardship, Nuclear Nonproliferation, Naval Reactors and Managing the Nuclear Enterprise

    The...

  4. Physics division progress report for period ending September 30 1991

    SciTech Connect (OSTI)

    Livingston, A.B.

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  5. heu | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    heu NNSA deputy administrator travels to Ukraine Earlier this month, Deputy Administrator for Defense Nuclear Nonproliferation Anne Harrington traveled to Ukraine to celebrate the 20th anniversary of the Science and Technology Center in Ukraine (STCU) and visit the Neutron Source Facility at the Kharkiv Institute of Physics and Technology. The U... NNSA keeps the promises borne out of the Nuclear Security Summit On Thursday and Friday President Obama will host his fourth and final Nuclear

  6. Theoretical studies in nuclear reactions and nuclear structure. Progress report

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon`s mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon`s mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  7. Theoretical studies in nuclear reactions and nuclear structure

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. Hadrons in nuclear matter; the structure of hadrons; relativistic nuclear physics and heavy ion dynamics and related processes. The section on hadrons in nuclear matter groups together research items which are aimed at exploring ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. A very interesting result has been the finding that QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate, which characterizes spontaneous chiral symmetry breaking of the late QCD vacuum, decreases in nuclear matter and this is responsible for the decrease of the nucleon's mass. The section on the structure of hadrons contains progress reports on our research aimed at understanding the structure of the nucleon. Widely different approaches are being studied, e.g., lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. A major goal of this type of research is to develop appropriate links between nuclear physics and QCD. The section on relativistic nuclear physics represents our continuing interest in developing an appropriate relativistic framework for nuclear dynamics. A Lorentz-invariant description of the nuclear force suggests a similar decrease of the nucleon's mass in the nuclear medium as has been found from QCD sum rules. Work in progress extends previous successes in elastic scattering to inelastic scattering of protons by nuclei. The section on heavy ion dynamics and related processes reports on research into the e{sup +}e{sup {minus}} problem and heavy ion dynamics.

  8. Journal of Physical Chemistry A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical Chemistry A - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  9. nuclear | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nuclear Nuclear Science Week releases 2015 Impact Report and 2016 Request for Proposal Last week the Nuclear Science Week (NSW) National Steering Committee released its impact report from the 2015 event, detailing the many ways people were educated about all things nuclear as a result of the event. Nuclear Science Week is an international weeklong celebration to focus interest on... U.S-, Japan Exchange Best Practices on Nuclear Emergency Response Washington D.C.--The Department of Energy's

  10. Virtual nuclear weapons

    SciTech Connect (OSTI)

    Pilat, J.F.

    1997-08-01

    The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

  11. National Nuclear Physics Summer School (NNPSS) 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Labs Leading Charge on Building Better Batteries National Labs Leading Charge on Building Better Batteries September 26, 2011 - 12:36pm Addthis Berkeley Lab researchers have designed a new anode -- a key component of lithium ion batteries -- made from a "tailored polymer" (pictured above at right in purple). It has a greater capacity to store energy since it can conduct electricity itself rather than using a polymer binder (such as PVDF, pictured above at left in brown) in

  12. 2015 TUNL REU Nuclear Physics Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Hyper-K) is a proposed future neutrino experiment which could be constructed in Japan some time in the mid-2020s. Hyper-K would be a multipurpose water Cherenkov detector...

  13. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NuMat Technologies, Inc. National Clean Energy Business Plan Competition NuMat Technologies, Inc. Northwestern University NuMat Technologies, Inc is a cleantech spin-out that computationally designs and synthesizes high performing nanomaterials for gas storage and separation applications. NuMat is commercializing metal-organic frameworks (MOFs), a new kind of nanoporous material that will change how the world stores, transports, and separates gases. Because molecules of gas stick strongly to the

  14. DNP 2015: APS Division of Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Registration and Accommodation request The companion fee covers the reception and companions program that is held in parallel with the plenary session. Non-member registration is for non APS members who wish to attend the sessions or be a vendor at the meeting. DNP 2015 Registration fee schedule Date Members Non-Members Students/Unemployed Companion Before Sept. 2 $275 $600 $100 $50 After Sept. 2 $350 $700 $175 $60 On-Site $400 $800 $200 $75 Registration and hotel accommodations will be handled

  15. Princeton Plasma Physics Lab - Nuclear energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sicists-simulate-innovative-method-starting-tokamaks-without

  16. National Nuclear Physics Summer School (NNPSS) 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Network for Manufacturing Innovation National Network for Manufacturing Innovation Image of Energy Department's Assistant Secretary David Danielson standing at podium speaking in front of workshop participants. The National Network for Manufacturing Innovation (NNMI) is an interagency initiative made up of public/private partnerships devoted to manufacturing excellence. Under the NNMI, each institute will bring together innovative manufacturers, university engineering schools, community

  17. Nuclear Physics: User/Researcher Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advisors New User Checklist us citizen non-us-citizen us citizen Congratulations, you will be working with a student here at Jefferson Lab. We want to take the opportunity to share with you information on our safety culture and our expectations for you, since you will be providing routine supervision and oversight of the student's activities. Jefferson Lab Policy: Jefferson Lab considers no activity to be so urgent or important that we will compromise our standards for environmental protection,

  18. Physical Security Systems | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Announces 2014 Security Professional of the Year Awards Michael Lempke receives NNSA's Gold Medal of Excellence NNSA's Nevada Field Office Transfers Two Armored Vehicles to FBI...

  19. Interdisciplinary (General Engineer, Nuclear Engineer, Physical Scientist)

    Broader source: Energy.gov [DOE]

    The Office of Science manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science. In addition, the Office of Science is the...

  20. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Theoretical Physics Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email HEP Theory at Los Alamos The Theoretical High Energy Physics group at Los Alamos National Laboratory is active in a number of diverse areas of research. Their primary areas of interest are in physics beyond the Standard Model, cosmology, dark matter, lattice quantum chromodynamics, neutrinos, the fundamentals of

  1. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    SciTech Connect (OSTI)

    Klingensmith, A. L.

    2012-03-21

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nations verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  2. Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the universe around us. Physics Division researchers are studying these interactions from the outermost reaches of the cosmos, to the innermost confines of subatomic particles....

  3. physical security

    National Nuclear Security Administration (NNSA)

    5%2A en Physical Security Systems http:nnsa.energy.govaboutusourprogramsnuclearsecurityphysicalsecuritysystems

  4. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Their primary areas of interest are in physics beyond the Standard Model, cosmology, dark matter, lattice quantum chromodynamics, neutrinos, the fundamentals of quantum field ...

  5. Measurement of np elastic scattering spin-spin correlation parameters at 484, 634, and 788 MeV

    SciTech Connect (OSTI)

    Garnett, R.W.

    1989-03-01

    The spin-spin correlation parameters C/sub LL/ and C/sub SL/ were measured for np elastic scattering at the incident neutron kinetic energy of 634 MeV. Good agreement was obtained with previously measured data. Additionally, the first measurement of the correlation parameter C/sub SS/ was made at the three energies, 484, 634, and 788 MeV. It was found that the new values, in general, do not agree well with phase shift predictions. A study was carried out to determine which of the isospin-0 partial waves will be affected by this new data. It was found that the /sup 1/P/sub 1/ partial wave will be affected significantly at all three measurement energies. At 634 and 788 MeV, the /sup 3/S/sub 1/ phase shifts will also change. 29 refs., 21 figs., 16 tabs.

  6. Progress at LAMPF (Los Alamos Meson Physics Facility), January--December 1989

    SciTech Connect (OSTI)

    Poelakker, K.

    1990-12-01

    This report contains brief papers on research conducted at the lampf facility in the following areas: nuclear and particle physics; astrophysics; atomic and molecular physics; materials science; nuclear chemistry; radiation effects and radioisotope production.

  7. Primer on nuclear exchange models

    SciTech Connect (OSTI)

    Hafemeister, David

    2014-05-09

    Basic physics is applied to nuclear force exchange models between two nations. Ultimately, this scenario approach can be used to try and answer the age old question of 'how much is enough?' This work is based on Chapter 2 of Physics of Societal Issues: Calculations on National Security, Environment and Energy (Springer, 2007 and 2014)

  8. Nuclear Energy!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy Technical Assistance Nuclear Energy Technical Assistance "The United States will continue to promote the safe and secure use of nuclear power worldwide through a variety of bilateral and multilateral engagements. For example, the U.S. Nuclear Regulatory Commission advises international partners on safety and regulatory best practices, and the Department of Energy works with international partners on research and development, nuclear waste and storage, training, regulations,

  9. Recent advances in nuclear fission theory: pre- and post-scission...

    Office of Scientific and Technical Information (OSTI)

    Conference: Recent advances in nuclear fission theory: pre- and post-scission physics Citation Details In-Document Search Title: Recent advances in nuclear fission theory: pre- and ...

  10. Recent advances in nuclear fission theory: pre- and post-scission...

    Office of Scientific and Technical Information (OSTI)

    Recent advances in nuclear fission theory: pre- and post-scission physics Citation Details In-Document Search Title: Recent advances in nuclear fission theory: pre- and ...

  11. Nuclear Reaction Cross Sections Database at BNL | U.S. DOE Office...

    Office of Science (SC) Website

    advanced reactor and fuel cycle concepts, criticality safety, fusion, space applications, nuclear astrophysics and nuclear physic facility design. The ENDFB-VII.0 ...

  12. Safety Culture in the US Nuclear Regulatory Commission's Reactor Oversight Process

    Broader source: Energy.gov [DOE]

    Presenter: Undine Shoop, Chief, Health Physics and Human Performance Branch, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission

  13. International Nuclear Security

    SciTech Connect (OSTI)

    Doyle, James E.

    2012-08-14

    This presentation discusses: (1) Definitions of international nuclear security; (2) What degree of security do we have now; (3) Limitations of a nuclear security strategy focused on national lock-downs of fissile materials and weapons; (4) What do current trends say about the future; and (5) How can nuclear security be strengthened? Nuclear security can be strengthened by: (1) More accurate baseline inventories; (2) Better physical protection, control and accounting; (3) Effective personnel reliability programs; (4) Minimize weapons-usable materials and consolidate to fewer locations; (5) Consider local threat environment when siting facilities; (6) Implement pledges made in the NSS process; and (7) More robust interdiction, emergency response and special operations capabilities. International cooperation is desirable, but not always possible.

  14. SBIR STTR Exchange Mtg 2010 Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    0 Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information »

  15. SBIR STTR Exchange Mtg 2011 Presentations | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    1 Presentations Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information »

  16. ORISE: Capabilities in environmental assessments and health physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Science and Education (ORISE) provides environmental assessments and health physics services for the U.S. Department of Energy, the U.S. Nuclear Regulatory...

  17. Precision muon physics (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: FG02-97ER41020 Type: Publisher's Accepted Manuscript Journal Name: Progress in Particle and Nuclear Physics Additional Journal Information: Journal Volume: ...

  18. Proliferation Resistance and Physical Protection Evaluation Methodology Development and Applications

    SciTech Connect (OSTI)

    Bari,R.A.; Bari, R.; Peterson, P.; Therios, I.; Whitlock, J.

    2009-07-08

    An overview of the technical progress and accomplishments on the evaluation methodology for proliferation resistance and physical protection of Generation IV nuclear energy Systems.

  19. Emergency Response Health Physics

    SciTech Connect (OSTI)

    Mena, RaJah; Pemberton, Wendy; Beal, William

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review, and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.

  20. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Position in Fundamental Symmetries Postdoctoral Position in Fundamental Symmetries - North Carolina State University, Department of Physics The Experimental Nuclear Physics group at North Carolina State University solicits applications for a postdoctoral research associate to work with us on the SNS-based neutron electric dipole moment experiment. Applicants must have a Ph.D. in physics, astronomy, or a related field. Candidates having low temperature (<4 K) experience are