Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Defense Nuclear Nonproliferation DNN | Open Energy Information  

Open Energy Info (EERE)

Defense Nuclear Nonproliferation DNN Defense Nuclear Nonproliferation DNN Jump to: navigation, search Name DOE Defense Nuclear Nonproliferation (DNN) Place Washington, Washington, DC Zip 20585 Product String representation "Washington D.C. ... ear operations." is too long. Coordinates 38.89037°, -77.031959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89037,"lon":-77.031959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Nuclear Nonproliferation  

Science Conference Proceedings (OSTI)

With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

Atkins-Duffin, C E

2008-12-10T23:59:59.000Z

3

Reorganization bolsters nuclear nonproliferation capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of...

4

Nuclear Nonproliferation Program Offices | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

5

Nuclear Nonproliferation Program Offices | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nonproliferation Program Offices | National Nuclear Security Nonproliferation Program Offices | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear Nonproliferation Program Offices Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices Nuclear Nonproliferation Program Offices One of the gravest threats the United States and the international

6

Reorganization bolsters nuclear nonproliferation capability  

NLE Websites -- All DOE Office Websites (Extended Search)

Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of nuclear nonproliferation by combining two groups within its Global Security organization. June 27, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

7

Nonproliferation | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation Home > About Us > Our Programs > Nonproliferation Nonproliferation One of the gravest threats the United States and the international community face is the possibility that terrorists or rogue nations will acquire nuclear weapons or other weapons of mass destruction (WMD). NNSA,

8

Nonproliferation & International Security | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation & International Security | National Nuclear Security Nonproliferation & International Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation & International Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security Nonproliferation & International Security

9

Nonproliferation & International Security | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nonproliferation & International Security | National Nuclear Security Nonproliferation & International Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nonproliferation & International Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security Nonproliferation & International Security

10

Nuclear Nonproliferation Programs | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and development to 'boots-on-the-ground' implementation. This work ranges from uranium fuel cycle research to detection technologies and nuclear forensics. The nuclear...

11

Nuclear World Order and Nonproliferation  

SciTech Connect

The decision by India and Pakistan in May 1998 to conduct nuclear weapon tests and declare themselves as nuclear weapon states challenged South Asian regional stability calculations, US nonproliferation policy, and prevailing assumptions about international security. A decade later, the effects of those tests are still being felt and policies are still adjusting to the changed global conditions. This paper will consider non- and counter-proliferation policy options for the United States and Pakistan as they work as partners to prevent the transfer of nuclear technology and further nuclear proliferation.

Joeck, N

2007-02-05T23:59:59.000Z

12

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning...

13

BNL Nuclear Nonproliferation, Safeguards and Security (NNSS)  

NLE Websites -- All DOE Office Websites (Extended Search)

nonproliferation regime and U.S. programs and policies developed to meet the emerging nuclear proliferation threats to our security. The course will present students with critical...

14

Nonproliferation and National Security - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and Nonproliferation and National Security CAPABILITIES Overview Nuclear Systems Modeling and Design Analysis Nuclear Systems Technologies Risk and Safety Assessments Nonproliferation and National Security Materials Testing Engineering Computation & Design Engineering Experimentation Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Capabilities Nonproliferation and National Security Bookmark and Share Nuclear Export Controls Nuclear Exports Controls We provide technical advisory services to DOE in the implementation of U.S. nonproliferation policy. This includes assessments of proliferation risks presented by emerging technologies and

15

Nuclear Nonproliferation: Principal Associate Directorate for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nancy Jo Nicholas Administrator Peggy Maez Phone: 1-505-667-4877 Fax: 1-505-665-4078 Nuclear Nonproliferation The proliferation of nuclear weapons, either by nation-states or...

16

Administrator D'Agostino on Nuclear Forces and Nonproliferation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Forces and Nonproliferation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

17

Proactive Intelligence for Nuclear Nonproliferation  

Science Conference Proceedings (OSTI)

The project described in this paper leverages predictive models for proliferation detection in order to assess the complementary questions of capability and intent as they relate to the potential for nuclear weapon development. The ability to proactively assess the likelihood of a state to engage in nuclear power acquisition and development for non-peaceful purposes is one of the greatest challenges for analysts and policy makers working on proliferation detection and deterrence. Of further difficulty is determining whether a state is at risk to provide indirect support for proliferation via the relationship between industrial input/output and the legal framework of trade. In general, it is possible to gather evidence about precursor activities to the achieved nuclear potential of a state that function as indicators of the state's intent to acquire and develop capabilities to support nuclear weapons. Reasoning with these indicators to predict intent and capability to proliferate is of utmost importance to facilitate nuclear safeguards, e.g. through proactive implementation of countermeasures. Such a predictive reasoning task is difficult to perform without computational aid. While the need for a proactive and multi-perspective approach to proliferation detection is widely recognized, there is a lamentable lack of computational tools applied directly to the task. Applications of predictive modeling to the domain of nuclear nonproliferation are limited to physical/chemical properties of nuclear materials, such as nuclear weapons simulations and stockpile stewardship. The aim of this project is to address this gap by leveraging methods and data from different mission areas in support of proliferation detection and prevention in innovative ways. More specifically, the approach implemented in this project combines methods in information analysis and probabilistic evidentiary reasoning with expert knowledge from discipline areas germane to proliferation detection, and evidence extracted from relevant data sources, to assess alternative hypotheses about specific proliferation detection problems.

Peterson, Danielle J.; Sanfilippo, Antonio P.; Baddeley, Robert L.; Franklin, Lyndsey

2008-05-12T23:59:59.000Z

18

NBL Nuclear Safeguards and Nonproliferation Support  

NLE Websites -- All DOE Office Websites (Extended Search)

NBL Nuclear Safeguards and Nonproliferation Support New Brunswick Laboratory (NBL) is owned and operated by the U.S. Department of Energy (DOE). NBL is the U.S. Government's...

19

Nonproliferation Graduate Fellowship Program Annual Report: Class of 2011  

Science Conference Proceedings (OSTI)

Annual report for the Nonproliferation Graduate Fellowship Program (NGFP), which PNNL administers for the National Nuclear Security Administration (NNSA). Features the Class of 2011. The NGFP is a NNSA program with a mission to cultivate future technical and policy leaders in nonproliferation and international security. Through the NGFP, outstanding graduate students with career interests in nonproliferation are appointed to program offices within the Office of Defense Nuclear Nonproliferation (DNN). During their one-year assignment, Fellows participate in programs designed to detect, prevent, and reverse the proliferation of nuclear weapons.

McMakin, Andrea H.

2012-08-20T23:59:59.000Z

20

Nuclear Security & Nonproliferation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety » Nuclear Security & Safety » Nuclear Security & Nonproliferation Nuclear Security & Nonproliferation Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy and National Nuclear Security Administration’s effort to assist Japanese personnel with nuclear issues related to the Fukushima nuclear power plant. Above, scientists, technicians and engineers from the National Nuclear Security Administration’s Nevada Site Office board an Air Force C-17. | Photo courtesy of NNSA. Highly trained nuclear emergency response personnel and more than 17,000 pounds of equipment were sent to Japan as part of the Department of Energy

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2011 Annual Planning Summary for Defense Nuclear Nonproliferation (NA-20)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within Defense Nuclear Nonproliferation (NA-20).

22

Nonproliferation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear...

23

Nonproliferation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

24

Nonproliferation | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

and will continue to work cooperatively with Russia to ensure the long-term sustainability of the systems and procedures already in place. However, not all nuclear material...

25

Nuclear Deterrence in the Age of Nonproliferation  

Science Conference Proceedings (OSTI)

The fallacy of zero nuclear weapons, even as a virtual goal, is discussed. Because the complete abolition of nuclear weapons is not verifiable, nuclear weapons will always play a role in the calculus of assure, dissuade, deter and defeat (ADDD). However, the relative contribution of nuclear weapons to international security has diminished. To reconstitute the Cold War nuclear capability, with respect to both the nuclear weapons capability and their associated delivery systems, is fiscally daunting and not warranted due to competing budgetary pressures and their relative contribution to international security and nonproliferation. A proposed pathway to a sustainable nuclear weapons capability end-state is suggested which provides enough ADDD; a Dyad composed of fewer delivery and weapon systems, with trickle production at the National Laboratories and private sector to maintain capability and guard against technological surprise.

Richardson, J

2009-01-21T23:59:59.000Z

26

FINAL (PNNL-20432) Nuclear Nonproliferation and Arms Control Primer  

E-Print Network (OSTI)

.g., North Korea, Pakistan). Fissile materials, nuclear reactors, reprocessing and enrichment technologyFINAL (PNNL-20432) 1 Nuclear Nonproliferation and Arms Control Primer Prepared for the Blue Ribbon Commission on America's Nuclear Future Although the list of U.S. nuclear nonproliferation and arms control

27

Workshop on nuclear power growth and nonproliferation  

Science Conference Proceedings (OSTI)

It is widely viewed that an expansion of nuclear power would have positive energy, economic and environmental benefits for the world. However, there are concerns about the economic competitiveness, safety and proliferation and terrorism risks of nuclear power. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security. In his Prague speech, President Obama stated: 'we should build a new framework for civil nuclear cooperation, including an international fuel bank, so that countries can access peaceful power without increasing the risks of proliferation. That must be the right of every nation that renounces nuclear weapons, especially developing countries embarking on peaceful programs. And no approach will succeed if it's based on the denial of rights to nations that play by the rules. We must harness the power of nuclear energy on behalf of our efforts to combat climate change, and to advance peace opportunity for all people.' How can the President's vision, which will rekindle a vigorous public debate over the future of nuclear power and its relation to proliferation, be realized? What critical issues will frame the reemerging debate? What policies must be put into place to address these issues? Will US policy be marked more by continuity or change? To address these and other questions, the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars will host a workshop on the future of nuclear power and nonproliferation.

Pilat, Joseph F [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

28

Nuclear Nonproliferation Ontology Assessment Team Final Report  

SciTech Connect

Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importance of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.

Strasburg, Jana D.; Hohimer, Ryan E.

2012-01-01T23:59:59.000Z

29

Nuclear Nonproliferation Ontology Assessment Team Final Report  

SciTech Connect

Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importance of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.

Strasburg, Jana D.; Hohimer, Ryan E.

2012-01-01T23:59:59.000Z

30

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific

31

EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18: Proposed Nuclear Weapons Nonproliferation Policy 18: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel EIS-0218: Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel SUMMARY This study analyzes the potential environmental impacts of adopting a policy to manage foreign research reactor spent nuclear fuel containing uranium enriched in the United States. In particular, the study examines the comparative impacts of several alternative approaches to managing the spent fuel. The analysis demonstrates that the impacts on the environmental, workers and the general public of implementing any of the alternative management approaches would be small and within applicable Federal and state regulator limits. PUBLIC COMMENT OPPORTUNITIES

32

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific  

National Nuclear Security Administration (NNSA)

Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Steve Mladineo Senior Adviser, Defense Nuclear Nonproliferation Programs Sector, Pacific

33

Nonproliferation and National Security Program - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Major Programs > Nonproliferation and Major Programs > Nonproliferation and National Security Program Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nonproliferation and National Security Program (NPNS)

34

Nuclear Nonproliferation Treaty | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

35

Systems resilience : a new analytical framework for nuclear nonproliferation.  

Science Conference Proceedings (OSTI)

This paper introduces the concept of systems resilience as a new framework for thinking about the future of nonproliferation. Resilience refers to the ability of a system to maintain its vital functions in the face of continuous and unpredictable change. The nonproliferation regime can be viewed as a complex system, and key themes from the literature on systems resilience can be applied to the nonproliferation system. Most existing nonproliferation strategies are aimed at stability rather than resilience, and the current nonproliferation system may be over-constrained by the cumulative evolution of strategies, increasing its vulnerability to collapse. The resilience of the nonproliferation system can be enhanced by diversifying nonproliferation strategies to include general international capabilities to respond to proliferation and focusing more attention on reducing the motivation to acquire nuclear weapons in the first place. Ideas for future research, include understanding unintended consequences and feedbacks among nonproliferation strategies, developing methodologies for measuring the resilience of the nonproliferation system, and accounting for interactions of the nonproliferation system with other systems on larger and smaller scales.

Pregenzer, Arian Leigh

2011-12-01T23:59:59.000Z

36

Administrator D'Agostino on Nuclear Forces and Nonproliferation | National  

National Nuclear Security Administration (NNSA)

Nuclear Forces and Nonproliferation | National Nuclear Forces and Nonproliferation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Administrator D'Agostino on Nuclear Forces and Nonproliferation Speech Administrator D'Agostino on Nuclear Forces and Nonproliferation Oct 28, 2010 As prepared for delivery at the Woodrow Wilson International Center for

37

Milan Document on Nuclear Disarmament and Non-Proliferation  

E-Print Network (OSTI)

Delhi on the project was a separate issue from India's avoidance of the nuclear Non-proliferation Treaty, she said. "There is the non-proliferation issue and we are pursuing that with the Indians as part despite its refusal to sign a global treaty barring the spread of atomic weapons. That move was seen

De Cindio, Fiorella

38

Science and society test V: Nuclear nonproliferation  

Science Conference Proceedings (OSTI)

Numerical estimates are carried out on questions affecting the nations nonproliferation policy. We have considered some aspects of thermal recycle

David W. Hafemeister

1980-01-01T23:59:59.000Z

39

Neutron Sensors and Their Role in Nuclear Nonproliferation  

Science Conference Proceedings (OSTI)

Perhaps the most familiar application of neutron detection technology to nonproliferation resides in materials accounting, where the quantification of plutonium has a rich history. With a changing dynamic in nuclear security, the application of sensor technology to further other nonproliferation objectives has received considerable attention. This fact, amplified by a dwindling supply of 3He, has stimulated considerable interest in neutron detection technology development for applications ranging from interdicting smuggled nuclear material to the verification of stockpile reductions. This manuscript briefly overviews the application of neutron sensors to nonproliferation and examines three specific examples that highlight the constraints applied to field-deployed technology.

Runkle, Robert C.

2011-10-04T23:59:59.000Z

40

FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval  

NLE Websites -- All DOE Office Websites (Extended Search)

on Nuclear Nonproliferation and Naval on Nuclear Nonproliferation and Naval Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > FY 2012 Budget Hearing Testimony on Nuclear ...

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

42

FY 2012 Budget Hearing Testimony on Nuclear Nonproliferation and Naval  

National Nuclear Security Administration (NNSA)

on Nuclear Nonproliferation and Naval on Nuclear Nonproliferation and Naval Reactor Programs before the House Appropriations Committee, Energy and Water Development Subcommittee | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > FY 2012 Budget Hearing Testimony on Nuclear ...

43

Statement on Defense Nuclear Nonproliferation and Naval Reactors Activities  

National Nuclear Security Administration (NNSA)

Defense Nuclear Nonproliferation and Naval Reactors Activities Defense Nuclear Nonproliferation and Naval Reactors Activities before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Congressional Testimony > Statement on Defense Nuclear

44

Nonproliferation Human Capital Development in Malaysia | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Human Capital Development in Malaysia | National Nuclear Human Capital Development in Malaysia | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Nonproliferation Human Capital Development in Malaysia Nonproliferation Human Capital Development in Malaysia Posted By NNSA Public Affairs NNSA Blog Photo Credit: National University of Malaysia

45

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970). Prevent the spread of nuclear and eliminate nuclear weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) entersPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle

Gilfoyle, Jerry

46

Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation  

E-Print Network (OSTI)

NERS Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation detection and characterization for nuclear nonproliferation

Eustice, Ryan

47

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1

Gilfoyle, Jerry

48

Nonproliferation through delegation  

E-Print Network (OSTI)

C. Frank. 1969. Nonproliferation Negotiations, 1961-1968. InCooperation on Nonproliferation Export Controls. Ann Arbor,to the nuclear nonproliferation regime. International

Brown, Robert Louis

2008-01-01T23:59:59.000Z

49

Nonproliferation Policy | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

50

Keeping the atom's club exclusive:- the nuclear non-proliferation regime, 1945-2007.  

E-Print Network (OSTI)

??This thesis examines the development of nuclear non-proliferation policies since 1945. It takes the reader from the first conception of plans for nuclear disarmament, to (more)

Bar, Allon

2007-01-01T23:59:59.000Z

51

The future of the Non-Proliferation Treaty and U.S. nuclear weapons policy .  

E-Print Network (OSTI)

??This thesis addresses the viability of the Treaty on the Non-Proliferation of Nuclear Weapons NPT for short in light of U.S. nuclear weapons (more)

Claussen, Bjrn Ragnar

2008-01-01T23:59:59.000Z

52

MCNPX-PoliMi for Nuclear Nonproliferation Applications  

Science Conference Proceedings (OSTI)

In the past few years, efforts to develop new measurement systems to support nuclear nonproliferation and homeland security have increased substantially. Monte Carlo radiation transport is one of the simulation methods of choice for the analysis of data from existing systems and for the design of new measurement systems; it allows for accurate description of geometries, detailed modeling of particle-nucleus interactions, and event-by-event detection analysis. This paper describes the use of the Monte Carlo code MCNPX-PoliMi for nuclear-nonproliferation applications, with particular emphasis on the simulation of spontaneous and neutron-induced nuclear fission. In fact, of all possible neutron-nucleus interactions, neutron-induced fission is the most defining characteristic of special nuclear material (such as U-235 and Pu-239), which is the material of interest in nuclear-nonproliferation applications. The MCNP-PoliMi code was originally released from the Radiation Safety Shielding Center (RSSIC) at Oak Ridge National Laboratory in 2003 [1]; the MCNPX-PoliMi code contains many enhancements and is based on MCNPX ver. 2.7.0. MCNPX-PoliMi ver. 2.0 was released through RSICC in 2012 as a patch to MCNPX ver. 2.7.0 and as an executable [2].

S. A. Pozzi; S. D. Clarke; W. Walsh; E. C. Miller; J. Dolan; M. Flaska; B. M. Wieger; A. Enqvist; E. Padovani; J. K. Mattingly; D. L. Chichester; P. Peerani

2012-12-01T23:59:59.000Z

53

Integration of Facility Modeling Capabilities for Nuclear Nonproliferation Analysis  

Science Conference Proceedings (OSTI)

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Humberto E. Garcia

2012-01-01T23:59:59.000Z

54

INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS  

SciTech Connect

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

2011-07-18T23:59:59.000Z

55

Integration of facility modeling capabilities for nuclear nonproliferation analysis  

SciTech Connect

Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

Garcia, Humberto [Idaho National Laboratory (INL); Burr, Tom [Los Alamos National Laboratory (LANL); Coles, Garill A [ORNL; Edmunds, Thomas A. [Lawrence Livermore National Laboratory (LLNL); Garrett, Alfred [Savannah River National Laboratory (SRNL); Gorensek, Maximilian [Savannah River National Laboratory (SRNL); Hamm, Luther [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Tzanos, Constantine P [ORNL; Ward, Richard C [ORNL

2012-01-01T23:59:59.000Z

56

Nuclear Nonproliferation | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

matter experts who secure vulnerable materials around the world (including from Libya, pictured), Y-12 is leveraging its expertise to prevent the proliferation of nuclear weapons...

57

Nuclear Security & Nonproliferation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Taste Like? At Sandia National Laboratories, researchers have developed pods that can survey and "taste" radioactive particles without exposing a human crew to nuclear hazards....

58

Principal Deputy Administrator for Defense Nuclear Nonproliferation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enrichment for Research and Test Reactors in Lisbon, Portugal | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering...

59

Assessing the Institution of the Nuclear Nonproliferation Regime  

Science Conference Proceedings (OSTI)

The nuclear nonproliferation regime is facing a crisis of effectiveness. During the Cold War, the regime was relatively effective in stemming the proliferation of nuclear weapons and building an institutional structure that could, under certain conditions, ensure continued success. However, in the evolving global context, the traditional approaches are becoming less appropriate. Globalization has introduced new sets of stresses on the nonproliferation regime, such as the rise of non-state actors, broadening extensity and intensity of supply chains, and the multipolarization of power. This evolving global context demands an analytical and political flexibility in order to meet future threats. Current institutional capabilities established during the Cold War are now insufficient to meet the nonproliferation regimes current and future needs. The research was based on information gathered through interviews and reviews of the relevant literature, and two dominant themes emerged. First, that human security should be integrated into the regime to account for the rise of non-state actors and networked violence. Second, confidence in the regimes overall effectiveness has eroded at a time where verification-based confidence is becoming more essential. The research postulates that a critical analysis of the regime that fully utilizes institutional theory, with its focus on rules, normative structures, and procedures will be essential to adapting the regime to the current global context, building mechanisms for generating trust, creating better enforcement, and providing flexibility for the future.

Toomey, Christopher

2010-05-14T23:59:59.000Z

60

Nonproliferation Graduate Program | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

the United States Senate Committee on Armed Services Sep 17, 2013 NNSA, Republic of Korea Ministry Agree to Minimize Use of HEU in Nuclear Reactors Sep 3, 2013 NNSA Conducts...

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The international nuclear non-proliferation system: Challenges and choices  

SciTech Connect

When a topic has been under discussion for almost 40 years there is a danger that the literature will become excessively esoteric and that, as Philip Grummett suggests, '...a new scholasticism will arise' (p.79). Originating in a November l982 seminar co-sponsored by the British International Studies Association and the Foreign and Commonwealth Office, this volume is a refreshing, well conceived, and well written antidote to that trend. It is also well timed for the 1985 NPT Review Conference. The eight chapters of the volume are divided into three sections. Following an introduction by Anthony McGrew that touches on all the major themes of the volume, the first section deals with the existing non-proliferation system. In three chapters the historical, institutional and policy-making elements of the present system are outlined. There is a vignette on the Nuclear Suppliers Group in Wilmshurst's chapter one (pp. 28-33). Fischer's informative chapter on the IAEA is followed by Gummett's examination of policy options, including, for example, the linking of conventional weapons transfer to non-proliferation policies. The second section, also of three chapters, examines current issues: the state of the international nuclear industry, and the non-proliferation policies of the United States and Britain. Walker's chapter focuses chiefly on change in the industry-from monopoly to pluralism in suppliers, the effect of the economic recession, and the combined effect of these two factors on international politics. Devine's American non-proliferation chapter is a statement of the State Department view, whilst Keohane's chapter on Britain attempts to put the Trident procurement into a proliferation context. The British chapter is present because of ethnocentric considerations.

Simpson, J.; McGrew, A.G.

1984-01-01T23:59:59.000Z

62

Nonproliferation through delegation  

E-Print Network (OSTI)

American Draft Non-proliferation Treaty: Will it Work? Ins) NPT: Nuclear Non-Proliferation Treaty NWS: Nuclear Weaponon the Nuclear Non-Proliferation Treaty (NPT) and since its

Brown, Robert Louis

2008-01-01T23:59:59.000Z

63

Politics and the bomb: exploring the Role of epistemic communities in nuclear non-proliferation outcomes.  

E-Print Network (OSTI)

??The role of epistemic communities in influencing policy formulation is underexplored in International Relations theory in general and in nuclear non-proliferation studies in particular. This (more)

Kutchesfahani, S.Z.

2010-01-01T23:59:59.000Z

64

2012 Annual Planning Summary for NNSA Defense Nuclear NonProliferation  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the NNSA Defense Nuclear NonProliferation.

65

Nonproliferation through delegation  

E-Print Network (OSTI)

Kotter. 1994. Nuclear Non- Proliferation and Global Order,1981. Supply-Side Non-Proliferation. Foreign Policy 42:125-about Nuclear Non-Proliferation. International Affairs (

Brown, Robert Louis

2008-01-01T23:59:59.000Z

66

Putting the Genie Back in the Bottle: Nuclear Non-Proliferation in the New  

E-Print Network (OSTI)

/11 CTBT Comprehensive Test Ban Treaty Not supported by administration. No change. NPT Non-Proliferation influence on US security and non-proliferation. · One of the highest hurdles to obtaining a nuclear weapon Proliferation, Science and Global Security, 9, 81 (2001). #12;The Nuclear Tagging Scheme #12;Seize New

Gilfoyle, Jerry

67

Nuclear Fuel Cycle Reasoner: PNNL FY12 Report  

SciTech Connect

Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

2013-05-03T23:59:59.000Z

68

Securing special nuclear material: Recent advances in neutron detection and their role in nonproliferation  

Science Conference Proceedings (OSTI)

Neutrondetection is an integral part of the global effort to prevent the proliferation of special nuclear material (SNM). Applications relying on neutron-detection technology range from traditional nuclear nonproliferation objectives

R. C. Runkle; A. Bernstein; P. E. Vanier

2010-01-01T23:59:59.000Z

69

Nuclear Safeguards and Nonproliferation Support | U.S. DOE Office of  

Office of Science (SC) Website

Nuclear Safeguards and Nonproliferation Support Nuclear Safeguards and Nonproliferation Support New Brunswick Laboratory (NBL) NBL Home About Programs Certified Reference Materials Program Measurement Evaluation Nuclear Safeguards and Nonproliferation Support Measurement Services Measurement Development Training Certified Reference Materials (CRMs) Training Categorical Exclusion Determinations News Contact Information New Brunswick Laboratory U.S. Department of Energy Building 350 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL) P: (630) 252-2767 (CRM sales) F: (630) 252-6256 E: usdoe.nbl@ch.doe.gov Programs Nuclear Safeguards and Nonproliferation Support Print Text Size: A A A RSS Feeds FeedbackShare Page New Brunswick Laboratory (NBL) is owned and operated by the U.S. Department of Energy (DOE). NBL is the U.S. Government's Certifying Authority for

70

Integration of facility modeling capabilities for nuclear nonproliferation analysis  

Science Conference Proceedings (OSTI)

Developing automated methods for data collection and analysis that can facilitate nuclearnonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facilitymodeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facilitymodeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facilitymodelingcapabilities and illustrates how they could be integrated and utilized for nonproliferationanalysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facilitymodeling tools. After considering a representative sampling of key facilitymodelingcapabilities, the proposed integration framework is illustrated with several examples.

Burr, Tom [Los Alamos National Laboratory (LANL); Gorensek, M. B. [Savannah River National Laboratory (SRNL); Krebs, John [Argonne National Laboratory (ANL); Kress, Reid L [ORNL; Lamberti, Vincent [Y-12 National Security Complex; Schoenwald, David [ORNL; Ward, Richard C [ORNL

2012-01-01T23:59:59.000Z

71

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Statement on Future U.S.-Russia Nuclear Energy and Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States December 10, 2013 - 2:30pm Addthis News Media Contact (202) 586-4940 U.S. Secretary of Energy Ernest Moniz and State Corporation for Nuclear Energy (Rosatom) Director General Sergey Kirienko today held talks in Washington, D.C., about the future of U.S.-Russia collaborative work in the nuclear energy field, including nuclear research and development, commercial aspects of cooperation, nuclear safety, and nonproliferation. The meeting coincided with the arrival of the final shipment of low

72

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test BanPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

73

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. TestingPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

74

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The TestPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

75

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

to IAEA inspectors and withdrawal from the Non-Proliferation Treaty are evidence of an active and advanced proliferation of nuclear weapons. The first conclusion is that proliferation is easy and inevitable. The second-backed conventional attacks on non-nuclear states which are not securely under a great power's nuclear umbrella

Gilfoyle, Jerry

76

Rethinking the Offer: The Impact on Nuclear Non-Proliferation of Providing North Korea or Iran with Light Water Reactors.  

E-Print Network (OSTI)

??This paper examines the impact on nuclear non-proliferation efforts of providing the DPRK and Iran with light water reactors (LWRs). I argue that LWRs in (more)

Lee, Eun Joo

2009-01-01T23:59:59.000Z

77

Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors` spent fuel  

SciTech Connect

One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE`s Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE`s efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE`s activities in taking back spent fuel.

1994-03-25T23:59:59.000Z

78

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume VII. International perspectives  

SciTech Connect

The purpose of this volume is to assess the proliferation vulnerabilities of the present deployment of civilian nuclear-power systems within the current nonproliferation regime and, in light of their prospective deployment, to consider technical and institutional measures and alternatives which may contribute to an improved regime in which nuclear power could play a significant part. An assessment of these measures must include consideration of their nonproliferation effectiveness as well as their bearing upon energy security, and their operational, economic, and political implications. The nature of these considerations can provide some measure of their likely acceptability to various nations.

Not Available

1980-06-01T23:59:59.000Z

79

2010 Annual Planning Summary for Defense Nuclear Nonproliferation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Planning Summary for National Nuclear Security Administration Service Center (NNSA-SC) 2010 Annual Planning Summary for Nuclear Energy (NE) Energy.gov Careers & Internships...

80

Some thoughts on the nonproliferation of nuclear weapons  

Science Conference Proceedings (OSTI)

This paper discusses factors controlling the dissemination of nuclear technologies and especially fissile materials.

Krikorian N.H.; Hawkins, H.T.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear Nonproliferation and Arms Control Primer Prepared for the Blue Ribbon Commission on Americas Nuclear Future  

Science Conference Proceedings (OSTI)

To provide a brief overview of key arms control and nonproliferation arrangements for the layperson that may be relevant to the Commission's comprehensive review of policies for managing the back end of the nuclear fuel cycle. Primer would be published by the Commission and made publicly available, probably as an appendix to a larger Commission report.

Williams, Laura S.

2011-05-25T23:59:59.000Z

82

AN ANALYTICAL FRAMEWORK FOR ASSESSING RELIABLE NUCLEAR FUEL SERVICE APPROACHES: ECONOMIC AND NON-PROLIFERATION MERITS OF NUCLEAR FUEL LEASING  

Science Conference Proceedings (OSTI)

The goal of international nuclear policy since the dawn of nuclear power has been the peaceful expansion of nuclear energy while controlling the spread of enrichment and reprocessing technology. Numerous initiatives undertaken in the intervening decades to develop international agreements on providing nuclear fuel supply assurances, or reliable nuclear fuel services (RNFS) attempted to control the spread of sensitive nuclear materials and technology. In order to inform the international debate and the development of government policy, PNNL has been developing an analytical framework to holistically evaluate the economics and non-proliferation merits of alternative approaches to managing the nuclear fuel cycle (i.e., cradle-to-grave). This paper provides an overview of the analytical framework and discusses preliminary results of an economic assessment of one RNFS approach: full-service nuclear fuel leasing. The specific focus of this paper is the metrics under development to systematically evaluate the non-proliferation merits of fuel-cycle management alternatives. Also discussed is the utility of an integrated assessment of the economics and non-proliferation merits of nuclear fuel leasing.

Kreyling, Sean J.; Brothers, Alan J.; Short, Steven M.; Phillips, Jon R.; Weimar, Mark R.

2010-08-11T23:59:59.000Z

83

Superconducting calorimetric alpha particle sensors for nuclear nonproliferation applications  

Science Conference Proceedings (OSTI)

Identification of trace nuclear materials is usually accomplished by alpha spectrometry. Current detectors cannot distinguish critical elements and isotopes. We have developed a detector called a microcalorimeter

Robert D. Horansky; Joel N. Ullom; James A. Beall; Gene C. Hilton; Kent D. Irwin; Donald E. Dry; Elizabeth P. Hastings; Stephen P. Lamont; Clifford R. Rudy; Michael W. Rabin

2008-01-01T23:59:59.000Z

84

The Nuclear Non-Proliferation Treaty and regime theories .  

E-Print Network (OSTI)

??Since the beginning of the atomic age, nuclear weapons proliferation has been on of the major security issues facing the international society, and a growing (more)

Sndenaa, Erik

2008-01-01T23:59:59.000Z

85

The Los Alamos nuclear safeguards and nonproliferation technology development program  

SciTech Connect

For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

1994-04-01T23:59:59.000Z

86

Record of Decision for the Final EIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5091 5091 Friday May 17, 1996 Part IV Department of Energy Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel; Notice 25092 Federal Register / Vol. 61, No. 97 / Friday, May 17, 1996 / Notices DEPARTMENT OF ENERGY Record of Decision for the Final Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: DOE, in consultation with the Department of State, has decided to implement a new foreign research reactor spent fuel acceptance policy as specified in the Preferred Alternative contained in the Final Environmental Impact Statement on a Proposed

87

Changing Perspectives on Nonproliferation and Nuclear Fuel Cycles  

SciTech Connect

The concepts of international control over technologies and materials in the proliferation sensitive parts of the nuclear fuel cycle, specifically those related to enrichment and reprocessing, have been the subject of many studies and initiatives over the years. For examples: the International Fissionable Material Storage proposal in President Eisenhower's Speech on Atoms for Peace, and in the Charter of the International Atomic Energy Agency (IAEA) when the organization was formed in 1957; the regional nuclear fuel cycle center centers proposed by INFCE in the 80's; and most recently and notably, proposals by Dr. ElBaradei, the Director General of IAEA to limit production and processing of nuclear weapons usable materials to facilities under multinational control; and by U.S. President George W. Bush, to limit enrichment and reprocessing to States that have already full scale, functioning plants. There are other recent proposals on this subject as well. In this paper, the similarities and differences, as well as the effectiveness and challenges in proliferation prevention of these proposals and concepts will be discussed. The intent is to articulate a ''new nuclear regime'' and to develop concrete steps to implement such regime for future nuclear energy and deployment.

Choi, J; Isaacs, T H

2005-03-29T23:59:59.000Z

88

A Role for Industry in Promoting Nuclear Security and Nonproliferation  

SciTech Connect

Industry has a unique opportunity and critical role to play in strengthening governmental efforts to prevent the spread of nuclear, radiological, and dual-use materials and technologies that could be used in a nuclear or radiological weapon. Governmental regulations and policies are in effect at both the national and international levels to inhibit access to such materials and technologies by illegitimate end-users. However, the discovery of an illegal nuclear network, spearheaded by Pakistani scientist A Q Khan, increased international concern about what more could be done to prevent proliferation. Industry is well-poised and has a strong incentive to take a more proactive role to complement existing governmental efforts. Companies can be a tremendous help in ensuring that illicit diversions do not occur by increasing their oversight over the supply chain.

Hund, Gretchen; Seward, Amy M.; Elkhamri, Oksana O.

2009-11-01T23:59:59.000Z

89

Economic and Nonproliferation Analysis Framework for Assessing Reliable Nuclear Fuel Service Arrangements  

Science Conference Proceedings (OSTI)

Nuclear power is now broadly recognized as an essential technology in national strategies to provide energy security while meeting carbon management goals. Yet a long standing conundrum remains: how to enable rapid growth in the global nuclear power infrastructure while controlling the spread of sensitive enrichment and reprocessing technologies that lie at the heart of nuclear fuel supply and nuclear weapons programs. Reducing the latent proliferation risk posed by a broader horizontal spread of enrichment and reprocessing technology has been a primary goal of national nuclear supplier policies since the beginning of the nuclear power age. Attempts to control the spread of sensitive nuclear technology have been the subject of numerous initiatives in the intervening decades sometimes taking the form of calls to develop fuel supply and service assurances to reduce market pull to increase the number of states with fuel cycle capabilities. A clear understanding of what characteristics of specific reliable nuclear fuel service (RNFS) and supply arrangements qualify them as 'attractive offers' is critical to the success of current and future efforts. At a minimum, RNFS arrangements should provide economic value to all participants and help reduce latent proliferation risks posed by the global expansion of nuclear power. In order to inform the technical debate and the development of policy, Pacific Northwest National Laboratory has been developing an analytical framework to evaluate the economics and nonproliferation merits of alternative approaches to RNFS arrangements. This paper provides a brief overview of the economic analysis framework developed and applied to a model problem of current interest: full-service nuclear fuel leasing arrangements. Furthermore, this paper presents an extended outline of a proposed analysis approach to evaluate the non-proliferation merits of various RNFS alternatives.

Phillips, Jon R.; Kreyling, Sean J.; Short, Steven M.; Weimar, Mark R.

2010-04-14T23:59:59.000Z

90

Supporting the President's Arms Control and Nonproliferation Agenda: Transparency and Verification for Nuclear Arms Reductions  

Science Conference Proceedings (OSTI)

The President's arms control and nonproliferation agenda is still evolving and the details of initiatives supporting it remain undefined. This means that DOE, NNSA, NA-20, NA-24 and the national laboratories can help define the agenda, and the policies and the initiatives to support it. This will require effective internal and interagency coordination. The arms control and nonproliferation agenda is broad and includes the path-breaking goal of creating conditions for the elimination of nuclear weapons. Responsibility for various elements of the agenda will be widely scattered across the interagency. Therefore an interagency mapping exercise should be performed to identify the key points of engagement within NNSA and other agencies for creating effective policy coordination mechanisms. These can include informal networks, working groups, coordinating committees, interagency task forces, etc. It will be important for NA-20 and NA-24 to get a seat at the table and a functional role in many of these coordinating bodies. The arms control and nonproliferation agenda comprises both mature and developing policy initiatives. The more mature elements such as CTBT ratification and a follow-on strategic nuclear arms treaty with Russia have defined milestones. However, recent press reports indicate that even the START follow-on strategic arms pact that is planned to be complete by the end of 2009 may take significantly longer and be more expansive in scope. The Russians called for proposals to count non-deployed as well as deployed warheads. Other elements of the agenda such as FMCT, future bilateral nuclear arms reductions following a START follow-on treaty, nuclear posture changes, preparations for an international nuclear security summit, strengthened international safeguards and multilateral verification are in much earlier stages of development. For this reason any survey of arms control capabilities within the USG should be structured to address potential needs across the near-term (1-4) years and longer-term (5-10) years planning horizons. Some final observations include acknowledging the enduring nature of several key objectives on the Obama Administration's arms control and nonproliferation agenda. The CTBT, FMCT, bilateral nuclear arms reductions and strengthening the NPT have been sought by successive U.S. Administrations for nearly thirty years. Efforts towards negotiated arms control, although de-emphasized by the G.W. Bush Administration, have remained a pillar of U.S. national security strategy for decades and are likely to be of enduring if not increasing importance for decades to come. Therefore revitalization and expansion of USG capabilities in this area can be a positive legacy no matter what near-term arms control goals are achieved over the next four years. This is why it is important to reconstruct integrated bureaucratic, legislative, budgetary and diplomatic strategies to sustain the arms control and nonproliferation agenda. In this endeavor some past lessons must be taken to heart to avoid bureaucratic overkill and keep interagency policy-making and implementation structures lean and effective. On the Technical side a serious, sustained multilateral program to develop, down select and performance test nuclear weapons dismantlement verification technologies and procedures should be immediately initiated. In order to make this happen the United States and Russia should join with the UK and other interested states in creating a sustained, full-scale research and development program for verification at their respective nuc1ear weapons and defense establishments. The goals include development of effective technologies and procedures for: (1) Attribute measurement systems to certify nuclear warheads and military fissile materials; (2) Chain-of-custody methods to track items after they are authenticated and enter accountability; (3) Transportation monitoring; (4) Storage monitoring; (5) Fissile materials conversion verification. The remainder of this paper focuses on transparency and verification for nuclear arms a

Doyle, James E [Los Alamos National Laboratory; Meek, Elizabeth [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

91

Securing Special Nuclear Material: Recent Advances in Neutron Detection and Their Role in Nonproliferation  

Science Conference Proceedings (OSTI)

Neutron detection is an integral part of the global effort to prevent the proliferation of special nuclear material (SNM). Applications relying on neutron-detection technology range from traditional nuclear non-proliferation objectives, such as safeguarding nuclear material and verifying stockpile reductions, to the interdiction of SNMa goal that has recently risen in priority to a level on par with traditional applications. Large multi-national programs targeting detection and safeguards have deployed radiation-detection assets across the globe. Alongside these deployments of commercially available technology, significant research and development efforts have been directed towards the creation of next-generation assets. While much of this development has focused on gamma-ray spectrometers, neutron-detection technology remains an important component of the global strategy because of the capability of neutrons to penetrate materials that readily absorb gamma rays and the unique multiplicity signatures offered by neutrons. One particularly acute technology-development challenge results from dwindling supplies of 3He, partially triggered by widespread deployment of high-efficiency systems for portal monitoring. Other emerging missions, such as the desire to detect SNM at greater standoff distances, have also stimulated neutron-detection technology development. In light of these needs for novel neutron-detection technologies, this manuscript reviews the signatures of neutrons emitted by SNM, the principles of neutron detection, and various strategies under investigation for detection in the context of nonproliferation.

Runkle, Robert C.; Bernstein, A.; Vanier, Peter

2010-12-01T23:59:59.000Z

92

Nonproliferation & Forensics | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation & Nuclear Forensics Argonne strives to strengthen the nation's ability to detect, prevent, and interdict proliferation of nuclear, radiological, chemical, and...

93

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IV. Commercial potential  

Science Conference Proceedings (OSTI)

This volume of the Nonproliferation Alternative Systems Assessment Program (NASAP) report provides time and cost estimates for positioning new nuclear power systems for commercial deployment. The assessment also estimates the rates at which the new systems might penetrate the domestic market, assuming the continuing viability of the massive light-water reactor network that now exists worldwide. This assessment does not recommend specific, detailed program plans and budgets for individual systems; however, it is clear from this analysis that any of the systems investigated could be deployed if dictated by national interest.

Not Available

1980-06-01T23:59:59.000Z

94

Improving the nuclear data base for non-proliferation and homeland security  

Science Conference Proceedings (OSTI)

Many of the technical advances in non-proliferation and homeland security require calculations of transport of neutrons and gamma-rays through materials. The nuclear data base on which these calculations are made must be of high quality in order for the calculated responses to be credible. At the Los Alamos Neutron Science Center, three spallation neutron sources are being used to provide high-quality cross section and structure data with reactions induced by neutrons. Neutron transmission, neutron-induced fission and capture cross sections, neutron emission in fission, and gamma-ray production by neutrons are principal areas of research. Furthermore, these sources are also being used to validate calculations of the characterization and response of new detectors and detection techniques. Current research activities are summarized here.

Haight, Robert C [Los Alamos National Laboratory; Bitteker, Leo J [Los Alamos National Laboratory; Couture, Aaron J [Los Alamos National Laboratory; Devlin, Matthew J [Los Alamos National Laboratory; Fotiadis, Nikolaos [Los Alamos National Laboratory; Gavron, Avigdor [Los Alamos National Laboratory; Hill, Tony S [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; O'donnell, John M [Los Alamos National Laboratory; Taddeucci, Terry N [Los Alamos National Laboratory; Tovesson, Fredrik K [Los Alamos National Laboratory; Ulmann, John L [Los Alamos National Laboratory; Wender, Stephen A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

95

Nuclear nonproliferation and safety: Challenges facing the International Atomic Energy Agency  

SciTech Connect

The Chairman of the Senate Committee on Govermental Affairs asked the United States General Accounting Office (GAO) to review the safeguards and nuclear power plant safety programs of the International Atomic Energy Agency (IAEA). This report examines (1) the effectiveness of IAEA`s safeguards program and the adequacy of program funding, (2) the management of U.S. technical assistance to the IAEA`s safeguards program, and (3) the effectiveness of IAEA`s program for advising United Nations (UN) member states about nuclear power plant safety and the adequacy of program funding. Under its statute and the Treaty on the Non-Proliferation of Nuclear Weapons, IAEA is mandated to administer safeguards to detect diversions of significant quantities of nuclear material from peaceful uses. Because of limits on budget growth and unpaid contributions, IAEA has had difficulty funding the safeguards program. IAEA also conducts inspections of facilities or locations containing declared nuclear material, and manages a program for reviewing the operational safety of designated nuclear power plants. The U.S. technical assistance program for IAEA safeguards, overseen by an interagency coordinating committee, has enhanced the agency`s inspection capabilities, however, some weaknesses still exist. Despite financial limitations, IAEA is meeting its basic safety advisory responsibilities for advising UN member states on nuclear safety and providing requested safety services. However, IAEA`s program for reviewing the operational safety of nuclear power plants has not been fully effective because the program is voluntary and UN member states have not requested IAEA`s review of all nuclear reactors with serious problems. GAO believes that IAEA should have more discretion in selecting reactors for review.

Not Available

1993-09-01T23:59:59.000Z

96

Nonproliferation Graduate Fellowship Program Attracts High Caliber...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fellowship Program Attracts High Caliber Young Professionals to Careers in Nonproliferation and National Security | National Nuclear Security Administration Our Mission...

97

Nuclear non-proliferation regime effectiveness : an integrated methodology for analyzing highly enriched uranium production scenarios at gas centrifuge enrichment plants  

E-Print Network (OSTI)

The dramatic change in the international security environment after the collapse of the bipolar system has had a negative impact on the effectiveness of the existing nuclear non-proliferation regime. Furthermore, the success ...

Kwak, Taeshin (Taeshin S.)

2010-01-01T23:59:59.000Z

98

Comparison of chemical and nuclear explosions: Numerical simulations of the Non-Proliferation Experiment  

SciTech Connect

In this paper the authors discuss numerical simulations of the Non-Proliferation Experiment (NPE), which was an underground explosion conducted in September 1993 in the volcanic tuff of the Nevada Test Site. The NPE source consisted of 1.29 {times} 10{sup 6} kg of ANFO-emulsion blasting agent, with the approximate energy of 1.1 kt, emplaced 389 m beneath the surface of Rainier Mesa. The authors compare detailed numerical simulations of the NPE with data collected from that experiment, and with calculations of an equally energetic nuclear explosion in identical geology. Calculated waveforms, at ranges out to approximately 1 km, agree moderately well in the time domain with free-field data, and are in qualitative agreement with free-surface records. Comparison of computed waveforms for equally energetic chemical and nuclear sources reveals relatively minor differences beyond the immediate near-source region, with the chemical source having an {approximately}25% greater seismic moment but otherwise indistinguishable (close-in) seismic source properties. 41 refs., 67 figs., 7 tabs.

Kamm, J.R.; Bos, R.J.

1995-06-01T23:59:59.000Z

99

Preliminary Results from an Investigation into Nanostructured Nuclear Radiation Detectors for Non-Proliferation Applications  

SciTech Connect

In recent years, the concept of embedding composite scintillators consisting of nanosized inorganic crystals in an organic matrix has been actively pursued. Nanocomposite detectors have the potential to meet many of the homeland security, non-proliferation, and border and cargo-screening needs of the nation and, by virtue of their superior nuclear identification capability over plastic, at roughly the same cost as plastic, have the potential to replace all plastic detectors. Nanocomposites clearly have the potential of being a gamma ray detection material that would be sensitive yet less expensive and easier to produce on a large scale than growing large, whole crystals of similar sensitivity. These detectors would have a broad energy range and a sufficient energy resolution to perform isotopic identification. The material can also be fabricated on an industrial scale, further reducing cost. This investigation focused on designing and fabricating prototype core/shell and quantum dot (QD) detectors. Fourteen core/shell and four QD detectors, all with the basic consistency of a mixture of nanoparticles in a polymer matrix with different densities of nanoparticles, were prepared. Nanoparticles with sizes <10 nm were fabricated, embedded in a polystyrene matrix, and the resultant scintillators radiation detector properties were characterized. This work also attempted to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy and high-energy gamma rays. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

,

2012-10-01T23:59:59.000Z

100

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume I. Program summary  

SciTech Connect

This report summarizes the Nonproliferation Alternative Systems Assessment Program (NASAP): its background, its studies, and its results. The introductory chapter traces the growth of the issue of nuclear weapons proliferation and the organization and objectives of NASAP. Chapter 2 summarizes the program's assessments, findings, and recommendations. Each of Volumes II-VII reports on an individual assessment (Volumn II: Proliferation Resistance; Volume III: Resources and Fuel Cycle Facilities; Volume IV: Commercial Potential; Volume V: Economics and Systems Analysis; Volume VI: Safety and Environmental Considerations for Licensing; Volume VII: International Perspectives). Volume VIII (Advanced Concepts) presents a combined assessment of several less fully developed concepts, and Volume IX (Reactor and Fuel Cycle Descriptions) provides detailed descriptions of the reactor and fuel-cycle systems studied by NASAP.

Not Available

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Free-field ground motions for the nonproliferation experiment: Preliminary comparisons with nearby nuclear events  

SciTech Connect

Since 1987, we have installed fixed arrays of tri-axial accelerometers in the fire-field near the shot horizons for low-yield ({le} 20 kt) nuclear events in the N-tunnel complex beneath Rainier Mesa. For the Nonproliferation Experiment (NPE) we augmented the array to achieve 23 free-field stations. Goals are: (a) to examine robustness and stability of various free-field source function estimates -- e.g., reduced displacement potentials (RDP) and spectra; (b) to compare close-in with regional estimates to test whether detailed close-in free-field and/or surface ground motion data can improve predictability of regional-teleseismic source functions; (c) to provide experimental data for checking two-dimensional numerical simulations. We report preliminary comparisons between experimental free-field data for NPE (1993) and three nearby nuclear events (MISTY ECHO, 1988; MINERAL QUARRY, 1990; HUNTERS TROPHY, 1992). All four working points are within 1 km of each other in the same wet tuff bed, thus reducing concerns about possible large differences in material properties between widely separated shots. Initial comparison of acceleration and velocity seismograms for the four events reveals: (1) There is a large departure from the spherical symmetry commonly assumed in analytic treatments of source theory; both vertical and tangential components are surprisingly large. (2) All shots show similar first-peak particle-velocity amplitude decay rates suggesting significant attenuation even in the supposedly purely elastic region. (3) Sharp (>20 Hz) arrivals are not observed at tunnel level from near-surface pP reflections or spall-closure sources -- but broadened peaks are seen that suggest more diffuse reflected energy from the surface and from the Paleozoic limestone basement below tunnel level.

Olsen, K.H.; Peratt, A.L.

1994-06-01T23:59:59.000Z

102

Nuclear Detonation Detection | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Nuclear Nonproliferation Program Offices > Office of Nonproliferation Research & Development > Nuclear Detonation Detection Nuclear Detonation Detection Develop, Demonstrate, and...

103

Report of a workshop on nuclear forces and nonproliferation Woodrow Wilson international center for scholars, Washington, DC October 28, 2010  

Science Conference Proceedings (OSTI)

A workshop sponsored by the Los Alamos National Laboratory in cooperation with the Woodrow Wilson International Center for Scholars was held at the Wilson Center in Washington, DC, on October 28, 2010. The workshop addressed evolving nuclear forces and their impacts on nonproliferation in the context of the new strategic environment, the Obama Administration's Nuclear Posture Review and the 2010 NPT Review Conference. The discussions reflected the importance of the NPR for defining the role of US nuclear forces in dealing with 21st century threats and providing guidance for National Nuclear Security Administration (NNSA) and Department of Defense (DoD) programs and, for many but not all participants, highlighted its role in the successful outcome of the NPT RevCon. There was widespread support for the NPR and its role in developing the foundations for a sustainable nuclear-weapon program that addresses nuclear weapons, infrastructure and expertise in the broader nonproliferation, disarmament and international security contexts. However, some participants raised concerns about its implementation and its long-term effectiveness and sustainability.

Pilat, Joseph F [Los Alamos National Laboratory

2010-12-08T23:59:59.000Z

104

Use of open source information and commercial satellite imagery for nuclear nonproliferation regime compliance verification by a community of academics  

E-Print Network (OSTI)

The proliferation of nuclear weapons is a great threat to world peace and stability. The question of strengthening the nonproliferation regime has been open for a long period of time. In 1997 the International Atomic Energy Agency (IAEA) Board of Governors (BOG) adopted the Additional Safeguards Protocol. The purpose of the protocol is to enhance the IAEAs ability to detect undeclared production of fissile materials in member states. However, the IAEA does not always have sufficient human and financial resources to accomplish this task. Developed here is a concept for making use of human and technical resources available in academia that could be used to enhance the IAEAs mission. The objective of this research was to study the feasibility of an academic community using commercially or publicly available sources of information and products for the purpose of detecting covert facilities and activities intended for the unlawful acquisition of fissile materials or production of nuclear weapons. In this study, the availability and use of commercial satellite imagery systems, commercial computer codes for satellite imagery analysis, Comprehensive Test Ban Treaty (CTBT)verification International Monitoring System (IMS), publicly available information sources such as watchdog groups and press reports, and Customs Services information were explored. A system for integrating these data sources to form conclusions was also developed. The results proved that publicly and commercially available sources of information and data analysis can be a powerful tool in tracking violations in the international nuclear nonproliferation regime and a framework for implementing these tools in academic community was developed. As a result of this study a formation of an International Nonproliferation Monitoring Academic Community (INMAC) is proposed. This would be an independent organization consisting of academics (faculty, staff and students) from both nuclear weapon states (NWS) and non-nuclear weapon states (NNWS). This community analyzes all types of unclassified publicly and commercially available information to aid in detection of violations of the non-proliferation regime. INMAC shares all of this information with the IAEA and the public. Since INMAC is composed solely by members of the academic community, this organization would not demonstrate any biases in its investigations or reporting.

Solodov, Alexander

2007-08-01T23:59:59.000Z

105

Whos Watching the Nuclear Watchdog? A Critique of the Australian Safeguards and Non-Proliferation Office  

E-Print Network (OSTI)

This EnergyScience Briefing Paper raises serious concerns regarding the competence and professionalism of the Australian Safeguards and Non-Proliferation Office (ASNO). ASNOs mission, to prevent nuclear proliferation dangers associated with Australias uranium exports, is a task vital to the long-term security of Australians and all people. This paper details a large number of statements made by ASNO which are false or misleading. The evidence compiled raises critical questions of good governance, and leads inescapably to the conclusion that the safeguards on Australian uranium which ASNO is responsible for implementing are deeply flawed both in their design and in their execution.

Richard Broinowski; Tilman Ruff; Alan Roberts; Jim Green

2007-01-01T23:59:59.000Z

106

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

, supported by the European Parliament, that the implementing decision on the non-proliferation of small arms combina- tions 1. Introduction Soon after the Treaty of Maastricht had created the so-called three-pillar structure of the Union, the question arose of which part of the EU Treaty those decisions had to be based

Gilfoyle, Jerry

107

Non-Proliferation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-Proliferation Non-Proliferation Non-Proliferation GC-52 provides legal advice to DOE regarding the transfer, storage or disposition of nuclear materials recovered by DOE for public health, safety or nonproliferation purposes. DOE's National Nuclear Security Administration (NNSA) operates several domestic and international programs aimed at securing vulnerable nuclear materials, such as orphan and disused sealed sources and foreign research reactor fuel, in support of nuclear nonproliferation and nuclear security initiatives. GC-52 also supports DOE in its interactions with other federal agencies, state and local governments, and the public. Applicable Laws Atomic Energy Act of 1954 Nuclear Non-Proliferation Act of 1978 National Nuclear Security Administration Act Further Information

108

Nonproliferation Position Statement  

E-Print Network (OSTI)

For its many benefits to be realized, nuclear technology should continue to be applied in such a way that it does not contribute to the spread of nuclear weapons. In addition, the public must have confidence that the diversion of civil nuclear materials into weapons programs will not happen. An effective nonproliferation policy should prevent diversion by States of fissile material from the nuclear fuel cycle; theft of fissile material by subnational or terrorist groups; clandestine operation of a fissile material production facility. It is the position of the American Nuclear Society (ANS) that the following actions are required to deal with these threats effectively: 1. Nuclear science and technology can be applied for peaceful purposes in a manner that fully supports and is compatible with achieving nonproliferation goals, as embodied in the Treaty on the Nonproliferation of Nuclear Weapons (NPT). To prevent proliferation, sovereign states should adhere to the NPT and its safeguards system including the Additional Protocol and adopt effective export controls. Incentives to acquire nuclear weapons must also be addressed through foreign policies that discourage clandestine

unknown authors

2009-01-01T23:59:59.000Z

109

The Nuclear Revolution, Relative Gains, and International Nuclear Assistance  

E-Print Network (OSTI)

nuclear trade and nonproliferation. Lexington, MA: LexingtonA challenge for nonproliferation. Disarmament Diplomacy. (Nuclear Suppliers Group. Nonproliferation Review 1(1):110.

Kroenig, Matthew

2006-01-01T23:59:59.000Z

110

A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts  

Science Conference Proceedings (OSTI)

With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to access to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.

Uribe, Eva C [Los Alamos National Laboratory; Sandoval, M Analisa [Los Alamos National Laboratory; Sandoval, Marisa N [Los Alamos National Laboratory; Boyer, Brian D [Los Alamos National Laboratory; Leitch, Rosalyn M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

111

Report of a workshop on nuclear power growth and nonproliferation held at the Woodrow Wilson international center for scholars, Washington, DC, April 21, 2010  

SciTech Connect

The workshop addressed the future of nuclear power and nonproliferation in light of global nuclear energy developments, changing US policy and growing concerns about nuclear proliferation and terrorism. The discussion reflected wide agreement on the need for nuclear power, the necessity of mitigating any proliferation and terrorism risks and support for international cooperation on solutions. There were considerable differences on the nature and extent of the risks of differing fuel cycle choices. There was some skepticism about the prospects for a global nuclear energy renaissance, but there was a recognition that nuclear power would expand somewhat in the decades ahead with some states expanding capacity dramatically (e.g., China) and at least a few new states developing nuclear power programs. It was also argued by some participants that under the right conditions, a genuine renaissance could occur some decades from now. The prospects for a dramatic growth in nuclear power will depend on the ability of governments and industry to address these concerns, including the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen nonproliferation, nuclear materials accountability and nuclear security Several participants noted that the United States will not be able to continue to lead global nonproliferation efforts and to shape the growth of nuclear power as well as the global environment and energy debates without a robust US nuclear energy program. Some participants argued that fully integrating nuclear energy growth and nonproliferation, proliferation resistance and physical protection objectives was possible. The growing consensus on these objectives and the growing concern about the potential impact of further proliferation on the industry was one reason for optimism. The Blue Ribbon commission led by Scowcroft and Hamilton was seen as going far beyond the need to find an alternative to Yucca Mountain, and the preeminent forum in the next years to address the back end of the fuel cycle and other issues. Some argued that addressing these issues is the critical missing element, or the final piece of the puzzle to ensure the benefits of nuclear power and to promote nonproliferation. In this context, many argued that R&D on closed as well as open fuel cycle options in order to ensure a suite of long-term options was essential.

Pilat, Joseph F [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

112

Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis  

E-Print Network (OSTI)

screening and nuclear nonproliferation applications[2,3].of the Office of Nonproliferation and International

Ludewigt, Bernhard A.

2010-01-01T23:59:59.000Z

113

Office Of NONprOliferatiON  

National Nuclear Security Administration (NNSA)

Of NONprOliferatiON Of NONprOliferatiON aNd iNterNatiONal Security July 2011 www.nnsa.doe.gov National Nuclear Security Administration ENERGY U.S. DEPARTMENT OF Develop and implement DOE/NNSA nonproliferation and arms control policy to reduce the risk of weapons of mass destruction. control the spread of WMD-related material, equipment, technology and expertise. Safeguard and Secure nuclear material to prevent its diversion, theft and sabotage. Negotiate, monitor and verify compliance with international nonproliferation and arms control treaties and agreements. NNSA's Office of Nonproliferation and international Security (NiS) provides leadership in the formulation and implementation of nonproliferation, nuclear security and arms control

114

Technical Nonproliferation Policy Support (TNPS), Nonproliferation and  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Nonproliferation Policy Support Technical Nonproliferation Policy Support (TNPS) Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nonproliferation and National Security Program Technical Nonproliferation Policy Support (TNPS)

115

SRS - Programs - Nonproliferation Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

3/2012 3/2012 SEARCH GO spacer SRS Home Nonproliferation Programs In the crucial field of nuclear nonproliferation, SRS employee contributions helped to advance all three of the planned plutonium disposition facilities at the Savannah River Site: the Pit Disassembly and Conversion Facility (PDCF); Waste Solidification Building (WSB); and the Mixed Oxide (MOX) Fuel Fabrication Facility. A $345 million project, the WSB will process liquid waste from the MOX facility. After material is processed at the WSB, transuranic waste will be packaged and sent to the Waste Isolation Pilot Plant in New Mexico, and low-level waste will be packaged and sent to onsite or commercial off-site low-level waste disposal facilities. The mixed oxide fuel fabrication facility will be a major component in the United States' program to dispose of excess weapons grade plutonium.

116

Nonproliferation and National Security Multimedia - Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and National Security Nonproliferation and National Security > Multimedia Multimedia Nuclear Systems Analysis Engineering Analysis Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Argonne's Nuclear Science & Technology Legacy Other Multimedia Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Bookmark and Share Nonproliferation and National Security: Multimedia Related Resources Nonproliferation and National Security Vulnerability Assessment Team (VAT) Click on the "Date" header to sort the videos/podcasts in chronological order (ascending or descending). You may also search for a specific keyword; click on the reset button refresh to remove the keyword filter and show again all the Videos/Podcasts.

117

Evaluating Nonproliferation Bona Fides  

Science Conference Proceedings (OSTI)

Anticipated growth of global nuclear energy in a difficult international security environment heightens concerns that states could decide to exploit their civilian nuclear fuel cycles as a means of acquiring nuclear weapons. Such concerns partly reflect a fundamental tension in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). On the one hand, Articles II and III of the NPT clearly prohibit each non-nuclear-weapon state party from acquiring nuclear weapons. On the other hand, Article IV of the NPT confers the inalienable right of Parties to the treaty to develop research, production and use of nuclear energy for peaceful purposes, and directs all Parties to facilitate the fullest possible exchange of equipment, materials and scientific and technological information for the peaceful uses of nuclear energy, and cooperate in contributingto the further development of the applications of nuclear energy for peaceful purposes. This juxtaposition raises the possibility that a state could exercise its Article IV right to develop a civilian nuclear fuels cycle and then use the equipment, materials and technology to acquire nuclear weapons in violation of its Article II and III obligations.

Seward, Amy M.; Mathews, Caroline E.; Kessler, Carol E.

2008-07-14T23:59:59.000Z

118

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance  

SciTech Connect

The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

1980-06-01T23:59:59.000Z

119

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance  

SciTech Connect

The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

Not Available

1980-06-01T23:59:59.000Z

120

Management Principles for Nonproliferation Organizations  

SciTech Connect

This paper identifies business models and six management principles that can be applied by a nonproliferation organization to maximize the value and effectiveness of its products. The organizations responsible for reducing the nuclear proliferation threat have experienced a substantial growth in responsibility and visibility since the September 11 attacks. Since then, the international community has witnessed revelations of clandestine nuclear facilities, nuclear black markets, periodic nuclear tests, and a resurgence of interest by countries worldwide in developing nuclear capabilities. The security environment will likely continue to evolve in unexpected ways since most of the proliferation threats with which the world will be forced to contend remain unforeseen. To better prepare for and respond to this evolving security environment, many nonproliferation organizations are interested in finding new or better ways to increase the effectiveness and efficiency of their operations. Of course, all organizations, whether they are market driven or non-profit, must operate effectively and efficiently if they are to succeed. Indeed, as this study demonstrates, many of the management principles that this study recommends can help all organizations succeed. However, this study pays particular attention to nonproliferation organizations because of the mission they are responsible for fulfilling. Nonproliferation organizations, including nonproliferation programs that operate within a larger national security organization, are responsible for reducing the threat of nuclear, chemical and biological weapons. These organizations have an enduring mandate from the public and the international community not to fail in the completion of their mission for failure could have detrimental impacts on international security, public health and the environment. Moreover, the public expects nonproliferation organizations and programs to fulfill their mission, even when resources are limited. They are expected to anticipate and react quickly to prevent a potential threat while staying accountable to their public stakeholders, many of whom remain unaware of the very threats the organization is trying to address. When budgets are flush, it is easy to believe that money will solve all problems; but during times of economic hardship, managers must rely on creative and cost-effective management approaches to implement their missions. Fortunately, managers of nonproliferation organizations can draw on a wealth of research on organizational design and culture to help them identify the management strategies most appropriate for them. Such research can help nonproliferation managers think about their own organizational structures and cultures and adapt accepted management principles to their unique organizational mission. This analytical process is not straight forward, as some managers may find themselves taking risks that others might not take, such as making ostensibly risky investments for the common good, or supporting creative thinking to help mission accomplishment. Some management principles that are relatively straightforward for other organizations may be difficult to envision and implement in a nonproliferation organization. Therefore, the goal of this study is to help nonproliferation managers identify management principles that can be implemented in a nonproliferation organization and, in the process, help maximize the value of the organization's products and effectiveness of its mission.

Frazar, Sarah L.; Hund, Gretchen

2012-03-06T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume V. Economics and systems analysis  

SciTech Connect

This NASAP assessment considers the economics of alternative nuclear reactor and fuel-cycle systems in the light of possible patterns of uranium supply and energy demand, as well as the economic implications of improvng the proliferation resistance of the various systems. The assessment focuses on the costs of alternative nuclear technologies and the possible timing of their implementation, based on their economic attractiveness.

1980-06-01T23:59:59.000Z

122

GARS | Nonproliferation and National Security Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and National Security Department Nonproliferation The Nonproliferation and National Security Department carries out research and development, provides technical...

123

Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance  

SciTech Connect

Volume II assesses proliferation resistance. Chapters are devoted to: assessment of civilian nuclear systems (once-through fuel-cycle systems, closed fuel cycle systems, research reactors and critical facilities); assessment of associated sensitive materials and facilities (enrichment, problems with storage of spent fuel and plutonium content, and reprocessing and refabrication facilities); and safeguards for alternative fuel cycles.

1979-12-01T23:59:59.000Z

124

NuclearScienceandEngineeringLaboratory Sustainable  

E-Print Network (OSTI)

computational and visualization tools for application in nuclear power, nuclear security, nonproliferation of nuclear power to the electric grid. In the nuclear security, nonproliferation, and safeguards areas, ongoi

Beex, A. A. "Louis"

125

What do we do with Nuclear Weapons Now?  

E-Print Network (OSTI)

The worldwide nuclear non-proliferation regime may becomeand its partners in the non-proliferation effort do not have

May, Michael M

2005-01-01T23:59:59.000Z

126

Development of Superconducting High-Resolution Gamma-Ray Spectrometers for Nuclear Safeguards  

E-Print Network (OSTI)

Nuclear Safeguards and Non-Proliferation. ESARDA Bulletin,Cycles: Safeguards and Non-Proliferation. KIT Scientificnuclear attribution and non-proliferation applications. In

Dreyer, Jonathan

2012-01-01T23:59:59.000Z

127

The Office of Nuclear Verification | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

at NNSA Blog The Office of Nuclear Verification Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Verification...

128

Global Nuclear Security Technology Division (GNSTD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Nonproliferation Technology Nuclear Material Detection & Characterization Nuclear Security Advanced Technologies Safeguards & Security Technology Threat Reduction...

129

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

surrounding nuclear non-proliferation are contin- uouslyfrom associated non-proliferation treaties and operating thethe LFFH engine design, non-proliferation aspects and code

Kramer, Kevin James

2010-01-01T23:59:59.000Z

130

Nonproliferation Graduate Fellowship Program Attracts High Caliber Young  

National Nuclear Security Administration (NNSA)

Graduate Fellowship Program Attracts High Caliber Young Graduate Fellowship Program Attracts High Caliber Young Professionals to Careers in Nonproliferation and National Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Nonproliferation Graduate Fellowship Program Attracts High Caliber ... Nonproliferation Graduate Fellowship Program Attracts High Caliber Young

131

Nuclear Security & Safety  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department is working to enhance nuclear security through defense, nonproliferation, and environmental efforts.

132

Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description  

SciTech Connect

The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

Not Available

1980-06-01T23:59:59.000Z

133

Nonproliferation and National Security Program Contacts, Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral...

134

Office Of NONprOliferatiON  

National Nuclear Security Administration (NNSA)

objectives for nonproliferation and arms control treaties and agreements; Develop technologies tailored for monitoring compliance with nonproliferation and arms control...

135

The Office of Nuclear Safeguards and Security | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Safeguards and Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation &...

136

DETERMINATION OF RELATIVE IMPORTANCE OF NONPROLIFERATION FACTORS  

SciTech Connect

Methodologies to determine the proliferation resistance (PR) of nuclear facilities often rely on either expert elicitation, a resource-intensive approach without easily reproducible results, or numeric evaluations, which can fail to take into account the institutional knowledge and expert experience of the nonproliferation community. In an attempt to bridge the gap and bring the institutional knowledge into numeric evaluations of PR, a survey was conducted of 33 individuals to find the relative importance of a set of 62 nonproliferation factors, subsectioned into groups under the headings of Diversion, Transportation, Transformation, and Weaponization. One third of the respondents were self-described nonproliferation professionals, and the remaining two thirds were from secondary professions related to nonproliferation, such as industrial engineers or policy analysts. The factors were taken from previous work which used multi-attribute utility analysis with uniform weighting of attributes and did not include institutional knowledge. In both expert and non-expert groups, all four headings and the majority of factors had different relative importance at a confidence of 95% (p=0.05). This analysis and survey demonstrates that institutional knowledge can be brought into numeric evaluations of PR, if there is a sufficient investment of resources made prior to the evaluation.

Richard Metcalf

2009-07-01T23:59:59.000Z

137

Special Issue on University Nonproliferation Education and Training Introduction.  

Science Conference Proceedings (OSTI)

Nonproliferation, like many aspects of security, has not played out as many expected following the end of the cold war. The peace dividend has been elusive in many countries. The notion that the world would become a safer and more secure place as nuclear weapons stockpiles were reduced has been trumped by the rise in international terrorism. Hopes that nuclear weapons would lose their salience as markers of elite status among nations along with pressures to acquire them have been dashed. The drive by some countries and terrorist groups to acquire nuclear weapons has not diminished, and the threat of proliferation has increased. At the level of the nation state, the Nonproliferation Treaty (NPT) itself is under pressure as more nations acquire nuclear weapons, de facto weapons states fail to join, and nations that want to acquire them leave or threaten to leave. At the sub-state level, the convergence of terrorism and weapons of mass destruction (WMD) has introduced an element of uncertainty into nonproliferation that is unprecedented. Another feature of the post-cold war era that has taken many by surprise is the continued, and growing need for trained specialists in nonproliferation and nuclear materials management. Contained within the notion of disarmament and reduced strategic importance of nuclear weapons was the expectation of a diminishing workforce of trained nonproliferation and nuclear materials specialists. Events have overtaken this assumption.

Leek, K. M.

2006-07-31T23:59:59.000Z

138

Nonproliferation through delegation  

E-Print Network (OSTI)

Nuclear Weapons In a nuclear power plant, a nuclear reactionused for fuel in a nuclear power plant (Barnaby 1993). Theon converting nuclear power plants to fighting malaria with

Brown, Robert Louis

2008-01-01T23:59:59.000Z

139

Global Security Directorate - Nonproliferation, Safeguards, and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Centers & Programs Nonproliferation, Safeguards, and Security Programs click for full size image of Megatons to megawatts The Global Security and Nonproliferation Programs...

140

Consequence Management, Safeguards & Non-Proliferation Tools...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequence Management, Safeguards, and Non-Proliferation Tools SHARE Consequence Management, Safeguards and Non-Proliferation Tools UF 6 Enrichment Facility Visualization of the...

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. and UAE Bolster Cooperation in the Area of Nuclear Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bolster Cooperation in the Area of Nuclear Energy and Nonproliferation U.S. and UAE Bolster Cooperation in the Area of Nuclear Energy and Nonproliferation February 24, 2010 -...

142

Nonproliferation through delegation  

E-Print Network (OSTI)

of a US or French nuclear reactor design may simply comelegitimate civilian uses: nuclear reactors produce plutoniumto 20%-30%) in a nuclear reactor and then later chemically

Brown, Robert Louis

2008-01-01T23:59:59.000Z

143

Nonproliferation through delegation  

E-Print Network (OSTI)

of The Comprehensive Nuclear Test-Ban Treaty. Washington,Considerations of a Nuclear- Test Ban. In Arms Control,The VELA Incident: nuclear test or meteoriod? : National

Brown, Robert Louis

2008-01-01T23:59:59.000Z

144

Nonproliferation through delegation  

E-Print Network (OSTI)

Weapons Reductions and Nuclear Security Cooperation. Sarov,of Foreign Nuclear Installations: National Security Archive.Past: Nuclear Proliferation and American Security Policy.

Brown, Robert Louis

2008-01-01T23:59:59.000Z

145

Nonproliferation Education at the University of Washington PNNL-SA-50160  

E-Print Network (OSTI)

.S. government agencies, including the Nonproliferation Graduate Program at the National Nuclear Security for Global and Regional Security Studies (IGRSS) The nonproliferation curriculum at the University of Washington (UW) is the product of collaboration between Pacific Northwest Center for Global Security (PNWCGS

146

Environmental Challenges of Climate-Nuclear Fusion: A Case Study of India  

E-Print Network (OSTI)

not signed the Nuclear Non-Proliferation Treaty (NPT). 82because of India's good non-proliferation record 83 and itsNuclear India and the Non-Proliferation Treaty, THE HERITAGE

Badrinarayan, Deepa

2011-01-01T23:59:59.000Z

147

Shaping the energy Future Nuclear Energy R&D  

E-Print Network (OSTI)

associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages

Kemner, Ken

148

Impact of contributions of Glenn T. Seaborg on nuclear science  

E-Print Network (OSTI)

the negotiation of the Non-Proliferation Treaty and took thebegun. The non- proliferation treaty (NPT) was negotiatedtest ban treaty, nuclear non-proliferation and the use of

Hoffman, Darleane C.

2000-01-01T23:59:59.000Z

149

Nonproliferation through delegation  

E-Print Network (OSTI)

2002. The Spread of Nuclear Weapons: A Debate Renewed. 2nd2003. North Korea and Nuclear Weapons: The Declassified U.S.Preventing the Spread of Nuclear Weapons, edited by C. F.

Brown, Robert Louis

2008-01-01T23:59:59.000Z

150

The Office of Nonproliferation and International Security Policy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Jobs Our Jobs Working at NNSA Blog The Office of Nonproliferation and International Security Policy Home > About Us > Our Programs > Nonproliferation > Nonproliferation &...

151

Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research  

SciTech Connect

This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle ensemble. This would cause the analysis to be skewed. The use of a gelatin substrate allows the ablation a particle ensemble without disturbing other particles or the gelatin surface. A method to trap and ablate particles on filter paper using collodion was also investigated. The laser was used to dig through the collodion layer and into the particle ensemble. Both of these methods fix particles to allow spatial resolution of the particle ensembles. The use of vanillic acid as a possible enhancement to ablation was also studied. A vanillic acid coating of the particles fixed on top of the gelatin substrate was not found to have any positive effect on either signal intensity or precision. The mixing of vanillic acid in the collodion solution used to coat the filter paper increased ablation signal intensity by a factor of 4 to 5. There was little effect on precision, though. The collodion on filter paper method and the gelatin method of resolving particles have shown themselves to be possible tools in fighting proliferation of nuclear weapons and material. Future applications of LA-ICP-MS are only limited by the imagination of the investigator. Any material that can be ablated and aerosolized is a potential material for analysis by LA-ICP-MS. Improvements in aerosol transport, ablation chamber design, and laser focusing can make possible the ablation and analysis of very small amounts of material. This may perhaps lead to more possible uses in forensics. A similar method to the one used in Chapter 3 could perhaps be used to match drug residue to the place of origin. Perhaps a link could be made based on the elements leached from the soil by plants used to make drugs. This may have a specific pattern based on where the plant was grown. Synthetic drugs are produced in clandestine laboratories that are often times very dirty. The dust, debris, and unique materials in the lab environment could create enough variance to perhaps match drugs produced there to samples obtained off the street. Even if the match was not strong enough to be evidence, the knowledge that many sa

Messerly, Joshua D.

2008-08-26T23:59:59.000Z

152

Nuclear Instruments and Methods in Physics Research A 582 (2007) 629637 Monte Carlo and analytical models of neutron detection with organic  

E-Print Network (OSTI)

unfolding, which have a variety of applications, including nuclear nonproliferation and homeland security materials in applications such as nuclear nonproliferation, homeland security, and basic physics research

Pázsit, Imre

153

Nonproliferation Graduate Fellowship Program, Annual Report, Class of 2012  

SciTech Connect

This 32-pp annual report/brochure describes the accomplishments of the Class of 2012 of the Nonproliferation Graduate Fellowship Program (the last class of this program), which PNNL administers for the National Nuclear Security Administration. The time period covers Sept 2011 through June 2013.

McMakin, Andrea H.

2013-09-23T23:59:59.000Z

154

Nonproliferation through delegation  

E-Print Network (OSTI)

reactor or Indias and Pakistans nuclear tests) or commendnuclear weapons programs in Argentina, Brazil, Iran, North Korea, and Pakistan,nuclear program led to Indias which in turn led to Pakistan

Brown, Robert Louis

2008-01-01T23:59:59.000Z

155

Nonproliferation through delegation  

E-Print Network (OSTI)

nuclear reactor and then later chemically extract plutonium from the spent fuel. For years after the basic theory

Brown, Robert Louis

2008-01-01T23:59:59.000Z

156

The Nonproliferation Review  

SciTech Connect

The aim of this paper is to understand the numerous nuclear-related agreements that involve India and Pakistan, and in so doing identify starting points for future confidence-creating and confidence-building projects. Existing nuclear-related agreements provide a framework under which various projects can be proposed that foster greater nuclear transparency and cooperation in South Asia. The basic assumptions and arguments underlying this paper can be summarized as follows: (1) Increased nuclear transparency between India and Pakistan is a worthwhile objective, as it will lead to the irreversibility of extant nuclear agreements, the prospects of future agreements; and the balance of opacity and transparency required for stability in times of crises; (2) Given the current state of Indian and Pakistani relations, incremental progress in increased nuclear transparency is the most likely future outcome; and (3) Incremental progress can be achieved by enhancing the information exchange required by existing nuclear-related agreements.

RAJEN,GAURAV; BIRINGER,KENT L.

2000-07-28T23:59:59.000Z

157

Applications of boron-loaded scintillating fibers as NDA tools for nuclear safeguards  

Science Conference Proceedings (OSTI)

Nuclear safeguards and nonproliferation rely on nondestructive analytical tools for prompt and noninvasive detection

Douglas R. Mayo; Norbert Ensslin; Ronald F. Grazioso; A. Sharif Heger; David J. Mercer; Michael C. Miller; Phyllis A. Russo; Martin R. Sweet

1998-01-01T23:59:59.000Z

158

Nonproliferation through delegation  

E-Print Network (OSTI)

designs. For example, CANDU-type nuclear reactors are morenegotiations with Canada for a CANDU reactor and with Franceearlier acquisition of a CANDU reactor, did the US become

Brown, Robert Louis

2008-01-01T23:59:59.000Z

159

Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the  

E-Print Network (OSTI)

technical, political, legislative, nonproliferation, and safety infrastructure required for the capability in nuclear energy programs with regard to safety, nonproliferation and physical security

160

NONPROLIFERATION PROMOTED BY INDUSTRY SELF-REGULATION  

E-Print Network (OSTI)

NONPROLIFERATION PROMOTED BY INDUSTRY SELF-REGULATION PNNL SA-50880 Gretchen E. Hund Center nonproliferation. The terrorist attacks of 9/11, the A.Q. Khan illicit trade network, and IAEA Director General nonproliferation by ensuring that these materials are secure throughout the whole supply chain. This paper analyzes

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Siegfried S. Hecker, Plutonium, and Nonproliferation  

Office of Scientific and Technical Information (OSTI)

Siegfried S. Hecker, Plutonium Siegfried S. Hecker, Plutonium and Nuclear Nonproliferation Resources with Additional Information · Awards Siegfried S. Hecker Photo Credit: Courtesy of Los Alamos National Laboratory LeRoy Sanchez On September 17, 2009, U.S. Energy Secretary Steven Chu named Siegfried S. Hecker as a winner of the Enrico Fermi Award 'in recognition for his contributions to plutonium metallurgy, his broad scientific leadership and for his energetic and continuing efforts to reduce the danger of nuclear weapons around the globe. Dr. Hecker is credited with resolving a long-standing controversy involving the stability of certain structures (or phases) in plutonium alloys near equilibrium that arose from significant discrepancies between U.S. and former USSR research on plutonium metallurgy.'1

162

Challenges in Implementing Methodologies for Nonproliferation Assessments  

Science Conference Proceedings (OSTI)

A handful of models for explaining and predicting States development of nuclear weapons programs have been proposed since the 1970s. Despite the array of techno-social variables and computational concepts employed in these models, no model has yet been established as an agreed-upon standard. Likewise, the International Atomic Energy Agency (IAEA)one of the main institutions evaluating social, political, and technological information for assessments of States current nuclear capabilitiesuses only a qualitative framework by which to evaluate such information to assess the correctness and completeness of a States declaration. In this paper, analysts familiar with both the development of techno-social modelling and the IAEAs implementation of a safeguards system that is information driven discuss the challenges faced in the development, implementation, and evaluation of models and methodologies for nonproliferation assessments, based on experiences at Pacific Northwest National Laboratory (PNNL) and the IAEA.

Gastelum, Zoe N.; Dalton, Angela C.; Coles, Garill A.

2011-07-17T23:59:59.000Z

163

Counterterrorism and Counterproliferation | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

America's nuclear agenda, which affirms the central importance of the Nuclear Non-Proliferation Treaty." - President Obama on the Nuclear Posture Review, April 6, 2010 "The...

164

Nonproliferation through delegation  

E-Print Network (OSTI)

nuclear expertise in the Manhattan Project in just this way.Fearon 1995). As in the Manhattan Project example above, theits participation in the Manhattan Project. There remained a

Brown, Robert Louis

2008-01-01T23:59:59.000Z

165

Strategic Trade Control: Nonproliferation Engagement and Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation Engagement and Training Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nonproliferation and National Security Program Technical Nonproliferation Policy Support (TNPS)

166

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 5, OCTOBER 2006 3021 New Readout Electronics for 3-D Position Sensitive  

E-Print Network (OSTI)

for homeland security and nuclear non-proliferation applications. Mechanically cooled HPGe detectors

He, Zhong

167

The Domestic Sources of Nuclear Postures: Influencing Fence-Sitters in the Post-Cold War Era  

E-Print Network (OSTI)

both Nuclear Non-Proliferation Treaty (NPT) member-states,ratifying the non- proliferation treaty, is different fromembedded in the non-proliferation treaty (NPT) bargain. The

Solingen, Etel

1994-01-01T23:59:59.000Z

168

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

IAEA or the Nuclear Non- Proliferation Treaty (NPT) are notof course the Nuclear Non-Proliferation Treaty (NPT) and thethe Nuclear Non-proliferation Treaty (NPT) in December 1985

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

169

Sodium Reaction Experimental Test Facility (SRETF) - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Form Modeling Departments Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems...

170

Nonproliferation - Tell-tale seals | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

SHARE SHARE Nonproliferation - Tell-tale seals Using an Oak Ridge National Laboratory technology, inspectors of containers of nuclear material will be able to know with unprecedented confidence whether an intruder has tampered with a seal. The system uses a light source of entangled photons to verify the continuity of a fiber-based seal, according to Travis Humble, who led the development team. Entanglement is a feature of quantum physics that describes how two spatially disparate systems exhibit strong correlations in otherwise independent behaviors. The work, sponsored by the Defense Threat Reduction Agency, is vital to ensure compliance with nonproliferation treaties because inspectors must confirm the uninterrupted containment and surveillance of any nuclear material.

171

Peace, Stability, and Nuclear Weapons  

E-Print Network (OSTI)

from the nuclear Non-Proliferation Treaty. The NorthsNye, "Maintaining a Non-Proliferation Regime," InternationalKenneth Waltz wars of non-proliferationagainst them. 31

Waltz, Kenneth N.

1995-01-01T23:59:59.000Z

172

International Nonproliferation Export Control Program (INECP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and Nonproliferation and National Security Program > TNPS > Strategic Trade Control > International Programs > INECP Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr

173

THE OFFICE OF NONPROLIFERATION & NATIONAL SECURITY  

NLE Websites -- All DOE Office Websites (Extended Search)

W. HORAK Chair TECHNOLOGY COMMERCIALIZATION and PARTNERSHIPS W. COPAN Manager NONPROLIFERATION and NATIONAL SECURITY C. KESSLER Chair RESEARCH OPERATIONS L. Bowerman *Reports...

174

Office of the Assistant General Counsel for Civilian Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste (HLW) and Spent Nuclear Fuel (SNF) Management of Nuclear Materials and Non-HLW Nuclear Fuel Cycle Energy Research and Development Non-Proliferation Nuclear Regulatory...

175

Consequence Management, Safeguards & Non-Proliferation Tools | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequence Consequence Management, Safeguards, and Non-Proliferation Tools SHARE Consequence Management, Safeguards and Non-Proliferation Tools UF 6 Enrichment Facility Visualization of the gamma radiation field in a mock-up of a UF-6 enrichment facility. The solution was generated on a desktop computer using ORNL's Denovo SN transport code and ADVANTG interface, using geometry and material descriptions from an NRL SWORD input file. ORNL is a leader in developing state-of-the-art radiation transport modeling and simulation tools and in applying these tools to solve challenging problems in national and global nuclear security. Recent developments in high-performance, high-fidelity, deterministic Monte Carlo, and hybrid Monte Carlo/deterministic radiation transport codes within

176

Impact of contributions of Glenn T. Seaborg on nuclear science  

E-Print Network (OSTI)

the negotiation of the Non-Proliferation Treaty and took thetalks were begun. The non- proliferation treaty (NPT) wasban treaty, nuclear non-proliferation and the use of nuclear

Hoffman, Darleane C.

2000-01-01T23:59:59.000Z

177

U.S. Department of Energy and NTI Announce Key Nonproliferation Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy and NTI Announce Key Nonproliferation U.S. Department of Energy and NTI Announce Key Nonproliferation Project with Kazakhstan U.S. Department of Energy and NTI Announce Key Nonproliferation Project with Kazakhstan September 29, 2006 - 9:01am Addthis Agreement Reached To Downblend HEU and Convert Reactor WASHINGTON, D.C. - The U.S. Department of Energy and the Nuclear Threat Initiative (NTI) today announced that they have reached an important agreement-in-principle with the Government of Kazakhstan to move forward with the down-blending of highly enriched uranium (HEU) currently stored at Kazakhstan's Institute of Nuclear Physics. The agreement also calls for the conversion of the VVR-K research reactor to operate on low enriched uranium fuel instead of HEU, which can be used in nuclear weapons. The

178

2005 Carnegie International Nonproliferation Conference | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2005 Carnegie International Nonproliferation Conference 2005 Carnegie International Nonproliferation Conference 2005 Carnegie International Nonproliferation Conference November 7, 2005 - 12:36pm Addthis Remarks Prepared for Energy Secretary Sam Bodman I am very glad to be with all of you today. Let me just say to Rose and to everyone associated with the Carnegie Endowment that the Bush Administration values the work that you do. This is particularly so with this series of conferences dedicated to exploring the complicated issues of nonproliferation policy. And allow me to offer the congratulations of my Department to Director General El Baradei and the International Atomic Energy Agency for the award conferred last month by the Nobel Foundation. We should applaud the Agency's staff and all the member nations that come

179

2005 Carnegie International Nonproliferation Conference | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 Carnegie International Nonproliferation Conference 5 Carnegie International Nonproliferation Conference 2005 Carnegie International Nonproliferation Conference November 7, 2005 - 12:36pm Addthis Remarks Prepared for Energy Secretary Sam Bodman I am very glad to be with all of you today. Let me just say to Rose and to everyone associated with the Carnegie Endowment that the Bush Administration values the work that you do. This is particularly so with this series of conferences dedicated to exploring the complicated issues of nonproliferation policy. And allow me to offer the congratulations of my Department to Director General El Baradei and the International Atomic Energy Agency for the award conferred last month by the Nobel Foundation. We should applaud the Agency's staff and all the member nations that come

180

U.N. report concludes that Syrian site destroyed in 2007 was a nuclear reactor  

E-Print Network (OSTI)

Non-Proliferation Treaty (NPT) enters into force (1970). Prevent the spread of nuclear weaponsPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Plan to dismantle US arsenal and eliminate nuclear weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nonproliferation, Nuclear Security, and the Insider Threat  

SciTech Connect

Insider threat concept is evolving and getting more attention: (1) Domestically, internationally and in foreign countries, (2) At the government, academia, and industry levels, and (3) Public awareness and concerns are also growing. Negligence can be an insider's action. Technology advancements provide more opportunities, new tools for the insider. Our understanding of the insider is shaped by our cultural, social and ethnic perceptions and traditions. They also can limit our recognition of the issues and response actions.

Balatsky, Galya I. [Los Alamos National Laboratory; Duggan, Ruth [SNL

2012-07-12T23:59:59.000Z

182

Nonproliferation issues in the nuclear energy future  

E-Print Network (OSTI)

The continuing increases in annual greenhouse gas emissions, in the absence of stringent mitigation measures, will produce a doubling of pre-industrial atmospheric concentrations in the second half of this century and a ...

Jones, Christopher Michael, 1976-

2003-01-01T23:59:59.000Z

183

Contact Nonproliferation Program Offices | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press...

184

Principal Deputy Administrator for Defense Nuclear Nonproliferation...  

National Nuclear Security Administration (NNSA)

attendees agreed to encourage the use of LEU targets and other proliferation-resistant technologies in various commercial applications such as isotope production. This was a...

185

Nonproliferation, Disarmament, and the IAEA in Tomorrow's World  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) safeguards have evolved considerably during the last five decades and have become an integral part of the international non-proliferation regime and the global security system. To carry on serving well the international community, they need to continue to move with the times -- especially in light of the renewed interest in nuclear energy and its projected expansion in the coming years, which could bring additional nuclear facilities, material and activities under IAEA safeguards. The projected nuclear renaissance" may pose increased proliferation risks as nuclear material, technology and know-how spread in an increasingly globalized world. The presentation will provide an overview of the IAEA safeguards system and describe current verification challenges and potential new IAEA roles.

Cooley, Jill (IAEA)

2008-09-08T23:59:59.000Z

186

Arms Control and Nonproliferation Technologies Second Quarter 1993I................................................................................................................................................................  

E-Print Network (OSTI)

Observers from the Department of Energy and the Defense Nuclear Agency watch as a tag/seal is applied to a uranium hexafluoride cylinder during the demonstration held at Portsmouth Gaseous Diffusion Plant. In June 1993, the Department of Energy conducted a demonstration of the ability to tag and seal potential nuclear material containers appropriate for the U.S.-Russian conversion of highly enriched uranium (HEU) to lowenrichment uranium (LEU). Begun in the Office of Arms Control and Nonproliferation, the task was carried out after DOE's reorganization by the Qffice of Research and Development. Tags and seals that were previously developed at the DOE national laboratories and under the sponsorship of the Defense Nuclear Agency were demonstrated on three possible containers: the Department of Transportation Specification 6M HEU container, the AT-400R HEU container, and the Type 30B uranium hexafluoride cylinder.

Thepurposeof Armscontroland

1993-01-01T23:59:59.000Z

187

The National Ignition Facility (NIF) and the issue of nonproliferation. Final study  

SciTech Connect

NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States.

1995-12-19T23:59:59.000Z

188

ME 379M-Nuclear Safety and Security ABET EC2000 syllabus  

E-Print Network (OSTI)

assessment models and nuclear non-proliferation. Failure classifications, failure modes, effects and Roger Cooke, Cambridge University Press, 2006, ISBN: 0-521-77320-2. Nuclear Nonproliferation: A Primer consists of two parts ­ Probabilistic Risk Assessment and Nuclear Nonproliferation. The students will learn

Ben-Yakar, Adela

189

Development of Superconducting High-Resolution Gamma-Ray Spectrometers for Nuclear Safeguards  

E-Print Network (OSTI)

of smuggling. Today, nuclear security is significantly morecritical importance of nuclear security, stating that thereJ. Doyle. Nuclear Safeguards, Security and Nonproliferation:

Dreyer, Jonathan

2012-01-01T23:59:59.000Z

190

Introduction to Special Edition on University Nonproliferation Education and Training  

E-Print Network (OSTI)

Introduction to Special Edition on University Nonproliferation Education and Training PNNL-SA-50159 Nonproliferation, like many aspects of security, has not played out as many expected following the end of the cold destruction has introduced an element of uncertainty into nonproliferation that is unprecedented. Another

191

GLOBAL SECURITY & NONPROLIFERATION PROGRAMS MISSION STATEMENT AND FACT SHEET  

E-Print Network (OSTI)

GLOBAL SECURITY & NONPROLIFERATION PROGRAMS MISSION STATEMENT AND FACT SHEET MISSION The Oak Ridge National Laboratory (ORNL) Global Security & Nonproliferation Programs (GS&N) develop, coordinate a strategic threat to the United States. Through its nonproliferation programs, the ORNL GS&N is a primary

Pennycook, Steve

192

10 CFR Part 810 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear power plant 10 CFR Part 810 Home > About Us > Our Programs > Nonproliferation > Nuclear...

193

Prospects and Challenges for a Global Expansion of Nuclear Energy  

Science Conference Proceedings (OSTI)

... in such countries will be challenging, as will be the additional strain that a global spread of nuclear power will put on the nuclear nonproliferation regime.

194

Nuclear Material Recovery | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Securing nuclear material domestically and internationally is one part of Y-12's nuclear nonproliferation business. Miscellaneous scrap material is a diverse group of...

195

2010 Annual Planning Summary for Nuclear Energy (NE) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Planning Summary for National Nuclear Security Administration Service Center (NNSA-SC) 2010 Annual Planning Summary for Defense Nuclear Nonproliferation (NA-20) 2010 Annual...

196

Report, Long-Term Nuclear Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

safeguards and nonproliferation, environmental management and waste cleanup, and Navy nuclear propulsion systems development resides outside the Office of Nuclear Energy, Science...

197

Administrator D'Agostino on NNSA Nuclear Safeguards and Security...  

National Nuclear Security Administration (NNSA)

global challenges of nuclear nonproliferation, safeguards and security. Understanding, developing and implementing proper nuclear safeguards is an important part of any...

198

Atoms for peace and the nonproliferation treaty: unintended consequences  

Science Conference Proceedings (OSTI)

In April 2009, President Obama revived nonproliferation and arms control efforts with a speech calling for the worldwide abolition of nuclear weapons. His speech correctly acknowledged the threat of nuclear terrorism and the vulnerabilities of the related unsecure nuclear materials. Unfortunately, the president did not mention and has not mentioned in any speech the threat posed by at-risk radiological materials. Nonproliferation efforts have a well documented history of focus on special nuclear materials (fissionable weapons usable materials or SNM), and other key materials (chemical and biological) and technologies for a Weapon of Mass Destruction (WMD). Such intense focus on WMD related materials/technologies is essential for international safety and security and merit continued attention and funding. However, the perception that radioactive sealed sources (sources) are of less concern than WMD is unfortunate. These perceptions are based solely on the potentially enormous and tragic consequences associated with their deliberate or accidental misuse and proliferation concerns. However, there is a documented history of overemphasis on the nuclear threat at the expense of ignoring the far more likely and also devastating chemical and biological threats. The radiological threat should not be minimized or excluded from policy discussions and decisions on these far ranging scopes of threat to the international community. Sources have a long history of use; and a wider distribution worldwide than fissile materials. Pair this with their broad ranges in isotopes/activities along with scant national and international attention and mechanisms for their safe and secure management and it is not difficult to envision a deadly threat. Arguments that minimize or divert attention away from sources may have the effect of distracting necessary policy attention on preventing/mitigating a radiological dispersal event. The terrorist attacks on 9/11 should be a clear reminder of the inherent danger of diminishing or dismissing lower-level threats in exchange for enhanced focus on high priority special nuclear materials with the basis for this emphasis being solely on the magnitude of the consequences of a single event. Mitigating all possible or likely terrorist attacks is impossible; however, weaponized sources, in the form of a radiological dispersal device, have been a declared target material of Al-Qaida. Eisenhower's Atoms for Peace initiative promoted the spread of the paradoxical beneficial yet destructive properties of the atom. Typically, the focus of nonproliferation efforts focuses on the fissile materials associated with Weapons of Mass Destruction, with less emphasis on radioactive materials that could be used for a Weapon of Mass Disruption. Most nonproliferation policy discussion involves securing or preventing the diversion of weapons grade fissile materials (uranium (U) with concentration of over 90% of the isotope {sup 235}U (HEU) and plutonium with more than 90% of the isotope {sup 239}Pu), with scant attention given to the threat posed by a prolific quantity of sources spread worldwide. Further acerbating the problem of inattention, it appears that the momentum of the continued evolution in the beneficial applications of sources will only increase in the near future. Several expert studies have demonstrated on the potentially devastating economic, psychological and public health impacts of terrorist use of a radiological dispersal or radiation emitting device (ROD/RED) in a metropolis. The development of such a weapon, from the acquisition of the radioactive material to the technical knowledge needed to fashion it into an ROD, is many orders of magnitude easier than diverting enough fissile material for and fabrication/acquisition of a nuclear weapon. Unlike nuclear weapons, worldwide, there are many well documented accounts of accidental and purposeful diversions of radioactive materials from regulatory control. As of the end of 2008, the International Atomic Energy Agency's (IAEA) Illicit Trafficking Database had logge

Streeper, Charles Blamires [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

199

Arms control and nonproliferation technologies: The non-proliferation experiment. First quarter 1994  

SciTech Connect

In this issue of Arms Control and Nonproliferation Technologies we present the initial findings of the recent Non-Proliferation Experiment (NPE), conducted by the Department of Energy at the Nevada Test Site. Through an introduction and pictorial walk-through, Marv Denny and Jay Zucca of Lawrence Livermore National Laboratory describe the overall experiment. This is followed by scientific and technical abstracts of the complex suite of experiments and analyses, which were presented at the Symposium on Non-Proliferation Experiment Results and Implications for Test Ban Treaties, April 19--21, 1994. Questions regarding the ongoing analysis and conclusions from the NPE should be directed to Leslie Casey in the Office of Research and Development within the Office of Nonproliferation and National Security of DOE. Her phone number is 202-586-2151.

Staehle, G.; Stull, S.; Talaber, C. [eds.

1994-05-01T23:59:59.000Z

200

The Domestic Sources of Nuclear Postures: Influencing Fence-Sitters in the Post-Cold War Era  

E-Print Network (OSTI)

ment to nuclear non-proliferation over the long- term.1993. Maintaining a Non- proliferation Regime. In NuclearNew Approach to Nuclear Non- proliferation in Argentina and

Solingen, Etel

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Rapid Sampling Tools - Nuclear Engineering Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonproliferation and National Security Nonproliferation and National Security > Multimedia > Rapid Sampling Tools Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Nonproliferation and National Security - Multimedia Bookmark and Share NPNS Multimedia, a collection of videos and audios featuring activities related to Nonproliferation and National Security

202

Framework for Proliferation Resistance and Physical Protection for Nonproliferation Impact Assessments.  

SciTech Connect

This report describes a framework for proliferation resistance and physical protection evaluation for the fuel cycle systems envisioned in the expansion of nuclear power for electricity generation. The methodology is based on an approach developed as part of the Generation IV technical evaluation framework and on a qualitative evaluation approach to policy factors similar to those that were introduced in previous Nonproliferation Impact Assessments performed by DOE.

Bari,R.

2008-03-01T23:59:59.000Z

203

Broadening Industry Governance to Include Nonproliferation  

Science Conference Proceedings (OSTI)

As industry is the first line of defense in detecting and thwarting illicit trade networks, the engagement of the private sector is critical to any government effort to strengthen existing mechanisms to protect goods and services throughout the supply chain. This study builds on previous PNNL work to continue to evaluate means for greater industry engagement to complement and strengthen existing governmental efforts to detect and stem the trade of illicit goods and to protect and secure goods that could be used in making a weapon of mass destruction. Specifically, the study evaluates the concept of Industry Self Regulation, defined as a systematic voluntary program undertaken by an industry or by individual companies to anticipate, implement, supplement, or substitute for regulatory requirements in a given field, generally through the adoption of best practices. Through a series of interviews with companies with a past history of non-compliance, trade associations and NGOs, the authors identify gaps in the existing regulatory infrastructure, drivers for a self regulation approach and the form such an approach might take, as well as obstacles to be overcome. The authors conclude that it is at the intersection of industry, government, and security thatthrough collaborative meansthe effectiveness of the international nonproliferation systemcan be most effectively strengthened to the mutual benefit of both government and the private sector. Industry has a critical stake in the success of this regime, and has the potential to act as an integrating force that brings together the existing mechanisms of the global nonproliferation regime: export controls, physical protection, and safeguards. The authors conclude that industry compliance is not enough; rather, nonproliferation must become a central tenant of a companys corporate culture and be viewed as an integral component of corporate social responsibility (CSR).

Hund, Gretchen; Seward, Amy M.

2008-11-11T23:59:59.000Z

204

Anne Harrington Announces $25 million for NSSC | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Nonproliferation announces an award of 25 million to the University of California, Berkeley, to lead a multi-institution consortium that will support the nation's...

205

Summary, Long-Term Nuclear Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and nonproliferation activities, environmental management and waste cleanup, and Navy nuclear propulsion systems development.1 The department has a lead role in insuring that...

206

Deterring Nuclear Proliferation: The Importance of IAEA Safeguards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration, topics covered in this new book include: The history of the non-proliferation regime A comprehensive review of the IAEA safeguards system and the Nuclear...

207

The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation  

SciTech Connect

The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field still seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad range of subjects, including nuclear material accountancy principles, legal definitions and the regulatory base and inspection tools and techniques. This 60% core part is given by representatives from regulatory bodies (The International Atomic Energy Agency (IAEA), Institute for Radiological Protection and Nuclear Safety, Directorate General for Nuclear Energy and Transport), industry (AREVA, British Nuclear Group), and research (Stockholm University, Hamburg University, Joint Research Centre-Institute of Transuranic Elements, and Joint Research Centre-Institute for the Protection of the Citizen). The remaining part is completed with topical lectures addressed by invited lecturers, such as from Pacific Northwest National Laboratory and the IAEA addressing topics of physical protection, illicit trafficking, the Iraq case study, exercises, including satellite imagery interpretation etc. With this structure of a stable core plus a variable set of invited lectures, the course will remain sustainable and up-to-date. A syllabus provides the students a homogeneous set of information material in nuclear safeguards and nonproliferation matters at the European and international level. In this way, the ESARDA TKMWG aims to contribute to a two-fold scientific-technical and political-juridical education and training.

Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.; Janssens, Willem; Dickman, Deborah A.

2010-06-16T23:59:59.000Z

208

The Office of Nuclear Verification | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Nuclear Verification | National Nuclear Security Nuclear Verification | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Verification Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Verification The Office of Nuclear Verification

209

Office of Nonproliferation Research & Development | National...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

210

Office of Nonproliferation & International Security | National...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

211

Reassessing U.S. nuclear weapons policy Harold Brown[1] and John Deutch[2  

E-Print Network (OSTI)

2 / 28 The world-wide nuclear-weapon non-proliferation regime The Non Proliferation Treaty (NPT) Entry into force: 1970 Three "pillars": - Non Proliferation (of nuclear-weapon capabilities), - Nuclear of the globe. The collapse of the world-wide regime of nuclear- weapon non-proliferation might happen in two

Deutch, John

212

EA-1238: Proposed Construction and Operation of the Nonproliferation and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

38: Proposed Construction and Operation of the 38: Proposed Construction and Operation of the Nonproliferation and International Security Center, Los Alamos, New Mexico EA-1238: Proposed Construction and Operation of the Nonproliferation and International Security Center, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts for the proposal to construct and operate the Nonproliferation and International Security Center within the U.S. Department of Energy's Los Alamos National Laboratory Technical Area 3 located at Los Alamos, New Mexico. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 1999 EA-1238: Finding of No Significant Impact Proposed Construction and Operation of the Nonproliferation and International Security Center July 22, 1999

213

Carbon dating impacts non-proliferation, drug research and climate...  

NLE Websites -- All DOE Office Websites (Extended Search)

25 years of carbon dating. Carbon dating impacts non-proliferation, drug research and climate change Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Lawrence Livermore...

214

The Office of Nuclear Safeguards and Security | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Safeguards and Security | National Nuclear Security Safeguards and Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Safeguards and Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Safeguards and Security The Office of Nuclear Safeguards and Security

215

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future...

216

Office of Nuclear Warhead Protection | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Warhead Protection | National Nuclear Security Warhead Protection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Office of Nuclear Warhead Protection Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices > Office of International Material Protection and Cooperation > Material Protection, Control and Accounting

217

Chemical and biological nonproliferation program. FY99 annual report  

Science Conference Proceedings (OSTI)

This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

NONE

2000-03-01T23:59:59.000Z

218

Strategic Trade Control - Technical Nonproliferation Policy Support...  

NLE Websites -- All DOE Office Websites (Extended Search)

a complete weapon or an adequate stock of the required material, such as highly-enriched uranium or plutonium for nuclear weapons. History shows, however, that proliferants...

219

THE OFFICE OF NONPROLIFERATION & NATIONAL SECURITY  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science and Technology Department William Horak Chairman Lynne Ecker, Acting Deputy Chair Donna Storan, Administrative Assistant Structural & Seismic Engineering J....

220

THE INTEGRATED EQUIPMENT TEST FACILITY AT OAK RIDGE AS A NONPROLIFERATION TEST LOOP  

Science Conference Proceedings (OSTI)

The apparent renaissance in nuclear power has resulted in a new focus on nonproliferation measures. There is a lot of activity in development of new measurement technologies and methodologies for nonproliferation assessment. A need that is evolving in the United States is for facilities and test loops for demonstration of new technologies. In the late 1970s, the Fuel Recycle Division at Oak Ridge National Laboratory (ORNL) was engaged in advanced reprocessing technology development. As part of the program, the Integrated Equipment Test (IET) facility was constructed as a test bed for advanced technology. The IET was a full-scale demonstration facility, operable on depleted uranium, with a throughput capacity for 0.5 Mt/d. At the front end, the facility had a feed surge vessel, input accountability tank, and feed vessel for the single cycle of solvent extraction. The basic solvent extraction system was configured to use centrifugal contactors for extraction and scrub and a full-size pulsed column for strip. A surge tank received the solvent extraction product solution and fed a continuous operating thermo-syphon-type product evaporator. Product receiving and accountability vessels were available. Feed material could be prepared using a continuous rotary dissolve or by recycling the product with adjustment as new feed. Continuous operations 24/7 could be realized with full chemical recovery and solvent recycle systems in operation. The facility was fully instrumented for process control and operation, and a full solution monitoring application had been implemented for safeguards demonstrations, including actual diversion tests for sensitivity evaluation. A significant effort for online instrument development was a part of the program at the time. The fuel recycle program at Oak Ridge ended in the early 1990s, and the IET facility was mothballed. However, the equipment and systems remain and could be returned to service to support nonproliferation demonstrations. This paper discusses the status of the facility and operations.

Ehinger, Michael H [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

F. Calogero / Prospects of nuclear proliferation, or of transition to a nuclear-weapon-free world CIC, Cuernavaca / 02.12.2010 / page 1 / 28  

E-Print Network (OSTI)

or military use. ­ It is a major component of the Non-Proliferation Treaty (NPT) which has the goal acquisition of a nuclear weapon by an adversary could have a dev- astating influence on US security and non-proliferation. Enhancing nuclear weapons material security in Russia. 4. The Comprehensive Test Ban Treaty. 5. Other

Mejía-Monasterio, Carlos

222

The emerging nuclear suppliers: some guidelines for policy (U)  

SciTech Connect

Lewis A. Dunn, a former Assistant Director of the US Arms Control and Disarmament Agency and now a senior analyst with Science Applications International Corporation, looks to the future to offer "The Emerging Nuclear Suppliers: Some Guidelines for Policy ." Mr. Dunn notes that although most emerging suppliers are cautious, many are not party to existing nonproliferation treaties. He calls upon the nonproliferation community to continue the present policy of not supporting unsafeguarded nuclear activities. He suggests that the nonproliferation community work within existing standards and infrastructures of nuclear suppliers to convince emerging supplier nations of the merits of nuclear export control.

Dunn, Lewis A.

1988-04-01T23:59:59.000Z

223

National Center for Nuclear Security: The Nuclear Forensics Project (F2012)  

Science Conference Proceedings (OSTI)

These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nations verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

Klingensmith, A. L.

2012-03-21T23:59:59.000Z

224

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Nuclear & Environmental Processes Home Eliminating the Use of Highly-Enriched Uranium The mission of the U.S. non-proliferation policy is to minimize and, to the...

225

Detection of Antineutrinos for Non-Proliferation  

E-Print Network (OSTI)

We discuss the feasibility of using the detection of electron antineutrinos produced in fission to monitor the time dependence of the Plutonium content of nuclear power reactors and large (> 1 MWatt) research reactors. If practical such a scheme would allow world-wide, automated monitoring of reactors and, thereby, the detection of proliferation attempts. Although this idea shows some promise, we find that a practical scheme is difficult to envision. We also consider using fission antineutrino spectra to determine and attribute the fuel in an unexploded nuclear device. We find it would not be possible to determine the isotopic content of such a device in this manner. Finally, we examine the possibility of antineutrino detection of an unannounced low-yield (~ 1kton) nuclear explosion. We argue this can be ruled out completely.

Nieto, M M; Teeter, C M; Wilson, W B; Stanbro, W D; Nieto, Michael Martin; Teeter, Corinne M.; Wilson, William B.; Stanbro, William D.

2003-01-01T23:59:59.000Z

226

Economic and Non-proliferation Policy Considerations of Uranium Enrichment in Brazil and Argentina  

Science Conference Proceedings (OSTI)

The nuclear development programs of both Argentina and Brazil have, since the 1970s, been premised on the desire for self-sufficiency and assurance of nuclear fuel supply. While military rivalry and mutual distrust led to nuclear weapons related development programs in the 1970s and 1980s, both countries have since terminated these programs. Furthermore, the governments of both countries have pledged their commitment to exclusively non-explosive use of nuclear energy and have signed the Non Proliferation Treaty (NPT). Utilizing rights provided for under the NPT, both Argentina and Brazil have nuclear fuel production facilities, with the notable exception of enrichment plants, that provide much of the current indigenous fuel requirements for their nuclear power plants. However, both countries are actively developing enrichment capability to fill this gap. The purpose of this report is to assess the economic basis and non-proliferation policy considerations for indigenous enrichment capability within the context of their desired self-sufficiency and to evaluate possible United States Government policy options.

Short, Steven M.; Phillips, Jon R.; Weimar, Mark R.; Mahy, Heidi A.

2008-09-01T23:59:59.000Z

227

Neutrinos and Non-proliferation in Europe  

E-Print Network (OSTI)

Triggered by the demand of the IAEA, neutrino physicists in Europe involved with the Double Chooz experiment are studying the potential of neutrino detection to monitor nuclear reactors. In particular a new set of experiments at the ILL is planned to improve the knowledge of the neutrino spectrum emitted in the fission of 235U and 239Pu.

Cribier, Michel

2006-01-01T23:59:59.000Z

228

National independence and nonproliferation in the new states of Central Asia  

SciTech Connect

Five independent states emerged in Central Asia from the breakup of the USSR. One of these states, Kazakhstan, possesses nuclear weapons. The other four of these states, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, are not known to possess nuclear weapons, however they occupy a geostrategic position which makes them important to non-proliferation efforts. The present report profiles the capabilities and intentions of these four Central Asian states. The analysis of capabilities suggests that none of these states has the capability to develop a usable nuclear weapon. However, all of these countries-- especially Uzbekistan--have components of the old Soviet nuclear weapons complex which are now orphans. They have no use for these facilities and must either re-profile them, destroy them, or transfer them. The analysis of intentions suggests that the dynamics of national independence have created a situation in which Uzbekistan has hegemonic designs in the region. Implications for retarding nuclear proliferation in the Central Asian region are examined. Opportunities for outside influence are assessed.

Gleason, G.

1993-12-01T23:59:59.000Z

229

DNN Cover(pg1).indd  

National Nuclear Security Administration (NNSA)

Mongolia Montenegro Morocco Namibia Nepal Netherlands Nicaragua Niger Nigeria North Korea Norway Oman Pakistan Panama Papua New Guinea Paraguay Peru Philippines Poland Portugal...

230

6 Nuclear Fuel Designs  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Message from the Director 2 Nuclear Power & Researrh Reactors 3 Discovery of Promethium 4 Nuclear Isotopes 4 Nuclear Medicine 5 Nuclear Fuel Processes & Software 6 Nuclear Fuel Designs 6 Nuclear Safety 7 Nuclear Desalination 7 Nuclear Nonproliferation 8 Neutron Scattering 9 Semiconductors & Superconductors 10 lon-Implanted Joints 10 Environmental Impact Analyses 11 Environmental Quality 12 Space Exploration 12 Graphite & Carbon Products 13 Advanced Materials: Alloys 14 Advanced Materials: Ceramics 15 Biological Systems 16 Biological Systems 17 Computational Biology 18 Biomedical Technologies 19 Intelligent Machines 20 Health Physics & Radiation Dosimetry 21 Radiation Shielding 21 Information Centers 22 Energy Efficiency: Cooling & Heating

231

Detection of Antineutrinos for Non-Proliferation  

E-Print Network (OSTI)

We discuss the feasibility of using the detection of electron antineutrinos produced in fission to monitor the time dependence of the plutonium content of nuclear power reactors. If practical such a scheme would allow world-wide, automated monitoring of reactors and, thereby, the detection of certain proliferation scenarios. For GW$_e$ power reactors the count rates and the sensitivity of the antineutrino spectrum (to the core burn-up) suggest that monitoring of the gross operational status of the reactor from outside the containment vessel is feasible. As the plutonium content builds up in a given burn cycle the total number of antineutrinos steadily drops and this variation is quite detectable, assuming fixed reactor power. The average antineutrino energy also steadily drops, and a measurement of this variation would be very useful to help off set uncertainties in the total reactor power. However, the expected change in the antineutrino signal from the diversion of a significant quantity (SQ) of plutonium, which would typically require the diversion of as little as a single fuel assemblies in a GW$_e$ reactor, would be very difficult to detect.

Michael Martin Nieto; A. C. Hayes; Corinne M. Teeter; William B. Wilson; William D. Stanbro

2003-09-09T23:59:59.000Z

232

Print this article Close This Window EU OKs India joining ITER nuclear reactor project  

E-Print Network (OSTI)

Delhi on the project was a separate issue from India's avoidance of the nuclear Non-proliferation Treaty, she said. "There is the non-proliferation issue and we are pursuing that with the Indians as part despite its refusal to sign a global treaty barring the spread of atomic weapons. That move was seen

233

Nuclear Fuel Cycle Reasoner: PNNL FY13 Report  

SciTech Connect

In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

Hohimer, Ryan E.; Strasburg, Jana D.

2013-09-30T23:59:59.000Z

234

Detection Technologies, Arms control and nonproliferation technologies. Third/fourth quarters 1993  

SciTech Connect

This issue of Arms Control and Nonproliferation Technologies is another in a series of issues about specific means for detecting and identifying proliferation and other suspect activities outside the realm of arms control treaties. All the projects discussed are funded by the Office of Research and Development of the Department of Energy`s Office of Nonproliferation and National Security.

Staehle, G; Stull, S; Talaber, C; Moulthrop, P [eds.

1993-12-31T23:59:59.000Z

235

A Nuclear Iran? Why this particular topic?  

E-Print Network (OSTI)

A Nuclear Iran? #12;#12;Why this particular topic? · State Department internship · Personal · NPT (Nuclear Nonproliferation Treaty) developed after WWII and Japan · IAEA (International Atomic of capacity #12;Iran's nuclear program · Initiated in 1959 · Strong ties to Russia, China and Pakistan · 2002

New Hampshire, University of

236

The Office of Nuclear Controls | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Controls | National Nuclear Security Administration Controls | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Controls Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Controls The Office of Nuclear Controls Certain terrorist groups and states are attempting to acquire WMD dual-use

237

The Office of Nonproliferation and International Security Policy...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

238

Examination of the proposed conversion of the U.S. Navy nuclear fleet from highly enriched Uranium to low enriched Uranium  

E-Print Network (OSTI)

.The Treaty on the Non-Proliferation of Nuclear Weapons creates a loophole that allows a non-nuclear-weapon country to avoid international safeguards governing fissile materials if it claims that the materials will be used ...

McCord, Cameron (Cameron Liam)

2013-01-01T23:59:59.000Z

239

Office of National Infrastructure & Sustainability | National Nuclear  

National Nuclear Security Administration (NNSA)

National Infrastructure & Sustainability | National Nuclear National Infrastructure & Sustainability | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Office of National Infrastructure & Sustainability Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices > Office of International Material

240

Office of Material Consolidation & Civilian Sites | National Nuclear  

National Nuclear Security Administration (NNSA)

Material Consolidation & Civilian Sites | National Nuclear Material Consolidation & Civilian Sites | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Office of Material Consolidation & Civilian Sites Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices > Office of International Material

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

GTRI's Nuclear and Radiological Material Protection | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Protection | National Nuclear Protection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog GTRI's Nuclear and Radiological Material Protection Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative > GTRI's Nuclear and Radiological Material Protection GTRI's Nuclear and Radiological Material Protection

242

NNSA Highlights Nonproliferation Achievements, 2009-2013 | National...  

National Nuclear Security Administration (NNSA)

laid out his nuclear security vision in Prague, NNSA and our international partners have led a global effort to reduce the threat of nuclear terrorism by securing, consolidating...

243

Simulating Scintillator Light Collection Using Measured Optical Reflectance  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nuclear Nonproliferation Research and Engineering (NA-22)of Defense Nuclear Nonproliferation, Office of Nuclear

Janecek, Martin

2010-01-01T23:59:59.000Z

244

Optical Reflectance Measurements for Commonly Used Reflectors  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nuclear Nonproliferation Research and Engineering (NA-22)of Defense Nuclear Nonproliferation, Office of Nuclear

Janecek, Petr Martin

2009-01-01T23:59:59.000Z

245

Measuring Light Reflectance of BGO Crystal Surfaces  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nuclear Nonproliferation Research and Engineering (NA-22)of Defense Nuclear Nonproliferation, Office of Nuclear

Janecek, Martin

2009-01-01T23:59:59.000Z

246

Design of an Instrument to Measure Optical Reflectance of Scintillating Crystal Surfaces  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nuclear Nonproliferation Research and Engineering (NA-22)of Defense Nuclear Nonproliferation, Office of Nuclear

Janecek, Martin

2008-01-01T23:59:59.000Z

247

How Brazil spun the atom [nuclear power reactors  

Science Conference Proceedings (OSTI)

This paper describes the Resende nuclear complex in Brazil which will house hundreds of uranium centrifuges to produce enriched uranium that will fuel its nuclear power reactors. By consistently fulfilling its obligations as a party to the Nuclear Non-Proliferation ...

E. Guizzo

2006-03-01T23:59:59.000Z

248

Loose Nukes: Nuclear Material Security in G.P.Gilfoyle  

E-Print Network (OSTI)

Not supported by administration. No change. NPT Non-Proliferation Treaty See CTBT. No change. ABM Anti of a nuclear weapon by an adversary could have a devastating influence on US security and non-proliferation.A.Parmentola, Using Nuclear Materials to Prevent Nuclear Proliferation, Science and Global Security, 9, 81 (2001). #12

Gilfoyle, Jerry

249

Proceedings of the Symposium on the Non-Proliferation Experiment: Results and Implications for Test Ban Treaties, Rockville, Maryland, April 19-21, 1994  

SciTech Connect

To address a critical verification issue for the current Non-Proliferation Treaty (NPT) and for a possible future Comprehensive Test Ban Treaty (CTBT), the Department of Energy sought to measure certain differences between an underground nuclear test and a chemical test in the same geology, so that other explosions could be identified. This was done in a field experiment code-named the NonProliferation Experiment (NPE).This comprehensive experiment was designed to determine the signatures of chemical explosions for a broad range of phenomena for comparison with those of previous nuclear tests. If significant differences can be measured, then these measures can be used to discriminate between the two types of explosions. In addition, when these differences are understood, large chemical explosions can be used to seismically calibrate regions to discriminate earthquakes from explosions. Toward this end, on-site and off-site measurements of transient phenomena were made, and on-site measurements of residual effects are in progress.Perhaps the most striking result was that the source function for the chemical explosion was identical to that of a nuclear one of about twice the yield. These proceedings provide more detailed results of the experiment.

Denny, Marvin D

1994-01-01T23:59:59.000Z

250

A unified risk-Informed framework to assess the proliferation risk and license the proliferation performance of nuclear energy systems  

E-Print Network (OSTI)

In order to strengthen the current non-proliferation regime it is necessary to guarantee high standards of security for the sites that use, store, produce, or reprocess special nuclear materials (SNM). The current surge ...

Cavalieri d'Oro, Edoardo

2011-01-01T23:59:59.000Z

251

A Unified Risk-Informed Framework to Assess the Proliferation Risk and License the Proliferation Performace of Nuclear Energy  

E-Print Network (OSTI)

In order to strengthen the current non-proliferation regime it is necessary to guarantee high standards of security for the sites that use, store, produce, or reprocess special nuclear materials (SNM). The current surge ...

d'Oro, Edoardo Cavalieri

252

Fission-Suppressed Fusion, Thorium-Cycle Breeder and Nonproliferation  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

R. W. Moir

253

Anne Harrington | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Anne Harrington | National Nuclear Security Administration Anne Harrington | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Leadership > Anne Harrington Anne Harrington Deputy Administrator for Defense Nuclear Nonproliferation Anne Harrington Anne Harrington was sworn in as Deputy Administrator for Defense Nuclear Nonproliferation for the National Nuclear Security Administration in

254

The nuclear materials control technology briefing book  

SciTech Connect

As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

Hartwell, J.K.; Fernandez, S.J.

1992-03-01T23:59:59.000Z

255

Abraham Calls on Global Community to Aggressively Address Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abraham Calls on Global Community to Aggressively Address Nuclear Abraham Calls on Global Community to Aggressively Address Nuclear Nonproliferation Abraham Calls on Global Community to Aggressively Address Nuclear Nonproliferation January 13, 2005 - 9:49am Addthis WASHINGTON, DC - In a lunchtime speech to the Council on Foreign Relations in Washington, DC, Energy Secretary Spencer Abraham called on the global community to join in implementing a comprehensive nuclear nonproliferation strategy to address 21st century challenges. Outlining his vision for dealing with constantly evolving proliferation threats in an age of terrorism, Secretary Abraham said the international community must play a greater role in future efforts. "Terrorists have struck not just Washington, New York, Moscow, and Beslan," he said. "The challenge of confronting terrorism falls to every nation. .

256

Measurements of NaI(Tl) electron response: comparison of different samples  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nonproliferation Research and Development (NA-22) of theof Defense Nuclear Nonproliferation, Office of Nuclear

Hull, Giulia

2010-01-01T23:59:59.000Z

257

EU Actorship in the Non-Proliferation area.  

E-Print Network (OSTI)

?? The threat of nuclear weapons is depicted by the EU as the potentially greatest threat to security. How then does the EU counter this (more)

Pettersson, Ylva

2013-01-01T23:59:59.000Z

258

The National Nuclear Security Administration Global Threat Reduction Initiative's Contract Administration, OAS-L-12-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit and Inspections Audit and Inspections Audit Report The National Nuclear Security Administration Global Threat Reduction Initiative's Contract Administration OAS-L-12-01 October 2011 Department of Energy Washington, DC 20585 October 25, 2011 MEMORANDUM FOR THE DEPUTY ADMINISTRATOR FOR DEFENSE NUCLEAR NONPROLIFERATION FROM: David Sedillo Director Western Audits Division SUBJECT: INFORMATION: Audit Report on "The National Nuclear Security Administration Global Threat Reduction Initiative's Contract Administration" BACKGROUND The National Nuclear Security Administration's (NNSA) Office of Defense Nuclear Nonproliferation established the Global Threat Reduction Initiative (GTRI) in May 2004, as a vital part of the efforts to combat nuclear and radiological terrorism. GTRI's mission is to reduce

259

Constraining potential nuclear-weapons proliferation from civilian reactors  

Science Conference Proceedings (OSTI)

Cessation of the Cold War and renewed international attention to the proliferation of weapons of mass destruction are leading to national policies aimed at restraining nuclear-weapons proliferation that could occur through the nuclear-fuel cycle. Argonne, which has unique experience, technology, and capabilities, is one of the US national laboratories contributing to this nonproliferation effort.

Travelli, A.; Gaines, L.L.; Minkov, V.; Olson, A.P.; Snelgrove, J.

1993-11-01T23:59:59.000Z

260

Fissile and Non-Fissile Material Detection Using Nuclear Acoustic Resonance Signatures  

Science Conference Proceedings (OSTI)

The objective of this project is to develop anovel technique for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs. We propse the development of a detection system based on magnetic resonance principles (NAR), which would work where radiation detection is not possible. The approach would be non-intrusive, penetrating, applicable to many materials of interest for Nonproliferation, and be able to identify the nuclear samples under investigation.

Bernhard R. Tittmann; P.M. Lenahan; David Spears; Rhys Williams

2008-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ABOUT THE DEGREE The Master of Nuclear Science degree is a coursework  

E-Print Network (OSTI)

by the Nuclear Non- Proliferation Treaty (NPT), or the so-called P-5 countries, to play a leadership role ourselves to the goal of eliminating nuclear weapons under the Treaty on the Non-Proliferation of Nuclear build on but broaden the periodic dialogue on non- proliferation issues among the United States, Russia

Chen, Ying

262

Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects  

E-Print Network (OSTI)

Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline: Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, many applications of interest are in nuclear nonproliferation. This white paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.

Bernstein, A; Boyer, B; Goodman, M; Learned, J; Lund, J; Reyna, D; Svoboda, R

2009-01-01T23:59:59.000Z

263

Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects  

E-Print Network (OSTI)

Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline: Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, many applications of interest are in nuclear nonproliferation. This white paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.

A. Bernstein; G. Baldwin; B. Boyer; M. Goodman; J. Learned; J. Lund; D. Reyna; R. Svoboda

2009-08-29T23:59:59.000Z

264

Nuclear Energy Readiness Indicator Index (NERI): A benchmarking tool for assessing nuclear capacity in developing countries  

Science Conference Proceedings (OSTI)

Declining natural resources, rising oil prices, looming climate change and the introduction of nuclear energy partnerships, such as GNEP, have reinvigorated global interest in nuclear energy. The convergence of such issues has prompted countries to move ahead quickly to deal with the challenges that lie ahead. However, developing countries, in particular, often lack the domestic infrastructure and public support needed to implement a nuclear energy program in a safe, secure, and nonproliferation-conscious environment. How might countries become ready for nuclear energy? What is needed is a framework for assessing a country's readiness for nuclear energy. This paper suggests that a Nuclear Energy Readiness Indicator (NERI) Index might serve as a meaningful basis for assessing a country's status in terms of progress toward nuclear energy utilization under appropriate conditions. The NERI Index is a benchmarking tool that measures a country's level of 'readiness' for nonproliferation-conscious nuclear energy development. NERI first identifies 8 key indicators that have been recognized by the International Atomic Energy Agency as key nonproliferation and security milestones to achieve prior to establishing a nuclear energy program. It then measures a country's progress in each of these areas on a 1-5 point scale. In doing so NERI illuminates gaps or underdeveloped areas in a country's nuclear infrastructure with a view to enable stakeholders to prioritize the allocation of resources toward programs and policies supporting international nonproliferation goals through responsible nuclear energy development. On a preliminary basis, the indicators selected include: (1) demonstrated need; (2) expressed political support; (3) participation in nonproliferation and nuclear security treaties, international terrorism conventions, and export and border control arrangements; (4) national nuclear-related legal and regulatory mechanisms; (5) nuclear infrastructure; (6) the utilization of IAEA technical assistance; (7) participation in regional arrangements; and (8) public support for nuclear power. In this paper, the Index aggregates the indicators and evaluates and compares the level of readiness in seven countries that have recently expressed various degrees of interest in establishing a nuclear energy program. The NERI Index could be a valuable tool to be utilized by: (1) country officials who are considering nuclear power; (2) the international community, desiring reassurance of a country's capacity for the peaceful, safe, and secure use of nuclear energy; (3) foreign governments/NGO's, seeking to prioritize and direct resources toward developing countries; and (4) private stakeholders interested in nuclear infrastructure investment opportunities.

Saum-Manning,L.

2008-07-13T23:59:59.000Z

265

Our Programs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Programs | National Nuclear Security Administration Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Programs Home > About Us > Our Programs Our Programs NNSA's program support is divided into several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and

266

Presidential Initiatives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Presidential Initiatives | National Nuclear Security Administration Presidential Initiatives | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Presidential Initiatives Home > About Us > Our Programs > Nonproliferation > Countering Nuclear Terrorism and Trafficking > Presidential Initiatives Presidential Initiatives Bratislava Nuclear Security Initiative: President Putin and President

267

GTRI: Reducing Nuclear Threats | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Reducing Nuclear Threats | National Nuclear Security Administration Reducing Nuclear Threats | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > GTRI: Reducing Nuclear Threats Fact Sheet GTRI: Reducing Nuclear Threats Apr 12, 2013 Mission In 2004, NNSA established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible,

268

Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis  

SciTech Connect

This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previously used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant and non-relevant facilities and their associated infrastructure. The digital globes also provide highly accurate terrain mapping for better geospatial context and allow detailed 3-D perspectives of all sites or areas of interest. 3-D modeling software (i.e., Google's SketchUp6 newly available in 2007) when used in conjunction with these digital globes can significantly enhance individual building characterization and visualization (including interiors), allowing for better assessments including walk-arounds or fly-arounds and perhaps better decision making on multiple levels (e.g., the best placement for International Atomic Energy Agency (IAEA) video monitoring cameras).

Pabian, Frank V [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

269

Safeguarding and Protecting the Nuclear Fuel Cycle  

Science Conference Proceedings (OSTI)

International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

Trond Bjornard; Humberto Garcia; William Desmond; Scott Demuth

2010-11-01T23:59:59.000Z

270

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007 843 A Prototype Three-Dimensional Position Sensitive  

E-Print Network (OSTI)

for homeland security and nuclear non-proliferation applications. Mechanically cooled HPGe detectorsIEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007 843 A Prototype Three of Nuclear Engineering and Radi- ological Sciences, University of Michigan, Ann Arbor, MI 48109 USA (e

He, Zhong

271

NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2009 - May 2010  

SciTech Connect

In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 17th successful year in support of the NNSAs mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. This annual report to reviews program activities from June 2009 through May 2010 - the fellowship term for the Class of 2009. Contents include: Welcome Letter (Mission Driven: Its all about results), Introduction, Structure of the NGFP, Program Management Highlights, Annual Lifecycle, Class of 2009 Incoming Fellows, Orientation, Global Support of the Mission, Career Development, Management of the Fellows, Performance Highlights, Closing Ceremony, Where They Are Now, Alumni Highlight - Mission Success: Exceptional Leaders from the NGFP, Class of 2009 Fall Recruitment Activities, Established Partnerships, Face-to-Face, Recruiting Results, Interviews, Hiring and Clearances, Introducing the Class of 2010, Class of 2011 Recruitment Strategy, On the Horizon, Appendix A: Class of 2010 Fellow Biographies

Berkman, Clarissa O.; Fankhauser, Jana G.

2011-04-01T23:59:59.000Z

272

NNSA Nonproliferation Graduate Fellowship Program Annual Report June 2008 - May 2009  

SciTech Connect

In 2009, the Nonproliferation Graduate Fellowship Program (NGFP) completed its 16th successful year in support of the NNSAs mission by developing future leaders in nonproliferation and promoting awareness of career opportunities. We provide this annual report to review program activities from June 2008 through May 2009 - the fellowship term for the Class of 2008. Contents include: Welcome Letter Introduction The NGFP Team Program Management Highlights Class of 2008 Incoming Fellows Orientation Travel Career Development Management of the Fellows Performance Highlights Closing Ceremony Encore Performance Where They Are Now Alumnus Career Highlights: Christine Buzzard Class of 2009 Applicant Database Upgrades Fall Recruitment Activities Interviews Hiring and Clearances Introducing the Class of 2009 Class of 2010 Recruitment Strategy On the Horizon Appendix A: Class of 2009 Fellows

Berkman, Clarissa O.; Fankhauser, Jana G.

2010-03-01T23:59:59.000Z

273

Industry Self-Regulation as a Means to Promote Nonproliferation  

SciTech Connect

Companies within numerous industries that have been early adopters of self-regulation concept, considering the environment and society alongside business issues, have realized several benefits and some competitive advantage while substantially improving their environmental performance. Given that proliferation prevention is also a public good, our premise is that the experience gained and lessons learned from the self-regulation initiative in other industries and more broadly in the arena of sustainable development provide a basis for examining the feasibility of developing self-regulation mechanisms applicable to industries involved with sensitive technologies (nuclear, radiological source, and other dual-use industries)

Hund, Gretchen; Elkhamri, Oksana O.

2005-10-01T23:59:59.000Z

274

Use of Social Media to Target Information-Driven Arms Control and Nonproliferation Verification  

Science Conference Proceedings (OSTI)

There has been considerable discussion within the national security community, including a recent workshop sponsored by the U.S. State Department, about the use of social media for extracting patterns of collective behavior and influencing public perception in areas relevant to arms control and nonproliferation. This paper seeks to explore if, and how, social media can be used to supplement nonproliferation and arms control inspection and monitoring activities on states and sites of greatest proliferation relevance. In this paper, we set the stage for how social media can be applied in this problem space and describe some of the foreseen challenges, including data validation, sources and attributes, verification, and security. Using information analytics and data visualization capabilities available at Pacific Northwest National Laboratory (PNNL), we provide graphical examples of some social media "signatures" of potential relevance for nonproliferation and arms control purposes. We conclude by describing a proposed case study and offering recommendations both for further research and next steps by the policy community.

Kreyling, Sean J.; Williams, Laura S.; Gastelum, Zoe N.; Whattam, Kevin M.; Corley, Courtney D.; Cramer, Nicholas O.; Rose, Stuart J.; Bell, Eric B.; Gregory, Michelle L.

2012-07-19T23:59:59.000Z

275

The non-proliferation experiment and gas sampling as an on-site inspection activity: A progress report  

SciTech Connect

The Non-proliferation Experiment (NPE) is contributing to the development of gas sampling methods and models that may be incorporated into future on-site inspection (OSI) activities. Surface gas sampling and analysis, motivated by nuclear test containment studies, have already demonstrated the tendency for the gaseous products of an underground nuclear test to flow hundreds of meters to the surface over periods ranging from days to months. Even in the presence of a uniform sinusoidal pressure variation, there will be a net flow of cavity gas toward the surface. To test this barometric pumping effect at Rainier Mesa, gas bottles containing sulfur hexaflouride and {sup 3}He were added to the pre-detonation cavity for the 1 kt chemical explosives test. Pre-detonation measurements of the background levels of both gases were obtained at selected sites on top of the mesa. The background levels of both tracers were found to be at or below mass spectrographic/gas chromatographic sensitivity thresholds in the parts-per-trillion range. Post-detonation, gas chromatographic analyses of samples taken during barometric pressure lows from the sampling sites on the mesa indicate the presence of significant levels (300--600 ppt) of sulfur hexaflouride. However, mass spectrographic analyses of gas samples taken to date do not show the presence of {sup 3}He. To explain these observations, several possibilities are being explored through additional sampling/analysis and numerical modeling. For the NPE, the detonation point was approximately 400 m beneath the surface of Rainier Mesa and the event did not produce significant fracturing or subsidence on the surface of the mesa. Thus, the NPE may ultimately represent an extreme, but useful example for the application and tuning of cavity gas detection techniques.

Carrigan, C.R.

1994-03-01T23:59:59.000Z

276

An analytical model of nonproportional scintillator light yield in terms of recombination rates  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nuclear Nonproliferation Research and Engineering (NA-22)

Bizarri, Gregory

2009-01-01T23:59:59.000Z

277

Performance of a facility for measuring scintillator non-proportionality  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nuclear Nonproliferation Research and Engineering (NA-22)

Choong, Woon-Seng

2008-01-01T23:59:59.000Z

278

Simple model relating recombination rates and non-proportional light yield in scintillators  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nuclear Nonproliferation Research and Engineering (NA-22)

Moses, William W.

2009-01-01T23:59:59.000Z

279

Photodetectors for Scintillator Proportionality Measurement  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nuclear Nonproliferation Research and Engineering (NA-22)

Moses, William W.

2011-01-01T23:59:59.000Z

280

2006 Department of Energy Strategic Plan - Ensuring America's nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ensuring America's Ensuring America's nuclear security 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials and technology through the NNSA.

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

China's Nuclear Power Program: Options for the US  

Science Conference Proceedings (OSTI)

The issue of American nuclear cooperation with the People's Republic of China is examined with regards to political relations, commercial benefits to the United States, and nonproliferation. China's interest in nuclear power is examined, and its nuclear program is briefly reviewed from the 1950's to present. China's international nuclear relations with other countries are discussed, and implications for the United States examined, particularly with regards to China's intentions toward nuclear proliferation, danger of diversion of material for nuclear weapons, use of pressurized water reactor technology for Chinese naval reactors, and the terms of the nuclear cooperation agreement. (LEW)

Suttmeier, R.P.

1985-01-01T23:59:59.000Z

282

Nuclear Power: "Made in China" Andrew C. Kadak, Ph.D.  

E-Print Network (OSTI)

the proliferation threat. China is a signatory to the Nuclear Non- Proliferation Treaty and the "Additional of nuclear waste and non- proliferation. As the world stands at the threshold of this ambitious and dynamic management and waste volume reduction. Non-proliferation One of the major concerns about expanding the use

283

1 iiNuclear Energy Advisory Committee  

E-Print Network (OSTI)

task, NEAC formed two subcommittees, one devoted to nuclear energy policy and one focused on nuclear energy technology. The report calls attention to the role of nuclear power and its impact on energy security, the environment, and nonproliferation. A strategy for nuclear energy policy and technology should be considered not in years but decades. This report identifies important benchmarks in both the policy and technology areas. Importantly, progress on nuclear energy will require bipartisan efforts and our members are representative of both political parties and are drawn from different professional backgrounds. The committee is composed of eminent scientists including a Nobel Prize winner; former senior officials of the U.S. Department of Energy, the Nuclear Regulatory Commission, the U.S. State Department, NASA and the National Security Council; distinguished professors in the field of nuclear energy, including a university president; as well as industry leaders and important non-governmental organizations, such as the Nuclear Threat Initiative, the Natural Resources Defense Council, the Nuclear Energy Institute, and the Eisenhower Institute. The Department of Energy has played and will continue to play an integral role in securing safe nuclear power for our Nation, including a very important and fundamental role in advancing technology. Nuclear power is experiencing a dramatic expansion internationally that will require safe construction and operation as well as compliance with nonproliferation objectives. Our report emphasizes that a global approach is vital to ensure a sustained U.S. nuclear program

Dr. Samuel Bodman

2008-01-01T23:59:59.000Z

284

Unattended Radiation Sensor Systems for Remote Terrestrial Applications and Nuclear Nonproliferation  

Science Conference Proceedings (OSTI)

The design of instrumentation for remote sensing presents special requirements in the areas of power consumption

Lodewijk van den Berg; Alan E. Proctor; Ken R. Pohl; Alex Bolozdynya; Raymond De Vito

2002-01-01T23:59:59.000Z

285

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

, which date back to the 1950s. The proliferation of international and regional courts has prompted some or related trade arrangements. Paradoxically, while we have witnessed the proliferation of international for Ethics, Justice, and Public Life Brandeis University 6 is by treaty and by custom - the two formal

Gilfoyle, Jerry

286

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites

National Nuclear Security Administration National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Learn More NNSA DOE removes all remaining HEU from Hungary Learn More DOE removes all remaining HEU from Hungary Tiffany A. Blanchard-Case receives 2013 Linton Brooks Medal

287

Nuclear fuel cycle costs  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1982-02-01T23:59:59.000Z

288

Fissile Materials Disposition | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Fissile Materials Disposition | National Nuclear Security Administration Fissile Materials Disposition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Fissile Materials Disposition Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition Fissile Materials Disposition Since the end of the Cold War, significant quantities of plutonium and

289

GTRI's Convert program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

program | National Nuclear Security Administration program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog GTRI's Convert program Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative > GTRI's Convert program GTRI's Convert program One of Global Threat Reduction Initiative's (GTRI) three key pillars is

290

Global Threat Reduction Initiative | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Threat Reduction Initiative | National Nuclear Security Threat Reduction Initiative | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Global Threat Reduction Initiative Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative Global Threat Reduction Initiative The mission of the Global Threat Reduction Initiative (GTRI) is to reduce

291

Global Threat Reduction Initiative | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Threat Reduction Initiative | National Nuclear Security Threat Reduction Initiative | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Global Threat Reduction Initiative Home > About Us > Our Programs > Nonproliferation > Global Threat Reduction Initiative Global Threat Reduction Initiative The mission of the Global Threat Reduction Initiative (GTRI) is to reduce

292

International Materials Protection and Cooperation | National Nuclear  

National Nuclear Security Administration (NNSA)

Materials Protection and Cooperation | National Nuclear Materials Protection and Cooperation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog International Materials Protection and Cooperation Home > About Us > Our Programs > Nonproliferation > International Materials Protection and Cooperation International Materials Protection and Cooperation

293

Nuclear Systems Modeling and Design Analysis - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis CAPABILITIES Overview Nuclear Systems Modeling and Design Analysis Nuclear Systems Technologies Risk and Safety Assessments Nonproliferation and National Security Materials Testing Engineering Computation & Design Engineering Experimentation Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Capabilities Nuclear Systems Modeling and Design Analysis Bookmark and Share Reactor Physics and Fuel Cycle Analysis Reactor Physics and Fuel Cycle Analysis We have played a major role in the design and analysis of most existing and past reactor types and of many

294

Chemical Sciences & Engineering - Nuclear & Environmental Processes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Safeguards * Members * Overview Nuclear & Environmental Processes Home Process Safeguards Process Safeguards is the application of chemical and engineering expertise to improve safeguards and nonproliferation of nuclear materials in complex facilities. Researchers in this group are developing novel approaches that integrate process modeling, process monitoring, and radiochemistry to understand, track and confirm the movement of nuclear materials through multistage chemical processes. Recent work includes Describing system response and observables of relevant process changes Developing detectors for nuclear materials Developing techniques for safeguarding nuclear materials More Closing the Nuclear Fuel Cycle Improved Safeguards for Spent Fuel Treatment Systems

295

Nuclear Energy | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy Nuclear Energy Argonne has contributed to the development of civilian nuclear power for over 50 years. Our scientists and engineers conduct research in advanced nuclear energy systems, nonproliferation and national security, and environmental management. Nuclear energy is the largest generator of carbon-free electricity in use today, and it will play an increasing role in worldwide power generation as advanced reactor designs and improved fuel-cycle technologies are brought into commercial application. Nearly every commercial reactor in operation today was developed from Argonne research. Building on this heritage, we are supporting the reliable, safe and secure use of nuclear power worldwide - and fostering its increased use in the future by incorporating science and engineering

296

Statement of Anne M. Harrington, Deputy Administrator for Defense Nuclear  

National Nuclear Security Administration (NNSA)

Congressional Testimony > Statement of Anne M. Congressional Testimony > Statement of Anne M. Harrington, Deputy Administrator ... Congressional Testimony Statement of Anne M. Harrington, Deputy Administrator for Defense Nuclear Nonproliferation to the Senate Armed Services Sub Committee On Emerging Threats and Capabilities May 10, 2011 Chairwoman Hagan, Ranking Member Portman, thank you for the opportunity to join you today to discuss the investments the President has requested for the National Nuclear Security Administration's Defense Nuclear Nonproliferation programs. But more importantly, thank you for your continued support of the National Nuclear Security Administration, and the 35,000 men and women working across the enterprise to keep our country safe, protect our allies, and enhance global security. We could not do

297

Statement of Anne M. Harrington, Deputy Administrator for Defense Nuclear  

National Nuclear Security Administration (NNSA)

Speeches > Statement of Anne M. Harrington, Deputy Speeches > Statement of Anne M. Harrington, Deputy Administrator ... Speech Statement of Anne M. Harrington, Deputy Administrator for Defense Nuclear Nonproliferation to the Senate Armed Services Sub Committee On Emerging Threats and Capabilities May 10, 2011 Chairwoman Hagan, Ranking Member Portman, thank you for the opportunity to join you today to discuss the investments the President has requested for the National Nuclear Security Administration's Defense Nuclear Nonproliferation programs. But more importantly, thank you for your continued support of the National Nuclear Security Administration, and the 35,000 men and women working across the enterprise to keep our country safe, protect our allies, and enhance global security. We could not do this work without strong, bipartisan support and engaged leadership from

298

Fission-suppressed fusion breeder on the thorium cycle and nonproliferation  

Science Conference Proceedings (OSTI)

Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P fusion /Pinput=4. Fusion reactors could be designed to destroy fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing 233U with 238U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 232U atoms for each 233U atom produced from thorium

R. W. Moir

2012-01-01T23:59:59.000Z

299

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

Fissile Material. The Nonproliferation Review, 1994. [135]2006. [98] Office of Nonproliferation and InternationalSecurity. Nonproliferation Impact Assessment for the Global

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

300

Our Mission | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Mission | National Nuclear Security Administration Mission | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Our Mission Home > Our Mission Our Mission NNSA is responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. It also responds to nuclear and radiological emergencies in the United States

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Revised ROD for FEIS on Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

720 720 Federal Register / Vol. 61, No. 144 / Thursday, July 25, 1996 / Notices 1995 (44 U. S. C. Chapter 35) requires that the Office of Management and Budget (OMB) provide interested Federal agencies and the public an early opportunity to comment on information collection requests. OMB may amend or waive the requirement for public consultation to the extent that public participation in the approval process would defeat the purpose of the information collection, violate State or Federal law, or substantially interfere with any agency's ability to perform its statutory obligations. The Director of the Information Resources Group publishes this notice containing proposed information collection requests prior to submission of these requests to OMB. Each proposed information collection,

302

Nuclear Safeguards Infrastructure Development and Integration with Safety and Security  

SciTech Connect

Faced with increasing global energy demands, many developing countries are considering building their first nuclear power plant. As a country embarks upon or expands its nuclear power program, it should consider how it will address the 19 issues laid out in the International Atomic Energy Agency (IAEA) document Milestones in Development of a National Infrastructure for Nuclear Power. One of those issues specifically addresses the international nonproliferation treaties and commitments and the implementation of safeguards to prevent diversion of nuclear material from peaceful purposes to nuclear weapons. Given the many legislative, economic, financial, environmental, operational, and other considerations preoccupying their planners, it is often difficult for countries to focus on developing the core strengths needed for effective safeguards implementation. Typically, these countries either have no nuclear experience or it is limited to the operation of research reactors used for radioisotope development and scientific research. As a result, their capacity to apply safeguards and manage fuel operations for a nuclear power program is limited. This paper argues that to address the safeguards issue effectively, a holistic approach must be taken to integrate safeguards with the other IAEA issues including safety and security - sometimes referred to as the '3S' concept. Taking a holistic approach means that a country must consider safeguards within the context of its entire nuclear power program, including operations best practices, safety, and security as well as integration with its larger nonproliferation commitments. The Department of Energy/National Nuclear Security Administration's International Nuclear Safeguards and Engagement Program (INSEP) has been involved in bilateral technical cooperation programs for over 20 years to promote nonproliferation and the peaceful uses of nuclear energy. INSEP is currently spearheading efforts to promote the development of nuclear safeguards infrastructure in countries with credible plans for nuclear energy as part of the Next Generation Safeguards Initiative. Developing an adequate safeguards infrastructure is critical to becoming a responsible 'owner' of nuclear power. The 3S concept is the optimal path forward to achieving this goal.

Kovacic, Donald N [ORNL; Raffo-Caiado, Ana Claudia [ORNL; McClelland-Kerr, John [U.S. Department of Energy; Van sickle, Matthew [U.S. National Nuclear Security Administration; Bissani, Mo [Lawrence Livermore National Laboratory (LLNL)

2009-01-01T23:59:59.000Z

303

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

304

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

305

U.S. and Russia Cooperation Continues on Nuclear Security | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooperation Continues on Nuclear Security Cooperation Continues on Nuclear Security U.S. and Russia Cooperation Continues on Nuclear Security June 28, 2007 - 2:08pm Addthis Newly Signed Fifth Bratislava Report Highlights Most Recent Advances in Nuclear Security and Nonproliferation WASHINGTON, D.C. - U.S. Secretary of Energy Samuel W. Bodman and Russian Federal Atomic Energy Agency (Rosatom) Director Sergey Kiriyenko today submitted to Presidents Bush and Putin the fifth report on nuclear security cooperation between the two countries. The report is known as the Bratislava Report after the 2005 historic nonproliferation agreement between the two presidents. It details significant work completed by the United States and Russia over the past six months in the areas of emergency response, nuclear security procedures and best practices, security culture,

306

Videos from the National Nuclear Safety Administration's (NNSA) YouTube Channel  

DOE Data Explorer (OSTI)

NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation, and naval reactor programs. NNSA's program support is divided into several key program areas including Defense, Nuclear Nonproliferation, Naval Reactors, Emergency Operations, Infrastructure and Environment, Nuclear Security, Management and Administration and the Office of the Administrator. Each program area is focused on specific challenges. The nuclear security enterprise spans eight sites, including three national laboratories, with more than six decades of cutting-edge nuclear security experience. That history and technical expertise enables NNSA to accomplish its work across its four mission areas. (Copied from http://www.nnsa.energy.gov/aboutus). NNSA has more than 80 videos available on its YouTube channel.

307

TOWARD A RAYLEIGH WAVE ATTENUATION MODEL FOR CENTRAL ASIA AND SURROUNDING REGIONS  

E-Print Network (OSTI)

Administration Office of Nonproliferation Research and Development Office of Defense Nuclear Nonproliferation

Ritzwolle, Mike

308

Nonproportionality of Scintillator Detectors: Theory and Experiment  

E-Print Network (OSTI)

of Nonproliferation Research and Development (NA-22) of theOffice of Defense Nuclear Nonproliferation, Office

Moses, William

2010-01-01T23:59:59.000Z

309

Crystal growth and scintillation properties of strontium iodide scintillators  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nonproliferation Research and Development (NA-22) of the

van Loef, Edgar

2010-01-01T23:59:59.000Z

310

Studies of non-proportionality in alkali halide and strontium iodide scintillators using SLYNCI  

E-Print Network (OSTI)

Office of Defense Nuclear Nonproliferation, Officeof Nonproliferation Research and Development (NA- 22) of the

Ahle, Larry

2011-01-01T23:59:59.000Z

311

Evaluating Russian dual-use nuclear exports .  

E-Print Network (OSTI)

??Non-proliferation is a major concern of the international community, the United States, and Russia. This thesis examines Russia's role in the nonproliferation regime through 2004. (more)

Bitterman, Blaine S.

2007-01-01T23:59:59.000Z

312

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

Nonproliferation Aspects 5.1 Proliferation Resistance ofstudy focuses on the nonproliferation aspects of the LFFH5 focuses on the nonproliferation aspects of the LFFH

Kramer, Kevin James

2010-01-01T23:59:59.000Z

313

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network (OSTI)

with Russia", The Nonproliferation Review, Summer 2001. 11with Russia", The Nonproliferation Review, Summer 2001.both power generation and nonproliferation purposes, state

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

314

Nuclear Proliferation Technology Trends Analysis  

SciTech Connect

A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

2005-10-04T23:59:59.000Z

315

ASSESSING THE PROLIFERATION RESISTANCE OF INNOVATIVE NUCLEAR FUEL CYCLES.  

SciTech Connect

The National Nuclear Security Administration is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. This paper summarizes the key results of that effort. Proliferation resistance is the degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons. A top-level measure of proliferation resistance for a fuel cycle system is developed here from a hierarchy of metrics. At the lowest level, intrinsic and extrinsic barriers to proliferation are defined. These barriers are recommended as a means to characterize the proliferation characteristics of a fuel cycle. Because of the complexity of nonproliferation assessments, the problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The spectrum of potential threats of nuclear proliferation is complex and ranges from small terrorist cells to industrialized countries with advanced nuclear fuel cycles. Two general categories of methods have historically been used for nonproliferation assessments: attribute analysis and scenario analysis. In the former, attributes of the systems being evaluated (often fuel cycle systems) are identified that affect their proliferation potential. For a particular system under consideration, the attributes are weighted subjectively. In scenario analysis, hypothesized scenarios of pathways to proliferation are examined. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and estimates the likelihood of success in achieving a proliferation objective. An attribute analysis approach should be used at the conceptual design level in the selection of fuel cycles that will receive significant investment for development. In the development of a detailed facility design, a scenario approach should be undertaken to reduce the potential for design vulnerabilities. While, there are distinctive elements in each approach, an analysis could be performed that utilizes aspects of each approach.

BARI,R.; ROGLANS,J.; DENNING,R.; MLADINEO,S.

2003-06-23T23:59:59.000Z

316

Improving the Safeguardability of Nuclear Facilities  

SciTech Connect

The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to reduce security risks and proliferation hazards while improving the synergy of major design features and raising operational efficiency, in a world where significant expansion of nuclear energy use may occur. Correspondingly, the U.S. DOEs Next Generation Safeguards Initiative (NGSI) includes objectives to contribute to international efforts to develop SBD, and to apply SBD in the development of new U.S. nuclear infrastructure. Here, SBD is defined as a structured approach to ensure the timely, efficient and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical protection, and safety objectives into the overall design process for a nuclear facility, from initial planning through design, construction and operation. The SBD process, in its simplest form, may be applied usefully today within most national regulatory environments. Development of a mature approach to implementing SBD requires work in the areas of requirements definition, design processes, technology and methodology, and institutionalization. The U.S. efforts described in this paper are supportive of SBD work for international safeguards that has recently been initiated by the IAEA with the participation of many stakeholders including member States, the IAEA, nuclear technology suppliers, nuclear utilities, and the broader international nonproliferation community.

T. Bjornard; R. Bari; D. Hebditch; P. Peterson; M. Schanfein

2009-07-01T23:59:59.000Z

317

Explaining Soft Law  

E-Print Network (OSTI)

by the Nuclear Nonproliferation Treaty. 37 For each of thesecontained in the Nuclear Nonproliferation Treaty (NPT) notoutside of the nuclear nonproliferation regime threatened

Guzman, Andrew T.; Meyer, Timothy L.

2009-01-01T23:59:59.000Z

318

Explaining Soft Law  

E-Print Network (OSTI)

by the Nuclear Nonproliferation Treaty. 38 For each of thesecontained in the Nuclear Nonproliferation Treaty (NPT) notoutside of the nuclear nonproliferation regime threatened

Guzman, Andrew; Meyer, Timothy L.

2010-01-01T23:59:59.000Z

319

Nuclear rapprochement in Argentina and Brazil: Workshop summary  

Science Conference Proceedings (OSTI)

On October 21 and 22, 1998, the Center for International Security Affairs at Los Alamos National Laboratory and the Center for Global Security and Cooperation at Science Applications International Corporation hosted the first of a series of work-shops on states that have chosen to roll back their pursuit of nuclear arms. The objective of the workshop series is to conduct a systematic evaluation of the roles played by U.S. nonproliferation policy in cases of nuclear rollback or restraint and to provide recommendations for future nonproliferation efforts based on lessons learned. Key attendees at the workshop included officials and former officials from the foreign ministries of Argentina and Brazil, and current and former officials from the U.S. Department of State, the Arms Control and Disarmament Agency (ACDA), and the Department of Energy (DOE). Scholars and independent researchers who have examined nuclear policy in Argentina and Brazil also participated. This workshop report includes important background information that helps set the stage for assessing nuclear policies in Argentina and Brazil. It describes national perspectives and areas of consensus and debate among the participants, particularly on the questions of lessons learned and their salience to proliferation challenges in other states. It also summarizes key questions and propositions regarding the roles played in these cases by U.S. nonproliferation policy.

James E. Doyle

1999-10-01T23:59:59.000Z

320

NNSA Timeline | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Timeline | National Nuclear Security Administration Timeline | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NNSA Timeline Home > About Us > Our History > NNSA Timeline NNSA Timeline The NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation,

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Our History | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

History | National Nuclear Security Administration History | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our History Home > About Us > Our History Our History The NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation,

322

Techniques and methods in nuclear materials traceability  

SciTech Connect

The nonproliferation community is currently addressing concerns that the access to special nuclear materials may increase the illicit trafficking in weapons-usable materials from civil and/or weapons material stores and/or fuel cycles systems. Illicit nuclear traffic usually involves reduced quantities of nuclear materials perhaps as samplings of a potential protracted diversionary flow from sources to users. To counter illicit nuclear transactions requires the development of techniques and methods in nuclear material traceability as an important phase of a broad forensic analysis capability. This report discusses how isotopic signatures and correlation methods were applied to determine the origins of Highly Enriched Uranium (HEU) and Plutonium samples reported as illicit trafficking in nuclear materials.

Persiani, P.J.

1996-08-01T23:59:59.000Z

323

Nonproliferation and arms control assessment of weapons-usable fissile material storage and excess plutonium disposition alternatives  

SciTech Connect

This report has been prepared by the Department of Energy`s Office of Arms Control and Nonproliferation (DOE-NN) with support from the Office of Fissile Materials Disposition (DOE-MD). Its purpose is to analyze the nonproliferation and arms reduction implications of the alternatives for storage of plutonium and HEU, and disposition of excess plutonium, to aid policymakers and the public in making final decisions. While this assessment describes the benefits and risks associated with each option, it does not attempt to rank order the options or choose which ones are best. It does, however, identify steps which could maximize the benefits and mitigate any vulnerabilities of the various alternatives under consideration.

1997-01-01T23:59:59.000Z

324

Fission-suppressed fusion breeder on the thorium cycle and nonproliferation  

SciTech Connect

Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P{sub fusion}/P{sub input}=4. Fusion reactors could be designed to destroy fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing {sup 233}U with {sup 238}U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 {sup 232}U atoms for each {sup 233}U atom produced from thorium, about twice the IAEA standards of 'reduced protection' or 'self protection.' With 2.4%{sup 232}U, high explosive material is predicted to degrade owing to ionizing radiation after a little over 1/2 year and the heat rate is 77 W just after separation and climbs to over 600 W ten years later. The fissile material can be used to fuel most any fission reactor but is especially appropriate for molten salt reactors (MSR) also called liquid fluoride thorium reactors (LFTR) because of the molten fuel does not need hands on fabrication and handling.

Moir, R. W. [Vallecitos Molten Salt Research, 607 E. Vallecitos Rd., Livermore, CA 94550 925-447-8804 (United States)

2012-06-19T23:59:59.000Z

325

A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear safety and security, non-proliferation, and nuclear energy technology we must develop an effective strategy and workable plan for the safe and secure management and disposal of used nuclear fuel and nuclear waste. That is why I asked General Scowcroft and Representative Hamilton to draw on their

326

Making the World Safe for Nuclear Energy 65 John Deutch, Institute Professor at the Massachusetts Institute of Technology, served as  

E-Print Network (OSTI)

such as the NPT (Treaty on Non Proliferation of NuclearWeapons) and its review process. 2. These are therefore climate of mainstream activity on these international security issues ('non-proliferation' and disarmament back-tracking from that forthright position on the disarmament-non- proliferation link (and pleading

Deutch, John

327

Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor  

E-Print Network (OSTI)

The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

V. V. Sinev

2009-02-22T23:59:59.000Z

328

Measuring of fissile isotopes partial antineutrino spectra in direct experiment at nuclear reactor  

E-Print Network (OSTI)

The direct measuring method is considered to get nuclear reactor antineutrino spectrum. We suppose to isolate partial spectra of the fissile isotopes by using the method of antineutrino spectrum extraction from the inverse beta decay positron spectrum applied at Rovno experiment. This admits to increase the accuracy of partial antineutrino spectra forming the total nuclear reactor spectrum. It is important for the analysis of the reactor core fuel composition and could be applied for non-proliferation purposes.

Sinev, V V

2009-01-01T23:59:59.000Z

329

NPT Signed | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Signed | National Nuclear Security Administration Signed | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NPT Signed NPT Signed March 05, 1970 New York, United States NPT Signed The United States, Great Britain, the Soviet Union, and forty-five other nations sign the Treaty for the Nonproliferation of Nuclear Weapons

330

Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2  

Science Conference Proceedings (OSTI)

This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

Not Available

1993-10-01T23:59:59.000Z

331

Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3  

Science Conference Proceedings (OSTI)

This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

NONE

1995-08-01T23:59:59.000Z

332

Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2  

SciTech Connect

This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

1993-10-01T23:59:59.000Z

333

Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3  

SciTech Connect

This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

1995-08-01T23:59:59.000Z

334

International Nuclear Energy Research Initiative: 2010 Annual Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual 10 Annual Report International Nuclear Energy Research Initiative: 2010 Annual Report The International Nuclear Energy Research Initiative (I-NERI) is a research-oriented collaborative program that supports the advancement of nuclear science and technology in the United States and the world. Innovative research performed under the I-NERI umbrella addresses key issues affecting the future use of nuclear energy and its global deployment. The 2010 Nuclear Energy Research and Development Roadmap issued by the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE), identifies these issues as high capital costs, safety, high-level nuclear waste management, and non-proliferation. Projects under the I-NERI program investigate ways to address these challenges and support future nuclear

335

Nuclear Separations Technologies Workshop Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report The Department of Energy (DOE) sponsored a workshop on nuclear separations technologies in Bethesda, Maryland, on July 27 and 28, 2011, to (1) identify common needs and potential requirements in separations technologies and opportunities for program partnerships, and (2) evaluate the need for a DOE nuclear separations center of knowledge to improve cross- program collaboration in separations technology. The workshop supported Goal 3 of the DOE Strategic Plan1 to enhance nuclear security through defense, nonproliferation, and environmental management. The Office of Environmental Management (EM), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA) jointly sponsored the workshop. The Office of Science

336

U.S. Department of Energy Strategic Plan 13 In 2000, the National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials and technology through the NNSA. Over the next six years, the Department will apply

337

Strengthening the nonproliferation regime : using case studies to determine the potential of multilateral arrangements  

E-Print Network (OSTI)

The resurgence of global interest in nuclear energy is fueled by growing energy demands, concerns of global warming, and the desire to diversify energy supply. In order for the nuclear renaissance to be safely realized, a ...

Youchak, Paul (Paul M.)

2011-01-01T23:59:59.000Z

338

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

on Arms Control and Non-Proliferation After the Cold War,on Arms Control and Non-Proliferation After the Cold War,and international non-proliferation efforts. (2) What kind

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

339

Detection of Materials of Interest to NonProliferation: A Novel Approach  

Science Conference Proceedings (OSTI)

We propose the development of a novel detector that can locate and identify materials of interest to Nuclear Arms Non Proliferation. The device will combine nuclear acoustic resonance (NAR) with superconducting quantum interference device (SQUID) widely used in nuclear magnetic resonance (NMR)

Frederic Ze; Bernhard R. Tittmann; P. M. Lenahan

2002-01-01T23:59:59.000Z

340

Understanding Europes "New" Common Foreign and Security Policy  

E-Print Network (OSTI)

measures. 2. Nuclear non-proliferation. 3. Economic aspectsOrganization Nuclear Non-Proliferation Treaty Organizationarms control in Europe; non-proliferation of weapons of mass

Smith, Michael

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

U.S. Nuclear Command and Control System Support Staff, "Assessment Report: Department of Energy Nuclear Weapons-Related Security Oversight Process," March 1998  

E-Print Network (OSTI)

August 5, 1977 DOE, "Plutonium: The First 50 Years. United States Plutonium Production, Acquisition, and Utilization from 1944 Through 1994 GAO/RCED-92-39, "Nuclear Security: Safeguards and Security Weaknesses at DOE's Weapons Facilities," December 13, 1991 GAO/RCED/AIMD-95-5, "Nuclear Nonproliferation: U.S. International Nuclear Materials Tracking Capabilities are Limited," December 27, 1994 GAO/AIMD-95-165, "Department of Energy: Poor Management of Nuclear Materials Tracking Capabilities Are Limited," August 3, 1995 Classified DOE report.

Gao Rced- Major

1999-01-01T23:59:59.000Z

342

Alternative dispositioning methods for HEU spent nuclear fuel at the Savannah River Site  

SciTech Connect

The United States has a strong policy on prevention of the international spread of nuclear weapons. This policy was announced in Presidential Directive PDD-13 and summarized in a White House press release September 27, 1993. Two cornerstones of this policy are: seek to eliminate where possible the accumulation of stockpiles of highly- enriched uranium or plutonium; propose{hor_ellipsis}prohibiting the production of highly-enriched uranium (HEU) or plutonium for nuclear explosives purposes or outside international safeguards. The Department of Energy is currently struggling to devise techniques that safely and efficiently dispose of spent nuclear fuel (SNF) while satisfying national non-proliferation policies. SRS plans and proposals for disposing of their SNF are safe and cost effective, and fully satisfy non-proliferation objectives.

Krupa, J.F.; McKibben, J.M.; Parks, P.B.; DuPont, M.E.

1995-11-01T23:59:59.000Z

343

Links | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > Field Offices > Welcome to the NNSA Production Office > Links Home > Field Offices > Welcome to the NNSA Production Office > Links Links NNSA HQ National Nuclear Security Administration Advanced Simulation & Computing NNSA Graduate Program NNSA Small Business Program Office of Defense Nuclear Nonproliferation Field Offices NNSA Albuquerque Complex Kansas City Field Office Livermore Field Office Los Alamos Field Office Naval Reactors Idaho Branch Office Nevada Field Office Sandia Field Office DOE Oak Ridge Sites Oak Ridge Office Oak Ridge National Laboratory UCOR Oak Ridge Institute for Science and Education Oak Ridge Site Specific Advisory Board American Museum of Science and Energy City of Oak Ridge Plants Laboratories Bechtel Nevada Bettis Laboratory Kansas City Plant Knolls Atomic Power Laboratory Lawrence Livermore National Laboratory

344

Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future.  

Science Conference Proceedings (OSTI)

The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunities for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.

Pregenzer, Arian Leigh

2011-12-01T23:59:59.000Z

345

World Institute for Nuclear Security Launch | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World Institute for Nuclear Security Launch World Institute for Nuclear Security Launch World Institute for Nuclear Security Launch September 29, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you. My thanks to Director General El Baradei and Senator Nunn for their opening remarks. I am pleased to be here with you this afternoon. Each nation has the responsibility to assist in the effort to make nuclear materials and facilities secure. This means we need cooperation at every level and every stage of the process: from government, to industry, to non-governmental organizations. As such, the World Institute for Nuclear Security will make an important contribution to the cause of nuclear nonproliferation and nuclear security. By bringing the private, public, and non-governmental sectors together,

346

World Institute for Nuclear Security Launch | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institute for Nuclear Security Launch Institute for Nuclear Security Launch World Institute for Nuclear Security Launch September 29, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you. My thanks to Director General El Baradei and Senator Nunn for their opening remarks. I am pleased to be here with you this afternoon. Each nation has the responsibility to assist in the effort to make nuclear materials and facilities secure. This means we need cooperation at every level and every stage of the process: from government, to industry, to non-governmental organizations. As such, the World Institute for Nuclear Security will make an important contribution to the cause of nuclear nonproliferation and nuclear security. By bringing the private, public, and non-governmental sectors together,

347

2006 Department of Energy Strategic Plan - Ensuring America's nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2006 Department of Energy Strategic Plan - Ensuring America's 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security 2006 Department of Energy Strategic Plan - Ensuring America's nuclear security In 2000, the National Nuclear Security Administration (NNSA) was established as a new element within the Department in response to a Congressional mandate to reinvigorate the security posture throughout the nuclear weapons program and to reaffirm the Nation's commitment to maintaining the nuclear deterrence capabilities of the United States. NNSA was chartered to better focus management attention on enhanced security, proactive management practices, and mission focus within the Department's national defense and nonproliferation programs. The Department performs its national security mission involving nuclear weapons and nuclear materials

348

Plutonium Disposition Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Media Room > Fact Sheets > Plutonium Disposition Program Home > Media Room > Fact Sheets > Plutonium Disposition Program Fact Sheet Plutonium Disposition Program Jun 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to prevent these materials from falling into the wrong hands is to dispose of them. During the April 2010 Nuclear Security Summit, Secretary of State Hillary Rodham Clinton and Russian Foreign Minister Sergey Lavrov signed a protocol

349

Engineering Analysis - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis DEPARTMENTS Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Engineering Analysis Bookmark and Share The Engineering Analysis Department activities focus on development and application of new and innovative analysis methods for both nuclear and non-nuclear systems. The Department is organized into sections and groups for Engineering Simulations, Safety Analysis, Innovative Systems Development, Engineering Assessments, Plant Analysis & Control, Process

350

December 2013 | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

3 | National Nuclear Security Administration 3 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > December 2013 December 2013 NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Posted By Office of Public Affairs On Dec. 18-19, 2013, the United States hosted a visit by delegations from

351

Collaboration inspires nuclear engineering student Alexis Kaplan  

NLE Websites -- All DOE Office Websites (Extended Search)

Alexis Kaplan Alexis Kaplan Collaboration inspires nuclear engineering student Alexis Kaplan Researcher designs a system that improves nuclear energy security August 27, 2013 Alexis Kaplan Alexis Kaplan has climbed many mountains: Wheeler Peak in New Mexico, 14-ners in Colorado, and Machu Picchu in Peru. When she is not doing science look for her outdoors or visiting another country. Inspired by the world-class nuclear research environment and invigorated by the small city's proximity to outdoor activities, the Berkeley graduate plans to pursue a nonproliferation career in this scientific hub. » Return to homepage Researcher designs a system that improves nuclear energy security When her state suffered from major blackouts during an energy crisis a decade ago, California native Alexis Kaplan was inspired to pursue her

352

NNSA Blog | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Blog | National Nuclear Security Administration Blog | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Posted By Office of Public Affairs On Dec. 18-19, 2013, the United States hosted a visit by delegations from

353

December 2013 | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

3 | National Nuclear Security Administration 3 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > December 2013 December 2013 NNSA Blog US, UK, France Discuss Stockpile Stewardship, Arms Control and Nonproliferation and Visit the Nevada National Security Site Posted By Office of Public Affairs On Dec. 18-19, 2013, the United States hosted a visit by delegations from

354

Office of the Chief Financial Officer Annual Report 2007  

E-Print Network (OSTI)

known as Nuclear Non-Proliferation) and Safeguards andknown as Nuclear Non-Proliferation) and Safeguards and

Fernandez, Jeffrey

2008-01-01T23:59:59.000Z

355

The United States and Japan in Asia: Conference Papers  

E-Print Network (OSTI)

the global nuclear non-proliferation regimeincluding theof renewing the Nuclear Non-Proliferation Treaty in 1995and

Romberg, Alan D.; Nakanishi, Hiroshi; Endo, Seiji; Haggard, Stephan; Keller, Kenneth H.; Tamura, Jiro

1994-01-01T23:59:59.000Z

356

Workshop on Arms Control and Security in the Middle East III  

E-Print Network (OSTI)

accession to the Nuclear Non-Proliferation Treaty (NPT) byof its Nuclear Non-Proliferation Treaty (NPT) obligations;

Lehman, Ronald; Jones, Peter; Lodgaard, Sverre; Chipman, John

1996-01-01T23:59:59.000Z

357

Workshop on Arms Control and Security in the Middle East III  

E-Print Network (OSTI)

to the Nuclear Non-Proliferation Treaty (NPT) by all partiesof its Nuclear Non-Proliferation Treaty (NPT) obligations;

Lehman, Ronald; Jones, Peter; Lodgaard, Sverre; Chipman, John

1996-01-01T23:59:59.000Z

358

U.S. Department of Energy and NTI Announce Key Nonproliferation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with the Government of Kazakhstan to move forward with the down-blending of highly enriched uranium (HEU) currently stored at Kazakhstan's Institute of Nuclear Physics. The...

359

Nonproliferation, arms control and disarmament and extended deterrence in the new security environment  

Science Conference Proceedings (OSTI)

With the end of the Cold War, in a dramatically changed security environment, the advances in nonnuclear strategic capabilities along with reduced numbers and roles for nuclear forces has altered the calculus of deterrence and defense, at least for the United States. For many, this opened up a realistic possibility of a nuclear-free world. It soon became clear that the initial post-Cold War hopes were exaggerated. The world did change fundamentally, but it did not become more secure and stable. In place of the old Soviet threat, there has been growing concern about proliferation and terrorism involving nuclear and other weapons of mass destruction (WMD), regional conflicts, global instability and increasingly serious new and emerging threats, including cyber attacks and attacks on satellites. For the United States at least, in this emerging environment, the political rationales for nuclear weapons, from deterrence to reassurance to alliance management, are changing and less central than during the Cold War to the security of the United States, its friends and allies. Nuclear weapons remain important for the US, but for a far more limited set of roles and missions. As the Perry-Schlesinger Commission report reveals, there is a domestic US consensus on nuclear policy and posture at the highest level and for the near term, including the continued role of nuclear arms in deterring WMD use and in reassuring allies. Although the value of nuclear weapons has declined for the United States, the value of these weapons for Russia, China and so-called 'rogue' states is seen to be rising. The nuclear logic of NATO during Cold War - the need for nuclear weapons to counter vastly superior conventional capabilities of the Soviet Union and the Warsaw Pact - is today heard from Russians and even some proliferants. Moreover, these weapons present a way for rogues to achieve regional hegemony and possibly to deter interventions by the United States or others. While the vision of a nuclear-free world is powerful, both existing nuclear powers and proliferators are unlikely to forego nuclear weapons entirely in a world that is dangerous and uncertain. And the emerging world would not necessarily be more secure and stable without nuclear weapons. Even if nuclear weapons were given up by the United States and other nuclear-weapon states, there would continue to be concerns about the proliferation of nuclear, chemical and biological weapons, which would not disappear and could worsen. WMD terrorism would remain a concern that was largely unaffected by US and other nuclear-weapon decisions. Conventional capabilities would not disappear and the prospects for warfare could rise. In addition, new problems could arise if rogue states or other non-status-quo powers attempted to take advantage of moves toward disarmament, while friends and allies who are not reassured as in the past could reconsider their options if deterrence declined. To address these challenges, non- and counter-proliferation and counterterrorismincluding defenses and consequence management-are priorities, especially in light of an anticipated 'renaissance' in civil nuclear power. The current agenda of the United States and others includes efforts to: (1) Strengthen International Atomic Energy Agency (IAEA) and its safeguards system; (2) Strengthen export controls, especially for sensitive technologies, by limiting the development of reprocessing and enrichment technologies and by requiring the Additional Protocol as a condition of supply; (3) Establish a reliable supply regime, including the possibility of multilateral or multinational ownership of fuel cycle facilities, as a means to promote nuclear energy without increasing the risks of proliferation or terrorism; (4) Implement effectively UN Security Council Resolution 1540; and (5) Strengthen and institutionalize the Proliferation Security Initiative and the Global Initiative to Combat Nuclear Terrorism. These and other activities are important in themselves, and are essential to maintaining and strengthening the Nonproliferati

Pilat, Joseph F [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

360

Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities  

Science Conference Proceedings (OSTI)

The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOEs Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Statement on UK Government's "Road to 2010" Report on Nuclear Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement on UK Government's "Road to 2010" Report on Nuclear Statement on UK Government's "Road to 2010" Report on Nuclear Security DOE Statement on UK Government's "Road to 2010" Report on Nuclear Security July 17, 2009 - 12:00am Addthis WASHINGTON, DC - Thomas P. D'Agostino, the Department of Energy's Under Secretary for Nuclear Security and Administrator of the National Nuclear Security Administration, today applauded the British government's new report on advancing the global nuclear security agenda. Issued yesterday, "The Road to 2010 - Addressing the Nuclear Question in the Twenty First Century" outlines a strategy for addressing the threat posed by the proliferation of nuclear weapons ahead of the 2010 Nuclear Non-Proliferation Treaty (NPT) Review Conference. Among other steps, it includes the creation of a UK Center for Nuclear

362

Detection & Diagnostic Systems - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Departments > Detection & Diagnostic Departments > Detection & Diagnostic Systems DEPARTMENTS Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems Engineering Development & Applications Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Detection & Diagnostic Systems Bookmark and Share The Detection & Diagnostic Systems Department conducts research and development related to instruments and non-destructive evaluation (NDE) techniques for characterization of materials and determination of system parameters related to different energy systems (including fossil,

363

The Coming Nuclear Renaissance for Next Generation Safeguards Specialists--Maximizing Potential and Minimizing the Risks  

SciTech Connect

This document is intended to provide an overview of the workshop entitled 'The Coming Nuclear Renaissance for the Next Generation Safeguards Experts-Maximizing Benefits While Minimizing Proliferation Risks', conducted at Oak Ridge National Laboratory (ORNL) in partnership with the Y-12 National Security Complex (Y-12) and the Savannah River National Laboratory (SRNL). This document presents workshop objectives; lists the numerous participant universities and individuals, the nuclear nonproliferation lecture topics covered, and the facilities tours taken as part of the workshop; and discusses the university partnership sessions and proposed areas for collaboration between the universities and ORNL for 2009. Appendix A contains the agenda for the workshop; Appendix B lists the workshop attendees and presenters with contact information; Appendix C contains graphics of the evaluation form results and survey areas; and Appendix D summarizes the responses to the workshop evaluation form. The workshop was an opportunity for ORNL, Y-12, and SRNL staff with more than 30 years combined experience in nuclear nonproliferation to provide a comprehensive overview of their expertise for the university professors and their students. The overall goal of the workshop was to emphasize nonproliferation aspects of the nuclear fuel cycle and to identify specific areas where the universities and experts from operations and national laboratories could collaborate.

Eipeldauer, Mary D [ORNL

2009-01-01T23:59:59.000Z

364

Nuclear Regulatory Commission Regulatory and Licensing Matters | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Commission Regulatory and Licensing Matters Regulatory Commission Regulatory and Licensing Matters Nuclear Regulatory Commission Regulatory and Licensing Matters GC-52 provides legal advice to DOE regarding Nuclear Regulatory Commission (NRC) regulatory and licensing matters of interest to DOE, either as an NRC license applicant or in connection with related authorities and responsibilities of DOE and NRC on nuclear material, nuclear waste, and nuclear nonproliferation matters. GC-52 attorneys provide advice and support on a variety of NRC matters including regulation and licensing of DOE independent spent fuel storage facilities (ISFSIs) and a mixed-oxide fuel fabrication facility, consultation with NRC on certain DOE waste determinations, and imports and exports of nuclear materials and radioactive sealed sources.

365

Nuclear Separations Technologies Workshop Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Separations Technologies Workshop Report Separations Technologies Workshop Report Nuclear Separations Technologies Workshop Report The Department of Energy (DOE) sponsored a workshop on nuclear separations technologies in Bethesda, Maryland, on July 27 and 28, 2011, to (1) identify common needs and potential requirements in separations technologies and opportunities for program partnerships, and (2) evaluate the need for a DOE nuclear separations center of knowledge to improve cross- program collaboration in separations technology. The workshop supported Goal 3 of the DOE Strategic Plan1 to enhance nuclear security through defense, nonproliferation, and environmental management. The Office of Environmental Management (EM), Office of Nuclear Energy (NE), and National Nuclear Security Administration (NNSA) jointly sponsored the workshop. The Office of Science

366

Deputy Secretary Poneman to Attend International Framework for Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Attend International Framework for to Attend International Framework for Nuclear Energy Cooperation Meeting in Jordan Deputy Secretary Poneman to Attend International Framework for Nuclear Energy Cooperation Meeting in Jordan November 3, 2010 - 12:00am Addthis Washington, D.C. - U.S. Deputy Secretary of Energy Daniel Poneman will represent the United States at the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting in Jordan on Thursday, November 4, 2010. The conference aims to advance cooperation among participating states to promote the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. IFNEC developed out of the Global Nuclear Energy Partnership. Last June, the Global Nuclear Energy Partnership Steering Group agreed to transform to

367

Deputy Secretary Poneman's Remarks at the Third Annual Nuclear Deterrence  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at the Third Annual Nuclear at the Third Annual Nuclear Deterrence Summit - As Prepared for Delivery Deputy Secretary Poneman's Remarks at the Third Annual Nuclear Deterrence Summit - As Prepared for Delivery February 17, 2011 - 3:49pm Addthis Third Annual Nuclear Deterrence Summit Thursday, February 17, 2011 Arlington, Virginia "Nuclear Energy and Nonproliferation" "We face a choice between the quick and the dead." These are the words that Bernard Baruch used to introduce his plan to prevent the spread of nuclear weapons, at the opening session of the UN Atomic Energy Commission, at Hunter College in NYC, in June 1946. Fortunately, throughout the intervening decades, we have been quick, or at least quick enough. Indeed, sometimes we seemed to be just a step or

368

Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology  

Science Conference Proceedings (OSTI)

Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions to their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear states perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with symbiotic links to indigenous economic opportunities. This paper also describes a practical tool called the Nuclear Materials Exchange for identifying these opportunities.

David Shropshire

2009-09-01T23:59:59.000Z

369

The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.  

SciTech Connect

The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

2005-01-01T23:59:59.000Z

370

The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology  

SciTech Connect

The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

2005-01-01T23:59:59.000Z

371

The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.  

SciTech Connect

The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

2005-01-01T23:59:59.000Z

372

Economic analysis of nuclear power reactor dissemination to less developed nations with implications for nuclear proliferation  

SciTech Connect

An economic model is applied to the transfer of nuclear-power reactors from industrialized nations to the less developed nations. The model includes demand and supply factors and predicts the success of US nonproliferation positions and policies. It is concluded that economic forces dominate the transfer of power reactors to less developed nations. Our study shows that attempts to either restrict or promote the spread of nuclear-power technology by ignoring natural economic incentives would have only limited effect. If US policy is too restrictive, less developed nations will seek other suppliers and thereby lower US Influence substantially. Allowing less developed nations to develop nuclear-power technology as dictated by economic forces will result in a modest rate of transfer that should comply with nuclear-proliferation objectives.

Gustavson, R.L.; Howard, J.S. II

1979-09-01T23:59:59.000Z

373

Application of granularity computing to confirm compliance with non-proliferation treaty  

Science Conference Proceedings (OSTI)

Safeguards are essentially a technical means of verifying the fulfillment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives ...

A. Fattah; V. Pouchkarev; A. Belenki; A. Ryjov; L. A. Zadeh

2002-01-01T23:59:59.000Z

374

Nuclear Forensics at Los Alamos National Laboratory  

SciTech Connect

The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

2012-08-09T23:59:59.000Z

375

Speaker Dr. Richard Olsen will be discussing the role of the International Atomic Energy Agency in verifying the peaceful uses of nuclear energy where he worked for 21 years  

E-Print Network (OSTI)

such as the NPT (Treaty on Non Proliferation of NuclearWeapons) and its review process. 2. These are therefore climate of mainstream activity on these international security issues ('non-proliferation' and disarmament back-tracking from that forthright position on the disarmament-non- proliferation link (and pleading

Olsen, Stephen L.

376

Applications of Nuclear Resonance Fluorescence  

Science Conference Proceedings (OSTI)

Nuclear Resonance Fluorescence (NRF) has the potential of addressing a wide variety of applications, which require isotopic and/or elemental information about a sample. We have investigated a variety of non-proliferation applications that may be addressed by NRF. From these applications, we have selected two, measuring uranium enrichment in UF6 cylinders and material verification in dismantlement, to investigate in more detail. Analytical models have been developed to evaluate these applications, and test measurements have been conducted to validate those models. We found that it is unlikely with current technology to address the requirements for UF6 cylinder enrichment measurements. In contrast, NRF is a very promising approach for material verification for dismantlement.

Warren, Glen A.; Detwiler, Rebecca S.; Peplowski, Patrick N.

2010-11-11T23:59:59.000Z

377

Nuclear energy is an important source of power, supplying 20  

NLE Websites -- All DOE Office Websites (Extended Search)

energy is an important source of power, supplying 20 energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear nonproliferation controls. To develop viable technical solutions, these interdependent challenges must be addressed through tightly integrated multidisciplinary research and development efforts. Los Alamos National Laboratory is playing a key role in

378

International Framework for Nuclear Energy Cooperation to Hold  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Framework for Nuclear Energy Cooperation to Hold International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:23pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

379

International Framework for Nuclear Energy Cooperation to Hold  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Framework for Nuclear Energy Cooperation to Hold Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland International Framework for Nuclear Energy Cooperation to Hold Ministerial-Level Meeting Sept. 29 in Warsaw, Poland September 6, 2011 - 3:10pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that Deputy Secretary of Energy Daniel Poneman will lead the U.S. delegation to the International Framework for Nuclear Energy Cooperation (IFNEC) Executive Committee Meeting on Sept. 29 in Warsaw, Poland. The ministerial-level conference aims to advance cooperation among participating states to support the peaceful use of nuclear energy in a manner that meets high standards of safety, security and nonproliferation. The meeting will also feature video remarks by Microsoft founder Bill

380

Issues Associated with IAEA Involvement in Assured Nuclear Fuel Supply Arrangements  

SciTech Connect

Assured nuclear fuel supply has been discussed at various times as a mechanism to help limit expansion of enrichment and reprocessing (E&R) capability beyond current technology holders. Given the events in the last few years in North Korea and Iran, concern over weapons capabilities gained from acquisition of E&R capabilities has heightened and brought assured nuclear fuel supply (AFS) again to the international agenda. Successful AFS programs can be valuable contributions to strengthening the nonproliferation regime and helping to build public support for expanding nuclear energy.

Kessler, Carol E.; Mathews, Carrie E.

2008-02-08T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Utility of Social Modeling in Assessment of a States Propensity for Nuclear Proliferation  

Science Conference Proceedings (OSTI)

This report is the third and final report out of a set of three reports documenting research for the U.S. Department of Energy (DOE) National Security Administration (NASA) Office of Nonproliferation Research and Development NA-22 Simulations, Algorithms, and Modeling program that investigates how social modeling can be used to improve proliferation assessment for informing nuclear security, policy, safeguards, design of nuclear systems and research decisions. Social modeling has not to have been used to any significant extent in a proliferation studies. This report focuses on the utility of social modeling as applied to the assessment of a State's propensity to develop a nuclear weapons program.

Coles, Garill A.; Brothers, Alan J.; Whitney, Paul D.; Dalton, Angela C.; Olson, Jarrod; White, Amanda M.; Cooley, Scott K.; Youchak, Paul M.; Stafford, Samuel V.

2011-06-01T23:59:59.000Z

382

Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States-Japan Joint Nuclear Energy Action Plan United States-Japan Joint Nuclear Energy Action Plan The United States-Japan Joint Nuclear Energy Action Plan is intended to provide a framework for bilateral collaboration in nuclear energy. This Action Plan builds upon our significant, longstanding civilian nuclear cooperation, and will contribute to increasing energy security and managing nuclear waste, addressing nuclear nonproliferation and climate change, advancing goals put forth in President Bush's Global Nuclear Energy Partnership (GNEP) initiative. The Action Plan was signed by representatives of both nations in April 2007. The Action Plan will be implemented by Steering Committee Co-Chairs. Assistant Secretary of Energy Dennis Spurgeon, or his designee, will serve as the U.S. Co-Chair. Japanese Co-Chairs will be selected

383

A Mass Spectrometry Study of Isotope Separation in the Laser Plume  

E-Print Network (OSTI)

Attribution and Non-Proliferation Applications, IEEETreaty on the Non-Proliferation of Nuclear Weapons (NPT),as detailed in the Non-Proliferation Treaty (NPT), is to

Suen, Timothy Wu

2012-01-01T23:59:59.000Z

384

Newsletter Fall 1993  

E-Print Network (OSTI)

would withdraw from the Non-Proliferation Treaty (NPT), andnature of the Non-Proliferation Treaty (NFT) is notefforts is the nuclear Non-Proliferation Treaty (NPT). Some

1993-01-01T23:59:59.000Z

385

The Military Balance in the Middle East: An Executive Summary  

E-Print Network (OSTI)

non-proliferation treaties..arms control and non-proliferation treaties IAEA Full-Scopethe Nuclear Non-Proliferation Treaty, Biological and

Cordesman, Anthony H.

1999-01-01T23:59:59.000Z

386

Newsletter Fall 1993  

E-Print Network (OSTI)

withdraw from the Non-Proliferation Treaty (NPT), and medianature of the Non-Proliferation Treaty (NFT) is notis the nuclear Non-Proliferation Treaty (NPT). Some 160

1993-01-01T23:59:59.000Z

387

Plutonium Disposition Program | National Nuclear Security Administrati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The...

388

International safeguards: Accounting for nuclear materials  

SciTech Connect

Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

Fishbone, L.G.

1988-09-28T23:59:59.000Z

389

GROUND TRUTH IN CENTRAL ASIA FROM IN-COUNTRY NETWORKS Gaspar Monsalve1  

E-Print Network (OSTI)

of Nonproliferation Research and Engineering Office of Defense Nuclear Nonproliferation Contract Nos. DE-FC52-04NA

Rowe, Charlotte

390

TOWARD A RAYLEIGH WAVE ATTENUATION MODEL FOR EURASIA AND CALIBRATING A NEW MS FORMULA  

E-Print Network (OSTI)

of Nonproliferation Research and Engineering Office of Defense Nuclear Nonproliferation Contract No. 1 W-7405-ENG-36

Ritzwolle, Mike

391

OSP WEEKLY FUNDING BULLETIN Volume 4, Issue 38 27 September 2010  

E-Print Network (OSTI)

),Office of Nonproliferation and Verification Research and Development (NA-22). The envisioned cooperative agreement expertise in nonproliferation and nuclear security

Alabama in Huntsville, University of

392

SHORT PERIOD SURFACE WAVE DISPERSION ACROSS THE MEDITERRANEAN REGION: IMPROVEMENTS USING REGIONAL SEISMIC NETWORKS  

E-Print Network (OSTI)

of Nonproliferation Research and Development Office of Defense Nuclear Nonproliferation Contract No. 1 DE-FC52-05NA

Ritzwolle, Mike

393

PROGRESS TOWARD BROAD-BAND AMBIENT NOISE TOMOGRAPHY IN EURASIA Michael H. Ritzwoller1  

E-Print Network (OSTI)

of Nonproliferation Research and Development Office of Defense Nuclear Nonproliferation Contract No. DE-FC52-2005NA

Ritzwolle, Mike

394

Office of National Infrastructure & Sustainability | National...  

National Nuclear Security Administration (NNSA)

of National Infrastructure & Sustainability Home > About Us > Our Programs > Nonproliferation > Nuclear Nonproliferation Program Offices > Office of International Material...

395

TOWARD A RAYLEIGH WAVE ATTENUATION MODEL FOR CENTRAL ASIA Anatoli L. Levshin1  

E-Print Network (OSTI)

of Nonproliferation Research and Development Office of Defense Nuclear Nonproliferation Contracts No. DE-FC52-05NA

Ritzwolle, Mike

396

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques  

E-Print Network (OSTI)

nnsa.energy.gov/nuclear_nonproliferation /2147.htm 24. J. F.sections of the Office of Nonproliferation and International

Tobin, S. J.

2010-01-01T23:59:59.000Z

397

Determination of Plutonium Content in Spent Fuel with Nondestructive Assay  

E-Print Network (OSTI)

nnsa.energy.gov/nuclear_nonproliferation /2147.htm 25. J. F.sections of the Office of Nonproliferation and International

Tobin, S. J.

2010-01-01T23:59:59.000Z

398

Earthquake rupture imaging and multiscale stress drop estimation  

E-Print Network (OSTI)

for applications in nuclear non-proliferation surveillance.for applications in non-proliferation surveillance where an

Allmann, Bettina P.

2008-01-01T23:59:59.000Z

399

Practices and their Failures: Arab-Israeli Relations and the Barcelona Process  

E-Print Network (OSTI)

the renewal of the Nuclear Non-Proliferation Treaty (NPT) inextension to the non-proliferation treaty unless Israel

Peters, Joel

2004-01-01T23:59:59.000Z

400

Northeast Asia Cooperation Dialogue II: Conference Papers  

E-Print Network (OSTI)

of the Nuclear Non-Proliferation Treaty. 34 This raises anthose states. ) Non-Proliferation Treaty (NPT): prohibiting

Young-Koo, Cha; Kang, Choi; JI, Guoxing; Mack, Andrew; Pregenzer, Arian L.; Dobrovolski, Vassili

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Case Against Consent in International Law  

E-Print Network (OSTI)

The Nuclear Non-?Proliferation Treaty (NPT) came the Treaties, Treaty on the Non-?Proliferation of

Guzman, Andrew T

2012-01-01T23:59:59.000Z

402

Practices and their Failures: Arab-Israeli Relations and the Barcelona Process  

E-Print Network (OSTI)

of the Nuclear Non-Proliferation Treaty (NPT) in April 1995.extension to the non-proliferation treaty unless Israel

Peters, Joel

2004-01-01T23:59:59.000Z

403

Newsletters | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Efficiency, Savings NNSA Nonproliferation Program Develops Cutting-edge Dental Implant Technology Pantex Authorized to Begin Work on B53 Big Month for National Ignition Facility...

404

Second Line of Defense Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Line of Defense Program | National Nuclear Security Administration Line of Defense Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Second Line of Defense Program Home > About Us > Our Programs > Nonproliferation > International Materials Protection and Cooperation > Second Line of Defense Program Second Line of Defense Program In April 2009, President Obama called the danger of a terrorist acquiring

405

Nuclear Detection and Sensor Testing Center | Y-12 National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and ... Detection and ... Nuclear Detection and Sensor Testing Center As part of our increased global nuclear nonproliferation efforts, Y-12 commissioned the Nuclear Detection and Sensor Testing Center, which offers dedicated facilities for the testing of radiation detection capabilities using enriched and highly enriched uranium. In addition to supporting measurements of instrumentation for detecting ionizing radiation, non-destructive measurements of both fissile and non-fissile materials may be deployed at NDSTC. The NDSTC supports proliferation detection, nuclear safeguards, emergency response, treaty verification, and university research. We can test devices with various forms and quantities of HEU, and the Center offers subject matter experts to assist in planning measurements, safely deploy material,

406

Plutonium Removal from Sweden: Fact Sheet | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Removal from Sweden: Fact Sheet | National Nuclear Security Removal from Sweden: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Plutonium Removal from Sweden: Fact Sheet Fact Sheet Plutonium Removal from Sweden: Fact Sheet Mar 27, 2012 Sweden has been a global leader on nonproliferation, and was one of the

407

Second Line of Defense Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Line of Defense Program | National Nuclear Security Administration Line of Defense Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Second Line of Defense Program Home > About Us > Our Programs > Nonproliferation > International Materials Protection and Cooperation > Second Line of Defense Program Second Line of Defense Program In April 2009, President Obama called the danger of a terrorist acquiring

408

Y-12 National Security Complex | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Locations > Y-12 National Security Complex Home > About Us > Our Locations > Y-12 National Security Complex Y-12 National Security Complex http://www.y12.doe.gov/ Field Office: The NNSA Production Office is responsible for contract management and oversight of the Pantex Plant in Amarillo, Texas and the Y-12 National Security Complex in Oak Ridge, Tenn. Y-12 supports the Nuclear Security Enterprise through nuclear material processing, manufacturing and storage operations and nuclear nonproliferation activities and provides enriched uranium feedstock for the U.S. Navy. National Security Complex: The Y-12 National Security Complex (Y-12) serves as the nation's only source of enriched uranium nuclear weapons components and provides enriched uranium for the U.S. Navy. Y-12 is a leader in materials science and precision manufacturing and serves as the

409

Mesoscale to plant-scale models of nuclear waste reprocessing.  

Science Conference Proceedings (OSTI)

Imported oil exacerabates our trade deficit and funds anti-American regimes. Nuclear Energy (NE) is a demonstrated technology with high efficiency. NE's two biggest political detriments are possible accidents and nuclear waste disposal. For NE policy, proliferation is the biggest obstacle. Nuclear waste can be reduced through reprocessing, where fuel rods are separated into various streams, some of which can be reused in reactors. Current process developed in the 1950s is dirty and expensive, U/Pu separation is the most critical. Fuel rods are sheared and dissolved in acid to extract fissile material in a centrifugal contactor. Plants have many contacts in series with other separations. We have taken a science and simulation-based approach to develop a modern reprocessing plant. Models of reprocessing plants are needed to support nuclear materials accountancy, nonproliferation, plant design, and plant scale-up.

Noble, David Frederick; O'Hern, Timothy John; Moffat, Harry K.; Nemer, Martin B.; Domino, Stefan Paul; Rao, Rekha Ranjana; Cipiti, Benjamin B.; Brotherton, Christopher M.; Jove-Colon, Carlos F.; Pawlowski, Roger Patrick

2010-09-01T23:59:59.000Z

410

SNIF: A Futuristic Neutrino Probe for Undeclared Nuclear Fission Reactors  

E-Print Network (OSTI)

Today reactor neutrino experiments are at the cutting edge of fundamental research in particle physics. Understanding the neutrino is far from complete, but thanks to the impressive progress in this field over the last 15 years, a few research groups are seriously considering that neutrinos could be useful for society. The International Atomic Energy Agency (IAEA) works with its Member States to promote safe, secure and peaceful nuclear technologies. In a context of international tension and nuclear renaissance, neutrino detectors could help IAEA to enforce the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). In this article we discuss a futuristic neutrino application to detect and localize an undeclared nuclear reactor from across borders. The SNIF (Secret Neutrino Interactions Finder) concept proposes to use a few hundred thousand tons neutrino detectors to unveil clandestine fission reactors. Beyond previous studies we provide estimates of all known background sources as a function of the detecto...

Lasserre, Thierry; Mention, Guillaume; Reboulleau, Romain; Cribier, Michel; Letourneau, Alain; Lhuillier, David

2010-01-01T23:59:59.000Z

411

Strengthening the nuclear-reactor fuel cycle against proliferation  

SciTech Connect

Argonne National Laboratory (ANL) conducts several research programs that serve to reduce the risks of fissile-material diversion from the nuclear-reactor fuel cycle. The objectives are to provide economical and efficient neutron or power generation with the minimum of inherent risks, and to further minimize risks by utilizing sophisticated techniques to detect attempts at material diversion. This paper will discuss the Reduced Enrichment Research and Test Reactor (RERTR) Program, the Isotope Correlation Technique (ICT), and Proliferation-Resistant Closed-Cycle Reactors. The first two are sponsored by the DOE Office of Arms Control and Nonproliferation.

Travelli, A.; Snelgrove, J.; Persiani, P. [Argonne National Lab., IL (United States). Arms Control and Nonproliferation Program

1992-12-31T23:59:59.000Z

412

Revision to the Record of Decision for the Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (DOE/EIS-218) (7/19/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

767 767 Federal Register / Vol. 65, No. 139 / Wednesday, July 19, 2000 / Notices The office is located in the Pentagon which is guarded. RETENTION AND DISPOSAL: Records are kept until the person is deceased or the person seeks removal of information, whichever is sooner. SYSTEM MANAGER(S) AND ADDRESS: Chief of Naval Operations (N09BC), 2000 Navy Pentagon, Washington, DC 20350-2000. NOTIFICATION PROCEDURE: Individuals seeking to determine whether information about themselves is contained in this system should address written inquiries to the Chief of Naval Operations (N09BC), 2000 Navy Pentagon, Washington, DC 20350-2000. RECORD ACCESS PROCEDURES: Individuals seeking access to information about themselves contained in this system should address written inquiries to the Chief of Naval

413

Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume III. Resources and fuel cycle facilities  

SciTech Connect

Volume III explores resources and fuel cycle facilities. Chapters are devoted to: estimates of US uranium resources and supply; comparison of US uranium demands with US production capability forecasts; estimates of foreign uranium resources and supply; comparison of foreign uranium demands with foreign production capability forecasts; and world supply and demand for other resources and fuel cycle services. An appendix gives uranium, fissile material, and separative work requirements for selected reactors and fuel cycles.

1979-12-01T23:59:59.000Z

414

Interim assessment of the denatured /sup 233/U fuel cycle: feasibility and nonproliferation characteristics  

SciTech Connect

A fuel cycle that employs /sup 233/U denatured with /sup 238/U and mixed with thorium fertile material is examined with respect to its proliferation-resistance characteristics and its technical and economic feasibility. The rationale for considering the denatured /sup 233/U fuel cycle is presented, and the impact of the denatured fuel on the performance of Light-Water Reactors, Spectral-Shift-Controlled Reactors, Gas-Cooled Reactors, Heavy-Water Reactors, and Fast Breeder Reactors is discussed. The scope of the R, D and D programs to commercialize these reactors and their associated fuel cycles is also summarized and the resource requirements and economics of denatured /sup 233/U cycles are compared to those of the conventional Pu/U cycle. In addition, several nuclear power systems that employ denatured /sup 233/U fuel and are based on the energy center concept are evaluated.

Abbott, L.S.; Bartine, D.E.; Burns, T.J. (eds.)

1979-12-01T23:59:59.000Z

415

Large-scale Gadolinium-doped Water Cerenkov Detector for Non-Proliferation  

E-Print Network (OSTI)

Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high energy gamma-rays. The observation of time correlations between any of these particles is a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cerenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cerenkov detectors, we have designed and built a 3.5 kL water Cerenko...

Sweany, M; Bowden, N S; Dazeley, S; Keefer, G; Svoboda, R; Tripathi, M

2011-01-01T23:59:59.000Z

416

United States Department of Energy Nuclear Materials Stewardship  

Science Conference Proceedings (OSTI)

The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials.

Newton, J. W.

2002-02-27T23:59:59.000Z

417

Extra-Territorial Siting of Nuclear Installations  

Science Conference Proceedings (OSTI)

Arrangements might be created for siting nuclear installations on land ceded by a host State for administration by an international or multinational organization. Such arrangements might prove useful in terms of resolving suspicions of proliferation in troubled areas of the world, or as a means to introduce nuclear activities into areas where political, financial or technical capabilities might otherwise make such activities unsound, or as a means to enable global solutions to be instituted for major nuclear concerns (e.g., spent fuel management). The paper examines practical matters associated with the legal and programmatic aspects of siting nuclear installations, including diplomatic/political frameworks, engaging competent industrial bodies, protection against seizure, regulation to ensure safety and security, waste management, and conditions related to the dissolution of the extra-territorial provisions as may be agreed as the host State(s) achieve the capabilities to own and operate the installations. The paper considers the potential for using such a mechanism across the spectrum of nuclear power activities, from mining to geological repositories for nuclear waste. The paper considers the non-proliferation dimensions associated with such arrangements, and the pros and cons affecting potential host States, technology vendor States, regional neighbors and the international community. It considers in brief potential applications in several locations today.

Shea, Thomas E.; Morris, Frederic A.

2009-10-07T23:59:59.000Z

418

A Lagrangian-DNN Relaxation: a Fast Method for Computing Tight ...  

E-Print Network (OSTI)

Department of Mathematics, National University of Singapore, 10 Lower Kent. Ridge Road ...... Billionnet-Elloumi instances from BIQMAC library [6]. The lower...

419

Large-scale Gadolinium-doped Water Cerenkov Detector for Non-Proliferation  

E-Print Network (OSTI)

Fission events from Special Nuclear Material (SNM), such as highly enriched uranium or plutonium, can produce simultaneous emission of multiple neutrons and high energy gamma-rays. The observation of time correlations between any of these particles is a significant indicator of the presence of fissionable material. Cosmogenic processes can also mimic these types of correlated signals. However, if the background is sufficiently low and fully characterized, significant changes in the correlated event rate in the presence of a target of interest constitutes a robust signature of the presence of SNM. Since fission emissions are isotropic, adequate sensitivity to these multiplicities requires a high efficiency detector with a large solid angle with respect to the target. Water Cerenkov detectors are a cost-effective choice when large solid angle coverage is required. In order to characterize the neutron detection performance of large-scale water Cerenkov detectors, we have designed and built a 3.5 kL water Cerenkov-based gamma-ray and neutron detector, and modeled the detector response in Geant4 [1]. We report the position-dependent neutron detection efficiency and energy response of the detector, as well as the basic characteristics of the simulation.

M. Sweany; A. Bernstein; N. S. Bowden; S. Dazeley; G. Keefer; R. Svoboda; M. Tripathi

2011-05-11T23:59:59.000Z

420

Strategic Nuclear Research Collaboration - FY99 Annual Report  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

T. J. Leahy

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Bonus -- Cameras Designed to Strengthen Nuclear Security Can Also Detect  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Strengthen Nuclear Security Can Also to Strengthen Nuclear Security Can Also Detect Cancer Bonus -- Cameras Designed to Strengthen Nuclear Security Can Also Detect Cancer November 17, 2010 - 4:02pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this mean for me? The cameras can detect prostate cancer -- as well as cervical, colorectal and breast cancers -- and can be optimized as a surgical probe that guides the removal of cancerous tumors. Brookhaven National Laboratory (BNL) and Hybridyne Imaging Technologies, Inc. recently won the 2010 North American Frost & Sullivan Award for Technology Innovation of the Year. The award is given out each year to a company that finds a new application for a unique technology. With funding from the Energy Department's NNSA's Office of Nonproliferation and

422

Bonus -- Cameras Designed To Strengthen Nuclear Security Can Also Detect  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

To Strengthen Nuclear Security Can Also To Strengthen Nuclear Security Can Also Detect Cancer Bonus -- Cameras Designed To Strengthen Nuclear Security Can Also Detect Cancer November 17, 2010 - 4:04pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What does this mean for me? Thanks to researchers from Brookhaven National Laboratory, a high-resolution gamma camera exists that can be used to detect prostate cancer. Brookhaven National Laboratory (BNL) and Hybridyne Imaging Technologies, Inc. recently won the 2010 North American Frost & Sullivan Award for Technology Innovation of the Year. The award is given out each year to a company that finds a new application for a unique technology. With funding from the Department of Energy's NNSA's Office of Nonproliferation and

423

Terry C. Wallace Principal Associate Director"  

E-Print Network (OSTI)

Counterterrorism Focus Area Barry Charles" Intelligence! Focus Area Kerry Habiger" Nuclear Nonproliferation & Security Program Office! NJ Nicholas" Nonproliferation Deployment ! Focus Area Jon Nielsen (A)" Nonproliferation & Space R&D! Focus Area Allen Camp" Nonproliferation and Treaty Verification! Focus Area! Kory

424

Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the Middle East  

SciTech Connect

An exceptional number of Middle Eastern and North African nations have recently expressed interest in developing nuclear energy for peaceful purposes. Many of these countries have explored nuclear research in limited ways in the past, but the current focused interest and application of resources towards developing nuclear-generated electricity and nuclear-powered desalination plants is unprecedented. Consequently, questions arise in response to this emerging trend: What instigated this interest? To what end(s) will a nuclear program be applied? Does the country have adequate technical, political, legislative, nonproliferation, and safety infrastructure required for the capability desired? If so, what are the next steps for a country in preparation for a future nuclear program? And if not, what collaboration efforts are possible with the United States or others? This report provides information on the capabilities and interests of 13 countries in the region in nuclear energy programs in light of safety, nonproliferation and security concerns. It also provides information useful for determining potential for offering technical collaboration, financial aid, and/or political support.

Windsor, Lindsay K.; Kessler, Carol E.

2007-09-11T23:59:59.000Z

425

Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty  

E-Print Network (OSTI)

Evolutionary Algorithm Non-Proliferation Impact AssessmentTracking Security & Non- proliferation Waste Resource

Kim, Lance Kyungwoo

2011-01-01T23:59:59.000Z

426

Proliferation Resistant Nuclear Reactor Fuel  

Science Conference Proceedings (OSTI)

Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

2011-02-18T23:59:59.000Z

427

NO 17 The Nuclear Debate in Pakistan  

E-Print Network (OSTI)

old nuclear trade ban on India by approving the Indo-US nuclear agreement. This nuclear deal has managed to end an era of nuclear trade restrictions and has opened the door for regulated proliferation. Also, the international non-proliferation system has accommodated a non-NPT state into the NPT regime. This is unprecedented and has resulted in a structural change in the international system. It is interesting to see how this deal is being viewed in Pakistan, and how the general debate on various nuclear treaties is unfolding in Pakistan. With Indian influence increasing in US policy circles, it should not be taken for granted that since Pakistan is a US ally in its war on terrorism, the latter will ignore the increasing Indian noise about the instability factor in the region and implicating Pakistan. Arguing that Indian safety and success are strategic assets for the US (Tellis 2005), India has carved out a strategic space for itself in the region, confirmed and sealed by this agreement.

Post Indo-us Deal; Rabia Akhtar

2009-01-01T23:59:59.000Z

428

Plutonium Disposition Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plutonium Disposition Program Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on July 13, 2011, commits each country to dispose of at least 34 metric tons (MT) of weapon-grade plutonium withdrawn from their respective nuclear weapon programs. The U.S. remains firmly committed to its PMDA obligation to dispose of excess weapons plutonium. U.S. Plutonium Disposition The current U.S. plan to dispose of 34 MT of weapon-grade plutonium is to fabricate it into Mixed Oxide (MOX) fuel and irradiate it in existing light water reactors. This approach requires construction of new facilities

429

EM Issues Amended Decision to Expand Use of Nuclear Facility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Amended Decision to Expand Use of Nuclear Facility Issues Amended Decision to Expand Use of Nuclear Facility EM Issues Amended Decision to Expand Use of Nuclear Facility April 1, 2013 - 12:00pm Addthis H-Canyon at Savannah River Site. The building is called a canyon because of its long rectangular shape and two continuous trenches that contains process vessels. H-Canyon at Savannah River Site. The building is called a canyon because of its long rectangular shape and two continuous trenches that contains process vessels. AIKEN, S.C. - EM issued an amended Record of Decision (ROD) to the Savannah River Site (SRS) Spent Nuclear Fuel Environmental Impact Statement to expand the operations of the H-Canyon Facility at SRS to support a major nuclear non-proliferation goal and save taxpayer dollars. DOE recently signed a contract allowing Atomic Energy of Canada Limited

430

EM Issues Amended Decision to Expand Use of Nuclear Facility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Issues Amended Decision to Expand Use of Nuclear Facility EM Issues Amended Decision to Expand Use of Nuclear Facility EM Issues Amended Decision to Expand Use of Nuclear Facility April 1, 2013 - 12:00pm Addthis H-Canyon at Savannah River Site. The building is called a canyon because of its long rectangular shape and two continuous trenches that contains process vessels. H-Canyon at Savannah River Site. The building is called a canyon because of its long rectangular shape and two continuous trenches that contains process vessels. AIKEN, S.C. - EM issued an amended Record of Decision (ROD) to the Savannah River Site (SRS) Spent Nuclear Fuel Environmental Impact Statement to expand the operations of the H-Canyon Facility at SRS to support a major nuclear non-proliferation goal and save taxpayer dollars. DOE recently signed a contract allowing Atomic Energy of Canada Limited

431

Nuclear data for nuclear transmutation  

Science Conference Proceedings (OSTI)

Current status on nuclear data for the study of nuclear transmutation of radioactive wastes is reviewed

Hideo Harada

2009-01-01T23:59:59.000Z

432

Review of the nuclear safeguards problem. [Proliferation; terrorism  

SciTech Connect

The issues surrounding nuclear safeguards are proliferation and terrorism. Protecting the nuclear fuel cycle against nuclear materials diversion has been the function of the NPT and the IAEA. However, because all nations have not signed the NPT and IAEA safeguarding inspections are not foolproof, the fuel cycle itself has been looked to as a possible way to alleviate concerns over proliferation. A civilian nuclear industry is not needed to produce weapon material, since research reactors can provide the necessary weapon-grade uranium or plutonium much cheaper and easier than commercial power reactors. Thus, altering the nuclear fuel cycle does not necessarily reduce the possibility of proliferation of nuclear weapons. Only strict enforcement of the NPT and of the safeguard guidelines of the IAEA can achieve nonproliferation. Changing the fuel cycle does not present terrorists from stealing highly radioactive material to be used for weapons or from sabotaging nuclear facilities. Policing a nuclear facility by using guards, alarms, barriers, and searching and screening of employees is the only way to protect against terrorism, but these actions raise questions regarding civil liberties.

Poch, L.A.; Wolsko, T.D.

1979-10-01T23:59:59.000Z

433

Export control guide: Spent nuclear fuel reprocessing and preparation of plutonium metal  

Science Conference Proceedings (OSTI)

The international Treaty on the Non-Proliferation of Nuclear Weapons, also referred to as the Non-Proliferation Treaty (NPT), states in Article III, paragraph 2(b) that {open_quotes}Each State Party to the Treaty undertakes not to provide . . . equipment or material especially designed or prepared for the processing, use or production of special fissionable material to any non-nuclear-weapon State for peaceful purposes, unless the source or special fissionable material shall be subject to the safeguards required by this Article.{close_quotes} This guide was prepared to assist export control officials in the interpretation, understanding, and implementation of export laws and controls relating to the international Trigger List for irradiated nuclear fuel reprocessing equipment, components, and materials. The guide also contains information related to the production of plutonium metal. Reprocessing and its place in the nuclear fuel cycle are described briefly; the standard procedure to prepare metallic plutonium is discussed; steps used to prepare Trigger List controls are cited; descriptions of controlled items are given; and special materials of construction are noted. This is followed by a comprehensive description of especially designed or prepared equipment, materials, and components of reprocessing and plutonium metal processes and includes photographs and/or pictorial representations. The nomenclature of the Trigger List has been retained in the numbered sections of this document for clarity.

NONE

1993-10-01T23:59:59.000Z

434

Export possibilities for small nuclear reactors  

Science Conference Proceedings (OSTI)

The worldwide deployment of peaceful nuclear technology is predicated on conformance with the Nuclear Non-Proliferation Treaty of 1972. Under this international treaty, countries have traded away pursuit of nuclear weapons in exchange for access to commercial nuclear technology that could help them grow economically. Realistically, however, most nuclear technology has been beyond the capacity of the NPT developing countries to afford. Even if the capital cost of the plant is managed, the costs of the infrastructure and the operational complexity of most nuclear technology have taken it out of the hands of the nations who need it the most. Now, a new class of small sodium cooled reactors has been specifically designed to meet the electrical power, water, hydrogen and heat needs of small and remote users. These reactors feature small size, long refueling interval, no onsite fuel storage, and simplified operations. Sized in the 10 MW(e) to 50 MW(e) range these reactors are modularized for factory production and for rapid site assembly. The fuel would be <20% U-235 uranium fuel with a 30-year core life. This new reactor type more appropriately fills the needs of countries for lower power distributed systems that can fill the gap between large developed infrastructure and primitive distributed energy systems. Looking at UN Resolution 1540 and the impact of other agreements, there is a need to address the issues of nuclear security, fuel, waste, and economic/legal/political-stakeholder concerns. This paper describes the design features of this new reactor type that specifically address these issues in a manner that increases the availability of commercial nuclear technology to the developing nations of the world. (authors)

Campagna, M.S.; Hess, C.; Moor, P. [Burns and Roe Enterprises, Inc., Oradell, NJ (United States); Sawruk, W. [ABSG Consulting, Inc., Shillington, PA (United States)

2007-07-01T23:59:59.000Z

435

Computer and Information Sciences Simulation Technologies  

E-Print Network (OSTI)

and production, carbon sequestration, nuclear-waste repositories, and nuclear non-proliferation monitoring

436

Newsletter Fall 1992  

E-Print Network (OSTI)

faculty on nuclear non-proliferation issues during theinternational Nuclear Non- Proliferation Network (NNN) being

1992-01-01T23:59:59.000Z

437

EIS-0218: Revised Record of Decision  

Energy.gov (U.S. Department of Energy (DOE))

Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel

438

Terror Management in Response to Contemporary Political Issues  

E-Print Network (OSTI)

marijuana Nuclear non-proliferation treaty OutsourcingMarijuana Nuclear Non -Proliferation Treaty Outsourcing

Kinon, Marc Donald

2012-01-01T23:59:59.000Z

439

Off-site Housing | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

& Regional Solutions Nonproliferation & National Security Nuclear Science & Technology Technology Commercialization & Partnerships Sustainable Energy Technologies Nuclear &...

440

Application Processing, Issuance and/or Denial Part 750page 1 Export Administration Regulations January 2001  

E-Print Network (OSTI)

for national security, missile technology, nuclear nonproliferation, and chemical and biological #12 controlled for nuclear nonproliferation reasons; (iii) The Department of State is concerned primarily) ACDA is concerned primarily with items controlled for national security, nuclear nonproliferation

Bernstein, Daniel

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Progress in studying scintillator proportionality: Phenomenological model  

E-Print Network (OSTI)

Of?ce of Defense Nuclear Nonproliferation, Of?ceof Nuclear Nonproliferation Research and Engineering (NA-22)Of?ce of Defense Nuclear Nonproliferation, Of?ce of Non-

Bizarri, Gregory

2010-01-01T23:59:59.000Z

442

Nonproliferation through delegation  

E-Print Network (OSTI)

National Economies Encyclopedia: Iran International TradeAsia-and-the-Pacific/Iran- INTERNATIONAL-TRADE.html. (the Islamic Republic of Iran. Vienna, Austria: International

Brown, Robert Louis

2008-01-01T23:59:59.000Z

443

Nonproliferation through delegation  

E-Print Network (OSTI)

New Approaches. Washington, D.C. : Chemical and Biologicaledited by R. Brown. Washington, DC. Moore, Matthew, andedited by R. Brown. Washington, DC. Morgan, Patrick M. 2003.

Brown, Robert Louis

2008-01-01T23:59:59.000Z

444

Nonproliferation through delegation  

E-Print Network (OSTI)

demonstrated, indigenous uranium enrichment programs wereIn 1945, three methods of uranium enrichment were known:centrifuges for uranium enrichment may be aware of the

Brown, Robert Louis

2008-01-01T23:59:59.000Z

445

Nonproliferation through delegation  

E-Print Network (OSTI)

attempts to acquire gas centrifuge and other facilities. Thegas diffusion was used by the US because the calutron method did not sufficiently enrich the uranium and the centrifuge

Brown, Robert Louis

2008-01-01T23:59:59.000Z

446

Nonproliferation through delegation  

E-Print Network (OSTI)

reactor and then later chemically extract plutonium from the spent fuel. For years after the basic theory

Brown, Robert Louis

2008-01-01T23:59:59.000Z

447

Self Assessment Survey - Vulnerability Assessment Team - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Resources Useful Resources Contact the VAT Contact the VAT Other Nonproliferation & National Security Capabilities Work with Argonne Contact us For Employees Site...

448

Vulnerability Assessments - Vulnerability Assessment Team - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Resources Useful Resources Contact the VAT Contact the VAT Other Nonproliferation & National Security Capabilities Work with Argonne Contact us For Employees Site...

449

Site Information | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

nonproliferation, bio threats, global climate modeling and other critical problems. NTS Nevada National Security Site (NNSS), near Las Vegas, Nev., is where the U.S....

450

U.S. and Mongolia Sign MOU to Increase Cooperation in Preventing Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mongolia Sign MOU to Increase Cooperation in Preventing Mongolia Sign MOU to Increase Cooperation in Preventing Nuclear Smuggling U.S. and Mongolia Sign MOU to Increase Cooperation in Preventing Nuclear Smuggling October 23, 2007 - 3:21pm Addthis WASHINGTON, DC - Today the governments of the United States and Mongolia strengthened their efforts in the fight against nuclear terrorism. U.S. Deputy Secretary of Energy Clay Sell and Mongolia's Minister of Finance Nadmid Bayartsaikhan signed a Memorandum of Understanding, which will kick off cooperation between the two countries to prevent illicit trafficking of nuclear and other radioactive material. "This Agreement signed today solidifies the United States and Mongolia's commitment to promote our joint security and nonproliferation goals," Deputy Secretary Sell said. "This initiative builds on our ongoing

451

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will remove up to 200 metric tons (MT) of Highly Enriched Uranium (HEU), in the coming decades, from further use as fissile material in U.S. nuclear weapons and prepare this material for other uses. Secretary Bodman made this announcement while addressing the 2005 Carnegie International Nonproliferation Conference in Washington, DC.

452

SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION  

SciTech Connect

The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These 123 agreements are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

Magoulas, V.

2013-06-03T23:59:59.000Z

453

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

454

Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

Not Available

1994-04-01T23:59:59.000Z

455

Nuclear power and nuclear weapons  

SciTech Connect

The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

Vaughen, V.C.A.

1983-01-01T23:59:59.000Z

456

Pn TOMOGRAPHY AND LOCATION IN EURASIA , Scott Phillips1  

E-Print Network (OSTI)

State University2 Sponsored by National Nuclear Security Administration Office of Nonproliferation Research and Engineering Office of Defense Nuclear Nonproliferation Contract No. W-7405-ENG-36 ABSTRACT We

Rowe, Charlotte

457

Northeast Asia Cooperation Dialogue II: Conference Papers  

E-Print Network (OSTI)

interest in regional non- proliferation. Chinas nuclearstrengthening the nuclear non-proliferation re- gime. 33be members of the Nuclear Non-Proliferation Treaty. 34 This

Young-Koo, Cha; Kang, Choi; JI, Guoxing; Mack, Andrew; Pregenzer, Arian L.; Dobrovolski, Vassili

1994-01-01T23:59:59.000Z

458

Law as Treaties?: The Constitutionality of Congressional-Executive Agreements  

E-Print Network (OSTI)

Treaty, 155 the Nuclear Non-Proliferation Treaty, 156 the3435. Treaty on the Non-Proliferation of Nuclear Weapons, 21

Yoo, John C.

2000-01-01T23:59:59.000Z

459

June  

NLE Websites -- All DOE Office Websites (Extended Search)

Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of nuclear nonproliferation by combining two groups within its...

460

Strategic Ambiguity and Arms Proliferation  

E-Print Network (OSTI)

Article 3 of the Treaty on the Non-proliferation of Nuclear61: 265-298. [22] Treaty on the Non-proliferation of Nuclear

Baliga, Sandeep; Sjostrom, Tomas

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear nonproliferation dnn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Law as Treaties?: The Constitutionality of Congressional-Executive Agreements  

E-Print Network (OSTI)

the Nuclear Non-Proliferation Treaty, 156 the Intermediate-23 U.S.T. 3435. Treaty on the Non-Proliferation of Nuclear

Yoo, John C.

2000-01-01T23:59:59.000Z

462

Understanding Europes "New" Common Foreign and Security Policy  

E-Print Network (OSTI)

Organization Nuclear Non-Proliferation Treaty Organizationwith the Nuclear Non-Proliferation Treaty (NPT). This is thefor renewal of the Non- Proliferation Treaty in 1995 Russian

Smith, Michael

2000-01-01T23:59:59.000Z

463

Deputy Secretary Poneman's Remarks at the International Conference...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nonproliferation regime and ensure a successful outcome of the Nuclear Non-Proliferation Treaty Review Conference in May. We strongly encourage the peaceful use of nuclear...

464

The Consent Problem in International Law  

E-Print Network (OSTI)

the Nuclear Non-?Proliferation Treaty in 1968 and Nuclear Non-? Proliferation Treaty (NPT) came Treaties, Treaty on the Non-?Proliferation of

Guzman, Andrew

2011-01-01T23:59:59.000Z

465

NNSA Administrator Addresses Next Generation of Computational...  

National Nuclear Security Administration (NNSA)

deterrent, nonproliferation, nuclear propulsion, nuclear counterterrorism, emergency management, nuclear forensics and nuclear intelligence analysis. And, we anticipate that those...

466

A future vision of nuclear material information systems  

SciTech Connect

To address the current and future needs for nuclear materials management and safeguards information, Lawrence Livermore National Laboratory envisions an integrated nuclear information system that will support several functions. The vision is to link distributed information systems via a common communications infrastructure designed to address the information interdependencies between two major elements: Domestic, with information about specific nuclear materials and their properties, and International, with information pertaining to foreign nuclear materials, facility design and operations. The communication infrastructure will enable data consistency, validation and reconciliation, as well as provide a common access point and user interface for a broad range of nuclear materials information. Information may be transmitted to, from, and within the system by a variety of linkage mechanisms, including the Internet. Strict access control will be employed as well as data encryption and user authentication to provide the necessary information assurance. The system can provide a mechanism not only for data storage and retrieval, but will eventually provide the analytical tools necessary to support the U.S. government's nuclear materials management needs and non-proliferation policy goals.

Suski, N; Wimple, C

1999-07-18T23:59:59.000Z

467

Related Resources - Nuclear Data Program, Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

468

Publications: Other Resources - Nuclear Data Program - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

469

Publications 2005 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

470

Publications 2003 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

471

Contacts - Nuclear Data Program, Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

472

Publications 2001 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

473

Publications 2004 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

474

Publications 2009 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

475

Nuclear Criticality Safety: Current Activities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

476

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

477

Nuclear Systems Analysis - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

478

Publications 2011 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

479

Model-Based Calculations of the Probability of a Country's Nuclear Proliferation Decisions  

Science Conference Proceedings (OSTI)

The first nuclear weapon was detonated in August 1945 over Japan to end World War II. During the past six decades, the majority of the world's countries have abstained from acquiring nuclear weapons. However, a number of countries have explored the nuclear weapons option, 23 in all. Among them, 14 countries have dropped their interest in nuclear weapons after initiating some efforts. And nine of them today possess nuclear weapons. These countries include the five nuclear weapons states - U.S., Russia, U.K., France, and China - and the four non- NPT member states - Israel, India, Pakistan, and North Korea. Many of these countries initially used civilian nuclear power technology development as a basis or cover for their military program. Recent proliferation incidents in Iraq, Iran, and North Korea brought the world together to pay much attention to nuclear nonproliferation. With the expected surge in the use of nuclear energy for power generation by developing countries, the world's nuclear nonproliferation regime needs to be better prepared for potential future challenges. For the world's nuclear nonproliferation regime to effectively cope with any future proliferation attempts, early detection of potentially proliferation-related activities is highly desirable. Early detection allows the international community to respond and take necessary actions - ideally using political and diplomatic influences without resorting to harsh measures such as sanctions or military actions. In this regard, a capability to quantitatively predict the chance of a country's nuclear proliferation intent or activities is of significant interest. There have been various efforts in the research community to understand the determinants of nuclear proliferation and develop quantitative tools to predict nuclear proliferation events. These efforts have shown that information about the political issues surrounding a country's security along with economic development data can be useful to explain the occurrences of proliferation decisions. However, predicting major historical proliferation events using model-based predictions has been unreliable. Nuclear proliferation decisions by a country is affected by three main factors: (1) technology; (2) finance; and (3) political motivation [1]. Technological capability is important as nuclear weapons development needs special materials, detonation mechanism, delivery capability, and the supporting human resources and knowledge base. Financial capability is likewise important as the development of the technological capabilities requires a serious financial commitment. It would be difficult for any state with a gross national product (GNP) significantly less than that of about $100 billion to devote enough annual governmental funding to a nuclear weapon program to actually achieve positive results within a reasonable time frame (i.e., 10 years). At the same time, nuclear proliferation is not a matter determined by a mastery of technical details or overcoming financial constraints. Technology or finance is a necessary condition but not a sufficient condition for nuclear proliferation. At the most fundamental level, the proliferation decision by a state is controlled by its political motivation. To effectively address the issue of predicting proliferation events, all three of the factors must be included in the model. To the knowledge of the authors, none of the exiting models considered the 'technology' variable as part of the modeling. This paper presents an attempt to develop a methodology for statistical modeling and predicting a country's nuclear proliferation decisions. The approach is based on the combined use of data on a country's nuclear technical capability profiles economic development status, security environment factors and internal political and cultural factors. All of the information utilized in the study was from open source literature. (authors)

Li, Jun; Yim, Man-Sung; McNelis, David N. [Department of Nuclear Engineering North Carolina State University (United States)

2007-07-01T23:59:59.000Z

480

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z