National Library of Energy BETA

Sample records for nuclear material control

  1. Material Protection, Control, & Accounting | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Nonproliferation Nuclear and Radiological Material Security Material Protection, Control, & Accounting Material Protection, Control, & Accounting NNSA implements material...

  2. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

  3. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    The Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability (MC&A) program within the U.S. Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), and for DOE owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). Chg 4 (PgChg) supersedes AdminChg 3, dated 5-15-15.

  4. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    The Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability (MC&A) program within the U.S. Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), and for DOE owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). Admin Chg 3, dated 5-15-15 supersedes Admin Chg 2.

  5. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Chg 1, dated 8-14-06. Canceled by DOE O 474.2.

  6. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Cancels: DOE M 474.1-1B DOE M 474.1-2A

  7. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1. Admin Chg 3, dated 5-15-15, cancels Admin Chg 2.

  8. Nuclear Material Control and Accountability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... can be established for waste accounts, material under ... decay, fission transmutation, adjustments for ... inventory. 6.4.4.4 Nuclear material activities shall ...

  9. Nuclear Materials Control and Accountability

    Broader source: Energy.gov (indexed) [DOE]

    ... can be established for waste accounts, material under ... decay, fission transmutation, adjustments for ... inventory. 6.4.4.4 Nuclear material activities shall ...

  10. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-08-11

    DOE O 474.1 prescribes Department of Energy (DOE) requirements for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission (NRC). Cancels DOE 5633.3B

  11. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-02-12

    The order prescribes DOE minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission {NRC). Cancels DOE O 5633.3. Canceled by DOE O 5633.3B.

  12. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    To prescribe Department of Energy (DOE) requirements, including those for the National Nuclear Security Administration (NNSA), for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). DOE N 251.60, dated 11-19-04, extends this directive until 11-19-05. Cancels DOE O 474.1.

  13. The nuclear materials control technology briefing book

    SciTech Connect (OSTI)

    Hartwell, J.K.; Fernandez, S.J.

    1992-03-01

    As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

  14. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-09-07

    To prescribe the Department of Energy (DOE) minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE O 5633.2A and DOE O 5633.3A. Canceled by DOE O 474.1

  15. INSPECTION REPORT Alleged Nuclear Material Control

    Broader source: Energy.gov (indexed) [DOE]

    Alleged Nuclear Material Control and Accountability Weaknesses at the Department of Energy's Portsmouth Project INS-O-15-04 May 2015 U.S. Department of Energy Office of Inspector...

  16. Global nuclear material flow/control model

    SciTech Connect (OSTI)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-10-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies.

  17. Manual for Control And Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-08-11

    DOE M 474.1-1 prescribes Department of Energy (DOE) requirements and procedures for nuclear material control and accountability (MC&A). This Manual supplements DOE O 474.1, Control and Accountability of Nuclear Materials.

  18. Material Control & Accountability | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    with measurable performance; and Provides a basis for designing MC&A Programs in the context of the nuclear material inventory holdings, operations, and missions at the site. ...

  19. Control and Accountability of Nuclear Materials: Responsibilities and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-09-23

    The order prescribes the Department of Energy (DOE) policies, responsibilities, and authorities for control and accountability of nuclear materials. Cancels DOE O 5633.2.

  20. Audit of Internal Controls Over Special Nuclear Materials, IG...

    Energy Savers [EERE]

    0388 "Audit of Internal Controls Over Special Nuclear Materials" This report is not available electronically. However, copies may be obtained by calling the Office of Inspector...

  1. Materials Control and Accountability Program Manager | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Materials Control and Accountability Program Manager Amy Whitworth Amy Whitworth July 2009 Fellow by the Institute of Nuclear Materials Management NNSA Materials Control and Accountability Program Manager Amy Whitworth was awarded the prestigious title of Fellow by the Institute of Nuclear Materials Management during its recent annual meeting in Tucson, Ariz. Fellows must be nominated by their peers, recommended by the INMM Fellows Committee and approved by

  2. Manual for Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-06-13

    The manual prescribes requirements and assign responsibilities for nuclear material control and accountability. Cancels DOE M 474.1-1A. Canceled by DOE M 470.4-6.

  3. Control and Accountability of Nuclear Materials Responsibilities and Authorities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-01-29

    The order prescribe the Department of Energy (DOE) policies, responsibilities, and authorities for control and accountability of nuclear materials. Cancels DOE O 5630.1. Canceled by DOE O 5633.2A.

  4. Manual for Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-22

    The manual prescribes requirements and procedures for nuclear material control and accountability (MC&A). Cancels DOE M 474.1-1. Canceled by DOE M 474.1-1B.

  5. Nuclear Material Control and Accountability System Effectiveness Tool (MSET)

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T; Campbell, Billy J; Hammond, Glenn A; Meppen, Bruce W; Brown, Richard F

    2011-01-01

    A nuclear material control and accountability (MC&A) system effectiveness tool (MSET) has been developed in the United States for use in evaluating material protection, control, and accountability (MPC&A) systems in nuclear facilities. The project was commissioned by the National Nuclear Security Administration's Office of International Material Protection and Cooperation. MSET was developed by personnel with experience spanning more than six decades in both the U.S. and international nuclear programs and with experience in probabilistic risk assessment (PRA) in the nuclear power industry. MSET offers significant potential benefits for improving nuclear safeguards and security in any nation with a nuclear program. MSET provides a design basis for developing an MC&A system at a nuclear facility that functions to protect against insider theft or diversion of nuclear materials. MSET analyzes the system and identifies several risk importance factors that show where sustainability is essential for optimal performance and where performance degradation has the greatest impact on total system risk. MSET contains five major components: (1) A functional model that shows how to design, build, implement, and operate a robust nuclear MC&A system (2) A fault tree of the operating MC&A system that adapts PRA methodology to analyze system effectiveness and give a relative risk of failure assessment of the system (3) A questionnaire used to document the facility's current MPC&A system (provides data to evaluate the quality of the system and the level of performance of each basic task performed throughout the material balance area [MBA]) (4) A formal process of applying expert judgment to convert the facility questionnaire data into numeric values representing the performance level of each basic event for use in the fault tree risk assessment calculations (5) PRA software that performs the fault tree risk assessment calculations and produces risk importance factor reports on the

  6. Nuclear Material Control and Accountability (NMC&A) for the Savannah...

    Office of Environmental Management (EM)

    Material Control and Accountability (NMC&A) for the Savannah River Site Tritium Facilities Nuclear Material Control and Accountability (NMC&A) for the Savannah River Site Tritium...

  7. State Systems of Accounting for and Control of Nuclear Material | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration State Systems of Accounting for and Control of Nuclear Material NNSA and IAEA Hold the 20th International Training Course on Nuclear Material Accounting and Control Washington, D.C. - The National Nuclear Security Administration (NNSA) and the International Atomic Energy Agency (IAEA) are hosting 35 representatives from 30 countries at Oak Ridge National Laboratory in Oak Ridge, Tennessee, from April 26 to May 8, 2015 for the 20th International Training Course

  8. Controlling WMD Materials and Expertise | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  9. Federal Automated Information System of Nuclear Material Control and Accounting: Uniform System of Reporting Documents

    SciTech Connect (OSTI)

    Pitel, M V; Kasumova, L; Babcock, R A; Heinberg, C

    2003-06-12

    One of the fundamental regulations of the Russian State System for Nuclear Material Accounting and Control (SSAC), ''Basic Nuclear Material Control and Accounting Rules,'' directed that a uniform report system be developed to support the operation of the SSAC. According to the ''Regulation on State Nuclear Material Control and Accounting,'' adopted by the Russian Federation Government, Minatom of Russia is response for the development and adoption of report forms, as well as the reporting procedure and schedule. The report forms are being developed in tandem with the creation of an automated national nuclear material control and accounting system, the Federal Information System (FIS). The forms are in different stages of development and implementation. The first report forms (the Summarized Inventory Listing (SIL), Summarized Inventory Change Report (SICR) and federal and agency registers of nuclear material) have already been created and implemented. The second set of reports (nuclear material movement reports and the special anomaly report) is currently in development. A third set of reports (reports on import/export operations, and foreign nuclear material temporarily located in the Russian Federation) is still in the conceptual stage. To facilitate the development of a unified document system, the FIS must establish a uniform philosophy for the reporting system and determine the requirements for each reporting level, adhering to the following principles: completeness--the unified report system provides the entire range of information that the FIS requires to perform SSAC tasks; requisite level of detail; hierarchical structure--each report is based on the information provided in a lower-level report and is the source of information for reports at the next highest level; consistency checking--reports can be checked against other reports. A similar philosophy should eliminate redundancy in the different reports, support a uniform approach to the contents of

  10. Nuclear Controls | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Control Nuclear Controls Challenge: Detect/deter illicit transfers of nuclear/dual-use materials, technology, and commodities. Solution: Build domestic and international capacity to implement and meet export control obligations. Related Topics international security international security policy NIS nuclear controls safeguards safeguards and security verification Related News Nuclear Verification International Nuclear Safeguards Nonproliferation Policy Nonproliferation and Arms Control NIS

  11. nuclear material

    National Nuclear Security Administration (NNSA)

    width"300" >WASHINGTON, D.C. - The Department of Energy's (DOE) National Nuclear Security Administration (NNSA), in partnership with the Defense Threat Reduction...

  12. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and ...

  13. Advanced international training course on state systems of accounting for and control of nuclear materials

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    This report incorporates all lectures and presentations at the Advanced International Training Course on State Systems of Accounting for and Control of Nuclear Material held April 27 through May 12, 1981 at Santa Fe and Los Alamos, New Mexico, and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards. Major emphasis for the 1981 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory, the Battelle Pacific Northwest Laboratory, and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at both the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, Richland, Washington.

  14. Production of an English/Russian glossary of terminology for nuclear materials control and accounting

    SciTech Connect (OSTI)

    Schachowskoj, S.; Smith, H.A. Jr.

    1995-05-01

    The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguards and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.

  15. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  16. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    About Our Programs Nuclear Security Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials ...

  17. Memo for Sam Callahan- Recommendation for change to DOE O 474.2, Nuclear Material Control and Accountability

    Broader source: Energy.gov [DOE]

    The Tritium Focus Group (TFG) recommends that DOE Order 474.2, Nuclear Material Control and Accountability, dated June 27, 2011, be revised to eliminate deuterium from Table B "Other Accountable Nuclear Materials" of Attachment-2 during the five year revision to the Order.

  18. ADMINISTRATIVE CHANGE TO DOE O 474.2, NUCLEAR MATERIAL CONTROL AND ACCOUNTABILITY

    National Nuclear Security Administration (NNSA)

    DOE O 474.2 Chg 1 8-3-11 ADMINISTRATIVE CHANGE TO DOE O 474.2, NUCLEAR MATERIAL CONTROL AND ACCOUNTABILITY LOCATION OF CHANGES: Page Paragraph Changed To 11 6.b. DOE O 470.4A, Safeguards and Security Program, dated 5-25-07 DOE O 470.4B, Safeguards and Security Program, dated 7-21-11 11 6.c. DOE M 470.4-1 Chg 2, Safeguards and Security Program Planning and Management, dated 10-20-11 deleted 11 6.d. DOE M 470.4-2A, Physical Protection, dated 6-29-11 DOE O 473.3, Protection Program Operations,

  19. nuclear controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    controls Nuclear Verification Challenge: Maintain the U.S. ability to monitor and verify nuclear reduction agreements and detect violations of treaties and other nuclear nonproliferation commitments. Solution: Develop and deploy measures to ensure verifiable compliance with treaties and other international agreements,... International Nuclear Safeguards Challenge: Detect/deter undeclared nuclear materials and activities. Solution: Build capacity of the International Atomic Energy Agency and

  20. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget | National Nuclear Security Administration | (NNSA) Nuclear Materials Safeguards and Security Upgrade Project Completed Under Budget April 03, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration's (NNSA) Nuclear Materials Safeguards and Security Upgrade Project (NMSSUP) was recently completed approximately $1 million under its original budget of $245 million. NMSSUP upgrades security at Los Alamos National Laboratory's (LANL) Technical Area-55, a facility that houses

  1. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  4. nuclear controls

    National Nuclear Security Administration (NNSA)

    which "international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and...

  5. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  6. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  7. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Does not cancel/supersede other directives. Certified 11-18-10.

  8. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-05-26

    To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

  9. Nuclear Material Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Supersedes DOE M 441.1-1, dated 3-7-08.

  10. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Admin Chg 1 dated 4-10-2014, supersedes DOE O 410.2.

  11. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held October 17 through November 4, 1983, at Santa Fe and Los Alamos, New Mexico and Richland, Washington, USA. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the course was developed to provide practical training in the design, implementation, and operation of a State system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1983 course was placed on safeguards methods used at bulk-handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants. The course was conducted by the University of California's Los Alamos National Laboratory and Exxon Nuclear Company, Inc. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the Exxon Nuclear fuel fabrication plant, the Battelle Pacific Northwest Laboratory, Westinghouse Fast Flux Test Facility Visitor Center, and Washington Public Power System nuclear reactor facilities in Richland, Washington. Individual presentations were indexed for inclusion in the Energy Data Base.

  12. International training course on implementation of state systems of accounting for and control of nuclear materials: proceedings

    SciTech Connect (OSTI)

    Not Available

    1986-06-01

    This report incorporates all lectures and presentations at the International Training Course on Implementation of State Systems of Accounting for and Control of Nuclear Materials held June 3 through June 21, 1985, at Santa Fe and Los Alamos, New Mexico, and San Clemente, California. Authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, the Course was developed to provide practical training in the design, implementation, and operation of a state system of nuclear materials accountability and control that satisfies both national and international safeguards requirements. Major emphasis for the 1985 course was placed on safeguards methods used at item-control facilities, particularly nuclear power generating stations and test reactors. An introduction to safeguards methods used at bulk handling facilities, particularly low-enriched uranium conversion and fuel fabrication plants, was also included. The course was conducted by the University of California's Los Alamos National Laboratory and the Southern California Edison Company. Tours and demonstrations were arranged at the Los Alamos National Laboratory, Los Alamos, New Mexico, and the San Onofre Nuclear Generating Station, San Clemente, California.

  13. Department of Energy Nuclear Material Protection, Control, and Accounting Program at the Mangyshlak Atomic Energy Complex, Aktau, Republic of Kazakhstan

    SciTech Connect (OSTI)

    Case, R.; Berry, R.B.; Eras, A.

    1998-08-01

    As part of the Cooperative Threat Reduction Nuclear Material Protection, Control, and Accounting (MPC and A) Program, the US Department of Energy and Mangyshlak Atomic Energy Complex (MAEC), Aktau, Republic of Kazakstan have cooperated to enhance existing MAEC MPC and A features at the BN-350 liquid-metal fast-breeder reactor. This paper describes the methodology of the enhancement activities and provides representative examples of the MPC and A augmentation implemented at the MAEC.

  14. Nuclear & Radiological Material Removal | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    & Radiological Material Removal | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  15. Nuclear Controls Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Controls Yes No 1) Is your Facility involved in the research on or development, design, manufacture, construction, testing or maintenance of any nuclear explosive ...

  16. Nuclear Controls Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Checklist (Required only for Foreign (non-U.S.) Companies) Facility* Name: Description of activity**: *Facility means the entire organization, not just the department you work in. **Please describe the activity that the Los Alamos National Laboratory/Los Alamos National Security information/software/equipment/material/research will be used for. Nuclear Controls □Yes □No 1) Is your Facility involved in the research on or development, design, manufacture, construction, testing or

  17. nuclear material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Researchers develop a new mathematical tool for analyzing and evaluating nuclear material Lawrence Livermore National Laboratory scientists have created a new method for detecting ...

  18. MATERIAL CONTROL ACCOUNTING INMM

    SciTech Connect (OSTI)

    Hasty, T.

    2009-06-14

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  19. Nuclear Material Removal | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Nuclear Material Removal Once weapons-usable nuclear material is no longer required, the Office of Nuclear Material Removal works with global partners and facilities to consolidate, remove and dispose of the excess HEU and plutonium via 1) the U.S.-origin Removal Program that repatriates U.S.-origin HEU and LEU fuel (MTR and TRIGA), 2) the Russian-origin Removal Program that repatriates Russian-origin HEU and separated plutonium, and 3) the Gap Material Program that addresses material

  20. Measurement Control Workshop Instructional Materials

    SciTech Connect (OSTI)

    Gibbs, Philip; Crawford, Cary; McGinnis, Brent

    2014-04-01

    A workshop to teach the essential elements of an effective nuclear materials control and accountability (MC&A) programs are outlined, along with the modes of Instruction, and the roles and responsibilities of participants in the workshop.

  1. United States-Russian laboratory-to-laboratory cooperation on protection, control, and accounting for naval nuclear materials

    SciTech Connect (OSTI)

    Sukhoruchkin, V.; Yurasov, N.; Goncharenko, Y.; Mullen, M.; McConnell, D.

    1996-12-31

    In March 1995, the Russian Navy contacted safeguards experts at the Kurchatov Institute (KI) and proposed the initiation of work to enhance nuclear materials protection, control, and accounting (MPC and A) at Russian Navy facilities. Because of KI`s successful experience in laboratory-to-laboratory MPC and A cooperation with US Department of Energy Laboratories, the possibility of US participation in the work with the Russian Navy was explored. Several months later, approval was received from the US Government and the Russian Navy to proceed with this work on a laboratory-to-laboratory basis through Kurchatov Institute. As a first step in the cooperation, a planning meeting occurred at KI in September, 1995. Representatives from the US Department of Energy (DOE), the US Department of Defense (DOD), the Russian Navy, and KI discussed several areas for near-term cooperative work, including a vulnerability assessment workshop and a planning study to identify and prioritize near-term MPC and A enhancements that might be implemented at Russian facilities which store or handle unirradiated highly enriched uranium fuel for naval propulsion applications. In subsequent meetings, these early proposals have been further refined and extended. This MPC and A cooperation will now include enhanced protection and control features for storage facilities and refueling service ships, computerized accounting systems for naval fuel, methods and equipment for rapid inventories, improved security of fresh fuel during truck transportation, and training. This paper describes the current status and future plans for MPC and A cooperation for naval nuclear materials.

  2. Nuclear Material Variance Calculation

    Energy Science and Technology Software Center (OSTI)

    1995-01-01

    MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet that significantly reduces the effort required to make the variance and covariance calculations needed to determine the detection sensitivity of a materials accounting system and loss of special nuclear material (SNM). The user is required to enter information into one of four data tables depending on the type of term in the materials balance (MB) equation. The four data tables correspond to input transfers, output transfers,more » and two types of inventory terms, one for nondestructive assay (NDA) measurements and one for measurements made by chemical analysis. Each data entry must contain an identification number and a short description, as well as values for the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements during an accounting period. The user must also specify the type of error model (additive or multiplicative) associated with each measurement, and possible correlations between transfer terms. Predefined spreadsheet macros are used to perform the variance and covariance calculations for each term based on the corresponding set of entries. MAVARIC has been used for sensitivity studies of chemical separation facilities, fuel processing and fabrication facilities, and gas centrifuge and laser isotope enrichment facilities.« less

  3. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  4. material consolidation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material consolidation Office of Material Consolidation & Civilian Sites The Office of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives.Material Protection, Control, and Accounting (MPC&A) Upgrades: Manages cooperative efforts with the Russian Federation to enhance the security of proliferation-

  5. Nuclear Materials Management and Safeguards System (NMMSS)

    SciTech Connect (OSTI)

    Jacobsen, S.E.; Matthews, W.B. III; McKamy, E.D.; Pedigo, R.B. )

    1991-01-01

    This paper describes the Nuclear Materials Management and Safeguards System (NMMSS) which is sponsored by the Department of Energy and the Nuclear Regulatory Commission. The system serves national security and program management interests, and international interests in the programs for the peaceful application of nuclear energy and non-proliferation of nuclear weapons. Within the scope of the NMMSS are found all nuclear materials applied and controlled under United States law and related international agreements, including U.S. nuclear materials production programs and U.S. private nuclear industrial activities. In addition, its national and international scope enables it to provide services to other organizations such as the Arms Control and Disarmament Agency, the Department of State, and the U.S. Congress.

  6. Guideline for Evaluating Analytical Chemistry Capabilities and Recommending Upgraded Methods and Instrumentation for Nuclear Material Control and Accountability at Russian Nuclear Facilities

    SciTech Connect (OSTI)

    Russ, G.P.

    1999-10-21

    Analytical chemistry plays a key role in nuclear material control and accounting (MC and A). A large part of Special Nuclear Material (SNM) inventories and virtually all of the highly attractive SNM inventories are based on sampling bulk materials followed by destructive assay (DA) of these materials. These measurements support MC and A in process control, physical inventory verification, evaluation of the effects of process changes, detecting and resolving shipper-receiver differences, and the resolution of inspector-facility differences. When evaluating these important functions, US Project Teams need to carefully assess the existing Russian analytical chemistry capabilities and to specify appropriate upgrades where needed. This evaluation and the specification of upgrades have proven difficult, in part, because of the highly specialized and technical nature of DA and because of the wide variety of methods and applications. In addition, providing a DA capability to a Russian analytical laboratory requires much more than simply supplying new instrumentation. Experience has shown that DA upgrades at Russian analytical facilities require more support equipment than was originally anticipated by US Teams. The purpose of this guidance document is to: (1) recommend criteria for US Projects Teams to use in their evaluation of Russian DA capabilities; (2) provide a basis for selection of appropriate upgrades where capabilities are inadequate to support MC and A goals; and (3) to provide a list of Da methods suitable for MC and A with the following information: performance and applications information, strengths and limitations, and references and information on cost. Criteria for evaluating existing capabilities and determining appropriate upgrades are difficult to define. However, this is the basic information needed by the US project Teams. Section IV addresses these criteria.

  7. Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-25

    To prevent unauthorized dissemination of Unclassified Controlled Nuclear Information (UCNI). Cancels DOE 5635.4 and DOE 5650.3A

  8. GKTC ACTIVITIES TO PROVIDE NUCLEAR MATERIAL PHYSICAL PROTECTION, CONTROL AND ACCOUNTING TRAINING FOR 2011-2012

    SciTech Connect (OSTI)

    Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr; Gavrilyuk-Burakova, Anna; Diakov, Oleksii; Drapey, Sergiy; Proskurin, Dmitry; Dickman, Deborah A.; Ferguson, Ken

    2011-10-01

    The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed training needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly

  9. Interim Management of Nuclear Materials

    Office of Environmental Management (EM)

    operations resulted in a large inventory of nuclear materials caught in various stages of the historic SRS production (fabrication, irradiation, reprocessing, and recovery) cycle. ...

  10. Office of Material Consolidation & Civilian Sites | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Material Consolidation & Civilian Sites The Office of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives. The Office of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives. The Office of Material Consolidation and Civilian Sites (MCCS) is responsible for three key nuclear nonproliferation initiatives. Material Protection, Control,

  11. Draft - DOE G 410.2-1, Nuclear Material Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This document provides a roadmap for implementing the requirements for disposition of nuclear material as outlined in the U.S. Department of Energy (DOE) Order 410.2, Management of Nuclear Materials, and DOE Order 474.2, Nuclear Material Control and Accountability. This Guide provides the basic framework for the nuclear material disposition process, includes information related to the Programmatic Value Determination (PVD) process, and identifies Discard Limits (DL) for specific low-equity nuclear materials.

  12. Follow-up Inspection on Material Control and Accountability at...

    Broader source: Energy.gov (indexed) [DOE]

    specified directives on Material Control and Accountability (MC&A) when maintaining certain nuclear materials in support of the Nation's nuclear weapons stockpile program. ...

  13. Nuclear Controls | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Controls | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ...

  14. Nuclear materials management storage study

    SciTech Connect (OSTI)

    Becker, G.W. Jr.

    1994-02-01

    The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

  15. Material Protection, Accounting and Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Protection, Accounting and Control Technologies (MPACT) Campaign Overview and Advanced Instrumentation Development Michael Miller, Ph.D. National Technical Director Los Alamos National Laboratory Instrumentation and Control Review Meeting September 17, 2014 LA-UR-14-27347 2 Introduction September 17, 2014 n Preventing, deterring, and detecting misuse of nuclear materials and associated fuel cycle technologies is of paramount concern to both national and global security. Success in

  16. Integrated Global Nuclear Materials Management Preliminary Concepts

    SciTech Connect (OSTI)

    Jones, E; Dreicer, M

    2006-06-19

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  17. Creating a comprehensive, efficient, and sustainable nuclear regulatory structure. A Process Report from the U.S. Department of Energy’s Material Protection, Control and Accounting Program

    SciTech Connect (OSTI)

    Davis, Gregory E.; Brownell, Lorilee; Wright, Troy L.; Tuttle, John D.; Cunningham, Mitchel E.; O'Brien, Patricia E.

    2006-07-01

    This paper describes the strategies and process used by the U.S. Department of Energy’s (DOE) nuclear Material Protection, Control and Accounting (MPC&A) Regulatory Development Project (RDP) to restructure its support for MPC&A regulations in the Russian Federation. The RDP adopted a project management approach to defining, implementing, and managing an effective nuclear regulatory structure. This approach included defining and developing the regulatory documents necessary to provide the Russian Federation with a comprehensive regulatory structure that supports an effective and sustainable MPC&A Program in Russia. This effort began in February 2005, included a series of three multi-agency meetings in April, June, and July, and culminated in August 2005 in a mutually agreed-upon plan to define and populate the nuclear regulatory system in the Russian Federation for non-military, weapons-usable material. This nuclear regulatory system will address all non-military Category I and II nuclear material at the Russian Federal Atomic Energy Agency (Rosatom), the Russian Agency for Industry (Rosprom), and the Federal Agency for Marine and River Transport (FAMRT) facilities; nuclear material in transport and storage; and nuclear material under the oversight of the Federal Environmental, Industrial and Nuclear Supervisory Service of Russia (Rostechnadzor). The Russian and U.S. MPC&A management teams approved the plan, and the DOE National Nuclear Security Administration’s (NNSA) NA-255, Office of Infrastructure and Sustainability (ONIS), is providing funding. The Regulatory Development Project is managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy’s (DOE) NNSA.

  18. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N.

    1983-11-01

    Nuclear reactor core safety rod release apparatus comprises a control rod having a detent notch in the form of an annular peripheral recess at its upper end, a control rod support tube for raising and lowering the control rod under normal conditions, latches pivotally mounted on the control support tube with free ends thereof normally disposed in the recess in the control rod, and cam means for pivoting the latches out of the recess in the control rod when a scram condition occurs. One embodiment of the invention comprises an additional magnetically-operated latch for releasing the control rod under two different conditions, one involving seismic shock.

  19. Fundamentals of materials accounting for nuclear safeguards ...

    Office of Scientific and Technical Information (OSTI)

    Fundamentals of materials accounting for nuclear safeguards Citation Details In-Document Search Title: Fundamentals of materials accounting for nuclear safeguards You are ...

  20. Active nondestructive assay of nuclear materials: principles...

    Office of Scientific and Technical Information (OSTI)

    Active nondestructive assay of nuclear materials: principles and applications Citation Details In-Document Search Title: Active nondestructive assay of nuclear materials: ...

  1. Nuclear materials stewardship: Our enduring mission

    SciTech Connect (OSTI)

    Isaacs, T.H.

    1998-12-31

    The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now the attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national

  2. Materials challenges for nuclear systems

    SciTech Connect (OSTI)

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclear systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.

  3. Nuclear material accounting software for Ukraine

    SciTech Connect (OSTI)

    Doll, M.; Ewing, T.; Lindley, R.; McWilliams, C.; Roche, C.; Sakunov, I.; Walters, G.

    1999-07-26

    Among the needs identified during initial surveys of nuclear facilities in Ukraine was improved accounting software for reporting material inventories to the regulatory body. AIMAS (Automated Inventory/Material Accounting System) is a PC-based application written in Microsoft Access that was jointly designed by an US/Ukraine development team. The design is highly flexible and configurable, and supports a wide range of computing infrastructure needs and facility requirements including situations where networks are not available or reliable. AIMAS has both English and Russian-language options for displays and reports, and it operates under Windows 3.1, 95, or NT 4.0{trademark}. AIMAS functions include basic physical inventory tracking, transaction histories, reporting, and system administration functions (system configuration, security, data backup and recovery). Security measures include multilevel password access control, all transactions logged with the user identification, and system administration control. Interfaces to external modules provide nuclear fuel burn-up adjustment and barcode scanning capabilities for physical inventory taking. AIMAS has been installed at Kiev Institute of Nuclear Research (KINR), South Ukraine Nuclear Power Plant (SUNPP), Kharkov Institute of Physics and Technology (KIPT), Sevastopol Institute of Nuclear Energy and Industry (SINEI), and the Ministry of Environmental Protection and Nuclear Safety/Nuclear Regulatory Administration (MEPNS/NRA). Facility specialists are being trained to use the application to track material movement and report to the national regulatory authority.

  4. Materials challenges for nuclear systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allen, Todd; Busby, Jeremy; Meyer, Mitch; Petti, David

    2010-11-26

    The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less

  5. Nuclear reactor control

    DOE Patents [OSTI]

    Cawley, William E.; Warnick, Robert F.

    1982-01-01

    1. In a nuclear reactor incorporating a plurality of columns of tubular fuel elements disposed in horizontal tubes in a mass of graphite wherein water flows through the tubes to cool the fuel elements, the improvement comprising at least one control column disposed in a horizontal tube including fewer fuel elements than in a normal column of fuel elements and tubular control elements disposed at both ends of said control column, and means for varying the horizontal displacement of the control column comprising a winch at the upstream end of the control column and a cable extending through the fuel and control elements and attached to the element at the downstream end of the column.

  6. material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material NNSA Receives Excellence Award for Radiological Security Enhancements in Hawaii HONOLULU - At an official event this week, the City and County of Honolulu presented the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) with the Homeland Security Excellence Award for DOE/NNSA's Office of Radiological Security's (ORS) efforts

  7. Nuclear reactor control column

    DOE Patents [OSTI]

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  8. Identification of Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-06-08

    To establish policy and procedures for identifying Unclassified Controlled Nuclear Information (UNCI) and for reviewing and marking documents and material containing UNCI. Cancels DOE O 5650.3. Canceled by DOE O 471.1 of 9-25-95.

  9. Technologies for detection of nuclear materials

    SciTech Connect (OSTI)

    DeVolpi, A.

    1996-03-30

    Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

  10. Special nuclear material simulation device

    SciTech Connect (OSTI)

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  11. Nuclear and Radiological Material Security | National Nuclear...

    National Nuclear Security Administration (NNSA)

    This includes NNSA's work to advance physical protection standards for nuclear facilities and to strengthen nuclear safeguards, which are criteria for the physical security and the ...

  12. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  13. UNCLASSIFIED UNCLASSIFIED Nuclear Materials Management & Safeguards...

    National Nuclear Security Administration (NNSA)

    UNCLASSIFIED Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Name Email: ...

  14. Nuclear Materials Information Program | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Information Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  15. Statistical methods for nuclear material management

    SciTech Connect (OSTI)

    Bowen W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  16. Introduction to Special Edition (of the Journal of Nuclear Materials Management) on Reducing the Threat from Radioactive Materials

    SciTech Connect (OSTI)

    Mladineo, Stephen V.

    2007-03-01

    Introductory article for special edition of the JOURNAL OF NUCLEAR MATERIALS MANAGEMENT outlining the Institute of Nuclear Materials Management Nonproliferation and Arms Control Technical Division. In particular the International Nuclear and Radiological Security Standing Committee and its initial focus covering four topical areas--Radiological Threat Reduction, Nuclear Smuggling and Illicit Trafficking, Countering Nuclear Terrorism, and Radioligical Terrorism Consequence Management.

  17. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  18. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: ...

  19. NNSA: Securing Domestic Radioactive Material | National Nuclear...

    National Nuclear Security Administration (NNSA)

    2011 In April 2009, President Obama outlined an ambitious agenda to secure vulnerable nuclear material around the world within four years, calling the danger of a terrorist...

  20. Implementing New Methods of Laser Marking of Items in the Nuclear Material Control and Accountability System at SSC RF-IPPE: An Automated Laser Marking System

    SciTech Connect (OSTI)

    Regoushevsky, V I; Tambovtsev, S D; Dvukhsherstnov, V G; Efimenko, V F; Ilyantsev, A I; Russ III, G P

    2009-05-18

    For over ten years SSC RF-IPPE, together with the US DOE National Laboratories, has been working on implementing automated control and accountability methods for nuclear materials and other items. Initial efforts to use adhesive bar codes or ones printed (painted) onto metal revealed that these methods were inconvenient and lacked durability under operational conditions. For NM disk applications in critical stands, there is the additional requirement that labels not affect the neutron characteristics of the critical assembly. This is particularly true for the many stainless-steel clad disks containing highly enriched uranium (HEU) and plutonium that are used at SSC RF-IPPE for modeling nuclear power reactors. In search of an alternate method for labeling these disks, we tested several technological options, including laser marking and two-dimensional codes. As a result, the method of laser coloring was chosen in combination with Data Matrix ECC200 symbology. To implement laser marking procedures for the HEU disks and meet all the nuclear material (NM) handling standards and rules, IPPE staff, with U.S. technical and financial support, implemented an automated laser marking system; there are also specially developed procedures for NM movements during laser marking. For the laser marking station, a Zenith 10F system by Telesis Technologies (10 watt Ytterbium Fiber Laser and Merlin software) is used. The presentation includes a flowchart for the automated system and a list of specially developed procedures with comments. Among other things, approaches are discussed for human-factor considerations. To date, markings have been applied to numerous steel-clad HEU disks, and the work continues. In the future this method is expected to be applied to other MC&A items.

  1. Advanced research workshop: nuclear materials safety

    SciTech Connect (OSTI)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  2. Nuclear Materials Management & Safeguards System | National Nuclear...

    National Nuclear Security Administration (NNSA)

    (International). Please request these through the NMMSS mailbox. If you have any questions on the NMMSS operations, please contact Pete Dessaules, Office of Materials Integration ...

  3. Notice of Intent to Develop a Page Change for Department of Energy Order 474.2 Chg 3, Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-01-07

    The change will be limited in scope to correct language requiring the Office of Nuclear Materials Integration (ONMI) to be an approver for termination of safeguards for all sites.

  4. Insider Threat - Material Control and Accountability Mitigation

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T

    2011-01-01

    The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur by an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with

  5. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O 452.4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security, Safety, Weapon...

  6. Metabonomics for detection of nuclear materials processing.

    SciTech Connect (OSTI)

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  7. Nonproliferation and Arms Control | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Nonproliferation Nonproliferation and Arms Control The mission of the Office of Nonproliferation and Arms Control (NPAC) is to prevent proliferation, ensure peaceful nuclear uses, and enable verifiable nuclear reductions. NPAC provides a comprehensive approach to strengthen nonproliferation and arms control regimes, achieving its mission through four subprograms: International Nuclear Safeguards Nuclear Controls Nuclear Verification Nonproliferation Policy Learn More

  8. Reactivity control assembly for nuclear reactor. [LMFBR

    DOE Patents [OSTI]

    Bollinger, L.R.

    1982-03-17

    This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

  9. Material Science and Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Disposition Material returning to the United States will fall under the purview of the Office of Material Disposition which is also responsible for the disposition of domestic plutonium and HEU. It also works with international partners on plutonium management and fulfillment of nonproliferation commitments made under the U.S.-Russia Plutonium Management and Disposition Agreement (PMDA). The Office of Material Disposition also manages the resulting LEU supply from its HEU disposition

  10. Nuclear reactor control apparatus

    DOE Patents [OSTI]

    Sridhar, Bettadapur N. (Cupertino, CA)

    1983-10-25

    Nuclear reactor safety rod release apparatus comprises a ring which carries detents normally positioned in an annular recess in outer side of the rod, the ring being held against the lower end of a drive shaft by magnetic force exerted by a solenoid carried by the drive shaft. When the solenoid is de-energized, the detent-carrying ring drops until the detents contact a cam surface associated with the lower end of the drive shaft, at which point the detents are cammed out of the recess in the safety rod to release the rod from the drive shaft. In preferred embodiments of the invention, an additional latch is provided to release a lower portion of a safety rod under conditions that may interfere with movement of the entire rod.

  11. International training course on nuclear materials accountability for safeguards purposes

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control.

  12. Nuclear Concrete Materials Database Phase I Development

    SciTech Connect (OSTI)

    Ren, Weiju; Naus, Dan J

    2012-05-01

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  13. Nuclear Reactor Kinetics and Control.

    Energy Science and Technology Software Center (OSTI)

    2009-07-27

    Version 00 Dr. J.D. Lewins has now released the following legacy book for free distribution: Nuclear Reactor Kinetics and Control, Pergamon Press, London, 275 pages, 1978. 1. Introductory Review 2. Neutron and Precursor Equations 3. Elementary Solutions of the Kinetics Equations at Low Power 4. Linear Reactor Process Dynamics with Feedback 5. Power Reactor Control Systems 6. Fluctuations and Reactor Noise 7. Safety and Reliability 8. Non Linear Systems; Stability and Control 9. Analogue Computingmore » Addendum: Jay Basken and Jeffery D. Lewins: Power Series Solution of the Reactor Kinetics Equations, Nuclear Science and Engineering: 122, 407-436 (1996) (authorized for distribution with the book: courtesy of the American Nuclear Society)« less

  14. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-11-19

    These changes are intended to correct typographical and pagination errors, delete a canceled reference and clarify the intent of four metrics in Attachment 3.

  15. Material Management and Minimization | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Nonproliferation Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and plutonium minimization strategies, the primary objective of M3 is to achieve permanent threat reduction by minimizing and, when

  16. material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    protection Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and... Nonproliferation Working in close collaboration with DOE laboratories, DNN develops and tests new technologies to advance U.S. capabilities to monitor

  17. material recovery | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    recovery Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and... Nonproliferation Working in close collaboration with DOE laboratories, DNN develops and tests new technologies to advance U.S. capabilities to monitor

  18. material removal | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    removal Material Management and Minimization The Office of Material Management and Minimization (M3) presents an integrated approach to addressing the persistent threat posed by nuclear materials through a full cycle of materials management and minimization efforts. Consistent with the President's highly enriched uranium (HEU) and... Nonproliferation Working in close collaboration with DOE laboratories, DNN develops and tests new technologies to advance U.S. capabilities to monitor

  19. Neutron Detectors for Detection of Nuclear Materials at LANL...

    Office of Science (SC) Website

    Neutron Detectors for Detection of Nuclear Materials at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear ...

  20. International safeguards: Accounting for nuclear materials

    SciTech Connect (OSTI)

    Fishbone, L.G.

    1988-09-28

    Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

  1. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Accomplish- ments for 1994 2 Nuclear Materials Technology DivisionLos Alamos ... Figure 1. Acid recycle and recovery system. 3 Nuclear Materials Technology DivisionLos ...

  2. GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material...

    National Nuclear Security Administration (NNSA)

    GTRI: Removing Vulnerable Civilian Nuclear and Radiological Material May 29, 2014 GTRI's Remove Program works around the world to remove excess nuclear and radiological materials ...

  3. Y-12 Removes Nuclear Materials from Two Facilities to Reduce...

    National Nuclear Security Administration (NNSA)

    Blog Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Removes Nuclear Materials from Two Facilities ... Y-12 Removes Nuclear Materials from...

  4. Control of Nuclear Weapon Data

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The directive establishes the policy, process and procedures for control of nuclear weapon data to ensure that dissemination of the information is restricted to individuals with appropriate clearances, approved authorization and valid need-to-know in keeping with the Atomic Energy Act (as amended) stipulation of ensuring common defense and security. Supersedes DOE O 5610.2.

  5. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, R.C.; Orr, R.

    1993-11-16

    A control room for a nuclear plant is disclosed. In the control room, objects labelled 12, 20, 22, 26, 30 in the drawing are no less than four inches from walls labelled 10.2. A ceiling contains cooling fins that extend downwards toward the floor from metal plates. A concrete slab is poured over the plates. Studs are welded to the plates and are encased in the concrete. 6 figures.

  6. Nuclear reactor control room construction

    DOE Patents [OSTI]

    Lamuro, Robert C.; Orr, Richard

    1993-01-01

    A control room 10 for a nuclear plant is disclosed. In the control room, objects 12, 20, 22, 26, 30 are no less than four inches from walls 10.2. A ceiling 32 contains cooling fins 35 that extend downwards toward the floor from metal plates 34. A concrete slab 33 is poured over the plates. Studs 36 are welded to the plates and are encased in the concrete.

  7. Global Material Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Global Material Security NNSA Provides Tajikistan Specialized Vehicles to Transport Radiological Materials NNSA Program Manager Nick Cavellero, right, and NRSA Director of the Department of Information and International Relations Ilkhom Mirsaidov, left, with two specialized vehicles purchased by NNSA for Tajikistan. WASHINGTON - The Department of Energy's National Nuclear Security Administration (DOE/

  8. Potential applications of nanostructured materials in nuclear waste management.

    SciTech Connect (OSTI)

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi; Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  9. Advanced nuclear plant control complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  10. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  11. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  12. Nonproliferation and Arms Control | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... and Arms Control (NPAC) is to prevent proliferation, ensure peaceful nuclear uses, and ...

  13. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  14. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  15. UNCLASSIFIED Nuclear Materials Management & Safeguards System

    National Nuclear Security Administration (NNSA)

    Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: Project Title: Associated Materials: Programmatic RIS Previous Project Number(s) Status Code Allotment Code (S=Supplier, U=User) I authorize that the information listed above is for the NMMSS Program to use as part of the project number conversion process for this facility. Signature of Authorized Official Date

  16. MEANS FOR CONTROLLING A NUCLEAR REACTOR

    DOE Patents [OSTI]

    Wilson, V.C.; Overbeck, W.P.; Slotin, L.; Froman, D.K.

    1957-12-17

    This patent relates to nuclear reactors of the type using a solid neutron absorbing material as a means for controlling the reproduction ratio of the system and thereby the power output. Elongated rods of neutron absorbing material, such as boron steel for example, are adapted to be inserted and removed from the core of tae reactor by electronic motors and suitable drive means. The motors and drive means are controlled by means responsive to the neutron density, such as ionization chambers. The control system is designed to be responsive also to the rate of change in neutron density to automatically maintain the total power output at a substantially constant predetermined value. A safety rod means responsive to neutron density is also provided for keeping the power output below a predetermined maximum value at all times.

  17. Muon Tracking to Detect Special Nuclear Materials

    SciTech Connect (OSTI)

    Schwellenbach, D.; Dreesen, W.; Green, J. A.; Tibbitts, A.; Schotik, G.; Borozdin, K.; Bacon, J.; Midera, H.; Milner, C.; Morris, C.; Perry, J.; Barrett, S.; Perry, K.; Scott, A.; Wright, C.; Aberle, D.

    2013-03-18

    Previous experiments have proven that nuclear assemblies can be imaged and identified inside of shipping containers using vertical trajectory cosmic-ray muons with two-sided imaging. These experiments have further demonstrated that nuclear assemblies can be identified by detecting fission products in coincidence with tracked muons. By developing these technologies, advanced sensors can be designed for a variety of warhead monitoring and detection applications. The focus of this project is to develop tomographic-mode imaging using near-horizontal trajectory muons in conjunction with secondary particle detectors. This will allow imaging in-situ without the need to relocate the objects and will enable differentiation of special nuclear material (SNM) from other high-Z materials.

  18. Nuclear Materials Identification System Operational Manual

    SciTech Connect (OSTI)

    Chiang, L.G.

    2001-04-10

    This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a {sup 252}Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.

  19. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material protection

  20. Nuclear Materials: Reconsidering Wastes and Assets - 13193

    SciTech Connect (OSTI)

    Michalske, T.A.

    2013-07-01

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

  1. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael Holzemer; Alan Carvo

    2012-04-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material has been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.

  2. Nuclear Resonance Fluorescence for Materials Assay

    SciTech Connect (OSTI)

    Quiter, Brian J.; Ludewigt, Bernhard; Mozin, Vladimir; Prussin, Stanley

    2009-06-29

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX?s photon transport physics for accurately describing photon scattering processes that are important contributions to the background and impact the applicability of the NRF assay technique.

  3. Nuclear Resonance Fluorescence for Materials Assay

    SciTech Connect (OSTI)

    Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir; Prussin, Stanley

    2009-06-05

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are important contributions to the background and impact the applicability of the NRF assay technique.

  4. Chemistry Controls Material's Nanostructure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Controls Material's Nanostructure Tweaking the chemicals used to form nanorods can be used to control their shape.Controlling a nanorod's shape is a key to controlling ...

  5. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  6. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Norden, K.; Congemi, J. )

    1989-10-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  7. Radioactive materials released from nuclear power plants

    SciTech Connect (OSTI)

    Tichler, J.; Benkovitz, C.

    1981-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  8. Magnetic nuclear core restraint and control

    DOE Patents [OSTI]

    Cooper, Martin H.

    1978-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  9. Magnetic nuclear core restraint and control

    DOE Patents [OSTI]

    Cooper, Martin H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction.

  10. Nuclear Fuels & Materials Spotlight Volume 4

    SciTech Connect (OSTI)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  11. Integrating the stabilization of nuclear materials

    SciTech Connect (OSTI)

    Dalton, H.F.

    1996-05-01

    In response to Recommendation 94-1 of the Defense Nuclear Facilities Safety Board, the Department of Energy committed to stabilizing specific nuclear materials within 3 and 8 years. These efforts are underway. The Department has already repackaged the plutonium at Rocky Flats and metal turnings at Savannah River that had been in contact with plastic. As this effort proceeds, we begin to look at activities beyond stabilization and prepare for the final disposition of these materials. To describe the plutonium materials being stabilize, Figure 1 illustrates the quantities of plutonium in various forms that will be stabilized. Plutonium as metal comprises 8.5 metric tons. Plutonium oxide contains 5.5 metric tons of plutonium. Plutonium residues and solutions, together, contain 7 metric tons of plutonium. Figure 2 shows the quantity of plutonium-bearing material in these four categories. In this depiction, 200 metric tons of plutonium residues and 400 metric tons of solutions containing plutonium constitute most of the material in the stabilization program. So, it is not surprising that much of the work in stabilization is directed toward the residues and solutions, even though they contain less of the plutonium.

  12. Material Protection, Control, and Accounting Program | National...

    National Nuclear Security Administration (NNSA)

    Engaged in ongoing nuclear security best practices dialogues with both China and Russia. Material Consolidation and Conversion Worked with Russia to consolidate weapons-usable ...

  13. Insider Threat to Nuclear and Radiological Materials: Fact Sheet | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Insider Threat to Nuclear and Radiological Materials: Fact Sheet March 23, 2012 Almost all known cases of theft of nuclear material involved an insider. The threat of a nuclear facility insider, either individually or in collusion with an outsider, stealing fissile material or committing sabotage at a nuclear facility is a difficult one to accept and prevent. The skills, knowledge, access, and authority held by some insiders make the threat difficult

  14. Recovery of fissile materials from nuclear wastes

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  15. UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL...

    Office of Legacy Management (LM)

    STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL LlCENSE pp.o-o 43 Licensee 1. ... Date Sepikmber 30, I.962 -6. Special Nuclear:Material SnrichedtoS I under this ...

  16. Unclassified Controlled Nuclear Information Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unclassified Controlled Nuclear Information Training Unclassified Controlled Nuclear Information Training Training Unclassified Controlled Nuclear Information for persons with access to UCNI, June 2014 Unclassified Controlled Nuclear Information Reviewing Official's Training Resources Understanding Unclassified Controlled Nuclear Information - Brochure UCNI Marking Reference Classification's Webpage on Unclassified Controlled Nuclear Information Policy Documents Training & Reference

  17. United States Department of Energy Nuclear Materials Stewardship

    SciTech Connect (OSTI)

    Newton, J. W.

    2002-02-27

    The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials.

  18. Office of Nonproliferation and Arms Control | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Nonproliferation and Arms Control NNSA and IAEA Hold the 20th International Training Course on Nuclear Material Accounting and Control Washington, D.C. - The National Nuclear Security Administration (NNSA) and the International Atomic Energy Agency (IAEA) are hosting 35 representatives from 30 countries at Oak Ridge National Laboratory in Oak Ridge, Tennessee, from April 26 to May 8, 2015 for the 20th International Training Course

  19. Nuclear Material Recovery | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Nuclear Material Recovery Securing nuclear material domestically and internationally is one part of Y-12's nuclear nonproliferation business. Miscellaneous scrap material is a diverse group of scrap materials generated from reactor fuel production, weapons production, research and development activities and other uses by the U.S. Department of Energy. The majority of this material will require additional processing before it is down blended for low-enriched uranium reactor fuel. This

  20. Applying RFID technology in nuclear materials management.

    SciTech Connect (OSTI)

    Tsai, H.; Chen, K.; Liu, Y.; Norair, J. P.; Bellamy, S.; Shuler, J.; SRL; Savi Technology; DOE

    2008-01-01

    The Packaging Certification Program (PCP) of US Department of Energy (DOE) Environmental Management (EM), Office of Safety Management and Operations (EM-60), has developed a radio frequency identification (RFID) system for the management of nuclear materials. Argonne National Laboratory, a PCP supporting laboratory, and Savi Technology, a Lockheed Martin Company, are collaborating in the development of the RFID system, a process that involves hardware modification (form factor, seal sensor and batteries), software development and irradiation experiments. Savannah River National Laboratory and Argonne will soon field test the active RFID system on Model 9975 drums, which are used for storage and transportation of fissile and radioactive materials. Potential benefits of the RFID system are enhanced safety and security, reduced need for manned surveillance, real time access of status and history data, and overall cost effectiveness.

  1. Preventing Proliferation of Nuclear Materials and Technology | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Preventing Proliferation of Nuclear Materials and Technology January 31, 2011 NNSA's Defense Nuclear Nonproliferation (DNN) Program plays a critical role in the nation's defense by preventing the spread of nuclear weapons and related materials, technologies and know-how. Leveraging the expertise and detection equipment developed as a result of a 60-year investment in nuclear security, DNN works with international partners and in more than 100

  2. Scanning of vehicles for nuclear materials

    SciTech Connect (OSTI)

    Katz, J. I.

    2014-05-09

    Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost and disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.

  3. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-01-22

    This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A. Canceled by DOE O 452.4C.

  4. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-19

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  5. Reactivity control assembly for nuclear reactor

    DOE Patents [OSTI]

    Bollinger, Lawrence R.

    1984-01-01

    Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

  6. AEC and control of nuclear weapons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control of nuclear weapons The Atomic Energy Commission took control of the atomic energy project known originally as the Manhattan Project on January 1, 1947. This shift from the ...

  7. NNSA recognizes Knight's service to Nuclear Materials Management Team |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex NNSA recognizes ... NNSA recognizes Knight's service to Nuclear Materials Management Team Posted: August 13, 2015 - 3:38pm Teresa Knight was honored by NNSA for her outstanding service to the Nuclear Materials Management The National Nuclear Security Administration presented CNS employee Teresa Knight with a special award in recognition of her outstanding service to the Department of Energy's Nuclear Materials Management Team. Knight began co-chairing the team

  8. Molecular forensic science of nuclear materials

    SciTech Connect (OSTI)

    Wilkerson, Marianne Perry

    2010-01-01

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  9. Interpretational framework for forensic analyses of illicit nuclear materials

    SciTech Connect (OSTI)

    Niemeyer, S.; Kammeraad, J.

    1996-10-01

    jThe interdiction of illicit special nuclear materials (SNM) causes many attribution questions to be asked, e.g. where was this material produced, where was legitimate control lost, how was it transported, etc. We have developed a general framework for evaluating forensic measurements that will be useful in answering attribution questions, and will present an initial prioritization of these measurements. Interpretation of the measurements requires the integration of inputs from a diverse set of experts who have knowledge of environmental signatures, radiochemical signatures, weapons production complex, production pathways for SNM, criminal forensics, law enforcement, and intelligence. Comparison databases and international cooperation are crucial for future application of forensic measurements to the nuclear smuggling problem.

  10. Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Uranium-233 | Department of Energy Waste Management » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a

  11. Y-12 Removes Nuclear Materials from Two Facilities to Reduce Site's Nuclear

    National Nuclear Security Administration (NNSA)

    Footprint (Alpha 5 and 9720-38 No Longer Designated as Nuclear Facilities) | National Nuclear Security Administration | (NNSA) Removes Nuclear Materials from Two Facilities to Reduce Site's Nuclear Footprint (Alpha 5 and 9720-38 No Longer Designated as Nuclear Facilities) September 03, 2010 Microsoft Office document icon R-9-2

  12. Security robots for nuclear materials management

    SciTech Connect (OSTI)

    Deming, R.

    1986-01-01

    Robots have successfully invaded industry where they have replaced costly personnel performing their tasks cheaper and better in most cases. There may be a place for a unique class of robots, security robots, in nuclear materials management. Robots could be employed in the functions of general response, patrol and neutralizing dangerous situations. The last is perhaps most important. Ion Track Instruments of Burlington, Massachusetts has designed an excellent unit to protect life in hazardous situations. The unit can detect, disrupt or remove explosives. It can enter dangerous areas to reconnoiter the extent of danger. It can communicate with those in a dangerous area. It can fight fires or clean an area using a 2 1/2 inch, two man hose. If necessary, it can engage an adversary in a fire fight using a twelve gauge shot gun.

  13. Bar code application to nuclear material accountancy

    SciTech Connect (OSTI)

    Usui, S.; Sano, H. )

    1991-01-01

    For the purpose of efficient implementation of IAEA safeguards inspection, operators ought to prepare the information which is related to the strata for flow verification in a timely manner, such as physical inventory listing and summary of the fuel bundles. Today the use of bar code technique in tracing of products related data or counting number of items has been more and more applied to many facets of industry. From these points of view, the Japan Nuclear Fuel Company (NF) has been developing JNF Total Bar Code System. Now JNF has established an on-line input system of the fuel bundle accountability data by use of the bar code system to quickly prepare the information necessary for the inspection. As the first step, JNF implemented this bar code system at the flow verification to prepare physical inventory summary and location map of the fuel bundles in the storage. This paper reports that as a result of this, NF confirmed that this bar code system made it possible to input easily and quickly nuclear material accountancy information, and therefore this system is utilized as an effective and efficient measure of timely preparation for the inspection.

  14. The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways

    SciTech Connect (OSTI)

    Sala, D. R.; Furhman, P.; Smith, J. D.

    2002-02-26

    This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

  15. Nuclear Materials Safeguards and Security Upgrade Project Completed Under

    National Nuclear Security Administration (NNSA)

    Budget | National Nuclear Security Administration | (NNSA) Nuclear Materials Safeguards and Security Upgrade Project Completed Under Budget April 03, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration's (NNSA) Nuclear Materials Safeguards and Security Upgrade Project (NMSSUP) was recently completed approximately $1 million under its original budget of $245 million. NMSSUP upgrades security at Los Alamos National Laboratory's (LANL) Technical Area-55, a facility that houses

  16. SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS

    National Nuclear Security Administration (NNSA)

    http://www.nnsa.energy.gov Office of Nuclear Weapon Surety and Quality SUPPLEMENTAL DIRECTIVE Approved: 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE NATIONAL NUCLEAR SECURITY ADMINISTRATION Office of Defense Programs NA SD 452.4 NA SD 452.4 1 7-7-11 IMPLEMENTATION AND EVALUATION OF CONTROLS TO PREVENT DELIBERATE UNAUTHORIZED USE 1. PURPOSE. This NNSA Supplemental Directive (SD) supports the requirements of DOE O 452.4B, Security and Use Control of

  17. Nuclear Materials Management and Safeguards System Reporting and Data Submission

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-02-10

    The manual provides clear and detailed instructions and procedures for documenting and reporting data submissions for nuclear materials transactions, inventories, and material balances to the Nuclear Materials Management and Safeguards System (NMMSS). Cancels DOE 5633.3B. Canceled by DOE M 474.1-2A.

  18. Interactive Simulation of Nuclear Materials Safeguards and Security

    Energy Science and Technology Software Center (OSTI)

    1994-03-14

    THIEF is an interactive computer simulation or computer game of the safeguards and security (S&S) systems of a nuclear facility. The user is placed in the role of a non-violent insider attempting to remove special nuclear material from the facility. All portions of the S&S system that are relevant to the non-violent insider threat are included. The computer operates the S&S systems and attempts to detect the loss of the nuclear material. Both the physicalmore » protection system and the materials control and accounting system are modeled. The description of the facility and its S&S systems are defined by the user with the aid of an input module. All aspects of the facility description are provided by the user. The program has a custom graphical user interface to facilitate its use by people with limited computer experience. The custom interface also allows it to run on relatively small computer systems.« less

  19. Revisiting Statistical Aspects of Nuclear Material Accounting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burr, T.; Hamada, M. S.

    2013-01-01

    Nuclear material accounting (NMA) is the only safeguards system whose benefits are routinely quantified. Process monitoring (PM) is another safeguards system that is increasingly used, and one challenge is how to quantify its benefit. This paper considers PM in the role of enabling frequent NMA, which is referred to as near-real-time accounting (NRTA). We quantify NRTA benefits using period-driven and data-driven testing. Period-driven testing makes a decision to alarm or not at fixed periods. Data-driven testing decides as the data arrives whether to alarm or continue testing. The difference between period-driven and datad-riven viewpoints is illustrated by using one-year andmore » two-year periods. For both one-year and two-year periods, period-driven NMA using once-per-year cumulative material unaccounted for (CUMUF) testing is compared to more frequent Shewhart and joint sequential cusum testing using either MUF or standardized, independently transformed MUF (SITMUF) data. We show that the data-driven viewpoint is appropriate for NRTA and that it can be used to compare safeguards effectiveness. In addition to providing period-driven and data-driven viewpoints, new features include assessing the impact of uncertainty in the estimated covariance matrix of the MUF sequence and the impact of both random and systematic measurement errors.« less

  20. Nuclear Energy Advisory Committee Meeting Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Advisory Committee Meeting Materials Nuclear Energy Advisory Committee Meeting Materials June 9, 2016 MEETING MATERIALS: JUNE 17, 2016 Westin Crystal City Jefferson III Ballroom (Located on the Second Floor) 1800 Jefferson Davis Highway Arlington, VA 22202 January 4, 2016 MEETING MATERIALS: DECEMBER 11, 2015 Westin Crystal City Crystal Ballroom V (Located on the Second Floor) 1800 Jefferson Davis Highway Arlington, VA 22202 June 22, 2015 MEETING MATERIALS: JUNE 26, 2015 Westin

  1. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Patents [OSTI]

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  2. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Models Help Pinpoint Material for Better Nuclear Fuel Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models Help Pinpoint Material for Better Nuclear Fuel Recycling Models Help Pinpoint Material for Better Nuclear Fuel Recycling Sifting 125,000 Candidates Yields Ideal Candidate for Xenon, Krypton Recovery June 13, 2016 Contact: Jon Bashor, jbashor@lbl.gov, +1 510.486.5849 SBMOF-1 illlustration A new material, dubbed SBMOF-1 illustrated here, could be used to separate xenon and krypton gases from the waste produced in recycling spent nuclear fuels using less energy than conventional methods. The

  4. Cleanup Contractor Achieves ‘Elite’ Nuclear Material Accountability Status

    Office of Energy Efficiency and Renewable Energy (EERE)

    PADUCAH, Ky. – EM’s cleanup contractor at the Paducah site has received national acclaim for timeliness of reporting and promptness in reconciling nuclear material inventories.

  5. NNSA recognizes Knight's service to Nuclear Materials Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA recognizes ... NNSA recognizes Knight's service to Nuclear Materials Management Team Posted: August 13, 2015 - 3:38pm Teresa Knight was honored by NNSA for her outstanding ...

  6. Models Help Pinpoint Material for Better Nuclear Fuel Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers are investigating a new material that might help in nuclear fuel recycling and waste reduction by capturing certain gases released during reprocessing. Conventional ...

  7. Nuclear Materials Research and Technology/Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... sciences and nuclear facility engineering, is a necessary element of con- stancy for the future. ... for future programs in the fundamentals of plutonium materials science. ...

  8. Office of Nuclear Material Integration (ONMI), NA-73

    National Nuclear Security Administration (NNSA)

    Office of Nuclear Material Integration (ONMI), NA-73 Over 420 Government & Commercial ... Required U.S. Reporting to the International Atomic Energy Agency (IAEA) under ...

  9. Neutron absorbing coating for nuclear criticality control

    DOE Patents [OSTI]

    Mizia, Ronald E.; Wright, Richard N.; Swank, William D.; Lister, Tedd E.; Pinhero, Patrick J.

    2007-10-23

    A neutron absorbing coating for use on a substrate, and which provides nuclear criticality control is described and which includes a nickel, chromium, molybdenum, and gadolinium alloy having less than about 5% boron, by weight.

  10. Protection of Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-04-24

    To establish Department of Energy (DOE) policy and procedures for the protection of Unclassified Controlled Nuclear Information (UNCI). Canceled by DOE O 471.1 of 9-25-1995.

  11. Protection of Unclassified Controlled Nuclear Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-02-03

    To establish Department of Energy (DOE) policy and procedures for the protection of Unclassified Controlled Nuclear Information (UCNI). This directive does not cancel another directive. Chg 1 dated 4-24-92.

  12. Unclassified Controlled Nuclear Information General Guideline | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Unclassified Controlled Nuclear Information General Guideline Unclassified Controlled Nuclear Information General Guideline GG-5, is a record of decisions made by the Director, OC, as to what general subject areas are UCNI. Note: GG-5 may only be used by the Director, OC, to make determinations as to whether information is UCNI. All other UCNI Reviewing Officials must use UCNI guidance. UCNI General Guideline (80.31 KB) More Documents & Publications Briefing, For Persons With

  13. Variable flow control for a nuclear reactor control rod

    DOE Patents [OSTI]

    Carleton, Richard D.; Bhattacharyya, Ajay

    1978-01-01

    A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.

  14. Illicit Trafficking in Radiological and Nuclear Materials. Lack of Regulations and Attainable Disposal for Radioactive Materials Make Them More Vulnerable than Nuclear Materials

    SciTech Connect (OSTI)

    Balatsky, G.I.; Severe, W.R.; Leonard, L.

    2007-07-01

    Illicit trafficking in nuclear and radioactive materials is far from a new issue. Reports of nuclear materials offered for sale as well as mythical materials such as red mercury date back to the 1960's. While such reports were primarily scams, it illustrates the fact that from an early date there were criminal elements willing to sell nuclear materials, albeit mythical ones, to turn a quick profit. In that same time frame, information related to lost and abandoned radioactive sources began to be reported. Unlike reports on nuclear material of that era, these reports on abandoned sources were based in fact - occasionally associated with resulting injury and death. With the collapse of the Former Soviet Union, illicit trafficking turned from a relatively unnoticed issue to one of global concern. Reports of unsecured nuclear and radiological material in the states of the Former Soviet Union, along with actual seizures of such material in transit, gave the clear message that illicit trafficking was now a real and urgent problem. In 1995, the IAEA established an Illicit Trafficking Data Base to keep track of confirmed instances. Illicit Trafficking is deemed to include not only radioactive materials that have been offered for sale or crossed international boarders, but also such materials that are no longer under appropriate regulatory control. As an outcome of 9/11, the United States took a closer look at illicit nuclear trafficking as well as a reassessment of the safety and security of nuclear and other radioactive materials both in the United States and Globally. This reassessment launched heightened controls and security domestically and increased our efforts internationally to prevent illicit nuclear trafficking. This reassessment also brought about the Global Threat Reduction Initiative which aims to further reduce the threats of weapons usable nuclear materials as well those of radioactive sealed sources. This paper will focus on the issues related to a subset

  15. Material Management and Minimization | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Management and Minimization | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering...

  16. Controlled Nuclear Fusion (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Title: Controlled Nuclear Fusion The objective of controlled nuclear fusion research is to develop a major economic source of energy that should be readily available to all ...

  17. Controlled Nuclear Fusion (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: Controlled Nuclear Fusion Citation Details In-Document Search Title: Controlled Nuclear Fusion You are accessing a document from the Department of Energy's (DOE) SciTech ...

  18. THE NUCLEAR MATERIAL MEASUREMENT PROGRAM PLAN FOR GOSATOMNADZOR OF RUSSIA

    SciTech Connect (OSTI)

    Bokov, Dmitry; Byers, Kenneth R.

    2003-08-01

    As the Russian State regulatory agency responsible for oversight of nuclear material control and accounting (MC&A), Gosatomnadzor of Russia determines the status of the MC&A programs at Russian facilites by testing the nuclear material inventory for accounting record accuracy. Currently, Gosatomnadzor is developing and implementing an approach to planning and conducting MC&A inspections using non-destructive assay (NDA) instruments that will provide for consistent application of MC&A measurement inspection objectives throughtout Russia. This Gosatomnadzor NDA Program Plan documents current NDA measurement capability in all regions of Gosatomnadzor; provides justification for upgrades to equipment, procedures and training; and defines the inspector-facility operator interface as it relates to NDA measurement equipment use. This plan covers a three-year measurement program cycle, but will be reviewed and updated annually to ensure that adequate inspection resources are available to meet the demands of the inspection schedule. This paper presents the elements of this plan and describes the process by which Gosatomnadzor ensures that its NDA instruments are effectively utilized, procedures are developed and certified, and inspection personnel are properly trained to provide assurance that Russian nuclear facilities are in compliance with Russian MC&A regulations.

  19. Autonomous Control of Nuclear Power Plants

    SciTech Connect (OSTI)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  20. Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health

    SciTech Connect (OSTI)

    Dreicer, Mona; Pregenzer, Arian

    2014-04-01

    Reducing the risks of nuclear war, limiting the spread of nuclear weapons and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation and counter-terrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclear technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters world-wide provide significant benefits to global public health.

  1. Vapor etching of nuclear tracks in dielectric materials

    DOE Patents [OSTI]

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  2. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-08-28

    The order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1E to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts, deliberate unauthorized use, and denial of authorized use. Supersedes DOE O 452.4B, dated 1-22-10.

  3. NNSA: Securing Domestic Radioactive Material | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) NNSA: Securing Domestic Radioactive Material February 01, 2011 In April 2009, President Obama outlined an ambitious agenda to secure vulnerable nuclear material around the world within four years, calling the danger of a terrorist acquiring nuclear weapons "the most immediate and extreme threat to global security." In this year's State of the Union, he called the threat of nuclear weapons, "the greatest danger to the American people." The

  4. NNSA: Securing Domestic Radioactive Material | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) NNSA: Securing Domestic Radioactive Material May 29, 2014 Mission In 2004 NNSA established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible, identify, secure, remove and/or facilitate the disposition of high risk nuclear and radiological materials around the world that pose a threat to the United States and the international community. GTRI's mission is to reduce and protect vulnerable nuclear

  5. Office of Nuclear Material Integration (ONMI), NA-73

    National Nuclear Security Administration (NNSA)

    Office of Nuclear Material Integration (ONMI), NA-73 Over 420 Government & Commercial Nuclear Entities currently report to NMMSS Mission U.S. Government's Official Database to Track Transactions, Movements and Inventories of Nuclear Materials throughout the U.S. as well as Imports and Exports Jointly funded by the NRC & NNSA - Managed by NA-73 Fuel Cycle Facilities  Conversion  Enrichment  Fuel Fabrication  Power Reactors, etc. DOE/NNSA  Defense Programs  Naval

  6. Damper mechanism for nuclear reactor control elements

    DOE Patents [OSTI]

    Taft, William Elwood

    1976-01-01

    A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping.

  7. NNSA: Securing Domestic Radioactive Material | National Nuclear...

    National Nuclear Security Administration (NNSA)

    established the Global Threat Reduction Initiative (GTRI) in the Office of Defense Nuclear Nonproliferation to, as quickly as possible, identify, secure, remove andor...

  8. Transportation of Nuclear Materials | Department of Energy

    Energy Savers [EERE]

    DOE has authority under the Atomic Energy Act of 1954 (AEA) to regulate activities related to ... standards of the Nuclear Regulatory Commission (NRC) and Department of ...

  9. Global Material Security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA deputy administrator travels to Ukraine NNSA scientists find more effective ways to detect nuclear explosions near and far NNSA Deputy Administrator Creedon Travels to China

  10. fissile material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy ... (DOE) announced plans to reduce the proliferation threat from stockpiles of surplus ...

  11. Fast-acting nuclear reactor control device

    DOE Patents [OSTI]

    Kotlyar, Oleg M.; West, Phillip B.

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  12. Material Disposition | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The Office of Material Disposition also manages the resulting LEU supply from its HEU disposition efforts, providing material to support peaceful uses such as research reactor ...

  13. materials science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    materials science NNSA-lab-created new magnets will power renewable technology The Ion Beam Materials Laboratory at NNSA's Los Alamos National Laboratory (LANL) works to ...

  14. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    SciTech Connect (OSTI)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-02-26

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials.

  15. Special nuclear material information, security classification guidance. Instruction

    SciTech Connect (OSTI)

    Flickinger, A.

    1982-12-03

    The Instruction reissues DoD Instruction 5210.67, July 5, 1979, and provides security classification guidance for information concerning significant quantities of special nuclear material, other than that contained in nuclear weapons and that used in the production of energy in the reactor plant of nuclear-powered ships. Security classification guidance for these data in the latter two applications is contained in Joint DoE/DoD Nuclear Weapons Classification Guide and Joint DoE/DoD Classification Guide for the Naval Nuclear Propulsion Program.

  16. Nuclear Arms Control, Nonproliferation, and Counterterrorism: Impacts on Public Health

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dreicer, Mona; Pregenzer, Arian

    2014-04-01

    Reducing the risks of nuclear war, limiting the spread of nuclear weapons and reducing global nuclear weapons stockpiles are key national and international security goals. They are pursued through a variety of international arms control, nonproliferation and counter-terrorism treaties and agreements. These legally binding and political commitments, together with the institutional infrastructure that supports them, work to establish global norms of behavior and have limited the spread of weapons of mass destruction. Beyond the primary security objectives, reducing the likelihood of the use of nuclear weapons, preventing environmental releases of radioactive material, increasing the availability of safe and secure nuclearmore » technology for peaceful purposes, and providing scientific data relevant to predicting and managing the consequences of natural or human-caused disasters world-wide provide significant benefits to global public health.« less

  17. Operating Experience Level 3, Losing Control: Material Handling...

    Energy Savers [EERE]

    Losing Control: Material Handling Dangers Operating Experience Level 3, Losing Control: Material Handling Dangers October 23, 2014 OE-3 2014-05: Losing Control: Material Handling...

  18. Cleanup Contractor Achieves 'Elite' Nuclear Material Accountability...

    Broader source: Energy.gov (indexed) [DOE]

    ... They are being stored at the site for future recovery of UF6 material during plant decommissioning when systems are in place to remove the material safely and economically. LATA ...

  19. Nuclear Energy Advisory Committee Meeting Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virginia July 30, 1999 Meeting Materials: July 29-30, 1999 NEAC Meeting Embassy Suites Hotel Arlington, Virginia November 18, 1998 Meeting Materials: Nov 17-18, 1998 NEAC Meeting...

  20. Los Alamos identifies internal material control issue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal material control issue Los Alamos identifies internal material control issue The error relates to internal inventory and accounting that documents movement of sensitive materials within a small portion of Technical Area 55. February 26, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  1. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    SciTech Connect (OSTI)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  2. Advanced nuclear plant control room complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  3. Console for a nuclear control complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  4. Alarm system for a nuclear control complex

    DOE Patents [OSTI]

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  5. System for detecting special nuclear materials

    SciTech Connect (OSTI)

    Jandel, Marian; Rusev, Gencho Yordanov; Taddeucci, Terry Nicholas

    2015-07-14

    The present disclosure includes a radiological material detector having a convertor material that emits one or more photons in response to a capture of a neutron emitted by a radiological material; a photon detector arranged around the convertor material and that produces an electrical signal in response to a receipt of a photon; and a processor connected to the photon detector, the processor configured to determine the presence of a radiological material in response to a predetermined signature of the electrical signal produced at the photon detector. One or more detectors described herein can be integrated into a detection system that is suited for use in port monitoring, treaty compliance, and radiological material management activities.

  6. Real-Time Characterization of Special Nuclear Materials

    SciTech Connect (OSTI)

    Walston, Sean; Candy, Jim; Chambers, Dave; Chandrasekaran, Hema; Snyderman, Neal

    2015-09-04

    When confronting an item that may contain nuclear material, it is urgently necessary to determine its characteristics. Our goal is to provide accurate information with high-con dence as rapidly as possible.

  7. Office of Global Material Security | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Global Material Security NNSA Co-Hosts Nuclear Security Summit Workshop on Maritime Security with UK WASHINGTON - This week, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, United Kingdom, on the growing challenge of securing the global maritime supply chain. In

  8. Scoping Materials | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Scoping Materials Scoping Meeting Notice Scoping Meeting Transcript Public Scoping Presentation Written Comment Form NEPA Fact Sheet Tritium Fact Sheet Tritium Production and Environmental Impacts TVA Fact Sheet

  9. Material control and accountancy at EDF PWR plants; GCN: Gestion du Combustible Nucleaire

    SciTech Connect (OSTI)

    de Cormis, F. )

    1991-01-01

    The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes.

  10. Nuclear reference materials to meet the changing needs of the global nuclear community

    SciTech Connect (OSTI)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.; Oldham, R.D.; Mitchell, W.G.

    1995-12-31

    New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirements for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.

  11. Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"

    SciTech Connect (OSTI)

    2009-02-01

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our

  12. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  13. Unclassified Controlled Nuclear Information (UCNI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unclassified Controlled Nuclear Information (UCNI) Unclassified Controlled Nuclear Information (UCNI) Welcome to the Unclassified Controlled Nuclear Information (UCNI) webpage. This page is designed to provide information, answer questions, and provide a point of contact for UCNI inquiries. UCNI is certain unclassified information about nuclear facilities and nuclear weapons that must be controlled because its unauthorized release could have a significant adverse effect on the national security

  14. REVIEW OF EQUIPMENT USED IN RUSSIAN PRACTICE FOR ACCOUNTING MEASUREMENTS OF NUCLEAR MATERIALS.

    SciTech Connect (OSTI)

    NEYMOTIN,L.

    1999-07-25

    The objective of this work was to analyze instrumentation and methodologies used at Russian nuclear facilities for measurement of item nuclear materials, materials in bulk form, and waste streams; specify possibilities for the application of accounting measurements; and develop recommendations for improvement. The major steps and results: Representative conversion, enrichment (gas centrifuge), fuel fabrication, spent fuel reprocessing, and chemical-metallurgical production facilities in Russia were selected; Full lists of nuclear materials were prepared; Information about measurement methods and instrumentation for each type of nuclear material were gathered; and Recommendations on methodological and instrumentation support of accounting measurements for all types of materials were formulated. The analysis showed that the existing measurement methods and instrumentation serve mostly to support the technological process control and nuclear and radiation safety control. Requirements for these applications are lower than requirements for MC and A applications. To improve the state of MC and A at Russian nuclear facilities, significant changes in instrumentation support will be required, specifically in weighing equipment, volume measurements, and destructive and non-destructive analysis equipment, along with certified reference materials.

  15. Inspection of the safeguards, security, and safety of special nuclear materials

    SciTech Connect (OSTI)

    Not Available

    1980-05-29

    The Department of Energy's responsibilities for improving the procedures for the safety and security of special nuclear materials, principally uranium and plutonium, are discussed. Findings focus on the functions performed by the Office of Safeguards and Security of the Office of the Assistant Secretary for Defense Programs, and the Operational and Environmental Safety Division of the Office of the Assistant Secretary for Environment. Recommendations range from modifying budget formats with the Office of the Controller so that they reflect total expenditures for safeguarding special nuclear materials to reducing the risk of internal theft or diversion of nuclear materials. We also recommend that policy statements, annual and semi-annual reports, and design guidelines relating to the entire program of security and safety of special nuclear materials be completed as soon as possible. In addition, continuous effort is needed to ensure the autonomy of safeguards offices within field offices.

  16. Office of Weapons Material Protection | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Weapons Material Protection The Office of Weapons Material Protection (OWMP) enhances the security of Russia's nuclear material at 37 sites, including 11 Russian Navy fuel storage sites, 7 Rosatom weapons sites and 19 Rosatom civilian sites. These sites include weapons design laboratories, uranium enrichment facilities, and material processing/storage sites located in closed cities. In some cases, these industrial sites are the size of small cities and contain

  17. Nuclear engine flow reactivity shim control

    DOE Patents [OSTI]

    Walsh, J.M.

    1973-12-11

    A nuclear engine control system is provided which automatically compensates for reactor reactivity uncertainties at the start of life and reactivity losses due to core corrosion during the reactor life in gas-cooled reactors. The coolant gas flow is varied automatically by means of specially provided control apparatus so that the reactor control drums maintain a predetermined steady state position throughout the reactor life. This permits the reactor to be designed for a constant drum position and results in a desirable, relatively flat temperature profile across the core. (Official Gazette)

  18. Nuclear forensics of special nuclear material at Los Alamos: three recent studies

    SciTech Connect (OSTI)

    Tandon, Lav; Gallimore, David L; Garduon, Katherine; Keller, Russell C; Kuhn, Kevin J; Lujan, Elmer J; Martinez, Alexander; Myers, Steven C; Moore, Steve S; Porterfield, Donivan R; Schwartz, Daniel S; Spencer, Khalil J; Townsend, Lisa E; Xu, Ning

    2010-01-01

    Nuclear forensics of special nuclear materials is a highly specialized field because there are few analytical laboratories in the world that can safely handle nuclear materials, perform high accuracy and precision analysis using validated analytical methods. The goal of nuclear forensics is to establish an unambiguous link between illicitly trafficked nuclear material and its origin. The Los Alamos National Laboratory Nuclear Materials Signatures Program has implemented a graded 'conduct of operations' type approach for determining the unique nuclear, chemical, and physical signatures needed to identify the manufacturing process, intended use, and origin of interdicted nuclear material. In our approach an analysis flow path was developed for determining key signatures necessary for attributing unknown materials to a source. This analysis flow path included both destructive (i.e., alpha spectrometry, ICP-MS, ICP-AES, TIMS, particle size distribution, density and particle fractionation) and non-destructive (i.e., gamma-ray spectrometry, optical microscopy, SEM, XRD, and x-ray fluorescence) characterization techniques. Analytical techniques and results from three recent cases characterized by this analysis flow path along with an evaluation of the usefulness of this approach will be discussed in this paper.

  19. First time nuclear material detection by one short-pulse-laser...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Articles First time nuclear material detection by one short-pulse-laser-driven neutron source First time nuclear material detection by one short-pulse-laser-driven...

  20. Detecting fission from special nuclear material sources

    DOE Patents [OSTI]

    Rowland, Mark S.; Snyderman, Neal J.

    2012-06-05

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a graphing component that displays the plot of the neutron distribution from the unknown source over a Poisson distribution and a plot of neutrons due to background or environmental sources. The system further includes a known neutron source placed in proximity to the unknown source to actively interrogate the unknown source in order to accentuate differences in neutron emission from the unknown source from Poisson distributions and/or environmental sources.

  1. Fission control system for nuclear reactor

    DOE Patents [OSTI]

    Conley, G.H.; Estes, G.P.

    Control system for nuclear reactor comprises a first set of reactivity modifying rods fixed in a reactor core with their upper ends stepped in height across the core, and a second set of reactivity modifying rods movable vertically within the reactor core and having their lower ends stepped to correspond with the stepped arrangement of the first set of rods, pairs of the rods of the first and second sets being in coaxial alignment.

  2. Nuclear reference materials to meet the changing needs of the global nuclear community

    SciTech Connect (OSTI)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.; Oldham, R.D.

    1995-12-31

    New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.

  3. Materials Science: the science of everything | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Materials Science: the science of everything Friday, July 24, 2015 - 10:57am Y-12 Senior Metallurgist Steven Dekanich and NASA Materials Science Branch Chief Steve McDanels teamed up to lead a weeklong materials science camp that took at the University of Tennessee in Knoxville. The camp, which has been held since 2004, was jointly sponsored by Consolidated Nuclear Services (CNS), Oak Ridge National Laboratory, the University of Tennessee and the Knoxville chapter of

  4. Nuclear Arms Control R&D Consortium includes Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as ...

  5. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, David A.

    1994-01-01

    Apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  6. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1994-09-06

    Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

  7. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1991-01-01

    This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  8. Control rod for a nuclear reactor

    DOE Patents [OSTI]

    Roman, Walter G.; Sutton, Jr., Harry G.

    1979-01-01

    A control rod assembly for a nuclear reactor is disclosed having a remotely disengageable coupling between the control rod and the control rod drive shaft. The coupling is actuated by first lowering then raising the drive shaft. The described motion causes axial repositioning of a pin in a grooved rotatable cylinder, each being attached to different parts of the drive shaft which are axially movable relative to each other. In one embodiment, the relative axial motion of the parts of the drive shaft is used either to couple or to uncouple the connection by forcing resilient members attached to the drive shaft into or out of shouldered engagement, respectively, with an indentation formed in the control rod.

  9. Graphite matrix materials for nuclear waste isolation

    SciTech Connect (OSTI)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  10. Selected topics in special nuclear materials safeguard system design

    SciTech Connect (OSTI)

    King, L.L.; Thatcher, C.D.; Clarke, J.D. ); Rodriguez, M.P. )

    1991-01-01

    During the past two decades the improvements in circuit integration have given rise to many new applications in digital processing technology by continuously reducing the unit cost of processing power. Along with this increase in processing power a corresponding decrease in circuit volume has been achieved. Progress has been so swift that new classes of applications become feasible every 2 or 3 years. This is especially true in the application of proven new technology to special nuclear materials (SNM) safeguard systems. Several areas of application were investigated in establishing the performance requirements for the SNM safeguard system. These included the improvements in material control and accountability and surveillance by using multiple sensors to continuously monitor SNM inventory within the selected value(s); establishing a system architecture to provide capabilities needed for present and future performance requirements; and limiting operating manpower exposure to radiation. This paper describes two selected topics in the application of state-of-the-art, well-proven technology to SNM safeguard system design.