National Library of Energy BETA

Sample records for nuclear including radiation

  1. INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION

    Office of Scientific and Technical Information (OSTI)

    interval technical basis document Chiaro, P.J. Jr. 44 INSTRUMENTATION, INCLUDING NUCLEAR AND PARTICLE DETECTORS; RADIATION DETECTORS; RADIATION MONITORS; DOSEMETERS;...

  2. Nuclear reactor shield including magnesium oxide

    DOE Patents [OSTI]

    Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  3. Nuclear Arms Control R&D Consortium includes Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Arms Control R&D Consortium includes Los Alamos Nuclear Arms Control R&D Consortium includes Los Alamos A consortium led by the University of Michigan that includes LANL as...

  4. Numerical simulations for low energy nuclear reactions including...

    Office of Scientific and Technical Information (OSTI)

    Numerical simulations for low energy nuclear reactions including direct channels to validate statistical models Citation Details In-Document Search Title: Numerical simulations for...

  5. PROTECTIVE SURFACE COATINGS ON SEMICONDUCTOR NUCLEAR RADIATION DETECTORS

    E-Print Network [OSTI]

    Hansen, W.L.

    2010-01-01

    SEMICONDUCTOR NUCLEAR RADIATION DETECTORS W. L. Hansen, E.SEMICONDUCTOR NUCLEAR RADIATION DETECTORS* W. L. Hansen, E.suita­ bility for radiation detectors. Collimated gamma-ray

  6. radiation detection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration (DOENNSA) and the U.K. Department of Energy and Climate Change concluded a workshop at Wilton Park, NNSA, Argentina Transition Radiation...

  7. ARM: Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yan Shi; Laura Riihimaki

    1994-01-07

    Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

  8. ARM: Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yan Shi; Laura Riihimaki

    Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

  9. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  10. FABRICATION TECHNIQUES FOR REVERSE ELECTRODE COAXIAL GERMANIUM NUCLEAR RADIATION DETECTORS

    E-Print Network [OSTI]

    Hansen, W.L.

    2010-01-01

    GERMANIUM NUCLEAR RADIATION DETECTORS W.L. Hansen and E.E.Semiconductor Nuclear Radiation Detectors", IEEE Trans. Nuc.GERMANIUM NUCLEAR RADIATION DETECTORS LBL-10726 W. L. Hansen

  11. Protoplanetary disks including radiative feedback from accreting planets

    E-Print Network [OSTI]

    Montesinos, Matias; Perez, Sebastian; Baruteau, Clement; Casassus, Simon

    2015-01-01

    While recent observational progress is converging on the detection of compact regions of thermal emission due to embedded protoplanets, further theoretical predictions are needed to understand the response of a protoplanetary disk to the planet formation radiative feedback. This is particularly important to make predictions for the observability of circumplanetary regions. In this work we use 2D hydrodynamical simulations to examine the evolution of a viscous protoplanetary disk in which a luminous Jupiter-mass planet is embedded. We use an energy equation which includes the radiative heating of the planet as an additional mechanism for planet formation feedback. Several models are computed for planet luminosities ranging from $10^{-5}$ to $10^{-3}$ Solar luminosities. We find that the planet radiative feedback enhances the disk's accretion rate at the planet's orbital radius, producing a hotter and more luminous environement around the planet, independently of the prescription used to model the disk's turbul...

  12. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.; Corrales, L. Rene; Ness, Nancy J.; Williford, Ralph E.; Heinisch, Howard L.; Thevuthasan, Suntharampillai; Icenhower, Jonathan P.; McGrail, B. Peter; Devanathan, Ramaswami; Van Ginhoven, Renee M.; Song, Jakyoung; Park, Byeongwon; Jiang, Weilin; Begg, Bruce D.; Birtcher, R. B.; Chen, X.; Conradson, Steven D.

    2000-10-02

    Radiation effects from the decay of radionuclides may impact the long-term performance and stability of nuclear waste forms and stabilized nuclear materials. In an effort to address these concerns, the objective of this project was the development of fundamental understanding of radiation effects in glasses and ceramics, particularly on solid-state radiation effects and their influence on aqueous dissolution kinetics. This study has employed experimental, theoretical and computer simulation methods to obtain new results and insights into radiation damage processes and to initiate the development of predictive models. Consequently, the research that has been performed under this project has significant implications for the High-Level Waste and Nuclear Materials focus areas within the current DOE/EM mission. In the High-Level Waste (HLW) focus area, the results of this research could lead to improvements in the understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials focus area, the results of this research could lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. Ultimately, this research could result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  13. PNNL Radiation Detection for Nuclear Security Summer School

    SciTech Connect (OSTI)

    Runkle, Bob

    2013-07-10

    PNNL's Radiation Detection for Nuclear Security Summer School gives graduate and advanced graduate students an understanding of how radiation detectors are used in national security missions.

  14. Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

    Office of Scientific and Technical Information (OSTI)

    constraints from Big Bang nucleosynthesis Bedaque, P; Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEUTERIUM; FIELD THEORIES; NUCLEAR PHYSICS; NUCLEOSYNTHESIS;...

  15. collisions'' Ulrich W. Heinz 73 NUCLEAR PHYSICS AND RADIATION...

    Office of Scientific and Technical Information (OSTI)

    Theory of ultra-relativistic heavy-ion collisions'' Ulrich W. Heinz 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear Theory, Relativistic Heavy-Ion Collisions, Quark-Gluon...

  16. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-09-30

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  17. Radiation Effects in Nuclear Waste Materials

    SciTech Connect (OSTI)

    Weber, William J.

    2005-06-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials.

  18. Including nuclear degrees of freedom in a lattice Hamiltonian

    E-Print Network [OSTI]

    Peter L. Hagelstein; Irfan U. Chaudhary

    2012-04-08

    Motivated by many observations of anomalies in condensed matter systems, we consider a new fundamental Hamiltonian in which condensed matter and nuclear systems are described initially on the same footing. Since it may be possible that the lattice will respond to the mass change associated with a excited nuclear state, we adopt a relativistic description throughout based on a many-particle Dirac formalism. This approach has not been used in the past, perhaps due to the difficulty in separating the center of mass and relative degrees of freedom of the nuclear system, or perhaps due to an absence of applications for such a model. In response to some recent ideas about how to think about the center of mass and relative separation, we obtained from the Dirac model a new fundamental Hamiltonian in which the lattice couples to different states within the composite nuclei within the lattice. In this description the different nuclear states have different mass energies and kinetic energies, as we had expected. In addition there appear new terms which provide for nuclear excitation as a result of coupling to the composite momentum. This new effect comes about because of changes in the composite nuclear state as a result of the dynamical Lorentz boost in the lattice.

  19. R&D for Better Nuclear Security: Radiation Detector Materials

    SciTech Connect (OSTI)

    Kammeraad, J E

    2009-04-02

    I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

  20. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    SciTech Connect (OSTI)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  1. Louisiana Nuclear Energy and Radiation Control Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

  2. Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of low energy fission: fragment properties Younes, W; Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Abstract not provided Lawrence Livermore National Laboratory...

  3. Fission Younes, W; Gogny, D 73 NUCLEAR PHYSICS AND RADIATION...

    Office of Scientific and Technical Information (OSTI)

    in a Time-Dependent Microscopic Theory of Fission Younes, W; Gogny, D 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Abstract not provided Lawrence Livermore National Laboratory...

  4. Webinar on Environmental Radiation Protection Standards for Nuclear Power

    E-Print Network [OSTI]

    not directly oversee nuclear power plants. · The Nuclear Regulatory Commission (NRC) licenses and overseesWELCOME! Webinar on Environmental Radiation Protection Standards for Nuclear Power Operations #12 for Nuclear Power Operations­ 40 CFR Part 190 Brian Littleton, US EPA May 28, 2014 Public Webinar #12

  5. What To Include In The Whistleblower Complaint? | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Operations Management and Budget Whistleblower Program What To Include In The Whistleblower Complaint?...

  6. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOE Patents [OSTI]

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  7. Lanthanum halide nanoparticle scintillators for nuclear radiation detection

    SciTech Connect (OSTI)

    Guss, Paul; Guise, Ronald; O'Brien, Robert; Lowe, Daniel; Kang Zhitao; Menkara, Hisham; Nagarkar, Vivek V.

    2013-02-14

    Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

  8. Normal shock solutions to the viscous shock layer equations including thermal, chemical, thermodynamic, and radiative nonequilibrium 

    E-Print Network [OSTI]

    Mott, David Ray

    1993-01-01

    An existing axisymmetric body viscous shock layer code including chemical, thermal, and thermodynamic nonequilibrium and nonequilibrium radiative gasdynamic coupling is adapted to simulate the one-dimensional flow within a shock tube. A suitable...

  9. J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI...

    Office of Scientific and Technical Information (OSTI)

    years of nuclear fission: Nuclear data and measurements series Lynn, J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI; FISSION BARRIER; FISSION; HISTORICAL ASPECTS;...

  10. Nuclear Engineering & Radiation Health Physics Program Outcomes Ability to apply knowledge of mathematics, science, and engineering

    E-Print Network [OSTI]

    Tullos, Desiree

    Nuclear Engineering & Radiation Health Physics Program Outcomes · Ability to apply knowledge for engineering practice · Ability to apply knowledge of atomic and nuclear physics to nuclear and radiological to nuclear and radiation processes · Ability to measure nuclear and radiation processes · Ability to work

  11. Summary Report for the Radiation Detection for Nuclear Security Summer School 2012

    SciTech Connect (OSTI)

    Runkle, Robert C.; Baciak, James E.; Stave, Jean A.

    2012-08-22

    The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; the second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.

  12. Basis for radiation protection of the nuclear worker

    SciTech Connect (OSTI)

    Guevara, F.A.

    1982-01-01

    A description is given of the standards for protection of persons who work in areas that have a potential for radiation exposure. A review is given of the units of radiation exposure and dose equivalent and of the value of the maximum permissible dose limits for occupational exposure. Federal Regulations and Regulatory Guides for radiation protection are discussed. Average occupational equivalent doses experienced in several operations typical of the United States Nuclear Industry are presented and shown to be significantly lower than the maximum permissible. The concept of maintaining radiation doses to As-Low-As-Reasonably-Achievable is discussed and the practice of imposing engineering and administrative controls to provide effective radiation protection for the nuclear worker is described.

  13. Nuclear radiation-warning detector that measures impedance

    DOE Patents [OSTI]

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  14. Investigation of causes and structure of social attitudes concerning nuclear radiation

    E-Print Network [OSTI]

    Chandra, Aditi, S.M. Massachusetts Institute of Technology

    2014-01-01

    An individual's perception of radiation, termed as "Radiation Attitudes" in this work, is vital for understanding the stakeholder relationship dynamics for acceptance of controversial nuclear technology projects. Attitudes ...

  15. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing Department of Energy (DOE), including National Nuclear Security Administration (NNSA), Federal workers with a safe and healthful workplace. Cancels DOE O 440.1A. Certified 6/17/2011. Canceled by DOE O 440.1B Chg 1.

  16. Faddeev-type calculations of few-body nuclear reactions including Coulomb interaction

    E-Print Network [OSTI]

    A. Deltuva

    2008-10-24

    The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the description of few-body nuclear reactions. Calculations are done in the framework of Faddeev-type equations in momentum-space. The reliability of the method is demonstrated. The Coulomb effect on observables is discussed.

  17. Radiation and Thermal Ageing of Nuclear Waste Glass

    SciTech Connect (OSTI)

    Weber, William J [ORNL

    2014-01-01

    The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behavior of nuclear waste glass are reviewed.

  18. ORAU: Radiation and Nuclear Safety Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclear andTwo-Phase75

  19. Predicting age of ovarian failure after radiation to a field that includes the ovaries

    SciTech Connect (OSTI)

    Wallace, W. Hamish B. . E-mail: Hamish.Wallace@ed.ac.uk; Thomson, Angela B.; Saran, Frank; Kelsey, Tom W.

    2005-07-01

    Purpose: To predict the age at which ovarian failure is likely to develop after radiation to a field that includes the ovary in women treated for cancer. Methods and Materials: Modern computed tomography radiotherapy planning allows determination of the effective dose of radiation received by the ovaries. Together with our recent assessment of the radiosensitivity of the human oocyte, the effective surviving fraction of primordial oocytes can be determined and the age of ovarian failure, with 95% confidence limits, predicted for any given dose of radiotherapy. Results: The effective sterilizing dose (ESD: dose of fractionated radiotherapy [Gy] at which premature ovarian failure occurs immediately after treatment in 97.5% of patients) decreases with increasing age at treatment. ESD at birth is 20.3 Gy; at 10 years 18.4 Gy, at 20 years 16.5 Gy, and at 30 years 14.3 Gy. We have calculated 95% confidence limits for age at premature ovarian failure for estimated radiation doses to the ovary from 1 Gy to the ESD from birth to 50 years. Conclusions: We report the first model to reliably predict the age of ovarian failure after treatment with a known dose of radiotherapy. Clinical application of this model will enable physicians to counsel women on their reproductive potential following successful treatment.

  20. Summary Report for the Radiation Detection for Nuclear Security Summer School 2014

    SciTech Connect (OSTI)

    Runkle, Robert C.; Baciak, James E.; Woodring, Mitchell L.; Jenno, Diana M.

    2014-09-30

    Executive Summary The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the 3rd Radiation Detection for Nuclear Security Summer School from 16 – 27 June 2014. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security. In fact, we are beginning to see previous students both enroll in graduate programs (former undergraduates) and complete internships at agencies like the National Nuclear Security Administration.

  1. Nuclear relativistic Hartree-Fock calculations including pions interacting with a scalar field

    SciTech Connect (OSTI)

    Marcos, S.; Lopez-Quelle, M.; Niembro, R.; Savushkin, L. N.

    2012-10-20

    The effect of pions on the nuclear shell structure is analyzed in a relativistic Hartree-Fock approximation (RHFA). The Lagrangian includes, in particular, a mixture of {pi}N pseudoscalar (PS) and pseudovector (PV) couplings, self-interactions of the scalar field {sigma} and a {sigma} - {pi} interaction that dresses pions with an effective mass (m*{sub {pi}}). It is found that an increase of m*{sub {pi}} strongly reduces the unrealistic effect of pions, keeping roughly unchanged their contribution to the total binding energy.

  2. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    SciTech Connect (OSTI)

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy; Schmieman, Eric

    2013-07-01

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  3. Hyperfine Interactions 125 (2000) 328 3 Monochromatization of synchrotron radiation for nuclear

    E-Print Network [OSTI]

    Jackson, Jennifer M.

    2000-01-01

    Hyperfine Interactions 125 (2000) 3­28 3 Monochromatization of synchrotron radiation for nuclear­30 keV is presented for applications involving nuclear resonant scattering. The relevant relationships for a variety of nuclear resonances in this energy range. 1. Introduction Synchrotron radiation sources have

  4. Neutron monitoring systems including gamma thermometers and methods of calibrating nuclear instruments using gamma thermometers

    DOE Patents [OSTI]

    Moen, Stephan Craig; Meyers, Craig Glenn; Petzen, John Alexander; Foard, Adam Muhling

    2012-08-07

    A method of calibrating a nuclear instrument using a gamma thermometer may include: measuring, in the instrument, local neutron flux; generating, from the instrument, a first signal proportional to the neutron flux; measuring, in the gamma thermometer, local gamma flux; generating, from the gamma thermometer, a second signal proportional to the gamma flux; compensating the second signal; and calibrating a gain of the instrument based on the compensated second signal. Compensating the second signal may include: calculating selected yield fractions for specific groups of delayed gamma sources; calculating time constants for the specific groups; calculating a third signal that corresponds to delayed local gamma flux based on the selected yield fractions and time constants; and calculating the compensated second signal by subtracting the third signal from the second signal. The specific groups may have decay time constants greater than 5.times.10.sup.-1 seconds and less than 5.times.10.sup.5 seconds.

  5. Design of radiation resistant metallic multilayers for advanced nuclear systems

    SciTech Connect (OSTI)

    Zhernenkov, Mikhail E-mail: gills@bnl.gov; Gill, Simerjeet E-mail: gills@bnl.gov; Stanic, Vesna; DiMasi, Elaine; Kisslinger, Kim; Ecker, Lynne; Baldwin, J. Kevin; Misra, Amit; Demkowicz, M. J.

    2014-06-16

    Helium implantation from transmutation reactions is a major cause of embrittlement and dimensional instability of structural components in nuclear energy systems. Development of novel materials with improved radiation resistance, which is of the utmost importance for progress in nuclear energy, requires guidelines to arrive at favorable parameters more efficiently. Here, we present a methodology that can be used for the design of radiation tolerant materials. We used synchrotron X-ray reflectivity to nondestructively study radiation effects at buried interfaces and measure swelling induced by He implantation in Cu/Nb multilayers. The results, supported by transmission electron microscopy, show a direct correlation between reduced swelling in nanoscale multilayers and increased interface area per unit volume, consistent with helium storage in Cu/Nb interfaces in forms that minimize dimensional changes. In addition, for Cu/Nb layers, a linear relationship is demonstrated between the measured depth-dependent swelling and implanted He density from simulations, making the reflectivity technique a powerful tool for heuristic material design.

  6. Validation of nuclear models used in space radiation shielding applications

    SciTech Connect (OSTI)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-15

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  7. Nuclear data needed for applications in radiation oncology

    SciTech Connect (OSTI)

    White, R.M.; Chadwick, M.B.; Siantar, C.L.H.; Chandler, W.P.

    1994-03-01

    Fast neutrons have been used to treat over 15,000 cancer patients in approximately twenty centers worldwide and proton therapy is emerging as a potential treatment of choice for tumors near critical anatomical structures. Neutron therapy requires reaction data to {approximately}70 MeV while proton therapy requires data to {approximately}250 MeV. The cross section databases require energy- and angle-dependent cross sections for secondary neutrons, charged-particles and recoil nuclei. We discuss expansion of our nuclear databases and development of a three-dimensional radiation transport package that uses CT images as the input mesh to an all-particle Monte Carlo code. Called PEREGRINE, this code calculates dose distributions in the human body and can be used as a tool to determine the dependence of dose on details of the evaluated nuclear data.

  8. Paul Sellin, Centre for Nuclear and Radiation Physics Mobility and lifetime mapping in wide bandgap

    E-Print Network [OSTI]

    Sellin, Paul

    Paul Sellin, Centre for Nuclear and Radiation Physics Mobility and lifetime mapping in wide bandgap uniformity #12;Paul Sellin, Centre for Nuclear and Radiation Physics µ mapping in CdZnTe with IBIC Electron µ for Nuclear and Radiation Physics µ maps of CdZnTe and CdTe CdZnTe CdTe Map of electron µ in CdZnTe shows µe

  9. Selecting a radiation tolerant piezoelectric material for nuclear reactor applications

    SciTech Connect (OSTI)

    Parks, D. A.; Reinhardt, B. T.; Tittmann, B. R. [Department of Engineering Science and Mechanics, Penn State, University Park, PA 16803 (United States)

    2013-01-25

    Bringing systems for online monitoring of nuclear reactors to fruition has been delayed by the lack of suitable ultrasonic sensors. Recent work has demonstrated the capability of an AlN sensor to perform ultrasonic evaluation in an actual nuclear reactor. Although the AlN demonstrated sustainability, no loss in signal amplitude and d{sub 33} up to a fast and thermal neutron fluence of 1.85 Multiplication-Sign 1018 n/cm{sup 2} and 5.8 Multiplication-Sign 1018 n/cm{sup 2} respectively, no formal process to selecting a suitable sensor material was made. It would be ideal to use first principles approaches to somehow reduce each candidate piezoelectric material to a simple ranking showing directly which materials one should expect to be most radiation tolerant. However, the complexity of the problem makes such a ranking impractical and one must appeal to experimental observations. This should not be of any surprise to one whom is familiar with material science as most material properties are obtained in this manner. Therefore, this work adopts a similar approach, the mechanisms affecting radiation tolerance are discussed and a good engineering sense is used for material qualification of the candidate piezoelectric materials.

  10. System for determining the type of nuclear radiation from detector output pulse shape

    DOE Patents [OSTI]

    Miller, William H. (Columbia, MO); Berliner, Ronald R. (Columbia, MO)

    1994-01-01

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

  11. System for determining the type of nuclear radiation from detector output pulse shape

    DOE Patents [OSTI]

    Miller, W.H.; Berliner, R.R.

    1994-09-13

    A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

  12. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect (OSTI)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  13. Relativistic calculation of the pion loop correlation energy in nuclear matter in a theory including confinement

    E-Print Network [OSTI]

    Boyer, Edmond

    Relativistic calculation of the pion loop correlation energy in nuclear matter in a theory of nuclear matter which contains the correlation energy. Pion loops are incorporated on top of a relativistic for the correlation energy is the Landau-Migdal parameter g governing the short-range part of the spin- isospin

  14. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    SciTech Connect (OSTI)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F. [CIEMAT, Avda. Complutense, 40, 28040 Madrid (Spain)

    2013-07-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  15. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities safety of nuclear facilities could benefit from the use of smart materials technologies in both

  16. Microscopic calculations of the characteristics of radiative nuclear reactions for double-magic nuclei

    E-Print Network [OSTI]

    Oleg Achakovskiy; Sergei Kamerdzhiev; Victor Tselyaev; Mikhail Shitov

    2015-11-03

    The neutron capture cross sections and average radiative widths of neutron resonances for two double-magic nuclei 132Sn and 208Pb have been calculated using the microscopic photon strength functions, which were obtained within the microscopic self-consistent version of the extended theory of finite Fermi systems in the time blocking approximation. For the first time, the microscopic PSFs have been obtained within the fully self-consistent approach with exact accounting for the single particle continuum (for 208Pb). The approach includes phonon coupling effects in addition to the standard RPA approach. The known Skyrme force has been used. The calculations of nuclear reaction characteristics have been performed with the EMPIRE 3.1 nuclear reaction code. Here, three nuclear level density (NLD) models have been used: the so-called phenomenological GSM, the EMPIRE specific (or Enhanced GSM) and the microscopical combinatorial HFB NLD models. For both considered characteristics we found a significant disagreement between the results obtained with the GSM and HFB NLD models. For 208Pb, a reasonable agreement has been found with systematics for the average radiative widths values with HFB NLD and with the experimental data for the HFB NLD average resonance spacing D0, while for these two quantities the differences between the values obtained with GSM and HFB NLD are of several orders of magnitude. The discrepancies between the results with the phenomenological EGLO PSF and microscopic RPA or TBA are much less for the same NLD model.

  17. Used nuclear fuel storage options including implications of small modular reactors

    E-Print Network [OSTI]

    Brinton, Samuel O. (Samuel Otis)

    2014-01-01

    This work addresses two aspects of the nuclear fuel cycle system with significant policy implications. The first is the preferred option for used fuel storage based on economics: local, regional or national storage. The ...

  18. Complex composite engineering architectures for nuclear and high-radiation environments

    SciTech Connect (OSTI)

    Kornreich, Drew E [Los Alamos National Laboratory; Vaidya, Rajendra U [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory

    2010-01-01

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of these elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.

  19. Proceedings of the symposium on Nuclear Radiation Detection Materials

    SciTech Connect (OSTI)

    Perry, D.L.; Burger, A.; Franks, L.; Schieber, M.

    2008-07-01

    This symposium provides a venue for the presentation of the latest results and discussion of radiation detection materials from both experimental and theoretical standpoints. As advances are made in this area of materials, additional experimental and theoretical approaches are used to both guide the growth of materials and to characterize the materials that have a wide array of applications for detecting different types of radiation. The types of detector materials for semiconductors and scintillators include a variety of molecular compounds such as lanthanum halides (LaX{sub 3}), zinc oxide (ZnO), lead iodide (PbI{sub 2}), cadmium telluride (CdTe), mercuric iodide (HgI{sub 2}), thallium bromide (TlBr), as well as others, such as cadmium zinc telluride (CZT). An additional class of scintillators includes those based on organic compounds and glasses. Ideally, desired materials used for radiation detection have attributes such as appropriate-range band-gaps, high atomic numbers of the central element, high densities, performance at room temperature, and strong mechanical properties, and are low cost in terms of their production. There are significant gaps in the knowledge related to these materials that are very important in making radiation detector materials that are higher quality in terms of their reproducible purity, homogeneity, and mechanical integrity. The topics that are the focal point of this symposium address these issues so that much better detectors may be made in the future. Topics cover the following areas: - Material growth: on-going developments regarding cadmium telluride (CdTe), cadmium zinc telluride (CZT), mercuric iodide (HgI{sub 2}), cadmium manganese telluride (CMT), LaX{sub 3}, and all other detector materials; new materials with potential for radiation detection (II-VI, III-VI, III-VII compounds, neutron detectors, nano-materials, and ceramic scintillators); purification techniques; and growth methods; - Characterization: experimental results; methodologies; defect structure; surface and bulk effects; and interfacial phenomena (contacting, contact adhesion, crystallographic polarity, Schottky barrier, and surface passivation); - Physical and mechanical properties: electric charge compensation mechanisms, charge collection, and thermal transport; hardness; and plasticity; - New and innovative characterization techniques: optical spectroscopy; microscopy (SEM, TEM, STM, AFM, etc.); synchrotron mapping and X-ray diffraction; rocking curves; and spectroscopy (IR, Raman, NMR, XPS, Auger, and other applicable approaches); - Theoretical studies: bandgap calculations; mobility calculations; scintillator material physics; thermal modeling; crystal growth; processes in material matrices; and processes in amorphous and crystalline matrices.

  20. EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    carcinogenic risk of low-dose, low-LET radiation is subjectcan be made for low-dose, low- LET radiation. Nevertheless,for radiation carcino­ Extrapolation to low doses. Radiation

  1. A new scheme of radiation transfer in H II regions including transient heating of grains

    E-Print Network [OSTI]

    S. K. Ghosh; R. P. Verma

    2000-09-21

    A new scheme of radiation transfer for understanding infrared spectra of H II regions, has been developed. This scheme considers non-equilibrium processes (e. g. transient heating of the very small grains, VSG; and the polycyclic aromatic hydrocarbon, PAH) also, in addition to the equilibrium thermal emission from normal dust grains (BG). The spherically symmetric interstellar dust cloud is segmented into a large number of "onion skin" shells in order to implement the non-equilibrium processes. The scheme attempts to fit the observed SED originating from the dust component, by exploring the following parameters : (i) geometrical details of the dust cloud, (ii) PAH size and abundance, (iii) composition of normal grains (BG), (iv) radial distribution of all dust (BG, VSG & PAH). The scheme has been applied to a set of five compact H II regions (IRAS 18116- 1646, 18162-2048, 19442+2427, 22308+5812 & 18434-0242) whose spectra are available with adequate spectral resolution. The best fit models and inferences about the parameters for these sources are presented.

  2. Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

  3. Tabulated equation of state for supernova matter including full nuclear ensemble

    SciTech Connect (OSTI)

    Buyukcizmeci, N.; Botvina, A. S.; Mishustin, I. N. [Frankfurt Institute for Advanced Studies, J.W. Goethe University, D-60438 Frankfurt am Main (Germany)

    2014-07-01

    This is an introduction to the tabulated database of stellar matter properties calculated within the framework of the Statistical Model for Supernova Matter (SMSM). The tables present thermodynamical characteristics and nuclear abundances for 31 values of baryon density (10{sup –8} < ?/?{sub 0} < 0.32, ?{sub 0} = 0.15 fm{sup –3} is the normal nuclear matter density), 35 values of temperature (0.2 MeV < T < 25 MeV), and 28 values of electron-to-baryon ratio (0.02 < Y{sub e} < 0.56). The properties of stellar matter in ? equilibrium are also considered. The main ingredients of the SMSM are briefly outlined, and the data structure and content of the tables are explained.

  4. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  5. analysis has been applied in many contexts, including nuclear warfare planning (Dalkey and Helmer 1963), energy planning

    E-Print Network [OSTI]

    Mitchell, Mike

    is the application of knowledge to achieve goals . . . In selecting goals, [wildlife managers] compare and judgeanalysis has been applied in many contexts, including nuclear warfare planning (Dalkey and Helmer in wildlife management (Ralls and Starfield 1995, John- son et al. 1997, Regan et al. 2005, Lyons et al. 2008

  6. Linear response theory in asymmetric nuclear matter for Skyrme functionals including spin-orbit and tensor terms

    E-Print Network [OSTI]

    D. Davesne; A. Pastore; J. Navarro

    2014-02-18

    The formalism of linear response theory for a Skyrme functional including spin-orbit and tensor terms is generalized to the case of infinite nuclear matter with arbitrary isospin asymmetry. Response functions are obtained by solving an algebraic system of equations, which is explicitly given. Spin-isospin strength functions are analyzed varying the conditions of density, momentum transfer, asymmetry and temperature. The presence of instabilities, including the spinodal one, is studied by means of the static susceptibility.

  7. Station for X-ray structural analysis of materials and single crystals (including nanocrystals) on a synchrotron radiation beam from the wiggler at the Siberia-2 storage ring

    SciTech Connect (OSTI)

    Kheiker, D. M. Kovalchuk, M. V.; Korchuganov, V. N.; Shilin, Yu. N.; Shishkov, V. A.; Sulyanov, S. N.; Dorovatovskii, P. V.; Rubinsky, S. V.; Rusakov, A. A.

    2007-11-15

    The design of the station for structural analysis of polycrystalline materials and single crystals (including nanoobjects and macromolecular crystals) on a synchrotron radiation beam from the superconducting wiggler of the Siberia-2 storage ring is described. The wiggler is constructed at the Budker Institute of Nuclear Physics of the Siberian Division of the Russian Academy of Sciences. The X-ray optical scheme of the station involves a (1, -1) double-crystal monochromator with a fixed position of the monochromatic beam and a sagittal bending of the second crystal, segmented mirrors bent by piezoelectric motors, and a (2{theta}, {omega}, {phi}) three-circle goniometer with a fixed tilt angle. Almost all devices of the station are designed and fabricated at the Shubnikov Institute of Crystallography of the Russian Academy of Sciences. The Bruker APEX11 two-dimensional CCD detector will serve as a detector in the station.

  8. Including shielding effects in application of the TPCA method for detection of embedded radiation sources.

    SciTech Connect (OSTI)

    Johnson, William C.; Shokair, Isaac R.

    2011-12-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

  9. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    SciTech Connect (OSTI)

    Miley, Harry

    2014-03-07

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  10. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    ScienceCinema (OSTI)

    Miley, Harry

    2014-06-12

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  11. EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01

    Implications for radio­ low doses: Radiation Res 71:61-74,effect of ological low-dose radiation in man, and surveyscarcinogenic of low-dose, low-LET radiation is subject to

  12. CRYOPUMP BEHAVIOR IN THE PRESENCE OF BEAM OR NUCLEAR RADIATION

    E-Print Network [OSTI]

    Law, P.K.

    2011-01-01

    1976). D.M. Meade. Nuclear Fusion lU, 289 (197**). W.J.p. 68l, D.L. Jassby. Nuclear Fusion 17 1.2), 309 (1977). R.vacuum in a thermo­ nuclear fusion device is essential due

  13. Differential two-body compound nuclear cross section, including the width-fluctuation corrections

    SciTech Connect (OSTI)

    Brown, D.; Herman, M.

    2014-09-02

    We figure out the compound angular differential cross sections, following mainly Fröbrich and Lipperheide, but with the angular momentum couplings that make sense for optical model work. We include the width-fluctuation correction along with calculations.

  14. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    SciTech Connect (OSTI)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning'Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  15. Nuclear-radiation-actuated valve. [Patent application; for increasing coolant flow to blanket

    DOE Patents [OSTI]

    Christiansen, D.W.; Schively, D.P.

    1982-01-19

    The present invention relates to a breeder reactor blanket fuel assembly coolant system valve which increases coolant flow to the blanket fuel assembly to minimize long-term temperature increases caused by fission of fissile fuel created from fertile fuel through operation of the breeder reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  16. Radiation effects in concrete for nuclear power plants Part I: Quantification of radiation exposure and radiation effects

    SciTech Connect (OSTI)

    Field, Kevin G; Pape, Yann Le; Remec, Igor

    2015-01-01

    A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review of the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation.

  17. Compact endocavity diagnostic probes for nuclear radiation detection

    DOE Patents [OSTI]

    Cui, Yonggang; James, Ralph; Bolotnikov, Aleksey

    2014-08-26

    This invention relates to the field of radiation imaging. In particular, the invention relates to an apparatus and a method for imaging tissue or an inanimate object using a novel probe that has an integrated solid-state semiconductor detector and complete readout electronics circuitry.

  18. Stimulated Emission of Radiation in a Nuclear Fusion Reaction

    E-Print Network [OSTI]

    Michael Duren

    1999-04-06

    This letter claims that process of stimulated emission of radiation can be used to induce a fusion reaction in a HD molecule to produce Helium-3. An experimental set-up for this reaction is presented. It is proposed to study the technical potential of this reaction as an energy amplifier.

  19. An Overview of the Regulation of Low Dose Radiation in the Nuclear and Non-nuclear Industries

    SciTech Connect (OSTI)

    Menon, Shankar; Valencia, Luis; Teunckens, Lucien

    2003-02-27

    Now that increasing numbers of nuclear power stations are reaching the end of their commercially useful lives, the management of the large quantities of very low level radioactive material that arises during their decommissioning has become a major subject of discussion, with very significant economic implications. Much of this material can, in an environmentally advantageous manner, be recycled for reuse without radiological restrictions. Much larger quantities--2-3 orders of magnitude larger--of material, radiologically similar to the candidate material for recycling from the nuclear industry, arise in non-nuclear industries like coal, fertilizer, oil and gas, mining, etc. In such industries, naturally occurring radioactivity is artificially concentrated in products, by-products or waste to form TENORM (Technologically Enhanced Naturally Occurring Radioactive Material). It is only in the last decade that the international community has become aware of the prevalence of TENORM, specially the activity levels and quantities arising in so many non-nuclear industries. The first reaction of international organizations seems to have been to propose different standards for the nuclear and non-nuclear industries, with very stringent release criteria for radioactive material from the regulated nuclear industry and up to thirty to a hundred times more liberal criteria for the release/exemption of TENORM from the as yet unregulated non-nuclear industries. There are significant strategic issues that need to be discussed and resolved. Some examples of these are: - Disposal aspects of long-lived nuclides, - The use of radioactive residues in building materials, - Commercial aspects of differing and discriminating criteria in competing power industries in a world of deregulated electric power production. Of even greater importance is the need for the discussion of certain basic issues, such as - The quantitative risk levels of exposure to ionizing radiation, - The need for in-depth studies on populations of the naturally high background dose level areas of the world, - The validity of the various calculation codes currently used to arrive at mass specific clearance levels for redundant material. The paper discusses these and other strategic issues regarding the management of redundant low radiation material from both the nuclear and non-nuclear industries, underlining the need for consistency in regulatory treatment.

  20. Enhancing international radiation/nuclear detection training opportunities

    SciTech Connect (OSTI)

    Williams, Thomas L.; Bersell, Bridget M.; Booker, Paul M.; Anderson, Gerald E.; Leitch, Rosalyn M.; Meagher, John B.; Siefken, Rob R.; Spracklen, James L.

    2015-09-23

    The United States has worked domestically to develop and provide radiological and nuclear detection training and education initiatives aimed at interior law enforcement, but the international community has predominantly focused efforts at border and customs officials. The interior law enforcement officials of a State play a critical role in maintaining an effective national-level nuclear detection architecture. To meet this vital need, DNDO was funded by the U.S. Department of State (DOS) to create and deliver a 1-week course at the International Law Enforcement Academy (ILEA) in Budapest, Hungary to inform interior law enforcement personnel of the overall mission, and to provide an understanding of how the participants can combat the threats of radiological and nuclear terrorism through detection efforts. Two courses, with approximately 20 students in each course, were delivered in fiscal year (FY) 2013, two were delivered in FY 2014 and FY 2015, and as of this report’s writing more are planned in FY 2016. However, while the ILEA courses produced measurable success, DNDO requested Pacific Northwest National Laboratory (PNNL) research potential avenues to further increase the course impact.In a multi-phased approach, PNNL researched and analyzed several possible global training locations and venues, and other possible ways to increase the impact of the course using an agreed-to data-gathering format.

  1. Simulating the Sunyaev-Zel'dovich effect(s): including radiative cooling and energy injection by galactic winds

    E-Print Network [OSTI]

    Martin White; Lars Hernquist; Volker Springel

    2002-07-08

    We present results on the thermal and kinetic Sunyaev-Zel'dovich (SZ) effects from a sequence of high resolution hydrodynamic simulations of structure formation, including cooling, feedback and metal injection. These simulations represent a self-consistent thermal model which incorporates ideas from the `pre-heating' scenario while preserving good agreement with the low density IGM at z~3 probed by the Ly-a forest. Four simulations were performed, at two different resolutions with and without radiative effects and star formation. The long-wavelength modes in each simulation were the same, so that we can compare the results on an object by object basis. We demonstrate that our simulations are converged to the sub-arcminute level. The effect of the additional physics is to suppress the mean Comptonization parameter by 20% and to suppress the angular power spectrum of fluctuations by just under a factor of two in this model while leaving the source counts and properties relatively unchanged. We quantify how non-Gaussianity in the SZ maps increases the sample variance over the standard result for Gaussian fluctuations. We identify a large scatter in the Y-M relation which will be important in searches for clusters using the SZ effect(s).

  2. Nuclear Instruments and Methods in Physics Research A 531 (2004) 435444 Transition radiation detectors for energy measurements

    E-Print Network [OSTI]

    Hörandel, Jörg R.

    2004-01-01

    of several radiators and detectors. Typically, the detectors are gaseous ARTICLE IN PRESS *Corresponding. The threshold value of g may be varied by appro- priately choosing the parameters of radiators and detectorsNuclear Instruments and Methods in Physics Research A 531 (2004) 435­444 Transition radiation

  3. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8

    SciTech Connect (OSTI)

    Sullivan, S.G.; Khan, T.A.; Xie, J.W.

    1995-05-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  4. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 7

    SciTech Connect (OSTI)

    Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W.

    1993-07-01

    The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

  5. Actinides and radiation effects: impact on the back-end of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Ewing, R. C. [Univ. of Michigan, Ann Arbor, MI (United States)

    2011-08-01

    During the past 70 years, more than 2000 metric tonnes of Pu, and substantial quantities of the 'minor' actinides such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranium elements can be a source of energy in fission reactions (e.g. ²³?Pu), a source of fissile material for nuclear weapons (e.g. ²³?Pu and ²³?Np), and of environmental concern because of their long half-lives and radiotoxicity (e.g. ²³?Pu and ²³?Np). There are two basic strategies for the disposition of these transuranium elements: (1) to 'burn' or fission the actinides using nuclear reactors or accelerators; (2) to dispose of the actinides directly as spent nuclear fuel or to 'sequester' the actinides in chemically durable, radiation-resistant materials that are also suitable for geological disposal. For the latter strategy, there has been substantial interest in the use of actinide-bearing minerals, especially isometric pyrochlore, A ? B ?O? (A = rare earths; B = Ti, Zr, Sn, Hf), for the immobilization of actinides, particularly plutonium, both as inert matrix fuels and nuclear waste forms. Systematic studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high doses of a -decay event damage. Recent developments in the understanding of the properties of actinide-bearing solids have opened up new possibilities for the design of advanced nuclear materials that can be used as fuels and waste forms. As an example, the amount of radiation damage that accumulates over time can be controlled by the selection of an appropriate composition for the pyrochlore and a consideration of the thermal environment of disposal. In the case of deep borehole disposal (3–5 km), the natural geothermal gradient may provide enough heat to reduce the amount of accumulated radiation damage bythermal annealing.

  6. Preliminary studies and tests of semiconductors for their use as nuclear radiation detectors 

    E-Print Network [OSTI]

    Willis, Giles Whitehurst

    1960-01-01

    . This thesis is limited to the study of the pulses formed in a semiconductor junction~ under reverse bias conditions, due to incident nuclear radiation and background thermal radiations A semiconductor junction is the area or vicinity of contact between..., they strike atoms and give up part of their energy to free other elec- trons, thus producing an avalanche effect ~ The result of each avalanche is a pulse formed in the junct ion ~ At normal room temperatures, electron-hole pairs are formed in the junc...

  7. Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA

    SciTech Connect (OSTI)

    Khan, T.A.; Vulin, D.S.; Lane, S.G.; Baum, J.W. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    In the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants, the ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA. This is the sixth report in that series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of information databases of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from the use of robotics, to operational health physics, to water chemistry. Also included is material on the design, planning, and management of nuclear power stations, as well as on decommissioning and safe storage efforts. This report contains 266 abstracts along with subject and author indices. The author index is exclusively for this volume. The subject index contains headings for this volume in bold face, as well as reference to previous volumes. All information in this and previous volumes of the series is also available through our on-line information system called ACE (ALARA Center Exchange). ACE is accessible through fax machines or personal computers interfaced with modems. The bibliography database and other databases are kept current with new abstracts, information on research projects, and recent news of international events related to ALARA at nuclear power plants. Access to the system is provided freely to the ALARA community. For password certification, manuals, and other information about our system, please contact the ALARA CENTER, Building 703M, Brookhaven National Laboratory, Upton, NY 11973, or call (516) 282-3228.

  8. Pions are neither perturbative nor nonperturbative: Wilsonian renormalization group analysis of nuclear effective field theory including pions

    E-Print Network [OSTI]

    Koji Harada; Hirofumi Kubo; Yuki Yamamoto

    2011-01-21

    Pionful nuclear effective field theory (NEFT) in the two-nucleon sector is examined from the Wilsonian renormalization group point of view. The pion exchange is cut off at the floating cutoff scale, $\\Lambda$, with the short-distance part being represented as contact interactions in accordance with the general principle of renormalization. We derive the nonperturbative renormalization group equations in the leading order of the nonrelativistic approximation in the operator space including up to $\\mathcal{O}(p^2)$ and find the nontrivial fixed points in the $^1S_0$ and $^3S_1$--$^3D_1$ channels which are identified with those in the pionless NEFT. The scaling dimensions, which determine the power counting, of the contact interactions at the nontrivial fixed points are also identified with those in the pionless NEFT. We emphasize the importance of the separation of the pion exchange into the short-distance and the long-distance parts, since a part of the former is nonperturbative while the latter is perturbative.

  9. Radiation effects in nuclear materials: Role of nuclear and electronic energy losses and their synergy

    SciTech Connect (OSTI)

    Thomé, Lionel; Debelle, Aurelien; Garrido, Frederico; Mylonas, Stamatis; Décamps, B.; Bachelet, C.; Sattonnay, G.; Pellegrino, S.; Miro, S.; Trocellier, P.; Serruys, Y.; Velisa, G.; Grygiel, C.; Monnet, I.; Toulemonde, Marcel; Simon, P.; Jagielski, Jacek; Jozwik-Biala, Iwona; Nowicki, Lech; Behar, M.; Weber, William J; Zhang, Yanwen; Backman, Marie; Nordlund, Kai; Djurabekova, Flyura

    2013-01-01

    Ceramic oxides and carbides are promising matrices for the immobilization and/or transmutation of nuclear wastes, cladding materials for gas-cooled fission reactors and structural components for fusion reactors. For these applications there is a need of fundamental data concerning the behavior of nuclear ceramics upon irradiation. This article is focused on the presentation of a few remarkable examples regarding ion-beam modifications of nuclear ceramics with an emphasis on the mechanisms leading to damage creation and phase transformations. Results obtained by combining advanced techniques (Rutherford backscattering spectrometry and channeling, X-ray diffraction, transmission electron microscopy, Raman spectroscopy) concern irradiations in a broad energy range (from keV to GeV) with the aim of exploring both nuclear collision (Sn) and electronic excitation (Se) regimes. Finally, the daunting challenge of the demonstration of the existence of synergistic effects between Sn and Se is tackled by discussing the healing due to intense electronic energy deposition (SHIBIEC) and by reporting results recently obtained in dual-beam irradiation (DBI) experiments.

  10. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect (OSTI)

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  11. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    SciTech Connect (OSTI)

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L. (comps.)

    1982-08-01

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

  12. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    SciTech Connect (OSTI)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history.

  13. General approach to assure compliance with ALARA guidelines on direct radiation from a nuclear power plant, January 1979-January 1982

    SciTech Connect (OSTI)

    Harding, W; Silver, C

    1983-06-01

    Nuclear Regulatory Commission guide lines specify 10 mrad per reactor as the total yearly direct (gamma) radiation dose at any point external to a nuclear power facility site boundary. Typically a nuclear utility submits only thermoluminescence dosimetry (TLD) data unaccompanied by corresponding core sample, ion chamber or other data or analyses to demonstrate compliance. This study considers a standard approach for analyzing the TLD data in terms of semiempirical physical constructs which allow the use of correlations among certain preoperational TLD data to predict or model operational period TLD measures (expected values) in the absence of the source (nuclear facility). These apriori models depend only upon their fit to the observed nonimpacted data for their verification. They are not veridical. The models are used to analyze a CaSO/sub 4/ (TM) thermoluminescence dosimetry system set up in a matrix about the nuclear plant and which records the terrestrial and cosmic radiation background as well as the nuclear plant contribution.

  14. U.S. Seafood Safe and Unaffected by Radiation Contamination from Japanese Nuclear Power Plant Incident; U.S. Monitoring Control Strategy Explained

    E-Print Network [OSTI]

    U.S. Seafood Safe and Unaffected by Radiation Contamination from Japanese Nuclear Power Plant about radiation contamination from the Japanese nuclear power plant incident and on the control potential routes by which seafood contaminated with radionuclides from the Japanese nuclear power plant

  15. Effect of geometrical configuration of radioactive sources on radiation intensity in beta-voltaic nuclear battery system: A preliminary result

    SciTech Connect (OSTI)

    Basar, Khairul, E-mail: khbasar@fi.itb.ac.id; Riupassa, Robi D., E-mail: khbasar@fi.itb.ac.id; Bachtiar, Reza, E-mail: khbasar@fi.itb.ac.id; Badrianto, Muldani D., E-mail: khbasar@fi.itb.ac.id [Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia)

    2014-01-01

    It is known that one main problem in the application of beta-voltaic nuclear battery system is its low efficiency. The efficiency of the beta-voltaic nuclear battery system mainly depends on three aspects: source of radioactive radiation, interface between materials in the system and process of converting electron-hole pair to electric current in the semiconductor material. In this work, we show the effect of geometrical configuration of radioactive sources on radiation intensity of beta-voltaic nuclear battery system.

  16. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    SciTech Connect (OSTI)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  17. Alignment of Dust with Magnetic Inclusions: Radiative Torques and Superparamagnetic Barnett and Nuclear Relaxation

    E-Print Network [OSTI]

    A. Lazarian; T. Hoang

    2008-01-03

    We consider grains with superparamagnetic inclusions and report two new condensed matter effects that can enhance the internal relaxation of the energy of a wobbling grain, namely, superparamagnetic Barnett relaxation, as well as, an increase of frequencies for which nuclear relaxation becomes important. This findings extends the range of grain sizes for which grains are thermally trapped, i.e. rotate thermally, in spite of the presence of uncompensated pinwheel torques. In addition, we show that the alignment of dust grains by radiative torques gets modified for superparamagnetic grains, with grains obtaining perfect alignment with respect to magnetic fields as soon as the grain gaseous randomization time gets larger than that of paramagnetic relaxation. The same conclusion is valid for the mechanical alignment of helical grains. If observations confirm that the degrees of alignment are higher than radiative torques can produce alone, this may be a proof of the presence of superparamagentic inclusions.

  18. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2009-12-01

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2008 annual reports submitted by five of the seven categories1 of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Because there are no geologic repositories for high-level waste currently licensed and no low-level waste disposal facilities in operation, only five categories will be considered in this report.

  19. Public meetings on radiation and its health effects caused by the Fukushima nuclear accident

    SciTech Connect (OSTI)

    Sugiyama, K.; Ayame, J.; Takashita, H.; Yamamoto, R. [Risk Communication Study Office Japan Atomic Energy Agency 4-33 Muramatsu, Tokai-mura, IBARAKI, 319-1194 (Japan)

    2013-07-01

    The Japan Atomic Energy Agency (JAEA) has held public meetings on radiation and its health effects mainly for parents of students in kindergartens, elementary schools, and junior high schools in Fukushima and Ibaraki prefectures after the Fukushima nuclear accident. These meetings are held based on our experience of practicing risk communication activities for a decade in JAEA with local residents. By analyzing questionnaires collected after the meetings, we confirmed that interactive communication is effective in increasing participants' understanding and in decreasing their anxiety. Most of the participants answered that they understood the contents and that it eased their mind. (authors)

  20. Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

    SciTech Connect (OSTI)

    Guss, P. P.

    2012-07-16

    This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

  1. Preliminary Results from an Investigation into Nanostructured Nuclear Radiation Detectors for Non-Proliferation Applications

    SciTech Connect (OSTI)

    ,

    2012-10-01

    In recent years, the concept of embedding composite scintillators consisting of nanosized inorganic crystals in an organic matrix has been actively pursued. Nanocomposite detectors have the potential to meet many of the homeland security, non-proliferation, and border and cargo-screening needs of the nation and, by virtue of their superior nuclear identification capability over plastic, at roughly the same cost as plastic, have the potential to replace all plastic detectors. Nanocomposites clearly have the potential of being a gamma ray detection material that would be sensitive yet less expensive and easier to produce on a large scale than growing large, whole crystals of similar sensitivity. These detectors would have a broad energy range and a sufficient energy resolution to perform isotopic identification. The material can also be fabricated on an industrial scale, further reducing cost. This investigation focused on designing and fabricating prototype core/shell and quantum dot (QD) detectors. Fourteen core/shell and four QD detectors, all with the basic consistency of a mixture of nanoparticles in a polymer matrix with different densities of nanoparticles, were prepared. Nanoparticles with sizes <10 nm were fabricated, embedded in a polystyrene matrix, and the resultant scintillators’ radiation detector properties were characterized. This work also attempted to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy and high-energy gamma rays. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

  2. Systems and methods for detecting nuclear radiation in the presence of backgrounds

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-06-21

    Systems and methods for the simultaneous detection and identification of radiation species, including neutrons, gammas/x-rays and minimum ionizing particles (MIPs). A plurality of rectangular and/or triangularly shaped radiation sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material. A wavelength-shifting fiber can then be located within a central hole of each extruded scintillator, wherein the wavelength-shifting fiber absorbs scintillation light and re-emits the light at a longer wavelength, thereby piping the light to a photodetector whose response to the light indicates the presence of radiation The resulting method and system can simultaneously detect neutrons, gamma rays, x-rays and cosmic rays (MIPs) and identify each.

  3. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    SciTech Connect (OSTI)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G.

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  4. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012

    SciTech Connect (OSTI)

    D. E. Lewis D. A. Hagemeyer Y. U. McCormick

    2012-07-07

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor (LWR) licensees was 83 person-rem. This represents a 14% decrease from the value reported for 2009 (96 person-rem). The decrease in collective dose for commercial nuclear power reactors was due to an 11% decrease in total outage hours in 2010. During outages, activities involving increased radiation exposure such as refueling and maintenance are performed while the reactor is not in operation. The average annual collective dose per reactor for boiling water reactors (BWRs) was 137 personrem for 35 BWRs, and 55 person-rem for 69 pressurized water reactors (PWRs). Analyses of transient individual data indicate that 29,333 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient individuals by multiple licensees. The adjustment to account for transient individuals has been specifically noted in footnotes in the figures and tables for commercial nuclear power reactors. In 2010, the average measurable dose per individual for all licensees calculated from reported data was 0.13 rem. Although the average measurable dose per individual from data submitted by licensees was 0.13 rem, a corrected dose distribution resulted in an average measurable dose per individual of 0.17 rem.

  5. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOE Patents [OSTI]

    Barty, Christopher P. J. (Hayward, CA); Hartemann, Frederic V. (San Ramon, CA); McNabb, Dennis P. (Alameda, CA); Pruet, Jason A. (Brentwood, CA)

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  6. Background Radiation Survey of the Radiological/Nuclear Countermeasures Test and Evaluation Center

    SciTech Connect (OSTI)

    Colin Okada

    2010-09-16

    In preparation for operations at the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC), the Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO) requested that personnel from the Remote Sensing Laboratory (RSL) conduct a survey of the present radiological conditions at the facility. The measurements consist of the exposure rate from a high-pressure ion chamber (HPIC), high-resolution spectra from a high-purity germanium (HPGe) system in an in situ configuration, and low-resolution spectra from a sodium iodide (NaI) detector in a radiation detection backpack. Measurements with these systems were collected at discrete locations within the facility. Measurements were also collected by carrying the VECTOR backpack throughout the complex to generate a map of the entire area. The area was also to be surveyed with the Kiwi (an array of eight-2-inch x 4-inch x 16-inch NaI detectors) from the Aerial Measuring Systems; however, conflicts with test preparation activities at the site prevented this from being accomplished.

  7. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  8. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOE Patents [OSTI]

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  9. ABOUT THE DEGREE The Master of Nuclear Science degree is a coursework

    E-Print Network [OSTI]

    Chen, Ying

    · an appreciation of the issues associated with nuclear power as a source of energy. The program combines contact will include a practical component. Nuclear Radiation (Semester 1) Ionizing radiation, dosimetry, risk NuclearABOUT THE DEGREE The Master of Nuclear Science degree is a coursework graduate program

  10. A,B,C`s of nuclear science

    SciTech Connect (OSTI)

    Noto, V.A. [Mandeville High School, LA (United States); Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R. [Lawrence Berkeley Lab., CA (United States)

    1995-08-07

    This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

  11. Results of a direct search using synchrotron radiation for the low-energy $^{229}$Th nuclear isomeric transition

    E-Print Network [OSTI]

    Jeet, Justin; Sullivan, Scott T; Rellergert, Wade G; Mirzadeh, Saed; Cassanho, A; Jenssen, H P; Tkalya, Eugene V; Hudson, Eric R

    2015-01-01

    We report the results of a direct search for the $^{229}$Th ($I^{p} = 3/2^+\\leftarrow 5/2^+$) nuclear isomeric transition, performed by exposing $^{229}$Th-doped LiSrAlF$_6$ crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between $7.3 \\mbox{eV}$ and $8.8 \\mbox{eV}$ with transition lifetime $(1-2)\\mbox{s} \\lesssim \\tau \\lesssim (2000-5600)\\mbox{s}$. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  12. Results of a direct search using synchrotron radiation for the low-energy $^{229}$Th nuclear isomeric transition

    E-Print Network [OSTI]

    Justin Jeet; Christian Schneider; Scott T. Sullivan; Wade G. Rellergert; Saed Mirzadeh; A. Cassanho; H. P. Jenssen; Eugene V. Tkalya; Eric R. Hudson

    2015-02-18

    We report the results of a direct search for the $^{229}$Th ($I^{p} = 3/2^+\\leftarrow 5/2^+$) nuclear isomeric transition, performed by exposing $^{229}$Th-doped LiSrAlF$_6$ crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between $7.3 {eV}$ and $8.8 {eV}$ with transition lifetime $(1-2){s} \\lesssim \\tau \\lesssim (2000-5600){s}$. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches.

  13. Reactor control system upgrade for the McClellan Nuclear Radiation Center

    E-Print Network [OSTI]

    Power, Michael A.

    1999-01-01

    a new reactor control system for the McClellan NuclearI REACTOR CONTROL SYSTEM UPGRADE FOR THE McCLELLAN NUCLEARReactor Control System Upgrade for the McClellan Nuclear

  14. radiation

    National Nuclear Security Administration (NNSA)

    27, 2015

    A U.S. Department of Energy National Nuclear Security Administration (NNSA) helicopter may be seen flying at low altitudes around...

  15. Radiation Measurements at the Campus of Fukushima Medical University through the 2011 off the Pacific Coast of Tohoku Earthquake and Subsequent Nuclear Power Plant crisis

    E-Print Network [OSTI]

    Kobayashi, Tsuneo

    2011-01-01

    An earthquake, Tohoku region Pacific Coast earthquake, occurred on the 11th of March, 2011, and subsequent Fukushima nuclear power plant accidents have been stirring natural radiation around the author's office in Fukushima Medical University (FMU). FMU is located in Fukushima city, and is 57 km (35 miles) away from northwest of the Fukushima Daiichi nuclear power plant. This paper presents three types of radiation survey undertaken through the unprecedented accidents at the campus and the hospital of FMU. First, a group of interested people immediately began radiation surveillance; the group members were assembled from the faculty members of "Life Sciences and Social Medicine" and "Human and Natural Sciences". Second, the present author, regardless of the earthquake, had serially observed natural radiations such as gamma radiation in air with NaI scintillation counter, atmospheric radon with Lucas cell, and second cosmic rays with NaI scintillation. Gamma radiation indicated most drastic change, i.e., peak v...

  16. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Todd R. Allen

    2009-06-30

    This project will use proton irradiation to further understand the microstructural stability of ceramics being considered as matrix material for advanced nuclear fuels.

  17. Low radiative efficiency accretion at work in active galactic nuclei: the nuclear spectral energy distribution of NGC4565

    E-Print Network [OSTI]

    M. Chiaberge; R. Gilli; F. D. Macchetto; W. B. Sparks

    2006-07-26

    We derive the spectral energy distribution (SED) of the nucleus of the Seyfert galaxy NGC4565. Despite its classification as a Seyfert2, the nuclear source is substantially unabsorbed. The absorption we find from Chandra data (N_H=2.5 X 10^21 cm^-2) is consistent with that produced by material in the galactic disk of the host galaxy. HST images show a nuclear unresolved source in all of the available observations, from the near-IR H band to the optical U band. The SED is completely different from that of Seyfert galaxies and QSO, as it appears basically ``flat'' in the IR-optical region, with a small drop-off in the U-band. The location of the object in diagnostic planes for low luminosity AGNs excludes a jet origin for the optical nucleus, and its extremely low Eddington ratio L_o/L_Edd indicates that the radiation we observe is most likely produced in a radiatively inefficient accretion flow (RIAF). This would make NGC4565 the first AGN in which an ADAF-like process is identified in the optical. We find that the relatively high [OIII] flux observed from the ground cannot be all produced in the nucleus. Therefore, an extended NLR must exist in this object. This may be interpreted in the framework of two different scenarios: i) the radiation from ADAFs is sufficient to give rise to high ionization emission-line regions through photoionization, or ii) the nuclear source has recently ``turned-off'', switching from a high-efficiency accretion regime to the present low-efficiency state.

  18. The radiation chemistry of CCD-PEG, a solvent-extraction process for Cs and Sr from dissolved nuclear fuel

    SciTech Connect (OSTI)

    Mincher, B.J.; Herbst, R.S.; Tillotson, R.D.; Mezyk, S.P.

    2008-07-01

    Cobalt dicarbollide and polyethylene glycol in phenyl-trifluoromethyl sulfone (HCCD/PEG in FS- 13) is currently under consideration for use in the process-scale selective extraction of fission- product cesium and strontium from dissolved nuclear fuel. This solvent will be exposed to high radiation doses during use and has not been adequately investigated for radiation stability. Here, HCCD/PEG was y-irradiated to various absorbed doses, to a maximum of 432 kGy, using {sup 60}Co. Irradiations were performed for the neat organic phase and also for the organic phase in contact with 1 M-nitric acid mixed by air sparging. Post-irradiation solvent-extraction measurements showed that Cs distribution ratios were unaffected; however, Sr extraction efficiency decreased with absorbed dose under both conditions and was greater when in contact with the aqueous phase. Stripping performance was not affected. A mechanism, initiated by direct radiolysis of the sulfone diluent, is proposed. (authors)

  19. Gluon Radiation off Hard Quarks in a Nuclear Environment: Opacity Expansion

    E-Print Network [OSTI]

    Urs Achim Wiedemann

    2000-08-15

    We study the relation between the Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS) and Zakharov formalisms for medium-induced gluon radiation off hard quarks, and the radiation off very few scattering centers. Based on the non-abelian Furry approximation for the motion of hard partons in a spatially extended colour field, we derive a compact diagrammatic and explicitly colour trivial expression for the N-th order term of the kt-differential gluon radiation cross section in an expansion in the opacity of the medium. Resumming this quantity to all orders in opacity, we obtain Zakharov's path-integral expression (supplemented with a regularization prescription). This provides a new proof of the equivalence of the BDMPS and Zakharov formalisms which extends previous arguments to the kt-differential cross section. We give explicit analytical results up to third order in opacity for both the gluon radiation cross section of free incoming and of in-medium produced quarks. The N-th order term in the opacity expansion of the radiation cross section is found to be a convolution of the radiation associated to N-fold rescattering and a readjustment of the probabilities that rescattering occurs with less than N scattering centers. Both informations can be disentangled by factorizing out of the radiation cross section a term which depends only on the mean free path of the projectile. This allows to infer analytical expressions for the totally coherent and totally incoherent limits of the radiation cross section to arbitrary orders in opacity.

  20. Western Region American Nuclear Society regional student conference, April 12-14, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Abstracts of papers presented at the conference are contained in this proceedings. Topics of technical sessions included fusion and space reactors, numerical and computer modeling, nuclear medicine and radiation effects, and general nuclear technology. (GHT)

  1. Radiation exposure liability : the burden of responsibility and compensation in civilian and military nuclear ventures

    E-Print Network [OSTI]

    Flores, Jessica (Jessica Alejandro)

    2008-01-01

    Since Enrico Fermi first discovered that neutrons could split atoms in 1934, peaceful and militaristic uses of nuclear energy have become prevalent in our society. Two case studies, Three Mile Island and the Nevada Test ...

  2. An investigation of the use of semiconductors as detectors of nuclear radiation 

    E-Print Network [OSTI]

    Ivy, Edward Weber

    1960-01-01

    elec- trons which are emitted from nuclei in radioactive decay. Because these beta particles are light, they are easily deflected as they traverse a thickness of an absorber. For this reason it is convenient to express the range of beta particles... unwanted light, cosmic radiation, and other extraneous inter- ferences present in the laboratory. A cylindrical lead shield was constructed for this purpose with provisions made for placing the radiation sources at various distances from the diode being...

  3. Radiation effects in moist-air systems and the influence of radiolytic product formation on nuclear waste glass corrosion

    SciTech Connect (OSTI)

    Wronkiewicz, D.J.; Bates, J.K.; Buck, E.C.; Hoh, J.C.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wang, L.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Geology

    1997-07-01

    Ionizing radiation may affect the performance of glass in an unsaturated repository site by interacting with air, water vapor, or liquid water to produce a variety of radiolytic products. Tests were conducted to examine the effects of radiolysis under high gas/liquid ratios. Results indicate that nitrate is the predominant radiolytic product produced following both gamma and alpha radiation exposure, with lesser amounts of nitrite and carboxylic acids. The formation of nitrogen acids during exposure to long-lived, alpha-particle-emitting transuranic elements indicates that these acids may play a role in influencing nuclear waste form reactions in a long-term unsaturated disposal scenario. Experiments were also conducted with samples that simulate the composition of Savannah River Plant nuclear waste glasses. Radiolytic product formation in batch tests (340 m{sup {minus}1}, 90 C) resulted in a small increase in the release rates of many glass components, such as alkali and alkaline earth elements, although silicon and uranium release rates were slightly reduced indicating an overall beneficial effect of radiation on waste form stability. The radiolytic acids increased the rate of ion exchange between the glass and the thin film of condensate, resulting in accelerated corrosion rates for the glass. The paragenetic sequence of alteration phases formed on both the irradiated and nonirradiated glass samples reacted in the vapor hydration tests matches closely with those developed during volcanic glass alteration in naturally occurring saline-alkaline lake systems. This correspondence suggests that the high temperatures used in these tests have not changed the underlying glass reaction mechanism relate to that which controls glass reactions under ambient surficial conditions.

  4. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    SciTech Connect (OSTI)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  5. The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    E-Print Network [OSTI]

    Britton, Julie

    2010-01-01

    between leukemia and low dose radiation is critical evidenceassociations between low dose radiation and cancer might notrelationship exists with low dose radiation. In addition,

  6. ME 136N Concepts in Nuclear and Radiation Engineering ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    , and national laboratories, tour of University of Texas research reactor and demonstration experiments. Topics Covered (# of classes per topic): Survey Topics and Demonstrations of Nuclear Reactor Class CRITERIA Programs must demonstrate that graduates have the ability to: A. Apply principles of engineering

  7. Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection

    SciTech Connect (OSTI)

    Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

    2011-06-22

    This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

  8. Radiation chemistry in the reprocessing and recycling of spent nuclear fuels

    SciTech Connect (OSTI)

    Bruce J. Mincher

    2015-04-01

    The interaction of ionizing radiation with solvent extraction solutions results in the ionization, excitation, and decay to neutral radicals of mainly diluent molecules. These produced reactive species diffuse into the bulk solution to react with solvent extraction ligands. Ligand reactions often result in deleterious effects such as loss in ligand concentration or the production of decomposition products that may also be complexing agents. This often interferes with desired separations. The common radiolysis reactions and their potential effects on solvent extraction are reviewed here.

  9. J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS*

    E-Print Network [OSTI]

    Scofield, John H.

    J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS* John H. Scofield Department of Physics, Oberlin College Oberlin, OH 44074 and D.M. Fleetwood Sandia National Laboratories Albuquerque, NM

  10. Resonant nuclear scattering of synchrotron radiation: Detector development and specular scattering from a thin layer of {sup 57}Fe

    SciTech Connect (OSTI)

    Baron, A.Q.R.

    1995-04-01

    This thesis explores resonant nudear scattering of synchrotron radiation. An introductory chapter describes some useful concepts, such as speedup and coherent enhancement, in the context of some basic physical principles. Methods of producing highly monochromatic synchrotron beams usmg either electronic or nuclear scattering are also discussed. The body of the thesis concentrates on detector development and specular scattering from iynthetic layered materials. A detector employing n-dcrochannel plate electron multipliers is shown to have good ({approximately}50%) effidency for detecting 14.4 key x-rays incident at small ({approximately}0.5 degree) grazing angles onto Au or CsI photocathodes. However, being complicated to use, it was replaced with a large area (>=lan2) avalanche photodiode (APD) detector. The APD`s are simpler to use and have comparable (30--70%) efficiencies at 14.4 key, subnanosecond time resolution, large dynan-dc range (usable at rates up to {approximately}10{sup 8} photons/second) and low (<{approximately}0.01 cts/sec) background rates. Maxwell`s equations are used to derive the specular x-ray reflectivity of layered materials with resonant transitions and complex polarization dependencies. The effects of interfadal roughness are treated with some care, and the distorted wave Born approximation (DWBA) used to describe electronic scattering is generalized to the nuclear case. The implications of the theory are discussed in the context of grazing incidence measurements with emphasis on the kinematic and dynamical aspects of the scattering.

  11. DETECTORS FOR RADIATION DOSIMETRY

    E-Print Network [OSTI]

    Perez-Mendez, V.

    2010-01-01

    J. Price, "Nuclear Radiation Detection" (2nd ed. , New York:4) G. F. Knoll, "Radiation Detection and Measurement" (NewSons, Inc. from "Radiation Detection and Measurement," G. F.

  12. EIS-0310: Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States, Including the Role of the Fast Flux Test Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    This PEIS will evaluate the potential environmental impacts of the proposed enhancement of the existing infrastructure, including the possible role of the Fast Flux Test Facility (FFTF), located at...

  13. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    & Screening of Fuel Cycle Options Advanced Fuel Development · Thorium Fuel Cycles · Silicon Carbide - 1996* Advanced Nuclear Fuels* Materials in Radiation Environments* * Continuing program within NS Nuclear Safety Advanced Nuclear Systems · Radiation Resistant Materials · Accident Tolerant Fuels

  14. The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    E-Print Network [OSTI]

    Britton, Julie

    2010-01-01

    and Rocky Flats Nuclear Weapons Plant. Rad Res 1989;120:19-Evidence at the Hanford Nuclear Weapons Facility MASTERAT T H E HANFORD NUCLEAR WEAPONS FACILITY JULIE BRITTON

  15. The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    E-Print Network [OSTI]

    Britton, Julie

    2010-01-01

    National Laboratory, and Rocky Flats Nuclear Weapons Plant.Laboratory (ORNL), and Rocky Flats Nuclear Weapons Plant (ORNL through 1977, and Rocky Flats through 1979. The SMRs

  16. Optical control of nuclear resonant absorption: theory and experiment 

    E-Print Network [OSTI]

    Kolesov, Roman L.

    2004-09-30

    Modification of nuclear resonant absorption by means of laser radiation is analyzed both theoretically and experimentally. Theoretical analysis is done on the basis of four-level model of atom. This model includes both ...

  17. Extra-terrestrial nuclear power stations : transportation and operation

    E-Print Network [OSTI]

    Kane, Susan Christine

    2005-01-01

    Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples ...

  18. Reactor and Nuclear Systems Division (RNSD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation...

  19. Experiments + Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments + Simulations Better Nuclear Power Research Experiments Simulations Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation...

  20. Radiation Damage/Materials Modification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion irradiation is an important tool for studying radiation damage effects Materials in a nuclear reactor are exposed to extreme temperature and radiation conditions that degrade...

  1. Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection

    SciTech Connect (OSTI)

    Paul Guss, Sanjoy Mukhopadhyay, Ron Guise, Ding Yuan

    2010-06-09

    Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF{sub 3}:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to {sup 137}Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF{sub 3}:Ce-loaded sample have been made using {sup 137}Cs sources. Figure 2 shows an energy spectrum acquired for CeF{sub 3}. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr{sub 3} crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% {sup 138}La component of lanthanum leads to significant self-activity, which will be a problem for very large detector volumes. Yet a significant strength of the nanostructure detector concept is the ability to create extremely large detector volumes by mixing nanoparticles into a transparent matrix. This would argue for use of nanoparticles other than lanthanum halides. Nanocomposites are easy to prepare; it is much less costly to use nanocomposites than to grow large whole crystals of these materials. The material can be fabricated at an industrial scale, further reducing cost. This material potentially offers the performance of $300/cc material (e.g., lanthanum bromide) at a cost of $1/cc. Because the material acts as a plastic, it is rugged and flexible, and can be made in large sheets, increasing the sensitivity of a detector using it. It would operate at ambient temperatures. Very large volumes of detector may be produced at greatly reduced cost, enhancing the non-proliferation posture of the nation for the same dollar value.

  2. Nuclear Instruments and Methods in Physics Research A 565 (2006) 650656 Semiconductor high-energy radiation scintillation detector

    E-Print Network [OSTI]

    Luryi, Serge

    2006-01-01

    -energy radiation scintillation detector A. Kastalskya , S. Luryia,Ã, B. Spivakb a University at Stony Brook, ECE scintillation-type detector in which high-energy radiation generates electron­hole pairs in a direct semiconductor scintillator combines the best properties of currently existing radiation detectors and can

  3. Nuclear Safety | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Nuclear Safety The Office of Nuclear Safety establishes and maintains nuclear safety policy, requirements, and guidance including policy and requirements relating to...

  4. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2 +/- x: Implications for nuclear fuel performance modeling

    SciTech Connect (OSTI)

    Giovanni Pastore; Michael R. Tonks; Derek R. Gaston; Richard L. Williamson; David Andrs; Richard Martineau

    2014-03-01

    Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2x nonstoichiometrywere used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Risø fuel rod irradiation experiment was simulated. 2014 Elsevier B.V. All rights

  5. The impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants: Case study, PWR (pressurized-water reactor) during an outage

    SciTech Connect (OSTI)

    Moeller, M.P.; Martin, G.F.; Kenoyer, J.L.

    1987-08-01

    This report is the second in a series of case studies designed to evaluate the magnitude of increase in occupational radiation exposures at commercial US nuclear power plants resulting from small incidents or abnormal events. The event evaluated is fuel cladding failure, which can result in elevated primary coolant activity and increased radiation exposure rates within a plant. For this case study, radiation measurements were made at a pressurized-water reactor (PWR) during a maintenance and refueling outage. The PWR had been operating for 22 months with fuel cladding failure characterized as 105 pin-hole leakers, the equivalent of 0.21% failed fuel. Gamma spectroscopy measurements, radiation exposure rate determinations, thermoluminescent dosimeter (TLD) assessments, and air sample analyses were made in the plant's radwaste, pipe penetration, and containment buildings. Based on the data collected, evaluations indicate that the relative contributions of activation products and fission products to the total exposure rates were constant over the duration of the outage. This constancy is due to the significant contribution from the longer-lived isotopes of cesium (a fission product) and cobalt (an activation product). For this reason, fuel cladding failure events remain as significant to occupational radiation exposure during an outage as during routine operations. As documented in the previous case study (NUREG/CR-4485 Vol. 1), fuel cladding failure events increased radiation exposure rates an estimated 540% at some locations of the plant during routine operations. Consequently, such events can result in significantly greater radiation exposure rates in many areas of the plant during the maintenance and refueling outages than would have been present under normal fuel conditions.

  6. DOE Occupational Radiation Exposure, 2001 report

    SciTech Connect (OSTI)

    None, None

    2001-12-31

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  7. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T; Phillips, Rick; Erickson, Marjorie A; Kirk, Mark T; Stevens, Gary L

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  8. Instrumentation for nuclear applications - FY 1993. Final report

    SciTech Connect (OSTI)

    Costrell, L.

    1994-05-01

    The objective of this project is to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There is particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, US activity involving the CAMAC international standard dataway system and advanced system development, processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. Recent accomplishments include the issuance of the updated NIM standard, that is the predominant instrumentation system in the nuclear and radiation fields worldwide, and of numerous national and international nuclear instrumentation standards. Current objectives include continued updating of the standards as the technology advances and continued management and coordination with the National Laboratories, with university and other laboratories and industry.

  9. Impact of fuel cladding failure events on occupational radiation exposures at nuclear power plants. Case study: PWR during routine operations

    SciTech Connect (OSTI)

    Moeller, M.P.; Martin, G.F.; Haggard, D.L.

    1986-01-01

    The purpose of this report is to present data in support of evaluating the impact of fuel cladding failure events on occupational radiation exposure. To determine quantitatively whether fuel cladding failure contributes significantly to occupational radiation exposure, radiation exposure measurements were taken at comparable locations in two mirror-image pressurized-water reactors (PWRs) and their common auxiliary building. One reactor, Unit B, was experiencing degraded fuel characterized as 0.125% fuel pin-hole leakers and was operating at approximately 55% of the reactor's licensed maximum core power, while the other reactor, Unit A, was operating under normal conditions with less than 0.01% fuel pin-hole leakers at 100% of the reactor's licensed maximum core power. Measurements consisted of gamma spectral analyses, radiation exposure rates and airborne radionuclide concentrations. In addition, data from primary coolant sample results for the previous 20 months on both reactor coolant systems were analyzed. The results of the measurements and coolant sample analyses suggest that a 3560-megawatt-thermal (1100 MWe) PWR operating at full power with 0.125% failed fuel can experience an increase of 540% in radiation exposure rates as compared to a PWR operating with normal fuel. In specific plant areas, the degraded fuel may elevate radiation exposure rates even more.

  10. Radiation effects in the environment

    SciTech Connect (OSTI)

    Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B.; Yazzie, A.; Isaac, M.C.P.; Seaborg, G.T.; Leavitt, C.P.

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

  11. ANNOUNCEMENT NUCLEAR ENGINEERING FACULTY POSITION

    E-Print Network [OSTI]

    Tennessee, University of

    ANNOUNCEMENT NUCLEAR ENGINEERING FACULTY POSITION The Department of Nuclear Engineering at the Assistant or Associate Professor level. These areas include, but are not limited to, nuclear system instrumentation & controls, monitoring and diagnostics, reactor dynamics, nuclear security, nuclear materials

  12. RADIONUCLIDE RADIATION PROTECTION

    E-Print Network [OSTI]

    Zakhor, Avideh

    RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2002 D. Delacroix* J. P. Guerre** P. Leblanc'Energie Atomique, CEA/Saclay, France ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing #12;RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2nd Edition (2002

  13. AND NUCLEAR MEDICINE; DIAGNOSIS; DISEASES; GAMMA CAMERAS; GENETICS...

    Office of Scientific and Technical Information (OSTI)

    Converting energy to medical progress nuclear medicine NONE 62 RADIOLOGY AND NUCLEAR MEDICINE; DIAGNOSIS; DISEASES; GAMMA CAMERAS; GENETICS; NUCLEAR MEDICINE; PATIENTS; RADIATION...

  14. Needs for Robotic Assessments of Nuclear Disasters

    SciTech Connect (OSTI)

    Victor Walker; Derek Wadsworth

    2012-06-01

    Following the nuclear disaster at the Fukushima nuclear reactor plant in Japan, the need for systems which can assist in dynamic high-radiation environments such as nuclear incidents has become more apparent. The INL participated in delivering robotic technologies to Japan and has identified key components which are needed for success and obstacles to their deployment. In addition, we are proposing new work and methods to improve assessments and reactions to such events in the future. Robotics needs in disaster situations include phases such as: Assessment, Remediation, and Recovery Our particular interest is in the initial assessment activities. In assessment we need collection of environmental parameters, determination of conditions, and physical sample collection. Each phase would require key tools and efforts to develop. This includes study of necessary sensors and their deployment methods, the effects of radiation on sensors and deployment, and the development of training and execution systems.

  15. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I. (Dublin, CA)

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  16. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  17. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  18. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  19. Change of primary cosmic radiation nuclear composition in the energy range 10^{15} - 10^{17} eV

    E-Print Network [OSTI]

    T. T. Barnaveli; T. T. Barnaveli; A. P. Chubenko; N. A. Eristavi; I. V. Khaldeeva; N. M. Nesterova; Yu. G. Verbetsky

    2002-08-14

    The dependence E_h (N_e) of Extensive Air Shower (EAS) hadronic component energy flux on the number N_e of particles in EAS is investigated in the primary energy range of the order of 10^{15} - 10^{17} eV. The work was aimed at checking the existence of irregularities of E_h (N_e)/N_e behavior at these energies in several independent experiments. The investigation is carried out using large statistical material obtained at different configurations of experimental apparatus and under different triggering conditions. The existence of irregularities of E_h (N_e)/N_e behavior in the region Ne > 2*10^6 is confirmed. These irregularities have the character of sharp deeps and are located near the same values of N_e regardless of the experimental material and selection conditions used. So, at recent stage of research the existence of these irregularities of E_h (N_e)/N_e behavior in the range of N_e > 2*10^6 may be regarded as reliably established. This fact supports our earlier conclusion on the existence of primary cosmic radiation (PCR) nuclei spectra cutoff effect in the primary energy region 10^{15} - 10^{17} eV.

  20. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, R.J.

    1981-09-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  1. Radiation dosimeter

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1983-01-01

    A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

  2. Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3

    SciTech Connect (OSTI)

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  3. Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  4. Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  5. Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3

    SciTech Connect (OSTI)

    1995-08-01

    This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

  6. RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  7. Health effects models for nuclear power plant accident consequence analysis: Low LET radiation: Part 2, Scientific bases for health effects models

    SciTech Connect (OSTI)

    Abrahamson, S.; Bender, M.; Book, S.; Buncher, C.; Denniston, C.; Gilbert, E.; Hahn, F.; Hertzberg, V.; Maxon, H.; Scott, B.

    1989-05-01

    This report provides dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Two-parameter Weibull hazard functions are recommended for estimating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary and gastrointestinal syndromes -- are considered. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid and ''other''. The category, ''other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also provided. For most cancers, both incidence and mortality are addressed. Linear and linear-quadratic models are also recommended for assessing genetic risks. Five classes of genetic disease -- dominant, x-linked, aneuploidy, unbalanced translocation and multifactorial diseases --are considered. In addition, the impact of radiation-induced genetic damage on the incidence of peri-implantation embryo losses is discussed. The uncertainty in modeling radiological health risks is addressed by providing central, upper, and lower estimates of all model parameters. Data are provided which should enable analysts to consider the timing and severity of each type of health risk. 22 refs., 14 figs., 51 tabs.

  8. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  9. Predicted Radiation Output from Several Kilograms of Plutonium...

    Office of Scientific and Technical Information (OSTI)

    Cycle & Fuel Materials(11); Nuclear Physics & Radiation Physics(73) radiation output, passive signature, plutonium oxide Word Cloud More Like This Full Text File size NAView Full...

  10. NNSA to conduct Aerial Radiation Assessment Survey over Boston...

    National Nuclear Security Administration (NNSA)

    background radiation. Officials from U.S. Department of Energy's National Nuclear Security Administration (NNSA) announced that the radiation assessment will cover...

  11. Nuclear sensor signal processing circuit

    DOE Patents [OSTI]

    Kallenbach, Gene A. (Bosque Farms, NM); Noda, Frank T. (Albuquerque, NM); Mitchell, Dean J. (Tijeras, NM); Etzkin, Joshua L. (Albuquerque, NM)

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  12. Challenges With the Diagnosis and Treatment of Cerebral Radiation Necrosis

    SciTech Connect (OSTI)

    Chao, Samuel T.; Ahluwalia, Manmeet S.; Barnett, Gene H.; Stevens, Glen H.J.; Murphy, Erin S.; Stockham, Abigail L.; Shiue, Kevin; Suh, John H.

    2013-11-01

    The incidence of radiation necrosis has increased secondary to greater use of combined modality therapy for brain tumors and stereotactic radiosurgery. Given that its characteristics on standard imaging are no different that tumor recurrence, it is difficult to diagnose without use of more sophisticated imaging and nuclear medicine scans, although the accuracy of such scans is controversial. Historically, treatment had been limited to steroids, hyperbaric oxygen, anticoagulants, and surgical resection. A recent prospective randomized study has confirmed the efficacy of bevacizumab in treating radiation necrosis. Novel therapies include using focused interstitial laser thermal therapy. This article will review the diagnosis and treatment of radiation necrosis.

  13. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect (OSTI)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  14. RHOBOT: Radiation hardened robotics

    SciTech Connect (OSTI)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  15. Operation Cornerstone onsite radiological safety report for announced nuclear tests, October 1988--September 1989

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    Cornerstone was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site (NTS) from October 1, 1988, through September 30, 1989. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Radiation Protection Technicians (RPT) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage were provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

  16. From 1998 to 2000, through the Interagency Steering Committee on Radiation Standards (ISCORS), the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental

    E-Print Network [OSTI]

    Standards (ISCORS), the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection

  17. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    SciTech Connect (OSTI)

    Thomas Orlando

    2010-07-23

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  18. Method of enhancing radiation response of radiation detection materials

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  19. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    SciTech Connect (OSTI)

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-09-01

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring.

  20. Direct nuclear pumped laser

    DOE Patents [OSTI]

    Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  1. 22.101 Applied Nuclear Physics, Fall 2004

    E-Print Network [OSTI]

    Yip, Sidney

    Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. ...

  2. NRC TLD direct radiation monitoring network: Progress report, July--September 1997. Volume 17, Number 3

    SciTech Connect (OSTI)

    Struckmeyer, R.

    1998-01-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the third quarter of 1996. A complete listing of the site facilities monitored is included. In some instances, two power reactor facilities are monitored by the same set of dosimeters (e.g., Kewaunee and Point Beach).

  3. Roundtables Is nuclear energy different than other

    E-Print Network [OSTI]

    Shrader-Frechette, Kristin

    Roundtables Is nuclear energy different than other energy sources? #12;Myths about nuclear claims -- the Nuclear Energy Institute (NEI), Entergy, NEI again, and the World Nuclear Association (WNA radiation releases. · Costs. Third, without citation, Pietrangelo claims, "Once a nuclear energy facility

  4. radiation | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port m fmProjectImagesradiation |

  5. DOE occupational radiation exposure 2004 report

    SciTech Connect (OSTI)

    none,

    2004-12-31

    The U.S. Department of Energy (DOE) Office of Corporate Performance Assessment (EH-3) publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers and workers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE to make the report most useful. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, and subcontractors, as well as members of the public. DOE is defined to include the National Nuclear Security Administration sites. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  6. Heat pipes for NEP spacecraft radiators

    SciTech Connect (OSTI)

    Ernst, D.M.

    1981-01-01

    Reliable, low mass, passive radiators for the Nuclear Electric Propulsion Spacecraft require innovative system designs and the use of high performance, high temperature liquid metal heat pipes. This paper covers the evolution of the NEP spacecraft and radiator. 1 ref.

  7. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  8. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  9. NNSA Holds Radiation Emergency Consequence Management Training...

    National Nuclear Security Administration (NNSA)

    Radiation Emergency Consequence Management Training in Israel | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  10. High-energy radiation damage in zirconia: Modeling results

    SciTech Connect (OSTI)

    Zarkadoula, E.; Devanathan, R.; Weber, W. J.; Seaton, M. A.; Todorov, I. T.; Nordlund, K.; Dove, M. T.; Trachenko, K.

    2014-02-28

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1–0.5?MeV energies with account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution, and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  11. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Devanathan, Ram; Weber, William J.; Seaton, Michael; Todorov, Ilian; Nordlund, Kai; Dove, Martin T.; Trachenko, Kostya

    2014-02-28

    Zirconia has been viewed as a material of exceptional resistance to amorphization by radiation damage, and was consequently proposed as a candidate to immobilize nuclear waste and serve as a nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with the account of electronic energy losses. We find that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely disjoint from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  12. High-energy radiation damage in zirconia: modeling results

    SciTech Connect (OSTI)

    Zarkadoula, Evangelia; Devanathan, Ram; Weber, William J; Seaton, M; Todorov, I T; Nordlund, Kai; Dove, Martin T; Trachenko, Kostya

    2014-01-01

    Zirconia is viewed as a material of exceptional resistance to amorphization by radiation damage, and consequently proposed as a candidate to immobilize nuclear waste and serve as an inert nuclear fuel matrix. Here, we perform molecular dynamics simulations of radiation damage in zirconia in the range of 0.1-0.5 MeV energies with account of electronic energy losses. We nd that the lack of amorphizability co-exists with a large number of point defects and their clusters. These, importantly, are largely isolated from each other and therefore represent a dilute damage that does not result in the loss of long-range structural coherence and amorphization. We document the nature of these defects in detail, including their sizes, distribution and morphology, and discuss practical implications of using zirconia in intense radiation environments.

  13. Instrumentation for Nuclear Applications

    SciTech Connect (OSTI)

    NONE

    1998-09-18

    The objective of this project was to develop and coordinate nuclear instrumentation standards with resulting economies for the nuclear and radiation fields. There was particular emphasis on coordination and management of the Nuclear Instrument Module (NIM) System, U.S. activity involving the CAMAC international standard dataway system, the FASTBUS modular high-speed data acquisition and control system and processing and management of national nuclear instrumentation and detector standards, as well as a modest amount of assistance and consultation services to the Pollutant Characterization and Safety Research Division of the Office of Health and Environmental Research. The principal accomplishments were the development and maintenance of the NIM instrumentation system that is the predominant instrumentation system in the nuclear and radiation fields worldwide, the CAMAC digital interface system in coordination with the ESONE Committee of European Laboratories, the FASTBUS high-speed system and numerous national and international nuclear instrumentation standards.

  14. Radiation protection at CERN

    E-Print Network [OSTI]

    Forkel-Wirth, Doris; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

    2013-01-01

    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

  15. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01

    science and 4. Nuclear and radiation safety. 10 Thisof the nuclear fuel cycle as well as safety measures drivewhy safety has been the central priority of French nuclear

  16. Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider

    E-Print Network [OSTI]

    Friedman, Peter S; Chapman, J Wehrley; Levin, Daniel S; Weaverdyck, Curtis; Zhou, Bing; Benhammou, Yan; Etzion, Erez; Moshe, M Ben; Silver, Yiftah; Beene, James R; Varner, Robert L

    2010-01-01

    A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.

  17. Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider

    E-Print Network [OSTI]

    Peter S. Friedman; Robert Ball; J. Wehrley Chapman; Daniel S. Levin; Curtis Weaverdyck; Bing Zhou; Yan Benhammou; Erez Etzion; M. Ben Moshe; Yiftah Silver; James R. Beene; Robert L. Varner Jr.

    2010-07-03

    A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.

  18. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  19. Estimating GroundEstimating Ground--Level Solar RadiationLevel Solar Radiation and Evapotranspiration In Puerto Ricoand Evapotranspiration In Puerto Rico

    E-Print Network [OSTI]

    Gilbes, Fernando

    Estimating GroundEstimating Ground--Level Solar RadiationLevel Solar Radiation radiation, therefore, solar radiation measurements throughout the island are essential. #12;Currently, including solar radiation ·In PR, solar radiation is only available at selected locations. · The majority

  20. Recent Advances in Understanding Radiation Damage in Reactor Cavity Concrete

    SciTech Connect (OSTI)

    Rosseel, Thomas M; Field, Kevin G; Le Pape, Yann; Remec, Igor; Giorla, Alain B; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has resulted in a renewed focus on long-term aging of materials at nuclear power plants (NPPs) including concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Nuclear Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete (Graves et al., (2014)). Much of the historical mechanical performance data of irradiated concrete (Hilsdorf et al., (1978)) does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure (Kontani et al., (2011)). To address these potential gaps in the knowledge base, the Electric Power Research Institute and Oak Ridge National Laboratory, are working to better understand radiation damage as a degradation mechanism. This paper outlines recent progress toward: 1) assessing the radiation environment in concrete biological shields and defining the upper bound of the neutron and gamma dose levels expected in the biological shield for extended operation, and estimating adsorbed dose, 2) evaluating opportunities to harvest and test irradiated concrete from international NPPs, 3) evaluating opportunities to irradiate prototypical concrete and its components under accelerated neutron and gamma dose levels to establish conservative bounds and inform damage models, 4) developing improved models to enhance the understanding of the effects of radiation on concrete and 5) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge including developing cooperative test programs to improve confidence in data obtained from various concretes and from accelerated irradiation experiments.

  1. IONIZING RADIATION RISKS TO SATELLITE POWER SYSTEMS (SPS) WORKERS

    E-Print Network [OSTI]

    Lyman, J.T.

    2010-01-01

    of carcinogenesis at low-dose radiation. These include: theeffect of low-dose ionizing radiation. Different organs and1980). However, low doses of radiation may accelerate the

  2. Special nuclear material simulation device

    DOE Patents [OSTI]

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  3. Center for Environmental Radiation Studies 1 Texas Tech University

    E-Print Network [OSTI]

    Chesser, Ronald Keith

    and international nuclear safety. Critical Success Factors Critical measures of success shall include regarding nuclear research, nuclear safety, biological effects, and homeland security · Training of graduate

  4. Radiation Damage In Reactor Cavity Concrete

    SciTech Connect (OSTI)

    Field, Kevin G; Le Pape, Yann; Naus, Dan J; Remec, Igor; Busby, Jeremy T; Rosseel, Thomas M; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete [1]. Much of the historical mechanical performance data of irradiated concrete [2] does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure [3]. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  5. Radiation oncogenesis in cell culture

    SciTech Connect (OSTI)

    Borek, C.

    1982-01-01

    This review article examines the oncogenic effects of radiation with emphasis on ionizing radiations. Cell transformation in vitro is examined with respect to culture systems currently used in these studies, initiation and phenotypic expression of transformation and criteria for transformation. The section of radiation oncogenesis in vitro includes ionizing and nonionizing radiation studies and cocarcinogens and modulators of radiogenic transformations.

  6. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    SciTech Connect (OSTI)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-30

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)

  7. Comparison of preparation techniques for nuclear materials for transmission electron microscopy (TEM)

    SciTech Connect (OSTI)

    Aitkaliyeva, Assel; Madden, James W.; Miller, Brandon D; Cole, James I; Gan, Jian

    2015-04-01

    Preparation of highly radioactive and irradiated nuclear fuels and materials for transmission electron microscopy (TEM) is conjoined with a set of unique challenges, including but not limited to personnel radiation exposure and contamination. The paper evaluates three specimen preparation techniques for preparation of irradiated materials and determines which technique yields to the most reliable characterization of radiation damage microstructure. Various specimen preparation artifacts associated with each technique are considered and ways of minimizing these artifacts are addressed.

  8. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  9. Rensselaer Department of Mechanical, Aerospace, and Nuclear Engineering

    E-Print Network [OSTI]

    Linhardt, Robert J.

    NuclEAR sciENcE AND ENgiNEERiNg Nuclear power systems Applied Radiation technologies RadiationRensselaer Department of Mechanical, Aerospace, and Nuclear Engineering ANNUAL REPORT 2013 #12;facts & figures DEpARtMENt of MEchANicAl, AERospAcE, AND NuclEAR ENgiNEERiNg stuDENts 1

  10. REAC/TS Radiation Accident Registry: An Overview

    SciTech Connect (OSTI)

    Doran M. Christensen, DO, REAC /TS Associate Director and Staff Physician Becky Murdock, REAC/TS Registry and Health Physics Technician

    2012-12-12

    Over the past four years, REAC/TS has presented a number of case reports from its Radiation Accident Registry. Victims of radiological or nuclear incidents must meet certain dose criteria for an incident to be categorized as an “accident” and be included in the registry. Although the greatest numbers of “accidents” in the United States that have been entered into the registry involve radiation devices, the greater percentage of serious accidents have involved sealed sources of one kind or another. But if one looks at the kinds of accident scenarios that have resulted in extreme consequence, i.e., death, the greater share of deaths has occurred in medical settings.

  11. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.; Zaider, M.

    1991-05-01

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiotherapy. Current research topics include: oncogenic transformation assays, mutation studies involving interactions between radiation and environmental contaminants, isolation, characterization and sequencing of a human repair gene, characterization of a dominant transforming gene found in C3H 10T1/2 cells, characterize ab initio the interaction of DNA and radiation, refine estimates of the radiation quality factor Q, a new mechanistic model of oncogenesis showing the role of long-term low dose medium LET radiation, and time dependent modeling of radiation induced chromosome damage and subsequent repair or misrepair.

  12. Suggested Courses for ME Students Interested in Nuclear Engineering: *For information on the Nuclear Engineering Minor, see: Nuclear Engineering Program

    E-Print Network [OSTI]

    Virginia Tech

    principles of neutron physics and reactor theory. Introduction to nuclear cross-section data, neutron scattering, nuclear fission, and diffusion theory. Examination of current and next generation nuclear power An introduction to materials for nuclear applications with emphasis on fission reactors. Fundamental radiation

  13. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  14. Electric Power Monthly, August 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  15. Nevada Test Site Radiation Protection Program - Revision 1

    SciTech Connect (OSTI)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  16. Nuclear weapon detection categorization analysis

    SciTech Connect (OSTI)

    NONE

    1997-12-01

    This statement of work is for the Proof of Concept for nuclear weapon categories utility in Arms control. The focus of the project will be to collect, analyze and correlate Intrinsic Radiation (INRAD) calculation results for the purpose of defining measurable signatures that differentiate categories of nuclear weapons. The project will support START III negotiations by identifying categories of nuclear weapons. The categories could be used to clarify sub-limits on the total number of nuclear weapons.

  17. Uncertainty Quantification and Propagation in Nuclear Density...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 97 MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE...

  18. Analysis of Nuclear Reconstitution, Nuclear

    E-Print Network [OSTI]

    Forbes, Douglass

    CHAPTER Analysis of Nuclear Reconstitution, Nuclear Envelope Assembly, and Nuclear Pore Assembly ....................................................................... 180 8.5 Assaying Assembly and Integrity of the Nuclear Envelope................................... 182 8.6 A Nuclear Pore Complex Assembly Assay Using pore-free Nuclear Intermediates

  19. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, Michael A. (Los Alamos, NM); Crowell, John M. (Los Alamos, NM)

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  20. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  1. Numerical simulations for low energy nuclear reactions including direct

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switchFlue Gas StreamsConnectArticle)reversalradiation

  2. Numerical simulations for low energy nuclear reactions including direct

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech Connect Nanomechanical switchFlue Gas

  3. What To Include In The Whistleblower Complaint? | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubic Feet)CompletesResearch Started theto

  4. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  5. Feasibility of a novel approach for fast, economical determination of radiation damage in nuclear reactor cores. [Annual report, November 1, 1992--October 30, 1993

    SciTech Connect (OSTI)

    Was, G.S.

    1993-07-07

    Progress was made in the following areas: radioinduced segregation (modeling and experiment), deformation of irradiated microstructures, stress corrosion cracking of irradiated microstructures, and development of an apparatus to determine the role of deformation on the radiation microstructure in-situ. Materials used were based on Ni-Cr-Fe and 304L.

  6. Handbook of radiation effects

    SciTech Connect (OSTI)

    Holmes-Siedle, A. (ed.) (Radiation Experiments and Monitors, Oxford (United Kingdom) Univ. of West London (United Kingdom)); Adams, L. (ed.) (European Space Agency-ESTEC, Noordwijk (Netherlands). Radiation Effects and Analysis Techniques Unit)

    1993-01-01

    This handbook is intended to serve as a tool for designers of equipment and scientific instruments in cases where they are required to ensure the survival of the equipment in radiation environments. High-technology materials, especially semiconductors and optics, tend to degrade on exposure to radiation in many different ways. Intense high-energy radiation environments are found in nuclear reactors and accelerators, machines for radiation therapy, industrial sterilization, and space. Some engineers have to build equipment which will survive a nuclear explosion from a hostile source. Proper handling of a disaster with radioactive materials requires equipment which depends utterly on semiconductor microelectronics and imaging devices. Thus the technology of radiation-tolerant electronics is an instrument for good social spheres as diverse as disaster planning and the exploration of Mars. In order to design equipment for intense environments like those described above, then degradation from high-energy irradiation must be seen as a basic design parameter. The aim of this handbook is to assist the engineer or student in that thought; to make it possible to write intelligent specifications; to offer some understanding of the complex variety of effects which occur when high-technology components encounter high-energy radiation; and to go thoroughly into the balance of choices of how to alleviate the effects and hence achieve the design aims of the project. Separate abstracts were prepared for 15 chapters of this book.

  7. Radiation doses for Marshall Islands Atolls Affected by U.S. Nuclear Testing:All Exposure Pathways, Remedial Measures, and Environmental Loss of 137Cs

    SciTech Connect (OSTI)

    Robison, W L; Hamilton, T F

    2009-04-20

    The United States conducted 24 nuclear tests at Bikini Atoll with a total yield of 76.8 Megatons (MT). The Castle series produced about 60% of this total and included the Bravo test that was the primary source of contamination of Bikini Island and Rongelap and Utrok Atolls. One of three aerial drops missed the atoll and the second test of the Crossroads series, the Baker test, was an underwater detonation. Of the rest, 17 were on barges on water and 3 were on platforms on an island; they produced most of the contamination of islands at the atoll. There were 42 tests conducted at Enewetak Atoll with a total yield of 31.7 MT (Simon and Robison, 1997; UNSCEAR, 2000). Of these tests, 18 were on a barge over wateror reef, 7 were surface shots, 2 aerial drops, 2 under water detonations, and 13 tower shots on either land or reef. All produced some contamination of various atoll islands. Rongelap Atoll received radioactive fallout as a result of the Bravo test on March 1, 1954 that was part of the Castle series of tests. This deposition was the result of the Bravo test producing a yield of 15 MT, about a factor of three to four greater than the predicted yield that resulted in vaporization of more coral reef and island than expected and in the debris-cloud reaching a much higher altitude than anticipated. High-altitude winds were to the east at the time of detonation and carried the debris-cloud toward Rongelap Atoll. Utrok Atoll also received fallout from the Bravo test but at much lower air and ground-level concentrations than at Rongelap atoll. Other atolls received Bravo fallout at levels below that of Utrok [other common spellings of this island and atoll (Simon, et al., 2009)]. To avoid confusion in reading other literature, this atoll and island are spelled in a variety of ways (Utrik, Utirik, Uterik or Utrok). Dose assessments for Bikini Island at Bikini Atoll (Robison et al., 1997), Enjebi Island at Enewetak Atoll (Robison et al., 1987), Rongelap Island at Rongelap Atoll (Robison et al., 1994; Simon et al., 1997), and Utrok Island at Utrok Atoll (Robison, et al., 1999) indicate that about 95-99% of the total estimated dose to people who may return to live at the atolls today (Utrok Island is populated) is the result of exposure to {sup 137}Cs. External gamma exposure from {sup 137}Cs in the soil accounts for about 10 to 15% of the total dose and {sup 137}Cs ingested during consumption of local food crops such as drinking coconut meat and fluid (Cocos nucifera L.), copra meat and milk, Pandanus fruit, and breadfruit accounts for about 85 to 90%. The other 1 to 2% of the estimated dose is from {sup 90}Sr, {sup 239+240}Pu, and {sup 241}Am. The {sup 90}Sr exposure is primarily through the food chain while the exposure to {sup 239+240}Pu, and {sup 241}Am is primarily via the inhalation pathway as a result of breathing re-suspended soil particles.

  8. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    SciTech Connect (OSTI)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data transmission in place of NSA Type 1 devices.

  9. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. and Co., Aiken, SC . Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. and Co., Aiken, SC . Savannah River Lab.)

    1989-01-01

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  10. Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications

    SciTech Connect (OSTI)

    David L. Chichester; Edward H. Seabury

    2008-08-01

    Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

  11. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  12. A survey of nuclear-related agreements and possibilities for nuclear cooperation in South Asia: Cooperative Monitoring Center Occasional Paper/15

    SciTech Connect (OSTI)

    RAJEN,GAURAV

    2000-04-01

    Several existing nuclear-related agreements already require India and Pakistan, as members, to share information. The agreements are bilateral, regional, and international. Greater nuclear transparency between India and Pakistan could be promoted by first understanding the information flows required by existing agreements. This understanding is an essential step for developing projects that can incrementally advance the sensitivity of the information being shared. This paper provides a survey of existing nuclear-related agreements involving India and Pakistan, and suggests future confidence-building projects using the frameworks provided by these agreements. The Bilateral Agreement on the Prohibition of Attack against Nuclear Reactors and Nuclear Facilities is discussed as a basis for creating further agreements on restricting the use and deployment of nuclear weapons. The author suggests options for enhancing the value of the list of nuclear facilities exchanged annually as a part of this agreement. The International Atomic Energy Agency's regional cooperation agreement among countries in the Asia-Pacific region is an opportunity for greater subregional nuclear cooperation in South Asia. Linking the regional agreement with South Asian environmental cooperation and marine pollution protection efforts could provide a framework for projects involving Indian and Pakistani coastal nuclear facilities. Programs of the Food and Agriculture Organization of the United Nations that use nuclear techniques to increase food and crop production and optimize water management in arid areas also provide similar opportunities for nuclear cooperation. Other frameworks for nuclear cooperation originate from international conventions related to nuclear safety, transportation of nuclear wastes, worker protection against ionizing radiation, and the nondeployment of nuclear weapons in certain areas. The information shared by existing frameworks includes: laws and regulations (including internal inspection procedures that enforce compliance); lists of nuclear facilities; emergency response procedures and available resources; information related to the transportation of nuclear wastes (particularly via shipping); understanding and notification of accidental releases; and radionuclide release data from select coastal facilities. Incremental increases in the sensitivity of the information being shared could strengthen norms for Indian and Pakistani nuclear transparency. This paper suggests seven technology-based Indian and Pakistani nuclear transparency projects for consideration. Existing nuclear-related agreements provide an information-sharing framework within which the projects could occur. Eventually, as confidence increases and new agreements are negotiated, future projects could begin to deal with the accounting of fissile materials and nuclear weapons disposition and control.

  13. Research Areas | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    radiation-dominated HED dynamo, and radiation-dominated reconnection. Nonlinear Optics of Plasmas and Laser-Plasma Interactions Specific areas of interest include, but are...

  14. Nuclear Science & Engineering Monthly Reports | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | Publications and Reports | NSED Monthly Reports SHARE Nuclear Science and Engineering Monthly Reports The Nuclear Science and Engineering Monthly Report includes a...

  15. Radiation Chemistry 2008 Gordon Research Conference - July 6-11, 2008

    SciTech Connect (OSTI)

    David M. Bartels

    2009-05-15

    Radiation Chemistry is chemistry initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create charge pairs and/or free radicals in a medium. The important transients include conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. Effects of radiation span timescales from the energy deposition in femtoseconds, through geminate recombination in picoseconds and nanoseconds, to fast radical chemistry in microseconds and milliseconds, and ultimately to processes like cancer occurring decades later. The radiation sources used to study these processes likewise run from femtosecond lasers to nanosecond accelerators to years of gamma irradiation. As a result the conference has a strong interdisciplinary flavor ranging from fundamental physics to clinical biology. While the conference focuses on fundamental science, application areas highlighted in the present conference will include nuclear power, polymer processing, and extraterrestrial chemistry.

  16. RADIATION SOLID STATE PHYSICS R.F. Konopleva

    E-Print Network [OSTI]

    Titov, Anatoly

    233 RADIATION SOLID STATE PHYSICS R.F. Konopleva The development of the nuclear and nuclear fusion, and the thermonuclear devices. In this connection the "Laboratory of the non-equilibrium electronic processes

  17. Department of Energy Cites Fluor B&W Portsmouth, LLC for Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluor B&W Portsmouth, LLC for Nuclear Safety and Radiation Protection Violations Department of Energy Cites Fluor B&W Portsmouth, LLC for Nuclear Safety and Radiation Protection...

  18. Countries Gasoline Prices Including Taxes

    Gasoline and Diesel Fuel Update (EIA)

    Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

  19. A commentary on the 1995 DOT/NRC amendments to the U.S. nuclear transportation regulations

    SciTech Connect (OSTI)

    Grella, A.

    1996-07-01

    This article discusses the major revisions (1995 DOT/NRC ammendments) to the US Nuclear Transportation regulations and their probable impacts on transportation. Areas covered include the following: the LSA and SCO definitions and packaging; radiation protection programs; mandatory use of SI units; changes an additions to the table of A1/A2 radionuclide values; and additional type B package hypothetical accident parameters.

  20. REGULATIONS AND REQUIREMENTS ASSOCIATED WITH RADIATION SURVEYS AND SITE INVESTIGATIONS1

    E-Print Network [OSTI]

    , special nuclear, and byproduct materials be managed, processed, and used in a manner that protects public Radiation Protection Standards for the Management and Disposal of Spent Nuclear, High-Level and Transuranic Radioactive Wastes (40 CFR 191) ! Nuclear Waste Poli

  1. Sensor Management Problems of Nuclear Detection Tamra Carpenter

    E-Print Network [OSTI]

    ) detection using a fleet of mobile radiation sensors; and 4) data sampling strategies for nuclear detection. The nuclear and radiological materials whose detection is of particular concern are radiation dispersion detection: Border crossings ­ At borders, vehicles move through radiation portal monitors (RPMs

  2. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  3. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  4. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  5. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  6. Time encoded radiation imaging

    DOE Patents [OSTI]

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  7. DOE occupational radiation exposure 1996 report

    SciTech Connect (OSTI)

    1996-12-31

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ``As Low As Reasonably Achievable`` (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources.

  8. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories’ Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organization’s capabilities, facilities, and culture.

  9. Neutralino relic density including coannihilations

    E-Print Network [OSTI]

    Paolo Gondolo; Joakim Edsjo

    1997-11-25

    We give an overview of our precise calculation of the relic density of the lightest neutralino, in which we included relativistic Boltzmann averaging, subthreshold and resonant annihilations, and coannihilation processes with charginos and neutralinos.

  10. Fundamentals of health physics for the radiation-protection officer

    SciTech Connect (OSTI)

    Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

    1983-03-01

    The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

  11. An interactive ontology-driven information system for simulating background radiation and generating scenarios for testing special nuclear materials detection algorithms

    SciTech Connect (OSTI)

    Sorokine, Alexandre; Schlicher, Bob G; Ward, Richard C; Wright, Michael C; Kruse, Kara L

    2015-01-01

    This paper describes an original approach to generating scenarios for the purpose of testing the algorithms used to detect special nuclear materials (SNM) that incorporates the use of ontologies. Separating the signal of SNM from the background requires sophisticated algorithms. To assist in developing such algorithms, there is a need for scenarios that capture a very wide range of variables affecting the detection process, depending on the type of detector being used. To provide such a cpability, we developed an ontology-driven information system (ODIS) for generating scenarios that can be used in creating scenarios for testing of algorithms for SNM detection. The ontology-driven scenario generator (ODSG) is an ODIS based on information supplied by subject matter experts and other documentation. The details of the creation of the ontology, the development of the ontology-driven information system, and the design of the web user interface (UI) are presented along with specific examples of scenarios generated using the ODSG. We demonstrate that the paradigm behind the ODSG is capable of addressing the problem of semantic complexity at both the user and developer levels. Compared to traditional approaches, an ODIS provides benefits such as faithful representation of the users' domain conceptualization, simplified management of very large and semantically diverse datasets, and the ability to handle frequent changes to the application and the UI. The approach makes possible the generation of a much larger number of specific scenarios based on limited user-supplied information

  12. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25

    Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

  13. Multilayer radiation shield

    DOE Patents [OSTI]

    Urbahn, John Arthur (Saratoga Springs, NY); Laskaris, Evangelos Trifon (Niskayuna, NY)

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  14. The radiation chemistry of ionic liquids: A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore »radiation chemistry literature as it affects separations, with these considerations in mind.« less

  15. The radiation chemistry of ionic liquids: a review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based upon a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  16. The radiation chemistry of ionic liquids: A review

    SciTech Connect (OSTI)

    Mincher, Bruce J.; Wishart, James F.

    2014-07-03

    Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquid radiation chemistry literature as it affects separations, with these considerations in mind.

  17. Appendix G. Radiation Appendix G. Radiation

    E-Print Network [OSTI]

    Pennycook, Steve

    energy, is energy in the form of waves or particles moving through space. Visi- ble light, heat, radio in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves waves, and alpha particles are examples of radiation. When people feel warmth from sunlight

  18. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01

    Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

  19. DOE 2012 Occupational Radiation Exposure October 2013

    SciTech Connect (OSTI)

    2012-02-02

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED in

  20. Liquid cooled fiber thermal radiation receiver

    DOE Patents [OSTI]

    Butler, B.L.

    1985-03-29

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  1. Updated: November 2015 Suggested Courses for ME Students Interested in Nuclear Engineering

    E-Print Network [OSTI]

    Virginia Tech

    to radiation protection and reactor accident analysis. Nuclear engineering ethics principles processes of hear generation and transport in nuclear reactors. Heat generation, moderator, reflector, blanket, coolant, control shielding and safety systems; processes such as nuclear fuel

  2. Department of Mechanical, Aerospace, and Nuclear Engineering 1,115 Undergraduates

    E-Print Network [OSTI]

    Linhardt, Robert J.

    NUCLEAR SCIENCE AND ENGINEERING Nuclear Power Systems Applied Radiation Technologies RadiationDepartment of Mechanical, Aerospace, and Nuclear Engineering STUDENTS 1,115 Undergraduates 152 23 Nuclear Engineering 13 DEGREES OFFERED Aeronautical Engineering (B.S., M.Eng., M.S., Ph

  3. Change of Primary Cosmic Radiation Nuclear Conposition in the Energy Range $10^{15} - 10^{17}$ eV as a Result of the Interaction with the Interstellar Cold Background of Light Particles

    E-Print Network [OSTI]

    T. T. Barnaveli; T. T. Barnaveli Jr; N. A. Eristavi; I. V. Khaldeeva

    2003-10-19

    In this paper the updated arguments in favor of a simple model, explaining from the united positions all peculiarities of the Extensive Air Shower (EAS) hadron E_h(E_0) (and muon E_mu(E_0)) component energy fluxes dependence on the primary particle energy E_0 in the primary energy region 10^{15} - 10^{17} eV are represented. These peculiarities have shapes of consequent distinct deeps of a widths dE_h/E_h of the order of 0.2 and of relative amplitudes dL/L of the order of {0.1 - 1.0}, and are difficult to be explained via known astrophysical mechanisms of particle generation and acceleration. In the basis of the model lies the destruction of the Primary Cosmic Radiation (PCR) nuclei on some monochromatic background of interstellar space, consisting of the light particles of the mass in the area of 36 eV (maybe the component of a dark matter). The destruction thresholds of PCR different nuclear components correspond to the peculiarities of E_h(E_0). In this work the results of the recent treatment of large statistical material are analyzed. The experimental results are in good agreement with the Monte-Carlo calculations carried out in the frames of the proposed model.

  4. Standard test method for nondestructive assay of special nuclear material holdup using Gamma-Ray spectroscopic methods

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This test method describes gamma-ray methods used to nondestructively measure the quantity of 235U, or 239Pu remaining as holdup in nuclear facilities. Holdup occurs in all facilities where nuclear material is processed, in process equipment, in exhaust ventilation systems and in building walls and floors. 1.2 This test method includes information useful for management, planning, selection of equipment, consideration of interferences, measurement program definition, and the utilization of resources (1, 2, 3, 4). 1.3 The measurement of nuclear material hold up in process equipment requires a scientific knowledge of radiation sources and detectors, transmission of radiation, calibration, facility operations and error analysis. It is subject to the constraints of the facility, management, budget, and schedule; plus health and safety requirements; as well as the laws of physics. The measurement process includes defining measurement uncertainties and is sensitive to the form and distribution of the material...

  5. Bibliography of marine radiation ecology prepared for the Seabed Program

    SciTech Connect (OSTI)

    Schultz, V.S.

    1980-02-01

    References on the effects of ionizing radiation on aquatic organisms have been obtained from a number of sources. Many were obtained from reviews and other publications. Although the primary purpose of preparing this bibliography was to obtain information related to the nuclear wastes Seabed Disposal Biology Program of Sandia Laboratories, freshwater organisms are included as a matter of convenience and also with the belief that such a bibliography would be of interest to a wider audience than that restricted to the Seabed Program. While compilation of a list in an area broad in scope is often somewhat arbitrary, an attempt was made to reference publications that were related to field or laboratory studies of wild species of plants and animals with respect to radiation effects. Complete information concerning each reference are provided without excessive library search. Since one often finds references listed in the literature that are incompletely cited, it was not always possible to locate the reference for verification or completion of the citation. Such references are included where they appeared to be of possible value. When known, a reference is followed with its Nuclear Science Abstract designation, or rarely other abstract sources. Those desiring additional information should check Nuclear Science Abstracts utilizing the abstract number presented or other abstracting sources. In addition, the language of the article, other than English, is given when it is known to me.

  6. ORISE: REAC/TS Symposium to include sessions on the Fukushima...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEDIA ADVISORY: REACTS International Symposium to include sessions on the Fukushima crisis FOR IMMEDIATE RELEASE Aug. 31, 2011 FY11-42 Who: Radiation Emergency Assistance Center...

  7. History of nuclear technology development in Japan

    SciTech Connect (OSTI)

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  8. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect (OSTI)

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9, influence cataract development and thus radiosensitivity. These observations have direct applicability to various human populations including accidentally exposed individuals, interventional medical workers, astronauts and nuclear plant workers.

  9. Nuclear Astrophysics: CIPANP 2006

    E-Print Network [OSTI]

    W. C. Haxton

    2006-09-03

    I review progress that has been made in nuclear astrophysics over the past few years and summarize some of the questions that remain. Topics selected include solar neutrinos, supernovae (the explosion and associated nucleosynthesis), laboratory astrophysics, and neutron star structure.

  10. Pediatric radiation oncology

    SciTech Connect (OSTI)

    Halperin, E.C.; Kun, L.E.; Constine, L.S.; Tarbell, N.J.

    1989-01-01

    This text covers all aspects of radiation therapy for treatment of pediatric cancer. The book describes the proper use of irradiation in each of the malignancies of childhood, including tumors that are rarely encountered in adult practice. These include acute leukemia; supratentorial brain tumors; tumors of the posterior fossa of the brain and spinal canal; retinoblastoma and optic nerve glioma; neuroblastoma; Hodgkin's disease; malignant lymphoma; Ewing's sarcoma; osteosarcoma; rhabdomyosarcoma; Desmoid tumor; Wilms' tumor; liver and biliary tumors; germ cell and stromal cell tumors of the gonads; endocrine, aerodigestive tract, and breast tumors; Langerhans' cell histiocytosis; and skin cancer and hemangiomas. For each type of malignancy, the authors describe the epidemiology, common presenting signs and symptoms, staging, and proper diagnostic workup. Particular attention is given to the indications for radiation therapy and the planning of a course of radiotherapy, including the optimal radiation dose, field size, and technique.

  11. Nevada National Security Site Radiation Protection Program

    SciTech Connect (OSTI)

    none,

    2013-04-30

    Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statements that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.

  12. Radiation Safety Manual Policies and Procedures

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    - Notification of Nuclear Energy Worker Status 81 APPENDIX IX Liquid Scintillation Counting 82 APPENDIX X TO PROMOTE THE SAFE USE OF RADIOLOGICAL MATERIALS 7 III. TRAINING REQUIREMENTS 9 IV. AUTHORIZATION TO USE APPENDIX XIII ­ Procedures For Using The Nuclear Gauge 101 #12;Radiation Safety Manual ­ Table

  13. Nuclear Science References Database

    E-Print Network [OSTI]

    B. Pritychenko; E. B?ták; B. Singh; J. Totans

    2014-07-08

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

  14. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    SciTech Connect (OSTI)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  15. Major initiatives in materials research at Western include

    E-Print Network [OSTI]

    Christensen, Dan

    , and the growth and formation of new materials. Western is a leader in the study of the interactions of radiationMajor initiatives in materials research at Western include Surface Science Western, Interface of the wide range of materials and biomaterials research within the Faculty of Science and across Western

  16. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  17. Environmental Challenges of Climate-Nuclear Fusion: A Case Study of India

    E-Print Network [OSTI]

    Badrinarayan, Deepa

    2011-01-01

    and safety im- pacts of nuclear expansion, including wasteof lessons from nuclear energy expansion, nations must notThus, global nuclear energy expansion may be inevitable in

  18. RADIATION MONITORING

    E-Print Network [OSTI]

    Thomas, R.H.

    2010-01-01

    Radiation Exposure due to a Boiling Water Reactor Plume fromIN THE VICINITY OF A BOILING WATER REACTOR EXPOSURE RATE

  19. DOE 2010 Occupational Radiation Exposure November 2011

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

    2011-11-11

    This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

  20. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  1. Transactions of the fourth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  2. Transactions of the fifth symposium on space nuclear power systems

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hoover, M.D.

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  3. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  4. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  5. Influence of Extraterrestrial Radiation on Radiation Portal Monitors

    SciTech Connect (OSTI)

    Keller, Paul E.; Kouzes, Richard T.

    2009-06-01

    Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

  6. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect (OSTI)

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  7. Nuclear Matter and Nuclear Dynamics

    E-Print Network [OSTI]

    M Colonna

    2009-02-26

    Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

  8. Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; J. C. Wass; G. M. Teske

    2011-08-01

    As part of the Department of Energy’s Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

  9. Model Action Plan for Nuclear Forensics and Nuclear Attribution

    SciTech Connect (OSTI)

    Dudder, G B; Niemeyer, S; Smith, D K; Kristo, M J

    2004-03-01

    Nuclear forensics and nuclear attribution have become increasingly important tools in the fight against illegal trafficking in nuclear and radiological materials. This technical report documents the field of nuclear forensics and nuclear attribution in a comprehensive manner, summarizing tools and procedures that have heretofore been described independently in the scientific literature. This report also provides national policy-makers, decision-makers, and technical managers with guidance for responding to incidents involving the interdiction of nuclear and radiological materials. However, due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. In fact, there are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Most of the laboratories that have the requisite equipment, personnel, and experience to perform nuclear forensic analysis are participants in the Nuclear Smuggling International Technical Working Group or ITWG (see Section 1.8). Consequently, there is a need to disseminate information on an appropriate response to incidents of nuclear smuggling, including a comprehensive approach to gathering evidence that meets appropriate legal standards and to developing insights into the source and routes of nuclear and radiological contraband. Appendix A presents a ''Menu of Options'' for other Member States to request assistance from the ITWG Nuclear Forensics Laboratories (INFL) on nuclear forensic cases.

  10. Radiation Protection Dosimetry Vol. 99, Nos 14, pp. 227232 (2002)

    E-Print Network [OSTI]

    2002-01-01

    227 Radiation Protection Dosimetry Vol. 99, Nos 1­4, pp. 227­232 (2002) Nuclear Technology been accepted dogma that the deleterious effects of ionising radiation such as mutagenesis and carcino particle in a lifetime. Over the past 10 years there have been many reports on radiation-induced bystander

  11. Radiation Protection Dosimetry Vol. 99, Nos 14, pp. 283286 (2002)

    E-Print Network [OSTI]

    Brenner, David Jonathan

    2002-01-01

    283 Radiation Protection Dosimetry Vol. 99, Nos 1­4, pp. 283­286 (2002) Nuclear Technology ON MICROBEAM PROBES OF CELLULAR RADIATION RESPONSE D. J. Brenner and E. J. Hall Center for Radiological International Work- shop on Microbeam Probes of Cellular Radiation Response, which took place in Stresa, Italy

  12. Radiation Protection Dosimetry Vol. 97, No. 1, pp. 6973 (2001)

    E-Print Network [OSTI]

    Brenner, David Jonathan

    2001-01-01

    69 Radiation Protection Dosimetry Vol. 97, No. 1, pp. 69­73 (2001) Nuclear Technology Publishing BIOMARKERS SPECIFIC TO DENSELY-IONISING (HIGH LET) RADIATIONS D. J. Brenner, N. Okladnikova, P. Hande, L -- There have been several suggestions of biomarkers that are specific to high LET radiation. Such a biomarker

  13. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  14. Nuclear thermal rocket clustering: 1, A summary of previous work and relevant issues

    SciTech Connect (OSTI)

    Buksa, J.J.; Houts, M.G.

    1991-07-14

    A general review of the technical merits of nuclear thermal rocket clustering is presented. A summary of previous analyses performed during the Rover program is presented and used to assess clustering in the context of projected Space Exploration Initiative missions. A number of technical issues are discussed including cluster reliability, engine-out operation, neutronic coupling, shutdown core power generation, shutdown reactivity requirements, reactor kinetics, and radiation shielding. 7 refs., 3 figs., 2 tabs.

  15. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    SciTech Connect (OSTI)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  16. Fusion Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology...

  17. Radiation Center Strategic Plan 2012 Mission, Vision, Goals and Strategies

    E-Print Network [OSTI]

    analysis, imaging technology, and other areas. It will emphasize nuclear energy development activities-term beneficial applications of nuclear science and technology. II. Planning Horizons Three planning horizons of applications of nuclear science and technology. To us this provides a vision that the Radiation Center

  18. Swelling-resistant nuclear fuel

    DOE Patents [OSTI]

    Arsenlis, Athanasios (Hayward, CA); Satcher, Jr., Joe (Patterson, CA); Kucheyev, Sergei O. (Oakland, CA)

    2011-12-27

    A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.

  19. ReseaRch at the University of Maryland Nuclear Safety Research at the University of Maryland

    E-Print Network [OSTI]

    Hill, Wendell T.

    been a complicated rise and fall for nuclear technology. The proliferation of nuclear power plants and nuclear weapons was followed by controversial accidents and regulation. Today, nuclear power is considered that analyze the risks involved in the use of nuclear energy. Understanding and Using Radiation The ionizing

  20. Nuclear Fabrication Consortium

    SciTech Connect (OSTI)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

  1. #include #include

    E-Print Network [OSTI]

    Kessler, Christoph

    ] (where a[n] = +infty). C's * bsearch() can't be used, it requires a[j]==key. */ int findloc( void *key Combine­CRCW BSP­Quicksort * variant by Gerbessiotis/Valiant JPDC 22(1994) * implemented in NestStep­C. */ int N=10; // default value /** findloc(): find largest index j in [0..n­1] with * a[j

  2. United States Environmental Protection Agency Office of Radiation and Indoor Air (6608J) EPA 402-F-12-001 | September 2013 www.epa.gov/radiation/laws/190

    E-Print Network [OSTI]

    United States Environmental Protection Agency Office of Radiation and Indoor Air (6608J) EPA 402-F-12-001 | September 2013 www.epa.gov/radiation/laws/190 "Environmental Radiation Protection Standards discussion about whether to revise the Environmental Radiation Protection Standards for Nuclear Power

  3. Energy Department Invests $67 Million to Advanced Nuclear Technology...

    Broader source: Energy.gov (indexed) [DOE]

    to high priority nuclear energy research challenges, including instrumentation and vacuum drying systems associated with the storage of used nuclear fuel, an integrated...

  4. Introduction to Nuclear Waste Management Nuclear Waste is a type of radioactive waste that is usually the by-product of

    E-Print Network [OSTI]

    Auerbach, Scott M.

    that is usually the by-product of a nuclear technology. -Nuclear Technology includes: -Nuclear ReactorsIntroduction to Nuclear Waste Management Nuclear Waste is a type of radioactive waste -Nuclear Medicine Chemicals Nuclear reactors -Radioactive materials are placed in a reactor vessel

  5. The first stage of BFS integrated system for nuclear materials control and accounting. Final report

    SciTech Connect (OSTI)

    NONE

    1996-09-01

    The BFS computerized accounting system is a network-based one. It runs in a client/server mode. The equipment used in the system includes a computer network consisting of: One server computer system, including peripheral hardware and three client computer systems. The server is located near the control room of the BFS-2 facility outside of the `stone sack` to ensure access during operation of the critical assemblies. Two of the client computer systems are located near the assembly tables of the BFS-1 and BFS-2 facilities while the third one being the Fissile Material Storage. This final report details the following topics: Computerized nuclear material accounting methods; The portal monitoring system; Test and evaluation of item control technology; Test and evaluation of radiation based nuclear material measurement equipment; and The integrated demonstration of nuclear material control and accounting methods.

  6. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    . Papazoglou Energy Technologies & Environmental Impacts A. Stubos Transport Phenomena in Porous Media A Assessment of Electrical Generation Systems I. Kollas SYSTEMS RELIABILITY & INDUSTRIAL SAFETY LABORATORY I Plasma in Tokamak Machines N. Tsois PLASMA PHYSICS LABORATORY N. Tsois Thermal Solar Collectors & Systems

  7. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    Occupational Risk Assessment I.A. Papazoglou Human Reliability Z. Nivolianitou Comparative Consequence.A. Papazoglou Energy Technologies & Environmental Impacts A. Stubos Transport Phenomena in Porous Media A. Belesiotis Thermal Storage V. Belesiotis Solar Distillation - Desalination M. Mathioulakis Solar Air

  8. -LABORATORY OF NUCLEAR MEDICINE AND RADIATION BIOLOGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXuRod Hunt (208)InventorHow to Save(ANL-IN-03-032)

  9. radiation detection | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port m fmProjectImages

  10. LABORATORY OF NUCLEAR MEDICINE AND RADIATION BIOLOGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand Cubic Feet)Multimaterialfor publicever-increasingMEDICINE

  11. RADIATION ONCOLOGY TARGET YOUR FUTURE

    E-Print Network [OSTI]

    Tobar, Michael

    be used to treat almost all cancers anywhere in the body and over half of new cancer patients require. These professions include: · Radiation oncologist - a medical doctor who completes training to specialise

  12. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01

    to Journal of Nuclear Technology. [46] C.J. Hagmann and J.Library for Nuclear Science and Technology,” Nuclear Dataof Standards and Technology daughter nuclear data processing

  13. Nevada Test Site Radiation Protection Program

    SciTech Connect (OSTI)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  14. Human radiation experiments associated with the US Department of Energy and its predecessors

    SciTech Connect (OSTI)

    None

    1995-07-01

    This document contains a listing, description, and selected references for documented human radiation experiments sponsored, supported, or performed by the US Department of Energy (DOE) or its predecessors, including the US Energy Research and Development Administration (ERDA), the US Atomic Energy Commission (AEC), the Manhattan Engineer District (MED), and the Off ice of Scientific Research and Development (OSRD). The list represents work completed by DOE`s Off ice of Human Radiation Experiments (OHRE) through June 1995. The experiment list is available on the Internet via a Home Page on the World Wide Web (http://www.ohre.doe.gov). The Home Page also includes the full text of Human Radiation Experiments. The Department of Energy Roadmap to the Story and the Records (DOE/EH-0445), published in February 1995, to which this publication is a supplement. This list includes experiments released at Secretary O`Leary`s June 1994 press conference, as well as additional studies identified during the 12 months that followed. Cross-references are provided for experiments originally released at the press conference; for experiments released as part of The DOE Roadmap; and for experiments published in the 1986 congressional report entitled American Nuclear Guinea Pigs: Three Decades of Radiation Experiments on US Citizens. An appendix of radiation terms is also provided.

  15. Evaluated Nuclear Data

    SciTech Connect (OSTI)

    Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

    2010-10-01

    This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

  16. X-ray backscatter imaging of nuclear materials

    DOE Patents [OSTI]

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  17. MEASUREMENT AND ANALYSIS OF CIRCUMSOLAR RADIATION

    E-Print Network [OSTI]

    Grether, Donald

    2013-01-01

    data acquisition system. Support facilities at LBL include the Solar Energydata to the atmos- pheric processes that attenuate the solar radiation available to terres- trial solar energy

  18. Nuclear Navy

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This video tells the story of the Navy's development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  19. Nuclear Navy

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This video tells the story of the Navy`s development of nuclear power and its application in long-range submarines and the growing nuclear surface force. Narrated by Frank Blair.

  20. Nuclear Power 

    E-Print Network [OSTI]

    2010-01-01

    be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems...

  1. Nuclear Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Nuclear Safety Division (NSD) which has specific responsibility for managing the development, analysis, review, and approval of non-reactor nuclear facility safety...

  2. Harsh conditions can't contain researchers' efforts to test radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harsh conditions can't contain researchers' efforts to test radiation detection systems | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  3. The development of nuclear energy in the Philippines

    SciTech Connect (OSTI)

    Aleta, C. )

    1992-01-01

    The paper traces the development of nuclear energy in the Philippines and outlines the program on the peaceful uses of nuclear energy in the country as well as the problems and prospects of nuclear energy development. Nuclear power is at a standstill but the other areas of nuclear energy development are underway. The projects on the application of nuclear energy in agriculture, industry, public health and safety, are being pursued. Technology transfer to end users is sometimes hampered by public acceptance issues, such as irradiated food being believed to become radioactive, dislike with anything associated with radiation, and plain inherent fear of nuclear energy.

  4. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  5. Anisotropic conducting films for electromagnetic radiation applications

    DOE Patents [OSTI]

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  6. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  7. Management of National Nuclear Power Programs for assured safety

    SciTech Connect (OSTI)

    Connolly, T.J.

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  8. PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01

    shocked nuclear matter during the compression and expansionand isentropic expansion were valid in nuclear collisions.

  9. Electromagnetic pulse - the fifth factor in the impact of a nuclear explosion

    SciTech Connect (OSTI)

    Not Available

    1986-01-16

    Three ionization zones form during high-altitude nuclear explosions: 1) a short-lived ionization zone in the area of the nuclear explosion; 2) radioactive cloud hovering over the center of the explosion. The cloud consists of ionized volatile products from the explosion and lingers for several hours or even days; and 3) a large zone of increased ionization resulting from gamma and x-ray radiation as well as from neutrons. The zone forms at an altitude of 40 to 70 kilometers and remains for several days. Increased ionization zones have an impact on radio wave propagation and interfere with radio communication as well as the operation of radar stations. Radiation emitted from the increased ionization zone can have an impact on changing the parameters of elements in electronic devices, especially semiconductors. This can in turn interfere with the operation of other equipment, including radio stations, radars, and infrared telescopes, and can also damage this equipment.

  10. Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael Nilsson)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction knowledge for separation of different elements in spent nuclear fuel. Radioanalytical techniques and online

  11. Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson)Nilsson)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction knowledge for separation of different elements in spent nuclear fuel. Radioanalytical techniques and online

  12. Radiation and Reason Why radiation at modest dose rates is quite harmless and current radiation safety regulations are flawed

    E-Print Network [OSTI]

    CERN. Geneva

    2013-01-01

    Data on the impact of ionising radiation on life are examined in the light of evolutionary biology. This comparison confirms that fear of nuclear radiation is not justified by science itself; rather it originates in a failure of public trust in nuclear science, a relic of the international politics of the Cold War era. Current ionisation safety regulations appease this fear but without scientific support and they need fundamental reformulation. This should change the reaction to accidents like Fukushima, the cost of nuclear energy and the application of nuclear technology to the supply of food and fresh water. Such a boost to the world economy would require that more citizens study and appreciate the science involved – and then tell others -- not as much fun as the Higgs, perhaps, but no less important! www.radiationandreason.com

  13. Radiator debris removing apparatus and work machine using same

    DOE Patents [OSTI]

    Martin, Kevin L. (Washburn, IL); Elliott, Dwight E. (Chillicothe, IL)

    2008-09-02

    A radiator assembly includes a finned radiator core and a debris removing apparatus having a compressed air inlet and at least one compressed air outlet configured to direct compressed air through the radiator core. A work machine such as a wheel loader includes a radiator and a debris removing apparatus coupled with on-board compressed air and having at least one pressurized gas outlet configured to direct a gas toward the face of the radiator.

  14. Nondestructive evaluation of nuclear-grade graphite

    SciTech Connect (OSTI)

    Kunerth, D. C.; McJunkin, T. R. [Idaho National Laboratory, P.O. Box 1625, MS 2209, Idaho Falls, ID 83415-2209 (United States)

    2012-05-17

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  15. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  16. Role of Lawrence Livermore National Laboratory in the Laboratory to Laboratory Nuclear Materials Protection, Control and Accounting (MPC&A) Program

    SciTech Connect (OSTI)

    Blasy, J.A.; Koncher, T.R.; Ruhter, W.D.

    1995-05-02

    The Lawrence Livermore National Laboratory (LLNL) is participating in a US Department of Energy sponsored multi-laboratory cooperative effort with the Russian Federation nuclear institutes to reduce risks of nuclear weapons proliferation by strengthening systems of nuclear materials protection, control, and accounting in both countries. This program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (MPC&A) Program and it is designed to complement other US-Russian MPC&A programs such as the government-to-govermment (NunnLugar) programs. LLNL`s role in this program has been to collaborate with various Russian institutes in several areas. One of these is integrated safeguards and security planning and analysis, including the performing of vulnerability assessments. In the area of radiation measurements LLNL is cooperating with various institutes on gamma-ray measurement and analysis techniques for plutonium and uranium accounting. LLNL is also participating in physical security upgrades including entry control and portals.

  17. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    The Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability (MC&A) program within the U.S. Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), and for DOE owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). Admin Chg 3, dated 5-15-15 supersedes Admin Chg 2.

  18. Three- and Four-Body Scattering Calculations including the Coulomb Force

    E-Print Network [OSTI]

    A. Deltuva

    2009-01-17

    The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.

  19. A Physically-Based Estimate of Radiative Forcing by Anthropogenic...

    Office of Scientific and Technical Information (OSTI)

    Predicted aerosol species include sulfate, organic and black carbon, soil dust, and sea salt. The models use physically-based treatments of aerosol radiative properties (including...

  20. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  1. DETECTORS FOR RADIATION DOSIMETRY

    E-Print Network [OSTI]

    Perez-Mendez, V.

    2010-01-01

    I. Applications of Radiation Detectors 1) X-Rays, Gammaof the Conference DETECTORS FOR RADIATION DOSIMETRY VictorT E D LBL9651 DETECTORS FOR RADIATION DOSIMETRY - DISCLAIM*

  2. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Burger, Arnold (Nashville, TN); Mandal, Krishna C. (Ashland, MA)

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  3. Scientific Solutions to Nuclear Waste Environmental Challenges

    SciTech Connect (OSTI)

    Johnson, Bradley R.

    2014-01-30

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They were then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount of time it takes for one-half of the material to undergo radioactive decay.) In general, the ideal material would need to be durable for approximately 10 half-lives to allow the activity to decay to negligible levels. However, the potential health effects of each radionuclide vary depending on what type of radiation is emitted, the energy of that emission, and the susceptibility for the human body to accumulate and concentrate that particular element. Consequently, actual standards tend to be based on limiting the dose (energy deposited per unit mass) that is introduced into the environment. The Environmental Protection Agency (EPA) has the responsibility to establish standards for nuclear waste disposal to protect the health and safety of the public. For example, the Energy Policy Act of 1992 directed the EPA to establish radiation protection standards for the Yucca Mountain geologic repository for nuclear wastes. The standards for Yucca Mountain were promulgated in 2008, and limit the dose to 15 millirem per year for the first 10,000 years, and 100 milirem per year between 10,000 years and 1 million years (40 CFR Part 197; http://www.epa.gov/radiation/yucca/2008factsheet.html). So, the challenge is two-fold: (1) develop a material (a waste form) that is capable of immobilizing the waste over geologic time scales, and (2) develop a process to convert the radioactive sludge in the tanks into this durable waste form material. Glass: Hard, durable, inert, and with infinite chemical versatility Molten glass is a powerful solvent liquid, which can be designed to dissolve almost anything. When solidified, it can be one of the most chemically inert substances known to man. Nature's most famous analogue to glass is obsidian, a vitreous product of volcanic activity; formations over 17 million years old have been found. Archaeologists have found man-made glass specimens that are five thousand years old.

  4. NRC - regulator of nuclear safety

    SciTech Connect (OSTI)

    1997-05-01

    The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

  5. Rules and Regulations for Control of Ionizing Radiation (Arkansas)

    Broader source: Energy.gov [DOE]

    The Rules and Regulations for Control of Ionizing Radiation are the Arkansas state laws made in accordance the federal Nuclear Regulatory Commission Rules. Any contractor with the US DOE or US...

  6. Laboratory Mesurements in Nuclear Astrophysics

    E-Print Network [OSTI]

    Moshe Gai

    1994-05-18

    After reviewing some of the basic concepts, nomenclatures and parametrizations of Astronomy, Astrophysics and Cosmology, we introduce a few central problems in Nuclear Astrophysics, including the hot-CNO cycle, helium burning in massive stars, and solar neutrino's. We demonstarte that SECONDARY (RADIOACTIVE) NUCLEAR BEAMS allow for considerable progress on these problems.

  7. 2013 Nuclear Workforce Development ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Workforce Development Day Tuesday, October 22, 2013 Nuclear Medicine Topics: Pathways of Practice in Nuclear Medicine Radiopharmacy Patient Care ...

  8. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-26

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Supersedes DOE O 457.1 and DOE M 457.1-1.

  9. Diffractive laser beam homogenizer including a photo-active material and method of fabricating the same

    DOE Patents [OSTI]

    Bayramian, Andy J; Ebbers, Christopher A; Chen, Diana C

    2014-05-20

    A method of manufacturing a plurality of diffractive optical elements includes providing a partially transmissive slide, providing a first piece of PTR glass, and directing first UV radiation through the partially transmissive slide to impinge on the first piece of PTR glass. The method also includes exposing predetermined portions of the first piece of PTR glass to the first UV radiation and thermally treating the exposed first piece of PTR glass. The method further includes providing a second piece of PTR glass and directing second UV radiation through the thermally treated first piece of PTR glass to impinge on the second piece of PTR glass. The method additionally includes exposing predetermined portions of the second piece of PTR glass to the second UV radiation, thermally treating the exposed second piece of PTR glass, and repeating providing and processing of the second piece of PTR glass using additional pieces of PTR glass.

  10. Multiple-mode radiation detector

    DOE Patents [OSTI]

    Claus, Liam D.; Derzon, Mark S.; Kay, Randolph R.; Bauer, Todd; Trotter, Douglas Chandler; Henry, Michael David

    2015-08-25

    An apparatus for detecting radiation is provided. In embodiments, at least one sensor medium is provided, of a kind that interacts with radiation to generate photons and/or charge carriers. The apparatus also includes at least one electrode arrangement configured to collect radiation-generated charge from a sensor medium that has been provided. The apparatus also includes at least one photodetector configured to produce an electrical output in response to photons generated by radiation in such a sensor medium, and an electronic circuit configured to produce an output that is jointly responsive to the collected charge and to the photodetector output. At least one such electrode arrangement, at least one such photodetector, and at least one such sensor medium are combined to form an integral unit.

  11. Meeting Report--NASA Radiation Biomarker Workshop

    SciTech Connect (OSTI)

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  12. DOE O 440.1 B, Worker Protection Program for DOE (Including the...

    Energy Savers [EERE]

    DOE O 440.1 B, Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees DOE O 440.1 B, Worker Protection Program for DOE...

  13. Prices include compostable serviceware and linen tablecloths

    E-Print Network [OSTI]

    California at Davis, University of

    APPETIZERS Prices include compostable serviceware and linen tablecloths for the food tables.ucdavis.edu. BUTTERNUT SQUASH & BLACK BEAN ENCHILADAS #12;BUFFETS Prices include compostable serviceware and linen

  14. Nuclear shadowing

    E-Print Network [OSTI]

    N. Armesto

    2006-07-05

    The phenomenon of shadowing of nuclear structure functions at small values of Bjorken-$x$ is analyzed. First, multiple scattering is discussed as the underlying physical mechanism. In this context three different but related approaches are presented: Glauber-like rescatterings, Gribov inelastic shadowing and ideas based on high-density Quantum Chromodynamics. Next, different parametrizations of nuclear partonic distributions based on fit analysis to existing data combined with Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution, are reviewed. Finally, a comparison of the different approaches is shown, and a few phenomenological consequences of nuclear shadowing in high-energy nuclear collisions are presented.

  15. Nuclear Cardiology Objectives Understand the principles of myocardial perfusion and blood flow, factors

    E-Print Network [OSTI]

    Ford, James

    Nuclear Cardiology Objectives Knowledge · Understand the principles of myocardial perfusion in nuclear imaging, including collimation, resolution, contrast, localization, noise, ECT, SPECT, PET, image. · Know the differences between the various radioisotopes used in nuclear cardiology, including

  16. A review of carbide fuel corrosion for nuclear thermal propulsion applications

    SciTech Connect (OSTI)

    Pelaccio, D.G.; El-Genk, M.S. [Univ. of New Mexico, Albuquerque, NM (United States). Inst. for Space Nuclear Power Studies; Butt, D.P. [Los Alamos National Lab., NM (United States)

    1993-12-01

    At the operation conditions of interest in nuclear thermal propulsion reactors, carbide materials have been known to exhibit a number of life limiting phenomena. These include the formation of liquid, loss by vaporization, creep and corresponding gas flow restrictions, and local corrosion and fuel structure degradation due to excessive mechanical and/or thermal loading. In addition, the radiation environment in the reactor core can produce a substantial change in its local physical properties, which can produce high thermal stresses and corresponding stress fractures (cracking). Time-temperature history and cyclic operation of the nuclear reactor can also accelerate some of these processes. The University of New Mexico`s Institute for Space Nuclear Power Studies, under NASA sponsorship has recently initiated a study to model the complicated hydrogen corrosion process. In support of this effort, an extensive review of the open literature was performed, and a technical expert workshop was conducted. This paper summarizes the results of this review.

  17. Cellular telephone-based radiation detection instrument

    DOE Patents [OSTI]

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  18. Compositions and methods for treating nuclear fuel

    DOE Patents [OSTI]

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2014-01-28

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  19. Compositions and methods for treating nuclear fuel

    DOE Patents [OSTI]

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  20. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01

    96] G.F. Knoll, “Radiation detection and measurement,” Johnnial challenge in radiation detection applications. From thebremsstrahlung radiation contributes to the detection rate,

  1. PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01

    University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

  2. Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

  3. Nuclear Resonance Fluorescence for Nuclear Materials Assay

    E-Print Network [OSTI]

    Quiter, Brian Joseph

    2010-01-01

    130] International Nuclear Safety Center, Available onlinefrom Inter- national Nuclear Safety Center (INSC) website(from International Nuclear Safety Center (INSC) website(

  4. Aging and Radiation Effects in Stockpile Electronics

    SciTech Connect (OSTI)

    Hartman, E.F.

    1999-03-25

    It is likely that aging is affecting the radiation hardness of stockpile electronics, and we have seen apparent examples of aging that affects the electronic radiation hardness. It is also possible that low-level intrinsic radiation that is inherent during stockpile life will damage or in a sense age electronic components. Both aging and low level radiation effects on radiation hardness and stockpile reliability need to be further investigated by using both test and modeling strategies that include appropriate testing of electronic components withdrawn from the stockpile.

  5. Nuclear Spins in Nanostructures

    E-Print Network [OSTI]

    W. A. Coish; J. Baugh

    2009-07-22

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through "state narrowing". These results demonstrate the richness of this physical system and promise many new mysteries for the future.

  6. United States-Russian workshop on the stochastic health effects of radiation

    SciTech Connect (OSTI)

    1992-12-31

    In August 1988, two years after the Chernobyle accident, the United States and the Soviet Union signed an agreement to sponsor a Joint coordinating Committee on Civilian Nuclear Reactor Safety, (JCCCNRS). The Soviet Union agreed to provide some information on late effects of radiation exposures and to attempt to add some new insights into low dose and low dose rate radiation consequences. At that time, it had just been revealed that significant radiation exposures had occurred in the South Ural Mountains, associated with the early years of operation of the MAYAK nuclear complex. The need to be able to better predict the long term consequences of overexposures, such as occurred with the Chernobyl accident, was a major factor in organizing this workshop. We decided to invite a small number of experts from the Soviet Union, who had direct knowledge of the situation. A small group of American experts was invited to help in a discussion of the state of knowledge of continual low level exposure. The experts and expertise included: Aspects of bask theoretical radiobiological models, studies on experimental animals exposed to chronic or fractionated external or internal radiation, studies on populations exposed to chronic intake and continual exposures, workers exposed to low or high continual levels of radiation. The intent was to begin a dialog on the issue of a better understanding of the dose rate effect in humans. No detailed conclusions could be reached at this first interaction between out two countries, but a model was prepared which seems to support a range of what are known as low dose and dose rate effectiveness factors. A beginning of an evaluation of the role of radiation dose rate on leukemia risk was also accomplished.

  7. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    and issues related to the waste- management system, including transportation of spent nuclear fuel and highcon202vf UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300, the Nuclear Waste Technical Review Board (Board) submits its second report of 2003 in accordance

  8. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-03-13

    To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1B. Canceled by DOE O 425.1D

  9. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-21

    To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1A. Canceled by DOE O 425.1C.

  10. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE 5480.31. Canceled by DOE O 425.1A.

  11. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  12. Thesis Proposal Electromagnetic Ion Cyclotron (EMIC) Waves for Radiation Belt

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Thesis Proposal Electromagnetic Ion Cyclotron (EMIC) Waves for Radiation Belt Remediation particles of the Van Allen belts coming from cosmic rays, solar storms, high altitude nuclear explosions regions, as well as an obstacle to exploration and development of space technologies. The "Radiation Belt

  13. Radiative Transfer in Interacting Media J.Kenneth Shultis

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    can a ect the uid ow e.g., shock phenomena, energy loss from thermonuclear plasmas, combustion studies accelerated by neutron and high-energy photon transport methods for both military and civilian applications of nuclear energy. Today, radiative transport plays an important role in many other areas besides nuclear

  14. MARS15 DPA Update RaDIATE Meeting

    E-Print Network [OSTI]

    McDonald, Kirk

    energy Td (irregular function of atomic number) and displacement efficiency K(T). RaDIATE Meeting Energy Loss for Device Applications", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 6, DECEMBER 2009.J. Boschini et al., "Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up

  15. Radiative recoil correction to the Lamb shift Krzysztof Pachucki

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    analyzed the nuclear self­energy contribution and the corresponding definition of the nuclear mean square of the radiative recoil correction to hydrogenic energy levels in m 2 M ff (Z ff) 5 n 3 order is presented. The method bases on evaluation of the proton kinetic energy term on the electron state. The obtained result

  16. Nuclear Parton Distributions and the Drell-Yan Reaction

    E-Print Network [OSTI]

    S. A. Kulagin; R. Petti

    2015-12-10

    We discuss the nuclear parton distribution functions on the basis of our recently developed semi-microscopic model, which takes into account a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents and off-shell corrections to bound nucleon distributions as well as nuclear shadowing effect. We also discuss application to the nuclear Drell-Yan process and compare our predictions with data from the E772 and E866 experiments.

  17. Nuclear Parton Distributions and the Drell-Yan Reaction

    E-Print Network [OSTI]

    Kulagin, S A

    2015-01-01

    We discuss the nuclear parton distribution functions on the basis of our recently developed semi-microscopic model, which takes into account a number of nuclear effects including Fermi motion and nuclear binding, nuclear meson-exchange currents and off-shell corrections to bound nucleon distributions as well as nuclear shadowing effect. We also discuss application to the nuclear Drell-Yan process and compare our predictions with data from the E772 and E866 experiments.

  18. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts on GlobalRachel Ruggirello RachelRadiation DrySafety Home

  19. Integrated Molecular Analysis Indicates Undetectable Change in DNA Damage in Mice after Continuous Irradiation at ~ 400-fold Natural Background Radiation

    E-Print Network [OSTI]

    Olipitz, Werner

    Background: In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation.

  20. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  1. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  2. Nuclear Chemistry Division annual report FY83

    SciTech Connect (OSTI)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  3. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    To prescribe Department of Energy (DOE) requirements, including those for the National Nuclear Security Administration (NNSA), for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). DOE N 251.60, dated 11-19-04, extends this directive until 11-19-05. Cancels DOE O 474.1.

  4. Climate Change, Nuclear Power and Nuclear

    E-Print Network [OSTI]

    Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters Rob Goldston MIT IAP biomass wind hydro coal CCS coal nat gas CCS nat gas nuclear Gen IV nuclear Gen III nuclear Gen II 5-1 Electricity Generation: CCS and Nuclear Power Technology Options Available Global Electricity Generation WRE

  5. Nuclear Counterterrorism

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-02-07

    The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

  6. Key Response Planning Factors for the Aftermath of Nuclear Terrorism

    SciTech Connect (OSTI)

    Buddemeier, B R; Dillon, M B

    2009-01-21

    Despite hundreds of above-ground nuclear tests and data gathered from Hiroshima and Nagasaki, the effects of a ground-level, low-yield nuclear detonation in a modern urban environment are still the subject of considerable scientific debate. Extensive review of nuclear weapon effects studies and discussions with nuclear weapon effects experts from various federal agencies, national laboratories, and technical organizations have identified key issues and bounded some of the unknowns required to support response planning for a low-yield, ground-level nuclear detonation in a modern U.S. city. This study, which is focused primarily upon the hazards posed by radioactive fallout, used detailed fallout predictions from the advanced suite of three-dimensional (3-D) meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory (LLNL), including extensive global Key Response Planning Factors for the Aftermath of Nuclear Terrorism geographical and real-time meteorological databases to support model calculations. This 3-D modeling system provides detailed simulations that account for complex meteorology and terrain effects. The results of initial modeling and analysis were presented to federal, state, and local working groups to obtain critical, broad-based review and feedback on strategy and messaging. This effort involved a diverse set of communities, including New York City, National Capitol Regions, Charlotte, Houston, Portland, and Los Angeles. The largest potential for reducing casualties during the post-detonation response phase comes from reducing exposure to fallout radiation. This can be accomplished through early, adequate sheltering followed by informed, delayed evacuation.B The response challenges to a nuclear detonation must be solved through multiple approaches of public education, planning, and rapid response actions. Because the successful response will require extensive coordination of a large number of organizations, supplemented by appropriate responses by local responders and the general population within the hazard zones, regional planning is essential to success. The remainder of this Executive Summary provides summary guidance for response planning in three areas: (1) Public Protection Strategy details the importance of early, adequate shelter followed by informed evacuation. (2) Responder Priorities identify how to protect response personnel, perform regional situational assessment, and support public safety. (3) Key Planning Considerations refute common myths and provide important information on planning how to respond in the aftermath of nuclear terrorism.

  7. Collection and analysis of environmental radiation data using a desktop computer

    SciTech Connect (OSTI)

    Gogolak, C V

    1982-04-01

    A portable instrumentation sytem using a Hewlett-Packard HP-9825 desktop computer for the collection and analysis of environmental radiation data is described. Procedures for the transmission of data between the HP-9825 and various nuclear counters are given together with a description of the necessary hardware and software. Complete programs for the analysis of Ge(Li) and NaI(Tl) gamma-ray spectra, high pressure ionization chamber monitor data, /sup 86/Kr monitor data and air filter sample alpha particle activity measurements are presented. Some utility programs, intended to increase system flexibility, are included.

  8. Nuclear Science and Engineering

    E-Print Network [OSTI]

    Bahler, Dennis R.

    Nuclear Science and Engineering Education Sourcebook 2014 American Nuclear Society US Department of Energy #12;Nuclear Science & Engineering Education Sourcebook 2014 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear

  9. Nudat: Nuclear Structure and Decay Data from the National Nuclear Data Center (NNDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NuDat allows users to search and plot nuclear structure and decay data interactively. NuDat was developed by the National Nuclear Data Center (NNDC)but utilizes contributions from physicists around the world. It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Users can search for nuclear level properties (energy, half-life, spinparity), gamma-ray information (energy, intensity, multipolarity, coincidences), radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by NuDat 2 can be viewed in tables, level schemes and an interactive chart of nuclides.

  10. Survivable pulse power space radiator

    DOE Patents [OSTI]

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  11. nuclear navy

    National Nuclear Security Administration (NNSA)

    7%2A en Powering the Nuclear Navy http:www.nnsa.energy.govourmissionpoweringnavy

    Page...

  12. Nuclear Celebrations

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-11-01

    Broadcast Transcript: The North Korean situation is frightening for many reasons but none, perhaps, more eerily disturbing than images of North Koreans celebrating in brightly colored costumes just days after the nation's underground nuclear test...

  13. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  14. Nuclear Data

    SciTech Connect (OSTI)

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  15. Supporting Organizations | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Engineering Fusion & Materials for Nuclear Systems Nuclear Science Home | Science & Discovery | Nuclear Science | Supporting Organizations SHARE Supporting...

  16. Nuclear Materials Science:Materials Science Technology:MST-16...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Materials Science (MST-16) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation...

  17. Nuclear Science/Nuclear Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work FeaturedNuclearNP Home NuclearNuclear

  18. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  19. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  20. FY2008 Report on GADRAS Radiation Transport Methods.

    SciTech Connect (OSTI)

    Mattingly, John K.; Mitchell, Dean James; Harding, Lee; Varley, Eric S.; Hilton, Nathan R.

    2008-10-01

    The primary function of the Gamma Detector Response and Analysis Software (GADRAS) is the solution of inverse radiation transport problems, by which the con-figuration of an unknown radiation source is inferred from one or more measured radia-tion signatures. GADRAS was originally developed for the analysis of gamma spec-trometry measurements. During fiscal years 2007 and 2008, GADRAS was augmented to implement the simultaneous analysis of neutron multiplicity measurements. This report describes the radiation transport methods developed to implement this new capability. This work was performed at the direction of the National Nuclear Security Administration's Office of Nonproliferation Research and Development. It was executed as an element of the Proliferation Detection Program's Simulation, Algorithm, and Modeling element. Acronyms BNL Brookhaven National Laboratory CSD Continuous Slowing-Down DU depleted uranium ENSDF Evaluated Nuclear Structure Data Files GADRAS Gamma Detector Response and Analysis Software HEU highly enriched uranium LANL Los Alamos National Laboratory LLNL Lawrence Livermore National Laboratory NA-22 Office of Nonproliferation Research and Development NNDC National Nuclear Data Center NNSA National Nuclear Security Administration ODE ordinary differential equation ONEDANT One-dimensional diffusion accelerated neutral particle transport ORNL Oak Ridge National Laboratory PARTISN Parallel time-dependent SN PDP Proliferation Detection Program RADSAT Radiation Scenario Analysis Toolkit RSICC Radiation Safety Information Computational Center SAM Simulation, Algorithms, and Modeling SNL Sandia National Laboratories SNM special nuclear material ToRI Table of Radioactive Isotopes URI uniform resource identifier XML Extensible Markup Language

  1. Nuclear technologies for Moon and Mars exploration

    SciTech Connect (OSTI)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  2. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    SciTech Connect (OSTI)

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  3. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  4. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, Hal O. (Berkeley, CA); Martin, Donn C. (Berkeley, CA); Lampton, Michael L. (Berkeley, CA)

    1983-01-01

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  5. Appendix G. Radiation Appendix G. Radiation G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    , radio waves, and alpha particles are examples of radiation. When people feel warmth from sunlight in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves, or radiant energy, is energy in the form of waves or particles moving through space. Visi- ble light, heat

  6. Appendix F. Radiation Appendix F. Radiation F-3

    E-Print Network [OSTI]

    Pennycook, Steve

    energy, is energy in the form of waves or particles moving through space. Visi- ble light, heat, radio in the form of electromagnetic waves. Examples include gamma rays, ultraviolet light, and radio waves waves, and alpha particles are examples of radiation. When people feel warmth from sunlight

  7. Mercier et al. , November 2003 BIOLOGICAL DETECTION OF LOW RADIATION DOSES

    E-Print Network [OSTI]

    Antoniadis, Anestis

    Mercier et al. , November 2003 1 BIOLOGICAL DETECTION OF LOW RADIATION DOSES BY COMBINING RESULTS cerevisiae growing in the absence and continuous presence of varying low doses of radiation. Global and the accumulation of nuclear waste raise questions concerning the possible harmful effects of low doses of radiation

  8. Radiation Protection Dosimetry Vol. 97, No. 3, pp. 279-285 (2001)

    E-Print Network [OSTI]

    Brenner, David Jonathan

    2001-01-01

    1 Radiation Protection Dosimetry Vol. 97, No. 3, pp. 279-285 (2001) Nuclear Technology Publishing Topics under Debate IS THE LINEAR-NO-THRESHOLD HYPOTHESIS APPROPRIATE FOR USE IN RADIATION PROTECTION? D protection than the basic assumptions regarding the actions of ionising radiation at low levels. As well

  9. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect (OSTI)

    Sanjoy Mukhopadhyay

    2007-08-31

    Recently, the U.S. Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS’s requirements in terms of sensitivity, resolution, response time and reach back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron’s identiFINDER™, which primarily uses sodium iodide crystals (3.18-cm x 2.54-cm cylinders) as gamma detector, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack™ that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity (comparable to that of a 7.62-cm x 7.62-cm sodium iodide crystal at low gamma energy ranging from 30 keV to 3,000 keV), better resolution (< 3.0 percent at 662 keV), faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system auto triggers saving of relevant spectral data and software-triggers the digital camera to take a snapshot. The spectral data including in situ analysis and the imagery data will be packaged in a suitable format and sent to a command post using an imbedded cell phone.

  10. Field Deployable Gamma Radiation Detectors for DHS Use

    SciTech Connect (OSTI)

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and software-triggers the digital camera to take a snapshot. The spectral data including in situ analysis and the imagery data will be packaged in a suitable format and sent to a command post using an imbedded cell phone.

  11. Absorber for terahertz radiation management

    DOE Patents [OSTI]

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  12. Nuclear Reactors and Technology

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  13. RADIATION EFFECTS IN MATERIAL MICROSTRUCTURE.

    SciTech Connect (OSTI)

    SIMOS,N.

    2007-05-30

    Next generation nuclear power systems, high-power particle accelerators and space technology will inevitably rely on higher performance materials that will be able to function in the extreme environments of high irradiation, high temperatures, corrosion and stress. The ability of any material to maintain its functionality under exposure to harsh conditions is directly linked to the material structure at the nano- and micro-scales. Understanding of the underlying processes is key to the success of such undertakings. This paper presents experimental results of the effects of radiation exposure on several unique alloys, composites and crystals through induced changes in the physio-mechanical macroscopic properties.

  14. Nuclear Activity in Nearby Galaxies

    E-Print Network [OSTI]

    Luis C. Ho

    2008-03-15

    A significant fraction of nearby galaxies show evidence of weak nuclear activity unrelated to normal stellar processes. Recent high-resolution, multiwavelength observations indicate that the bulk of this activity derives from black hole accretion with a wide range of accretion rates. The low accretion rates that typify most low-luminosity active galactic nuclei induce significant modifications to their central engine. The broad-line region and obscuring torus disappear in some of the faintest sources, and the optically thick accretion disk transforms into a three-component structure consisting of an inner radiatively inefficient accretion flow, a truncated outer thin disk, and a jet or outflow. The local census of nuclear activity supports the notion that most, perhaps all, bulges host a central supermassive black hole, although the existence of active nuclei in at least some late-type galaxies suggests that a classical bulge is not a prerequisite to seed a nuclear black hole.

  15. Materials and Sensor R&D to Transform the Nuclear Stockpile:...

    Office of Scientific and Technical Information (OSTI)

    the nuclear stockpile. Risks include material supply issues, ever-increasing lifecycle costs, and loss of technical expertise across the weapons complex. For example, non-nuclear...

  16. Review Article: The Effects of Radiation Chemistry on Solvent Extraction 3: A Review of Actinide and Lanthanide Extraction

    SciTech Connect (OSTI)

    Bruce J. Mincher; Giuseppe Modolo; Stephen P. Mezyk

    2009-12-01

    The partitioning of the long-lived ?-emitters and the high-yield fission products from dissolved nuclear fuel is a key component of processes envisioned for the safe recycling of nuclear fuel and the disposition of high-level waste. These future processes will likely be based on aqueous solvent extraction technologies for light water reactor fuel and consist of four main components for the sequential separation of uranium, fission products, group trivalent actinides and lanthanides, and then trivalent actinides from lanthanides. Since the solvent systems will be in contact with highly radioactive solutions, they must be robust toward radiolytic degradation in an irradiated mixed organic, aqueous acidic environment. Therefore, an understanding of their radiation chemistry is important to the design of a practical system. In the first paper in this series we reviewed the radiation chemistry of irradiated aqueous nitric acid and the tributyl phosphate ligand for uranium extraction in the first step of these extractions. In the second, we reviewed the radiation chemistry of the ligands proposed for use in the extraction of cesium and strontium fission products. Here, we review the radiation chemistry of the ligands that might be used in the third step in the series of separations, for the group extraction of the lanthanides and actinides. This includes traditional organophosphorous reagents such as CMPO and HDEHP, as well as novel reagents such as the amides and diamides currently being investigated.

  17. Validated Models for Radiation Response and Signal Generation in Scintillators: Final Report

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Van Ginhoven, Renee M.; Wang, Zhiguo; Prange, Micah P.; Wu, Dangxin

    2014-12-01

    This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” (Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project was divided into four tasks: 1) Electronic response functions (ab initio data model) 2) Electron-hole yield, variance, and spatial distribution 3) Ab initio calculations of information carrier properties 4) Transport of electron-hole pairs and scintillation efficiency Detailed information on the results obtained in each of the four tasks is provided in this Final Report. Furthermore, published peer-reviewed articles based on the work carried under this project are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

  18. Reports to the DOE Nuclear Data Committee

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    The report in this document were submitted to the Department of Energy, Nuclear Data Committee (DOE-NDC) in April 1988. The reporting laboratories are those with a substantial program for the measurement of neutron and nuclear cross sections of relevance to the US applied nuclear energy program. Appropriate subjects are microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent are included; charged-particle cross sections where relevant to developing and testing nuclear models; gamma ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs; and proton and alpha-particle cross sections, at energies of up to 1 GeV, which are of interest to the space program.

  19. Three-dimensional, position-sensitive radiation detection

    DOE Patents [OSTI]

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  20. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    SciTech Connect (OSTI)

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power.

  1. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  2. Extruded plastic scintillator including inorganic powders

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  3. Radiation Control (Virginia)

    Broader source: Energy.gov [DOE]

    The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

  4. RADIATIVE AND PASSIVE COOLING

    E-Print Network [OSTI]

    Martin, M.

    2011-01-01

    Ext. 6782 Radiative and Passive Cooling Marlo Martin andof the Second Nation- al Passive Solar Conference (owned rights. ,I I RADIATIVE AND PASSIVE COOLING* LAIVRENCE

  5. Standard Guide for Radiation Protection Program for Decommissioning Operations

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  6. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    SciTech Connect (OSTI)

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-12-26

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  7. NUCLEAR PROXIMITY FORCES

    E-Print Network [OSTI]

    Randrup, J.

    2011-01-01

    One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

  8. Nuclear Waste: Forever Contaminated?

    E-Print Network [OSTI]

    Wang, Andrew

    2015-01-01

    Impacts of the Fukushima nuclear power plants on marineAccident at the Chernobyl Nuclear Power Plant. Epidemiologicand projected nuclear power. Environ. Sci. Technol. , 47,

  9. Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Reports News and Awards Supporting Organizations Home | Science & Discovery | Nuclear Science Nuclear Science | Nuclear Science SHARE In World War II's Manhattan Project,...

  10. Nuclear Waste: Forever Contaminated?

    E-Print Network [OSTI]

    Wang, Andrew

    2015-01-01

    Impacts of the Fukushima nuclear power plants on marineBeyond Fukushima: Disasters, nuclear energy, and energy law.Nuclear Energy, and Energy Law (December 20, 2011). Brigham

  11. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  12. Nuclear Reactors and Technology; (USA)

    SciTech Connect (OSTI)

    Cason, D.L.; Hicks, S.C.

    1991-01-01

    Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on EDB and Nuclear Science Abstracts (NSA) database. Current information, added daily to EDB, is available to DOE and its contractors through the DOE integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user's needs.

  13. Nuclear Reactions

    E-Print Network [OSTI]

    C. A. Bertulani

    2010-07-14

    Nuclear reactions generate energy in nuclear reactors, in stars, and are responsible for the existence of all elements heavier than hydrogen in the universe. Nuclear reactions denote reactions between nuclei, and between nuclei and other fundamental particles, such as electrons and photons. A short description of the conservation laws and the definition of basic physical quantities is presented, followed by a more detailed account of specific cases: (a) formation and decay of compound nuclei; (b)direct reactions; (c) photon and electron scattering; (d) heavy ion collisions; (e) formation of a quark-gluon plasma; (f) thermonuclear reactions; (g) and reactions with radioactive beams. Whenever necessary, basic equations are introduced to help understand general properties of these reactions. Published in Wiley Encyclopedia of Physics, ISBN-13: 978-3-527-40691-3 - Wiley-VCH, Berlin, 2009.

  14. Course may include: Research in Education

    E-Print Network [OSTI]

    Course may include: Research in Education Statistics in Education Theories of Educational Admin Policy Analysis Sociological Aspects of Education Approaches to Literacy Development Information and Communication Technologies Issues in Education Final Project Seminar Master of Education Educational

  15. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  16. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  17. HOW MIGHT INDUSTRY GOVERNANCE BE BROADENED TO INCLUDE NONPROLIFERATION

    SciTech Connect (OSTI)

    Hund, Gretchen; Seward, Amy M.

    2009-10-06

    Broadening industry governance to support nonproliferation could provide significant new leverage in preventing the spread/diversion of nuclear, radiological, or dual-use material or technology that could be used in making a nuclear or radiological weapon. Industry is defined broadly to include 1) the nuclear industry, 2) dual-use industries, and 3) radioactive source manufacturers and selected radioactive source-user industries worldwide. This paper describes how industry can be an important first line of defense in detecting and thwarting proliferation, such as an illicit trade network or an insider theft case, by complementing and strengthening existing governmental efforts. For example, the dual-use industry can play a critical role by providing export, import, or security control information that would allow a government or the International Atomic Energy Agency (IAEA) to integrate this information with safeguards, export, import, and physical protection information it has to create a more complete picture of the potential for proliferation. Because industry is closest to users of the goods and technology that could be illicitly diverted throughout the supply chain, industry information can potentially be more timely and accurate than other sources of information. Industry is in an ideal position to help ensure that such illicit activities are detected. This role could be performed more effectively if companies worked together within a particular industry to promote nonproliferation by implementing an industry-wide self-regulation program. Performance measures could be used to ensure their materials and technologies are secure throughout the supply chain and that customers are legitimately using and/or maintaining oversight of these items. Nonproliferation is the overarching driver that industry needs to consider in adopting and implementing a self-regulation approach. A few foreign companies have begun such an approach to date; it is believed that, ultimately, broad engagement of global industry leaders in self regulation is needed to result in the greatest nonproliferation benefit.

  18. Nuclear Models

    SciTech Connect (OSTI)

    Fossion, Ruben [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F., C.P. 04510 (Mexico)

    2010-09-10

    The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction).Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.

  19. Thermoacoustic Thermometry for Nuclear Reactor Monitoring

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-06-01

    On Friday, March 11, 2011, at 2:46pm (Japan Standard Trme), the Tohoku region on the east coast of northern Japan experi­enced what would become known as the largest earthquake in the country's history at magnitude 9.0 on the Richter scale. The Fukushima Daiichi nuclear power plant suffered exten­sive and irreversible damage. Six operating units were at the site, each with a boiling water reactor. When the earthquake struck, three of the six reactors were operating and the others were in a periodic inspection outage phase. In one reactor, all of the fuel had been relocated to a spent fuel pool in the reactor building. The seismic acceleration caused by the earthquake brought the three operating units to an automatic shutdown. Since there was damage to the power transmission lines, the emergency diesel generators (EDG) were automat­ically started to ensure continued cooling of the reactors and spent fuel pools. The situation was under control until the tsunami hit about forty-five minutes later with a maximum wave height of approximately 15 meters, which was three times taller than the sea wall of 5m. The influx of water submerged the EDGs, the electrical switchgear, and dc batteries, resulting in the total loss of power to five of the six reactors. The flooding also resulted in the loss of instrumentation that would have other­ wise been used to monitor and control the emergency. The ugly aftermath included high radiation exposure to operators at the nuclear power plants and early contamina­tion of food supplies and water within several restricted areas in Japan, where high radiation levels have rendered them un­safe for human habitation. While the rest of the story will remain a tragic history, it is this part of the series of unfortunate events that has inspired our research. It has indubitably highlighted the need for a novel sensor and instrumentation system that can withstand similar or worse conditions to avoid future catastrophe and assume damage prevention as quickly as possible. This is the question which we are attempting to answer: Is it possible to implement a self-powered sensor that could transmit data independently of electronic networks while taking advantage of the harsh operating environment of the nuclear reactor?

  20. Nuclear Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work FeaturedNuclear & ParticleNuclear

  1. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Work FeaturedNuclearNP Home Nuclear

  2. IAEA reorganizes nuclear information services

    SciTech Connect (OSTI)

    Levine, E.

    2012-08-15

    As part of an overall restructuring of the International Atomic Energy Agency's Department of Nuclear Energy, the agency has established the Nuclear Information Section (NIS). The restructuring, recently announced by IAEA Director General Yukiya Amano, also includes the creation of a separate Nuclear Knowledge Management (NKM) Section, as demand for assistance in this area is growing among member countries. According to the NIS Web site, 'This restructuring and the creation of the NIS provides an opportunity for further enhancing existing information products and services and introducing new ones-all with an eye towards advancing higher organizational efficiency and effectiveness.'

  3. Nuclear astrophysics and electron beams

    SciTech Connect (OSTI)

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  4. Controlling the atom. The beginnings of nuclear regulation 1946--1962

    SciTech Connect (OSTI)

    Mazuzan, G.T.; Walker, J.S.

    1997-08-01

    This book traces the early history of nuclear power regulation in the US. It focuses on the Atomic Energy Commission (AEC), the federal agency that until 1975 was primarily responsible for planning and carrying out programs to protect public health and safety from the hazards of the civilian use of nuclear energy. It also describes the role of other groups that figured significantly in the development of regulatory policies, including the congressional Joint Committee on Atomic Energy, federal agencies other than the AEC, state governments, the nuclear industry, and scientific organizations. And it considers changes in public perceptions of and attitudes toward atomic energy and the dangers of radiation exposure. The context in which regulatory programs evolved is a rich and complex mixture of political, legislative, legal, technological, scientific, and administrative history. The basic purpose of this book is to provide the Nuclear Regulatory Commission (NRC), which inherited responsibility for nuclear safety after Congress disbanded the AEC, and the general public with information on the historical antecedents and background of regulatory issues.

  5. Understanding the Challenges in the Transition from Film Radiography in the Nuclear Power Industry

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Moran, Traci L.; Nove, Carol A.; Pardini, Allan F.

    2012-09-01

    Nondestructive examination (NDE) applications in the nuclear power industry using film radiography are shrinking due to the advent of modern digital imaging technologies and advances in alternative inspection methods that do not present an ionizing radiation hazard. Technologies that are used routinely in the medical industry for patient diagnosis are being adapted to industrial NDE applications including the detection and characterization of defects in welds. From the user perspective, non-film inspection techniques provide several advantages over film techniques. It is anticipated that the shift away from the application of film radiography in the nuclear power industry represents an irreversible trend. The U.S. Nuclear Regulatory Commission (NRC) has noted this trend in the U.S. nuclear power industry and will be working to ensure that the effectiveness and reliability of component inspections is not compromised by this transition. Currently, specific concerns are associated with 1) obtaining a fundamental understanding of how inspection effectiveness and reliability may be impacted by this transition and 2) ensuring training standards and qualifications remain compatible with modern industrial radiographic practice. This paper discusses recent trends in industrial radiography and assesses their advantages and disadvantages from the perspective of nuclear power plant component inspections.

  6. Radiation Protection and Licensing FNAL Radiation Physics Team

    E-Print Network [OSTI]

    McDonald, Kirk

    (ALARA). January 13, 2012 Radiation Protection and Licensing #12;4 Shielding for Prompt Radiation Protect

  7. Neutrino nuclear response and photo nuclear reaction

    E-Print Network [OSTI]

    H. Ejiri; A. I. Titov; M. Boswell; A. Young

    2013-11-10

    Photo nuclear reactions are shown to be used for studying neutrino/weak nuclear responses involved in astro-neutrino nuclear interactions and double beta decays. Charged current weak responses for ground and excited states are studied by using photo nuclear reactions through isobaric analog states of those states, while neutral current weak responses for excited states are studied by using photo nuclear reactions through the excited states. The weak interaction strengths are studied by measuring the cross sections of the photo nuclear reactions, and the spin and parity of the state are studied by measuring angular correlations of particles emitted from the photo nuclear reactions. Medium-energy polarized photons obtained from laser photons scattered off GeV electrons are very useful. Nuclear responses studied by photo nuclear reactions are used to evaluate neutrino/weak nuclear responses, i.e. nuclear beta and double beta matrix elements and neutrino nuclear interactions, and to verify theoretical calculations for them.

  8. Biological Nuclear Transmutations as a Source of Biophotons

    E-Print Network [OSTI]

    A. Widom; Y. N. Srivastava; S. Sivasubramanian

    2011-02-20

    Soft multi-photon radiation from hard higher energy reaction sources can be employed to describe three major well established properties of biophoton radiation; Namely, (i) the mild radiation intensity decreases for higher frequencies, (ii) the coherent state Poisson counting statistics, and (iii) the time delayed luminescence with a hyperbolic time tail. Since the soft photon frequencies span the visible to the ultraviolet frequency range, the hard reaction sources have energies extending into the nuclear transmutation regime.

  9. Chart of Nuclides from the National Nuclear Data Center (NNDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Chart of Nuclides is a software product that allows users to search and plot nuclear structure and nuclear decay data interactively. The Chart of Nuclides was developed by the National Nuclear Data Center (NNDC). It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Using the Chart of Nuclides, it is possible to search for nuclear level properties (energy, half-life, spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences),radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by the Chart of Nuclides can be seen in tables, level schemes and an interactive chart of nuclides. (From the Chart of Nuclides Description at http://www.nndc.bnl.gov/chart/help/index.jsp?product=chart)

  10. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  11. 11th International Conference of Radiation Research

    SciTech Connect (OSTI)

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNA repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.

  12. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, Raymond A. (Martinez, GA)

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  13. Scramjet including integrated inlet and combustor

    SciTech Connect (OSTI)

    Kutschenreuter, P.H. Jr.; Blanton, J.C.

    1992-02-04

    This patent describes a scramjet engine. It comprises: a first surface including an aft facing step; a cowl including: a leading edge and a trailing edge; an upper surface and a lower surface extending between the leading edge and the trailing edge; the cowl upper surface being spaced from and generally parallel to the first surface to define an integrated inlet-combustor therebetween having an inlet for receiving and channeling into the inlet-combustor supersonic inlet airflow; means for injecting fuel into the inlet-combustor at the step for mixing with the supersonic inlet airflow for generating supersonic combustion gases; and further including a spaced pari of sidewalls extending between the first surface to the cowl upper surface and wherein the integrated inlet-combustor is generally rectangular and defined by the sidewall pair, the first surface and the cowl upper surface.

  14. Nuclear Golf

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-12-06

    Broadcast Transcript: Pay no attention to that nuclear warhead behind the 18th hole; just shout "Fore!" and drive your Titleist down the fairway. In a development that is bizarre even by North Korean standards, the country is making a move to sell...

  15. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  16. Nuclear Security Summit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Summit | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  17. Nuclear Incident Team | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Incident Team | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

  18. Noncommutative Black-Body Radiation: Implications On Cosmic Microwave Background

    E-Print Network [OSTI]

    Amir H. Fatollahi; Maryam Hajirahimi

    2006-07-12

    Including loop corrections, black-body radiation in noncommutative space is anisotropic. A direct implication of possible space noncommutativity on the Cosmic Microwave Background map is argued.

  19. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  20. Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM

    E-Print Network [OSTI]

    Berry, R. Stephen

    Nuclear power and climate change | The Bulletin Online http://www.thebulletin.org/roundtable/nuclear-power-climate-change/ 1 of 11 9/25/07 2:14 PM ROUNDTABLE Roundtable > Nuclear power and climate change Nuclear power, experts argue that all options should be considered--including nuclear power. But with nuclear power comes

  1. Safe testing nuclear rockets economically

    SciTech Connect (OSTI)

    Howe, S. D. (Steven D.); Travis, B. J. (Bryan J.); Zerkle, D. K. (David K.)

    2002-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the RoverMERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M.

  2. DETECTORS FOR RADIATION DOSIMETRY

    E-Print Network [OSTI]

    Perez-Mendez, V.

    2010-01-01

    RPL) The interaction of radiation with matter in crystallineradiation. Some interactions with crystalline matter are

  3. MOTIVATION INCLUDED OR EXCLUDED FROM Mihaela Cocea

    E-Print Network [OSTI]

    Cocea, Mihaela

    MOTIVATION ­ INCLUDED OR EXCLUDED FROM E-LEARNING Mihaela Cocea National College of Ireland Mayor, Dublin 1, Ireland sweibelzahl@ncirl.ie ABSTRACT The learners' motivation has an impact on the quality-Learning, motivation has been mainly considered in terms of instructional design. Research in this direction suggests

  4. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    processing unit (CPU) processing power and capacity of mass storage devices doubles every 18 months. Such growth in both processing and storage capabilities fuels the production of ever more powerful portableEnergy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1

  5. Course may include: Research in Education

    E-Print Network [OSTI]

    Development Information and Communication Technologies Issues in Education Final Project Seminar Master, the Final Project Seminar. This graduate program will allow you to develop your skills and knowledgeCourse may include: Research in Education Qualitative Methods in Educational Research Fundamentals

  6. Communication in automation, including networking and wireless

    E-Print Network [OSTI]

    Antsaklis, Panos

    Communication in automation, including networking and wireless Nicholas Kottenstette and Panos J and networking in automation is given. Digital communication fundamentals are reviewed and networked control are presented. 1 Introduction 1.1 Why communication is necessary in automated systems Automated systems use

  7. Nuclear Waste: Forever Contaminated?

    E-Print Network [OSTI]

    Wang, Andrew

    2015-01-01

    Beyond Fukushima: Disasters, nuclear energy, and energy law.Nuclear Energy, and Energy Law (December 20, 2011). Brigham

  8. Radiation effects on corrosion of zirconium alloys

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.

    1989-06-01

    From the wide use of zirconium alloys as components in nuclear reactors, has come clear evidence that reactor radiation is a major corrosion parameter. The evidence emerges from comparisons of zirconium alloy corrosion behavior in different reactor types, for example, BWRs versus PWRs and in corresponding reactor loop chemistries; also, oxidation rates differ with location along components such as fuel rods and reactor pressure tubes. In most respects, oxidation effects on power reactor components are paralleled by oxidation behavior on specimens exposed to radiation in reactor loops.

  9. Appendix A U.S. Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    , and Asia and on energy facility siting, including nuclear waste shipping and storage. In addition to his of experience in various phases of the nuclear fuel cycle, especially uranium processing, handling, safeguards

  10. 5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions

    E-Print Network [OSTI]

    Peletier, Reynier

    5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

  11. Intelligent Sensor Management in Nuclear Searches and Radiological Surveys A.V. Klimenko1

    E-Print Network [OSTI]

    Tanner, Herbert G.

    Intelligent Sensor Management in Nuclear Searches and Radiological Surveys A.V. Klimenko1 , W Special nuclear materials (SNMs) are weak emitters of radiation and are difficult to detect, especially developed intelligent sensor management strategies for nuclear search and radiological surveys

  12. Systems and strippable coatings for decontaminating structures that include porous material

    DOE Patents [OSTI]

    Fox, Robert V. (Idaho Falls, ID); Avci, Recep (Bozeman, MT); Groenewold, Gary S. (Idaho Falls, ID)

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  13. Genesis of Dark Energy: Dark Energy as a Consequence of Cosmological Nuclear Energy

    E-Print Network [OSTI]

    R. C. Gupta

    2004-12-07

    Recent observations on Type-Ia supernovae and low density measurement of matter (including dark matter) suggest that the present day universe consists mainly of repulsive-gravity type exotic-matter with negative-pressure often referred as dark-energy. But the mystery is about the nature of dark-energy and its puzzling questions such as why, how, where & when about the dark- energy are intriguing. In the present paper the author attempts to answer these questions while making an effort to reveal the genesis of dark-energy, and suggests that the cosmological nuclear-binding-energy liberated during primordial nucleo-synthesis remains trapped for long time and then is released free which manifests itself as dark-energy in the universe. It is also explained why for dark energy the parameter w = -2/3. Noting that w=+1for stiff matter and w=+1/3 for radiation; w = - 2/3 is for dark energy, because -1 is due to deficiency of stiff-nuclear-matter and that this binding energy is ultimately released as radiation contributing +1/3, making w = -1 + 1/3 = -2/3. This thus almost solves the dark-energy mystery of negative-pressure & repulsive-gravity. It is concluded that dark-energy is a consequence of released-free nuclear-energy of cosmos. The proposed theory makes several estimates / predictions, which agree reasonably well with the astrophysical constraints & observations.

  14. Nuclear fission and nuclear safeguards: Common technologies and challenges

    SciTech Connect (OSTI)

    Keepin, G.R.

    1989-01-01

    Nuclear fission and nuclear safeguards have much in common, including the basic physical phenomena and technologies involved as well as the commitments and challenges posed by expanding nuclear programs in many countries around the world. The unique characteristics of the fission process -- such as prompt and delayed neutron and gamma ray emission -- not only provide the means of sustaining and controlling the fission chain reaction, but also provide unique ''signatures'' that are essential to quantitative measurement and effective safeguarding of key nuclear materials (notably /sup 239/Pu and /sup 235/U) against theft, loss, or diversion. In this paper, we trace briefly the historical emergence of safeguards as an essential component of the expansion of the nuclear enterprise worldwide. We then survey the major categories of passive and active nondestructive assay techniques that are currently in use or under development for rapid, accurate measurement and verification of safe-guarded nuclear materials in the many forms in which they occur throughout the nuclear fuel cycle. 23 refs., 14 figs.

  15. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr.; Charles L. (Alcoa, TN); Buckner, Mark A. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Bryan, William L. (Knoxville, TN)

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  16. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    DOE Patents [OSTI]

    Britton, Jr., Charles L. (Alcoa, TN); Buckner, Mark A. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Bryan, William L. (Knoxville, TN)

    2011-05-03

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  17. Subterranean barriers including at least one weld

    DOE Patents [OSTI]

    Nickelson, Reva A.; Sloan, Paul A.; Richardson, John G.; Walsh, Stephanie; Kostelnik, Kevin M.

    2007-01-09

    A subterranean barrier and method for forming same are disclosed, the barrier including a plurality of casing strings wherein at least one casing string of the plurality of casing strings may be affixed to at least another adjacent casing string of the plurality of casing strings through at least one weld, at least one adhesive joint, or both. A method and system for nondestructively inspecting a subterranean barrier is disclosed. For instance, a radiographic signal may be emitted from within a casing string toward an adjacent casing string and the radiographic signal may be detected from within the adjacent casing string. A method of repairing a barrier including removing at least a portion of a casing string and welding a repair element within the casing string is disclosed. A method of selectively heating at least one casing string forming at least a portion of a subterranean barrier is disclosed.

  18. Photoactive devices including porphyrinoids with coordinating additives

    DOE Patents [OSTI]

    Forrest, Stephen R; Zimmerman, Jeramy; Yu, Eric K; Thompson, Mark E; Trinh, Cong; Whited, Matthew; Diev, Vlacheslav

    2015-05-12

    Coordinating additives are included in porphyrinoid-based materials to promote intermolecular organization and improve one or more photoelectric characteristics of the materials. The coordinating additives are selected from fullerene compounds and organic compounds having free electron pairs. Combinations of different coordinating additives can be used to tailor the characteristic properties of such porphyrinoid-based materials, including porphyrin oligomers. Bidentate ligands are one type of coordinating additive that can form coordination bonds with a central metal ion of two different porphyrinoid compounds to promote porphyrinoid alignment and/or pi-stacking. The coordinating additives can shift the absorption spectrum of a photoactive material toward higher wavelengths, increase the external quantum efficiency of the material, or both.

  19. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  20. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L. (Shrewsbury, MA); Gamble, Bruce B. (Wellesley, MA); Voccio, John P. (Somerville, MA)

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  1. Ion-induced nuclear radiotherapy

    DOE Patents [OSTI]

    Horn, Kevin M. (Albuquerque, NM); Doyle, Barney L. (Albuquerque, NM)

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  2. Ion-induced nuclear radiotherapy

    DOE Patents [OSTI]

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  3. Flexible nuclear medicine camera and method of using

    DOE Patents [OSTI]

    Dilmanian, F. Avraham (Yaphank, NY); Packer, Samuel (Great Neck, NY); Slatkin, Daniel N. (Sound Beach, NY)

    1996-12-10

    A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.

  4. Flexible nuclear medicine camera and method of using

    DOE Patents [OSTI]

    Dilmanian, F.A.; Packer, S.; Slatkin, D.N.

    1996-12-10

    A nuclear medicine camera and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera includes a flexible frame containing a window, a photographic film, and a scintillation screen, with or without a gamma-ray collimator. The frame flexes for following the contour of the examination site on the patient, with the window being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film and the radiation source inside the patient. The frame is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms. 11 figs.

  5. Integrated head package for top mounted nuclear instrumentation

    DOE Patents [OSTI]

    Malandra, Louis J. (McKeesport, PA); Hornak, Leonard P. (Forest Hills, PA); Meuschke, Robert E. (Monroeville, PA)

    1993-01-01

    A nuclear reactor such as a pressurized water reactor has an integrated head package providing structural support and increasing shielding leading toward the vessel head. A reactor vessel head engages the reactor vessel, and a control rod guide mechanism over the vessel head raises and lowers control rods in certain of the thimble tubes, traversing penetrations in the reactor vessel head, and being coupled to the control rods. An instrumentation tube structure includes instrumentation tubes with sensors movable into certain thimble tubes disposed in the fuel assemblies. Couplings for the sensors also traverse penetrations in the reactor vessel head. A shroud is attached over the reactor vessel head and encloses the control rod guide mechanism and at least a portion of the instrumentation tubes when retracted. The shroud forms a structural element of sufficient strength to support the vessel head, the control rod guide mechanism and the instrumentation tube structure, and includes radiation shielding material for limiting passage of radiation from retracted instrumentation tubes. The shroud is thicker at the bottom adjacent the vessel head, where the more irradiated lower ends of retracted sensors reside. The vessel head, shroud and contents thus can be removed from the reactor as a unit and rested safely and securely on a support.

  6. System aspects of a Space Nuclear Reactor Power System

    SciTech Connect (OSTI)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    Selected systems aspects of a 300 kW nuclear reactor power system for spacecraft have been studied. The approach included examination of two candidate missions and their associated spacecraft, and a number of special topics dealing with the power system design and operation. The missions considered were a reusable orbital transfer vehicle and a space-based radar. The special topics included: power system configuration and scaling, launch vehicle integration, operating altitude, orbital storage, start-up, thawing, control, load following, procedures in case of malfunction, restart, thermal and nuclear radiation to other portions of the spacecraft, thermal stresses between subsystems, boom and cable designs, vibration modes, altitude control, reliability, and survivability. Among the findings are that the stowed length of the power system is important to mission design and that orbital storage for months to years may be needed for missions involving orbital assembly. The power system design evolved during the study and has continued to evolve; the current design differs somewhat from that examined in this paper.

  7. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology

    SciTech Connect (OSTI)

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  8. The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.

    SciTech Connect (OSTI)

    Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

    2005-01-01

    The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

  9. Nuclear lamins: building blocks of nuclear architecture

    E-Print Network [OSTI]

    Goldman, Robert D.

    REVIEW Nuclear lamins: building blocks of nuclear architecture Robert D. Goldman,1,3,4 Yosef Biological Laboratory, Woods Hole, Massachusetts 02543, USA Nuclear lamins were initially identified as the major components of the nuclear lamina, a proteinaceous layer found at the interface between chromatin

  10. Early test facilities and analytic methods for radiation shielding: Proceedings

    SciTech Connect (OSTI)

    Ingersoll, D.T. ); Ingersoll, J.K. )

    1992-11-01

    This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

  11. Single electron detection and spectroscopy via relativistic cyclotron radiation

    E-Print Network [OSTI]

    D. M. Asner; R. F. Bradley; L. de Viveiros; P. J. Doe; J. L. Fernandes; M. Fertl; E. C. Finn; J. A. Formaggio; D. Furse; A. M. Jones; J. N. Kofron; B. H. LaRoque; M. Leber; E. L. McBride; M. L. Miller; P. Mohanmurthy; B. Monreal; N. S. Oblath; R. G. H. Robertson; L. J Rosenberg; G. Rybka; D. Rysewyk; M. G. Sternberg; J. R. Tedeschi; T. Thummler; B. A. VanDevender; N. L. Woods

    2015-05-01

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments.

  12. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  13. Photo Library of the Nevada Site Office (Includes historical archive of nuclear testing images)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    See also the Historical Film Library at http://www.nv.doe.gov/library/films/testfilms.aspx and the Current Film Library at http://www.nv.doe.gov/library/films/current.aspx. Current films can be viewed online, but only short clips of the historical films are viewable. They can be ordered via an online request form for a very small shipping and handling fee.

  14. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing DOE and NNSA Federal workers with a safe and healthful workplace. Chg 1 dated 8-21-12. Cancels DOE M 440.1-1A. Admin Chg 1, dated 3-14-13.

  15. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing DOE and NNSA Federal workers with a safe and healthful workplace. Supersedes DOE O 440.1B Chg 1.

  16. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing DOE and NNSA Federal workers with a safe and healthful workplace. Chg 1 dated 8-21-12, cancels DOE M 440.1-1A. Admin Chg 1, dated 3-14-13, cancels DOE O 440.1B Chg 1.

  17. Nuclear Arms Control R&D Consortium includes Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications64NewsroomNontoxicAdministration /

  18. Thermostatic Radiator Valve Evaluation

    SciTech Connect (OSTI)

    Dentz, J.; Ansanelli, E.

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market. In this project, the ARIES team sought to better understand the current usage of TRVs by key market players in steam and hot water heating and to conduct limited experiments on the effectiveness of new and old TRVs as a means of controlling space temperatures and reducing heating fuel consumption. The project included a survey of industry professionals, a field experiment comparing old and new TRVs, and cost-benefit modeling analysis using BEopt™ (Building Energy Optimization software).

  19. The Nuclear Revolution, Relative Gains, and International Nuclear Assistance

    E-Print Network [OSTI]

    Kroenig, Matthew

    2006-01-01

    of selective nuclear proliferation. Journal of Conflictmissile and nuclear proliferation: Issues for Congress. CRSSpector, L. 1988. Nuclear proliferation today. Cambridge,

  20. Towards consistent nuclear models and comprehensive nuclear data...

    Office of Scientific and Technical Information (OSTI)

    Towards consistent nuclear models and comprehensive nuclear data evaluations Citation Details In-Document Search Title: Towards consistent nuclear models and comprehensive nuclear...