Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear radiation actuated valve  

DOE Patents (OSTI)

A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

Christiansen, David W. (Kennewick, WA); Schively, Dixon P. (Richland, WA)

1985-01-01T23:59:59.000Z

2

Nuclear reactor shield including magnesium oxide  

DOE Patents (OSTI)

An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

1981-01-01T23:59:59.000Z

3

What To Include In The Whistleblower Complaint? | National Nuclear Security  

National Nuclear Security Administration (NNSA)

To Include In The Whistleblower Complaint? | National Nuclear Security To Include In The Whistleblower Complaint? | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog What To Include In The Whistleblower Complaint? Home > About Us > Our Operations > Management and Budget > Whistleblower Program > What To Include In The Whistleblower Complaint? What To Include In The Whistleblower Complaint?

4

RADIATION FACILITY FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1961-12-12T23:59:59.000Z

5

Western University Nuclear Radiation Safety Inspection Checklist  

E-Print Network (OSTI)

with unsealed nuclear substances. Print out of wipe test kept in the logbook . For safety work practices, rightMay 2012 Western University Nuclear Radiation Safety Inspection Checklist Permit Holder to nuclear substances or radiation devices is restricted to authorized radiation users listed on the permit

Sinnamon, Gordon J.

6

ARM: Surface Radiation Measurement Quality Control testing, including climatologically configurable limits  

DOE Data Explorer (OSTI)

Surface Radiation Measurement Quality Control testing, including climatologically configurable limits

Gary Hodges; Tom Stoffel; Mark Kutchenreiter; Bev Kay; Aron Habte; Michael Ritsche; Victor Morris; Mary Anderberg

7

Electromagnetic and nuclear radiation detector using micromechanical sensors  

DOE Patents (OSTI)

Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

8

[Nuclear News -- Isotopes and Radiation  

Science Conference Proceedings (OSTI)

The topics discussed in this section are: (1) FDG--a significant development in nuclear medicine; (2) Contamination at Paducah plant prompts actions and reactions; and (3) Drug relieves side effects of cancer therapies in mice.

Sinco, P.

1999-11-01T23:59:59.000Z

9

An Earth Outgoing Longwave Radiation Climate Model. Part II: Radiation with Clouds Included  

Science Conference Proceedings (OSTI)

An Earth outgoing longwave radiation (OLWR) climate model was constructed for radiation budget studies. The model consists of the upward radiative transfer parameterization of Thompson and Warren, the cloud cover model of Sherr et al., and a ...

Shi-Keng Yang; G. Louis Smith; Fred L. Bartman

1988-10-01T23:59:59.000Z

10

NNSA, Tajikistan Nuclear and Radiation Safety Agency Sign MOU...  

National Nuclear Security Administration (NNSA)

Tajikistan Nuclear and Radiation Safety Agency Sign MOU to Combat Illicit Trafficking | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing...

11

Atomistic Simulations of Radiation Effects in Ceramics for Nuclear ...  

Science Conference Proceedings (OSTI)

This work is supported by the DOE Nuclear Energy Advanced Modeling and ... Simulations of Radiation Effects in Ceramics for Nuclear Waste Disposal.

12

R&D for Better Nuclear Security: Radiation Detector Materials  

SciTech Connect

I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

Kammeraad, J E

2009-04-02T23:59:59.000Z

13

R&D for Better Nuclear Security: Radiation Detector Materials  

SciTech Connect

I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

Kammeraad, J E

2009-04-02T23:59:59.000Z

14

LABORATORY OF NUCLEAR MEDICINE AND RADIATION BIOLOGY  

NLE Websites -- All DOE Office Websites (Extended Search)

MEDICINE AND RADIATION BIOLOGY MEDICINE AND RADIATION BIOLOGY 900 VETERAN AVENUE UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024 AND DEPARTMENT OF RADIOLOGICAL SCIENCES UCLA SCHOOL OF MEDICINE, LOS ANGELES, CALIFORNIA 90024 This manuscript is a contribution to the monograph edited by Daniel S. Berman and Dean Mason, entitled "Clinical Nuclear Cardiology". These studies were supported by Contract #DE-AM03-76-SF00012 between the U.S. Department of Energy and the University of California Prepared for the U.S. Department of Energy under Contract #DE-AM03-76-SF00012 POSITRON EMISSION TOMOGRAPHY OF THE HEART Heinrich R. Schelbert, M.D., Michael E. Phelps, Ph.D. and David E. Kuhl, M.D. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the

15

Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation  

E-Print Network (OSTI)

NERS Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation detection and characterization for nuclear nonproliferation

Eustice, Ryan

16

Summary of Prometheus Radiation Shielding Nuclear Design Analysis  

SciTech Connect

This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

J. Stephens

2006-01-13T23:59:59.000Z

17

Radiation Emergency Assistance Center / Training Site | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Emergency Assistance Center / Training Site | National Nuclear Radiation Emergency Assistance Center / Training Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiation Emergency Assistance Center / Training Site Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Consequence Management > Radiation Emergency Assistance

18

Louisiana Nuclear Energy and Radiation Control Law (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality is responsible for the regulation of nuclear energy safety, permitting and radiation safety and control in Louisiana. The Department operates...

19

Faddeev-type calculations of few-body nuclear reactions including Coulomb interaction  

E-Print Network (OSTI)

The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the description of few-body nuclear reactions. Calculations are done in the framework of Faddeev-type equations in momentum-space. The reliability of the method is demonstrated. The Coulomb effect on observables is discussed.

A. Deltuva

2008-10-24T23:59:59.000Z

20

Lanthanum halide nanoparticle scintillators for nuclear radiation detection  

SciTech Connect

Nanoparticles with sizes <10 nm were fabricated and characterized for their nanocomposite radiation detector properties. This work investigated the properties of several nanostructured radiation scintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.

Guss, Paul; Guise, Ronald [Remote Sensing Laboratory, P.O. Box 98521, M/S RSL-48, Las Vegas, Nevada 89193 (United States); Yuan Ding [National Security Technologies, LLC, Los Alamos Operations, P.O. Box 809, M/S LAO/C320, Los Alamos, New Mexico 87544 (United States); Mukhopadhyay, Sanjoy [Remote Sensing Laboratory-Andrews, Building 1783, Arnold Avenue Andrews AFB, Maryland 20762 (United States); O'Brien, Robert; Lowe, Daniel [University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154 (United States); Kang Zhitao; Menkara, Hisham [Georgia Tech Research Institute, 925 Dalney St., Atlanta, Georgia 30332 (United States); Nagarkar, Vivek V. [RMD, Inc., 44 Hunt Street, Watertown, Massachusetts 02472 (United States)

2013-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Radiation imaging technology for nuclear materials safeguards  

SciTech Connect

Gamma-ray and neutron imaging technology is emerging as a useful tool for nuclear materials safeguards. Principal applications include improvement in accuracy for nondestructive assay of heterogeneous material (e.g., residues) and wide-area imaging of nuclear material in facilities (e.g., holdup). Portable gamma cameras with gamma-ray spectroscopy are available commercially and are being applied to holdup measurements. The technology has the potential to significantly reduce effort and exposure in holdup campaigns; and, with imaging, some of the limiting assumptions required for conventional holdup analysis can be relaxed, resulting in a more general analysis. Methods to analyze spectroscopic-imaging data to assay plutonium and uranium in processing equipment are being development. Results of holdup measurements using a commercial, portable gamma-cameras are presented. The authors are also developing fast neutron imaging techniques for NDA, search, and holdup. Fast neutron imaging provides a direct measurement of the source of neutrons and is relatively insensitive to surroundings when compared to thermal or epithermal neutron imaging. The technology is well-suited for in-process inventory measurements and verification of materials in interim storage, for which gamma-ray measurements may be inadequate due to self-shielding. Results of numerical simulations to predict the performance of fast-neutron telescopes for safeguards applications are presented.

Prettyman, T.H.; Russo, P.A.; Cheung, C.C.; Christianson, A.D.; Feldman, W.C.; Gavron, A.

1997-12-01T23:59:59.000Z

22

ORISE: U.S. Nuclear Regulatory Commission Radiation Exposure Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Information and Reporting System (REIRS) Information and Reporting System (REIRS) ORISE maintains large database of radiation exposure records for the U.S. Nuclear Regulatory Commission U.S. Nuclear Regulatory Commission Radiation Exposure Information and Reporting System (REIRS) The U.S. Nuclear Regulatory Commission (NRC) is required by federal mandate to maintain and evaluate radiation protection data for workers at facilities that it licenses. As part of its mission of safety, the NRC operates the Radiation Exposure Information and Reporting System (REIRS), a database system containing all occupational radiation exposure records that have been submitted to the NRC under 10 CFR Part 20. REIRS encompasses 1,800-plus NRC licensees and contains more than five million records for more than one million monitored individuals.

23

Is natural background or radiation from nuclear power plants leukemogenic  

SciTech Connect

The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab.

Cronkite, E.P.

1989-01-01T23:59:59.000Z

24

Radiation Data for Design and Qualification of Nuclear Plant Equipment  

Science Conference Proceedings (OSTI)

Graphic summaries in this report represent the most comprehensive collection to date of data on the degrading effects of radiation on organic materials used in nuclear plant equipment. The data, which can help designers in selecting radiation-resistant materials, can also help in qualifying equipment at minimum cost.

1985-08-01T23:59:59.000Z

25

The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries. An important activity of RSICC is its participation in international efforts on computational and experimental benchmarks. An example is the Shielding Integral Benchmarks Archival Database (SINBAD), which includes shielding benchmarks for fission, fusion and accelerators. RSICC is funded by the United States Department of Energy, Department of Homeland Security and Nuclear Regulatory Commission.

Kirk, Bernadette Lugue [ORNL

2009-01-01T23:59:59.000Z

26

Western University Nuclear Radiation Safety Inspection Checklist  

E-Print Network (OSTI)

of Understanding (MOU) between USACE and the Nuclear Regulatory Commission (NRC) dated July 5, 2001, and subject for interagency consultation if the decommissioning criteria at 10 CFR Section 20.1402 are determined, resulting from the disposal of radiologically contaminated waste from the nearby Apollo Nuclear Fuel

Sinnamon, Gordon J.

27

Summary Report for the Radiation Detection for Nuclear Security Summer School 2012  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; the second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.

Runkle, Robert C.; Baciak, James E.; Stave, Jean A.

2012-08-22T23:59:59.000Z

28

Nuclear radiation-warning detector that measures impedance  

DOE Patents (OSTI)

This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

2013-06-04T23:59:59.000Z

29

Health physics applications of nuclear safeguards radiation monitors  

SciTech Connect

Nuclear safeguards needs fostered the development of radiation monitors whose sensitivity and microprocessor-controlled logic permit detection of small, transient increases in environmental levels of gamma radiation. While this capability was originally developed to detect the diversion of the special nuclear materials /sup 235/U and plutonium, adaptation to health physics monitoring is straigthforward. Applications of the safeguards instruments range from small, handheld instruments used to monitor laundry of salvage-bound materials to more complex systems devoted to monitoring moving vehicles at entry/exit points. In addition to these health physics applications, other new applications for safeguards instruments are being considered.

Fehlau, P.E.; Dvorak, R.F.

1984-01-01T23:59:59.000Z

30

Calibration of Radiation Monitors at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Radiation monitors are installed in nuclear power plants to indicate to operators the levels of radioactivity in various processes and at specific plant locations. Plant personnel depend on radiation monitors for accurate and precise data in order to make informed decisions and take appropriate actions during normal, abnormal, and design basis events. As with all electronic measurement systems, error can be introduced by changing environmental conditions, aging components, and replaced parts. The radiati...

2005-12-22T23:59:59.000Z

31

Experimental study of variations in background radiation and the effect on Nuclear Car Wash sensitivity  

Science Conference Proceedings (OSTI)

Error rates in a cargo screening system such as the Nuclear Car Wash [1-7] depend on the standard deviation of the background radiation count rate. Because the Nuclear Car Wash is an active interrogation technique, the radiation signal for fissile material must be detected above a background count rate consisting of cosmic, ambient, and neutron-activated radiations. It was suggested previously [1,6] that the Corresponding negative repercussions for the sensitivity of the system were shown. Therefore, to assure the most accurate estimation of the variation, experiments have been performed to quantify components of the actual variance in the background count rate, including variations in generator power, irradiation time, and container contents. The background variance is determined by these experiments to be a factor of 2 smaller than values assumed in previous analyses, resulting in substantially improved projections of system performance for the Nuclear Car Wash.

Church, J; Slaughter, D; Norman, E; Asztalos, S; Biltoft, P

2007-02-07T23:59:59.000Z

32

Low Dose Radiation Research Program: Radiation-Induced Nuclear Factor kB  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation-Induced Nuclear Factor kB mediates survival advantage by Radiation-Induced Nuclear Factor kB mediates survival advantage by Telomerase Activation. Authors: Natarajan M.,1 Mohan S.,2 Pandeswara, S.L.,1 and Herman T.S.1 Institutions: Departments of 1Radiation Oncology and 2Pathology, The University of Texas Health Science Center, San Antonio, Texas Activation of NF-kB in response to low doses of ionizing radiation was first shown in our laboratory. Although studies have shown that NF-kB plays an important role in anti-apoptotic function, little has been done to understand the molecular link between the activation of NF-kB and cellular outcome such as enhanced cell survival after low dose low-linear transfer (LET) radiation. Because upregulation of telomerase activity is associated with longevity and allows cells to escape from senescence, we hypothesize

33

Radiations from nuclear weapons - signal detectors - NASA program information  

SciTech Connect

This letter is for the purpose of supplying the information that you requested at the meeting of the sub-committee on Project Vela. It is divided into three parts: (1) Radiations from nuclear weapons; (2) Backgrounds for Vela Signal Detectors; (3) Discussion of the NASA program.

White, R. S.

1960-02-10T23:59:59.000Z

34

Nuclear Resonant Scattering on Earth Materials using Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

NRS2005 Home NRS2005 Home Agenda Organizing Committee Nuclear Resonant Scattering on Earth Materials using Synchrotron Radiation February 12-13, 2005 Advanced Photon Source Argonne National Laboratory - Argonne, Illinois, USA Nuclear Resonant Scattering (NRS) techniques provide the Earth and planetary science community with opportunities for new and exciting results on the properties of materials at high pressure and temperature conditions. Such NRS experiments have become possible due to the extreme brightness of third-generation synchrotron radiation sources. NRS techniques fall into two broad areas, which are in many ways ideally or even uniquely suited for addressing a number of important geophysical questions: Nuclear Resonant Inelastic X-ray Scattering (NRIXS) provides information on

35

arXiv:submit/0451583[physics.gen-ph]8Apr2012 Including Nuclear Degrees of Freedom in a Lattice  

E-Print Network (OSTI)

arXiv:submit/0451583[physics.gen-ph]8Apr2012 Including Nuclear Degrees of Freedom in a Lattice and Engineering, University of Engineering and Technology. Lahore, Pakistan Abstract. Motivated by many condensed matter and nuclear systems are described initially on the same footing. Since it may be possible

Williams, Brian C.

36

Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model  

DOE Green Energy (OSTI)

The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant.

Steven R. Sherman

2007-05-01T23:59:59.000Z

37

Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations  

SciTech Connect

The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162 billion degrees of freedom for 10 loading steps. The single radiation transport calculation required about 50% of the time required to solve the thermo-mechanics with a single loading step, which demonstrates that it is feasible to incorporate, in a single code, a high-fidelity radiation transport capability with a high-fidelity nuclear fuel thermo-mechanics capability and anticipate acceptable computational requirements. The results of the full assembly simulation clearly show the axial, radial, and azimuthal variation of the neutron flux, power, temperature, and deformation of the assembly, highlighting behavior that is neglected in traditional axisymmetric fuel performance codes that do not account for assembly features, such as guide tubes and control rods.

Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL

2012-02-01T23:59:59.000Z

38

Nuclear materials control technology in the post-cold war world: Radiation-based methods and information management systems  

SciTech Connect

The end of the cold war is providing both opportunities and requirements for improving the control of nuclear materials around the world. The dismantlement of nuclear weapons and the growth of nuclear power, including the use of plutonium in light water reactors and breeder reactor programs, coupled with enhanced proliferation concerns, drive the need for improved nuclear materials control. We describe nuclear materials control and the role of technology in making controls more effective and efficient. The current use and anticipated development in selected radiation-based methods and related information management systems am described briefly.

Tape, J.W.; Eccleston, G.W.; Ensslin, N.; Markin, J.T.

1993-06-01T23:59:59.000Z

39

Radiation Protection Program Resource Optimization Project; Brunswick Nuclear Plant  

Science Conference Proceedings (OSTI)

Radiation protection (RP) managers face challenges in providing a necessary service that complies with stringent regulations, while simultaneously reducing operations and maintenance (O&M) costs. The results of this pilot project, hosted by Brunswick Nuclear Plant (BNP), will assist utilities in targeting resource commitments and cost effectiveness while optimizing overall performance. This report identifies specific program cost reduction and process performance enhancements for the host plant, and esta...

2002-11-18T23:59:59.000Z

40

Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations  

NLE Websites -- All DOE Office Websites (Extended Search)

Computation of Domain-Averaged Irradiance Computation of Domain-Averaged Irradiance with a Simple Two-Stream Radiative Transfer Model Including Vertical Cloud Property Correlations S. Kato Center for Atmospheric Sciences Hampton University Hampton, Virginia Introduction Recent development of remote sensing instruments by Atmospheric Radiation Measurement (ARM?) Program provides information of spatial and temporal variability of cloud structures. However it is not clear what cloud properties are required to express complicated cloud fields in a realistic way and how to use them in a relatively simple one-dimensional (1D) radiative transfer model to compute the domain averaged irradiance. To address this issue, a simple shortwave radiative transfer model that can treat the vertical cloud optical property correlation is developed. The model is based on the gamma-weighted

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

42

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear & Particle Physics Directorate Nuclear and Particle Physics (NPP) at BNL comprises the Collider-Accelerator Department (including the NASA Space Radiation Laboratory,...

43

Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations  

SciTech Connect

The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms, such as neutron flux distribution, coolant conditions and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. With this novel capability, AMPFuel was used to model an entire 1717 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics). A full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 160 billion degrees of freedom for 10 loading steps. The single radiation transport calculation required about 50% of the time required to solve the thermo-mechanics with a single loading step, which demonstrates that it is feasible to incorporate, in a single code, a high-fidelity radiation transport capability with a high-fidelity nuclear fuel thermo-mechanics capability and anticipate acceptable computational requirements. The results of the full assembly simulation clearly show the axial, radial, and azimuthal variation of the neutron flux, power, temperature, and deformation of the assembly, highlighting behavior that is neglected in traditional axisymmetric fuel performance codes that do not account for assembly features, such as guide tubes and control rods.

Hamilton, Steven P [ORNL; Clarno, Kevin T [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL

2012-01-01T23:59:59.000Z

44

THE RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER: A RESOURCE FOR REACTOR DOSIMETRY SOFTWARE AND NUCLEAR DATA  

Science Conference Proceedings (OSTI)

The Radiation Safety Information Computational Center (RSICC) was established in 1963 to collect and disseminate computational nuclear technology in the form of radiation transport, shielding and safety software and corresponding nuclear cross sections. Approximately 1700 nuclear software and data packages are in the RSICC collection, and the majority are applicable to reactor dosimetry.

Kirk, Bernadette Lugue [ORNL

2009-01-01T23:59:59.000Z

45

THE RADIATION SAFETY INFORMATION COMPUTATIONAL CENTER (RSICC) - A RESOURCE FOR COMPUTATIONAL TOOLS FOR NUCLEAR APPLICATIONS  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC), which has been in existence since 1963, is the principal source and repository in the United States for computational tools for nuclear applications. RSICC collects, organizes, evaluates and distributes nuclear software and data involving the transport of neutral and charged particle radiation, and shielding and protection from radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste. RSICC serves over 12,000 scientists and engineers from 94 countries. RSICC software provides in-depth coverage of radiation related topics: the physics of the interaction of radiation with matter, radiation production and sources, criticality safety, radiation protection and shielding, radiation detectors and measurements, shielding materials properties, radiation waste management, atmospheric dispersion and environmental dose, medical applications, macro- and micro-dosimetry calculations.

Kirk, Bernadette Lugue [ORNL

2009-01-01T23:59:59.000Z

46

A Statistical Model for Generating a Population of Unclassified Objects and Radiation Signatures Spanning Nuclear Threats  

Science Conference Proceedings (OSTI)

This report describes an approach for generating a simulated population of plausible nuclear threat radiation signatures spanning a range of variability that could be encountered by radiation detection systems. In this approach, we develop a statistical model for generating random instances of smuggled nuclear material. The model is based on physics principles and bounding cases rather than on intelligence information or actual threat device designs. For this initial stage of work, we focus on random models using fissile material and do not address scenarios using non-fissile materials. The model has several uses. It may be used as a component in a radiation detection system performance simulation to generate threat samples for injection studies. It may also be used to generate a threat population to be used for training classification algorithms. In addition, we intend to use this model to generate an unclassified 'benchmark' threat population that can be openly shared with other organizations, including vendors, for use in radiation detection systems performance studies and algorithm development and evaluation activities. We assume that a quantity of fissile material is being smuggled into the country for final assembly and that shielding may have been placed around the fissile material. In terms of radiation signature, a nuclear weapon is basically a quantity of fissile material surrounded by various layers of shielding. Thus, our model of smuggled material is expected to span the space of potential nuclear weapon signatures as well. For computational efficiency, we use a generic 1-dimensional spherical model consisting of a fissile material core surrounded by various layers of shielding. The shielding layers and their configuration are defined such that the model can represent the potential range of attenuation and scattering that might occur. The materials in each layer and the associated parameters are selected from probability distributions that span the range of possibilities. Once an object is generated, its radiation signature is calculated using a 1-dimensional deterministic transport code. Objects that do not make sense based on physics principles or other constraints are rejected. Thus, the model can be used to generate a population of spectral signatures that spans a large space, including smuggled nuclear material and nuclear weapons.

Nelson, K; Sokkappa, P

2008-10-29T23:59:59.000Z

47

Generalized Super-Cerenkov Radiations in Nuclear and Hadronic Media  

E-Print Network (OSTI)

Generalized Super-Cerenkov Radiations (SCR), as well as their SCR-signatures are investigated and classified. Two general SCR- coherence conditions are found as two natural extremes of the same spontaneous particles decay in (dielectric, nuclear or hadronic) media The main results on the quantum theory of the SCR-phenomena as well as the results of the first experimental test of the super-coherence conditions, obtained by using the experimental data from BNL are presented. The new concepts such as: SCR-gluons, SCR-W-bosons and SCR-Z-bosons, all three suggested by elementary particle classification, are introduced. The gluonic Super-Cerenkov-like radiation, first introduced here, is schematically described. The interpretation of some recent RHIC results as signature of the SCR-gluons is suggested.

D. B. Ion

2007-10-03T23:59:59.000Z

48

The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications  

Science Conference Proceedings (OSTI)

The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

Kirk, Bernadette Lugue [ORNL

2009-01-01T23:59:59.000Z

49

Nuclear Maintenance Applications Center: Motor Management Guide Supporting Plant License Renewal Including Environmental Qualification Considerations  

Science Conference Proceedings (OSTI)

This report was developed by the Electric Power Research Institute’s Large Electric Motor Users Group Information Working Group, which includes motor engineers, motor specialist consultants, and vendors. Environmental qualification (EQ) program owners were also involved in the development of this report. This report addresses the most important elements of a sound motor management program to support an informed decision on motor preservation and motor life extension. Motor life extensions of ...

2013-06-07T23:59:59.000Z

50

System for determining the type of nuclear radiation from detector output pulse shape  

DOE Patents (OSTI)

A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation.

Miller, William H. (Columbia, MO); Berliner, Ronald R. (Columbia, MO)

1994-01-01T23:59:59.000Z

51

System for determining the type of nuclear radiation from detector output pulse shape  

DOE Patents (OSTI)

A radiation detection system determines the type of nuclear radiation received in a detector by producing a correlation value representative of the statistical cross correlation between the shape of the detector signal and pulse shape data previously stored in memory and characteristic of respective types of radiation. The correlation value is indicative of the type of radiation. The energy of the radiation is determined from the detector signal and is used to produce a spectrum of radiation energies according to radiation type for indicating the nature of the material producing the radiation. 2 figs.

Miller, W.H.; Berliner, R.R.

1994-09-13T23:59:59.000Z

52

Nondestructive Evaluation: Recommended Practices for Maintaining Radiation Safety of Radiographic Operations at a Nuclear Plant  

Science Conference Proceedings (OSTI)

Radiation safety programs for radiographic operations at nuclear power plants are more complex than for those operations at other types of industrial and commercial facilities. This level of complexity arises because of the numerous challenges to maintenance of excellence in radiation safety at nuclear power facilities where sources of radiation may be found at various locations in the facility and multiple safety functions must be considered at all times. The facilities themselves are also large with mu...

2010-12-23T23:59:59.000Z

53

EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION  

E-Print Network (OSTI)

EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMANEXPLOSIONS AND MEDICAL RADIATION . Jacob I. Fabrikant, MD,Low Levels of Ionizing Radiation, Yale University School of

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

54

EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION  

E-Print Network (OSTI)

of the Current State of Radiation Protection Philosophy.Against Pergamon Ionizing Radiation from External Sources,for Protection Against Ionizing Radiation from Supplement to

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

55

Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format  

DOE Data Explorer (OSTI)

MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

56

Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe  

SciTech Connect

Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy (SMS). However, to place these two techniques into some perspective with respect to other methods that yield related information, they display their version of a frequently used map of momentum and energy transfer diagram in figure 17.1. Here, various probes like electrons, neutrons, or light, i.e., Brillouin or Raman, and relatively newer forms of X-ray scattering are placed according to their range of energy and momentum transfer taking place during the measurements. Accordingly, NRIXS is a method that needs to be considered as a complementary probe to inelastic neutron and X-ray scattering, while SMS occupies a unique space due to its sensitivity to magnetism, structural deformations, valence, and spin states.

Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

2012-05-09T23:59:59.000Z

57

Technical support for the Ukrainian State Committee for Nuclear Radiation Safety on specific waste issues  

Science Conference Proceedings (OSTI)

The government of Ukraine, a now-independent former member of the Soviet Union, has asked the United States to assist its State Committee for Nuclear and Radiation Safety (SCNRS) in improving its regulatory control in technical fields for which it has responsibility. The US Nuclear Regulatory Commission (NRC) is providing this assistance in several areas, including management of radioactive waste and spent fuel. Radioactive wastes resulting from nuclear power plant operation, maintenance, and decommissioning must be stored and ultimately disposed of appropriately. In addition, radioactive residue from radioisotopes used in various industrial and medical applications must be managed. The objective of this program is to provide the Ukrainian SCNRS with the information it needs to establish regulatory control over uranium mining and milling activities in the Zheltye Vody (Yellow Waters) area and radioactive waste disposal in the Pripyat (Chernobyl) area among others. The author of this report, head of the Environmental Technology Section, Health Sciences Research Division of Oak Ridge National Laboratory, accompanied NRC staff to Ukraine to meet with SCNRS staff and visit sites in question. The report highlights problems at the sites visited and recommends license conditions that SCNRS can require to enhance safety of handling mining and milling wastes. The author`s responsibility was specifically for the visit to Zheltye Vody and the mining and milling waste sites associated with that facility. An itinerary for the Zheltye Vody portion of the trip is included as Appendix A.

Little, C.A.

1995-07-01T23:59:59.000Z

58

Accounting for Unresolved Clouds in a 1D Infrared Radiative Transfer Model. Part I: Solution for Radiative Transfer, Including Cloud Scattering and Overlap  

Science Conference Proceedings (OSTI)

Various aspects of infrared radiative transfer through clouds are investigated. First, three solutions to the IR radiative transfer equation are presented and assessed, each corresponding to a different approximation for the Planck function. It ...

J. Li

2002-12-01T23:59:59.000Z

59

CRYOPUMP BEHAVIOR IN THE PRESENCE OF BEAM OR NUCLEAR RADIATION  

E-Print Network (OSTI)

J. of Nuclear Materials 63, 151 T. Kaimcash. Fusion Reactornuclear fusion device. A. Impurity Effects in Fusion Reactor

Law, P.K.

2011-01-01T23:59:59.000Z

60

Using Synchrotron Radiation to Study Nuclear Energy Systems  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Characterization of Nuclear Reactor Materials and Components with Neutron ...

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Effect of Realistic Radiative Transfer on Potential Vorticity Structures, Including the Influence of Background Shear and Strain  

Science Conference Proceedings (OSTI)

A modified version of the radiation scheme of Shine is used to investigate the decay of small-scale potential vorticity structures characteristic of those observed in the lower and middle stratosphere. Following Fels, effective thermal damping ...

P. H. Haynes; W. E. Ward

1993-10-01T23:59:59.000Z

62

Improvements in the Shortwave Cloud-free Radiation Budget Accuracy. Part I: Numerical Study Including Surface Anisotropy  

Science Conference Proceedings (OSTI)

The shortwave radiation field, i.e., in the solar spectral range, emerging at the top of the atmosphere is anisotropic due to the optical properties of the atmosphere and the reflectance characteristics of the underlying surface. Thus, anisotropy ...

P. Koepke; K. T. Kriebel

1987-03-01T23:59:59.000Z

63

Environmental radiation real-time monitoring system permanently installed near Qinshan Nuclear Power Plant  

SciTech Connect

An environmental radiation real-time monitoring system with high pressure ionization chamber was developed. It has been installed permanently in the vicinity of Qinshan Nuclear Power Plant, the first built in mainland China. The system consists of four basic components: environmental radiation monitors; data communication network; a data processing center; and a remote terminal computer situated in Hangzhou. It has provided five million readings of environmental radiation levels as of January 1993. 8 refs., 1 fig., 3 tabs.

Minde Ding; Peiru Sheng; Zhangji Zhi [Suzhou Nuclear Research Institute, Jiangsu (China)

1996-03-01T23:59:59.000Z

64

Nuclear New Zealand: New Zealand's nuclear and radiation history to 1987.  

E-Print Network (OSTI)

??New Zealand has a paradoxical relationship with nuclear science. We are as proud of Ernest Rutherford, known as the father of nuclear science, as of… (more)

Priestley, Rebecca Katherine

2010-01-01T23:59:59.000Z

65

Nuclear radiation awareness for residents of Cascade County-Montana.  

E-Print Network (OSTI)

??The potential of a radiation mishap is real and lack of public awareness only potentiates the devastating outcomes on the citizens in the effected area… (more)

Strand, Aven Lynn.

2006-01-01T23:59:59.000Z

66

DETERMINING THE EFFECTS OF RADIATION ON AGING CONCRETE STRUCTURES OF NUCLEAR REACTORS  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management (DOE-EM) is responsible for the Decontamination and Decommissioning (D&D) of nuclear facilities throughout the DOE Complex. Some of these facilities will be completely dismantled, while others will be partially dismantled and the remaining structure will be stabilized with cementitious fill materials. The latter is a process known as In-Situ Decommissioning (ISD). The ISD decision process requires a detailed understanding of the existing facility conditions, and operational history. System information and material properties are need for aged nuclear facilities. This literature review investigated the properties of aged concrete structures affected by radiation. In particular, this review addresses the Savannah River Site (SRS) isotope production nuclear reactors. The concrete in the reactors at SRS was not seriously damaged by the levels of radiation exposure. Loss of composite compressive strength was the most common effect of radiation induced damage documented at nuclear power plants.

Serrato, M.

2010-01-29T23:59:59.000Z

67

ANNOUNCEMENT NUCLEAR ENGINEERING FACULTY POSITION  

E-Print Network (OSTI)

safeguards, radiation interaction with materials including human tissue, nuclear fuels performance at the University of Tennessee, Knoxville (UTK) is seeking qualified individuals for a Tenure Track faculty position instrumentation & controls, monitoring and diagnostics, reactor dynamics, nuclear security, nuclear materials

Tennessee, University of

68

INSTITUTE OF NUCLEAR ENERGY RADIATION ANNUAL REPORT 2003  

E-Print Network (OSTI)

of Environment and Public Works and the Greek Atomic Energy Commission). Taking into account that the nuclear fuel of the Experimental Nuclear Reactor suffices for a considerable number of years, the continuing with the pertroleum industry), R&D in issues of porous material - and especially nano-material ­ structure

69

Robotics And Radiation Hardening In The Nuclear Industry  

E-Print Network (OSTI)

...................................................................................................................... xii 1 - OPERATIONAL ENVIRONMENTS IN THE NUCLEAR INDUSTRY.....................1 Fuel Fabrication .............................................................................................................. 1 Reactor System Operation............................................................................................... 2 Spent Fuel Handling and Storage In the Power Plant ..................................................... 4 Spent Fuel Disassembly and Waste Processing.............................................................. 4 Waste Handling and Storage. .......................................................................................... 5 Decontamination and Decommissioning. ....................................................................... 6 2 - USE OF ROBOTIC SYSTEMS IN THE NUCLEAR INDUSTRY ..............................9 Need for Robotics Sy...

Laurent P. Houssay; Professor James; S. Tulenko; Dr. G. Ronald Dalton; James L. Kurtz

2000-01-01T23:59:59.000Z

70

Design and analysis of a radiatively-cooled, inertially-driven nuclear generator system for space-based applications  

Science Conference Proceedings (OSTI)

The RING (Radiatively-Cooled, Inertially-Driven Nuclear Generator) radiator is proposed as a novel heat rejection system for advanced space reactor power applications in the 1 to 25 MW(t) range. The RING radiator system employs four counter-rotating, hollow, cylindrical, ring-shaped tubes filled with liquid lithium. The rings pass through a cavity heat exchanger, absorb heat, and then re-radiate that absorbed heat to space. Each ring is made of thin-walled, corrugated Nb-1%Zr tubing with external fins, segmented to minimize the consequence of coolant loss. To examine both the system transient and steady-state thermal hydraulic response, a set of detailed, analytical computer codes was developed (RINGSYS-System Thermal Hydraulics and Power Rating/RINGDYN-System Dynamics/RINGRAD-Radiation Damage and Void Gas Formation/RINGDATG-Data Handling). An additional code (TEMPEST) was obtained to examine the impact of augmented, internal ring convective heat transfer on overall system performance. Performance results and a cumulative uncertainty analysis including analytical, computational, property, and environmental condition errors are presented. The optimized radiator configuration at a cavity temperature of 1500 K results in a 3.3 MW(t) heat removal capacity at a minimum radiator weight ratio of 2.1 kg/kW(t); or a radiator weight ratio of 4.0 kg/kW(t) at a maximum achievable capacity of 5.6 MW(t). Despite a higher kg/kW(t) ratio than reported for other comparable temperature radiator designs, the concept is an attractive option for use with high-temperature reactors in high or geosynchronous earth orbit, specifically where the essential design criteria emphasize reliability, safety, and repairability. This dissertation also describes the confirmatory research, especially related to the material and thermal characteristics of key components, necessary to ensure successful RING radiator system deployment.

Apley, W.J.

1989-01-01T23:59:59.000Z

71

Nuclear-radiation-actuated valve. [Patent application; for increasing coolant flow to blanket  

DOE Patents (OSTI)

The present invention relates to a breeder reactor blanket fuel assembly coolant system valve which increases coolant flow to the blanket fuel assembly to minimize long-term temperature increases caused by fission of fissile fuel created from fertile fuel through operation of the breeder reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

Christiansen, D.W.; Schively, D.P.

1982-01-19T23:59:59.000Z

72

Environmental radiation protection studies related to nuclear industries, using AMS  

Science Conference Proceedings (OSTI)

14 C is produced in nuclear reactors during normal operation and part of it is continuously released into the environment. Because of the biological importance of carbon and the long physical half-life of 14 C it is of interest to study these releases. The 14 C activity concentrations in the air and vegetation around some Swedish as well as foreign nuclear facilities have been measured by accelerator mass spectrometry (AMS). 59 Ni is produced by neutron activation in the stainless steel close to the core of a nuclear reactor. The 59 Ni levels have been measured in order to be able to classify the different parts of the reactor with respect to their content of long-lived radionuclides before final storage. The technique used to measure 59 Ni at a small accelerator such as the Lund facility has been developed over the past few years and material from the Swedish nuclear industry has been analyzed.

Ragnar Hellborg; Bengt Erlandsson; Mikko Faarinen; Helena Håkansson; Kjell Håkansson; Madis Kiisk; Carl-Erik Magnusson; Per Persson; Göran Skog; Kristina Stenström; Sören Mattsson; Charlotte Thornberg

2001-01-01T23:59:59.000Z

73

Nuclear Maintenance Applications Center: Radiation Stability of Modern Turbine Oils  

Science Conference Proceedings (OSTI)

As oil companies continue to consolidate and improve product lines, utilities are faced with oil formulation changes. The new-generation oils contain new additives and more highly refined base stocks, which raises concerns over performance in unusual conditions that are not normally tested for by oil companies, such as exposure to radiation. Previously qualified oils that performed satisfactorily after exposure to radiation were largely composed of Group I base oils that contained large amounts of aromat...

2009-10-13T23:59:59.000Z

74

EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION  

E-Print Network (OSTI)

of Atomic Bomb Radiation Effects Life Span Study Report 8.reports derive mainly from the epidemiological studies of the Japanese atomic bomb

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

75

EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION  

E-Print Network (OSTI)

exposure to radioactive fallout in Radiation-Associated inIslanders, who were exposed to fallout H-bomb test explosion

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

76

Radiation risk and nuclear medicine: An interview with a Nobel Prize winner  

Science Conference Proceedings (OSTI)

In a speech given years ago at the Veterans Administration Medical Center, Bronx, NY, Rosalyn S. Yalow, 1977 Nobel Prize recipient for her invention of radioimmunoassay, made several salient points on the perception of fear or hazards from exposure to low-level radiation and low-level radioactive wastes. For the past three years, Yalow has been concerned with the general fear of radiation. In this interview, Newsline solicited Yalow`s views on public perceptions on radiation risk and what the nuclear medicine community can do to emphasize the fact that, if properly managed, the use of isotopes in medicine and other cases is not dangerous.

Yalow, R.S.

1995-12-01T23:59:59.000Z

77

Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982  

Science Conference Proceedings (OSTI)

A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982.

Black, S. C.; Grossman, R. F.; Mullen, A. A.; Potter, G. D.; Smith, D. D. [comps.

1983-07-01T23:59:59.000Z

78

Determining Background Radiation Levels in Support of Decommissioning Nuclear Power Plants  

Science Conference Proceedings (OSTI)

This report is a technical reference for determining background radiation levels in support of surveys for decommissioning nuclear power facilities. Careful planning and data evaluation are essential for a valid survey. The report discusses important considerations for successful establishment of background levels for soils, surfaces, structures, and groundwater. It also explores alternatives to performing a formal background study.

2001-11-26T23:59:59.000Z

79

Health effects models for nuclear power plant accident consequence analysis: Low LET radiation  

SciTech Connect

This report describes dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Weibull dose-response functions are recommended for evaluating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary, and gastrointestinal syndromes -- are considered. In addition, models are included for assessing the risks of several nonlethal early and continuing effects -- including prodromal vomiting and diarrhea, hypothyroidism and radiation thyroiditis, skin burns, reproductive effects, and pregnancy losses. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid, and other.'' The category, other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also developed. For most cancers, both incidence and mortality are addressed. The models of cancer risk are derived largely from information summarized in BEIR III -- with some adjustment to reflect more recent studies. 64 refs., 18 figs., 46 tabs.

Evans, J.S. (Harvard Univ., Boston, MA (USA). School of Public Health)

1990-01-01T23:59:59.000Z

80

EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION  

E-Print Network (OSTI)

Atomic Bomb by Radiation Dose, Years Research Research after Survivors, Hiroshima and Nagasaki, 1950-71 Exposure, Age,atomic bomb survivors in Hiroshima and Nagasaki (36), and the Japanese Here, 'here is an The latent age-

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION  

E-Print Network (OSTI)

atomic bomb survivors in Hiroshima and Nagasaki (17). Here, there is an age-atomic bomb survivors (17) and Marshall Islanders (18) exposed to nuclear explosions. Here, there is an age-

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

82

LABORATORY OF NUCLEAR MEDICIhF ARD RADIATION BIOLOGY  

NLE Websites -- All DOE Office Websites (Extended Search)

MEDICIhF ARD RADIATION BIOLOGY MEDICIhF ARD RADIATION BIOLOGY . - UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORMA 90024 Ah" DEPARTXENT OF RADIOLOGY UCLA SCHOOL OF MEDICINE, LOS ANGELES, CALIFORNIA 90024 This work was p a r t i a l l y supported by ERDA Contract gEY-76-C-03-0012 and N I H g r a n t 7-R01-GM-24839-01. Prepared for U.S. Energy Research and Development Administrat ion under C o n t r a c t gEY-76-C-03-0012 ECAT: A New Computerized Tomographic Imaging System for Positron-Emitting Michael E. Phelps, Edward J . Hoffman Sung-Cheng Huang and David E . Kuhl Radiopharmaceuticals DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

83

Protective surface coatings on semiconductor nuclear radiation detectors  

DOE Green Energy (OSTI)

Surface states on germanium p-i-n junctions have been investigated using deep level transient spectroscopy (DLTS) and collimated beams of 60 keV gamma-rays. The DLTS spectra have a characteristic signature for each surface treatment but the spectra are complex and not readily interpretable as to suitability for radiation detectors. Collimated gamma-ray beams give a direct measure of surface channel effects and typeness. Hydrogenated amorphous germanium (a-Ge:H) was explored as a surface layer to adjust the electrical state and passivate the surface. Our measurements show that these layers produce flat band conditions, introduce no additional noise and appear to be stable against a variety of ambients.

Hansen, W.L.; Haller, E.E.; Hubbard, G.S.

1979-10-01T23:59:59.000Z

84

Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 7  

SciTech Connect

The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in the continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This is volume 7 of the series. The abstracts in this bibliography were selected from proceedings of technical meetings and conferences, journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to radiation protection and dose reduction, and ranges from use of robotics to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 7 contains 293 abstract, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 7. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

Kaurin, D.G.; Khan, T.A.; Sullivan, S.G.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States)

1993-07-01T23:59:59.000Z

85

Occupational dose reduction at nuclear power plants: Annotated bibliography of selected readings in radiation protection and ALARA. Volume 8  

Science Conference Proceedings (OSTI)

The ALARA Center at Brookhaven National Laboratory publishes a series of bibliographies of selected readings in radiation protection and ALARA in a continuing effort to collect and disseminate information on radiation dose reduction at nuclear power plants. This volume 8 of the series. The abstracts in this bibliography were selected form proceedings of technical meetings and conference journals, research reports, and searches of the Energy Science and Technology database of the US Department of Energy. The subject material of these abstracts relates to the many aspects of radiation protection and dose reduction, and ranges form use of robotics, to operational health physics, to water chemistry. Material on the design, planning, and management of nuclear power stations is included, as well as information on decommissioning and safe storage efforts. Volume 8 contains 232 abstracts, an author index, and a subject index. The author index is specific for this volume. The subject index is cumulative and lists all abstract numbers from volumes 1 to 8. The numbers in boldface indicate the abstracts in this volume; the numbers not in boldface represent abstracts in previous volumes.

Sullivan, S.G.; Khan, T.A.; Xie, J.W. [Brookhaven National Lab., Upton, NY (United States)

1995-05-01T23:59:59.000Z

86

The Evaluation of Lithium Hydride for Use in a Space Nuclear Reactor Shield, Including a Historical Perspective  

DOE Green Energy (OSTI)

LiH was one of the five primary shield materials the NRPCT intended to develop (along with beryllium, boron carbide, tungsten, and water) for potential Prometheus application. It was also anticipated that {sup 10}B metal would be investigated for feasibility at a low level of effort. LiH historically has been selected as a low mass, neutron absorption material for space shields (Systems for Nuclear Auxiliary Power (SNAP), Topaz, SP-100). Initial NRPCT investigations did not produce convincing evidence that LiH was desirable or feasible for a Prometheus mission due to material property issues (primarily swelling and hydrogen cover gas containment), and related thermal design complexity. Furthermore, if mass limits allowed, an option to avoid use of LiH was being contemplated to lower development costs and associated risks. However, LiH remains theoretically the most efficient neutron shield material per unit mass, and, with sufficient testing and development, could be an optimal material choice for future flights.

D. Poeth

2005-12-09T23:59:59.000Z

87

DOE Order Self Study Modules - DOE O 440.1B, Worker Protection Management for DOE (Including the National Nuclear Security Administration) Federal Employees  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0.1B 0.1B WORKER PROTECTION PROGRAM FOR DOE (INCLUDING THE NATIONAL NUCLEAR SECURITY ADMINISTRATION) FEDERAL EMPLOYEES DOE O 440.1B Familiar Level June 2011 1 DOE O 440.1B WORKER PROTECTION MANAGEMENT FOR DOE (INCLUDING THE NATIONAL NUCLEAR SECURITY ADMINISTRATION) FEDERAL EMPLOYEES FAMILIAR LEVEL OBJECTIVES Given the familiar level of this module and the resources listed below, you will be able to answer the following questions: 1. What are the objectives of DOE O 440.1B? 2. What are the requirements that DOE elements must meet according to DOE O 440.1B? 3. What is the hazard prevention/abatement process that must be implemented according to DOE O 440.1B? 4. What are three responsibilities assigned by DOE O 440.1B for heads of field elements?

88

Graphical user interfaces for McCellan Nuclear Radiation Center (MNRC).  

SciTech Connect

McClellan's Nuclear Radiation Center (MNRC) control console is in the process of being replaced due to spurious scrams, outdated software, and obsolete parts. The intent of the new control console is to eliminate the existing problems by installing a UNIX-based computer system with industry-standard interface software and incorporating human factors during all stages of the graphical user interface (GUI) development and control console design.

Brown-VanHoozer, S. A.

1998-08-27T23:59:59.000Z

89

Evaluation of an Advanced Radiation Shielding Material for Permanent Installation at an Operating Commercial Nuclear Reactor  

Science Conference Proceedings (OSTI)

The industry continues to investigate, validate, and implement new radiation field reduction measures in response to increased emphasis on reducing dose to workers. Many nuclear plants are interested in permanent shielding applications to further reduce personnel exposure and to reduce the recurring effort associated with temporary installations. In 2008, a flexible, impregnated, layered matrix material was identified as a possible material for incorporating a shielding substance. This report provides an...

2010-09-30T23:59:59.000Z

90

22.02 Introduction to Applied Nuclear Physics, Spring 2003  

E-Print Network (OSTI)

This course concentrates on the basic concepts of nuclear physics with emphasis on nuclear structure and radiation interactions with matter. Included: elementary quantum theory; nuclear forces; shell structure of the ...

Molvig, Kim

91

Standard guide for application of radiation monitors to the control and physical security of special nuclear material  

E-Print Network (OSTI)

1.1 This guide briefly describes the state-of-the-art of radiation monitors for detecting special nuclear material (SNM) (see 3.1.11) in order to establish the context in which to write performance standards for the monitors. This guide extracts information from technical documentation to provide information for selecting, calibrating, testing, and operating such radiation monitors when they are used for the control and protection of SNM. This guide offers an unobtrusive means of searching pedestrians, packages, and motor vehicles for concealed SNM as one part of a nuclear material control or security plan for nuclear materials. The radiation monitors can provide an efficient, sensitive, and reliable means of detecting the theft of small quantities of SNM while maintaining a low likelihood of nuisance alarms. 1.2 Dependable operation of SNM radiation monitors rests on selecting appropriate monitors for the task, operating them in a hospitable environment, and conducting an effective program to test, calibrat...

American Society for Testing and Materials. Philadelphia

1999-01-01T23:59:59.000Z

92

Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991  

Science Conference Proceedings (OSTI)

This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

1992-01-01T23:59:59.000Z

93

Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2008  

Science Conference Proceedings (OSTI)

This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2008 annual reports submitted by five of the seven categories1 of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Because there are no geologic repositories for high-level waste currently licensed and no low-level waste disposal facilities in operation, only five categories will be considered in this report.

U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

2009-12-01T23:59:59.000Z

94

Investigation into Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation Detection  

SciTech Connect

Nanocomposites may enable the use of scintillator materials such as cerium-doped lanthanum fluoride (LaF3:Ce) and cerium bromide (CeBr3) without requiring the growth of large crystals [1]. Nanostructured detectors may allow us to engineer immensely sized detectors of flexible form factors that will have a broad energy range and an energy resolution sufficient to perform isotopic identification. Furthermore, nanocomposites are easy to prepare and very low in cost. It is much less costly to use nanocomposites rather than grow large whole crystals of scintillator materials; with nanocomposites fabricated on an industrial scale, costs are even less. Nanostructured radiation scintillator detectors may improve quantum efficiency and provide vastly improved detector form factors. Quantum efficiencies up to 60% have been seen in photoluminescence from silicon nanocrystals in a densely-packed ensemble [2]. We have fabricated nanoparticles with sizes <10 nm and characterized their nanocomposite radiation detector properties. This work investigates the properties of the nanostructured radiation scintillator in order to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using nanostructured lanthanum bromide, lanthanum fluoride, or CeBr3. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

Guss, P. P., Guise, R., Mukhopadhyay, S., Yuan, D.

2011-07-06T23:59:59.000Z

95

NUCLEAR RADIATION DOSIMETER USING COMPOSITE FILTER AND A SINGLE ELEMENT FILTER  

DOE Patents (OSTI)

A nuclear radiation dosimeter is described that uses, in combination, a composite filter and a single element filter. The composite filter contains a plurality of comminuted metals having K-edges evenly distributed over the energy range of interest and the quantity of each of the metals is selected to result in filtering in an amount inversely proportional to the sensitivity of the film in the range over l00 kev. A copper filter is used that has a thickness to contribute the necessary additional correction in the interval between 40 and 100 kev. (AEC)

Storm, E.; Shlaer, S.

1964-04-21T23:59:59.000Z

96

Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident  

SciTech Connect

This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

Guss, P. P.

2012-07-16T23:59:59.000Z

97

Video Camera Use at Nuclear Power Plants: Tools for Increasing Productivity and Reducing Radiation Exposure: Tools for Increasing Pr oductivity and Reducing Radiation Exposure  

Science Conference Proceedings (OSTI)

Nuclear power plants have increased the use of industrial video cameras as support tools for a variety of plant operations and outage tasks. This survey on utility use of video cameras, the equipment being used, and the benefits derived found that the video camera is an important tool for reducing radiation exposure and improving productivity through more efficient use of personnel.

1990-08-14T23:59:59.000Z

98

Preliminary Results from an Investigation into Nanostructured Nuclear Radiation Detectors for Non-Proliferation Applications  

SciTech Connect

In recent years, the concept of embedding composite scintillators consisting of nanosized inorganic crystals in an organic matrix has been actively pursued. Nanocomposite detectors have the potential to meet many of the homeland security, non-proliferation, and border and cargo-screening needs of the nation and, by virtue of their superior nuclear identification capability over plastic, at roughly the same cost as plastic, have the potential to replace all plastic detectors. Nanocomposites clearly have the potential of being a gamma ray detection material that would be sensitive yet less expensive and easier to produce on a large scale than growing large, whole crystals of similar sensitivity. These detectors would have a broad energy range and a sufficient energy resolution to perform isotopic identification. The material can also be fabricated on an industrial scale, further reducing cost. This investigation focused on designing and fabricating prototype core/shell and quantum dot (QD) detectors. Fourteen core/shell and four QD detectors, all with the basic consistency of a mixture of nanoparticles in a polymer matrix with different densities of nanoparticles, were prepared. Nanoparticles with sizes <10 nm were fabricated, embedded in a polystyrene matrix, and the resultant scintillators’ radiation detector properties were characterized. This work also attempted to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy and high-energy gamma rays. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

,

2012-10-01T23:59:59.000Z

99

NUCLEAR SUBSTANCE LABORATORY SELF-AUDIT CHECKLIST Office of Environmental Health and Safety Title: Radiation Safety Self-Audit Checklist  

E-Print Network (OSTI)

NUCLEAR SUBSTANCE LABORATORY SELF-AUDIT CHECKLIST Office of Environmental Health and Safety Title for Handling Packages Containing Nuclear Substances" posters posted. Storage area signed, included 24 hour contact information Nuclear Substance Permit and all attachments posted (eg. Conditions ­ general, special

Beaumont, Christopher

100

Portable instrument for inspecting irradiated nuclear-fuel assemblies in a water-filled storage pond by measurement of induced Cerenkov radiation  

DOE Patents (OSTI)

A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

Nicholson, N.; Dowdy, E.J.; Holt, D.M.; Stump, C.J. Jr.

1982-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993  

Science Conference Proceedings (OSTI)

This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

Chaloud, D.J; Daigler, D.M.; Davis, M.G. [and others

1996-06-01T23:59:59.000Z

102

Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2010, Prepared for the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, May 2012  

SciTech Connect

This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission’s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2010 annual reports submitted by five of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Because there are no geologic repositories for high-level waste currently licensed and no NRC-licensed low-level waste disposal facilities currently in operation, only five categories will be considered in this report. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Annual reports for 2010 were received from a total of 190 NRC licensees. The summation of reports submitted by the 190 licensees indicated that 192,424 individuals were monitored, 81,961 of whom received a measurable dose. When adjusted for transient workers who worked at more than one licensee during the year, there were actually 142,471 monitored individuals and 62,782 who received a measurable dose. The collective dose incurred by these individuals was 10,617 person-rem, which represents a 12% decrease from the 2009 value. This decrease was primarily due to the decrease in collective dose at commercial nuclear power reactors, as well as a decrease in the collective dose for most of the other categories of NRC licensees. The number of individuals receiving a measurable dose also decreased, resulting in an average measurable dose of 0.13 rem for 2010. The average measurable dose is defined as the total effective dose equivalent (TEDE) divided by the number of individuals receiving a measurable dose. In calendar year 2010, the average annual collective dose per reactor for light water reactor (LWR) licensees was 83 person-rem. This represents a 14% decrease from the value reported for 2009 (96 person-rem). The decrease in collective dose for commercial nuclear power reactors was due to an 11% decrease in total outage hours in 2010. During outages, activities involving increased radiation exposure such as refueling and maintenance are performed while the reactor is not in operation. The average annual collective dose per reactor for boiling water reactors (BWRs) was 137 personrem for 35 BWRs, and 55 person-rem for 69 pressurized water reactors (PWRs). Analyses of transient individual data indicate that 29,333 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient individuals by multiple licensees. The adjustment to account for transient individuals has been specifically noted in footnotes in the figures and tables for commercial nuclear power reactors. In 2010, the average measurable dose per individual for all licensees calculated from reported data was 0.13 rem. Although the average measurable dose per individual from data submitted by licensees was 0.13 rem, a corrected dose distribution resulted in an average measurable dose per individual of 0.17 rem.

D. E. Lewis D. A. Hagemeyer Y. U. McCormick

2012-07-07T23:59:59.000Z

103

The association betweeen cancers and low level radiation: An evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility  

Science Conference Proceedings (OSTI)

Cancer has traditionally been linked to exposure to high doses of radiation, but there is considerable controversy regarding the carcinogenicity of low doses of ionizing radiation in humans. Over the past 30 years there have been 14 studies conducted on employees at the Hanford nuclear weapons facility to investigate the relationship between exposure to low doses of radiation and mortality due to cancer (1-14). Interest in this issue was originally stimulated by the Atomic Energy Commission (AEC) which was trying to determine whether the linear extrapolation of health effects from high to low dose exposure was accurate. If the risk has been underestimated, then the maximum permissible occupational radiation exposure in the United States had been set too high. Because the health risk associated with low level radiation are unclear and controversial it seems appropriate to review the studies relating to Hanford at this time.

Britton, J. [Univ. of California, Berkeley, CA (United States). School of Public Health]|[Lawrence Berkeley National Lab., CA (United States)

1993-05-01T23:59:59.000Z

104

Low Dose Radiation Program: Links - Websites about Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Websites About Radiation The ABC's of Nuclear Science A Teacher's Guide To The Nuclear Science Wall Chart Answers to Questions about Radiation and You Background Radiation:...

105

Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation  

DOE Patents (OSTI)

The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

Barty, Christopher P. J. (Hayward, CA); Hartemann, Frederic V. (San Ramon, CA); McNabb, Dennis P. (Alameda, CA); Pruet, Jason A. (Brentwood, CA)

2009-07-21T23:59:59.000Z

106

Background Radiation Survey of the Radiological/Nuclear Countermeasures Test and Evaluation Center  

SciTech Connect

In preparation for operations at the Radiological/Nuclear Countermeasures Test and Evaluation Complex (Rad/NucCTEC), the Department of Homeland Security Domestic Nuclear Detection Office (DHS/DNDO) requested that personnel from the Remote Sensing Laboratory (RSL) conduct a survey of the present radiological conditions at the facility. The measurements consist of the exposure rate from a high-pressure ion chamber (HPIC), high-resolution spectra from a high-purity germanium (HPGe) system in an in situ configuration, and low-resolution spectra from a sodium iodide (NaI) detector in a radiation detection backpack. Measurements with these systems were collected at discrete locations within the facility. Measurements were also collected by carrying the VECTOR backpack throughout the complex to generate a map of the entire area. The area was also to be surveyed with the Kiwi (an array of eight-2-inch x 4-inch x 16-inch NaI detectors) from the Aerial Measuring Systems; however, conflicts with test preparation activities at the site prevented this from being accomplished.

Colin Okada

2010-09-16T23:59:59.000Z

107

The future of nuclear power  

SciTech Connect

Present conditions and future prospects for the nuclear power industry in the United States are discussed. The presentation includes a review of trends in electrical production, the safety of coal as compared to nuclear generating plants, the dangers of radiation, the economics of nuclear power, the high cost of nuclear power in the United States, and the public fear of nuclear power. 20 refs. (DWL)

Zeile, H.J.

1987-01-01T23:59:59.000Z

108

Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors  

Science Conference Proceedings (OSTI)

In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the operating envelope of both fission and fusion reactors. In advanced fission reactors composite materials are being designed in an effort to extend the life and improve the reliability of fuel rod cladding as well as structural materials. Composites are being considered for use as core internals in the next generation of gas-cooled reactors. Further, next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) will rely on the capabilities of advanced composites to safely withstand extremely high neutron fluxes while providing superior thermal shock resistance.

Simos, N.

2011-05-01T23:59:59.000Z

109

RADIATION WAVE DETECTION  

DOE Patents (OSTI)

Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

Wouters, L.F.

1960-08-30T23:59:59.000Z

110

Radiation Effects In Ceramics  

Science Conference Proceedings (OSTI)

RADIATION MATERIALS SCIENCE IN TECHNOLOGY APPLICATIONS II: Radiation Effects in Ceramics. Sponsored by: Jt. SMD/MSD Nuclear Materials ...

111

Occupational radiation exposure at commercial nuclear power reactors and other facilities 1992; Twenty-fifth annual report, Volume 14  

SciTech Connect

This report summarizes the occupational radiation exposure information that has been reported to the NRC`s Radiation Exposure Information Reporting System (REIRS) by nuclear power facilities and certain other categories of NRC licensees during the years 1969 through 1992. The bulk of the data presented in the report was obtained from annual radiation exposure reports submitted in accordance with the requirements of 10CFR20.407 and the technical specifications of nuclear power plants. Data on workers terminating their employment at certain NRC licensed facilities were obtained from reports submitted pursuant to 10CFR20.408. The 1992 annual reports submitted by about 364 licensees indicated that approximately 204,365 individuals were monitored, 183,927 of whom were monitored by nuclear power facilities. They incurred an average individual dose of 0.16 rem (cSv) and an average measurable dose of about 0.30 (cSv). Termination radiation exposure reports were analyzed to reveal that about 74,566 individuals completed their employment with one or more of the 364 covered licensees during 1992. Some 71,846 of these individuals terminated from power reactor facilities, and about 9,724 of them were considered to be transient workers who received an average dose of 0.50 rem (cSv).

Raddatz, C.T. [US Nuclear Regulatory Commission, Washington, DC (United States). Division of Regulatory Applications; Hagemeyer, D. [Science Applications International Corp., Oak Ridge, TN (United States)

1993-12-01T23:59:59.000Z

112

A COMPENDIUM OF INFORMATION FOR USE IN CONTROLLING RADIATION EMERGENCIES INCLUDING LECTURE NOTES FROM A TRAINING SESSION AT IDAHO FALLS, IDAHO, FEBRUARY 12-14, 1958  

SciTech Connect

A training course was held to familiarize members of radiological assistance teams from various parts of the U. S. with the origin and nature of situations that might, by the event of an unusual accident. release radioactive materials to a populated environment. The course consisted of a series of lectures and a tour of some of the radiation monitoring, source handling, and transportation facilities at NRTS. A summary of the lecture material is presented. (W.D.M.)

Brodsky, A.; Beard, G.V. comps. and eds.

1960-09-01T23:59:59.000Z

113

A,B,C`s of nuclear science  

SciTech Connect

This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

Noto, V.A. [Mandeville High School, LA (United States); Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R. [Lawrence Berkeley Lab., CA (United States)

1995-08-07T23:59:59.000Z

114

Radiation Measurements at the Campus of Fukushima Medical University through the 2011 off the Pacific Coast of Tohoku Earthquake and Subsequent Nuclear Power Plant crisis  

E-Print Network (OSTI)

An earthquake, Tohoku region Pacific Coast earthquake, occurred on the 11th of March, 2011, and subsequent Fukushima nuclear power plant accidents have been stirring natural radiation around the author's office in Fukushima Medical University (FMU). FMU is located in Fukushima city, and is 57 km (35 miles) away from northwest of the Fukushima Daiichi nuclear power plant. This paper presents three types of radiation survey undertaken through the unprecedented accidents at the campus and the hospital of FMU. First, a group of interested people immediately began radiation surveillance; the group members were assembled from the faculty members of "Life Sciences and Social Medicine" and "Human and Natural Sciences". Second, the present author, regardless of the earthquake, had serially observed natural radiations such as gamma radiation in air with NaI scintillation counter, atmospheric radon with Lucas cell, and second cosmic rays with NaI scintillation. Gamma radiation indicated most drastic change, i.e., peak v...

Kobayashi, Tsuneo

2011-01-01T23:59:59.000Z

115

Radiators  

SciTech Connect

A heat-exchange radiator is connected to a fluid flow circuit by a connector which provides one member of an interengageable spigot and socket pair for push-fit, fluid-tight, engagement between the connector and the radiator, with latching formations at least one of which is resilient. Preferably the connector carries the spigot which tapers and engages with a socket of corresponding shape, the spigot carrying an O-ring seal and either latching fingers or a resilient latching circlip.

Webster, D. M.

1985-07-30T23:59:59.000Z

116

Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems  

SciTech Connect

This project will use proton irradiation to further understand the microstructural stability of ceramics being considered as matrix material for advanced nuclear fuels.

Todd R. Allen

2009-06-30T23:59:59.000Z

117

Low Dose Radiation Program: Links - Organizations Funding Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Radiation Research Australian Radiation Protection and Nuclear Safety Agency Canadian Nuclear Safety Commission Centers for Medical Countermeasures Against Radiological and...

118

Nuclear power plants: Ecology and health physics. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning ecological and health aspects related to nuclear power plants. References cover radiation protection, occupational exposure, reactor safety and shielding, reactor accidents, and radiation measuring instruments. Genetic radiation effects, radiation-induced neoplasms, and radiation contaminants are examined. (Contains 50-250 citations and includes a subject term index and title list.)

NONE

1995-08-01T23:59:59.000Z

119

Low radiative efficiency accretion at work in active galactic nuclei: the nuclear spectral energy distribution of NGC4565  

E-Print Network (OSTI)

We derive the spectral energy distribution (SED) of the nucleus of the Seyfert galaxy NGC4565. Despite its classification as a Seyfert2, the nuclear source is substantially unabsorbed. The absorption we find from Chandra data (N_H=2.5 X 10^21 cm^-2) is consistent with that produced by material in the galactic disk of the host galaxy. HST images show a nuclear unresolved source in all of the available observations, from the near-IR H band to the optical U band. The SED is completely different from that of Seyfert galaxies and QSO, as it appears basically ``flat'' in the IR-optical region, with a small drop-off in the U-band. The location of the object in diagnostic planes for low luminosity AGNs excludes a jet origin for the optical nucleus, and its extremely low Eddington ratio L_o/L_Edd indicates that the radiation we observe is most likely produced in a radiatively inefficient accretion flow (RIAF). This would make NGC4565 the first AGN in which an ADAF-like process is identified in the optical. We find that the relatively high [OIII] flux observed from the ground cannot be all produced in the nucleus. Therefore, an extended NLR must exist in this object. This may be interpreted in the framework of two different scenarios: i) the radiation from ADAFs is sufficient to give rise to high ionization emission-line regions through photoionization, or ii) the nuclear source has recently ``turned-off'', switching from a high-efficiency accretion regime to the present low-efficiency state.

M. Chiaberge; R. Gilli; F. D. Macchetto; W. B. Sparks

2006-01-27T23:59:59.000Z

120

Nuclear decay data for selected radionuclides  

SciTech Connect

Contained in this report are tabulations of the atomic and nuclear radiations emitted by 194 radioactive nuclides. The nuclei included comprise most of those currently of interest in medical practice or research, health physics, industry, nuclear power, environmental impact studies, and as reference standards. Listed in tabular form are recommended values for half-lives, energies, intensities (probabilities per decay), and equilibrium absorbed-dose constants for each of the atomic and nuclear radiations emitted by these radioactive atoms. (auth)

Martin, M.J. (ed.)

1976-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

122

Radiation exposure liability : the burden of responsibility and compensation in civilian and military nuclear ventures  

E-Print Network (OSTI)

Since Enrico Fermi first discovered that neutrons could split atoms in 1934, peaceful and militaristic uses of nuclear energy have become prevalent in our society. Two case studies, Three Mile Island and the Nevada Test ...

Flores, Jessica (Jessica Alejandro)

2008-01-01T23:59:59.000Z

123

Modelling of a passive reactor cavity cooling system (RCCS) for a nuclear reactor core subject to environmental changes and the optimisation of the RCCS radiation heat shield heat shield.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: A reactor cavity cooling system (RCCS) is used in the PBMR to protect the concrete citadel surrounding the reactor from direct nuclear radiation… (more)

Verwey, Aldo

2010-01-01T23:59:59.000Z

124

Western Region American Nuclear Society regional student conference, April 12-14, 1985  

SciTech Connect

Abstracts of papers presented at the conference are contained in this proceedings. Topics of technical sessions included fusion and space reactors, numerical and computer modeling, nuclear medicine and radiation effects, and general nuclear technology. (GHT)

1985-01-01T23:59:59.000Z

125

Induction of nuclear factor kB after low-dose ionizing radiation involves a reactive oxygen intermediate signaling pathway  

Science Conference Proceedings (OSTI)

Reactive oxygen intermediates (ROIs) have been found to be the messengers in the activation of the kB transcription regulator in mitogen- or cytokine-stimulated cells, operating in conjunction with or independently of various other mechanisms; these include Ca{sup ++}-dependent and PKC-dependent cytoplasmic signaling pathways. We have recently reported that low-dose ionizing radiation induces NF-kB in human lymphoblastoid 244B cells. Since ionizing radiation generates free radicals in cells, we have investigated whether the ROIs generated by ionizing radiation induce NF-kB activity, and also whether they do so by a similar mechanism as in cells treated with PMA or H{sub 2}O{sub 2}. The results not only confirm a previous observation from our laboratory that low-dose ionizing radiation (0.1-2.0 Gy) activates kB transcription factor transiently with a maximal induction at 0.5 Gy exposure, but also demonstrate mechanistically that the activation of NF-kB by low-dose ionizing radiation can be inhibited considerably by the antioxidant N-acetyl-L-cysteine, indicating that at least the major part of the activation process is mediated by ROIs. These findings support the idea that ROIs can regulate the kB elements which in turn can serve as response elements for oxidant stress. 37 refs., 4 figs., 1 tab.

Mohan, N.; Meltz, M.L. [Univ. of Texas Health Science Center, San Antonio, TX (United States)

1994-10-01T23:59:59.000Z

126

Evaluation of a Radiation Worker Safety Training Program at a nuclear facility  

SciTech Connect

A radiation safety course was evaluated using the Kirkpatrick criteria of training evaluation as a guide. Thirty-nine employees were given the two-day training course and were compared with 15 employees in a control group who did not receive the training. Cognitive results show an immediate gain in knowledge, and substantial retention at 6 months. Implications of the results are discussed in terms of applications to current radiation safety training was well as follow-on training research and development requirements.

Lindsey, J.E.

1993-05-01T23:59:59.000Z

127

The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility  

E-Print Network (OSTI)

date of death, internal radiation and exposure period, thedeath, death year, internal radiation, exposure period, andexposures (chemical and smoking), internal doses, and types of radiation.

Britton, Julie

2010-01-01T23:59:59.000Z

128

Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection  

Science Conference Proceedings (OSTI)

This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

2011-06-22T23:59:59.000Z

129

Using nitrogen-14 nuclear quadrupole resonance and electric field gradient information for the study of radiation effects  

Science Conference Proceedings (OSTI)

Nitrogen-14 nuclear quadrupole resonance (NQR) was used in an attempt to detect the effects of ionizing radiation on organic material. Previously reported resonances for urea were detected at 2,913.32 {+-} 0.01 kHz and 2,347.88 {+-} 0.08 kHz with associated T{sub 2}* values 780 {+-} 20 {micro}s and 523 {+-} 24 {micro}s, respectively. The previously unreported {nu}{sub {minus}} line for urea-d{sup 4} was detected at 2,381 {+-} 0.04 Khz and used to determine accurately for the first time the values for the nuclear quadrupole coupling constant {chi} (3,548.74 {+-} 0.03 kHz) and the asymmetry parameter {eta} (0.31571 {+-} 0.00007) for urea-d{sup 4}. The inverse linewidth parameter T{sub 2}* for {nu}{sub +} was measured at 928 {+-} 23 {micro}s and for {nu}{sub {minus}} at 721 {+-} 12 {micro}s. Townes and Dailey analysis was performed and urea-d{sup 4} exhibits a 0.004 increase in lone pair electronic density and a slight decrease in N-H bond electronic density, as compared to urea, probably due to the mass difference. A relationship is proposed, referred to as NQR linewidth analysis, between the dynamic spin relaxation times T{sub 2} and T{sub 2}* and the widths of the distributions of the NQR parameters. Linewidth analysis is presented as a tool for possible use in future NQR work in all area, not just radiation effects. This relationship is tested using sodium nitrite T{sub 2} and T{sub 2}* values for {nu}{sub {minus}} and {nu}{sub {minus}} as a function of temperature.

Iselin, L.H.

1995-12-01T23:59:59.000Z

130

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

131

Activation of nuclear factor kB in human lymphoblastoid cells by low-dose ionizing radiation  

SciTech Connect

Nuclear factor kB (NF-kB) is a pleiotropic transcription factor which is involved in the transcriptional regulation of several specific genes. Recent reports demonstrated that ionizing radiation in the dose range of 2-50 Gy results in expression of NF-kB in human KG-1 myeloid leukemia cells and human B-lymphocyte precursor cells; the precise mechanism involved and the significance are not yet known. The present report demonstrates that even lower doses of ionizing radiation, 0.25-2.0 Gy, are capable of inducing expression of NF-kB in EBV-transformed 244B human lymphoblastoid cells. These results are in a dose range where the viability of the cells remains very high. After exposure to {sup 137}Cs {gamma} rays at a dose rate of 1.17 Gy/min, a maximum in expression of NF-kB was seen at 8 h after a 0.5-Gy exposure. Time-course studies revealed a biphasic time-dependent expression after 0.5-, 1- and 2-Gy exposures. However, for each time examined, the expression of NF-kB was maximum after the 0.5-Gy exposure. The expression of the p50 and p65 NF-kB subunits was also shown to be regulated differentially after exposures to 1.0 and 2.0 Gy. 32 refs., 3 figs.

Prasad, A.V.; Mohan, N.; Meltz, M.L.; Chandrasekar, B. [Univ. of Texas Health Science Center, San Antonio, TX (United States)

1994-06-01T23:59:59.000Z

132

Resonant nuclear scattering of synchrotron radiation: Detector development and specular scattering from a thin layer of {sup 57}Fe  

Science Conference Proceedings (OSTI)

This thesis explores resonant nudear scattering of synchrotron radiation. An introductory chapter describes some useful concepts, such as speedup and coherent enhancement, in the context of some basic physical principles. Methods of producing highly monochromatic synchrotron beams usmg either electronic or nuclear scattering are also discussed. The body of the thesis concentrates on detector development and specular scattering from iynthetic layered materials. A detector employing n-dcrochannel plate electron multipliers is shown to have good ({approximately}50%) effidency for detecting 14.4 key x-rays incident at small ({approximately}0.5 degree) grazing angles onto Au or CsI photocathodes. However, being complicated to use, it was replaced with a large area (>=lan2) avalanche photodiode (APD) detector. The APD`s are simpler to use and have comparable (30--70%) efficiencies at 14.4 key, subnanosecond time resolution, large dynan-dc range (usable at rates up to {approximately}10{sup 8} photons/second) and low (<{approximately}0.01 cts/sec) background rates. Maxwell`s equations are used to derive the specular x-ray reflectivity of layered materials with resonant transitions and complex polarization dependencies. The effects of interfadal roughness are treated with some care, and the distorted wave Born approximation (DWBA) used to describe electronic scattering is generalized to the nuclear case. The implications of the theory are discussed in the context of grazing incidence measurements with emphasis on the kinematic and dynamical aspects of the scattering.

Baron, A.Q.R.

1995-04-01T23:59:59.000Z

133

J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS*  

E-Print Network (OSTI)

J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS* John H. Scofield Department noise and channel mobility measurements may be useful in defining nondestructive hardness assurance test

Scofield, John H.

134

Radiation Shields Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Radiation ...

135

Nuclear Regulatory Commission issuances  

SciTech Connect

This document is the March 1996 listing of NRC issuances. Included are: (1) NRC orders granting Cleveland Electric Illuminating Company`s petition for review of the ASLB order LBP-95-17, (2) NRC orders relating to the potential disqualification of two commissioners in the matter of the decommissioning of Yankee Nuclear Power Station, (3) ASLB orders pertaining to the Oncology Services Corporation, (4) ASLB orders pertaining to the Radiation Oncology Center, (5) ASLB orders pertaining to the Yankee Nuclear Power Station, and (6) Director`s decision pertaining to the Yankee Nuclear Power Station.

NONE

1996-03-01T23:59:59.000Z

136

Modification of radiation hazards to the adult and its fetus from nuclear medicine procedures  

SciTech Connect

The effects of perchlorate on the quantitative distribution patterns of / sup 99m/Tc intravenously administered as pertechnetate in the human adult and its fetus were studied in a variety of situations and are summarized. Perchlorate, when administered shortly before /sup 99m/Tc, suppresses concentration in the adult thyroid gland, stomach, and urine; but tends to increase intestinal localization; and prolongs disappearance from the blood. It also inhibits concentration in the placenta and fetus. The greatest reductions in fetal concentrations occur in the femur, spleen, stomach, and thyroid. The estimated radiation absorbed doses to the human fetus are about 80 mrad/mCi for /sup 99m/Tc- pertechnetate alone, and around 30 mrad/mCi if pretreatment with perchlorate is used. Previously localized /sup 99m/Tc may be released by perchlorate from the thyroid gland and stomach, but not from the placenta and fetus. (auth)

Lathrop, K.A.

1976-01-01T23:59:59.000Z

137

Effects of nuclear weapons. Third edition  

SciTech Connect

Since the last edition of ''The Effects of Nuclear Weapons'' in 1962 much new information has become available concerning nuclear weapon effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. A new chapter has been added on the electromagnetic pulse. The chapter titles are as follows: general principles of nuclear explosions; descriptions of nuclear explosions; air blast phenomena in air and surface bursts; air blast loading; structural damage from air blast; shock effects of surface and subsurface bursts; thermal radiation and its effects; initial nuclear radiation; residual nuclear radiation and fallout; radio and radar effects; the electromagnetic pulse and its effects; and biological effects. (LTN)

Glasstone, S.; Dolan, P.J.

1977-01-01T23:59:59.000Z

138

DETECTORS FOR RADIATION DOSIMETRY  

E-Print Network (OSTI)

2) W. J. Price, "Nuclear Radiation Detection" (2nd ed. , Newand R. J. Berry, "Manual on Radiation Dosimetry" (New York:4) G. F. Knoll, "Radiation Detection and Measurement" (New

Perez-Mendez, V.

2010-01-01T23:59:59.000Z

139

The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility  

E-Print Network (OSTI)

and Rocky Flats Nuclear Weapons Plant. Rad Res 1989;120:19-Evidence at the Hanford Nuclear Weapons Facility MASTERAT T H E HANFORD NUCLEAR WEAPONS FACILITY JULIE BRITTON

Britton, Julie

2010-01-01T23:59:59.000Z

140

Radiation Emergency Assistance Center / Training Site | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Emergency Assistance Center Training Site | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Association between Cancers and Low Level Radiation: an evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility  

E-Print Network (OSTI)

indiv. indiv. Gilbertetal. (Hanford & Combined) Gilbertetal.on both radiation and the Hanford facility. The data used toG. Radiation exposures of Hanford workers dying from cancer

Britton, Julie

2010-01-01T23:59:59.000Z

142

Occupational radiation exposure at commercial nuclear power reactors and other facilities 1996: Twenty-ninth annual report. Volume 18  

SciTech Connect

This report summarizes the occupational exposure data that are maintained in the US Nuclear Regulatory Commission`s (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 1996 annual reports submitted by six of the seven categories of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. Since there are no geologic repositories for high level waste currently licensed, only six categories will be considered in this report. Annual reports for 1996 were received from a total of 300 NRC licensees, of which 109 were operators of nuclear power reactors in commercial operation. Compilations of the reports submitted by the 300 licensees indicated that 138,310 individuals were monitored, 75,139 of whom received a measurable dose. The collective dose incurred by these individuals was 21,755 person-cSv (person-rem){sup 2} which represents a 13% decrease from the 1995 value. The number of workers receiving a measurable dose also decreased, resulting in the average measurable dose of 0.29 cSv (rem) for 1996. The average measurable dose is defined to be the total collective dose (TEDE) divided by the number of workers receiving a measurable dose. These figures have been adjusted to account for transient reactor workers. Analyses of transient worker data indicate that 22,348 individuals completed work assignments at two or more licensees during the monitoring year. The dose distributions are adjusted each year to account for the duplicate reporting of transient workers by multiple licensees. In 1996, the average measurable dose calculated from reported was 0.24 cSv (rem). The corrected dose distribution resulted in an average measurable dose of 0.29 cSv (rem).

Thomas, M.L. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Regulatory Applications; Hagemeyer, D. [Science Applications International Corp., Oak Ridge, TN (United States)

1998-02-01T23:59:59.000Z

143

Ionizing radiation induces IL-6-production by human fibroblasts involving activation of nuclear factor-. kappa. B  

Science Conference Proceedings (OSTI)

The authors report that human lung fibroblasts respond to X-ray treatment with release of interleukin (IL) -6. Synthesis of IL-6 upon ionizing radiation is preceded by an increase of IL-6 transcript levels resulting from transcriptional activation of the IL-6 gene. Analysis of deleted fragments of the IL-6 promoter revealed that transcriptional induction of the IL-6 promoter is due to enhanced binding activity of the transcription factor NF-kB. Although AP-1 does not participate in the rapid induction of the IL-6 promoter its binding activity is also enhanced upon XRT. In contrast to binding kinetics observed with NF-kB, AP-1 binding upon XRT. In contrast to binding kinetics observed with NF-kB- and the AP-1 recognition sequence, conferred inducibility by XRT to a heterologous promoter, with reporter gene activity being maximal 24 hours or 48 hours upon XRT, respectively. Sequential activation of two distinct transcription factors might thus contribute to synchronize transcriptional activation of different genes participating in the X-ray response.

Brach, M.A.; Gruss, H.J.; Kaisho, Tsuneyasu; Asano, Yoshinobu; Vos, Sven de; Mertelsmann, R.; Hirano, Toshio; Herrmann, F. (Univ. of Freiburg (Germany) Osaka Univ. (Japan))

1992-02-26T23:59:59.000Z

144

Radiation Cataract  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation including patients undergoing diagnostic CT scans or radiotherapy, atomic bomb survivors, residents of radioactively contaminated buildings, victims of the...

145

McClellan Nuclear Radiation Center (MNRC) TRIGA reactor: The national organization of test research and training reactors  

SciTech Connect

This year's TRTR conference is being hosted by the McClellan Nuclear Radiation Center. The conference will be held at the Red Lion Hotel in Sacramento, CA. The conference dates are scheduled for October 11-14, 1994. Deadlines for sponsorship commitment and papers have not been set, but are forthcoming. The newly remodeled Red Lion Hotel provides up-to-date conference facilities and one of the most desirable locations for dining, shopping and entertainment in the Sacramento area. While attendees are busy with the conference activities, a spouses program will be available. Although the agenda has not been set, the Sacramento area offers outings to San Francisco, Pier 39, Ghirardelli Square (famous for their chocolate), and a chance to discover 'El Dorado' in the gold country. Not to forget our own bit of history with visits to 'Old Sacramento and Old Folsom', where antiquities abound, to the world renown train museum and incredible eating establishments. (author)

Kiger, Kevin M. [SWI-ALC/TIR, 5335 Price Ave., McClellan Air Force Base Sacramento, CA 95652-2504 (United States)

1994-07-01T23:59:59.000Z

146

Extra-terrestrial nuclear power stations : transportation and operation  

E-Print Network (OSTI)

Many challenges exist when considering nuclear power to provide electricity for bases on the Moon or Mars, including launch safety, landing safety, deployment, control, and protecting the astronauts from radiation. Examples ...

Kane, Susan Christine

2005-01-01T23:59:59.000Z

147

Standards in nuclear science and technology. A bibliography  

SciTech Connect

Abstracts of 1803 U. S. and non-U. S. publications concerning a broad range of standards used in nuclear science and technology are included. The publication dates span the period 1962 through 1972, inclusive. Abstracts are arranged chronologically within four categories entitled Reactors and Engineering, Instruments and Calibration, Radiation and Radiation Protection, and Miscellaneous. A subject index is also included. (auth)

1973-09-01T23:59:59.000Z

148

Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection  

Science Conference Proceedings (OSTI)

Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF{sub 3}:Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to {sup 137}Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF{sub 3}:Ce-loaded sample have been made using {sup 137}Cs sources. Figure 2 shows an energy spectrum acquired for CeF{sub 3}. The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr{sub 3} crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% {sup 138}La component of lanthanum leads to significant self-activity, which will be a problem for very large detector volumes. Yet a significant strength of the nanostructure detector concept is the ability to create extremely large detector volumes by mixing nanoparticles into a transparent matrix. This would argue for use of nanoparticles other than lanthanum halides. Nanocomposites are easy to prepare; it is much less costly to use nanocomposites than to grow large whole crystals of these materials. The material can be fabricated at an industrial scale, further reducing cost. This material potentially offers the performance of $300/cc material (e.g., lanthanum bromide) at a cost of $1/cc. Because the material acts as a plastic, it is rugged and flexible, and can be made in large sheets, increasing the sensitivity of a detector using it. It would operate at ambient temperatures. Very large volumes of detector may be produced at greatly reduced cost, enhancing the non-proliferation posture of the nation for the same dollar value.

Paul Guss, Sanjoy Mukhopadhyay, Ron Guise, Ding Yuan

2010-06-09T23:59:59.000Z

149

Nuclear Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

150

Radiation Field Control Manual  

Science Conference Proceedings (OSTI)

The EPRI Radiation Management Program is dedicated to reducing nuclear power plant worker personnel exposure by developing practices and technologies to increase the radiation protection of the worker, and to implement methods to reduce radiation fields. The nuclear power industry has recently implemented the RP2020 Initiative to promote positive radiation protection trends. Control of radiation fields is crucial to one of the initiative goals of reducing exposure. This manual provides the current state ...

2004-12-16T23:59:59.000Z

151

Oak Ridge Integrated Center for Radiation Materials Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

ORIC Home ORIC Home About ORIC Contacts Specialists Capabilities Irradiation Campaigns Nuclear Fuels Radiation Effects and Defect Modeling Structural Materials Dual Purpose Radiological Characterization Equipment Working with Us Related Links HFIR MSTD NSTD NNFD Comments Welcome to Oak Ridge Integrated Center for Radiation Materials Science & Technology The Oak Ridge National Laboratory ranks among the founding laboratories for the scientific field of radiation materials science. Since the creation of the laboratory, we have maintained strong ties to both the technology and scientific underpinning of nuclear materials research as evidenced by the experience and capabilities across our research divisions. The capabilities at ORNL enjoys include the highest neutron flux nuclear

152

JPRS report: Nuclear developments, [June 28, 1989  

Science Conference Proceedings (OSTI)

Partial contents include: Nuclear Power; Qinshan Plant; Nuclear Weapons; Nuclear Power Plants; Nuclear Waste; Nuclear Policy; Decontamination Devices; and Environmental Protection.

NONE

1989-06-28T23:59:59.000Z

153

Data requirements for intermediate energy nuclear applications  

SciTech Connect

Several applications that include spallation neutron sources, space radiation effects, biomedical isotope production, accelerator shielding and radiation therapy make use of intermediate energy nuclear data extending to several GeV. The overlapping data needs of these applications are discussed in terms of what projectiles, targets and reactions are of interest. Included is a discussion of what is generally known about these data and what is needed to facilitate their use in intermediate energy applications. 40 refs., 2 figs., 2 tabs.

Pearlstein, S.

1990-01-01T23:59:59.000Z

154

6 Nuclear Fuel Designs  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Message from the Director 2 Nuclear Power & Researrh Reactors 3 Discovery of Promethium 4 Nuclear Isotopes 4 Nuclear Medicine 5 Nuclear Fuel Processes & Software 6 Nuclear Fuel Designs 6 Nuclear Safety 7 Nuclear Desalination 7 Nuclear Nonproliferation 8 Neutron Scattering 9 Semiconductors & Superconductors 10 lon-Implanted Joints 10 Environmental Impact Analyses 11 Environmental Quality 12 Space Exploration 12 Graphite & Carbon Products 13 Advanced Materials: Alloys 14 Advanced Materials: Ceramics 15 Biological Systems 16 Biological Systems 17 Computational Biology 18 Biomedical Technologies 19 Intelligent Machines 20 Health Physics & Radiation Dosimetry 21 Radiation Shielding 21 Information Centers 22 Energy Efficiency: Cooling & Heating

155

Radiation effects on humans  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation effects on humans Radiation effects on humans Name: Joe Kemna Location: N/A Country: N/A Date: N/A Question: I am trying to find information on radiation. I need the effects on humans, the damage it causes to the environment, and any extra information you might have on the subject. Thank you for your time. Replies: Your library should be a good place to start, but first you need to narrow your question a bit. "Radiation" means radio waves, heat, light (including the ultraviolet light that causes suntan and sunburn), and what's called "ionizing radiation." By far the major source of the first three is the Sun, while the last I believe comes principally from cosmic rays and various naturally radioactive elements like uranium and radon. The most significant manmade sources of exposure would --- I think --- be household wiring and appliances (radio), engines and heating devices (heat), lamps (light), and X-ray machines, flying at high altitude in airplanes, and living in well-insulated homes built over radon sources (ionizing radiation). Heat, light and ionizing radiation play vital roles in the ecology of the Earth. Radio, light (in particular "tanning" ultraviolet), and ionizing radiation have all been widely assumed at different times to be particularly good or particularly bad for human health. Some recent issues of public concern have been the effect of radio waves from electric transmission lines, the effect on skin cancer incidence from tanning and sunburns, the depletion of the ultraviolet-light-produced ozone in the upper atmosphere by chlorofluorocarbons (CFCs), "global warming" from the increased absorption of heat radiation from the surface by atmospheric carbon dioxide and methane, and the effect of a long exposure to low levels of ionizing radiation as for example the people of Eastern Europe are experiencing from the Chernobyl nuclear power plant accident.

156

Lens of Eye Dose Limit Changes: Current Status of the Potential Regulatory Changes and Possible Effects on Radiation Protection Programs at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Recent research suggests that the threshold for cataract formation as a result of exposure to radiation could be lower than previously considered. The International Commission on Radiological Protection (ICRP) is now recommending a dose limit for the lens of the eye of an average of 20 mSv (2 rem) per year, equivalent to their current recommendation for Total Effective Dose Equivalent (TEDE). The Nuclear Regulatory Commission (NRC) is considering reducing the lens of the eye dose limit to 50 mSv/yr ...

2013-10-29T23:59:59.000Z

157

Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters  

Science Conference Proceedings (OSTI)

Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

Konzek, G.J.

1983-07-01T23:59:59.000Z

158

Living with radiation  

SciTech Connect

The authors present an account of the hopes and fears associated with ionizing radiation, extending from nuclear energy and medical radiation to nuclear weapons. They argue that a justified fear of nuclear weapons has led to a widespread, unjustified, and unreasoning fear of the beneficial applications of radiation. Although these two aspects of atomic energy are tied together-they both involve the nucleus of the atom and its radioactive rays-a deep misunderstanding of this relationship by the general public has evolved since the time of the atomic bombing of Hiroshima and Nagasaki. The authors' aim is to place the beneficial applications of nuclear radiation in perspective.

Wagner, H.N. Jr. (Johns Hopkins Medical Institutions, Baltimore, MD (USA). Div. of Nuclear Medicine); Ketchum, L.E. (Proclinica, Inc., New York, NY (US))

1989-01-01T23:59:59.000Z

159

Radiation Embrittlement Archive Project  

SciTech Connect

The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

Klasky, Hilda B [ORNL; Bass, Bennett Richard [ORNL; Williams, Paul T [ORNL; Phillips, Rick [ORNL; Erickson, Marjorie A [ORNL; Kirk, Mark T [ORNL; Stevens, Gary L [ORNL

2013-01-01T23:59:59.000Z

160

Health effects models for nuclear power plant accident consequence analysis: Modifications of models resulting from recent reports on health effects of ionizing radiation  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission has sponsored several studies to identify and quantify the potential health effects of accidental releases of radionuclides from nuclear power plants. The most recent health effects models resulting from these efforts were published in two reports, NUREG/CR-4214, Rev. 1, Part 1 (1990) and Part 2 (1989). Several major health effects reports have been published recently that may impact the health effects models presented in these reports. This addendum to the Part 2 (1989) report, provides a review of the 1986 and 1988 reports by the United Nations Scientific Committee on the Effects of Atomic Radiation, the National Academy of Sciences/National Research Council BEAR 5 Committee report and Publication 60 of the International Commission on Radiological Protection as they relate to this report. The three main sections of this addendum discuss early occurring and continuing effects, late somatic effects, and genetic effects. The major changes to the NUREG/CR-4214 health effects models recommended in this addendum are for late somatic effects. These changes reflect recent changes in cancer risk factors that have come from longer followup and revised dosimetry in major studies like that on the Japanese A-bomb survivors. The results presented in this addendum should be used with the basic NUREG/CR-4214 reports listed above to obtain the most recent views on the potential health effects of radionuclides released accidentally from nuclear power plants. 48 refs., 4 figs., 24 tabs.

Abrahamson, S. (Wisconsin Univ., Madison, WI (United States)); Bender, M.A. (Brookhaven National Lab., Upton, NY (United States)); Boecker, B.B.; Scott, B.R. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States). Inhalation Toxicology Research Inst.); Gilbert, E.S. (Pacific Northwest Lab., Richland, WA (United States))

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of Synchrotron Radiation in Solving Scientific Challenges in Advanced Nuclear Energy Systems 27 to 28 January 2010 at Argonne's Advanced Photon Source Scope Third-generation...

162

Nuclear Reactor Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Accidents The accidents at the Three Mile Island (TMI) and Chernobyl nuclear reactors have triggered particularly intense concern about radiation hazards. The TMI accident,...

163

HEARING ON NUCLEAR ENERGY RISK MANAGEMENT  

E-Print Network (OSTI)

am pleased to discuss the possible health implications of radiation from the Fukushima Daiichi nuclear power plant accident in Japan. Just a few days before the natural disasters struck on March 11, 2011, I was in Hiroshima, Japan as a member of the Radiation Effects Research Foundation's Science Council, reviewing the study of atomic bomb survivors. I would like to begin by expressing my heartfelt sympathy for the families of the tens of thousands who lost their lives as a result of the tsunami and earthquake and for the hundreds of thousands who have been displaced from their homes and livelihoods. The health consequences associated with the radiation exposures emanating from the Fukushima Daiichi plant pale in comparison. As background, I am a radiation epidemiologist and Professor in the Department of Medicine at Vanderbilt University and Scientific Director of the International Epidemiology Institute. I have spent my career studying human populations exposed to radiation, including Chernobyl clean-up workers, patients receiving diagnostic and therapeutic radiation, underground miners exposed to radon, nuclear energy workers, atomic veterans, persons living in areas of high background radiation and U.S. populations living near nuclear power plants and other facilities. I am also a commissioner of the International Commission on Radiological Protection, an emeritus member of the National Council on Radiation Protection and

John D. Boice; Sc. D; Good Morning; Mr. Chairmen; Ranking Members

2011-01-01T23:59:59.000Z

164

Sources Of Average Individual Radiation Exposure  

NLE Websites -- All DOE Office Websites (Extended Search)

Of Average Individual Radiation Exposure Of Average Individual Radiation Exposure Natural background Medical Consumer products Industrial, security, educational and research Occupational 0.311 rem 0.300 rem 0.013 rem 0.0003 rem 0.0005 rem Savannah River Nuclear Solutions, LLC, provides radiological protection services and oversight at the Savannah River Site (SRS). These services include radiation dose measurements for persons who enter areas where they may be exposed to radiation or radioactive material. The results are periodically reported to monitored individuals. The results listed are based on a radiation dose system developed by the International Commission on Radiation Protection. The system uses the terms "effective dose," "equivalent dose" and units of rem. You may be more familiar with the term "millirem" (mrem), which is 1/1000 of a rem.

165

Nuclear Astrophysics  

Science Conference Proceedings (OSTI)

I review progress that has been made in nuclear astrophysics over the past few years and summarize some of the questions that remain. Topics selected include solar neutrinos

W. C. Haxton

2006-01-01T23:59:59.000Z

166

Radiation Chemistry and Photochemistry of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry...

167

National Nuclear Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Radiation Dose Evaluated Nuclear (reaction) Data File Experimental nuclear reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and Publications US Nuclear Data Program Cross Section Evaluation Working Group Nuclear data networks Basic properties of atomic nuclei Parameters & thermal values Basic properties of atomic nuclei Internal Radiation Dose Evaluated Nuclear (reaction) Data File Experimental nuclear reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and Publications US Nuclear Data Program Cross Section Evaluation Working Group Nuclear data networks Basic properties of atomic nuclei Parameters & thermal values Basic properties of atomic nuclei Homepage BNL Home Site Index - Go USDNP and CSEWG November 18-22! USNDP CSEWG Agenda Thanks for attending! EXFOR 20,000 Milestone EXFOR Milestone 20,000 experimental works are now in the EXFOR database!

168

BSA 10-21: A Better Radiation Detector - Brookhaven National ...  

Medical, imaging, nuclear nonproliferation, non-destructive detection, radiation imaging, and homeland security applications. Journal Publication.

169

Statistical issues in radiation dose-response analysis of employees of the nuclear industry in Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

Poisson regression methods are used to describe dose-response relations for cancer mortality for a subcohort of 28,347 white male radiation workers. Age specific baseline rates are described using both internal and external (US white male) rates. Regression analyses are based on an analytic data structure (ADS) that consists of a table of observed deaths, expected deaths, and person-years at risk for each combination of levels of seven risk factors. The factors are socioeconomic status, length of employment, birth cohort, age at risk, facility, internal exposure, and external exposure. Each observation in the ADS consists of the index value of each of the stratifying factors, the observed deaths, the expected deaths, the person-years, and the ten year lagged average cumulative dose. Regression diagnostics show that a linear exponential relative risk model is not appropriate for these data. Results are presented using a main effects model for factors other than external radiation, and an excess relative risk term for cumulative external radiation dose.

Frome, E.L. [Oak Ridge National Lab., TN (United States); Watkins, J.P. [Oak Ridge Inst. for Science and Education, TN (United States). Center for Epidemiologic Research

1997-11-01T23:59:59.000Z

170

Radiation effects in the environment  

Science Conference Proceedings (OSTI)

Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B. [Los Alamos National Lab., NM (United States); Yazzie, A. [Navajo Nation, Window Rock, AZ (United States). Dept. of History; Isaac, M.C.P.; Seaborg, G.T. [Lawrence Berkeley National Lab., CA (United States); Leavitt, C.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

1999-04-01T23:59:59.000Z

171

Reference nuclear data for space applications  

SciTech Connect

The National Nuclear Data Center (NNDC) at Brookhaven National Laboratory is active in the development of high energy data bases for space applications. Validated data and methods of interaction analysis are needed to explain and predict radiation patterns. The NNDC uses methods consisting of nuclear systematics and nuclear model codes to provide neutron and proton induced reaction data from 1 MeV and 1 GeV. The data can placed in convenient form for use by radiation transport codes. In addition to cross-sections, nuclear structure and radioactive decay data are also stored in data bases. Data are distributed by the NNDC in a variety of ways including on-line access through computer networks or telephone lines. 7 refs., 7 figs.

Pearlstein, S.

1987-01-01T23:59:59.000Z

172

National Ambient Radiation Database  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA) recently developed a searchable database and website for the Environmental Radiation Ambient Monitoring System (ERAMS) data. This site contains nationwide radiation monitoring data for air particulates, precipitation, drinking water, surface water and pasteurized milk. This site provides location-specific as well as national information on environmental radioactivity across several media. It provides high quality data for assessing public exposure and environmental impacts resulting from nuclear emergencies and provides baseline data during routine conditions. The database and website are accessible at www.epa.gov/enviro/. This site contains (1) a query for the general public which is easy to use--limits the amount of information provided, but includes the ability to graph the data with risk benchmarks and (2) a query for a more technical user which allows access to all of the data in the database, (3) background information on ER AMS.

Dziuban, J.; Sears, R.

2003-02-25T23:59:59.000Z

173

MATERIALS FOR SPALLATION NEUTRON SOURCES: II: Radiation ...  

Science Conference Proceedings (OSTI)

MATERIALS FOR SPALLATION NEUTRON SOURCES: Session II: Radiation Effects, B. Sponsored by: Jt. SMD/MSD Nuclear Materials Committee Program ...

174

MATERIALS FOR SPALLATION NEUTRON SOURCES: I: Radiation ...  

Science Conference Proceedings (OSTI)

MATERIALS FOR SPALLATION NEUTRON SOURCES: Session I: Radiation Effects, A. Sponsored by: Jt. SMD/MSD Nuclear Materials Committee Program ...

175

NNSA Holds Radiation Emergency Consequence Management Training...  

National Nuclear Security Administration (NNSA)

Holds Radiation Emergency Consequence Management Training in Israel | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering...

176

Sustainable Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Enabling a Sustainable Nuclear Energy Future Since its inception, Argonne R&D has supported U.S. Department of Energy nuclear programs and initiatives, including today's...

177

Low Dose Radiation Program: Links - Agencies with Radiation Regulatory  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies with Radiation Regulatory Concerns and Involvement Agencies with Radiation Regulatory Concerns and Involvement Biological Effects of Low Level Exposures (BELLE) Canadian Nuclear Safety Commission Center for Risk Excellence Health Protection Agency The Health Risks of Extraterrestrial Environments International Commission on Radiation Units and Measurements, Inc. International Commission on Radiological Protection (ICRP) International Radiation Protection Association (IRPA) NASA Space Radiation Program National Academy of Sciences (NAS) Nuclear and Radiation Studies Board National Aeronautics and Space Administration (NASA) NASA OBRR Task Book Publication National Council on Radiation Protection (NCRP) National Institute of Environmental Health Sciences (NIEHS) National Toxicology Program (NTP) Occupational Safety and Health Administration (OSHA)

178

Thermovoltaic semiconductor device including a plasma filter  

DOE Patents (OSTI)

A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

Baldasaro, Paul F. (Clifton Park, NY)

1999-01-01T23:59:59.000Z

179

Needs for Robotic Assessments of Nuclear Disasters  

SciTech Connect

Following the nuclear disaster at the Fukushima nuclear reactor plant in Japan, the need for systems which can assist in dynamic high-radiation environments such as nuclear incidents has become more apparent. The INL participated in delivering robotic technologies to Japan and has identified key components which are needed for success and obstacles to their deployment. In addition, we are proposing new work and methods to improve assessments and reactions to such events in the future. Robotics needs in disaster situations include phases such as: Assessment, Remediation, and Recovery Our particular interest is in the initial assessment activities. In assessment we need collection of environmental parameters, determination of conditions, and physical sample collection. Each phase would require key tools and efforts to develop. This includes study of necessary sensors and their deployment methods, the effects of radiation on sensors and deployment, and the development of training and execution systems.

Victor Walker; Derek Wadsworth

2012-06-01T23:59:59.000Z

180

Nuclear Data Program - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Program Data Program Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program We contribute to the development of comprehensive nuclear reactions and nuclear structure databases, including nuclear data measurement, analysis, modeling and evaluation methodologies, that are implemented in basic science research and advanced nuclear technologies. Bookmark and Share Recent Events Nuclear Structure 2012 Conference Argonne National Laboratory hosted the

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Low Dose Radiation Program: Links - Research Societies with Radiation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Societies with Radiation Concerns Academy of Radiology Research American Association of Physicists in Medicine American Nuclear Society American Roentgen Ray Society American...

182

Plutonium radiation surrogate  

DOE Patents (OSTI)

A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

Frank, Michael I. (Dublin, CA)

2010-02-02T23:59:59.000Z

183

Experimental and theoretical investigation of operational and survivability issues in thermal radiators for thermionic space nuclear power systems. Final report  

SciTech Connect

Heat pipes are a promising candidate for spacecraft radiators. This report describes a program designed to investigate the mass migration phenomenon in heat pipes. The program involved experiments to observe and measure the mass migration rates in both high and low operating temperature heat pipes. The low-temperature experiments were intended to simulate the operation of high-temperature, liquid metal heat pipes. Octadecane was the selected low-temperature working fluid. It is a paraffin and exhibits some of the characteristics of liquid metal working fluids. Sodium was the working fluid used in the high temperature experiment. A one-dimensional compressible flow model was developed for describing the hydrodynamics of rarefied vapor flow in heat pipe condensers. This model was compared with experimental data for the low-temperature octadecane heat pipes and the high-temperature sodium heat pipe. The model was found to satisfactorily predict the temperature profiles and location of freeze-fronts for the low-temperature heat pipes. Mass migration rate predictions using the model were satisfactory for the low-temperature heat pipes as well. However, the mass migration prediction for the high-temperature, sodium heat pipe was not in agreement with experimental data. An analytical model which accounts for property variations in the radial as well as longitudinal directions is recommended. A one-dimensional model was unsatisfactory for predicting mass migration rates in liquid metal heat pipes.

Keddy, M.D.

1994-03-15T23:59:59.000Z

184

Radiation transport phenomena and modeling - part A: Codes  

Science Conference Proceedings (OSTI)

The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped.

Lorence, L.J.

1997-06-01T23:59:59.000Z

185

Nuclear fuel pin scanner  

DOE Patents (OSTI)

Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

Bramblett, Richard L. (Friendswood, TX); Preskitt, Charles A. (La Jolla, CA)

1987-03-03T23:59:59.000Z

186

Radiation Damage in Nanostructured Metallic Films  

E-Print Network (OSTI)

High energy neutron and charged particle radiation cause microstructural and mechanical degradation in structural metals and alloys, such as phase segregation, void swelling, embrittlement and creep. Radiation induced damages typically limit nuclear materials to a lifetime of about 40 years. Next generation nuclear reactors require materials that can sustain over 60 - 80 years. Therefore it is of great significance to explore new materials with better radiation resistance, to design metals with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe. Such systems obtain high volume fraction of boundaries, which are considered sinks to radiation induced defects. From the viewpoint of nanomechanics, it is of interest to investigate the plastic deformation mechanisms of nanostructured films, which typically show strong size dependence. By controlling the feature size (layer thickness, twin spacing and grain size), it is applicable to picture a deformation mechanism map which also provides prerequisite information for subsequent radiation hardening study. And from the viewpoint of radiation effects, it is of interest to explore the fundamentals of radiation response, to examine the microstructural and mechanical variations of irradiated nanometals and to enrich the design database. More importantly, with the assistance of in situ techniques, it is appealing to examine the defect generation, evolution, annihilation, absorption and interaction with internal interfaces (layer interfaces, twin boundaries and grain boundaries). Moreover, well-designed nanostructures can also verify the speculation that radiation induced defect density and hardening show clear size dependence. The focus of this thesis lies in the radiation response of Ag/Ni multilayers and nanotwinned Ag subjected to charged particles. The radiation effects in irradiated nanograined Fe are also investigated for comparison. Radiation responses in these nanostructured metallic films suggest that immiscible incoherent Ag/Ni multilayers are more resistant to radiation in comparison to their monolithic counterparts. Their mechanical properties and radiation response show strong layer thickness dependence in terms of radiation hardening and defect density. Coherent twin boundaries can interact with stacking fault tetrahedral and remove them effectively. Twin boundaries can actively absorb radiation induced defects and defect clusters resulting in boundary migration. Size dependence is also found in nanograins where fewer defects exhibit in films with smaller grains.

Yu, Kaiyuan

2013-05-01T23:59:59.000Z

187

Electric power monthly, September 1990. [Glossary included  

SciTech Connect

The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

1990-12-17T23:59:59.000Z

188

Nuclear Forces and Nuclear Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Forces and Nuclear Systems Forces and Nuclear Systems Our goal is to achieve a description of nuclear systems ranging in size from the deuteron to nuclear matter and neutron stars using a single parameterization of the nuclear forces. Our work includes both the construction of two- and three-nucleon potentials and the development of many-body techniques for computing nuclear properties with these interactions. Detailed quantitative, computationally intense studies are essential parts of this work. In the last decade we have constructed several realistic two- and three-nucleon potential models. The NN potential, Argonne v18, has a dominant charge-independent piece plus additional charge-dependent and charge-symmetry-breaking terms, including a complete electromagnetic interaction. It fits 4301 pp and np elastic scattering data with a chi**2

189

Health effects models for nuclear power plant accident consequence analysis: Low LET radiation: Part 2, Scientific bases for health effects models  

Science Conference Proceedings (OSTI)

This report provides dose-response models intended to be used in estimating the radiological health effects of nuclear power plant accidents. Models of early and continuing effects, cancers and thyroid nodules, and genetic effects are provided. Two-parameter Weibull hazard functions are recommended for estimating the risks of early and continuing health effects. Three potentially lethal early effects -- the hematopoietic, pulmonary and gastrointestinal syndromes -- are considered. Linear and linear-quadratic models are recommended for estimating cancer risks. Parameters are given for analyzing the risks of seven types of cancer in adults -- leukemia, bone, lung, breast, gastrointestinal, thyroid and ''other''. The category, ''other'' cancers, is intended to reflect the combined risks of multiple myeloma, lymphoma, and cancers of the bladder, kidney, brain, ovary, uterus and cervix. Models of childhood cancers due to in utero exposure are also provided. For most cancers, both incidence and mortality are addressed. Linear and linear-quadratic models are also recommended for assessing genetic risks. Five classes of genetic disease -- dominant, x-linked, aneuploidy, unbalanced translocation and multifactorial diseases --are considered. In addition, the impact of radiation-induced genetic damage on the incidence of peri-implantation embryo losses is discussed. The uncertainty in modeling radiological health risks is addressed by providing central, upper, and lower estimates of all model parameters. Data are provided which should enable analysts to consider the timing and severity of each type of health risk. 22 refs., 14 figs., 51 tabs.

Abrahamson, S.; Bender, M.; Book, S.; Buncher, C.; Denniston, C.; Gilbert, E.; Hahn, F.; Hertzberg, V.; Maxon, H.; Scott, B.

1989-05-01T23:59:59.000Z

190

RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND  

Science Conference Proceedings (OSTI)

Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

Farfan, E.; Jannik, T.

2011-10-01T23:59:59.000Z

191

Education: Digital Resource Center - WEB: The Virtual Nuclear Tourist  

Science Conference Proceedings (OSTI)

Sep 24, 2007 ... The Virtual Nuclear Tourist website provides extensive balanced information about nuclear power plants. Topics include nuclear power ...

192

Nuclear Regulatory legislation: 103d Congress. Volume 2, No. 3  

Science Conference Proceedings (OSTI)

This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

NONE

1995-08-01T23:59:59.000Z

193

Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2  

Science Conference Proceedings (OSTI)

This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

Not Available

1993-10-01T23:59:59.000Z

194

Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2  

SciTech Connect

This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

1993-10-01T23:59:59.000Z

195

Nuclear Regulatory legislation: 103d Congress. Volume 1, No. 3  

SciTech Connect

This document is a compilation of nuclear regulatory legislation and other relevant material through the 103d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include the Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, and environmental protection.

1995-08-01T23:59:59.000Z

196

Portal radiation monitor  

DOE Patents (OSTI)

A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

Kruse, Lyle W. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

197

What To Include In The Whistleblower Complaint? | National Nuclear...  

National Nuclear Security Administration (NNSA)

Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press...

198

Liquid-gas phase transition in nuclear matter including strangeness  

E-Print Network (OSTI)

We apply the chiral SU(3) quark mean field model to study the properties of strange hadronic matter at finite temperature. The liquid-gas phase transition is studied as a function of the strangeness fraction. The pressure of the system cannot remain constant during the phase transition, since there are two independent conserved charges (baryon and strangeness number). In a range of temperatures around 15 MeV (precise values depending on the model used) the equation of state exhibits multiple bifurcates. The difference in the strangeness fraction $f_s$ between the liquid and gas phases is small when they coexist. The critical temperature of strange matter turns out to be a non-trivial function of the strangeness fraction.

P. Wang; D. B. Leinweber; A. W. Thomas; A. G. Williams

2004-07-20T23:59:59.000Z

199

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

200

Radiation dosimeter  

DOE Patents (OSTI)

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

National Solar Radiation Data Base

The National Solar Radiation...  

Open Energy Info (EERE)

National Solar Radiation Data Base (NSRDB) is the most comprehensive collection of solar data freely available. The 1991 - 2005 NSRDB contains hourly solar radiation (including...

202

Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

203

Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 210 citations and includes a subject term index and title list.)

NONE

1994-01-01T23:59:59.000Z

204

Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 247 citations and includes a subject term index and title list.)

NONE

1995-02-01T23:59:59.000Z

205

Chernobyl Nuclear Reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-11-01T23:59:59.000Z

206

Chernobyl nuclear reactor accident fallout: Measurement and consequences. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the consequences of radioactive fallout from the Chernobyl nuclear reactor accident. Citations discuss radioactive monitoring, health hazards, and radiation dosimetry. Radiation contamination in the air, soil, vegetation, and food is examined. (Contains a minimum of 208 citations and includes a subject term index and title list.)

NONE

1993-09-01T23:59:59.000Z

207

Advanced Radiation-Resistant Ceramic Composites  

SciTech Connect

Ceramic matrix composites (CMC), particularly silicon carbide (SiC) fiber-reinforced SiC-matrix (SiC/SiC) composites, have been studied for advanced nuclear energy applications for more than a decade. The perceived potentials for advanced SiC/SiC composites include the ability to operate at temperature regimes much higher than heat-resistant alloys, the inherent low induced-activation nuclear properties, and the tolerance against neutron irradiation at high temperatures. This paper reviews the recent research and development of the advanced radiation-resistant SiC/SiC composites for nuclear applications. Additionally, remaining general and specific technical issues for SiC/SiC composites for nuclear applications are discussed.

Katoh, Yutai [ORNL; Snead, Lance Lewis [ORNL; Nozawa, Takashi [ORNL; Windes, Will [Idaho National Laboratory (INL); Morley, N.B. [University of California, Los Angeles

2006-01-01T23:59:59.000Z

208

Radiation-damage calculations with NJOY  

SciTech Connect

Atomic displacement, gas production, transmutation, and nuclear heating can all be calculated with the NJOY nuclear data processing system using evaluated data in ENDF/B format. Using NJOY helps assure consistency between damage cross sections and those used for transport, and NJOY provides convenient interface formats for linking data to application codes. Unique features of the damage calculation include a simple momentum balance treatment for radiative capture and a new model for (n, particle) reactions based on statistical model calculations. Sample results for iron and nickel are given and compared with the results of other methods.

MacFarlane, R.E.; Muir, D.W.; Mann, F.W.

1983-01-01T23:59:59.000Z

209

Radiation Detector R&D | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Detector and Nonproliferation R&D Group Radiation Detector and Nonproliferation R&D Group A major element in nonproliferation, arms control verification, nuclear materials safeguards and homeland security is the ability to detect, identify and measure nuclear, radioactive and chemical materials. BNL has a significant and world-class capability in radiation detection including the design and fabrication of advanced detector systems for scientific R&D and nonproliferation applications that has evolved over more than six decades. To support nonproliferation, arms control, safeguards and homeland security, BNL has focused on advanced radiation detector systems that offer room temperature operation with high energy resolution for gamma-ray detectors, imaging and direction indicating capabilities for both gamma-ray

210

Conceptual design of a heat pipe radiator  

SciTech Connect

A conceptual design of a waste heat radiator has been developed for a thermoelectric space nuclear power system. The basic shape of the heat pipe radiator was a frustum of a right circular cone. The design included stringer heat pipes to carry reject heat from the thermoelectric modules to the radiator skin that was composed of small-diameter, thin-walled cross heat pipes. The stringer heat pipes were armored to resist puncture by a meteoroid. The cross heat pipes were designed to provide the necessary unpunctured radiating area at the mission end with a minimum initial system mass. Several design cases were developed in which the individual stringer survival probabilities were varied and the radiator system mass was calculated. Results are presented for system mass as a function of individual stringer survival probability for six candidate container materials, three candidate heat pipe fluids, two radiator operating temperatures, two meteoroid shield types, and two radiating surface cases. Results are also presented for radiator reject heat as a function of system mass, area, and length for three system sizes.

Bennett, G.A.

1977-09-01T23:59:59.000Z

211

CHERNOBYL TEN YEARS ON RADIOLOGICAL AND HEALTH IMPACT An Assessment by the NEA Committee on Radiation Protection and Public Health November 1995 OECD NUCLEAR ENERGY AGENCY  

E-Print Network (OSTI)

This report differs from those in that it is a synthetic consensus view aimed at those persons who wish to know the salient points without having to go into the technical details which one can find elsewhere. We thank all those organisations (UNSCEAR, FAO, WHO, EC) which have put information at our disposal so that this report could be as up to date as possible. However, those Agencies are still generating a large amount of information to be submitted to the forthcoming international Conference "One Decade After Chernobyl" to be held in April 1996, some of which could not be made available in time for incorporation into this report. The report was drafted by Dr. Peter Waight (Canada) under the direction of an editing committee chaired by Dr. Henri Mtivier (France). The members of the Editing Committee were: Dr. H. Mtivier IPSN, France Dr. P. Jacob GSF, Germany Dr. G. Souchkevitch WHO, Geneva Mr. H. Brunner NAZ, Switzerland Mr. C. Viktorsson SKI, Sweden Dr. B. Bennett UNSCEAR, Vienna Dr. R. Hance FAO/IAEA Division of Nuclear Techniques, Vienna Mr. S. Kumazawa JAERI, Japan Dr. S. Kusumi Institute of Radiation Epidemiology, Japan Dr. A. Bouville National Cancer Institute, United States Dr. J. Sinnaeve EC, Brussels Dr. O. Ilari OECD/NEA, Paris Dr. E. Lazo OECD/NEA, Paris TABLE OF CONTENTS Chapter I. THE SITE AND ACCIDENT SEQUENCE The site The RBMK-1000 reactor Events leading to the accident The accident Chapter II. THE RELEASE, DISPERSION AND DEPOSITION OF RADIONUCLIDES Atmospheric releases Chemical and physical forms Dispersion and deposition Within the former Soviet Union Chapter III. REACTIONS OF NATIONAL AUTHORITIES Chapter IV. DOSE ESTIMATES The evacuees from the 30-km zone Doses to the thyroid gland Whole-body doses People living in the contaminated areas Do...

Several Years After

1995-01-01T23:59:59.000Z

212

Radiation Detection Materials and Systems | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Detection Materials and Systems SHARE Radiation Detection Materials and Systems ORNL's Nuclear Material Detection and Characterization programs are at the forefront of...

213

Major initiatives in materials research at Western include  

E-Print Network (OSTI)

in nuclear reactors; and a third in Engineering- J. Jiang, supported by UNENE, working on control in the theory of condensed matter, including its applications to polymers, optical, electronic, and magnetic NSERC Industrial Research Chairs who together make Western a leading university in nuclear power

Christensen, Dan

214

NNSA Conducts Radiation Medical Management Training in China...  

National Nuclear Security Administration (NNSA)

Radiation Medical Management Training in China | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

215

SC e-journals, Nuclear  

Office of Scientific and Technical Information (OSTI)

Nuclear Nuclear Annals of Nuclear Energy Annual Review of Nuclear and Particle Science Atomic Data & Nuclear Data Tables Atomic Energy BMC Medical Physics - OAJ Cancer Prevention Journals Portal Cancer Prevention Research Cancer Reviews Online Dose Response Energy & Environmental Science Energy Policy EURASIP Journal on Advances in Signal Processing - OAJ EURASIP Journal on Bioinformatics and Systems Biology - OAJ EURASIP Journal on Embedded Systems (2006 forward) - OAJ Fuel Fusion Engineering and Design Fusion Nuclear Society Health Physics IETE Journal of Research - OAJ International Journal of Cancer International Journal of Low Radiation International Journal of Microwave Science and Technology - OAJ International Journal of Radiation Biology Journal of Cancer Eqidemiology - OAJ

216

Heat pipe technology development for high temperature space radiator applications  

SciTech Connect

Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

1984-01-01T23:59:59.000Z

217

Direct nuclear pumped laser  

DOE Patents (OSTI)

There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

Miley, George H. (Champagne, IL); Wells, William E. (Urbana, IL); DeYoung, Russell J. (Hampton, VA)

1978-01-01T23:59:59.000Z

218

Operation Cornerstone onsite radiological safety report for announced nuclear tests, October 1988--September 1989  

SciTech Connect

Cornerstone was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site (NTS) from October 1, 1988, through September 30, 1989. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Radiation Protection Technicians (RPT) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage were provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined.

Not Available

1990-08-01T23:59:59.000Z

219

Measuring Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration...

220

Materials for Nuclear Power: Digital Resource Center -- Articles and ...  

Science Conference Proceedings (OSTI)

BOOK: Safety Related Issues of Spent Nuclear Fuel Storage ... ARTICLES: High- Radiation Nuclear Waste Disposal ... S. Zhu, et. al., Applied Physics Letters.

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Code of Federal Regulations Nuclear Activities | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Activities More Documents & Publications Code of Federal Regulations PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Code of Federal Regulations OCCUPATIONAL RADIATION...

222

22.101 Applied Nuclear Physics, Fall 2004  

E-Print Network (OSTI)

Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. ...

Yip, Sidney

223

NUCLEAR CHEMISTRY ANNUAL REPORT 1970  

SciTech Connect

Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

Authors, Various

1971-05-01T23:59:59.000Z

224

12.815 Atmospheric Radiation, Fall 2005  

E-Print Network (OSTI)

Introduction to the physics of atmospheric radiation and remote sensing including use of computer codes. Radiative transfer equation including emission and scattering, spectroscopy, Mie theory, and numerical solutions. ...

Prinn, Ronald G.

225

Method of enhancing radiation response of radiation detection materials  

DOE Patents (OSTI)

The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

Miller, Steven D. (Richland, WA)

1997-01-01T23:59:59.000Z

226

radiation.p65  

Office of Legacy Management (LM)

5 5 United States Department of Energy This fact sheet explains the potential health hazards associated with the radioactive decay of uranium and other radioactive elements found in ore and mill tailings. Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that individuals receive. A few household products, including smoke detectors, micro- wave ovens, and color televisions, emit small amounts of radiation. For most people, the benefits from using such products far outweigh the radiation risks. Radiation Dose Radiation is measured in various units. Individuals who have been exposed to radiation have received a radiation dose. Radiation dose to people is expressed in

227

Reactor and Nuclear Systems Division (RNSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

RNSD Home RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Staff Details (CV/Bios) Publications Org Chart Contact Us ORNL Staff Only Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Reactor and Nuclear Systems Division News Highlights U.S. Rep. Fleischmann touts ORNL as national energy treasure Martin Peng wins Fusion Power Associates Leadership Award

228

Radiation Hydrodynamics  

DOE Green Energy (OSTI)

The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish hydrogen atoms from helium atoms, for instance. There are all just components of a mixed fluid in this case. So why do we have a special subject called ''radiation hydrodynamics'', when photons are just one of the many kinds of particles that comprise our fluid? The reason is that photons couple rather weakly to the atoms, ions and electrons, much more weakly than those particles couple with each other. Nor is the matter-radiation coupling negligible in many problems, since the star or nebula may be millions of mean free paths in extent. Radiation hydrodynamics exists as a discipline to treat those problems for which the energy and momentum coupling terms between matter and radiation are important, and for which, since the photon mean free path is neither extremely large nor extremely small compared with the size of the system, the radiation field is not very easy to calculate. In the theoretical development of this subject, many of the relations are presented in a form that is described as approximate, and perhaps accurate only to order of {nu}/c. This makes the discussion cumbersome. Why are we required to do this? It is because we are using Newtonian mechanics to treat our fluid, yet its photon component is intrinsically relativistic; the particles travel at the speed of light. There is a perfectly consistent relativistic kinetic theory, and a corresponding relativistic theory of fluid mechanics, which is perfectly suited to describing the photon gas. But it is cumbersome to use this for the fluid in general, and we prefer to avoid it for cases in which the flow velocity satisfies {nu} << c. The price we pay is to spend extra effort making sure that the source-sink terms relating to our relativistic gas component are included in the equations of motion in a form that preserves overall conservation of energy and momentum, something that would be automatic if the relativistic equations were used throughout.

Castor, J I

2003-10-16T23:59:59.000Z

229

Nuclear and Radiological Material Security | National Nuclear...  

National Nuclear Security Administration (NNSA)

to intensive site security efforts, NNSA is also working to build international standards and criteria for nuclear and radiological security. This includes NNSA's work to...

230

Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider  

E-Print Network (OSTI)

A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.

Friedman, Peter S; Chapman, J Wehrley; Levin, Daniel S; Weaverdyck, Curtis; Zhou, Bing; Benhammou, Yan; Etzion, Erez; Moshe, M Ben; Silver, Yiftah; Beene, James R; Varner, Robert L

2010-01-01T23:59:59.000Z

231

Large-Area Plasma-Panel Radiation Detectors for Nuclear Medicine Imaging to Homeland Security and the Super Large Hadron Collider  

E-Print Network (OSTI)

A new radiation sensor derived from plasma panel display technology is introduced. It has the capability to detect ionizing and non-ionizing radiation over a wide energy range and the potential for use in many applications. The principle of operation is described and some early results presented.

Peter S. Friedman; Robert Ball; J. Wehrley Chapman; Daniel S. Levin; Curtis Weaverdyck; Bing Zhou; Yan Benhammou; Erez Etzion; M. Ben Moshe; Yiftah Silver; James R. Beene; Robert L. Varner Jr.

2010-07-03T23:59:59.000Z

232

Materials Challenges in Nuclear Energy  

SciTech Connect

Nuclear power currently provides about 13% of the worldwide electrical power, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light water reactors are reviewed. The materials degradation issues for the Zr alloy clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants is discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are 5 key bulk radiation degradation effects (low temperature radiation hardening and embrittlement, radiation-induced and modified solute segregation and phase stability, irradiation creep, void swelling, and high temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials.

Zinkle, Steven J [ORNL; Was, Gary [University of Michigan

2013-01-01T23:59:59.000Z

233

Nuclear Forensics | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiatives Initiatives Cyber Security Nuclear Forensics Bioinformatics National Security Home | Science & Discovery | National Security | Initiatives | Nuclear Forensics SHARE Nuclear Forensics image Tools, techniques, and expertise in nuclear fuel cycle research gained over seven decades help ORNL scientists control and track nuclear bomb-grade materials to be sure they don't fall into the wrong hands. Among the leading-edge technologies used by researchers are high-resolution techniques that allow analysis of radiation detector data in stunning detail. Researchers are also developing aerosol sampling systems to collect airborne particulates and instantly send an alert if radiation is detected. For more information, please contact: nuclearforensicsinitiative

234

Nuclear Astrophysics  

E-Print Network (OSTI)

Nuclear physics has a long and productive history of application to astrophysics which continues today. Advances in the accuracy and breadth of astrophysical data and theory drive the need for better experimental and theoretical understanding of the underlying nuclear physics. This paper will review some of the scenarios where nuclear physics plays an important role, including Big Bang Nucleosynthesis, neutrino production by our sun, nucleosynthesis in novae, the creation of elements heavier than iron, and neutron stars. Big-bang nucleosynthesis is concerned with the formation of elements with A nuclear physics inputs required are few-nucleon reaction cross sections. The nucleosynthesis of heavier elements involves a variety of proton-, alpha-, neutron-, and photon-induced reactions, coupled with radioactive decay. The advent of radioactive ion beam facilities has opened an important new avenue for studying these processes, as many involve radioactive species. Nuclear physics also plays an important role in neutron stars: both the nuclear equation of state and cooling processes involving neutrino emission play a very important role. Recent developments and also the interplay between nuclear physics and astrophysics will be highlighted.

Carl R. Brune

2005-02-28T23:59:59.000Z

235

Microbeam, Timing and Wavelength-Dispersive Studies of Nuclear ...  

Science Conference Proceedings (OSTI)

Symposium, Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation. Presentation Title, Microbeam, Timing ...

236

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... It has been written primarily for advanced undergraduate and beginning graduate students in Nuclear Engineering, Radiation Physics, ...

237

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

238

Radiation dose estimates for radiopharmaceuticals  

SciTech Connect

Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

Stabin, M.G.; Stubbs, J.B.; Toohey, R.E. [Oak Ridge Inst. of Science and Education, TN (United States). Radiation Internal Dose Information Center

1996-04-01T23:59:59.000Z

239

Nuclear Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Science Accelerator Science Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Home » Science at NERSC » Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of matter. This includes discovering the origins of nuclei and identifying the forces that transform matter. Specific topics include: Nuclear astrophysics and the synthesis of nuclei in stars and elsewhere in the cosmos; Nuclear forces and quantum chromodynamics (QCD), the quantum field

240

Radiation Effects in Ceramic Oxide and Novel LWR Fuels  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... TMS/ASM: Nuclear Materials Committee ... of radiation response of nuclear fuel through experiment, theory and computational multi-scale modeling. ... test reactors and commercial nuclear power reactors are all of interest.

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Space nuclear power system and the design of the nuclear electric propulsion OTV  

SciTech Connect

Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kW/sub e/ to 1MW/sub e/ output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

Buden, D.; Garrison, P.W.

1984-01-01T23:59:59.000Z

242

Meeting Report--NASA Radiation Biomarker Workshop  

E-Print Network (OSTI)

49.00 mSv as a result of the Chernobyl Nuclear Power Plantreactive protein (CRP) in Chernobyl radiation victims within

Straume, Tore

2008-01-01T23:59:59.000Z

243

Recommendations for Improving Consistency in the Radiation ...  

Science Conference Proceedings (OSTI)

... Therefore, it is critical to have a ... Brookhaven National Laboratory, Evaluated Nuclear Structure Data File ... Physics The Radiation Safety Journal, Vol. ...

2013-05-28T23:59:59.000Z

244

Health effects of the nuclear accident at Three Mile Island  

SciTech Connect

Between March 28 and April 15, 1979 the collective dose resulting from the radioactivity released to the population living within a 50-mile radius of the Three Mile Island nuclear plant was about 2000 person-rems, less than 1% of the annual natural background level. The average dose to a person living within 5 miles of the nuclear plant was less than 10% of annual background radiation. The maximum estimated radiation dose received by any one individual in the general population (excluding the nuclear plant workers) during the accident was 70 mrem. The doses received by the general population as a result of the accident were so small that there will be no detectable additional cases of cancer, developmental abnormalities, or genetic ill-health. Three Three Mile Island nuclear workers received radiation doses of about 3 to 4 rem, exceeding maximum permissible quarterly dose of 3 rem. The major health effect of the accident at Three Mile Island was that of a pronounced demoralizing effect on the general population in the Three Mile Island area, including teenagers and mothers of preschool children and the nuclear plant workers. However, this effect proved transient in all groups studied except the nuclear workers.

Fabrikant, J.I.

1980-05-01T23:59:59.000Z

245

Radiation receiver  

DOE Patents (OSTI)

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

246

Radiation receiver  

SciTech Connect

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

Hunt, Arlon J. (Oakland, CA)

1983-01-01T23:59:59.000Z

247

Hadron Cancer Therapy: Role of Nuclear Reactions  

DOE R&D Accomplishments (OSTI)

Recently it has become feasible to calculate energy deposition and particle transport in the body by proton and neutron radiotherapy beams, using Monte Carlo transport methods. A number of advances have made this possible, including dramatic increases in computer speeds, a better understanding of the microscopic nuclear reaction cross sections, and the development of methods to model the characteristics of the radiation emerging from the accelerator treatment unit. This paper describes the nuclear reaction mechanisms involved, and how the cross sections have been evaluated from theory and experiment, for use in computer simulations of radiation therapy. The simulations will allow the dose delivered to a tumor to be optimized, whilst minimizing the dos given to nearby organs at risk.

Chadwick, M. B.

2000-06-20T23:59:59.000Z

248

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

249

Radiation protection at CERN  

E-Print Network (OSTI)

This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

Forkel-Wirth, Doris; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

2013-01-01T23:59:59.000Z

250

Why sequence radiation-resistant bacterium Deinococcus grandis?  

NLE Websites -- All DOE Office Websites (Extended Search)

radiation-resistant radiation-resistant bacterium Deinococcus grandis? A fifth of the United States' electricity is generated from nuclear power, which can also be used for medical procedures and other applications. The radioactive waste generated by nuclear reactors, hospitals and universities need to be disposed of in specially selected sites. Deinococcus bacteria have the capacity to add electrons to a variety of metals, including uranium, chromium, mercury, technetium, iron and manganese. Due to this unique characteristic, this group of extremely radiation-resistant bacteria has been considered as a prospective candidate to help clean up radioactive waste sites. However, many Deinococcus bacteria require oxygen, which is a problem considering most waste environments are anaerobic.

251

NREL: Solar Radiation Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities NREL's solar radiation research staff provides expertise in renewable energy measurement and instrumentation. Major capabilities include solar resource measurement,...

252

Nuclear explosions  

Science Conference Proceedings (OSTI)

A summary of the physics of a nuclear bomb explosion and its effects on human beings is presented at the level of a sophomore general physics course without calculus. It is designed to supplement a standard text for such a course and problems are included.

A. A. Broyles

1982-01-01T23:59:59.000Z

253

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor is described that includes spaced vertical fuel elements centrally disposed in a pressure vessel, a mass of graphite particles in the pressure vessel, means for fluidizing the graphite particles, and coolant tubes in the pressure vessel laterally spaced from the fuel elements. (AEC)

Post, R.G.

1963-05-01T23:59:59.000Z

254

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network (OSTI)

within 50 miles of the nuclear power plant was estimated tothe radiation from the nuclear power plant accident. From anand the Peach Bottom nuclear power plants, like the general

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

255

Sulfate Retention in High Level Nuclear Waste Glasses  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance ... Atomistic Simulations of Radiation Effects in Ceramics for Nuclear Waste Disposal ... Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Applications.

256

Low Dose Radiation Program: Radiation Biology and the Radiation Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology and the Radiation Research Program Biology and the Radiation Research Program The Department of Energy (DOE) and its predecessor organizations, Energy Research and Development Agency (ERDA) and Atomic Energy Commission (AEC), always have been concerned about the health effects of ionizing radiation. Extensive research has been conducted under their sponsorship at all levels of biological organization from molecules to man. Over the past 60 years, studies using every type of radiation source have included exposure to both external radiation sources and to internally deposited radioactive materials. These exposures used different dose patterns and distributions delivered over a wide range of experimental times. This extensive research provided the basis for the new Low Dose Radiation Research Program, linking

257

Nuclear safety | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

to prevent nuclear and radiation accidents or to limit their consequences. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

258

Mitsuru Uesaka Nuclear Engineering Research Laboratory ,  

NLE Websites -- All DOE Office Websites (Extended Search)

plasma cathode by 12 TW, 50 fs laser and its application to radiation chemistry Mitsuru Uesaka Nuclear Engineering Research Laboratory , University of Tokyo June 26, 2004...

259

NNSA Blog | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

the ability to use this type of wireless technology for radiation monitoring in nuclear facilities, where monitoring is essential for operating the equipment safely and...

260

Nuclear Power in France Beyond the Myth  

E-Print Network (OSTI)

.8 Decommissioning E.2 Unsealed Nuclear Substances E.2.1 Nuclear Substance Lab Facilities E.3 Precautions Safety Officer C.4 Director of EH&S C.5 Project Directors C.6 Nuclear Substance Users D Radiation Safety Policies 13 D.1 ALARA Statement D.2 Policies ALARA Policy Laboratory Status Transfer/Shipment of Nuclear

Laughlin, Robert B.

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

INDUSTRIAL HYGIENE ASPECTS OF UNDERGROUND NUCLEAR WEAPON TEST DEBRIS RECOVERY  

SciTech Connect

The formation of a collapse crater by underground nuclear explosions is described. Safety problems associated with the re-entry of underground nuclear explosion areas include cavity collapse, toxic gases, explosive gases, radioactive gases, radioactive core, and hazards from the movement of heavy equipment on unstable ground. Data irom television, geophones, and telemetered radiation detectors determine when radiation and toxic material surveys of the area can be made and drills can be used to obtain samples of the bubble crust for analysis. Hazards to persornel engaged in obtaining weapon debris samples are reviewed. Data are presented on the radiation dose received by personnel at the Nevada Test Site engaged in this work during 1962. (C.H.)

Wilcox, F.W.

1963-03-27T23:59:59.000Z

262

About Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from...

263

Nuclear Forensics | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science and Engineering Materials Science and Engineering Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation More Science Home | Science & Discovery | More Science | Materials Science and Engineering | Nuclear Forensics SHARE Nuclear Forensics image Tools, techniques, and expertise in nuclear fuel cycle research gained over seven decades help ORNL scientists control and track nuclear bomb-grade materials to be sure they don't fall into the wrong hands. Among the leading-edge technologies used by researchers are high-resolution techniques that allow analysis of radiation detector data in stunning detail. Researchers are also developing aerosol sampling systems to collect

264

Detection of Ionizing Radiation by Plasma-Panel Sensors: Cosmic Muons, Ion Beams, and Cancer Therapy  

Science Conference Proceedings (OSTI)

The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeutics.

Friedman, Dr. Peter S. [Integrated Sensors, LLC; Ferretti, Claudio [University of Michigan; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan; Etzion, E [Tel Aviv University; Moshe, M. [Tel Aviv University; Bentefour, E [Ion Beam Applications

2012-01-01T23:59:59.000Z

265

NUCLEAR REACTOR CONTROL SYSTEM  

DOE Patents (OSTI)

A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

1959-11-01T23:59:59.000Z

266

Advanced Nuclear Fuels  

Science Conference Proceedings (OSTI)

Oct 19, 2010 ... The United States Department of Energy has defined an approach to energy security that includes sustainable nuclear energy. To achieve ...

267

Nuclear Materials Committee  

Science Conference Proceedings (OSTI)

The Nuclear Materials Committee is part of the Structural Materials Division. Our Mission: Includes the scientific and technical aspects of materials which are ...

268

How ORISE is Making a Difference: Radiation Emergency Preparedeness  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Emergency Preparedness Conference Radiation Emergency Preparedness Conference White House thanks ORISE for assisting CDC in hosting radiation emergency preparedness conference The Oak Ridge Institute for Science and Education (ORISE) was an integral partner in assisting the Centers for Disease Control and Prevention (CDC) with hosting Bridging the Gaps: Public Health and Radiation Emergency Preparedness conference from March 21-24, 2011, in Atlanta. The national conference, which featured Dr. Thomas Frieden, director of the CDC, as a keynote speaker, garnered much attention in light of the recent Japanese nuclear reactor events. Conference attendees included nearly 430 federal, state and local government public health officials, workers and partners. Dr. Thomas Frieden, director of the CDC

269

Nuclear data for nuclear transmutation  

Science Conference Proceedings (OSTI)

Current status on nuclear data for the study of nuclear transmutation of radioactive wastes is reviewed

Hideo Harada

2009-01-01T23:59:59.000Z

270

Nuclear decay data files of the Dosimetry Research Group  

Science Conference Proceedings (OSTI)

This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission on Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ``MIRD: Radionuclide Data and Decay Schemes.`` The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

1993-12-01T23:59:59.000Z

271

REAC/TS Radiation Accident Registry: An Overview  

Science Conference Proceedings (OSTI)

Over the past four years, REAC/TS has presented a number of case reports from its Radiation Accident Registry. Victims of radiological or nuclear incidents must meet certain dose criteria for an incident to be categorized as an “accident” and be included in the registry. Although the greatest numbers of “accidents” in the United States that have been entered into the registry involve radiation devices, the greater percentage of serious accidents have involved sealed sources of one kind or another. But if one looks at the kinds of accident scenarios that have resulted in extreme consequence, i.e., death, the greater share of deaths has occurred in medical settings.

Doran M. Christensen, DO, REAC /TS Associate Director and Staff Physician Becky Murdock, REAC/TS Registry and Health Physics Technician

2012-12-12T23:59:59.000Z

272

Nevada Test Site Radiation Protection Program - Revision 1  

SciTech Connect

Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

Radiological Control Managers' Council

2008-06-01T23:59:59.000Z

273

Radiation detector spectrum simulator  

DOE Patents (OSTI)

A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

Wolf, M.A.; Crowell, J.M.

1985-04-09T23:59:59.000Z

274

Radiation detector spectrum simulator  

SciTech Connect

A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

Wolf, Michael A. (Los Alamos, NM); Crowell, John M. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

275

Alpha Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

276

Radiation doses for Marshall Islands Atolls Affected by U.S. Nuclear Testing:All Exposure Pathways, Remedial Measures, and Environmental Loss of 137Cs  

SciTech Connect

The United States conducted 24 nuclear tests at Bikini Atoll with a total yield of 76.8 Megatons (MT). The Castle series produced about 60% of this total and included the Bravo test that was the primary source of contamination of Bikini Island and Rongelap and Utrok Atolls. One of three aerial drops missed the atoll and the second test of the Crossroads series, the Baker test, was an underwater detonation. Of the rest, 17 were on barges on water and 3 were on platforms on an island; they produced most of the contamination of islands at the atoll. There were 42 tests conducted at Enewetak Atoll with a total yield of 31.7 MT (Simon and Robison, 1997; UNSCEAR, 2000). Of these tests, 18 were on a barge over wateror reef, 7 were surface shots, 2 aerial drops, 2 under water detonations, and 13 tower shots on either land or reef. All produced some contamination of various atoll islands. Rongelap Atoll received radioactive fallout as a result of the Bravo test on March 1, 1954 that was part of the Castle series of tests. This deposition was the result of the Bravo test producing a yield of 15 MT, about a factor of three to four greater than the predicted yield that resulted in vaporization of more coral reef and island than expected and in the debris-cloud reaching a much higher altitude than anticipated. High-altitude winds were to the east at the time of detonation and carried the debris-cloud toward Rongelap Atoll. Utrok Atoll also received fallout from the Bravo test but at much lower air and ground-level concentrations than at Rongelap atoll. Other atolls received Bravo fallout at levels below that of Utrok [other common spellings of this island and atoll (Simon, et al., 2009)]. To avoid confusion in reading other literature, this atoll and island are spelled in a variety of ways (Utrik, Utirik, Uterik or Utrok). Dose assessments for Bikini Island at Bikini Atoll (Robison et al., 1997), Enjebi Island at Enewetak Atoll (Robison et al., 1987), Rongelap Island at Rongelap Atoll (Robison et al., 1994; Simon et al., 1997), and Utrok Island at Utrok Atoll (Robison, et al., 1999) indicate that about 95-99% of the total estimated dose to people who may return to live at the atolls today (Utrok Island is populated) is the result of exposure to {sup 137}Cs. External gamma exposure from {sup 137}Cs in the soil accounts for about 10 to 15% of the total dose and {sup 137}Cs ingested during consumption of local food crops such as drinking coconut meat and fluid (Cocos nucifera L.), copra meat and milk, Pandanus fruit, and breadfruit accounts for about 85 to 90%. The other 1 to 2% of the estimated dose is from {sup 90}Sr, {sup 239+240}Pu, and {sup 241}Am. The {sup 90}Sr exposure is primarily through the food chain while the exposure to {sup 239+240}Pu, and {sup 241}Am is primarily via the inhalation pathway as a result of breathing re-suspended soil particles.

Robison, W L; Hamilton, T F

2009-04-20T23:59:59.000Z

277

Radiation: Radiation Control (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

278

Nuclear and Particle Physics, Astrophysics and Cosmology : T...  

NLE Websites -- All DOE Office Websites (Extended Search)

applied and basic science, nuclear many-body theory, nuclear reaction theory, fission, nuclear data evaluation, processing and validation testing for applications that include...

279

ORISE: REAC/TS Symposium to include sessions on the Fukushima...  

NLE Websites -- All DOE Office Websites (Extended Search)

MEDIA ADVISORY: REACTS International Symposium to include sessions on the Fukushima crisis FOR IMMEDIATE RELEASE Aug. 31, 2011 FY11-42 Who: Radiation Emergency Assistance Center...

280

Radiation delivery system and method  

DOE Patents (OSTI)

A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

Sorensen, Scott A. (Overland Park, KS); Robison, Thomas W. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PWR Standard Radiation Monitoring Program: 2013 Summary  

Science Conference Proceedings (OSTI)

The Nuclear Energy Institute/Institute of Nuclear Power Operations/Electric Power Research Institute (EPRI) Radiation Protection “RP 2020” Initiative was developed to promote radiation dose reduction by emphasizing radiological protection fundamentals and reducing radioactive source term. EPRI was charged as the technical lead in the area of source term reduction, and EPRI’s Radiation Management Program initiated a multi-year program to develop an understanding of source term ...

2013-06-27T23:59:59.000Z

282

Nondestructive Evaluation: Radiation Safety for Radiographic Operations  

Science Conference Proceedings (OSTI)

Radiation safety in radiographic operations at nuclear facilities is typically more difficult than at other types of industrial and commercial facilities. Radiography at nuclear facilities is typically conducted where exclusion areas can involve several elevations, multiple doorway entrances and wall penetrations, hidden and locked rooms, and active radiation monitors and alarms. During outages, a team of nondestructive examination (NDE) personnel, maintenance and craft workers, radiation protection tech...

2009-11-12T23:59:59.000Z

283

Chapter 19 - Nuclear Waste Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

284

Protection Against Ionizing Radiation in Extreme Radiation ...  

Science Conference Proceedings (OSTI)

Protection Against Ionizing Radiation in Extreme Radiation-resistant Microorganisms. ... Elucidated radiation protection by intracellular halides. ...

2013-05-01T23:59:59.000Z

285

Nuclear Reaction Cross Sections Database at BNL | U.S. DOE Office...  

Office of Science (SC) Website

Industry Impactbenefit to spin-off field: Applications in nuclear energy, national security, radiation protection. Improved cross sections for design of nuclear systems The new...

286

Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications  

SciTech Connect

Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

David L. Chichester; Edward H. Seabury

2008-08-01T23:59:59.000Z

287

A thermovoltaic semiconductor device including a plasma filter  

DOE Patents (OSTI)

A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential are disclosed. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

Baldasaro, Paul F.

1997-12-01T23:59:59.000Z

288

Nuclear radiation detectors based on a matrix of ion-implanted p-i-n diodes on undoped GaAs epilayers  

Science Conference Proceedings (OSTI)

Samples of nuclear detectors which represent matrices of p-i-n diodes were fabricated based on undoped gallium arsenide epitaxial layers by ion implantation technology. The detectors have a size of the active area of 0.4 Multiplication-Sign 0.4 and 0.9 Multiplication-Sign 0.9 cm{sup 2}. Electrical characteristics of fabricated detectors and results of measurements of fast neutrons spectra of {sup 241}Am-Be source by the recoil protons method are discussed.

Baryshnikov, F. M.; Britvich, G. I.; Chernykh, A. V.; Chernykh, S. V.; Chubenko, A. P.; Didenko, S. I.; Koltsov, G. I. [National University of Science and Technology 'MISIS', Leninskiy prospect 4, 119049 Moscow (Russian Federation); Institute for High Energy Physics, Polshhad nauki 1, 142281 Protvino (Russian Federation); National University of Science and Technology 'MISIS', Leninskiy prospect 4, 119049 Moscow (Russian Federation); P.N. Lebedev Physical Institute of the RAS, Leninskiy prospect 53, 119991 Moscow (Russian Federation); National University of Science and Technology 'MISIS', Leninskiy prospect 4, 119049 Moscow (Russian Federation)

2012-11-06T23:59:59.000Z

289

Lesson 4 - Ionizing Radiation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 - Ionizing Radiation 4 - Ionizing Radiation Lesson 4 - Ionizing Radiation Lesson Three showed that unstable isotopes emit energy as they become more stable. This energy is known as radiation. This lesson explores forms of radiation, where radiation is found, how we detect and measure radiation, what sources of radiation people are exposed to, whether radiation is harmful, and how we can limit our exposure. Specific topics covered in this lesson include: Types of radiation Non-ionizing Ionizing Forms of ionizing radiation Alpha particles Beta particles Gamma rays Radiation Decay chain Half-life Dose Radiation measurements Sources of radiation Average annual exposure Lesson 4 - Ionizing Radiation.pptx More Documents & Publications DOE-HDBK-1130-2008 DOE-HDBK-1130-2008 DOE-HDBK-1130-2007

290

Beta Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Beta Radiation 1. Beta radiation may travel meters in air and is moderately penetrating. 2. Beta radiation can penetrate human skin to the "germinal layer," where new skin cells...

291

RADIATION MONITORING  

E-Print Network (OSTI)

of Monitoring for Radiation Protection of Workers" in ICRPNo. 9, in "Advances in Radiation Protection and Dosimetry inDosimetry f o r Stray Radiation Monitoring on the CERN S i t

Thomas, R.H.

2010-01-01T23:59:59.000Z

292

A survey of nuclear-related agreements and possibilities for nuclear cooperation in South Asia: Cooperative Monitoring Center Occasional Paper/15  

SciTech Connect

Several existing nuclear-related agreements already require India and Pakistan, as members, to share information. The agreements are bilateral, regional, and international. Greater nuclear transparency between India and Pakistan could be promoted by first understanding the information flows required by existing agreements. This understanding is an essential step for developing projects that can incrementally advance the sensitivity of the information being shared. This paper provides a survey of existing nuclear-related agreements involving India and Pakistan, and suggests future confidence-building projects using the frameworks provided by these agreements. The Bilateral Agreement on the Prohibition of Attack against Nuclear Reactors and Nuclear Facilities is discussed as a basis for creating further agreements on restricting the use and deployment of nuclear weapons. The author suggests options for enhancing the value of the list of nuclear facilities exchanged annually as a part of this agreement. The International Atomic Energy Agency's regional cooperation agreement among countries in the Asia-Pacific region is an opportunity for greater subregional nuclear cooperation in South Asia. Linking the regional agreement with South Asian environmental cooperation and marine pollution protection efforts could provide a framework for projects involving Indian and Pakistani coastal nuclear facilities. Programs of the Food and Agriculture Organization of the United Nations that use nuclear techniques to increase food and crop production and optimize water management in arid areas also provide similar opportunities for nuclear cooperation. Other frameworks for nuclear cooperation originate from international conventions related to nuclear safety, transportation of nuclear wastes, worker protection against ionizing radiation, and the nondeployment of nuclear weapons in certain areas. The information shared by existing frameworks includes: laws and regulations (including internal inspection procedures that enforce compliance); lists of nuclear facilities; emergency response procedures and available resources; information related to the transportation of nuclear wastes (particularly via shipping); understanding and notification of accidental releases; and radionuclide release data from select coastal facilities. Incremental increases in the sensitivity of the information being shared could strengthen norms for Indian and Pakistani nuclear transparency. This paper suggests seven technology-based Indian and Pakistani nuclear transparency projects for consideration. Existing nuclear-related agreements provide an information-sharing framework within which the projects could occur. Eventually, as confidence increases and new agreements are negotiated, future projects could begin to deal with the accounting of fissile materials and nuclear weapons disposition and control.

RAJEN,GAURAV

2000-04-01T23:59:59.000Z

293

Nuclear Resonance Fluorescence for Materials Assay  

E-Print Network (OSTI)

and safeguards for nuclear fuel cycles Examples of age-PECIFIC E XAMPLES A. Spent Nuclear Fuel A critical componentnuclear safeguards including measuring uranium enrichments, spent fuel

Quiter, Brian J.

2010-01-01T23:59:59.000Z

294

Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)  

SciTech Connect

Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database contains over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.

NONE

1999-02-01T23:59:59.000Z

295

RADIATION MONITORING  

E-Print Network (OSTI)

wind of the stack of nuclear reactor but not down wind. OnS i t e and at several nuclear reactor s i t e s . They havefrom the stack of nuclear power reactor, may have strong

Thomas, R.H.

2010-01-01T23:59:59.000Z

296

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

297

ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR  

SciTech Connect

Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data transmission in place of NSA Type 1 devices.

Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

2011-08-03T23:59:59.000Z

298

Radiation detection system  

SciTech Connect

A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA); Lyons, Peter B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

299

Electromagnetic radiation detector  

DOE Patents (OSTI)

An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

Benson, Jay L. (Albuquerque, NM); Hansen, Gordon J. (Albuquerque, NM)

1976-01-01T23:59:59.000Z

300

RADIOACTIVE FALLOUT FROM NUCLEAR EXPLOSIONS  

SciTech Connect

A nontechnical description of the mechanisms of local and world-wide fall-out from nuclear explosions is given. The relative importance of local fall-out in a nuclear war is discussed. The effects upon man of world-wide fall-out from past nuclear testing is discussed. It is pointed out that doses to man frcm testing are quite small when compared to the natural radiation background. (auth)

Parker, E.N.

1960-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The ABC's of Nuclear Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Nuclear Science Basic Nuclear Science Cosmic Connection Presentations Experiments Antimatter Make a Nucleus Glossary Safety Credits Praise CPEP Speak With Us Boy Scout Merit Badge Translations Guide to the Nuclear Wall Chart About the Nuclear Wall Chart Privacy and Security Notice Other Interesting Sites Last updated: September 26, 2013 Contact Us The ABC's Of Nuclear Science The ABC's of Nuclear Science is a brief introduction to Nuclear Science. We look at Antimatter, Beta rays, Cosmic connection and much more. Visit here and learn about radioactivity - alpha, beta and gamma decay. Find out the difference between fission and fusion. Learn about the structure of the atomic nucleus. Learn how elements on the earth were produced. Do you know that you are being bombarded constantly by nuclear radiation from the

302

Nuclear power and nuclear weapons  

SciTech Connect

The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described.

Vaughen, V.C.A.

1983-01-01T23:59:59.000Z

303

Nuclear Thermal Rocket Element Environmental Simulator (NTREES)  

Science Conference Proceedings (OSTI)

To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

Emrich, William J. Jr. [NASA--Marshall Space Flight Center, M.S. ER24, Huntsville, Alabama 35812 (United States)

2008-01-21T23:59:59.000Z

304

Radiation coloration resistant glass  

SciTech Connect

A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

Tomozawa, Minoru (Troy, NY); Watson, E. Bruce (Troy, NY); Acocella, John (Troy, NY)

1986-01-01T23:59:59.000Z

305

Radiation Emergency Medicine Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Global Response Improving Global Response to Radiation Emergencies Improving Radiation Emergency Response Through Education and Specialized Expertise In the event of a radiological or nuclear incident, first responders as well as hospital and emergency management personnel must call on their knowledge and training to provide immediate and effective care for victims. Through practical, hands-on education programs, Oak Ridge Associated Universities (ORAU) is improving global response to radiation emergencies. In addition, dedicated 24/7 deployable teams of physicians, nurses, and health physicists from the Radiation Emergency Assistance Center/Training Site (REAC/TS), which is managed by ORAU for DOE/NNSA, provide expert medical management of radiological incidents

306

Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Estimation of radiation dose to man resulting from biotic transport: the BIOPORT/MAXI1 software package. Volume 5  

Science Conference Proceedings (OSTI)

BIOPORT/MAXI1 is a collection of five computer codes designed to estimate the potential magnitude of the radiation dose to man resulting from biotic transport processes. Dose to man is calculated for ingestion of agricultural crops grown in contaminated soil, inhalation of resuspended radionuclides, and direct exposure to penetrating radiation resulting from the radionuclide concentrations established in the available soil surface by the biotic transport model. This document is designed as both an instructional and reference document for the BIOPORT/MAXI1 computer software package and has been written for two major audiences. The first audience includes persons concerned with the mathematical models of biological transport of commercial low-level radioactive wastes and the computer algorithms used to implement those models. The second audience includes persons concerned with exercising the computer program and exposure scenarios to obtain results for specific applications. The report contains sections describing the mathematical models, user operation of the computer programs, and program structure. Input and output for five sample problems are included. In addition, listings of the computer programs, data libraries, and dose conversion factors are provided in appendices.

McKenzie, D.H.; Cadwell, L.L.; Gano, K.A.; Kennedy, W.E. Jr.; Napier, B.A.; Peloquin, R.A.; Prohammer, L.A.; Simmons, M.A.

1985-10-01T23:59:59.000Z

307

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE  

E-Print Network (OSTI)

NUCLEAR RESONANT SCATTERING AT HIGH PRESSURE AND HIGH TEMPERATURE JIYONG ZHAOa,Ã? , WOLFGANG, The University of Chicago, Chicago, IL 60637, USA We introduce the combination of nuclear resonant inelastic X the thermal radiation spectra fitted to the Planck radiation function up to 1700 K. Nuclear resonant

Shen, Guoyin

308

Nuclear rockets  

SciTech Connect

A systems analysis is made of a class of nuclear-propelled rockets in combination with chemical boosters. Various missions are considered including the delivery of 5000-lb payload 5500 nautical miles, the placement of a satellite in an orbit about the earth and the delivery of a payload to escape velocity. The reactors considered are of the heterogeneous type utilizing graphite fuel elements in a matrix of Be or hydrogenous moderator. Liquid hydrogen and ammonia are considered as propellants. Graphical results are presented which show the characteristics and performance of the nuclear rockets as the design parameters are varied. It should be emphasized that this report is not in any sense intended as a handbook of rocket parameters; it is intended only as a guide for determining areas of interest.

York, H.F.; Biehl, A.T.

1955-04-26T23:59:59.000Z

309

Optical Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Optical Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

310

Ionizing Radiation  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Ionizing Radiation Measurements. Fees for services are located directly below the technical contacts ...

2013-04-09T23:59:59.000Z

311

Safe Handling Of Nuclear Substances Undergraduate Laboratories  

E-Print Network (OSTI)

Safe Handling Of Nuclear Substances Undergraduate Laboratories There are three main hazards associated with working with unsealed sources of nuclear substances. These are: 1. Skin contamination and/or deposition of the nuclear substance in the body 2. Spread of contamination 3. External radiation In teaching

Beaumont, Christopher

312

Development of an Automated Testing System for Verification and Validation of Nuclear Data and Simulation Code  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Radiation Measurements and Instrumentation

Brian S. Triplett; Samim Anghaie; Morgan C. White

313

Related Resources - Nuclear Data Program, Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

314

Publications: Other Resources - Nuclear Data Program - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

315

Publications 2005 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

316

Publications 2003 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

317

Contacts - Nuclear Data Program, Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

318

Publications 2001 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

319

Publications 2004 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

320

Publications 2009 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear Criticality Safety: Current Activities - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

322

Nuclear Criticality Safety - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

323

Nuclear Systems Analysis - Nuclear Engineering Division (Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

324

Publications 2011 - Nuclear Data Program - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

325

Nuclear and hazardous material perspective  

SciTech Connect

The reemerging nuclear enterprise in the 21. century empowering the power industry and nuclear technology is still viewed with fear and concern by many of the public and many political leaders. Nuclear phobia is also exhibited by many nuclear professionals. The fears and concerns of these groups are complex and varied, but focus primarily on (1) management and disposal of radioactive waste [especially spent nuclear fuel and low level radioactive waste], (2) radiation exposures at any level, and (3) the threat nuclear terrorism. The root cause of all these concerns is the exaggerated risk perceived to human health from radiation exposure. These risks from radiation exposure are compounded by the universal threat of nuclear weapons and the disastrous consequences if these weapons or materials become available to terrorists or rogue nations. This paper addresses the bases and rationality for these fears and considers methods and options for mitigating these fears. Scientific evidence and actual data are provided. Radiation risks are compared to similar risks from common chemicals and familiar human activities that are routinely accepted. (authors)

Sandquist, Gary M. [Applied Science Professionals, PO Box 9052 Salt Lake City, UT 84109 (United States); Kunze, Jay F. [Idaho State University PO Box 8060 Pocatello, ID 83209 (United States); Rogers, Vern C. [University of Utah PO Box 510087 Salt Lake City, UT 84151 (United States)

2007-07-01T23:59:59.000Z

326

Nuclear Deployment Scorecards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards October 31, 2013 Quarterly Nuclear Deployment Scorecard - October 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. August 8, 2013 Quarterly Nuclear Deployment Scorecard - July 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. May 1, 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, and new plant construction progress.

327

Nuclear reactor decommissioning. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning nuclear power and research reactor decommissioning and decontamination plans, costs, and safety standards. References discuss the design and evaluation of protective confinement, entombment, and dismantling systems. Topics include decommissioning regulations and rules, public and occupational radiation exposure estimates, comparative evaluation, and reactor performance under high neutron flux conditions. Waste packaging and disposal, environmental compliance, and public opinion are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-10-01T23:59:59.000Z

328

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

329

February 28, 2006, Department letter reporting completion of NNSA portion of Commitment 23 in the 2004-1 implementation plan, Oversight of Complex, High-Hazard Nuclear Operations, which requires the development of site office action plans to improve the consistency and reliability of work planning and work control at the activity level, including the incorporation of Integrated Safety Management core functions  

NLE Websites -- All DOE Office Websites (Extended Search)

Washington, DC 20585 Washington, DC 20585 February 28, 2006 OFFICE O F THE ADMINISTRATOR The Honorable A. J. Eggenberger Ch a i rm an Defensc Nuclear Facilities Safety Board 625 Indiana Avenue, NW., Suite 700 Washington, D.C. 20004-2901 Dear Mr. Chairman: On Julie 10, 2005, Secretary Bodnian submitted the Department's Iiizplenzentution Plun to Itizpt-ove Oversight qf'Nucleur Operutions in response to Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2004- I , Oversight qf Complex, High-Hrrzurd Nucleur Openrtiotzs. Section 5.3 of the Implementation Plan (IP) addresses Revitalizing Integruted SU/i-'ty Munagernent Implementution, and Subsection 5.3.2 addresses Work Plunning mil Work Control ut the Activity Level. Commitment 23 of the 1P requires development of site office action plans to improve the consistency and reliability of work

330

Science Accelerator content now includes multimedia  

Office of Scientific and Technical Information (OSTI)

Science Accelerator content now includes multimedia Science Accelerator has expanded its suite of collections to include ScienceCinema, which contains videos produced by the U.S....

331

Diffusion, Radiation Damage, and Interaction with Point Defects  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... In nuclear reactors,radiation induced void swelling can cause significant dimensional instability of structural materials and degrade their ...

332

NNSA to Conduct Aerial Radiation Monitoring Survey over Baltimore...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conduct Aerial Radiation Monitoring Survey over Baltimore Jan. 15-16 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering...

333

Medium energy nuclear data for applications  

SciTech Connect

The types of medium energy nuclear data required for applications are discussed. Features of analysis tools, consisting of both detailed nuclear model codes and simple formulas based on nuclear systematics are presented. The activities of the Medium Energy Nuclear Data Working Group (MENDWG) are described including the recent benchmark comparison of nuclear model codes. 40 refs., 7 figs.

Pearlstein, S.

1988-01-01T23:59:59.000Z

334

Gamma radiation field intensity meter  

DOE Patents (OSTI)

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

Thacker, L.H.

1994-08-16T23:59:59.000Z

335

Gamma radiation field intensity meter  

DOE Patents (OSTI)

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

Thacker, L.H.

1995-10-17T23:59:59.000Z

336

Gamma radiation field intensity meter  

SciTech Connect

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

Thacker, Louis H. (Knoxville, TN)

1995-01-01T23:59:59.000Z

337

Gamma radiation field intensity meter  

SciTech Connect

A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

Thacker, Louis H. (Knoxville, TN)

1994-01-01T23:59:59.000Z

338

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) ...

339

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) Impacts

340

Nuclear Materials Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Radiation Physics Portal  

Science Conference Proceedings (OSTI)

NIST Home > Radiation Physics Portal. Radiation Physics Portal. ... more. >> see all Radiation Physics programs and projects ... ...

2013-08-08T23:59:59.000Z

342

Toward an acceptable nuclear future  

SciTech Connect

The nuclear option is in danger of being foreclosed. The trend toward antinuclearism may be reversed if concerns about low-level radiation insult can be shown ultimately to be without foundation; evidence for this speculation is presented. Nevertheless it is suggested that the nuclear enterprise itself must propose new initiatives to increase the acceptability of nuclear energy. A key element of an acceptable nuclear future is cluster siting of reactors. This siting plan might be achieved by confining new reactors essentially to existing sites.

Weinberg, A.M.

1977-11-01T23:59:59.000Z

343

DOE occupational radiation exposure 1996 report  

SciTech Connect

The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ``As Low As Reasonably Achievable`` (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources.

NONE

1996-12-31T23:59:59.000Z

344

Integrated Radiation Transport and Thermo-Mechanics Simulation of a PWR Assembly  

SciTech Connect

The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step towards incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source terms, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. AMPFuel was used to model an entire 17 x 17 Pressurized Water Reactor (PWR) fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins, the 25 guide tubes, top and bottom structural regions, and the upper and lower (neutron) reflector regions. The final full-assembly calculation was executed on Jaguar (Cray XT5) at the Oak Ridge Leadership Computing Facility using 40,000 cores in under 10 hours to model over 162 billion degrees of freedom for 10 loading steps.

Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Berrill, Mark A [ORNL; Barai, Pallab [ORNL; Banfield, James E [ORNL

2012-01-01T23:59:59.000Z

345

Balancing radiation benefits and risks: The needs of an informed public  

Science Conference Proceedings (OSTI)

The American public`s perceptions regarding ionizing radiation do not always conform to or correlate with scientific evidence. The ultimate purpose of this coordinated Federal effort and report is to increase the public`s knowledge of the benefits and risks associated with ionizing radiation. This report is divided into five sections. The first section, Introduction, discusses the public`s knowledge of radiation, their perceptions of benefits versus risks, and the Federal government`s role in public education. The section also outlines the charge to the Subpanel. Radiation Issues and Public Reactions discusses several radiation issues important to Federal agencies for which public education programs need to be established or enhanced. Federal Programs describes Federal agencies with public education programs on radiation and the nature of the programs they support. Education Issues and Federal Strategies explores the elements identified by the Subpanel as critical to the development and implementation of an effective Federal program in the area of public education on radiation issues and nuclear technologies. An important issue repeatedly brought up during the public sector presentations to the Subpanel was the perceived lack of Federal credibility on radiation issues in the eyes of the public. To some degree, this concern was factored into all of the recommendations developed by the subpanel. The issues discussed in this section include the fragmented nature of Federal radiation programs and the need to improve credibility, promote agency responsiveness, and support the enhancement of scientific literacy. Finally, under Recommendations, the Subpanel discusses its overall findings and conclusions.

Not Available

1994-04-01T23:59:59.000Z

346

NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.  

SciTech Connect

The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

PRITYCHENKO, B.

2006-06-05T23:59:59.000Z

347

Comprehensive Nuclear Materials  

Science Conference Proceedings (OSTI)

This book encompasses a rich seam of current information on the vast and multidisciplinary field of nuclear materials employed in fission and prototype fusion systems. Discussion includes both historical and contemporary international research in nuclear materials, from Actinides to Zirconium alloys, from the worlds leading scientists and engineers. Synthesizes pertinent current science to support the selection, assessment, validation and engineering of materials in extreme nuclear environments. The work discusses the major classes of materials suitable for usage in nuclear fission, fusion reactors and high power accelerators, and for diverse functions in fuels, cladding, moderator and control materials, structural, functional, and waste materials.

Konings, Dr. Rudy J. M. [European Commission Joint Research Centre; Allen, Todd R. [University of Wisconsin, Madison; Stoller, Roger E [ORNL; Yamanaka, Prof. Shinsuke [Osaka University

2012-01-01T23:59:59.000Z

348

Nuclear medium effects in $\  

E-Print Network (OSTI)

We study the nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.

Haider, H; Athar, M Sajjad; Vacas, M J Vicente

2011-01-01T23:59:59.000Z

349

Nuclear Reactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactions Nuclear reactions and nuclear scattering are used to measure the properties of nuclei. Reactions that exchange energy or nucleons can be used to measure the energies of...

350

Nuclear Safety  

Energy.gov (U.S. Department of Energy (DOE))

Nuclear Safety information site that provides assistance and resources to field elements in implementation of requirements and resolving nuclear safety, facility safety, and quality assurance issues.

351

Nuclear Materials  

Science Conference Proceedings (OSTI)

Materials and Fuels for the Current and Advanced Nuclear Reactors III ... response of oxide ceramics for nuclear applications through experiment, theory, and ...

352

Fundamentals of health physics for the radiation-protection officer  

SciTech Connect

The contents of this book on health physics include chapters on properties of radioactive materials, radiation instrumentation, radiation protection programs, radiation survey programs, internal exposure, external exposure, decontamination, selection and design of radiation facilities, transportation of radioactive materials, radioactive waste management, radiation accidents and emergency preparedness, training, record keeping, quality assurance, and appraisal of radiation protection programs. (ACR)

Murphy, B.L.; Traub, R.J.; Gilchrist, R.L.; Mann, J.C.; Munson, L.H.; Carbaugh, E.H.; Baer, J.L.

1983-03-01T23:59:59.000Z

353

National Day of Remembrance HSS Honors Former Nuclear Weapons...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workers National Day of Remembrance HSS Honors Former Nuclear Weapons Program Workers Third Radiation Effects Research Foundation Board of Councilors Meeting Held in Hiroshima...

354

Materials for Nuclear Power: Digital Resource Center - WEBCAST ...  

Science Conference Proceedings (OSTI)

A tutorial on the effects of radiation on strucutral materials for nuclear energy applications. Created On: 5/25/2007 7:35 AM, Topic View: Linear, Threading ...

355

Hospital Triage in First Hours After Nuclear or Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

356

Multi-Scale Modeling of Irradiation Effects on Nuclear Fuel ...  

Science Conference Proceedings (OSTI)

Ab Initio-Based Rate Theory Modeling of Radiation Induced Segregation in ... Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors.

357

Corrosion Control for Safe Interim Storage of Nuclear Reprocessing ...  

Science Conference Proceedings (OSTI)

Development of Cementitious Waste Forms for Nuclear Waste Immobilization · Development of ... Radiation Damage in Zircon by High-Energy Electron Beams.

358

Underwater radiation detector  

DOE Patents (OSTI)

A detector apparatus for differentiating between gamma and neutron radiation is provided. The detector includes a pair of differentially shielded Geiger-Mueller tubes. The first tube is wrapped in silver foil and the second tube is wrapped in lead foil. Both the silver and lead foils allow the passage of gamma rays at a constant rate in a gamma ray only field. When neutrons are present, however, the silver activates and emits beta radiation that is also detected by the silver wrapped Geiger-Mueller tube while the radiation detected by the lead wrapped Geiger-Mueller tube remains constant. The amount of radiation impinging on the separate Geiger-Mueller tubes is then correlated in order to distinguish between the neutron and gamma radiations.

Kruse, Lyle W. (Albuquerque, NM); McKnight, Richard P. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

359

Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Outreach Educational Outreach Publications and Reports News and Awards Home | Science & Discovery | Nuclear Science Nuclear Science | Nuclear Science SHARE In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies and systems to improve human health; explore safer, more environmentally friendly power; and better understand the structure of matter. Thanks to its nuclear heritage, ORNL is a world leader in the production of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC) together provide the western world's sole supply of californium-252, an isotope instrumental in a wide variety of uses including cancer therapy,

360

Nuclear Science References Database  

E-Print Network (OSTI)

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

B. Pritychenko; E. B?ták; B. Singh; J. Totans

2013-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Station blackout at nuclear power plants: Radiological implications for nuclear war  

Science Conference Proceedings (OSTI)

Recent work on station blackout is reviewed its radiological implications for a nuclear war scenario is explored. The major conclusion is that the effects of radiation from many nuclear weapon detonations in a nuclear war would swamp those from possible reactor accidents that result from station blackout.

Shapiro, C.S.

1986-12-01T23:59:59.000Z

362

Current Trends in Gamma Radiation Detection for Radiological Emergency Response  

SciTech Connect

Passive and active detection of gamma rays from shielded radioactive materials, including special nuclear materials, is an important task for any radiological emergency response organization. This article reports on the current trends and status of gamma radiation detection objectives and measurement techniques as applied to nonproliferation and radiological emergencies. In recent years, since the establishment of the Domestic Nuclear Detection Office by the Department of Homeland Security, a tremendous amount of progress has been made in detection materials (scintillators, semiconductors), imaging techniques (Compton imaging, use of active masking and hybrid imaging), data acquisition systems with digital signal processing, field programmable gate arrays and embedded isotopic analysis software (viz. gamma detector response and analysis software [GADRAS]1), fast template matching, and data fusion (merging radiological data with geo-referenced maps, digital imagery to provide better situational awareness). In this stride to progress, a significant amount of interdisciplinary research and development has taken place–techniques and spin-offs from medical science (such as x-ray radiography and tomography), materials engineering (systematic planned studies on scintillators to optimize several qualities of a good scintillator, nanoparticle applications, quantum dots, and photonic crystals, just to name a few). No trend analysis of radiation detection systems would be complete without mentioning the unprecedented strategic position taken by the National Nuclear Security Administration (NNSA) to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime transportation–the so-called second line of defense.

Mukhopadhyay, S., Guss, P., Maurer, R.

2011-09-01T23:59:59.000Z

363

Portable instrument for inspecting irradiated nuclear fuel assemblies  

DOE Patents (OSTI)

A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

Nicholson, Nicholas (Los Alamos, NM); Dowdy, Edward J. (Los Alamos, NM); Holt, David M. (Los Alamos, NM); Stump, Jr., Charles J. (Santa Fe, NM)

1985-01-01T23:59:59.000Z

364

Nuclear Matter and Nuclear Dynamics  

E-Print Network (OSTI)

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

365

Nuclear power plant design analysis  

SciTech Connect

Information concerning the engineering aspects of the design of commercial nuclear power plants is presented. Topics discussed include: electric utility economics; nuclear plant cconomics; thermal-transport systems and core design; nuclear analysis methods; safcty requirements; fuel-system analysis; dcsign considerations; and optimization approaches. (DCC)

Sesonske, A.

1973-01-01T23:59:59.000Z

366

SRS - Programs - Nuclear Materials Management  

NLE Websites -- All DOE Office Websites (Extended Search)

built in the mid-1950s, housed various Special Nuclear Materials missions including plutonium storage, shipping and handling; billet production for reactor target fabrication...

367

Thermodynamic Database for Nuclear Materials  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... This resource features an interactive index to thermodynamic properties included on the International Nuclear Safety Center Material Properties ...

368

Nuclear Engineering Division: interviews on Situation at Japan's nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Interviews on Situation at Japan's Interviews on Situation at Japan's nuclear reactors Welcome Organization Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Nuclear Engineering Division: interviews on Situation at Japan's nuclear reactors Bookmark and Share Fukushima Update "Fukushima and Chernobyl: Myth versus Reality" Fukushima and Chernobyl: Myth versus Reality Want to bypass the popular press myths and gain a true understanding of the radiation releases at Fukushima? Watch this video » Several experts from the Nuclear Engineering Division at Argonne National Laboratory have been interviewed on the situation at Japan's nuclear

369

DOE 2012 Occupational Radiation Exposure October 2013  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED in

none,

2012-02-02T23:59:59.000Z

370

Radiative Forcing of Climate Change  

SciTech Connect

Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

2001-10-01T23:59:59.000Z

371

Isocurvature perturbations in extra radiation  

E-Print Network (OSTI)

Recent cosmological observations, including measurements of the CMB anisotropy and the primordial helium abundance, indicate the existence of an extra radiation component in the Universe beyond the standard three neutrino species. In this paper we explore the possibility that the extra radiation has isocurvatrue fluctuations. A general formalism to evaluate isocurvature perturbations in the extra radiation is provided in the mixed inflaton-curvaton system, where the extra radiation is produced by the decay of both scalar fields. We also derive constraints on the abundance of the extra radiation and the amount of its isocurvature perturbation. Current observational data favors the existence of an extra radiation component, but does not indicate its having isocurvature perturbation. These constraints are applied to some particle physics motivated models. If future observations detect isocurvature perturbations in the extra radiation, it will give us a hint to the origin of the extra radiation.

Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu

2011-01-01T23:59:59.000Z

372

Liquid cooled fiber thermal radiation receiver  

DOE Patents (OSTI)

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, B.L.

1985-03-29T23:59:59.000Z

373

Liquid cooled fiber thermal radiation receiver  

DOE Patents (OSTI)

A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

Butler, Barry L. (Del Mar, CA)

1987-01-01T23:59:59.000Z

374

Nuclear criticality safety  

SciTech Connect

Important facts of the nuclear criticality safety field are covered in this volume. Both theoretical and practical aspects of the subject are included, based on insights provided by criticality experts and published information from many sources. An overview of nuclear criticality safety theory and a variety of practical in-plant operation applications are presented. Underlying principles of nuclear criticality safety are introduced and the state of the art of this technical discipline is reviewed. Criticality safety theoretical concepts, accident experience, standards, experiments computer calculations, integration of safety methods into individual practices, and overall facility operations are all included.

Knief, R.A.

1985-01-01T23:59:59.000Z

375

Multilayer radiation shield  

SciTech Connect

A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

Urbahn, John Arthur (Saratoga Springs, NY); Laskaris, Evangelos Trifon (Niskayuna, NY)

2009-06-16T23:59:59.000Z

376

National Nuclear Data Center Nuclear Data Portal www.nndc.bnl.gov  

E-Print Network (OSTI)

National Nuclear Data Center #12;Nuclear Data Portal www.nndc.bnl.gov Nuclear Data Portal New generation of nuclear data services, using modern and powerful DELL servers, Sybase relational database software, Linux operating system, and Java programming language. The Portal includes nuclear structure

Homes, Christopher C.

377

Enhanced radiation detectors using luminescent materials  

DOE Patents (OSTI)

A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.

Vardeny, Zeev V. (Holladay, UT); Jeglinski, Stefan A. (Durham, NC); Lane, Paul A. (Sheffield, GB)

2001-01-01T23:59:59.000Z

378

Bibliography of marine radiation ecology prepared for the Seabed Program  

SciTech Connect

References on the effects of ionizing radiation on aquatic organisms have been obtained from a number of sources. Many were obtained from reviews and other publications. Although the primary purpose of preparing this bibliography was to obtain information related to the nuclear wastes Seabed Disposal Biology Program of Sandia Laboratories, freshwater organisms are included as a matter of convenience and also with the belief that such a bibliography would be of interest to a wider audience than that restricted to the Seabed Program. While compilation of a list in an area broad in scope is often somewhat arbitrary, an attempt was made to reference publications that were related to field or laboratory studies of wild species of plants and animals with respect to radiation effects. Complete information concerning each reference are provided without excessive library search. Since one often finds references listed in the literature that are incompletely cited, it was not always possible to locate the reference for verification or completion of the citation. Such references are included where they appeared to be of possible value. When known, a reference is followed with its Nuclear Science Abstract designation, or rarely other abstract sources. Those desiring additional information should check Nuclear Science Abstracts utilizing the abstract number presented or other abstracting sources. In addition, the language of the article, other than English, is given when it is known to me.

Schultz, V.S.

1980-02-01T23:59:59.000Z

379

10th Radiation Physics and Protection Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic Energy Authority National Network of Radiation Physics Atomic Energy Authority National Network of Radiation Physics 10 th Radiation Physics and Protection Conference Special Topic Elements of Regulating Nuclear and Radiation Activities Egyptian Law 26 -30 November 2010 To be held at EAEA Headquarter Nasr City Cairo - Egypt (www.rphysp.com) INVITATION The conference organizing committee invites scientists from the Atomic Energy , Research Centers , Universities Institutes , and all those involved in radiation Physics and its Applications in Egypt , Arab countries and abroad to participate in scientific activities of the conference . The official working language of the conference in English Conference Honorary Chairman Conference Scientific Secretary

380

Fusion Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research...

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Environmental radiation dose criteria and assessment: pathway modeling and surveillance  

SciTech Connect

From nuclear science symposium; San Francisco, California, USA (14 Nov 1973). The controversy in recent years over the extent of the risk to the public from environmental radioactivity attributable to nuclear facilities (in particular nuclear power plants and fuel reprocessing facilities) has resulted in a lowering of previously acceptable environmental radiation levels. The proposal by the AEC to limit effluents from light-water-cooled nuclear reactors so that the exposure of any individual in the public would not exceed 5 mR/yr, and the pronouncement by the BEIR Committee that the current environmental radiation protection guides are unnecessarily high, are illustrative. In turn the AEC has issued a Safety Guide calling for considerable refinement in the measuring and reporting of effluents from nuclear power plants, and has only recently issued a counterpart dealing with the measuring and reporting of radioactivity in the environs of nuclear power plants. The EPA has also recently issued a guide for the surveillance of environmental radioactivity. Currently, power reactor operators are being required by the AEC Regulatory Staff to conduct detailed, sensitive environmental surveillance. Much of this appears to be based on extremely conservative assumptions throughout, including doseeffect relationships, exposure situations, pathway models, reconcentration factors and intakes, which cannot be substantiated when examined in the light of current experience in the vicinity of existing power reactors. The expenditures occasioned by the required additional in-plant features necessary to meet the currently proposed effluent release criteria appear difficult to justify on a reasonable basis. Environmental monitoring at the proposed concentration limits appear even more excessive in terms of dollars per man-rem of potential dose commitment. (auth)

Hull, A.P.

1973-01-01T23:59:59.000Z

382

Sandia National Laboratories: Research: Research Foundations: Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Effects and High Energy Density Science Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research Foundation seeks to advance science and engineering in the areas of radiation effects sciences, high energy density science, and pulsed-power science and technology to address critical national security issues. Why our work matters We address several issues key to nuclear security and maintaining a safe, secure, and effective nuclear stockpile. For example, radiation effects science ensures that engineered systems are able to operate as intended in the radiation environments they encounter. In addition, high energy density science validates models that are used to certify the performance of the

383

Transactions of the fourth symposium on space nuclear power systems  

DOE Green Energy (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1987-01-01T23:59:59.000Z

384

Transactions of the fifth symposium on space nuclear power systems  

Science Conference Proceedings (OSTI)

This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

El-Genk, M.S.; Hoover, M.D. (eds.)

1988-01-01T23:59:59.000Z

385

Nuclear Analytical Chemistry Portal  

Science Conference Proceedings (OSTI)

NIST Home > Nuclear Analytical Chemistry Portal. Nuclear Analytical Chemistry Portal. ... see all Nuclear Analytical Chemistry news ... ...

2010-08-02T23:59:59.000Z

386

Nevada National Security Site Radiation Protection Program  

SciTech Connect

Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statements that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.

none,

2013-04-30T23:59:59.000Z

387

Nuclear Fabrication Consortium  

SciTech Connect

This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

Levesque, Stephen

2013-04-05T23:59:59.000Z

388

Instrumentation for environmental monitoring. Volume 3. Radiation  

SciTech Connect

A comprehensive survey of instrunnentation for environmental monitoring is being carried out by the Lawrence Berkeley Laboratory under a grant from the Natioral Science Foundation. Instruments being investigated are those useful for measurements of Air Quality, Water Quality, Radiation, and Biomedical Parameters related to environmental research and monitoring. Consideration is given to instruments and techniques presently in use and to those developed for other purposes but having possible applications to this work. The results of the survey are given as (a) descriptions of the physical and operating characteristics of available instruments, (b) critical comparisons among instrumentation methods, and (c) recommendations of promising methodology and development of new instrumentation. The survey material is compiled in 5 loose- leaf volumes which can be periodically updated. An update for volume 3 on radiation instrumentation is presented. New pages are included for insertion in the introductory material and also under the headings nuclear reactors, combination instruments, alpha particle instrumentation, beta particle instrumentation, x and gamma radiation monitoring instrumentation, gamma spectrometry, neutron monitoring instrumentation, personnel dosimetry, radionuclides (strontium -89 and -90, iodine -129 and -131, radium, uranium, plutonium, and instrument notes), and infrared. (WHK)

1973-10-01T23:59:59.000Z

389

Molecular Dynamics Model of Ultraviolet Matrix-Assisted Laser Desorption/Ionization Including Ionization Processes  

E-Print Network (OSTI)

Molecular Dynamics Model of Ultraviolet Matrix-Assisted Laser Desorption/Ionization Including A molecular dynamics model of UV-MALDI including ionization processes is presented. In addition/desorption of molecular systems, it includes radiative and nonradiative decay, exciton hopping, two pooling processes

Zhigilei, Leonid V.

390

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

391

Future of Nuclear Data for Nuclear Astrophysics  

Science Conference Proceedings (OSTI)

Nuclear astrophysics is an exciting growth area in nuclear science. Because of the enormous nuclear data needs of this field

Michael S. Smith

2005-01-01T23:59:59.000Z

392

Countering Nuclear Terrorism | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Countering Nuclear Terrorism | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

393

Nuclear Detonation Detection | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Nuclear Nonproliferation Program Offices > Office of Nonproliferation Research & Development > Nuclear Detonation Detection Nuclear Detonation Detection Develop, Demonstrate, and...

394

Chernobyl Nuclear Accident | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Chernobyl Nuclear Accident | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

395

Radiation Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Information << Timeline >> Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player July 31, 1942 The Army Corp of Engineers leases...

396

Current projects - Nuclear Data Program, Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Projects Current Projects Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program Current Projects Bookmark and Share Compilation and evaluation of nuclear structure and decay data for the IAEA coordinated International Nuclear Structure and Decay Data Network. Argonne Nuclear Data Program has the responsibility for evaluations of A=176-179 & 199-209 mass chains. These evaluations are included in the world most completed and comprehensive nuclear structure

397

Mil-hdbk-817, system development radiation hardness assurance. Technical report, 23 September 1988-29 June 1993  

Science Conference Proceedings (OSTI)

The development program for a system with a radiation survivability program is very complex. Careful planning and execution of all phases of the development are necessary from the beginning. When there is a nuclear radiation requirement, Hardness Assurance (HA) must be part of the planning. While this document focuses primarily on activities related to the effects of nuclear radiation on electronic components and materials, a hardness assurance program must include all hostile environments employ balanced hardening concepts at all levels. It is the intent of this document to point out the agencies and aids available to help in constructing the most effective HA program for a given system and its mission. It is intended to provide guidance to both the system development Project Manager at the sponsoring agency and the Project Manager for the prime contractor.

Coppage, F.N.

1996-09-01T23:59:59.000Z

398

Assessing risks from occupational exposure to low-level radiation: The statistician's role  

SciTech Connect

Currently, several epidemiological studies of workers who have been exposed occupationally to radiation are being conducted. These include workers in the United States, Great Britain, and Canada, involved in the production of both defense materials and nuclear power. A major reason for conducting these studies is to evaluate possible adverse health effects that may have resulted because of the radiation exposure received. The general subject of health effects resulting from low levels of radiation, including these worker studies, has attracted the attention of various news media, and has been the subject of considerable controversy. These studies provide a good illustration of certain other aspects of the statistician's role; namely, communication and adequate subject matter knowledge. A competent technical job is not sufficient if these other aspects are not fulfilled.

Gilbert, E.S.

1989-06-01T23:59:59.000Z

399

ARM - Measurement - Backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsBackscattered radiation govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights)

400

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Amorphous silicon radiation detectors  

DOE Patents (OSTI)

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

1992-11-17T23:59:59.000Z

402

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

403

Radiation control standards and procedures  

SciTech Connect

This manual contains the Radiation Control Standards'' and Radiation Control Procedures'' at Hanford Operations which have been established to provide the necessary control radiation exposures within Irradiation Processing Department. Provision is also made for including, in the form of Bulletins'', other radiological information of general interest to IPD personnel. The purpose of the standards is to establish firm radiological limits within which the Irradiation Processing Department will operate, and to outline our radiation control program in sufficient detail to insure uniform and consistent application throughout all IPD facilities. Radiation Control Procedures are intended to prescribe the best method of accomplishing an objective within the limitations of the Radiation Control Standards. A procedure may be changed at any time provided the suggested changes is generally agreeable to management involved, and is consistent with department policies and the Radiation Control Standards.

1956-12-14T23:59:59.000Z

404

Intentionally Including - Engaging Minorities in Physics Careers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of Physics Resources. Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the

405

Space Nuclear Power Plant Pre-Conceptual Design Report, For Information  

Science Conference Proceedings (OSTI)

This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

B. Levine

2006-01-27T23:59:59.000Z

406

Summary report on four Oak Ridge sensors for enhancing nuclear safeguards neutron detectors  

SciTech Connect

The need for monitoring weapons grade Pu in nuclear facilities worldwide was addressed with four radiation detector technologies being developed at Y-12 and ORNL. This paper describes experimental results of 4 Oak Ridge Sensors for Enhancing Nuclear Safeguards (ORSENS) neutron detector technologies and includes the potential application, cost, and advantages for each. These are a {sup 6}LiF- ZnS(Ag) thermal neutron scintillator coupled to a wavelength-shifting optical fiber, a CdWO{sub 4} based scintillating thermal neutron detector, a rhodium silicon thermal neutron detector, and a proton- recoil fast neutron detector.

Williams, J.A.; Clark, R.L.; Hutchinson, D.P.; Miller, V.C.; Ramsey, J.A. [Oak Ridge National Lab., TN (United States); Bell, Z.W.; Hiller, J.M.; Wallace, S.A. [Oak Ridge Y-12 Plant, TN (United States)

1997-08-01T23:59:59.000Z

407

The USDA Ultraviolet Radiation Monitoring Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Agriculture's Ultraviolet (UV) Radiation Monitoring Program has been measuring UV radiation since 1994. The initial network of 12 stations employed broadband meters to measure UVB irradiance and included ancillary ...

D. S. Bigelow; J. R. Slusser; A. F. Beaubien; J. H. Gibson

1998-04-01T23:59:59.000Z

408

Surface Radiation in the Tropical Pacific  

Science Conference Proceedings (OSTI)

Monthly surface radiative fluxes in the tropical Pacific between January 1970 and February 1978 have been calculated using a radiative transfer package which includes detailed treatments of the molecular and droplet absorptions and of the surface ...

Ming-Dah Chou

1985-01-01T23:59:59.000Z

409

DOE 2010 Occupational Radiation Exposure November 2011  

Science Conference Proceedings (OSTI)

This report discusses radiation protection and dose reporting requirements, presents the 2010 occupational radiation dose data trended over the past 5 years, and includes instructions to submit successful ALARA projects.

U.S. Department of Energy, Office of Health, Safety and Security, Office of Analysis

2011-11-11T23:59:59.000Z

410

Influence of Extraterrestrial Radiation on Radiation Portal Monitors  

Science Conference Proceedings (OSTI)

Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

Keller, Paul E.; Kouzes, Richard T.

2009-06-01T23:59:59.000Z

411

Nuclear Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE) Sourcebook. We have evolved and improved! The core mission of the Sourcebook has not changed, however. Our purpose is to facilitate interaction among faculty, students, industry, and government agencies to accomplish nuclear research, teaching and service activities. Since 1986 we have compiled critical information on nuclear

412

Transmission line including support means with barriers  

DOE Patents (OSTI)

A gas insulated transmission line includes an elongated outer sheath, a plurality of inner conductors disposed within and extending along the outer sheath, and an insulating gas which electrically insulates the inner conductors from the outer sheath. A support insulator insulatably supports the inner conductors within the outer sheath, with the support insulator comprising a main body portion including a plurality of legs extending to the outer sheath, and barrier portions which extend between the legs. The barrier portions have openings therein adjacent the main body portion through which the inner conductors extend.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

413

Institute of Nuclear Technology & Radiation Protection  

E-Print Network (OSTI)

the production of green house gases, a meaningful reduction in the use of petroleum products in at least one

414

INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION  

E-Print Network (OSTI)

* Laboratory: Research, Development and Services ** reports to the Director of the Centre ADMINISTRATIVE. Pantelias** HEALTH PHYSICS & ENVIRONMENTAL HEALTH LABORATORY G. Pantelias Operation & Maintenance. The Health Physics & Environmental Health Laboratory has developed state of the art methodol

415

Method for Non-Intrusively Identifying a Contained Material Utilizing Uncollided Nuclear Transmission Measurements  

DOE Patents (OSTI)

An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.

Morrison, John L.; Stephens, Alan G.; Grover Blaine S.

1999-02-26T23:59:59.000Z

416

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing worldÂ’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

417

Nuclear forces  

Science Conference Proceedings (OSTI)

These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach

2013-01-01T23:59:59.000Z

418

DISASTER POLICY Including Extreme Emergent Situations (EES)  

E-Print Network (OSTI)

on the ACGME website with information relating to the ACGME response to the disaster. 3. The University-specific Program Requirements. Defined Responsibilities Following the Declaration of a Disaster or Extreme EmergentPage 123 DISASTER POLICY Including Extreme Emergent Situations (EES) The University of Connecticut

Oliver, Douglas L.

419

Geant4 applications in the heliospheric radiation environment  

E-Print Network (OSTI)

The high energy ionizing radiation environment in the solar system consists of three main sources: the radiation belts, galactic cosmic rays and solar energetic particles. Geant4 is a Monte Carlo radiation transport simulation toolkit, with applications in areas as high energy physics, nuclear physics, astrophysics or medical physics research. In this poster, Geant4 applications to model and study the effects of the heliospheric radiation environment are presented. Specific applications are being developed to study the effect of the radiation environment on detector components, to describe the response and to optimise the design of radiation monitors for future space missions and to predict the radiation environment in Mars surface, orbits and moons.

Pedro Brogueira; Patrícia Gonçalves; Ana Keating; Dalmiro Maia; Mário Pimenta; Bernardo Tomé

2007-09-11T23:59:59.000Z

420

Evaluated Nuclear Data  

Science Conference Proceedings (OSTI)

This chapter describes the current status of evaluated nuclear data for nuclear technology applications. We start with evaluation procedures for neutron-induced reactions focusing on incident energies from the thermal energy up to 20 MeV, though higher energies are also mentioned. This is followed by examining the status of evaluated neutron data for actinides that play dominant role in most of the applications, followed by coolants/moderators, structural materials and fission products. We then discuss neutron covariance data that characterize uncertainties and correlations. We explain how modern nuclear evaluated data libraries are validated against an extensive set of integral benchmark experiments. Afterwards, we briefly examine other data of importance for nuclear technology, including fission yields, thermal neutron scattering and decay data. A description of three major evaluated nuclear data libraries is provided, including the latest version of the US library ENDF/B-VII.0, European JEFF-3.1 and Japanese JENDL-3.3. A brief introduction is made to current web retrieval systems that allow easy access to a vast amount of up-to-date evaluated nuclear data for nuclear technology applications.

Oblozinsky, P.; Oblozinsky,P.; Herman,M.; Mughabghab,S.F.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Overview of fiber radiation effects testing at the Los Alamos National Laboratory  

SciTech Connect

Fiber optics offer potential benefits in diagnostic measurements associated with nuclear testing. Such applications require that optical fibers be located in close proximity to a nuclear test and provide a reliable data transmission path during exposure to intense radiation. The Los Alamos effort has thus concentrated on measurement and understanding of radiation effects in optical fibers at very short times (< 100 ns) after (and during) irradiation. This is in contrast to most other studies that concentrate on times of interest in military, nuclear power, or standard telecommunication applications (1 ms to years). The Los Alamos program has included laboratory tests with intense electron pulse facilities (Febetron 705 and 706) and a fast pulsed electron linac (located at EG and G, Inc. in Santa Barbara, California). In addition, several measurements have been conducted on nuclear tests and some of that data has been released in unclassified publications. This program has used fibers for many data transmission applications. Fibers have also been used as signal transducers by utilizing radiation-to-light conversion processes within the fiber. Past, present, and future activities in this program are discussed.

Lyons, P.B.

1983-01-01T23:59:59.000Z

422

Nuclear weapons, nuclear effects, nuclear war  

SciTech Connect

This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

Bing, G.F.

1991-08-20T23:59:59.000Z

423

Radiation in Particle Simulations  

SciTech Connect

Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of fusion ignition plasmas including the important effects of radiation emission and absorption.

More, R; Graziani, F; Glosli, J; Surh, M

2010-11-19T23:59:59.000Z

424

COSTS OF NUCLEAR POWER  

SciTech Connect

The discussion on the costs of nuclear power from stationary plants, designed primarily for the generation of electricity. deals with those plants in operation, being built, or being designed for construction at an early date. An attempt is made to consider the power costs on the basis of consistent definitions and assumptions for the various nuclear plants and for comparable fossil-fuel plants. Information on several new power reactor projects is included. (auth)

1961-01-01T23:59:59.000Z

425

Definition of Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of...

426

How to Detect Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Detect Radiation How to Survey Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Detection How...

427

Testing of coatings for the nuclear industry  

SciTech Connect

Coatings for commercial nuclear power plants need to withstand humidity, radiation exposure, and LOC accident conditions; they also must be decontaminable. Tests for decontaminability, radiation stability, and design-basis-accident (DBA) resistance are described. An irradiation test facility using spent fuel assemblies and a spray loop for simulating a DBA are described. A sample test report sheet is presented. (DLC)

Goldberg, G.

1975-01-01T23:59:59.000Z

428

Office of the Assistant General Counsel for Civilian Nuclear Programs  

Energy.gov (U.S. Department of Energy (DOE))

The Office of the Assistant General Counsel for Civilian Nuclear Programs (GC-52) provides legal advice and support to the Department on issues involving nuclear materials, including:

429

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This page provides a review of nuclear chemistry, including notes and case studies, for two 45-minute classes. Topics range from basic nuclear ...

430

Materials for Nuclear Power: Digital Resource Center - REPORT ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... A resource document for the Workshop on Basic Research Needs for Advanced Nuclear Energy Systems. Includes an overview of nuclear ...

431

RADIATION DETECTOR SYSTEM  

DOE Patents (OSTI)

This patent relates to radiation detection devices and presents a unique detection system especialiy desirable for portable type instruments using a Geiger-Mueller for a high voltage battery, thereby reducing the size and weight of the instrument, by arranging a one-shot multivibrator to recharge a capacitance applying operating potential to tho Geiger-Mueller tube each time a nuclear particle is detected. When detection occurs, the multivibrator further delivers a pulse to an appropriate indicator doing away with the necessity for the pulse amplifier conventionally intermediate between the detector and indicator in pulse detection systems.

Gundlach, J.C.; Kelley, G.G.

1958-02-25T23:59:59.000Z

432

Nuclear chemistry. Annual report, 1974  

SciTech Connect

The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

Conzett, H.E.; Edelstein, N.M.; Tsang, C.F. (eds.)

1975-07-01T23:59:59.000Z

433

Buildings Included on EMS Reports"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Office of Legacy Management Buildings Included on EMS Reports" "Site","Property Name","Property ID","GSF","Incl. in Water Baseline (CY2007)","Water Baseline (sq. ft.)","Water CY2008 (sq. ft.)","Water CY2009 (sq. ft.)","Water Notes","Incl. in Energy Baseline (CY2003)","Energy Baseline (sq. ft.)","CY2008 Energy (sq. ft.)","CY2009 Energy (sq. ft.)","Energy Notes","Included as Existing Building","CY2008 Existing Building (sq. ft.)","Reason for Building Exclusion" "Column Totals",,"Totals",115139,,10579,10579,22512,,,3183365,26374,115374,,,99476 "Durango, CO, Disposal/Processing Site","STORAGE SHED","DUD-BLDG-STORSHED",100,"no",,,,,"no",,,,"OSF","no",,"Less than 5,000 GSF"

434

Power generation method including membrane separation  

SciTech Connect

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

435

Siting of nuclear facilities. Selections from Nuclear Safety  

SciTech Connect

The report presented siting policy and practice for nuclear power plants as developed in the U.S. and abroad. Twenty-two articles from Nuclear Safety on this general topic are reprinted since they provide a valuable reference source. The appendices also include reprints of some relevant regulatory rules and guides on siting. Advantages and disadvantages of novel siting concepts such as underground containment, offshore siting, and nuclear energy parks are addressed. Other topics include site criteria, risk criteria, and nuclear ship criteria.

Buchanan, J.R.

1976-07-01T23:59:59.000Z

436

Nuclear Deterrence  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Deterrence Nuclear Deterrence Nuclear Deterrence LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 A B-2 Spirit bomber refuels from a KC-135 Stratotanker A B-2 Spirit bomber refuels from a KC-135 Stratotanker. Contact Operator Los Alamos National Laboratory (505) 667-5061 Charlie McMillan, Director: "For the last 70 years there has not been a world war, and I have to think that our strong deterrent has something to do with that fact." Mission nuclear weapons Charlie McMillan, Director of Los Alamos National Laboratory 1:06 Director McMillan on nuclear deterrence While the role and prominence of nuclear weapons in U.S. security policy

437

Medical Applications of Synchrotron Radiation  

DOE R&D Accomplishments (OSTI)

Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

Thomlinson, W.

1991-10-00T23:59:59.000Z

438

Medical applications of synchrotron radiation  

SciTech Connect

Ever since the first diagnostic x-ray was done in the United States on February 3, 1896, the application of ionizing radiation to the field of medicine has become increasingly important. Both in clinical medicine and basic research the use of x-rays for diagnostic imaging and radiotherapy is now widespread. Radiography, angiography, CAT and PETT scanning, mammography, and nuclear medicine are all examples of technologies developed to image the human anatomy. In therapeutic applications, both external and internal sources of radiation are applied to the battle against cancer. The development of dedicated synchrotron radiation sources has allowed exciting advances to take place in many of these applications. The new sources provide tunable, high-intensity monochromatic beams over a wide range of energies which can be tailored to specific programmatic needs. This paper surveys those areas of medical research in which synchrotron radiation facilities are actively involved.

Thomlinson, W.

1991-10-01T23:59:59.000Z

439

Low Dose Radiation Program: Links - Online Literature  

NLE Websites -- All DOE Office Websites (Extended Search)

Online Literature Online Literature Journals, Books and other Publications Armed Forces Radiobiology Research Institute Chornobyl Center for Nuclear Safety Radioactive Waste and Radioecology "Insight" Magazine Central Research Institute of the Electric Power Industry (CRIEPI) News: Aiming at an information center on low dose radiation research Health Physics International Journal of Radiation Biology Iranian Journal of Radiation Research Journal of Radiological Protection National Council on Radiation Protection and Measurements Radiation Research U.S. Department of Energy (DOE) Information Bridge Reports Animal Cancer Tests and Human Cancer Risk Assessment: A Broad Perspective Effects of Ionizing Radiation: Atomic Bomb Survivors and Their Children (1945-1995) Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR

440

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology for energy, environment, and health. NRG offers a wide range of services to energy  

E-Print Network (OSTI)

Nuclear Research & Consultancy Group (NRG) develops and provides sustainable nuclear technology organizations and various branches of industry - including the nuclear, financial services and medical sectors configurations will contribute to an improved design, safety, and operation of nuclear reactors. In relation

Lindken, Ralph

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Los Alamos Lab: Radiation Protection: Annual Occupational Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Occupational Radiation Dosimetry Report Print information on Annual Occupational Radiation Dosimetry Report (pdf). This webpage provides information to help you understand the dose quantities being reported to you on your Annual Occupational Radiation Dosimetry Report. If you would like general information about radiation exposure, please refer to www.radiationanswers.org. Title 10 Code of Federal Regulation Part 835, Occupational Radiation Protection (10 CFR 835), requires assessment, recording and reporting of radiation doses to individuals who are exposed to sources of radiation or radioactive contamination. This includes assessing external exposure from a variety of radiation types, such as, beta, photon, and neutron radiation. External exposures may be uniform over the whole body or occur in a non-uniform (i.e., limited body location) fashion. Internal doses occur when radioactive material is taken into the body through ingestion, inhalation, absorption or wounds. The requirements include assessing doses to the whole body, skin, lens of the eyes, extremities and various organs and tissues.

442

Analysis of Nuclear Proliferation Resistance of DUPIC Fuel Cycle  

E-Print Network (OSTI)

with other fuel cycle cases. The other fuel cycles considered in this study are PWR of once-through mode (PWR-OT), PWR of reprocessing mode (PWR-MOX), in which spent PWR fuel is reprocessed and recovered plutonium is used for making MOX (Mixed Oxide), CANDU with once-through mode (CANDU-OT), PWR fuel and CANDU fuel in a oncethrough mode with reactor grid equivalent to DUPIC fuel cycle (PWR-CANDU-OT). This study is focused on intrinsic barriers, especially, radiation field of the diverted material, which could be a significant accessibility barrier, amount of special nuclear material based on 1 GWe-yr that has to be diverted and the quality of the separated fissile material. It is indicated from plutonium analysis of each fuel cycle that the MOX spent fuel is containing the largest plutonium per MTHM but PWR-MOX option based on 1 GWe-yr has the best benefit in total plutonium consumption aspects. The DUPIC option is containing a little higher total plutonium based on 1 GWe-yr than the PWR-MOX case, but the DUPIC option has the lowest fissile plutonium content which could be another measure for proliferation resistance. On the whole, the CANDU-OT option has the largest fissile plutonium as well as total plutonium per GWe-yr, which means negative points in nuclear proliferation resistance aspects. It is indicated from the radiation field analysis that fresh DUPIC fuel could play an important radiation barrier role, more than even CANDU spent fuels. In conclusion, due to those inherent features, the DUPIC fuel cycle could include technical characteristics that comply naturally with the Spent Fuel Standard, at all steps along the DUPIC linkage between PWR and CANDU. KEYWORDS: DUPIC (direct use of spent PWR fuel in CANDU), (DUPIC) fuel cycle, nuclear fuel cycle analysis, nuclear proliferaion resistance, proliferation resistance barrier, safeguards, plutonium analysis, candu type reactors, spent fuels, fuel cycles I.

Won Il Ko; Ho Dong Kim

2001-01-01T23:59:59.000Z

443

Chronic Low Dose Radiation Effects on Radiation Sensitivity  

NLE Websites -- All DOE Office Websites (Extended Search)

Chronic Low Dose Radiation Effects on Radiation Sensitivity Chronic Low Dose Radiation Effects on Radiation Sensitivity and Chromosome Instability Induction in TK6 Cells Schwartz J.L. 1 , Jordan R. 1 , Slovic J. 1 , Moruzzi A. 1 , Kimmel R. 2 , and Liber, H.L. 3 1 University of Washington, Seattle, WA; 2 Fred Hutchinson Cancer Research Center, Seattle, WA; 3 Colorado State University, Fort Collins, Colorado There are a number of cell responses that can be detected after low dose radiation exposures including the adaptive response, low dose hypersensitivity, and induced genomic instability. The relationship between these different phenomena is unknown. In this study, we measured adaptive responses, low dose hypersensitivity, and induced genomic instability in a human B-lymphoblastoid cell model, TK6, where we could genetically modify radiation responses by either over-expression of BCL-2 or deletion of TP53. TK6

444

Enhanced radiation resistant fiber optics  

DOE Patents (OSTI)

A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

Lyons, P.B.; Looney, L.D.

1992-12-31T23:59:59.000Z

445

RADIATION DETECTOR  

DOE Patents (OSTI)

A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

Wilson, H.N.; Glass, F.M.

1960-05-10T23:59:59.000Z

446

Nevada Test Site Radiation Protection Program  

Science Conference Proceedings (OSTI)

Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

Radiological Control Managers' Council, Nevada Test Site

2007-08-09T23:59:59.000Z

447

Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement  

E-Print Network (OSTI)

For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) including a continuous mixture of active and sterile neutrinos, 4) using an enhanced CC cross section for deuterium (due to radiative corrections), and 5) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favored solutions are robust, but the presence at 3 sigma of individual sterile solutions and the active Just So2 solution is sensitive to the analysis assumptions.

John N. Bahcall; M. C. Gonzalez-Garcia; Carlos Pena-Garay

2001-06-25T23:59:59.000Z

448

Energy and Security in Northeast Asia: Proposals for Nuclear Cooperation  

E-Print Network (OSTI)

sale of nuclear-related equipment to Pakistan. At the 1997nuclear energy, including Australia (the United States, Canada, India, and PakistanPakistan and Iran. How Could an East Asian Regional Compact for Nuclear

Kaneko, Kumao; Suzuki, Atsuyuki; Choi, Jor-Shan; Fei, Edward

1998-01-01T23:59:59.000Z

449

The Washington Post, April 16, 2006 Going Nuclear  

E-Print Network (OSTI)

with their starring roles in "The China Syndrome," a fictional evocation of nuclear disaster in which a reactor nuclear reactors quietly delivering just 20 percent of America's electricity. Eighty percent of the people nuclear reactor program. (And although hundreds of uranium mine workers did die from radiation exposure

Bilbao Arrese, Jesús Mario

450

The development of nuclear energy in the Philippines  

SciTech Connect

The paper traces the development of nuclear energy in the Philippines and outlines the program on the peaceful uses of nuclear energy in the country as well as the problems and prospects of nuclear energy development. Nuclear power is at a standstill but the other areas of nuclear energy development are underway. The projects on the application of nuclear energy in agriculture, industry, public health and safety, are being pursued. Technology transfer to end users is sometimes hampered by public acceptance issues, such as irradiated food being believed to become radioactive, dislike with anything associated with radiation, and plain inherent fear of nuclear energy.

Aleta, C. (Philippine Nuclear Research Institute, Quezon, City (Philippines))

1992-01-01T23:59:59.000Z

451

Nuclear power plants: structure and function  

SciTech Connect

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

452

NIST Radiation thermometry  

Science Conference Proceedings (OSTI)

Radiation thermometry. Summary: ... Description: Radiation thermometers are calibrated using a range of variable-temperature blackbodies. ...

2011-10-13T23:59:59.000Z

453

NIST Optical Radiation Group  

Science Conference Proceedings (OSTI)

Optical Radiation Group. Welcome. The Optical Radiation Group maintains, improves, and disseminates the national scales ...

2013-07-29T23:59:59.000Z

454

Nuclear Material Management Abstract  

Science Conference Proceedings (OSTI)

Nevada Test Site (NTS) has transitioned from its historical and critical role of weapons testing to another critical role for the nation. This new role focuses on being a integral element in solving the multiple challenges facing the National Nuclear Security Administration (NNSA) with nuclear material management. NTS is positioned to be a solution for other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to consolidate and modernize the production complex . With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through disposition and consolidation. This includes moving material from other sites to NTS. State of the art nuclear material management and control practices at NTS are essential for NTS to ensure that assigned activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS activities and challenges will be addressed.

Jesse C. Schreiber

2007-07-10T23:59:59.000Z

455

Models of Procyon A including seismic constraints  

E-Print Network (OSTI)

Detailed models of Procyon A based on new asteroseismic measurements by Eggenberger et al (2004) have been computed using the Geneva evolution code including shellular rotation and atomic diffusion. By combining all non-asteroseismic observables now available for Procyon A with these seismological data, we find that the observed mean large spacing of 55.5 +- 0.5 uHz favours a mass of 1.497 M_sol for Procyon A. We also determine the following global parameters of Procyon A: an age of t=1.72 +- 0.30 Gyr, an initial helium mass fraction Y_i=0.290 +- 0.010, a nearly solar initial metallicity (Z/X)_i=0.0234 +- 0.0015 and a mixing-length parameter alpha=1.75 +- 0.40. Moreover, we show that the effects of rotation on the inner structure of the star may be revealed by asteroseismic observations if frequencies can be determined with a high precision. Existing seismological data of Procyon A are unfortunately not accurate enough to really test these differences in the input physics of our models.

P. Eggenberger; F. Carrier; F. Bouchy

2005-01-14T23:59:59.000Z

456

Management of National Nuclear Power Programs for assured safety  

SciTech Connect

Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

Connolly, T.J. (ed.)

1985-01-01T23:59:59.000Z

457

Drainage Flow Prediction with a One-Dimensional Model Including Canopy, Soil and Radiation Parameterizations  

Science Conference Proceedings (OSTI)

A mathematical model for simulation of winds over mountain slopes was developed and tested withobservations from Australia and the western United States. The model computes profiles of wind andtemperature normal to the slope. The model also ...

Alfred J. Garrett

1983-01-01T23:59:59.000Z

458

Nuclear Energy  

Nuclear Energy Environmental Mgmt. Study Objectives: Respond to the pressing need to refine existing corrosion models: Predict performance in wide range of environments

459

Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Nuclear reactors created not only large amounts of plutonium needed for the weapons programs, but a variety of other interesting and useful radioisotopes. They produced...

460

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Table 17. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by contract type in delivery year, 2012

Note: This page contains sample records for the topic "nuclear including radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nuclear Weapons  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear science that has had a significant global influence. Following the observation of fission products of uranium by Hahn and Strassmann in 1938, a uranium fission weapon...

462

NUCLEAR ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

could improve the economic and safety performance of these advanced reactors. Nuclear power can reduce GHG emissions from electricity production and possibly in co-generation...

463

Human radiation experiments associated with the US Department of Energy and its predecessors  

Science Conference Proceedings (OSTI)

This document contains a listing, description, and selected references for documented human radiation experiments sponsored, supported, or performed by the US Department of Energy (DOE) or its predecessors, including the US Energy Research and Development Administration (ERDA), the US Atomic Energy Commission (AEC), the Manhattan Engineer District (MED), and the Off ice of Scientific Research and Development (OSRD). The list represents work completed by DOE`s Off ice of Human Radiation Experiments (OHRE) through June 1995. The experiment list is available on the Internet via a Home Page on the World Wide Web (http://www.ohre.doe.gov). The Home Page also includes the full text of Human Radiation Experiments. The Department of Energy Roadmap to the Story and the Records (DOE/EH-0445), published in February 1995, to which this publication is a supplement. This list includes experiments released at Secretary O`Leary`s June 1994 press conference, as well as additional studies identified during the 12 months that followed. Cross-references are provided for experiments originally released at the press conference; for experiments released as part of The DOE Roadmap; and for experiments published in the 1986 congressional report entitled American Nuclear Guinea Pigs: Three Decades of Radiation Experiments on US Citizens. An appendix of radiation terms is also provided.

None

1995-07-01T23:59:59.000Z

464

Gene copy number changes in mitochondrial and nuclear genomes of archived samples  

NLE Websites -- All DOE Office Websites (Extended Search)

copy number changes in mitochondrial and nuclear genomes of archived samples copy number changes in mitochondrial and nuclear genomes of archived samples Gayle E Woloschak, Qiong Wang, Sumita Raha, Tatjana Paunesku Department of Radiation Oncology, Northwestern University, Chicago, IL, USA A large collection of paraffin tissues was accumulated from an extensive series of irradiation experiments conducted on 49,000 mice between 1950-1990's at Argonne National Laboratory. At present these tissues are located at Northwestern University and our laboratory has developed websites with digitized information on every animal including radiation exposures (dose, dose rate, etc), pathology, symptoms, and health records. Using a selection of archived tissues we decided to compare effects of long term-fractionated irradiation with acute irradiation, for

465

Dry Processing of Used Nuclear Fuel  

SciTech Connect

Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

K. M. Goff; M. F. Simpson

2009-09-01T23:59:59.000Z

466

The Use of Thorium as Nuclear Fuel Position Statement  

E-Print Network (OSTI)

The American Nuclear Society endorses continued research and development of the use of thorium as a fertile a fuel material for nuclear reactors. Thorium is a potentially valuable energy source since it is about three to four times as abundant in the earth’s crust as uranium and is a widely distributed natural resource, which is readily accessible in many countries. 1 Use of thorium as a fertile fuel material leads to the following: • production of an alternative fissile uranium isotope, uranium-233 • coproduction of a highly radioactive isotope, uranium-232, which provides a high radiation barrier to discourage theft and proliferation of spent fuel. The path to sustainability of nuclear energy in several countries, notably India, profits from technology that utilizes their vast thorium resources. Waste produced during reactor operations benefits from the fact that the thorium-uranium fuel cycle does not readily produce long-lived transuranic elements. To date thorium utilization has been demonstrated in light water reactors, 2 as well as in other reactor types 3 including fast spectrum reactors, heavy water reactors, and gas-cooled reactors. In this context, the database and experience with thorium fuel and fuel cycles are very limited and must be augmented significantly before large-scale investment is committed to commercialization. Since thorium is an abundant resource that can potentially be used as a fertile nuclear fuel, it is likely to be an important contributor to the future global nuclear enterprise in several countries. It is, therefore, paramount that the evolving global thorium fuel cycle (including fuel conditioning and recycling operations) incorporate the latest in safeguards and other proliferation-resistant design features so that the thorium fuel cycle complements the uranium fuel cycle and enhances the long-term global sustainability of nuclear energy.

unknown authors

2006-01-01T23:59:59.000Z

467

ORISE: Radiation Dose Estimates and Other Compendia  

NLE Websites -- All DOE Office Websites (Extended Search)

article addresses methods that can be used to rapidly estimate internal and external radiation dose magnitudes that can be used to help guide early medical management. Included...

468

A Radiation Laboratory Curriculum Development at Western Kentucky University  

SciTech Connect

We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C. [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd, 11077, Bowling Green KY 42101 (United States)

2009-03-10T23:59:59.000Z

469

Radiation protection training for diverse general employee populations  

Science Conference Proceedings (OSTI)

Radiation protection training for the general employee at the Oak Ridge National Laboratory has undergone a great deal of restructuring in the last two years. The number of personnel totally dedicated to nuclear facilities is less than a fifth of our employees and the percentage of contracted employees who are dedicated radiation workers is much smaller. However, the aging of our facilities and increasing emphasis on environmental control means that everyone needs to understand the basics of radiation protection. In accordance with changing DOE guidelines and internal ORNL policies, greater emphasis has been placed on keeping training focused on current issues, training the total workforce, and requiring some type of testing or feedback mechanism. This report describes efforts to instill respect, but not fear, of radiation in the work environment. Flexible tools are being developed to meet this objective for several diverse general employee populations. Continuing efforts include consideration of computer-based training for retraining, developing additional modules for specialized groups and jobs, and testing/documentation appropriate to each population segment. 6 refs.

Copenhaver, E.D.; Houser, B.S.

1986-01-01T23:59:59.000Z

470

Real Time and In Situ Studies of Materials in a Radiation Environment  

Science Conference Proceedings (OSTI)

... as the design of radiation resistant materials, synthesis mechanisms for Actinides and Technetium compounds, and phase diagrams for metallic nuclear fuels.

471

Radiation damage considerations  

SciTech Connect

The designs of nuclear fission and fusion power plants do not, in general, appear to make unusual demands on materials in terms of mechanical- property requirements. Radiation environments produce unique effects on the composition, microstructure, and defect population of these alloys, resulting in time-dependent and time-independent changes in mechanical properties. To illustrate these problems, the materials needs of the core of a Liquid-Metal Fast- Breeder Reactor (LMFBR) and of the first wall of a fusion reactor are discussed. In the case of the LMFBR core, the phenomenon of void swelling causes serious design problems, and a search is being made for a low-swelling alloy that has adequate mechanical properties. The fusion reactor poses different problems because the neutron energy is high (14 MeV) and is accompanied by a high flux of charged particles. The long-term choices for a wall material have been narrowed to vanadium and niobium alloys. In the search for low-swelling alloys, it has become clear that minor elements play an important role in determining the nature of the radiation effects. The segregation of minor elements to void surfaces and the dispersion and reformation of second-phase precipitates are two important radiation-induced phenomena that require additional study in view of their influence on void swelling and high-temperature properties. (auth)

Frost, B.R.T.

1975-08-01T23:59:59.000Z

472

Nuclear Weapons Journal Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Weapons Journal Archive Nuclear Weapons Journal The Nuclear Weapons Journal ceased publication after Issue 2, 2009. Below are Nuclear Weapons Journal archived issues. Issue...

473

Nonreactor Nuclear Facilities Division  

NLE Websites -- All DOE Office Websites (Extended Search)

role in developing science and technology for nuclear power programs, nuclear propulsion, nuclear medicine, and the nation's nuclear weapon program among others. Many...

474

ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology  

SciTech Connect

We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of {sup 233,235}U and {sup 239}Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL. The complete library, or any part of it, may be retrieved from www.nndc.bnl.gov.

Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

2006-10-02T23:59:59.000Z

475

Nuclear hadrodynamics  

Science Conference Proceedings (OSTI)

The role of hadron dynamics in the nucleus is illustrated to show the importance of nuclear medium effects in hadron interactions. The low lying hadron spectrum is considered to provide the natural collective variable for nuclear systems. Recent studies of nucleon?nucleon and delta?nucleon interactions are reviewed

D. F. Geesaman

1984-01-01T23:59:59.000Z

476

Nuclear | Open Energy Information  

Open Energy Info (EERE)

Nuclear Nuclear Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 82. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 9. Electricy Generating Capacity Table 96. Electricity Generation by Electricity Market Module Region and Source Table 97. Electricity Generation Capacity by Electricity Market Module Region and Source Market Trends In the AEO2011 Reference case, nuclear power capacity increases from 101.0 gigawatts in 2009 to 110.5 gigawatts in 2035 (Figure 82), including 3.8 gigawatts of expansion at existing plants and 6.3 gigawatts of new capacity. The new capacity includes completion of a second unit at the Watts Bar site, where construction on a partially completed plant has

477

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network (OSTI)

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence