Sample records for nuclear fuel storage

  1. Nuclear Fuels Storage and Transportation Planning Project (NFST...

    Office of Environmental Management (EM)

    Fuels Storage and Transportation Planning Project (NFST) Program Status Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Presentation made by Jeff...

  2. Review of Used Nuclear Fuel Storage and Transportation Technical...

    Broader source: Energy.gov (indexed) [DOE]

    action based on the comparison. Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis More Documents & Publications Review of Used Nuclear Fuel...

  3. Heat transfer modeling of dry spent nuclear fuel storage facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-07-01T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geologic codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geologic repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  4. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-01-13T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  5. Used Nuclear Fuels Storage, Transportation, and Disposal Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Used Nuclear Fuels Storage, Transportation, and Disposal Analysis Resource and Data System (UNF-ST&DARDS) Apr 08 2014 10:00 AM - 11:00 AM John M. Scaglione, ORNL staff, Oak Ridge...

  6. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    SciTech Connect (OSTI)

    Dana, W.P.

    1995-12-01T23:59:59.000Z

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  7. Safe Advantage on Dry Interim Spent Nuclear Fuel Storage

    SciTech Connect (OSTI)

    Romanato, L.S. [Centro Tecnologico da Marinha em S.Paulo, Brazilian Navy Technological Center, Sao Paulo (Brazil)

    2008-07-01T23:59:59.000Z

    This paper aims to present the advantages of dry cask storage in comparison with the wet storage (cooling water pools) for SNF. When the nuclear fuel is removed from the core reactor, it is moved to a storage unit and it wait for a final destination. Generally, the spent nuclear fuel (SNF) remains inside water pools within the reactors facility for the radioactive activity decay. After some period of time in pools, SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing facilities, or still, wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet facilities, depending on the method adopted by the nuclear power plant or other plans of the country. Interim storage, up to 20 years ago, was exclusively wet and if the nuclear facility had to be decommissioned another storage solution had to be found. At the present time, after a preliminary cooling of the SNF elements inside the water pool, the elements can be stored in dry facilities. This kind of storage does not need complex radiation monitoring and it is safer then wet one. Casks, either concrete or metallic, are safer, especially on occurrence of earthquakes, like that occurred at Kashiwazaki-Kariwa nuclear power plant, in Japan on July 16, 2007. (authors)

  8. Effect of residual stress on the life prediction of dry storage canisters for used nuclear fuel

    E-Print Network [OSTI]

    Black, Bradley P. (Bradley Patrick)

    2013-01-01T23:59:59.000Z

    Used nuclear fuel dry storage canisters will likely be tasked with holding used nuclear fuel for a period longer than originally intended. Originally designed for 20 years, the storage time will likely approach 100 years. ...

  9. Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements

    SciTech Connect (OSTI)

    KLEM, M.J.

    2000-10-18T23:59:59.000Z

    In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the references used for this document.

  10. Used nuclear fuel storage options including implications of small modular reactors

    E-Print Network [OSTI]

    Brinton, Samuel O. (Samuel Otis)

    2014-01-01T23:59:59.000Z

    This work addresses two aspects of the nuclear fuel cycle system with significant policy implications. The first is the preferred option for used fuel storage based on economics: local, regional or national storage. The ...

  11. Dose reduction improvements in storage basins of spent nuclear fuel

    SciTech Connect (OSTI)

    Huang, Fan-Hsiung F.

    1997-08-13T23:59:59.000Z

    Spent nuclear fuel in storage basins at the Hanford Site has corroded and contaminated basin water, which has leaked into the soil; the fuel also had deposited a layer of radioactive sludge on basin floors. The SNF is to be removed from the basins to protect the nearby Columbia River. Because the radiation level is high, measures have been taken to reduce the background dose rate to as low as reasonably achievable (ALARA) to prevent radiation doses from becoming the limiting factor for removal of the SW in the basins to long-term dry storage. All activities of the SNF Project require application of ALARA principles for the workers. On the basis of these principles dose reduction improvements have been made by first identifying radiological sources. Principal radiological sources in the basin are basin walls, basin water, recirculation piping and equipment. Dose reduction activities focus on cleaning and coating basin walls to permit raising the water level, hydrolasing piping, and placing lead plates. In addition, the transfer bay floor will be refinished to make decontamination easier and reduce worker exposures in the radiation field. The background dose rates in the basin will be estimated before each task commences and after it is completed; these dose reduction data will provide the basis for cost benefit analysis.

  12. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    SciTech Connect (OSTI)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)] [Moore Nuclear Energy, LLC (United States)

    2013-07-01T23:59:59.000Z

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)

  13. Nuclear Fuel Storage and Transportation Planning Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|WorkNationalNuclearFacility

  14. Nuclear Fuels Storage & Transportation Planning Project Documents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from the ConsumerNuclearCycleDepartment

  15. Nuclear Fuels Storage & Transportation Planning Project | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This isForensicsNuclearEnergy

  16. Behavior of Spent Nuclear Fuel in Water Pool Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3 PrintVultureBehavior of Spent Nuclear

  17. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01T23:59:59.000Z

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  18. Spent nuclear fuel storage -- Performance tests and demonstrations

    SciTech Connect (OSTI)

    McKinnon, M.A.; DeLoach, V.A.

    1993-04-01T23:59:59.000Z

    This report summarizes the results of heat transfer and shielding performance tests and demonstrations conducted from 1983 through 1992 by or in cooperation with the US Department of Energy (DOE), Office of Commercial Radioactive Waste Management (OCRWM). The performance tests consisted of 6 to 14 runs involving one or two loadings, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. A description of the test plan, spent fuel load patterns, results from temperature and dose rate measurements, and fuel integrity evaluations are contained within the report.

  19. Safety of interim storage solutions of used nuclear fuel during extended term

    SciTech Connect (OSTI)

    Shelton, C.; Bader, S.; Issard, H.; Arslan, M. [AREVA, 7135 Minstrel Way, Suite 300 Columbia, MD 21045 (United States)

    2013-07-01T23:59:59.000Z

    In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

  20. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    SciTech Connect (OSTI)

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine)] [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine); Schmieman, Eric [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)] [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)

    2013-07-01T23:59:59.000Z

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  1. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

    1996-07-01T23:59:59.000Z

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  2. Realization of the German Concept for Interim Storage of Spent Nuclear Fuel - Current Situation and Prospects

    SciTech Connect (OSTI)

    Thomauske, B. R.

    2003-02-25T23:59:59.000Z

    The German government has determined a phase out of nuclear power. With respect to the management of spent fuel it was decided to terminate transports to reprocessing plants by 2005 and to set up interim storage facilities on power plant sites. This paper gives an overview of the German concept for spent fuel management focused on the new on-site interim storage concept and the applied interim storage facilities. Since the end of the year 1998, the utilities have applied for permission of on-site interim storage in 13 storage facilities and 5 storage areas; one application for the interim storage facility Stade was withdrawn due to the planned final shut down of Stade nuclear power plant in autumn 2003. In 2001 and 2002, 3 on-site storage areas and 2 on-site storage facilities for spent fuel were licensed by the Federal Office for Radiation Protection (BfS). A main task in 2002 and 2003 has been the examination of the safety and security of the planned interim storage facilities and the verification of the licensing prerequisites. In the aftermath of September 11, 2001, BfS has also examined the attack with a big passenger airplane. Up to now, these aircraft crash analyses have been performed for three on-site interim storage facilities; the fundamental results will be presented. It is the objective of BfS to conclude the licensing procedures for the applied on-site interim storage facilities in 2003. With an assumed construction period for the storage buildings of about two years, the on-site interim storage facilities could then be available in the year 2005.

  3. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01T23:59:59.000Z

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States (CIS)). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  4. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01T23:59:59.000Z

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States [CIS]). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  5. Extended Dry Storage of Used Nuclear Fuel: Technical Issues: A USA Perspective

    SciTech Connect (OSTI)

    McConnell, Paul; Hanson, Brady D.; Lee, Moo; Sorenson, Ken B.

    2011-10-28T23:59:59.000Z

    Used nuclear fuel will likely be stored dry for extended periods of time in the USA. Until a final disposition pathway is chosen, the storage periods will almost definitely be longer than were originally intended. The ability of the important-to-safety structures, systems and components (SSC's) continue to meet storage and transport safety functions over extended times must be determined. It must be assured that there is no significant degradation of the fuel or dry cask storage systems. Also, it is projected that the maximum discharge burnups of the used nuclear fuel will increase. Thus, it is necessary to obtain data on high burnup fuel to demonstrate that the used nuclear fuel remains intact after extended storage. An evaluation was performed to determine the conditions that may lead to failure of dry storage SSC's. This paper documents the initial technical gap analysis performed to identify data and modeling needs to develop the desired technical bases to ensure the safety functions of dry stored fuel.

  6. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    SciTech Connect (OSTI)

    Sindelar, R.; Deible, R.

    2011-04-27T23:59:59.000Z

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.

  7. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01T23:59:59.000Z

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  8. Measurement of Atmospheric Sea Salt Concentration in the Dry Storage Facility of the Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Masumi Wataru; Hisashi Kato; Satoshi Kudo; Naoko Oshima; Koji Wada [Central Research Institute of Electric Power Industry - CRIEPI (Japan); Hirofumi Narutaki [Electric Power Engineering Systems Co. Ltd. (Japan)

    2006-07-01T23:59:59.000Z

    Spent nuclear fuel coming from a Japanese nuclear power plant is stored in the interim storage facility before reprocessing. There are two types of the storage methods which are wet and dry type. In Japan, it is anticipated that the dry storage facility will increase compared with the wet type facility. The dry interim storage facility using the metal cask has been operated in Japan. In another dry storage technology, there is a concrete overpack. Especially in USA, a lot of concrete overpacks are used for the dry interim storage. In Japan, for the concrete cask, the codes of the Japan Society of Mechanical Engineers and the governmental technical guidelines are prepared for the realization of the interim storage as well as the code for the metal cask. But the interim storage using the concrete overpack has not been in progress because the evaluation on the stress corrosion cracking (SCC) of the canister is not sufficient. Japanese interim storage facilities would be constructed near the seashore. The metal casks and concrete overpacks are stored in the storage building in Japan. On the other hand, in USA they are stored outside. It is necessary to remove the decay heat of the spent nuclear fuel in the cask from the storage building. Generally, the heat is removed by natural cooling in the dry storage facility. Air including the sea salt particles goes into the dry storage facility. Concerning the concrete overpack, air goes into the cask body and cools the canister. Air goes along the canister surface and is in contact with the surface directly. In this case, the sea salt in the air attaches to the surface and then there is the concern about the occurrence of the SCC. For the concrete overpack, the canister including the spent fuel is sealed by the welding. The loss of sealability caused by the SCC has to be avoided. To evaluate the SCC for the canister, it is necessary to make clear the amount of the sea salt particles coming into the storage building and the concentration on the canister. In present, the evaluation on that point is not sufficient. In this study, the concentration of the sea salt particles in the air and on the surface of the storage facility are measured inside and outside of the building. For the measurement, two sites of the dry storage facility using the metal cask are chosen. This data is applicable for the evaluation on the SCC of the canister to realize the interim storage using the concrete overpack. (authors)

  9. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01T23:59:59.000Z

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs.

  10. The corrosion of aluminum-clad spent nuclear fuel in wet basin storage

    SciTech Connect (OSTI)

    Howell, J.P.; Burke, S.D.

    1996-02-20T23:59:59.000Z

    Large quantities of Defense related spent nuclear fuels are being stored in water basins around the United States. Under the non-proliferation policy, there has been no processing since the late 1980`s and these fuels are caught in the pipeline awaiting stabilization or other disposition. At the Savannah River Site, over 200 metric tons of aluminum clad fuel are being stored in four water filled basins. Some of this fuel has experienced visible pitting corrosion. An intensive effort is underway at SRS to understand the corrosion problems and to improve the basin storage conditions for extended storage requirements. Significant improvements have been accomplished during 1993-1996. This paper presents a discussion of the fundamentals of aluminum alloy corrosion as it pertains to the wet storage of spent nuclear fuel. It examines the effects of variables on corrosion in the storage environment and presents the results of corrosion surveillance testing activities at SRS, as well as discussions of fuel storage basins at other production sites of the Department of Energy.

  11. Operational Challenges of Extended Dry Storage of Spent Nuclear Fuel - 12550

    SciTech Connect (OSTI)

    Nichol, M. [Nuclear Energy Institute, Washington DC (United States)

    2012-07-01T23:59:59.000Z

    As a result of the termination of the Yucca Mountain used fuel repository program and a continuing climate of uncertainty in the national policy for nuclear fuel disposition, the likelihood has increased that extended storage, defined as more than 60 years, and subsequent transportation of used nuclear fuel after periods of extended storage may become necessary. Whether at the nation's 104 nuclear energy facilities, or at one or more consolidated interim storage facilities, the operational challenges of extended storage and transportation will depend upon the future US policy for Used Fuel Management and the future Regulatory Framework for EST, both of which should be developed with consideration of their operational impacts. Risk insights into the regulatory framework may conclude that dry storage and transportation operations should focus primarily on ensuring canister integrity. Assurance of cladding integrity may not be beneficial from an overall risk perspective. If assurance of canister integrity becomes more important, then mitigation techniques for potential canister degradation mechanisms will be the primary source of operational focus. If cladding integrity remains as an important focus, then operational challenges to assure it would require much more effort. Fundamental shifts in the approach to design a repository and optimize the back-end of the fuel cycle will need to occur in order to address the realities of the changes that have taken place over the last 30 years. Direct disposal of existing dual purpose storage and transportation casks will be essential to optimizing the back end of the fuel cycle. The federal used fuel management should focus on siting and designing a repository that meets this objective along with the development of CIS, and possibly recycling. An integrated approach to developing US policy and the regulatory framework must consider the potential operational challenges that they would create. Therefore, it should be integral to these efforts to redefine retrievability to apply to the dual purpose cask, and not to apply to individual assemblies. (authors)

  12. Review of Used Nuclear Fuel Storage and Transportation Technical Gap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofitting DoorsReview of SAR

  13. Review of Used Nuclear Fuel Storage and Transportation Technical Gap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofitting DoorsReview of SARAnalysis |

  14. Used Nuclear Fuel Storage and Transportation Data Gap Prioritization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsed Fuel Disposition

  15. Nuclear Fuels Storage and Transportation Planning Project (NFST) Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy Research and DevelopmentFuelDepartment

  16. The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life

    SciTech Connect (OSTI)

    J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

    1996-10-01T23:59:59.000Z

    A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

  17. Used Nuclear Fuels Storage, Transportation, and Disposal Analysis Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence mayUndergraduateAbout Us Updatesproject0 NERSCUsage

  18. Integrated Used Nuclear Fuel Storage, Transportation, and Disposal Canister

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other NewsSpin andInterim DataCooling - Energy

  19. Energy Department Announces New Investment in Nuclear Fuel Storage Research

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 inJohnSystems| Department of Energy NEWS MEDIA

  20. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-02-27T23:59:59.000Z

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal.

  1. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  2. Results from Nevada Nuclear Waste Storage Investigations (NNWSI) Series 3 spent fuel dissolution tests

    SciTech Connect (OSTI)

    Wilson, C.N.

    1990-06-01T23:59:59.000Z

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Yucca Mountain Project (YMP), formerly the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Specimens prepared from pressurized water reactor fuel rod segments were tested in sealed stainless steel vessels in Nevada Test Site J-13 well water at 85{degree}C and 25{degree}C. The test matrix included three specimens of bare-fuel particles plus cladding hulls, two fuel rod segments with artificially defected cladding and water-tight end fittings, and an undefected fuel rod section with watertight end fittings. Periodic solution samples were taken during test cycles with the sample volumes replenished with fresh J-13 water. Test cycles were periodically terminated and the specimens restarted in fresh J-13 water. The specimens were run for three cycles for a total test duration of 15 months. 22 refs., 32 figs., 26 tabs.

  3. The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters

    SciTech Connect (OSTI)

    Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre

    2013-08-01T23:59:59.000Z

    With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.

  4. Analysis of dose consequences arising from the release of spent nuclear fuel from dry storage casks.

    SciTech Connect (OSTI)

    Durbin, Samuel G.; Morrow, Charles W.

    2013-01-01T23:59:59.000Z

    The resulting dose consequences from releases of spent nuclear fuel (SNF) residing in a dry storage casks are examined parametrically. The dose consequences are characterized by developing dose versus distance curves using simplified bounding assumptions. The dispersion calculations are performed using the MELCOR Accident Consequence Code System (MACCS2) code. Constant weather and generic system parameters were chosen to ensure that the results in this report are comparable with each other and to determine the relative impact on dose of each variable. Actual analyses of site releases would need to accommodate local weather and geographic data. These calculations assume a range of fuel burnups, release fractions (RFs), three exposure scenarios (2 hrs and evacuate, 2 hrs and shelter, and 24 hrs exposure), two meteorological conditions (D-4 and F-2), and three release heights (ground level - 1 meter (m), 10 m, and 100 m). This information was developed to support a policy paper being developed by U.S. Nuclear Regulatory Commission (NRC) staff on an independent spent fuel storage installation (ISFSI) and monitored retrievable storage installation (MRS) security rulemaking.

  5. Integrated System for Retrieval, Transportation and Consolidated Storage of Used Nuclear Fuel in the US - 13312

    SciTech Connect (OSTI)

    Bracey, William; Bondre, Jayant; Shelton, Catherine [Transnuclear, Inc., 7135 Minstrel Way Suite 300, Columbia MD 21045 (United States)] [Transnuclear, Inc., 7135 Minstrel Way Suite 300, Columbia MD 21045 (United States); Edmonds, Robert [AREVA Federal Services, 7207 IBM Drive, Charlotte NC 28262 (United States)] [AREVA Federal Services, 7207 IBM Drive, Charlotte NC 28262 (United States)

    2013-07-01T23:59:59.000Z

    The current inventory of used nuclear fuel assemblies (UNFAs) from commercial reactor operations in the United States totals approximately 65,000 metric tons or approximately 232,000 UNFAs primarily stored at the 104 operational reactors in the US and a small number of decommissioned reactors. This inventory is growing at a rate of roughly 2,000 to 2,400 metric tons each year, (Approx. 7,000 UNFAs) as a result of ongoing commercial reactor operations. Assuming an average of 10 metric tons per storage/transportation casks, this inventory of commercial UNFAs represents about 6,500 casks with an additional of about 220 casks every year. In January 2010, the Blue Ribbon Commission (BRC) [1] was directed to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new plan. The BRC issued their final recommendations in January 2012. One of the main recommendations is for the United States to proceed promptly to develop one or more consolidated storage facilities (CSF) as part of an integrated, comprehensive plan for safely managing the back end of the nuclear fuel cycle. Based on its extensive experience in storage and transportation cask design, analysis, licensing, fabrication, and operations including transportation logistics, Transnuclear, Inc. (TN), an AREVA Subsidiary within the Logistics Business Unit, is engineering an integrated system that will address the complete process of commercial UNFA management. The system will deal with UNFAs in their current storage mode in various configurations, the preparation including handling and additional packaging where required and transportation of UNFAs to a CSF site, and subsequent storage, operation and maintenance at the CSF with eventual transportation to a future repository or recycling site. It is essential to proceed by steps to ensure that the system will be the most efficient and serve at best its purpose by defining: the problem to be resolved, the criteria to evaluate the solutions, and the alternative solutions. The complexity of the project is increasing with time (more fuel assemblies, new storage systems, deteriorating logistics infrastructure at some sites, etc.) but with the uncertainty on the final disposal path, flexibility and simplicity will be critical. (authors)

  6. CHARACTERISTICS OF NEXT-GENERATION SPENT NUCLEAR FUEL (SNF) TRANSPORT AND STORAGE CASKS

    SciTech Connect (OSTI)

    Haire, M.J.; Forsberg, C.W.; Matveev, V.Z.; Shapovalov, V.I.

    2004-10-03T23:59:59.000Z

    The design of spent nuclear fuel (SNF) casks used in the present SNF disposition systems has evolved from early concepts about the nuclear fuel cycle. The reality today is much different from that envisioned by early nuclear scientists. Most SNF is placed in pool storage, awaiting reprocessing (as in Russia) or disposal at a geologic SNF repository (as in the United States). Very little transport of SNF occurs. This paper examines the requirements for SNF casks from today's perspective and attempts to answer this question: What type of SNF cask would be produced if we were to start over and design SNF casks based on today's requirements? The characteristics for a next-generation SNF cask system are examined and are found to be essentially the same in Russia and the United States. It appears that the new depleted uranium dioxide (DUO2)-steel cermet material will enable these requirements to be met. Depleted uranium (DU) is uranium in which a portion of the 235U isotope has been removed during a uranium enrichment process. The DUO2-steel cermet material is described. The United States and Russia are cooperating toward the development of a next-generation, dual-purpose, storage and transport SNF system.

  7. Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles

    SciTech Connect (OSTI)

    C.C. Baker; T.M. Pfeiffer; J.C. Price

    2013-09-01T23:59:59.000Z

    Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

  8. Radiation Imaging of Dry-Storage Casks for Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Ziock, K; Caffrey, G; Lebrun, A; Forman, L; Vanier, P; Wharton, J

    2005-11-08T23:59:59.000Z

    The authors report the results of a measurement campaign conducted on six dry-storage, spent-nuclear-fuel storage casks at the Idaho National Laboratory. a gamma-ray imager, a thermal-neutron imager and a Ge-spectrometer were used to collect data. The campaign was conducted to examine the feasibility of using cask radiation signatures as unique identifiers for individual casks as part of a safeguards regime. The results clearly show different morphologies for the various cask types although the signatures are deemed insufficient to uniquely identify individual casks of the same type. Based on results with the Ge-spectrometer and differences between thermal neutron images and neutron-dose meters, this result is attributed to the limitations of the extant imagers used, rather than of the basic concept.

  9. Instrumented, Shielded Test Canister System for Evaluation of Spent Nuclear Fuel in Dry Storage

    SciTech Connect (OSTI)

    Sindelar, R.L.

    1999-10-21T23:59:59.000Z

    This document describes the development of an instrumented, shielded test canister system to store and monitor aluminum-based spent nuclear duel under dry storage conditions.

  10. Eddy Current for Sizing Cracks in Canisters for Dry Storage of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Jones, Anthony M.; Pardini, Allan F.

    2014-01-01T23:59:59.000Z

    The storage of used nuclear fuel (UNF) in dry canister storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSI) sites is a temporary measure to accommodate UNF inventory until it can be reprocessed or transferred to a repository for permanent disposal. Policy uncertainty surrounding the long-term management of UNF indicates that DCSSs will need to store UNF for much longer periods than originally envisioned. Meanwhile, the structural and leak-tight integrity of DCSSs must not be compromised. The eddy current technique is presented as a potential tool for inspecting the outer surfaces of DCSS canisters for degradation, particularly atmospheric stress corrosion cracking (SCC). Results are presented that demonstrate that eddy current can detect flaws that cannot be detected reliably using standard visual techniques. In addition, simulations are performed to explore the best parameters of a pancake coil probe for sizing of SCC flaws in DCSS canisters and to identify features in frequency sweep curves that may potentially be useful for facilitating accurate depth sizing of atmospheric SCC flaws from eddy current measurements.

  11. DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel

    SciTech Connect (OSTI)

    Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1995-11-30T23:59:59.000Z

    A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

  12. Nuclear Industry Input to the Development of Concepts for the Consolidated Storage of Used Nuclear Fuel - 13411

    SciTech Connect (OSTI)

    Phillips, Chris; Thomas, Ivan; McNiven, Steven [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States)] [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Lanthrum, Gary [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)] [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)

    2013-07-01T23:59:59.000Z

    EnergySolutions and its team partners, NAC International, Exelon Nuclear Partners, Talisman International, TerranearPMC, Booz Allen Hamilton and Sargent and Lundy, have carried out a study to develop concepts for a Consolidated Storage Facility (CSF) for the USA's stocks of commercial Used Nuclear Fuel (UNF), and the packaging and transport provisions required to move the UNF to the CSF. The UNF is currently stored at all 65 operating nuclear reactor sites in the US, and at 10 shutdown sites. The study was funded by the US Department of Energy and followed the recommendations of the Blue Ribbon Commission on America's Nuclear Future (BRC), one of which was that the US should make prompt efforts to develop one or more consolidated storage facilities for commercial UNF. The study showed that viable schemes can be devised to move all UNF and store it at a CSF, but that a range of schemes is required to accommodate the present widely varying UNF storage arrangements. Although most UNF that is currently stored at operating reactor sites is in water-filled pools, a significant amount is now dry stored in concrete casks. At the shutdown sites, the UNF is dry stored at all but two of the ten sites. Various types of UNF dry storage configurations are used at the operating sites and shutdown sites that include vertical storage casks that are also licensed for transportation, vertical casks that are licensed for storage only, and horizontally orientated storage modules. The shutdown sites have limited to nonexistent UNF handling infrastructure and several no longer have railroad connections, complicating UNF handling and transport off the site. However four methods were identified that will satisfactorily retrieve the UNF canisters within the storage casks and transport them to the CSF. The study showed that all of the issues associated with the transportation and storage of UNF from all sites in the US can be accommodated by adopting a staged approach to the construction of the CSF. Stage 1 requires only a cask storage pad and railroad interface to be constructed, and the CSF can then receive the UNF that is in transportable storage casks. Stage 2 adds a canister handling facility, a storage cask fabrication facility and an expanded storage pad, and enables the receipt of all canistered UNF from both operating and shutdown sites. Stage 3 provides a repackaging facility with a water-filled pool that provides flexibility for a range of repackaging scenarios. This includes receiving and repackaging 'bare' UNF into suitable canisters that can be placed into interim storage at the CSF, and enables UNF that is being received, or already in storage onsite, to be repackaged into canisters that are suitable for disposal at a geologic repository. The study used the 'Total System Model' (TSM) to analyze a range of CSF capacities and operating scenarios with differing parameters covering UNF pickup orders, one or more CSF sites, CSF start dates, CSF receipt rates and geologic repository start dates. The TSM was originally developed to model movement of UNF to the Yucca Mountain repository and was modified for this study to enable the CSF to become the 'gateway' to a future geologic repository. The TSM analysis enabled costs to be estimated for each scenario and showed how these are influenced by each of the parameters. This information will provide essential underpinning for a future Conceptual Design preparation. (authors)

  13. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOE Patents [OSTI]

    Forsberg, C.W.

    1992-03-24T23:59:59.000Z

    A single canister process container is described for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining its integrity at a temperature necessary to oxidize the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container. 10 figs.

  14. NRC Technical Research Program to Evaluate Extended Storage and Transportation of Spent Nuclear Fuel - 12547

    SciTech Connect (OSTI)

    Einziger, R.E.; Compton, K.; Gordon, M.; Ahn, T.; Gonzales, H. [United States Nuclear Regulatory Commission, Rockville, Maryland 20852 (United States); Pan, Y. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX 78238 (United States)

    2012-07-01T23:59:59.000Z

    Any new direction proposed for the back-end of spent nuclear fuel (SNF) cycle will require storage of SNF beyond the current licensing periods. The Nuclear Regulatory Commission (NRC) has established a technical research program to determine if any changes in the 10 CFR part 71, and 72 requirements, and associated guidance might be necessary to regulate the safety of anticipated extended storage, and subsequent transport of SNF. This three part program of: 1) analysis of knowledge gaps in the potential degradation of materials, 2) short-term research and modeling, and 3) long-term demonstration of systems, will allow the NRC to make informed regulatory changes, and determine when and if additional monitoring and inspection of the systems is necessary. The NRC has started a research program to obtain data necessary to determine if the current regulatory guidance is sufficient if interim dry storage has to be extended beyond the currently approved licensing periods. The three-phased approach consists of: - the identification and prioritization of potential degradation of the components related to the safe operation of a dry cask storage system, - short-term research to determine if the initial analysis was correct, and - a long-term prototypic demonstration project to confirm the models and results obtained in the short-term research. The gap analysis has identified issues with the SCC of the stainless steel canisters, and SNF behavior. Issues impacting the SNF and canister internal performance such as high and low temperature distributions, and drying have also been identified. Research to evaluate these issues is underway. Evaluations have been conducted to determine the relative values that various types of long-term demonstration projects might provide. These projects or follow-on work is expected to continue over the next five years. (authors)

  15. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04T23:59:59.000Z

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

  16. Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FY 2011Talley, Carrie To:Energy FuelFuelSiC

  17. Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOE FY 2011Talley, Carrie To:Energy FuelFuelSiCImplementation

  18. Best Practices for Finite Element Analysis of Spent Nuclear Fuel Transfer, Storage, and Transportation Systems

    SciTech Connect (OSTI)

    Bajwa, Christopher S.; Piotter, Jason; Cuta, Judith M.; Adkins, Harold E.; Klymyshyn, Nicholas A.; Fort, James A.; Suffield, Sarah R.

    2010-08-11T23:59:59.000Z

    Storage casks and transportation packages for spent nuclear fuel (SNF) are designed to confine SNF in sealed canisters or casks, provide structural integrity during accidents, and remove decay through a storage or transportation overpack. The transfer, storage, and transportation of SNF in dry storage casks and transport packages is regulated under 10 CFR Part 72 and 10 CFR Part 71, respectively. Finite Element Analysis (FEA) is used with increasing frequency in Safety Analysis Reports and other regulatory technical evaluations related to SNF casks and packages and their associated systems. Advances in computing power have made increasingly sophisticated FEA models more feasible, and as a result, the need for careful review of such models has also increased. This paper identifies best practice recommendations that stem from recent NRC review experience. The scope covers issues common to all commercially available FEA software, and the recommendations are applicable to any FEA software package. Three specific topics are addressed: general FEA practices, issues specific to thermal analyses, and issues specific to structural analyses. General FEA practices covers appropriate documentation of the model and results, which is important for an efficient review process. The thermal analysis best practices are related to cask analysis for steady state conditions and transient scenarios. The structural analysis best practices are related to the analysis of casks and associated payload during standard handling and drop scenarios. The best practices described in this paper are intended to identify FEA modeling issues and provide insights that can help minimize associated uncertainties and errors, in order to facilitate the NRC licensing review process.

  19. FATE Unified Modeling Method for Spent Nuclear Fuel and Sludge Processing, Shipping and Storage - 13405

    SciTech Connect (OSTI)

    Plys, Martin; Burelbach, James; Lee, Sung Jin; Apthorpe, Robert [Fauske and Associates, LLC, 16W070 83rd St., Burr Ridge, IL, 60527 (United States)] [Fauske and Associates, LLC, 16W070 83rd St., Burr Ridge, IL, 60527 (United States)

    2013-07-01T23:59:59.000Z

    A unified modeling method applicable to the processing, shipping, and storage of spent nuclear fuel and sludge has been incrementally developed, validated, and applied over a period of about 15 years at the US DOE Hanford site. The software, FATE{sup TM}, provides a consistent framework for a wide dynamic range of common DOE and commercial fuel and waste applications. It has been used during the design phase, for safety and licensing calculations, and offers a graded approach to complex modeling problems encountered at DOE facilities and abroad (e.g., Sellafield). FATE has also been used for commercial power plant evaluations including reactor building fire modeling for fire PRA, evaluation of hydrogen release, transport, and flammability for post-Fukushima vulnerability assessment, and drying of commercial oxide fuel. FATE comprises an integrated set of models for fluid flow, aerosol and contamination release, transport, and deposition, thermal response including chemical reactions, and evaluation of fire and explosion hazards. It is one of few software tools that combine both source term and thermal-hydraulic capability. Practical examples are described below, with consideration of appropriate model complexity and validation. (authors)

  20. On selection and operation of an international interim storage facility for spent nuclear fuel

    E-Print Network [OSTI]

    Burns, Joe, 1966-

    2004-01-01T23:59:59.000Z

    Disposal of post-irradiation fuel from nuclear reactors has been an issue for the nuclear industry for many years. Most countries currently have no long-term disposal strategy in place. Therefore, the concept of an ...

  1. Successful Deployment of System for the Storage and Retrieval of Spent/Used Nuclear Fuel from Hanford K-West Fuel Storage Basin-13051

    SciTech Connect (OSTI)

    Quintero, Roger; Smith, Sahid [U.S. Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)] [U.S. Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States); Blackford, Leonard Ty; Johnson, Mike W.; Raymond, Richard; Sullivan, Neal; Sloughter, Jim [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)] [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

    2013-07-01T23:59:59.000Z

    In 2012, a system was deployed to remove, transport, and interim store chemically reactive and highly radioactive sludge material from the Hanford Site's 105-K West Fuel Storage Basin that will be managed as spent/used nuclear fuel. The Knockout Pot (KOP) sludge in the 105-K West Basin was a legacy issue resulting from the spent nuclear fuel (SNF) washing process applied to 2200 metric tons of highly degraded fuel elements following long-term underwater storage. The washing process removed uranium metal and other non-uranium constituents that could pass through a screen with 0.25-inch openings; larger pieces are, by definition, SNF or fuel scrap. When originally retrieved, KOP sludge contained pieces of degraded uranium fuel ranging from 600 microns (?m) to 6350 ?m mixed with inert material such as aluminum hydroxide, aluminum wire, and graphite in the same size range. In 2011, a system was developed, tested, successfully deployed and operated to pre-treat KOP sludge as part of 105-K West Basin cleanup. The pretreatment process successfully removed the vast majority of inert material from the KOP sludge stream and reduced the remaining volume of material by approximately 65 percent, down to approximately 50 liters of material requiring management as used fuel. The removal of inert material resulted in significant waste minimization and project cost savings because of the reduced number of transportation/storage containers and improvement in worker safety. The improvement in worker safety is a result of shorter operating times and reduced number of remote handled shipments to the site fuel storage facility. Additionally in 2011, technology development, final design, and cold testing was completed on the system to be used in processing and packaging the remaining KOP material for removal from the basin in much the same manner spent fuel was removed. This system was deployed and successfully operated from June through September 2012, to remove and package the last of the SNF fragments from the 105-K West Basin, ending the long and complex history of the KOP sludge materials. The planning and execution of this project demonstrated how the graded application of DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets[1], DOE-STD-1189-2008, Integration of Safety into the Design Process[2], and DOE G 413.3-4, U.S. Department of Energy Technology Readiness Assessment Guide[3], can positively affect the outcome of project implementation in the DOE Complex. Provided herein are relevant information, ideas, and tools for use by other projects facing similar issues in managing high risk waste streams in a complex regulatory environment. Positive aspects are also provided of appropriate time spent in detailed planning, design, and testing in non-hazardous environments to reduce project risks in both cost and safety performance, as well as improving confidence in meeting project goals through predictable and reliable performance. (authors)

  2. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  3. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14T23:59:59.000Z

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  4. Critical Analysis of Dry Storage Temperature Limits for Zircaloy-Clad Spent Nuclear Fuel Based on Diffusion Controlled Cavity Growth

    SciTech Connect (OSTI)

    Hayes, T.A.; Rosen, R.S.; Kassner, M.E.

    1999-12-01T23:59:59.000Z

    Interim dry storage of spent nuclear fuel (SNF) rods is of critical concern because a shortage of existing SNF wet storage capacity combined with delays in the availability of a permanent disposal repository has led to an increasing number of SNF rods being placed into interim dry storage. Safe interim dry storage must be maintained for a minimum of twenty years according to the Standard Review Plan for Dry Cask Storage Systems [1] and the Code of Federal Regulations, 10 CFR Part 72 [2]. Interim dry storage licensees must meet certain safety conditions when storing SNF rods to ensure that there is a ''very low probability (e.g. 0.5%) of cladding breach during long-term storage'' [1]. Commercial SNF typically consists of uranium oxide pellets surrounded by a thin cladding. The cladding is usually an {alpha}-zirconium based alloy know as ''Zircaloy''. In dry storage, the SNF rods are confined in one of several types of cask systems approved by the Nuclear Regulatory Commission (NRC). ''The cask system must be designed to prevent degradation of fuel cladding that results in a type of cladding breach, such as axial-splits or ductile fracture, where irradiated UO{sub 2} particles may be released. In addition, the fuel cladding should not degrade to the point where more than one percent of the fuel rods suffer pinhole or hairline crack type failure under normal storage conditions [1].'' The NRC has approved two models [3,4] for use by proposed dry storage licensees to determine the maximum initial temperature limit for nuclear fuel rods in dry storage that supposedly meet the above criteria and yield consistent temperature limits. Though these two models are based on the same fundamental failure theory, different assumptions have been made including the choice of values for material constants in the failure equation. This report will examine and compare the similarities and inconsistencies of these two models. It will illustrate some of the shortcomings of the current models and suggest modifications as well as some experiments that should be started in the near future. This report will also discuss changes in the current NRC standards with regard to the adoption of a strain-based model to be used to determine maximum allowable temperatures of the SNF.

  5. Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests

    SciTech Connect (OSTI)

    Wilson, C.N.

    1990-09-01T23:59:59.000Z

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

  6. Making the Case For Safe Storage of Used Nuclear Fuel For Extended Periods of Time: Combining Near-Term Experiments and Analyses with Longer-Term Confirmatory Demonstrations

    SciTech Connect (OSTI)

    Sorenson, Ken B.; Hanson, Brady D.

    2013-08-25T23:59:59.000Z

    The need for extended storage of used nuclear fuel is increasing globally as disposition schedules for used fuel are pushed further into the future. This is creating a situation where dry storage of used fuel may need to be extended beyond normal regulatory licensing periods. While it is generally accepted that used fuel in dry storage will remain in a safe condition, there is little data that demonstrate used fuel performance in dry storage environments for long periods of time. This is especially true for high burnup used fuel.

  7. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12T23:59:59.000Z

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  8. Thermal performance sensitivity studies in support of material modeling for extended storage of used nuclear fuel

    SciTech Connect (OSTI)

    Cuta, Judith M.; Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.

    2013-08-15T23:59:59.000Z

    The work reported here is an investigation of the sensitivity of component temperatures of a storage system, including fuel cladding temperatures, in response to age-related changes that could degrade the design-basis thermal behavior of the system. Three specific areas of interest were identified for this study. • degradation of the canister backfill gas from pure helium to a mixture of air and helium, resulting from postulated leakage due to stress corrosion cracking (SCC) of canister welds • changes in surface emissivity of system components, resulting from corrosion or other aging mechanisms, which could cause potentially significant changes in temperatures and temperature distributions, due to the effect on thermal radiation exchange between components • changes in fuel and basket temperatures due to changes in fuel assembly position within the basket cells in the canister The purpose of these sensitivity studies is to provide a realistic example of how changes in the physical properties or configuration of the storage system components can affect temperatures and temperature distributions. The magnitudes of these sensitivities can provide guidance for identifying appropriate modeling assumptions for thermal evaluations extending long term storage out beyond 50, 100, 200, and 300 years.

  9. The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?

    SciTech Connect (OSTI)

    Phillips, C.; Thomas, I. [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA 99354 (United States)

    2013-07-01T23:59:59.000Z

    This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility, the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.

  10. Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of t...

  11. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOE Patents [OSTI]

    Phillips, John R. (Los Alamos, NM); Halbig, James K. (Los Alamos, NM); Menlove, Howard O. (Los Alamos, NM); Klosterbuer, Shirley F. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  12. Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond

    DOE Patents [OSTI]

    Phillips, J.R.; Halbig, J.K.; Menlove, H.O.; Klosterbuer, S.F.

    1984-01-01T23:59:59.000Z

    A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

  13. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    SciTech Connect (OSTI)

    Patrick, W.C. (comp.)

    1986-03-30T23:59:59.000Z

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  14. Economic Study of Spent Nuclear Fuel Storage and Reprocessing Practices in Russia

    SciTech Connect (OSTI)

    C. E. Singer; G. H. Miley

    1997-10-01T23:59:59.000Z

    This report describes a study of nuclear power economics in Russia. It addresses political and institutional background factors which constrain Russia's energy choices in the short and intermediate run. In the approach developed here, political and institutional factors might dominate short-term decisions, but the comparative costs of Russia's fuel-cycle options are likely to constrain her long-term energy strategy. To this end, the authors have also formulated a set of policy questions which should be addressed using a quantitative decision modeling which analyzes economic costs for all major components of different fuel cycle options, including the evolution of uranium prices.

  15. Spent fuel storage requirements 1993--2040

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

  16. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect (OSTI)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01T23:59:59.000Z

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  17. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  18. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01T23:59:59.000Z

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  19. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01T23:59:59.000Z

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  20. RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    RADIATION ANALYSIS OF A SPENT-FUEL STORAGE CASK by J.K. Shultis Department of Mechanical;Radiation Analysis of a Spect-Fuel Storage Cask by J.K.Shultis Dept. Mechanical and Nuclear Engineering a single Transnuclear spent-fuel storage cask holding 68 design-basis fuel assemblies (a TN-68 cask

  1. President Reagan Calls for a National Spent Fuel Storage Facility...

    National Nuclear Security Administration (NNSA)

    Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  2. Safety Aspects of Wet Storage of Spent Nuclear Fuel, OAS-L-13-11

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDERSTATE0-1 CHAPTER1the1-2009 MaySafety

  3. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14T23:59:59.000Z

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  4. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15T23:59:59.000Z

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  5. Gap Analysis to Support Extended Storage of Used Nuclear Fuel | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFullGO 2009 AnnualDepartmentof Energy

  6. Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energyasto|

  7. Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptemberAssessments | Department ofSouthernofDepartmentReport6

  8. The Impacts of Dry-Storage Canister Designs on Spent Nuclear Fuel Handling,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTed Donat About UsThe EnergyHydrogen Energy

  9. Activities Related to Storage of Spent Nuclear Fuel | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |State WindEconomic Dialogue |

  10. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  11. A FRAMEWORK TO DEVELOP FLAW ACCEPTANCE CRITERIA FOR STRUCTURAL INTEGRITY ASSESSMENT OF MULTIPURPOSE CANISTERS FOR EXTENDED STORAGE OF USED NUCLEAR FUEL

    SciTech Connect (OSTI)

    Lam, P.; Sindelar, R.; Duncan, A.; Adams, T.

    2014-04-07T23:59:59.000Z

    A multipurpose canister (MPC) made of austenitic stainless steel is loaded with used nuclear fuel assemblies and is part of the transfer cask system to move the fuel from the spent fuel pool to prepare for storage, and is part of the storage cask system for on-site dry storage. This weld-sealed canister is also expected to be part of the transportation package following storage. The canister may be subject to service-induced degradation especially if exposed to aggressive environments during possible very long-term storage period if the permanent repository is yet to be identified and readied. Stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone because the construction of MPC does not require heat treatment for stress relief. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The external loading cases include thermal accident scenarios and cask drop conditions with the contribution from the welding residual stresses. The determination of acceptable flaw size is based on the procedure to evaluate flaw stability provided by American Petroleum Institute (API) 579 Fitness-for-Service (Second Edition). The material mechanical and fracture properties for base and weld metals and the stress analysis results are obtained from the open literature such as NUREG-1864. Subcritical crack growth from stress corrosion cracking (SCC), and its impact on inspection intervals and acceptance criteria, is not addressed.

  12. Spent nuclear fuel sampling strategy

    SciTech Connect (OSTI)

    Bergmann, D.W.

    1995-02-08T23:59:59.000Z

    This report proposes a strategy for sampling the spent nuclear fuel (SNF) stored in the 105-K Basins (105-K East and 105-K West). This strategy will support decisions concerning the path forward SNF disposition efforts in the following areas: (1) SNF isolation activities such as repackaging/overpacking to a newly constructed staging facility; (2) conditioning processes for fuel stabilization; and (3) interim storage options. This strategy was developed without following the Data Quality Objective (DQO) methodology. It is, however, intended to augment the SNF project DQOS. The SNF sampling is derived by evaluating the current storage condition of the SNF and the factors that effected SNF corrosion/degradation.

  13. Annotated Bibliography for Drying Nuclear Fuel

    SciTech Connect (OSTI)

    Rebecca E. Smith

    2011-09-01T23:59:59.000Z

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  14. LWR spent fuel reduction by the removal of U and the compact storage of Pu with FP for long-term nuclear sustainability

    SciTech Connect (OSTI)

    Fukasawa, T.; Hoshino, K. [Hitachi-GE Nuclear Energy, Ltd, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan); Takano, M. [Japan Atomic Energy Agency, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan); Sato, S. [Hokkaido University, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan); Shimazu, Y. [Fukui University, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan)

    2013-07-01T23:59:59.000Z

    Fast breeder reactors (FBR) nuclear fuel cycle is needed for long-term nuclear sustainability while preventing global warming and maximum utilizing the limited uranium (U) resources. The 'Framework for Nuclear Energy Policy' by the Japanese government on October 2005 stated that commercial FBR deployment will start around 2050 under its suitable conditions by the successive replacement of light water reactors (LWR) to FBR. Even after Fukushima Daiichi Nuclear Power Plant accident which made Japanese tendency slow down the nuclear power generation activities, Japan should have various options for energy resources including nuclear, and also consider the delay of FBR deployment and increase of LWR spent fuel (LWR-SF) storage amounts. As plutonium (Pu) for FBR deployment will be supplied from LWR-SF reprocessing and Japan will not possess surplus Pu, the authors have developed the flexible fuel cycle initiative (FFCI) for the transition from LWR to FBR. The FFCI system is based on the possibility to stored recycled materials (U, Pu)temporarily for a suitable period according to the FBR deployment rate to control the Pu demand/supply balance. This FFCI system is also effective after the Fukushima accident for the reduction of LWR-SF and future LWR-to-FBR transition. (authors)

  15. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods; Revision 1

    SciTech Connect (OSTI)

    Johnson, G.L.

    1991-11-01T23:59:59.000Z

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store tightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degrees}C and whether the cladding of the stored spent fuel ever exceeds 350{degrees}C. Limiting the borehole to temperatures of 97{degrees}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degrees}C cladding limit minimizes the possibility of creep- related failure in the spent fuel rod cladding. For a series of packages stored in a 8 {times} 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degrees}C for the full 10000-yr analysis period. For the 4.74-kW load, the peak cladding temperature rises to just below the 350{degrees}C limit about 4 years after emplacement. If the packages are stored using the spacing specified in the Site Characterization Plan (15 ft {times} 126 ft), a maximum of 4.1 kW per container may be stored. If the 0.05-m-thick void between the container and the borehole wall is filled with loosely packed bentonite, the peak cladding temperature rises more than 40{degrees}C above the allowed cladding limit. In all cases the dominant heat transfer mode between container components is thermal radiation.

  16. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  17. A Review of NDE Methods for Detecting and Monitoring of Atmospheric SCC in Dry Cask Storage Canisters for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Hanson, Brady D.; Sorenson, Ken B.

    2013-04-01T23:59:59.000Z

    Dry cask storage systems (DCSSs) for used nuclear fuel (UNF) were originally envisioned for storage periods of short duration (~ a few decades). However, uncertainty challenges the opening of a permanent repository for UNF implying that UNF will need to remain in dry storage for much longer durations than originally envisioned (possibly for centuries). Thus, aging degradation of DCSSs becomes an issue that may not have been sufficiently considered in the design phase and that can challenge the efficacy of very long-term storage of UNF. A particular aging degradation concern is atmospheric stress corrosion cracking (SCC) of DCSSs located in marine environments. In this report, several nondestructive (NDE) methods are evaluated with respect to their potential for effective monitoring of atmospheric SCC in welded canisters of DCSSs. Several of the methods are selected for evaluation based on their usage for in-service inspection applications in the nuclear power industry. The technologies considered include bulk ultrasonic techniques, acoustic emission, visual techniques, eddy current, and guided ultrasonic waves.

  18. Review of NDE Methods for Detection and Monitoring of Atmospheric SCC in Welded Canisters for the Storage of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Pardini, Allan F.; Hanson, Brady D.; Sorenson, Ken B.

    2013-01-14T23:59:59.000Z

    Dry cask storage systems (DCSSs) for used nuclear fuel (UNF) were originally envisioned for storage periods of short duration (~ a few decades). However, uncertainty challenges the opening of a permanent repository for UNF implying that UNF will need to remain in dry storage for much longer durations than originally envisioned (possibly for centuries). Thus, aging degradation of DCSSs becomes an issue that may not have been sufficiently considered in the design phase and that can challenge the efficacy of very long-term storage of UNF. A particular aging degradation concern is atmospheric stress corrosion cracking (SCC) of DCSSs located in marine environments. In this report, several nondestructive (NDE) methods are evaluated with respect to their potential for effective monitoring of atmospheric SCC in welded canisters of DCSSs. Several of the methods are selected for evaluation based on their usage for in-service inspection applications in the nuclear power industry. The technologies considered include bulk ultrasonic techniques, acoustic emission, visual techniques, eddy current, and guided ultrasonic waves.

  19. Spent Nuclear Fuel (SNF) Project Execution Plan

    SciTech Connect (OSTI)

    LEROY, P.G.

    2000-11-03T23:59:59.000Z

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  20. Development of a conditioning system for the dual-purpose transport and storage cask for spent nuclear fuel from decommissioned Russian submarines

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E. [U.S. Environmental Protection Agency, Washington D.C. (United States); Snipes, R.L. [Oak Ridge National Laboratory, TN (United States); Guskov, V.; Makarchuk, T. [Special Mechanical Engineering Design Bureau (KBSM), St. Petersburg (Russian Federation)

    2007-07-01T23:59:59.000Z

    Russia, stores large quantities of spent nuclear fuel (SNF) from submarine and ice-breaker nuclear powered naval vessels. This high-level radioactive material presents a significant threat to the Arctic and marine environments. Much of the SNF from decommissioned Russian nuclear submarines is stored either onboard the submarines or in floating storage vessels in Northwest and Far East Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. In many cases, the existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing all of this fuel from remote locations. Additional transport and storage options are required. Some of the existing storage facilities being used in Russia do not meet health and safety and physical security requirements. The U.S. has assisted Russia in the development of a new dual-purpose metal-concrete transport and storage cask (TUK-108/1) for their military SNF and assisted them in building several new facilities for off-loading submarine SNF and storing these TUK-108/1 casks. These efforts have reduced the technical, ecological, and security challenges for removal, handling, interim storage, and shipment of this submarine fuel. Currently, Russian licensing limits the storage period of the TUK-108/1 casks to no more than two years before the fuel must be shipped for reprocessing. In order to extend this licensed storage period, a system is required to condition the casks by removing residual water and creating an inert storage environment by backfilling the internal canisters with a noble gas such as argon. The U.S. has assisted Russia in the development of a mobile cask conditioning system for the TUK-108/1 cask. This new conditioning system allows the TUK 108/1 casks to be stored for up to five years after which the license may be considered for renewal for an additional five years or the fuel will be shipped to 'Mayak' for reprocessing. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. DOD Office of Cooperative Threat Reduction (CTR), and the DOE's ORNL, along with the Norwegian Defense Research Establishment, worked closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved integrated management system for interim storage of military SNF in Russia. The initial Project activities included: (1) development of a prototype dual-purpose, metal-concrete 40-ton cask for both the transport and interim storage of RF SNF, and (2) development of the first transshipment/interim storage facility for these casks in Murmansk. The U.S. has continued support to the project by assisting the RF with the development of the first mobile system that provides internal conditioning for the TUK-108/1 casks to allow them to be stored for longer than the current licensing period of two years. Development of the prototype TUK-108/1 cask was completed in December 2000 under the Arctic Military Environmental Cooperation (AMEC) Program. This was the first metal-concrete cask developed, licensed, and produced in the RF for both the transportation and storage of SNF from decommissioned submarines. These casks are currently being serially produced in NW Russia and 108 casks have been produced to date. Russia is using these casks for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East in conformance with the Strategic Arms Reduction Treaty (START II). The design, construction, and commissioning of the first transshipment/interim storage facility in the RF was completed and ready for full operation in September 2003. Because of the RF government reorganization and changing regulations for spent fuel storage facilities, the storage facility at Murmansk was not fully licensed for operation until December 2005. The RF has reported that the facility is now fully operational. The TUK-108/1 SNF transport and storage casks were designed

  1. Final LDRD report : nanoscale mechanisms in advanced aging of materials during storage of spent %22high burnup%22 nuclear fuel.

    SciTech Connect (OSTI)

    Clark, Blythe G.; Rajasekhara, Shreyas; Enos, David George; Dingreville, Remi Philippe Michel; Doyle, Barney Lee; Hattar, Khalid Mikhiel; Weiner, Ruth F.

    2013-09-01T23:59:59.000Z

    We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

  2. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  3. Using population risk assessment as a basis for administrative decisions related to storage of irradiated nuclear fuel

    SciTech Connect (OSTI)

    Droppo, James G. [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States); Eremenko, V.A. [International Knowledge Bridge LLC (Russian Federation); Linde, J. [Association on Computer Technology and Informational Systems - ACTIS (Russian Federation); Shilova, E. [Moscow Institute of International Economic Relations, 76, Vernadsky av. 119454 Moscow (Russian Federation)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Optimization of safety related decisions by local authorities could be improved using information on potential risks to a regional population. A joint Russia-US effort in 2001-2002 modeled potential population health risks for a proposed nuclear waste storage facility in northern Russia. Conducting such an assessment in addition to the standard PRA is proposed as an innovation in Russia aimed at better meeting the needs of local decision makers. This case-study analysis was conducted for the proposed facility to provide insights into potential population health risks. In the case study results, the background population risks from radiation accident exposures were very low compared to risks from chemical background exposures - an unexpected outcome for those that perceive any nuclear facility as very hazardous to the local population. The paper notes that rather than requiring a proposed low-risk facility for hazardous materials be made even safer, these results give the local authority the option of proposing a trade-off of having a major unrelated regional risks mitigated. The results show the value of conducting a population risk assessment in addition to a facility-oriented PRA as a means of better defining the potential impacts. (authors)

  4. The united kingdom's changing requirements for spent fuel storage

    SciTech Connect (OSTI)

    Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N. [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, Cheshire WA3 6AE (United Kingdom)

    2013-07-01T23:59:59.000Z

    The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK.

  5. Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    Michael F. Simpson; Jack D. Law

    2010-02-01T23:59:59.000Z

    This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

  6. Nuclear fuel element

    DOE Patents [OSTI]

    Zocher, Roy W. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  7. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage

    E-Print Network [OSTI]

    to the rate of refueling today's gasoline vehicles. Using currently available high-pressure tank storage that can achieve similar performance, at a similar cost, as gasoline fuel storage systems. Compressed gasFUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost

  8. Fuel storage basin seismic analysis

    SciTech Connect (OSTI)

    Kanjilal, S.K.; Winkel, B.V.

    1991-08-01T23:59:59.000Z

    The 105-KE and 105-KW Fuel Storage Basins were constructed more than 35 years ago as repositories for irradiated fuel from the K East and K West Reactors. Currently, the basins contain irradiated fuel from the N Reactor. To continue to use the basins as desired, seismic adequacy in accordance with current US Department of Energy facility requirements must be demonstrated. The 105-KE and 105-KW Basins are reinforced concrete, belowground reservoirs with a 16-ft water depth. The entire water retention boundary, which currently includes a portion of the adjacent reactor buildings, must be qualified for the Hanford Site design basis earthquake. The reactor building interface joints are sealed against leakage with rubber water stops. Demonstration of the seismic adequacy of these interface joints was initially identified as a key issue in the seismic qualification effort. The issue of water leakage through seismicly induced cracks was also investigated. This issue, coupled with the relatively complex geometry of the basins, dictated a need for three-dimensional modeling. A three-dimensional soil/structure interaction model was developed with the SASSI computer code. The development of three-dimensional models of the interfacing structures using the ANSYS code was also found to be necessary. 8 refs., 7 figs., 1 tab.

  9. Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    Harold F. McFarlane; Terry Todd

    2013-11-01T23:59:59.000Z

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor fuels have been irradiated for different purposes, but the vast majority of commercial fuel is uranium oxide clad in zirconium alloy tubing. As a result, commercial reprocessing plants have relatively narrow technical requirements for used nuclear that is accepted for processing.

  10. Evaluation of concepts for monitored retrievable storage of spent nuclear fuel and high-level radioactive waste

    SciTech Connect (OSTI)

    Triplett, M.B.; Smith, R.I.

    1984-04-01T23:59:59.000Z

    The primary mission selected by DOE for the monitored retrieval storage (MRS) system is to provide an alternative means of storage in the event that the repository program is delayed. The MRS concepts considered were the eight concepts included in the MRS Research and Development Report to Congress (DOE 1983). These concepts are: metal cask (stationary and transportable); concrete cask (sealed storage cask); concrete cask-in-trench; field drywell; tunnel drywell; open cycle vault; closed cycle vault; and tunnel rack vault. Conceptual design analyses were performed for the candidate concepts using a common set of design requirements specified in consideration of the MRS mission.

  11. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01T23:59:59.000Z

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  12. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-02-01T23:59:59.000Z

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  13. The Impacts of Dry-Storage Canister Designs on Spent Nuclear...

    Office of Environmental Management (EM)

    The Impacts of Dry-Storage Canister Designs on Spent Nuclear Fuel Handling, Storage, Transportation, and Disposal in the U.S. The Impacts of Dry-Storage Canister Designs on Spent...

  14. Regenerative Fuel Cells for Energy Storage

    Broader source: Energy.gov (indexed) [DOE]

    at Giner 2. Regenerative Systems for Energy Storage 1. Economics 2. Electrolyzer Optimization 3. Fuel Cell Optimization 4. What to do with O 2 ? 5. High Pressure Electrolysis...

  15. Nuclear fuel element

    DOE Patents [OSTI]

    Armijo, Joseph S. (Saratoga, CA); Coffin, Jr., Louis F. (Schenectady, NY)

    1983-01-01T23:59:59.000Z

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

  16. Nuclear fuel element

    DOE Patents [OSTI]

    Armijo, Joseph S. (Saratoga, CA); Coffin, Jr., Louis F. (Schenectady, NY)

    1980-04-29T23:59:59.000Z

    A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

  17. Spent fuel storage and waste management fuel cycle optimization using CAFCA

    SciTech Connect (OSTI)

    Brinton, S.; Kazimi, M. [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139 (United States)

    2013-07-01T23:59:59.000Z

    Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

  18. Nuclear fuel cycle information workshop

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

  19. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  20. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect (OSTI)

    Strope, L.A.; McKinnon, M.A. (Pacific Northwest Lab., Richland, WA (USA)); Dyksterhouse, D.J.; McLean, J.C. (Carolina Power and Light Co., Raleigh, NC (USA))

    1990-09-01T23:59:59.000Z

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  1. Nuclear fuel electrorefiner

    DOE Patents [OSTI]

    Ahluwalia, Rajesh K.; Hua, Thanh Q.

    2004-02-10T23:59:59.000Z

    The present invention relates to a nuclear fuel electrorefiner having a vessel containing a molten electrolyte pool floating on top of a cadmium pool. An anodic fuel dissolution basket and a high-efficiency cathode are suspended in the molten electrolyte pool. A shroud surrounds the fuel dissolution basket and the shroud is positioned so as to separate the electrolyte pool into an isolated electrolyte pool within the shroud and a bulk electrolyte pool outside the shroud. In operation, unwanted noble-metal fission products migrate downward into the cadmium pool and form precipitates where they are removed by a filter and separator assembly. Uranium values are transported by the cadmium pool from the isolated electrolyte pool to the bulk electrolyte pool, and then pass to the high-efficiency cathode where they are electrolytically deposited thereto.

  2. Radioactive air emissions notice of construction for phase 2 Spent Nuclear Fuel Canister Storage Building -- Project W-379

    SciTech Connect (OSTI)

    Kamberg, L.D.

    1998-06-17T23:59:59.000Z

    The purpose of this Notice of Construction (NOC) is to provide a rewritten NOC for obtaining regulatory approval for changes to the previous Canister Storage Building (CSB) NOCs (WDOH, 1996 and EPA, 1996) as were approved by the Washington State Department of Health (WDOH, 1996a) and US Environmental Protection Agency (EPA, 1996a). These changes are because of a revised sealing configuration of the multi-canister overpacks (MCOS) that are used to store the SNF. A flow schematic of the SNF Project is provided in Figure 1-1. A separate notification of startup will be provided apart from this NOC.

  3. Hydrogen storage and integrated fuel cell assembly

    DOE Patents [OSTI]

    Gross, Karl J. (Fremont, CA)

    2010-08-24T23:59:59.000Z

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  4. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01T23:59:59.000Z

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  5. Spent Nuclear Fuel (SNF) Project Product Specification

    SciTech Connect (OSTI)

    PAJUNEN, A.L.

    2000-01-20T23:59:59.000Z

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  6. New Strategies for Licensing the Storage and Transportation of High Burn-up Spent Nuclear Fuel in the United States - 12546

    SciTech Connect (OSTI)

    Easton, Earl; Bajwa, Christopher; Li, Zhian; Gordon, Matthew [U.S. Nuclear Regulatory Commission, Washington, DC 20005 (United States)

    2012-07-01T23:59:59.000Z

    An alternative approach may be needed to the licensing of high-burnup fuel for storage and transportation based on the assumption that spent fuel cladding may not always remain intact. The approach would permit spent fuel to be retrieved on a canister basis and could lessen the need for repackaging of spent fuel. This approach is being presented as a possible engineering solution to address the uncertainties and lack of data availability for cladding properties for high burnup fuel and extended storage time frames. The proposed approach does not involve relaxing current safety standards for criticality safety, containment, or permissible external dose rates. Packaging strategies and regulations should be developed to reduce the potential for requiring fuel to be repackaged unnecessarily. This would lessen the chance of accidents and mishaps during loading and unloading of casks, and decrease dose to workers. A packaging approach that shifts the safety basis from reliance upon the fuel condition to reliance upon an inner canister could eliminate or lessen the need for repackaging. In addition, the condition of canisters can be more readily monitored and inspected than the condition of fuel cladding. Canisters can also be repaired and/or replaced when deemed necessary. In contrast, once a fuel assembly is loaded into a canister and placed in a storage overpack, there is little opportunity to monitor its condition or take mitigating measures if cladding degradation is suspected or proven to occur. (authors)

  7. Inspection and Gamma-Ray Dose Rate Measurements of the Annulus of the VSC-17 Concrete Spent Nuclear Fuel Storage Cask

    SciTech Connect (OSTI)

    P. L. Winston

    2007-09-01T23:59:59.000Z

    The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.

  8. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

    2006-10-17T23:59:59.000Z

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  9. Metal hydride fuel storage and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05T23:59:59.000Z

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  10. Spent nuclear fuel discharges from U.S. reactors 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  11. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect (OSTI)

    Botsch, W.; Smalian, S.; Hinterding, P. [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany)] [TUV NORD Nuclear c/o TUV NORD EnSys Hannover GmbH and Co.KG, Dept. Radiation Protection and Waste Disposal, Am TueV 1, 30519 Hannover (Germany); Voelzke, H.; Wolff, D.; Kasparek, E. [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing Division 3.4 Safety of Storage Containers Unter den Eichen 44-46, 12203 Berlin (Germany)

    2013-07-01T23:59:59.000Z

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  12. Spent fuel integrity during dry storage

    SciTech Connect (OSTI)

    McKinnon, M.A.

    1995-07-01T23:59:59.000Z

    Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at the Idaho National Engineering Laboratory (INEL) offers significant opportunities for confirmation of the benign nature of long-term dry storage. The cask performance tests conducted at INEL included visual observation and ultrasonic examination of the condition of cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of the fuel; and a qualitative determination of the effect of dry storage and fuel consolidation on fission gas release from the spent fuel rods. A variety of cover gases and cask orientations were used during the cask performance tests. Cover gases included vacuum, nitrogen, and helium. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the conclusion of each performance test, periodic gas sampling was conducted on each cask as part of a surveillance and monitoring activity. Continued surveillance and monitoring activities are being conducted for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are reported in this paper.

  13. Fail-safe storage rack for irradiated fuel rod assemblies

    DOE Patents [OSTI]

    Lewis, D.R.

    1993-03-23T23:59:59.000Z

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  14. Fail-safe storage rack for irradiated fuel rod assemblies

    DOE Patents [OSTI]

    Lewis, Donald R. (Pocatello, ID)

    1993-01-01T23:59:59.000Z

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  15. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...

    Office of Environmental Management (EM)

    Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

  16. Method and apparatus for close packing of nuclear fuel assemblies

    DOE Patents [OSTI]

    Newman, D.F.

    1993-03-30T23:59:59.000Z

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  17. Method and apparatus for close packing of nuclear fuel assemblies

    DOE Patents [OSTI]

    Newman, Darrell F. (Richland, WA)

    1993-01-01T23:59:59.000Z

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  18. Report to Congress on Plan for Interim Storage of Spent Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors More Documents & Publications Information Request, "THE REPORT TO THE PRESIDENT...

  19. Swelling-resistant nuclear fuel

    DOE Patents [OSTI]

    Arsenlis, Athanasios (Hayward, CA); Satcher, Jr., Joe (Patterson, CA); Kucheyev, Sergei O. (Oakland, CA)

    2011-12-27T23:59:59.000Z

    A nuclear fuel according to one embodiment includes an assembly of nuclear fuel particles; and continuous open channels defined between at least some of the nuclear fuel particles, wherein the channels are characterized as allowing fission gasses produced in an interior of the assembly to escape from the interior of the assembly to an exterior thereof without causing significant swelling of the assembly. Additional embodiments, including methods, are also presented.

  20. Surrogate Spent Nuclear Fuel Vibration Integrity Investigation

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL

    2014-01-01T23:59:59.000Z

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

  1. Information handbook on independent spent fuel storage installations

    SciTech Connect (OSTI)

    Raddatz, M.G.; Waters, M.D.

    1996-12-01T23:59:59.000Z

    In this information handbook, the staff of the U.S. Nuclear Regulatory Commission describes (1) background information regarding the licensing and history of independent spent fuel storage installations (ISFSIs), (2) a discussion of the licensing process, (3) a description of all currently approved or certified models of dry cask storage systems (DCSSs), and (4) a description of sites currently storing spent fuel in an ISFSI. Storage of spent fuel at ISFSIs must be in accordance with the provisions of 10 CFR Part 72. The staff has provided this handbook for information purposes only. The accuracy of any information herein is not guaranteed. For verification or for more details, the reader should refer to the respective docket files for each DCSS and ISFSI site. The information in this handbook is current as of September 1, 1996.

  2. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect (OSTI)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18T23:59:59.000Z

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  3. Used Nuclear Fuel Loading and Structural Performance Under Normal...

    Broader source: Energy.gov (indexed) [DOE]

    Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with...

  4. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01T23:59:59.000Z

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  5. INVESTIGATIONS IN GRANITE AT STRIPA, SWEDEN FOR NUCLEAR WASTE STORAGE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    STRIPA, SWEDEN FOR NUCLEAR WASTE STORAGE P. A. tfitherspoon,GRANITE AT STRIPA, SWEDEN FOR NUCLEAR WASTE STORAGE by P. A.Final and safe storage of nuclear waste materials is one of

  6. Energy Storage Fuel Cell Vehicle Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Pesaran, A.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-04-01T23:59:59.000Z

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy's Energy Storage Program.

  7. Energy Storage Fuel Cell Vehicle Analysis

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.; Tataria, H.; Duong, T.

    2005-08-01T23:59:59.000Z

    In recent years, hydrogen fuel cell (FC) vehicle technology has received considerable attention as a strategy to decrease oil consumption and reduce harmful emissions. However, the cost, transient response, and cold performance of FC systems may present significant challenges to widespread adoption of the technology for transportation in the next 15 years. The objectives of this effort were to perform energy storage modeling with fuel cell vehicle simulations to quantify the benefits of hybridization and to identify a process for setting the requirements of ES for hydrogen-powered FC vehicles for U.S. Department of Energy?s Energy Storage Program.

  8. CRITICALITY SAFETY CONTROL OF LEGACY FUEL FOUND AT 105-K WEST FUEL STORAGE BASIN

    SciTech Connect (OSTI)

    JENSEN, M.A.

    2005-08-19T23:59:59.000Z

    In August 2004, two sealed canisters containing spent nuclear fuel were opened for processing at the Hanford Site's K West fuel storage basin. The fuel was to be processed through cleaning and sorting stations, repackaged into special baskets, placed into a cask, and removed from the basin for further processing and eventual dry storage. The canisters were expected to contain fuel from the old Hanford C Reactor, a graphite-moderated reactor fueled by very low-enriched uranium metal. The expected fuel type was an aluminum-clad slug about eight inches in length and with a weight of about eight pounds. Instead of the expected fuel, the two canisters contained several pieces of thin tubes, some with wire wraps. The material was placed into unsealed canisters for storage and to await further evaluation. Videotapes and still photographs of the items were examined in consultation with available retired Hanford employees. It was determined that the items had a fair probability of being cut-up pieces of fuel rods from the retired Hanford Plutonium Recycle Test Reactor (PRTR). Because the items had been safely handled several times, it was apparent that a criticality safety hazard did not exist when handling the material by itself, but it was necessary to determine if a hazard existed when combining the material with other known types of spent nuclear fuel. Because the PRTR operated more than 40 years ago, investigators had to rely on a combination of researching archived documents, and utilizing common-sense estimates coupled with bounding assumptions, to determine that the fuel items could be handled safely with other spent nuclear fuel in the storage basin. As older DOE facilities across the nation are shut down and cleaned out, the potential for more discoveries of this nature is increasing. As in this case, it is likely that only incomplete records will exist and that it will be increasingly difficult to immediately characterize the nature of the suspect fissionable material and its criticality hazards.

  9. Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud

    SciTech Connect (OSTI)

    Hazelton, R.F.

    1987-09-01T23:59:59.000Z

    Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

  10. Hanford`s spent nuclear fuel retrieval: an agressive agenda

    SciTech Connect (OSTI)

    Shen, E.J., Westinghouse Hanford

    1996-12-06T23:59:59.000Z

    Starting December 1997, spent nuclear fuel that has been stored in the K Reactor Fuel Storage Basins will be retrieved over a two year period and repackaged for long term dry storage. The aging and sometimes corroding fuel elements will be recovered and processed using log handled tools and teleoperated manipulator technology. The U.S. Department of Energy (DOE) is committed to this urgent schedule because of the environmental threats to the groundwater and nearby the Columbia River.

  11. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...

    Broader source: Energy.gov (indexed) [DOE]

    5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

  12. California Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric andIndustrial ConsumersYearFeet)total

  13. Connecticut Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSales (Million Cubic Feet)Decade Year-0total

  14. Georgia Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty(Million CubicIndustrialCubicDecade

  15. Sandia Energy - Nuclear Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear Energy

  16. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01T23:59:59.000Z

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  17. 6 Nuclear Fuel Designs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3 U . S . D E 2 3 4 5

  18. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-11-01T23:59:59.000Z

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  19. Fuel handling system for a nuclear reactor

    DOE Patents [OSTI]

    Saiveau, James G. (Hickory Hills, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

    1986-01-01T23:59:59.000Z

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  20. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    Spent Fuel Assay Using Nuclear Resonance Fluo- rescence,” Annual Meeting of the Institute of Nuclear Material Management,

  1. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    E-Print Network [OSTI]

    Jonkmans, G; Jewett, C; Thompson, M

    2012-01-01T23:59:59.000Z

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

  2. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25T23:59:59.000Z

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  3. Florida Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty Vehicles,Year Jan Feb MarYeartotal electric

  4. Proliferation Resistant Nuclear Reactor Fuel

    SciTech Connect (OSTI)

    Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

    2011-02-18T23:59:59.000Z

    Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

  5. Sustainability Features of Nuclear Fuel Cycle Options

    E-Print Network [OSTI]

    Passerini, Stefano

    The nuclear fuel cycle is the series of stages that nuclear fuel materials go through in a cradle to grave framework. The Once Through Cycle (OTC) is the current fuel cycle implemented in the United States; in which an ...

  6. Spent nuclear fuel reprocessing modeling

    SciTech Connect (OSTI)

    Tretyakova, S.; Shmidt, O.; Podymova, T.; Shadrin, A.; Tkachenko, V. [Bochvar Institute, 5 Rogova str., Moscow 123098 (Russian Federation); Makeyeva, I.; Tkachenko, V.; Verbitskaya, O.; Schultz, O.; Peshkichev, I. [Russian Federal Nuclear Center - VNIITF E.I. Zababakhin, p.o.box 245, Snezhinsk, 456770 (Russian Federation)

    2013-07-01T23:59:59.000Z

    The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)

  7. Characterization plan for Hanford spent nuclear fuel

    SciTech Connect (OSTI)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01T23:59:59.000Z

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.

  8. Nuclear fuel recycling in 4 minutes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear fuel recycling in 4 minutes Share Topic Energy Energy sources Nuclear energy Nuclear fuel cycle Reactors...

  9. Nuclear reactor composite fuel assembly

    DOE Patents [OSTI]

    Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

  10. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  11. An experiment to simulate the heat transfer properties of a dry, horizontal spent nuclear fuel assembly

    E-Print Network [OSTI]

    Lovett, Phyllis Maria

    1991-01-01T23:59:59.000Z

    Nuclear power reactors generate highly radioactive spent fuel assemblies. Initially, the spent fuel assemblies are stored for a period of several years in an on-site storage facility to allow the radioactivity levels of ...

  12. Hydrogen fuel closer to reality because of storage advances

    E-Print Network [OSTI]

    - 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward attractive fuel for vehicles or other transportation modes. Researchers revealed the new single-stage method as a "chemical storage tank" for hydrogen fuel. An ammonia borane system could allow hydrogen to be easily

  13. Spent nuclear fuel discharges from US reactors 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  14. Svensk Krnbrnslehantering AB Swedish Nuclear Fuel

    E-Print Network [OSTI]

    Döös, Kristofer

    Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24.skb.se. #12;3 Abstract In the safety assessment of a potential repository for spent nuclear fuel

  15. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10T23:59:59.000Z

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  16. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11T23:59:59.000Z

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  17. Development of Thermal Analysis Capability of Dry Storage Cask for Spend Fuel Interim Storage

    SciTech Connect (OSTI)

    Fu-Kuang Ko; Liang, Thomas K.S.; Chung-Yu Yang [Institute of Nuclear Energy Research P.O. Box 3-3, Longtan, 32500, Taiwan (China)

    2002-07-01T23:59:59.000Z

    As most of the nuclear power plants, on-site spent fuel pools (SFP) of Taiwan's plants were not originally designed with a storage capacity for all the spent fuel generated over the operating life by their reactors. For interim spent fuel storage, dry casks are one of the most reliable measures to on-site store over-filled assemblies from SFPs. The NUHOMS{sup R}-52B System consisting of a canister stored horizontally in a concrete module is selected for thermal evaluation in this paper. The performance of each cask in criticality, radioactive, material and thermal needs to be carefully addressed to ensure its enduring safety. Regarding the thermal features of dry storage casks, three different kinds of heat transfer mechanisms are involved, which include natural convection heat transfer outside and/or inside the canister, radiation heat transfer inside and outside the canister, and conduction heat transfer inside the canister. To analyze the thermal performance of dry storage casks, RELAP5-3D is adopted to calculate the natural air convection and radiation heat transfer outside the canister to the ambient environment, and ANSYS is applied to calculate the internal conduction and radiation heat transfer. During coupling iteration between codes, the heat energy across the canister wall needs to be conserved, and the inner wall temperature of the canister needs to be converged. By the coupling of RELAP5-3D and ANSYS, the temperature distribution within each fuel assembly inside canisters can be calculated and the peaking cladding temperature can be identified. (authors)

  18. Thermal Modeling of NUHOMS HSM-15 and HSM-1 Storage Modules at Calvert Cliffs Nuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.; Cuta, Judith M.; Collins, Brian A.; Siciliano, Edward R.

    2012-10-01T23:59:59.000Z

    As part of the Used Fuel Disposition Campaign of the Department of Energy (DOE), visual inspections and temperature measurements were performed on two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI). Detailed thermal models models were developed to obtain realistic temperature predictions for actual storage systems, in contrast to conservative and bounding design basis calculations.

  19. Technical strategy for the management of INEEL spent nuclear fuel

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report presents evaluations, findings, and recommendations of the Idaho National Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Task Team. The technical strategy developed by the Task Team includes stabilization, near term storage, packaging, transport, and ultimate disposal. Key issues identified and discussed include waste characterization, criticality, packaging, waste form performance, and special fuels. Current plans focus on onsite needs, and include three central elements: (1) resolution of near-term vulnerabilities, (2) consolidation of storage locations, and (3) achieving dry storage in transportable packages. In addition to the Task Team report, appendices contain information on the INEEL spent fuel inventory; regulatory decisions and agreements; and analyses of criticality, packaging, storage, transportation, and system performance of a geological repository. 16 refs., 6 figs., 4 tabs.

  20. Webinar: Material Characterization of Storage Vessels for Fuel Cell Forklifts

    Broader source: Energy.gov [DOE]

    Video recording of the webinar titled, Material Characterization of Storage Vessels for Fuel Cell Forklifts, originally presented on August 14, 2012.

  1. Technical basis for extending storage of the UK's advanced gas-cooled reactor fuel

    SciTech Connect (OSTI)

    Hambley, D.I. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2013-07-01T23:59:59.000Z

    The UK Nuclear Decommissioning Agency has recently declared a date for cessation of reprocessing of oxide fuel from the UK's Advanced Gas-cooled Reactors (AGRs). This will fundamentally change the management of AGR fuel: from short term storage followed by reprocessing to long term fuel storage followed, in all likelihood, by geological disposal. In terms of infrastructure, the UK has an existing, modern wet storage asset that can be adapted for centralised long term storage of dismantled AGR fuel under the required pond water chemistry. No AGR dry stores exist, although small quantities of fuel have been stored dry as part of experimental programmes in the past. These experimental programmes have shown concerns about corrosion rates.

  2. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mary Lou Dunzik-Gougar; Christopher A. Juchau

    2010-08-01T23:59:59.000Z

    A review of existing nuclear fuel cycle systems analysis codes was performed to determine if any existing codes meet technical and functional requirements defined for a U.S. national program supporting the global and domestic assessment, development and deployment of nuclear energy systems. The program would be implemented using an interconnected architecture of different codes ranging from the fuel cycle analysis code, which is the subject of the review, to fundamental physical and mechanistic codes. Four main functions are defined for the code: (1) the ability to characterize and deploy individual fuel cycle facilities and reactors in a simulation, while discretely tracking material movements, (2) the capability to perform an uncertainty analysis for each element of the fuel cycle and an aggregate uncertainty analysis, (3) the inclusion of an optimization engine able to optimize simultaneously across multiple objective functions, and (4) open and accessible code software and documentation to aid in collaboration between multiple entities and facilitate software updates. Existing codes, categorized as annualized or discrete fuel tracking codes, were assessed according to the four functions and associated requirements. These codes were developed by various government, education and industrial entities to fulfill particular needs. In some cases, decisions were made during code development to limit the level of detail included in a code to ease its use or to focus on certain aspects of a fuel cycle to address specific questions. The review revealed that while no two of the codes are identical, they all perform many of the same basic functions. No code was able to perform defined function 2 or several requirements of functions 1 and 3. Based on this review, it was concluded that the functions and requirements will be met only with development of a new code, referred to as GENIUS.

  3. Spent nuclear fuel discharges from US reactors 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-05T23:59:59.000Z

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  4. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    SciTech Connect (OSTI)

    Lata

    1996-09-26T23:59:59.000Z

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  5. Review of Drying Methods for Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Large, W.S.

    1999-10-21T23:59:59.000Z

    SRTC is developing technology for direct disposal of aluminum spent nuclear fuel (SNF). The development program includes analyses and tests to support design and safe operation of a facility for ''road ready'' dry storage of SNF-filled canisters. The current technology development plan includes review of available SNF drying methods and recommendation of a drying method for aluminum SNF.

  6. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01T23:59:59.000Z

    Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

  7. Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042

    SciTech Connect (OSTI)

    Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States)] [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States); Wagner, John C. [Oak Ridge National Laboratory (United States)] [Oak Ridge National Laboratory (United States)

    2013-07-01T23:59:59.000Z

    The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup fuel storage and transportation. This paper discusses the staff's preliminary considerations on the safety implication of fuel reconfiguration with respect to nuclear safety (subcriticality control), radiation shielding, containment, the performance of the thermal functions of the packages, and the retrievability of the contents from regulatory perspective. (authors)

  8. Compositions and methods for treating nuclear fuel

    DOE Patents [OSTI]

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13T23:59:59.000Z

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  9. Compositions and methods for treating nuclear fuel

    DOE Patents [OSTI]

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2014-01-28T23:59:59.000Z

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  10. Spent nuclear fuel project design basis capacity study

    SciTech Connect (OSTI)

    Cleveland, K.J.

    1998-07-22T23:59:59.000Z

    A parametric study of the Spent Nuclear Fuel Project system capacity is presented. The study was completed using a commercially available software package to develop a summary level model of the major project systems. A base case, reflecting the Fiscal Year 1998 process configuration, is evaluated. Parametric evaluations are also considered, investigating the impact of higher fuel retrieval system productivity and reduced shift operations at the canister storage building on total project duration.

  11. Application of Hydrogen Storage Technologies for Use in Fueling

    E-Print Network [OSTI]

    of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity DeliveryApplication of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles technologies to support hydrogen dispensing stations Submitted by Hawai`i Natural Energy Institute School

  12. Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility

    SciTech Connect (OSTI)

    Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

    1983-01-01T23:59:59.000Z

    A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

  13. Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Marshall, William BJ J [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., <40 years). Extended storage (ES) time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k{sub eff}. Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

  14. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    SciTech Connect (OSTI)

    P.M. O'Leary; Dr. M.L. Pitts

    2000-08-21T23:59:59.000Z

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers.

  15. Fuel Cycle Options for Optimized Recycling of Nuclear Fuel

    E-Print Network [OSTI]

    Aquien, A.

    The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

  16. C-26 and the nuclear fuel cycle

    SciTech Connect (OSTI)

    Trahey, N.M.; Platt, A.M.

    1983-03-01T23:59:59.000Z

    The activities of Committee C-26 on the nuclear fuel cycle are discussed. To date, Committee C-26 has issued some 35 standards with 12 more in various stages of development at the working group and sub-committee levels. C-26 has undertaken standards responsibility for all fuel and related materials represented in the nuclear fuels cycle.

  17. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    SciTech Connect (OSTI)

    Schmitten, P.F.; Wright, J.B.

    1980-08-01T23:59:59.000Z

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 200{sup 0}F and 140{sup 0}F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data.

  18. The Evolution of Dry Spent Fuel Storage in the United States

    SciTech Connect (OSTI)

    McGough, M.S. [Duratek Inc., 695 Bamesley Lane, Alpharetta, GA 30022 (United States); Bland, D.W. [TriVis, Inc., 1001 Yeager Parkway, Pelham, AL 35124 (United States)

    2006-07-01T23:59:59.000Z

    This paper reviews the evolution of Dry Spent Fuel storage technology and application in the United States. Dating back to the legislation signed by Jimmy Carter on April 7, 1977, to outlaw spent fuel reprocessing, the nations spent fuel pools are gradually becoming filled to capacity. This has necessitated the development of new technologies to store spent fuel in dry casks, predominantly at nuclear power plant sites, awaiting the availability of the federal repository at Yucca Mountain. Site-specific conditions and changes in types of fuel being discharged from reactors have driven a constant evolution of technologies to support this critical need. This paper provides an overview of those changes, which have influenced the evolution of dry storage technology. Focus is provided more towards current technology and cask loading practices, as opposed to those technologies, which are no longer in heavy use. Detailed pictorial material is presented showing the loading sequences of various systems in current use. This paper provides a critical primer on Dry Spent Fuel Storage technology. It provides anyone who is new to dry storage, or who is contemplating initiating dry storage at a nuclear plant site, with useful background and history upon which to build programmatic decisions. (authors)

  19. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, Victor T. (Idaho Falls, ID)

    1993-01-01T23:59:59.000Z

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  20. Simulated nuclear reactor fuel assembly

    DOE Patents [OSTI]

    Berta, V.T.

    1993-04-06T23:59:59.000Z

    An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

  1. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01T23:59:59.000Z

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  2. Overview of the spent nuclear fuel project at Hanford

    SciTech Connect (OSTI)

    Daily, J.L. [Dept. of Energy, Richland, WA (United States). Richland Operations Office; Fulton, J.C.; Gerber, E.W.; Culley, G.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-01T23:59:59.000Z

    The Spent Nuclear Fuel Project`s mission at Hanford is to {open_quotes}Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.{close_quotes} The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program.

  3. Categorization of Used Nuclear Fuel Inventory in Support of a...

    Energy Savers [EERE]

    of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy The Office of Nuclear Energy has conducted a technical review and assessment of...

  4. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Energy Savers [EERE]

    nuclear fuel cycle technology development, meet the need for advanced nuclear energy production and help to close the nuclear fuel cycle in the United States. "Today's awards...

  5. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01T23:59:59.000Z

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  6. Spent Nuclear Fuel (SNF) Project Product Specification

    SciTech Connect (OSTI)

    PAJUNEN, A.L.

    2000-12-07T23:59:59.000Z

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major sub-system. Section 4.0--Specific technical basis description for each product specification. The scope of this product specification does not include data collection requirements to support accountability or environmental compliance activities.

  7. Concrete Shield Performance of the VSC-17 Spent Nuclear Fuel Cask

    SciTech Connect (OSTI)

    Koji Shirai

    2006-04-01T23:59:59.000Z

    The VSC-17 Spent Nuclear Fuel Storage Cask was surveyed for degradation of the concrete shield by radiation measurement, temperature measurement, and ultrasonic testing. No general loss of shielding function was identified.

  8. Extending dry storage of spent LWR fuel for 100 years.

    SciTech Connect (OSTI)

    Einziger, R. E.

    1998-12-16T23:59:59.000Z

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and excessive creep and mechanical property changes. Postulated accident scenarios would be the same for 20-year or 100-year storage, because they are mostly governed by operational or outside events, and not by the cask or fuel. Analyses of accident scenarios during extended dry storage could be impacted by fuel and cask changes that would result from the extended period of storage. Overall, the results of this work indicate that, based on fuel behavior, spent fuel at burnups below {approximately}45 GWd/MTU can be dry stored for 100 years. Long-term storage of higher burnup fuel or fuels with newer cladding will require the determination of temperature limits based on evaluation of stress-driven degradation mechanisms of the cladding.

  9. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01T23:59:59.000Z

    capacity and operating efficiency of nuclear plants [31,operating efficiency of nuclear plants in the past decades.cost of the fuel Nuclear Plant Capacity Factor Nuclear

  10. Seismic Behavior of Spent Fuel Dry Cask Storage Systems

    SciTech Connect (OSTI)

    Shaukat, Syed K. [U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States); Luk, Vincent K. [Sandia National Laboratories, PO Box 5800. Albuquerque, New Mexico 87185-0744 (United States)

    2002-07-01T23:59:59.000Z

    The U. S. Nuclear Regulatory Commission (NRC) is conducting a research program to investigate technical issues concerning the dry cask storage systems of spent nuclear fuel by conducting confirmatory research for establishing criteria and review guidelines for the seismic behavior of these systems. The program focuses on developing 3-D finite element analysis models that address the dynamic coupling of a module/cask, a flexible concrete pad, and an underlying soil/rock foundation, in particular, the soil-structure-interaction. Parametric analyses of the coupled models are performed to include variations in module/cask geometry, site seismicity, underlying soil properties, and cask/pad interface friction. The analyses performed include: 1) a rectangular dry cask module typical of Transnuclear West design at a site in Western USA where high seismicity is expected; 2) a cylindrical dry cask typical of Holtec design at a site in Eastern USA where low seismicity is expected; and 3) a cylindrical dry cask typical of Holtec design at a site in Western USA with medium high seismicity. The paper includes assumptions made in seismic analyses performed, results, and conclusions. (authors)

  11. Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage

    DOE Patents [OSTI]

    Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.

    2004-03-23T23:59:59.000Z

    A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.

  12. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall Business Vouchers Documents SmallSmall

  13. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-08-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  14. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  15. World nuclear fuel cycle requirements 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-26T23:59:59.000Z

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

  16. Fuel cycle options for optimized recycling of nuclear fuel

    E-Print Network [OSTI]

    Aquien, Alexandre

    2006-01-01T23:59:59.000Z

    The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

  17. Overview of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Leuze, R.E.

    1981-01-01T23:59:59.000Z

    The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity.

  18. Nuclear Fuel Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from the ConsumerNuclearCycle Nuclear

  19. Nuclear fuel elements having a composite cladding

    DOE Patents [OSTI]

    Gordon, Gerald M. (Fremont, CA); Cowan, II, Robert L. (Fremont, CA); Davies, John H. (San Jose, CA)

    1983-09-20T23:59:59.000Z

    An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

  20. Wisconsin Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel5,266 6,090IndustrialVehicle Fuel Price

  1. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect (OSTI)

    Linderoth, C.E.

    1984-03-01T23:59:59.000Z

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  2. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  3. Nuclear Fuels | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This

  4. Nebraska Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in DelawareTotal Consumption (MillionYeartotal electric

  5. Maryland Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Million Cubic Feet) MarylandYearBasetotal electric

  6. Michigan Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYear Jan FebSame Monthtotal electric

  7. Minnesota Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (MillionperYearThousandFeet) Workingtotal

  8. Spent Nuclear Fuel (SNF) Project Design Basis Capacity Study

    SciTech Connect (OSTI)

    CLEVELAND, K.J.

    2000-08-17T23:59:59.000Z

    This study of the design basis capacity of process systems was prepared by Fluor Federal Services for the Spent Nuclear Fuel Project. The evaluation uses a summary level model of major process sub-systems to determine the impact of sub-system interactions on the overall time to complete fuel removal operations. The process system model configuration and time cycle estimates developed in the original version of this report have been updated as operating scenario assumptions evolve. The initial document released in Fiscal Year (FY) 1996 varied the number of parallel systems and transport systems over a wide range, estimating a conservative design basis for completing fuel processing in a two year time period. Configurations modeling planned operations were updated in FY 1998 and FY 1999. The FY 1998 Base Case continued to indicate that fuel removal activities at the basins could be completed in slightly over 2 years. Evaluations completed in FY 1999 were based on schedule modifications that delayed the start of KE Basin fuel removal, with respect to the start of KW Basin fuel removal activities, by 12 months. This delay resulted in extending the time to complete all fuel removal activities by 12 months. However, the results indicated that the number of Cold Vacuum Drying (CVD) stations could be reduced from four to three without impacting the projected time to complete fuel removal activities. This update of the design basis capacity evaluation, performed for FY 2000, evaluates a fuel removal scenario that delays the start of KE Basin activities such that staffing peaks are minimized. The number of CVD stations included in all cases for the FY 2000 evaluation is reduced from three to two, since the scenario schedule results in minimal time periods of simultaneous fuel removal from both basins. The FY 2000 evaluation also considers removal of Shippingport fuel from T Plant storage and transfer to the Canister Storage Building for storage.

  9. apex nuclear fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ... Kazimi, Mujid S. 19 Nuclear Waste Imaging and Spent Fuel Verification by...

  10. alternative nuclear fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 2 Impact of alternative nuclear fuel cycle...

  11. MANAGING SPENT NUCLEAR FUEL WASTES AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Hill, Thomas J

    2005-09-01T23:59:59.000Z

    The Idaho National Engineering Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy is in part due to the history of the INL as the National Reactor Testing Station, in part to its mission to recover highly enriched uranium from SNF and in part to it’s mission to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facility, some dating back 50 years in the site history. The success of the INL SNF program is measured by its ability to: 1) achieve safe existing storage, 2) continue to receive SNF from other locations, both foreign and domestic, 3) repackage SNF from wet storage to interim dry storage, and 4) prepare the SNF for dispositioning in a federal repository. Because of the diversity in the SNF and the facilities at the INL, the INL is addressing almost very condition that may exist in the SNF world. Many of solutions developed by the INL are applicable to other SNF storage sites as they develop their management strategy. The SNF being managed by the INL are in a variety of conditions, from intact assemblies to individual rods or plates to powders, rubble, and metallurgical mounts. Some of the fuel has been in wet storage for over forty years. The fuel is stored bare, or in metal cans and either wet under water or dry in vaults, caissons or casks. Inspections have shown varying degrees of corrosion and degradation of the fuel and the storage cans. Some of the fuel has been recanned under water, and the conditions of the fuel inside the second or third can are unknown. The fuel has been stored in one of 10 different facilities: five wet pools and one casks storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The wet pools range from forty years old to the most modern pool in the US Department of Energy (DOE) complex. The near-term objective is moving the fuel in the older wet storage facilities to interim dry storage facilities, thus permitting the shutdown and decommission of the older facilities. Two wet pool facilities, one at the Idaho Nuclear Technology and Engineering Center and the other at Test Area North, were targeted for initial SNF movements since these were some of the oldest at the INL. Because of the difference in the SNF materials different types of drying processes had to be developed. Passive drying, as is done with typical commercial SNF was not an option because on the condition of some of the fuel, the materials to be dried, and the low heat generation of some of the SNF. There were also size limitations in the existing facility. Active dry stations were designed to address the specific needs of the SNF and the facilities.

  12. Alabama Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame Monthtotal electric

  13. Arizona Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U (Million CubicTotalYear Jan

  14. Arkansas Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 UFeet) DecadeFeet)Sametotal

  15. Virginia Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption (MillionSeparation 2,378

  16. Washington Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0 0Feet)Same Month Previoustotal

  17. Louisiana Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0InputYear Jan Febtotal electric

  18. Mississippi Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet) Decadetotal

  19. US Department of Energy Storage of Spent Fuel and High Level Waste

    SciTech Connect (OSTI)

    Sandra M Birk

    2010-10-01T23:59:59.000Z

    ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

  20. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    SciTech Connect (OSTI)

    Carlisle, Derek; Adamson, Kate [Sellafield Ltd, Sellafield, Cumbria (United Kingdom)

    2012-07-01T23:59:59.000Z

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took over fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)

  1. Analysis of Fuel Cell Vehicles Hybridization and Implications for Energy Storage Devices (Presentation)

    SciTech Connect (OSTI)

    Zolot, M.; Markel, T.; Pesaran, A.

    2004-06-01T23:59:59.000Z

    Presents an analysis of hybridization and implications energy storage devices concerning fuel cell vehicles.

  2. Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGasStorageNREL is aCELL

  3. Hydrogen fuel closer to reality because of storage advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen and Fuel CellFew-LayerGasStorageNREL isCoal

  4. Pyrochemical Treatment of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

    2005-10-01T23:59:59.000Z

    Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

  5. Study on concrete cask storage of spent fuel in Japan

    SciTech Connect (OSTI)

    Itoh, C. [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Nuclear Fuel Cycle Dept.; Onodera, A.; Yamada, N. [Hitachi Zosen Corp., Tokyo (Japan). Nuclear Div.

    1993-12-31T23:59:59.000Z

    The present report describes the status of the first year`s work of a five-year-long study on concrete cask storage of spent fuel in Japan. Firstly, the proposed study program is elaborated to clarify the position of the present work. Then, the results of the study which have been obtained so far are described and the technical issues are addressed to make the concrete cask storage viable in Japan.

  6. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    SciTech Connect (OSTI)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01T23:59:59.000Z

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems` Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

  7. Managing Spent Nuclear Fuel at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Thomas Hill; Denzel L. Fillmore

    2005-10-01T23:59:59.000Z

    The Idaho National Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy derives from the history of the INL as the National Reactor Testing Station, and from its mission to recover HEU from SNF and to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facilities, some 50 years old. SNF at INL has many forms—from intact assemblies down to metallurgical mounts, and some fuel has been wet stored for over 40 years. SNF is stored bare or in metal cans under water, or dry in vaults, caissons or casks. Inspection shows varying corrosion and degradation of the SNF and its storage cans. SNF has been stored in 10 different facilities: 5 pools, one cask storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The pools range in age from 40 years old to the most modern in the US Department of Energy (DOE) complex. The near-term objective is to move SNF from older pools to interim dry storage, allowing shutdown and decommissioning of the older facilities. This move involves drying methods that are dependent on fuel type. The long-term objective is to have INL SNF in safe dry storage and ready to be shipped to the National Repository. The unique features of the INL SNF requires special treatments and packaging to meet the proposed repository acceptance criteria and SNF will be repackaged in standardized canisters for shipment and disposal in the National Repository. Disposal will use the standardized canisters that can be co-disposed with High Level Waste glass logs to limit the total fissile material in a repository waste package. The DOE standardized canister also simplifies the repository handling of the multitude of DOE SNF sizes and shapes.

  8. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef [Los Alamos National Laboratory; Ewing, Tom [ANL; Dickman, Debbie [PNNL; Gavrilyuk, Victor [UKRAINE; Drapey, Sergey [UKRAINE; Kirischuk, Vladimir [UKRAINE; Strilchuk, Nikolay [UKRAINE

    2009-01-01T23:59:59.000Z

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  9. Tennessee Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun Jul AugSame Month

  10. Texas Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun1DecadeMonth

  11. Vermont Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane,Thousand Cubic Feet)total electric

  12. Illinois Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade Year-0Elements)Gas WellsSametotal

  13. Pennsylvania Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear Jan Feb Mar Apr May JunYear Janfromtotal

  14. Ohio Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9 20102009VentedMonth Previoustotal

  15. Iowa Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base Gas) (Million Cubictotal

  16. Kansas Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base6 5Month PreviousDecadetotal

  17. Massachusetts Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Million CubicPriceFeet)Feet)Year Jantotal

  18. Missouri Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 (Million Cubic Feet)Year JanBaseYear Jan

  19. Composite construction for nuclear fuel containers

    DOE Patents [OSTI]

    Cheng, B. C.; Rosenbaum, H. S.; Armijo, J. S.

    1987-04-21T23:59:59.000Z

    Disclosed is an improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof. 1 fig.

  20. Composite construction for nuclear fuel containers

    DOE Patents [OSTI]

    Cheng, Bo-Ching (Fremont, CA); Rosenbaum, Herman S. (Fremont, CA); Armijo, Joseph S. (Saratoga, CA)

    1987-01-01T23:59:59.000Z

    An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

  1. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering...

    Energy Savers [EERE]

    03: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs EIS-0203: Spent Nuclear Fuel Management and...

  2. Nondestructive Spent Fuel Assay Using Nuclear Resonance Fluorescence

    E-Print Network [OSTI]

    Quiter, Brian

    2010-01-01T23:59:59.000Z

    Spent Fuel Library for Assessing Varied Nondestructive Assay Techniques for Nuclear Safeguards," LA-UR 09-01188, ANS Advances in Nuclear Fuel Management

  3. SciTech Connect: Fundamental aspects of nuclear reactor fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental aspects of nuclear reactor fuel elements Citation Details In-Document Search Title: Fundamental aspects of nuclear reactor fuel elements You are accessing a document...

  4. EIS-0251: Department of the Navy Final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (November 1996)

    Broader source: Energy.gov [DOE]

    This Final Environmental Impact Statement addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination.

  5. PRODUCTION, STORAGE AND PROPERTIES OF HYDROGEN AS INTERNAL COMBUSTION ENGINE FUEL: A CRITICAL REVIEW

    E-Print Network [OSTI]

    In the age of ever increasing energy demand, hydrogen may play a major role as fuel. Hydrogen can be used as a transportation fuel, whereas neither nuclear nor solar energy can be used directly. The blends of hydrogen and ethanol have been used as alternative renewable fuels in a carbureted spark ignition engine. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. A stoichiometric hydrogen–air mixture has very low minimum ignition energy of 0.02 MJ. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides (NOx). The main drawbacks of using hydrogen as a transportation fuel are huge on-board storage tanks. Hydrogen stores approximately 2.6 times more energy per unit mass than gasoline. The disadvantage is that it needs an estimated 4 times more volume than gasoline to store that energy. The production and the storage of hydrogen fuel are not yet fully standardized. The paper reviews the different production techniques as well as storage systems of hydrogen to be used as IC engine fuel. The desirable and undesirable properties of hydrogen as IC engine fuels have also been discussed.

  6. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    SciTech Connect (OSTI)

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  7. Examination of Spent Pressurized Water Reactor Fuel Rods After 15 Years in Dry Storage

    SciTech Connect (OSTI)

    Einziger, Robert E. [Argonne National Laboratory (United States); Tsai Hanchung [Argonne National Laboratory (United States); Billone, Michael C. [Argonne National Laboratory (United States); Hilton, Bruce A. [Argonne National Laboratory-West (United States)

    2003-11-15T23:59:59.000Z

    For [approximately equal to]15 yr Dominion Generation's Surry Nuclear Station 15 x 15 Westinghouse pressurized water reactor (PWR) fuel was stored in a dry inert-atmosphere Castor V/21 cask at the Idaho National Environmental and Engineering Laboratory at peak cladding temperatures that decreased from {approx}350 to 150 deg. C. Before storage, the loaded cask was subjected to thermal-benchmark tests, during which time the peak temperatures were greater than 400 deg. C. The cask was opened to examine the fuel rods for degradation and to determine if they were suitable for extended storage. No fuel rod breaches and no visible degradation or crud/oxide spallation from the fuel rod surface were observed. The results from profilometry, gas release measurements, metallographic examinations, microhardness determination, and cladding hydrogen behavior are reported in this paper.It appears that little or no fission gas was released from the fuel pellets during either the thermal-benchmark tests or the long-term storage. In the central region of the fuel column, where the axial temperature gradient in storage is small, the measured hydrogen content in the cladding is consistent with the thickness of the oxide layer. At {approx}1 m above the fuel midplane, where a steep temperature gradient existed in the cask, less hydrogen is present than would be expected from the oxide thickness that developed in-reactor. Migration of hydrogen during dry storage probably occurred and may signal a higher-than-expected concentration at the cooler ends of the rod. The volume of hydrides varies azimuthally around the cladding, and at some elevations, the hydrides appear to have segregated somewhat to the inner and outer cladding surfaces. It is, however, impossible to determine if this segregation occurred in-reactor or during transportation, thermal-benchmark tests, or the dry storage period. The hydrides retained the circumferential orientation typical of prestorage PWR fuel rods. Little or no cladding creep occurred during thermal-benchmark testing and dry storage. It is anticipated that the creep would not increase significantly during additional storage because of the lower temperature after 15 yr, continual decrease in temperature from the reduction in decay heat, and concurrent reductions in internal rod pressure and stress. This paper describes the results of the characterization of the fuel and intact cladding, as well as the implications of these results for long-term (i.e., beyond 20 yr) dry-cask storage.

  8. The nuclear fuel cycle: Reminiscences, observations and expectations

    SciTech Connect (OSTI)

    Wymer, R.G.

    1987-01-01T23:59:59.000Z

    The author discusses his involvement in the nuclear business and gives a personal perspective on nuclear energy, especially the nuclear fuel cycle.

  9. Hanford Site existing irradiated fuel storage facilities description

    SciTech Connect (OSTI)

    Willis, W.L.

    1995-01-11T23:59:59.000Z

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  10. NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and ResourcesEnergyHydrogen Storage

  11. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    SciTech Connect (OSTI)

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative changes, and meeting the needs of the commercial nuclear industry (including developing and evaluating fuel concepts that may enhance accident tolerance in light water reactors while possibly improving fuel performance) are program priorities. Continuing to build partnerships and collaborations with industry, universities, international organizations, and other DOE programs are essential to addressing the challenges facing the FCT program. (authors)

  12. Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices: June 2004

    SciTech Connect (OSTI)

    Zolot, M.; Markel, T.; Pesaran, A.

    2007-01-01T23:59:59.000Z

    This paper addresses the impact of fuel efficiency characteristics on vehicle system efficiency, fuel economy from downsizing different fuel cells, as well as the energy storage system.

  13. Apparatus for shearing spent nuclear fuel assemblies

    DOE Patents [OSTI]

    Weil, Bradley S. (Knoxville, TN); Metz, III, Curtis F. (Knoxville, TN)

    1980-01-01T23:59:59.000Z

    A method and apparatus are described for shearing spent nuclear fuel assemblies of the type comprising an array of fuel pins disposed within an outer metal shell or shroud. A spent fuel assembly is first compacted in a known manner and then incrementally sheared using fixed and movable shear blades having matched laterally projecting teeth which slidably intermesh to provide the desired shearing action. Incremental advancement of the fuel assembly after each shear cycle is limited to a distance corresponding to the lateral projection of the teeth to ensure fuel assembly breakup into small uniform segments which are amenable to remote chemical processing.

  14. Nuclear Fuel Cycle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from the ConsumerNuclear

  15. Nuclear Fuel Facts: Uranium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from the ConsumerNuclearCycle

  16. Nuclear Fuels & Materials Spotlight Volume 4

    SciTech Connect (OSTI)

    I. J. van Rooyen,; T. M. Lillo; Y. Q. WU; P.A. Demkowicz; L. Scott; D.M. Scates; E. L. Reber; J. H. Jackson; J. A. Smith; D.L. Cottle; B.H. Rabin; M.R. Tonks; S.B. Biner; Y. Zhang; R.L. Williamson; S.R. Novascone; B.W. Spencer; J.D. Hales; D.R. Gaston; C.J. Permann; D. Anders; S.L. Hayes; P.C. Millett; D. Andersson; C. Stanek; R. Ali; S.L. Garrett; J.E. Daw; J.L. Rempe; J. Palmer; B. Tittmann; B. Reinhardt; G. Kohse; P. Ramuhali; H.T. Chien; T. Unruh; B.M. Chase; D.W. Nigg; G. Imel; J. T. Harris

    2014-04-01T23:59:59.000Z

    As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • The first identification of silver and palladium migrating through the SiC layer in TRISO fuel • A description of irradiation assisted stress corrosion testing capabilities that support commercial light water reactor life extension • Results of high-temperature safety testing on coated particle fuels irradiated in the ATR • New methods for testing the integrity of irradiated plate-type reactor fuel • Description of a 'Smart Fuel' concept that wirelessly provides real time information about changes in nuclear fuel properties and operating conditions • Development and testing of ultrasonic transducers and real-time flux sensors for use inside reactor cores, and • An example of a capsule irradiation test. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps to spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at INL, and hope that you find this issue informative.

  17. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect (OSTI)

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01T23:59:59.000Z

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  18. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operation of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts.

  19. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01T23:59:59.000Z

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  20. Storage stability studies of fuels derived from shale and petroleum

    SciTech Connect (OSTI)

    Jones, L.; Hazlett, R.N.; Li, N.C.; Ge, J.

    1983-01-01T23:59:59.000Z

    Results of studies on the characterization and mechanisms of formation of deposits in containers used for storage of jet and diesel fuels are reported. The studies were aimed at storage times of weeks or months. Development of the amount of sediments depends on stress temperature, and the rate of sediment formation can be determined by traditional gravimetric procedures. Early stages of fuel storage degradation can be monitored by laser light scattering methods. The effects of certain heteroaromatic compounds on the formation of sediments were studied by light scattering techniques, liquid state NMR, solid state NMR, ESCA, and Fourier Transform Infrared Spectroscopy. Oxygen was found to be necessary for the formation of sediments, and 2,5-dimethylpyrrole was the most powerful promoter of deposit formation. (BLM)

  1. Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly...

    Broader source: Energy.gov (indexed) [DOE]

    current approach of long-term storage at its nuclear power plants and independent spent fuel storage installation, and deferred transportation of used nuclear fuel (UNF), along...

  2. Characteristics of spent nuclear fuel

    SciTech Connect (OSTI)

    Notz, K.J.

    1988-04-01T23:59:59.000Z

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will, or may, eventually be disposed of in a geological repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. This report deals with spent fuels, but for completeness, the other sources are described briefly. Detailed characterizations are required for all of these potential repository wastes. These characteristics include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. In addition, the present inventories and projected quantities of the various wastes are needed. This information has been assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. 5 refs., 3 figs., 4 tabs.

  3. The necessity for permanence : making a nuclear waste storage facility

    E-Print Network [OSTI]

    Stupay, Robert Irving

    1991-01-01T23:59:59.000Z

    The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

  4. advanced nuclear fuels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

  5. advanced nuclear fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

  6. CPP-603 Underwater Fuel Storage Facility Site Integrated Stabilization Management Plan (SISMP), Volume I

    SciTech Connect (OSTI)

    Denney, R.D.

    1995-10-01T23:59:59.000Z

    The CPP-603 Underwater Fuel Storage Facility (UFSF) Site Integrated Stabilization Management Plan (SISMP) has been constructed to describe the activities required for the relocation of spent nuclear fuel (SNF) from the CPP-603 facility. These activities are the only Idaho National Engineering Laboratory (INEL) actions identified in the Implementation Plan developed to meet the requirements of the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 to the Secretary of Energy regarding an improved schedule for remediation in the Defense Nuclear Facilities Complex. As described in the DNFSB Recommendation 94-1 Implementation Plan, issued February 28, 1995, an INEL Spent Nuclear Fuel Management Plan is currently under development to direct the placement of SNF currently in existing INEL facilities into interim storage, and to address the coordination of intrasite SNF movements with new receipts and intersite transfers that were identified in the DOE SNF Programmatic and INEL Environmental Restoration and Waste Management Environmental Impact Statement Record, of Decision. This SISMP will be a subset of the INEL Spent Nuclear Fuel Management Plan and the activities described are being coordinated with other INEL SNF management activities. The CPP-603 relocation activities have been assigned a high priority so that established milestones will be meet, but there will be some cases where other activities will take precedence in utilization of available resources. The Draft INEL Site Integrated Stabilization Management Plan (SISMP), INEL-94/0279, Draft Rev. 2, dated March 10, 1995, is being superseded by the INEL Spent Nuclear Fuel Management Plan and this CPP-603 specific SISMP.

  7. REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)

    SciTech Connect (OSTI)

    CHASTAIN, S.A.

    2005-10-24T23:59:59.000Z

    Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

  8. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    SciTech Connect (OSTI)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01T23:59:59.000Z

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  9. Nuclear fuel particles and method of making nuclear fuel compacts therefrom

    DOE Patents [OSTI]

    DeVelasco, Rubin I. (Encinitas, CA); Adams, Charles C. (San Diego, CA)

    1991-01-01T23:59:59.000Z

    Methods for making nuclear fuel compacts exhibiting low heavy metal contamination and fewer defective coatings following compact fabrication from a mixture of hardenable binder, such as petroleum pitch, and nuclear fuel particles having multiple layer fission-product-retentive coatings, with the dense outermost layer of the fission-product-retentive coating being surrounded by a protective overcoating, e.g., pyrocarbon having a density between about 1 and 1.3 g/cm.sup.3. Such particles can be pre-compacted in molds under relatively high pressures and then combined with a fluid binder which is ultimately carbonized to produce carbonaceous nuclear fuel compacts having relatively high fuel loadings.

  10. International nuclear fuel cycle fact book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1988-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  11. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I W; Mitchell, S J

    1990-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  12. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  13. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    N. R. Soelberg

    2010-08-01T23:59:59.000Z

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  14. Computational Design of Advanced Nuclear Fuels

    SciTech Connect (OSTI)

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-06-03T23:59:59.000Z

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  15. Double-clad nuclear fuel safety rod

    DOE Patents [OSTI]

    McCarthy, William H. (Los Altos, CA); Atcheson, Donald B. (Cupertino, CA); Vaidyanathan, Swaminathan (San Jose, CA)

    1984-01-01T23:59:59.000Z

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  16. Spent nuclear fuel project integrated schedule plan

    SciTech Connect (OSTI)

    Squires, K.G.

    1995-03-06T23:59:59.000Z

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  17. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, Norman B. (Schenectady, NY)

    1998-01-01T23:59:59.000Z

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  18. Nuclear fuel elements made from nanophase materials

    DOE Patents [OSTI]

    Heubeck, N.B.

    1998-09-08T23:59:59.000Z

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  19. Examining 239Pu and 240Pu Nuclear Resonance Fluorescence Measurements on Spent Fuel for Nuclear Safeguards

    E-Print Network [OSTI]

    Quiter, Brian

    2013-01-01T23:59:59.000Z

    Spent Fuel Assay Using Nuclear Resonance Fluo- rescence,” Annual Meeting of the Institute of Nuclear Material Management,

  20. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01T23:59:59.000Z

    Spent Fuel Library for Assessing Varied Nondestructive Assay Techniques for Nuclear Safeguards,” LA-UR 09-01188, ANS Advances in Nuclear Fuel Management

  1. Comparison of spent nuclear fuel management alternatives

    SciTech Connect (OSTI)

    Beebe, C.L.; Caldwell, M.A,

    1996-09-01T23:59:59.000Z

    This paper reports the process an results of a trade study of spent nuclear fuel (SNF)management alternatives. The purpose of the trade study was to provide: (1) a summary of various SNF management alternatives, (2) an objective comparison of the various alternatives to facilitate the decision making process, and (3) documentation of trade study rational and the basis for decisions.

  2. Criticality evaluations of scrambled fuel in water basin storage

    SciTech Connect (OSTI)

    Fast, E.

    1989-01-01T23:59:59.000Z

    Fuel stored underwater in the Idaho Chemical Processing Plant basins has been subjected to the usual criticality safety evaluations to assure safe storage configurations. Certain accident or emergency conditions, caused by corrosion or a seismic event, could change the fuel configuration and environment to invalidate previous calculations. Consideration is given here to such contingencies for fuel stored in three storage basins. One basin has fuel stored in racks, on a generally flat floor. In the other two basins, the fuel is stored on yokes and in baskets suspended from a monorail system. The floor is ribbed with 30.48-cm-thick and 80-cm-high concrete barriers across the basin width and spaced 30.48 cm apart. The suspended fuel is typically down to 15 cm above the floor of the channel between the concrete barriers. These basins each have 29 channels of 18 positions maximum per channel for a total of 522 possible positions, which are presently 77 and 49% occupied. The three basins are hydraulically interconnected. Several scenarios indicate possible changes in the fuel configuration. An earthquake could rupture a basin wall or floor, allowing the water to drain from all basins. All levels of water would fall to the completely drained condition. Suspended fuel could drop and fall over within the channel. Corrosion might weaken the support systems or cause leaks in sealed fuel canisters. Calculations were made with the KENO-IV criticality program and the library of mostly Hansen-Roach 16-energy-group neutron cross sections.

  3. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    SciTech Connect (OSTI)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28T23:59:59.000Z

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

  4. Savannah River Site, Spent Nuclear Fuel Management, Draft Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    1998-12-24T23:59:59.000Z

    The proposed DOE action described in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets assigned to the Savannah River Site (SRS), including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel (20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some programmatic material stored at SRS for repackaging and dry storage pending shipment offsite).

  5. Licensing issues associated with the use of mixed-oxide fuel in US commercial nuclear reactors

    SciTech Connect (OSTI)

    Williams, D.L. Jr.

    1997-04-01T23:59:59.000Z

    On January 14, 1997, the Department of Energy, as part of its Record of Decision on the storage and disposition of surplus nuclear weapons materials, committed to pursue the use of excess weapons-usable plutonium in the fabrication of mixed-oxide (MOX) fuel for consumption in existing commercial nuclear power plants. Domestic use of MOX fuel has been deferred since the late 1970s, principally due to nuclear proliferation concerns. This report documents a review of past and present literature (i.e., correspondence, reports, etc.) on the domestic use of MOX fuel and provides discussion on the technical and regulatory issues that must be addressed by DOE (and the utility/consortia selected by DOE to effect the MOX fuel consumption strategy) in obtaining approval from the Nuclear Regulatory Commission to use MOX fuel in one or a group of existing commercial nuclear power plants.

  6. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01T23:59:59.000Z

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  7. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27T23:59:59.000Z

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  8. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01T23:59:59.000Z

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  9. Locking support for nuclear fuel assemblies

    DOE Patents [OSTI]

    Ledin, Eric (San Diego, CA)

    1980-01-01T23:59:59.000Z

    A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.

  10. Burnup credit in the storage of LWR fuel - conceptual considerations

    SciTech Connect (OSTI)

    Brown, O.C.; Wimpy, P.D.

    1987-01-01T23:59:59.000Z

    As a natural outgrowth of improved nodal calculation methods and the accessibility of detailed fuel assembly operating data from core monitoring systems, taking credit for burnup in the storage of light water reactor fuel represents a logical alternative to reracking for storing higher enriched fuel. The paper summarizes a number of array reactivity calculations that indicate: (1) taking credit for burnup leads to significantly lower array k/sub eff's/; (2) axial exposure distribution effects on array reactivity increase with exposure and are more significant in BWR than PWR fuel; (3) BWR fuel void history effects on array reactivity can be significant; and (4) an array of all fresh 3.83 wt% enriched PWR fuel is equivalent in array reactivity to a checkerboard array of 20 GWd/tonne U and fresh fuel enriched to 5.1 wt%. One approach to minimizing operator error in the handling of assemblies would be to first select and store exposed fuel in a checkerboard arrangement throughout the array. These cells could then be capped with a lockout device to preclude removal with the grappling machine. Once these assemblies were in place, all other assemblies could be safely stored in any other available cell.

  11. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01T23:59:59.000Z

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  12. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect (OSTI)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01T23:59:59.000Z

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  13. A Practical Approach to a Closed Nuclear Fuel Cycle and Sustained Nuclear Energy - 12383

    SciTech Connect (OSTI)

    Collins, Emory D.; Del Cul, Guillermo D.; Spencer, Barry B.; Williams, Kent A. [Oak Ridge National Laboratory, P.O. Box 2008, MS-6152, Oak Ridge TN 37831 (United States)

    2012-07-01T23:59:59.000Z

    Recent systems analysis studies at Oak Ridge National Laboratory (ORNL) have shown that sufficient information is available from previous research and development (R and D), industrial experience, and current studies to make rational decisions on a practical approach to a closed nuclear fuel cycle in the United States. These studies show that a near-term decision is needed to recycle used nuclear fuel (UNF) in the United States, to encourage public recognition that a practical solution to disposal of nuclear energy wastes, primarily UNF, is achievable, and to ensure a focus on essential near-term actions and future R and D. Recognition of the importance of time factors is essential, including the multi-decade time period required to implement industrial-scale fuel recycle at the capacity needed, and the effects of radioactive decay on proliferation resistance, recycling complexity, radioactive emissions, and high-level-waste storage, disposal form development, and eventual emplacement in a geologic repository. Analysis of time factors led to identification of the benefits of processing older fuel and an 'optimum decay storage time'. Further benefits of focused R and D can ensure more complete recycling of UNF components and minimize wastes requiring disposal. Analysis of recycling costs and nonproliferation requirements, which are often cited as reasons for delaying a decision to recycle, shows that (1) the differences in costs of nuclear energy with open or closed fuel cycles are insignificant and (2) nonproliferation requirements can be met by a combination of 'safeguards-by-design' co-location of back-end fuel cycle facilities, and applied engineered safeguards and monitoring. The study shows why different methods of separating and recycling used fuel components do not have a significant effect on nonproliferation requirements and can be selected on other bases, such as process efficiency, maturity, and cost-effectiveness. Finally, the study concludes that continued storage of UNF without a decision to recycle is not a solution to the problem of nuclear waste disposal, but can be a deterrent to public confidence in nuclear energy. In summary, our studies have shown, in contrast to findings of the more prominent studies, that today we do have sufficient knowledge to make informed choices for the values and essential methods of UNF recycling, based on previous research, industrial experience, and current analyses. We have shown the significant importance of time factors, including the benefits of an optimum decay storage time on deploying effective nonproliferation safeguards, enabling reduced recycling complexity and environmental emissions, and optimizing waste management and disposal. Together with the multi-decade time required to implement industrial-scale UNF recycle at the capacity needed to match generation rate, our conclusion is that a near-term decision to recycle as many UNF components as possible is vitally needed. Further indecision and procrastination can lead to a loss of public confidence and favorable perception of nuclear energy. With no near-term decision, the path forward for UNF disposal will remain uncertain, with many diverse technologies being considered and no possible focus on a practical solution to the problem. However, a near-term decision to recycle UNF fuel and to take advantage of processing UNF and surface storing HLW, together with development and incorporation of more-complete recycling of UNF components, can provide the focus needed for a practical solution to the problem of nuclear waste disposal. (authors)

  14. Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors

    E-Print Network [OSTI]

    Terrani, Kurt Amir

    2010-01-01T23:59:59.000Z

    1.2.1 PWRs . . . . . . . . . . . . . . . . . . . . 1.2.2Actinides Multi-Recycling in PWR Using Hydride Fuels. InRecycling in Hydride Fueled PWR Cores. Nuclear Engineering

  15. Used Nuclear Fuel Loading and Structural Performance Under Normal...

    Energy Savers [EERE]

    Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization Used...

  16. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect (OSTI)

    None

    2010-09-13T23:59:59.000Z

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  17. Seawater Enhances the Corrosion of Nuclear Fuel Rods | Photosynthetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seawater Enhances the Corrosion of Nuclear Fuel Rods April 19, 2012 Seawater Enhances the Corrosion of Nuclear Fuel Rods PARC Post Doc Anne-Marie Carey is featured in DOE Frontiers...

  18. Sandia National Laboratories: Nuclear Energy and Fuel Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy and Fuel Systems Programs Protected: Nuclear Fuel Cycle Options Catalog On February 26, 2015, in There is no excerpt because this is a protected post. SNL & BAM...

  19. Strategy for the Management and Disposal of Used Nuclear Fuel...

    Office of Environmental Management (EM)

    Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

  20. Summary of nuclear fuel reprocessing activities around the world

    SciTech Connect (OSTI)

    Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

    1984-11-01T23:59:59.000Z

    This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied.

  1. Changing the Rules on Fuel Export at Sellafield's First Fuel Storage Pond - 12065

    SciTech Connect (OSTI)

    Carlisle, Derek [Sellafield Ltd, Sellafield, Cumbria (United Kingdom)

    2012-07-01T23:59:59.000Z

    The Pile Fuel Storage Pond (PFSP) was built in 1949/50 to receive, store and de-can fuel and isotopes from the Windscale Piles. Following closure of the Piles in 1957, plant operations were scaled down until fuel processing eventually ceased in 1962. The facility has held an inventory of metal fuel both from the Piles and from other programmes since that time. The pond is currently undergoing remediation and removal of the fuel is a key step in that process, unfortunately the fuel export infrastructure on the plant is no longer functional and due to the size and limited lifting capability, the plant is not compatible with today's large volume heavy export flasks. The baseline scheme for the plant is to package fuel into a small capacity flask and transfer it to another facility for treatment and repackaging into a flask compatible with other facilities on site. Due to programme priorities the repackaging facility is not available to do this work for several years causing a delay to the work. In an effort accelerate the programme the Metal Fuel Pilot Project (MFPP) was initiated to challenge the norms for fuel transfer and develop a new methodology for transferring the fuel. In developing a transfer scheme the team had to overcome challenges associated with unknown fuel condition, transfers outside of bulk containment, pyro-phoricity and oxidisation hazards as well as developing remote control and recovery systems for equipment not designed for this purpose. A combination of novel engineering and enhanced operational controls were developed which resulted in the successful export of the first fuel to leave the Pile Fuel Storage Pond in over 40 years. The learning from the pilot project is now being considered by the main project team to see how the new methodology can be applied to the full inventory of the pond. (author)

  2. World nuclear fuel cycle requirements 1985

    SciTech Connect (OSTI)

    Moden, R.; O'Brien, B.; Sanders, L.; Steinberg, H.

    1985-12-05T23:59:59.000Z

    Projections of uranium requirements (both yellowcake and enrichment services) and spent fuel discharges are presented, corresponding to the nuclear power plant capacity projections presented in ''Commercial Nuclear Power 1984: Prospects for the United States and the World'' (DOE/EIA-0438(85)) and the ''Annual Energy Outlook 1984:'' (DOE/EIA-0383(84)). Domestic projections are provided through the year 2020, with foreign projections through 2000. The domestic projections through 1995 are consistent with the integrated energy forecasts in the ''Annual Energy Outlook 1984.'' Projections of capacity beyond 1995 are not part of an integrated energy foreccast; the methodology for their development is explained in ''Commercial Nuclear Power 1984.'' A range of estimates is provided in order to capture the uncertainty inherent in such forward projections. The methodology and assumptions are also stated. A glossary is provided. Two appendixes present additional material. This report is of particular interest to analysts involved in long-term planning for the disposition of radioactive waste generated from the nuclear fuel cycle. 14 figs., 18 tabs.

  3. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  4. EIS-0203F; DOE Programmatic Spent Nuclear Fuel Management and...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final...

  5. Hanford Spent Nuclear Fuel Project evaluation of multi-canister overpack venting and monitoring options during staging of K basins fuel

    SciTech Connect (OSTI)

    Wiborg, J.C.

    1995-12-01T23:59:59.000Z

    This engineering study recommends whether multi-canister overpacks containing spent nuclear fuel from the Hanford K Basins should be staged in vented or a sealed, but ventable, condition during staging at the Canister Storage Building prior to hot vacuum conditioning and interim storage. The integrally related issues of MCO monitoring, end point criteria, and assessing the practicality of avoiding venting and Hot Vacuum Conditioning for a portion of the spent fuel are also considered.

  6. Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy - 13575

    SciTech Connect (OSTI)

    Wagner, John C.; Peterson, Joshua L.; Mueller, Don E.; Gehin, Jess C.; Worrall, Andrew [Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, MS-6170, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, MS-6170, Oak Ridge, TN 37831 (United States); Taiwo, Temitope; Nutt, Mark; Williamson, Mark A. [Argonne National Laboratory (United States)] [Argonne National Laboratory (United States); Todosow, Mike [Brookhaven National Laboratory (United States)] [Brookhaven National Laboratory (United States); Wigeland, Roald [Idaho National Laboratory (United States)] [Idaho National Laboratory (United States); Halsey, William G. [Lawrence Livermore National Laboratory (United States)] [Lawrence Livermore National Laboratory (United States); Omberg, Ronald P. [Pacific Northwest National Laboratory (United States)] [Pacific Northwest National Laboratory (United States); Swift, Peter N. [Sandia National Laboratories (United States)] [Sandia National Laboratories (United States); Carter, Joe [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

    2013-07-01T23:59:59.000Z

    A technical assessment of the current inventory [?70,150 metric tons of heavy metal (MTHM) as of 2011] of U.S.-discharged used nuclear fuel (UNF) has been performed to support decisions regarding fuel cycle strategies and research, development and demonstration (RD and D) needs. The assessment considered discharged UNF from commercial nuclear electricity generation and defense and research programs and determined that the current UNF inventory can be divided into the following three categories: 1. Disposal - excess material that is not needed for other purposes; 2. Research - material needed for RD and D purposes to support waste management (e.g., UNF storage, transportation, and disposal) and development of alternative fuel cycles (e.g., separations and advanced fuels/reactors); and 3. Recycle/Recovery - material with inherent and/or strategic value. A set of key assumptions and attributes relative to the various disposition options were used to categorize the current UNF inventory. Based on consideration of RD and D needs, time frames and material needs for deployment of alternative fuel cycles, characteristics of the current UNF inventory, and possible uses to support national security interests, it was determined that the vast majority of the current UNF inventory should be placed in the Disposal category, without the need to make fuel retrievable from disposal for reuse or research purposes. Access to the material in the Research and Recycle/Recovery categories should be retained to support RD and D needs and national security interests. This assessment does not assume any decision about future fuel cycle options or preclude any potential options, including those with potential recycling of commercial UNF. (authors)

  7. A Roman Shipwreck and Safe Nuclear Storage

    Broader source: Energy.gov [DOE]

    Glass discovered in a Roman shipwreck could unlock more answers about how glass will stands the test of time for millennia to come -- research that is very relevant to vitrification, an effective method for storing nuclear waste in glass.

  8. Pyrochemical processing of DOE spent nuclear fuel

    SciTech Connect (OSTI)

    Laidler, J.J.

    1995-02-01T23:59:59.000Z

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  9. Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy

    SciTech Connect (OSTI)

    None

    1980-09-05T23:59:59.000Z

    The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

  10. Micro/Nano Materials for Energy Storage, Fuel Cells and Sensors

    E-Print Network [OSTI]

    Nakamura, Iku

    15 Micro/Nano Materials for Energy Storage, Fuel Cells and Sensors Speaker: Prof. Dr. Li-Xian Sun energy including hydrogen storage material, fuel cells such as biofuel cells, proton exchange membrane hydrides, MOFs, graphene for batteries, hydrogen storage, gas separation and sensors. #12;

  11. Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage

    E-Print Network [OSTI]

    of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted as an automotive fuel. However, the lack of convenient and cost-effective hydrogen storage, particularly for an onHydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage

  12. Storage of nuclear materials by encapsulation in fullerenes

    DOE Patents [OSTI]

    Coppa, Nicholas V. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A method of encapsulating radioactive materials inside fullerenes for stable long-term storage. Fullerenes provide a safe and efficient means of disposing of nuclear waste which is extremely stable with respect to the environment. After encapsulation, a radioactive ion is essentially chemically isolated from its external environment.

  13. An Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools

    E-Print Network [OSTI]

    Jeavons, Peter

    , it is still necessary to store this waste in cool- ing ponds for 20 to 60 years to remove the heatAn Underwater Robotic Network for Monitoring Nuclear Waste Storage Pools Sarfraz Nawaz1 , Muzammil spread with grow- ing world population. However, the radioactive waste generated in these power plants

  14. Inventory extension at the Nuclear Materials Storage Facility

    SciTech Connect (OSTI)

    Stanbro, W.D.; Longmire, V.; Olinger, C.T.; Argo, P.E.

    1996-09-01T23:59:59.000Z

    The planned renovation of the Nuclear Material Storage Facility (NMSF) at Los Alamos National Laboratory will be a significant addition to the plutonium storage capacity of the nuclear weapons complex. However, the utility of the facility may be impaired by an overly conservative approach to performing inventories of material in storage. This report examines options for taking advantage of provisions in Department of Energy orders to extend the time between inventories. These extensions are based on a combination of modern surveillance technology, facility design features, and revised operational procedures. The report also addresses the possibility that NMSF could be the site of some form of international inspection as part of the US arms control and nonproliferation policy.

  15. Pyroprocess for processing spent nuclear fuel

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

    2002-01-01T23:59:59.000Z

    This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

  16. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect (OSTI)

    Perella, V.F.

    1999-11-29T23:59:59.000Z

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  17. Nuclear fuel cycles for mid-century development

    E-Print Network [OSTI]

    Parent, Etienne, 1977-

    2003-01-01T23:59:59.000Z

    A comparative analysis of nuclear fuel cycles was carried out. Fuel cycles reviewed include: once-through fuel cycles in LWRs, PHWRs, HTGRs, and fast gas cooled breed and burn reactors; single-pass recycle schemes: plutonium ...

  18. Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain, Nevada

    E-Print Network [OSTI]

    Snieder, Roel

    Seismic modeling and analysis of a prototype heated nuclear waste storage tunnel, Yucca Mountain was heated to replicate the effects of long-term storage of decaying nuclear waste and to study the effects for the long- term storage of high-level nuclear waste from reactors and decom- missioned atomic weapons

  19. Inventory extension considerations for long-term storage at the nuclear materials storage facility

    SciTech Connect (OSTI)

    Olinger, C.T.; Stanbro, W.D.; Longmire, V.; Argo, P.E.; Nielson, S.M.

    1996-09-01T23:59:59.000Z

    Los Alamos National Laboratory is in the process of modifying its nuclear materials storage facility to a long-term storage configuration. In support of this effort, we examined technical and administrative means to extend periods between physical inventories. Both the frequency and sample size during a physical inventory could significantly impact required sizing of the non-destructive assay (NDA) laboratory as well as material handling capabilities. Several options are being considered, including (1) treating each storage location as a separate vault, (2) minimizing the number of items returned for quantitative analysis by optimizing the use of in situ confirmatory measurements, and (3) utilizing advanced monitoring technologies. Careful consideration of these parameters should allow us to achieve and demonstrate safe and secure storage while minimizing the impact on facility operations and without having to increase the size of the NDA laboratory beyond that required for anticipated shipping and receiving activities.

  20. Optimally moderated nuclear fission reactor and fuel source therefor

    DOE Patents [OSTI]

    Ougouag, Abderrafi M. (Idaho Falls, ID); Terry, William K. (Shelley, ID); Gougar, Hans D. (Idaho Falls, ID)

    2008-07-22T23:59:59.000Z

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  1. Radioactive Semivolatiles in Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    R. T. Jubin; D. M. Strachan; G. Ilas; B. B. Spencer; N. R. Soelberg

    2014-09-01T23:59:59.000Z

    In nuclear fuel reprocessing, various radioactive elements enter the gas phase from the unit operations found in the reprocessing facility. In previous reports, the pathways and required removal were discussed for four radionuclides known to be volatile, 14C, 3H, 129I, and 85Kr. Other, less volatile isotopes can also report to the off-gas streams in a reprocessing facility. These were reported to be isotopes of Cs, Cd, Ru, Sb, Tc, and Te. In this report, an effort is made to determine which, if any, of 24 semivolatile radionuclides could be released from a reprocessing plant and, if so, what would be the likely quantities released. As part of this study of semivolatile elements, the amount of each generated during fission is included as part of the assessment for the need to control their emission. Also included in this study is the assessment of the cooling time (time out of reactor) before the fuel is processed. This aspect is important for the short-lived isotopes shown in the list, especially for cooling times approaching 10 y. The approach taken in this study was to determine if semivolatile radionuclides need to be included in a list of gas-phase radionuclides that might need to be removed to meet Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. A list of possible elements was developed through a literature search and through knowledge and literature on the chemical processes in typical aqueous processing of nuclear fuels. A long list of possible radionuclides present in irradiated fuel was generated and then trimmed by considering isotope half-life and calculating the dose from each to a maximum exposed individual with the US EPA airborne radiological dispersion and risk assessment code CAP88 (Rosnick 1992) to yield a short list of elements that actually need to be considered for control because they require high decontamination factors to meet a reasonable fraction of the regulated release. Each of these elements is then discussed with respect to what is known in the literature about their behavior in a reprocessing facility. The context for the evaluation in this document is a UO2-based fuel processed through an aqueous-based reprocessing system with a TBP-based solvent extraction chemistry. None of these elements form sufficiently volatile compounds in the context of the reprocessing facility to be of regulatory concern.

  2. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  3. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

  4. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

  5. Research on Spent Fuel Storage and Transportation in CRIEPI (Part 2 Concrete Cask Storage)

    SciTech Connect (OSTI)

    Koji Shirai; Jyunichi Tani; Taku Arai; Masumi Watatu; Hirofumi Takeda; Toshiari Saegusa; Philip L. Winston

    2008-10-01T23:59:59.000Z

    Concrete cask storage has been implemented in the world. At a later stage of storage period, the containment of the canister may deteriorate due to stress corrosion cracking phenomena in a salty air environment. High resistant stainless steels against SCC have been tested as compared with normal stainless steel. Taking account of the limited time-length of environment with certain level of humidity and temperature range, the high resistant stainless steels will survive from SCC damage. In addition, the adhesion of salt from salty environment on the canister surface will be further limited with respect to the canister temperature and angle of the canister surface against the salty air flow in the concrete cask. Optional countermeasure against SCC with respect to salty air environment has been studied. Devices consisting of various water trays to trap salty particles from the salty air were designed to be attached at the air inlet for natural cooling of the cask storage building. Efficiency for trapping salty particles was evaluated. Inspection of canister surface was carried out using an optical camera inserted from the air outlet through the annulus of a concrete cask that has stored real spent fuel for more than 15 years. The camera image revealed no gross degradation on the surface of the canister. Seismic response of a full-scale concrete cask with simulated spent fuel assemblies has been demonstrated. The cask did not tip over, but laterally moved by the earthquake motion. Stress generated on the surface of the spent fuel assemblies during the earthquake motion were within the elastic region.

  6. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04T23:59:59.000Z

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  7. INSTRUCTIONS FOR SUBMITTING NUCLEAR

    E-Print Network [OSTI]

    waste management proceedings. Keywords Nuclear, nuclear power plant, spent fuel, nuclear waste, data of Submitted Data 3 NUCLEAR POWER PLANT DATA REQUESTS 6 A. Environmental Impacts 6 B. Spent Fuel Generation 8 C. Spent Nuclear Fuel Storage 9 D. Spent Nuclear Fuel Transport and Disposal Issues 10 E. Interim Spent

  8. Development of Enriched Borated Aluminum Alloy for Basket Material of Cask for Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Mikio Sakai; Tadatsugu Sakaya; Hiroaki Fujiwara; Akira Sakai [Ishikawajima-Harima Heavy Industries Company Ltd., 1 Shin-Nakaharacho, Isogoku, Yokohama 235-8501 (Japan)

    2002-07-01T23:59:59.000Z

    Concrete cask system is focused as the candidate one for spent fuel dry storage facilities from economic potential in Japan. Concrete cask consists of a concrete storage cask and a steel canister. A canister containing nuclear spent fuel is shipped by a transportation cask from a nuclear power plant to an interim storage facility. The canister is transferred from the transportation cask to a storage cask by a transfer cask in the storage facility. IHI has developed a concrete cask horizontal transfer system. This transfer system indicates that a canister is transferred to a storage cask horizontally. This transfer system has a merit against canister drop accident in transfer operation, i.e. spent fuel assemblies can be kept safe during the transfer operation. There are guide rails inside of the concrete cask, and the canister is installed into the storage cask with sliding on the rails. To develop the horizontal transfer system, IHI carried out a heat load test and numerical analyses by CFD. Heat load experiment was carried out by using a full-scale prototype canister, storage cask and transfer vessel. The decay heat was simulated by an electric heater installed in the canister. Assuming high burn-up spent fuel storage, heat generation was set between 20.0 kW and 25.0 kW. This experiment was focused on the concrete temperature distribution. We confirmed that the maximum concrete temperature in transfer operation period was lower than 40 deg. C (Heat generation 22.5 kW). Moreover we confirmed the maximum concrete temperature passed 24 hours with horizontal orientation was below 90 deg. C (Heat generation 22.5 kW). We analyzed the thermal performance of the concrete cask with horizontal transfer condition and normal storage condition. Thermal analyses for horizontal transfer operation were carried out based on the experimental conditions. The tendency of the analytical results was in good agreement with experimental results. The purpose of vertical thermal analysis was to estimate the concrete temperature increase in the case a canister contacts with guide rails in normal storage. It has a possibility that a canister contacts with guide rails during storage period after concrete cask is upended from transfer operation. The temperature increase due to this contact was calculated 5 deg. C at small local area. This result implies that the affect of the contact is very small. This paper addresses that the storage cask concrete is kept its integrity in transfer operation period and normal storage period. (authors)

  9. Modular Energy Storage System for Hydrogen Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Janice Thomas

    2010-05-31T23:59:59.000Z

    The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

  10. Transportation capabilities study of DOE-owned spent nuclear fuel

    SciTech Connect (OSTI)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01T23:59:59.000Z

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  11. DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials- 2004 vs. 2006

    Broader source: Energy.gov [DOE]

    This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about hydrogen storage materials (2004 vs. 2006).

  12. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014.

  13. Fuel cycle analysis of once-through nuclear systems.

    SciTech Connect (OSTI)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10T23:59:59.000Z

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium (LEU) fuels. Examples of systems in this class include the small modular reactors being considered internationally; e.g. 4S [Tsuboi 2009], Hyperion Power Module [Deal 2010], ARC-100 [Wade 2010], and SSTAR [Smith 2008]. (2) Systems for Resource Utilization - In recent years, interest has developed in the use of advanced nuclear designs for the effective utilization of fuel resources. Systems under this class have generally utilized the breed and burn concept in which fissile material is bred and used in situ in the reactor core. Due to the favorable breeding that is possible with fast neutrons, these systems have tended to be fast spectrum systems. In the once-through concepts (as opposed to the traditional multirecycle approach typically considered for fast reactors), an ignition (or starter) zone contains driver fuel which is fissile material. This zone is designed to last a long time period to allow the breeding of sufficient fissile material in the adjoining blanket zone. The blanket zone is initially made of fertile depleted uranium fuel. This zone could also be made of fertile thorium fuel or recovered uranium from fuel reprocessing or natural uranium. However, given the bulk of depleted uranium and the potentially large inventory of recovered uranium, it is unlikely that the use of thorium is required in the near term in the U.S. Following the breeding of plutonium or fissile U-233 in the blanket, this zone or assembly then carries a larger fraction of the power generation in the reactor. These systems tend to also have a long cycle length (or core life) and they could be with or without fuel shuffling. When fuel is shuffled, the incoming fuel is generally depleted uranium (or thorium) fuel. In any case, fuel is burned once and then discharged. Examples of systems in this class include the CANDLE concept [Sekimoto 2001], the traveling wave reactor (TWR) concept of TerraPower [Ellis 2010], the ultra-long life fast reactor (ULFR) by ANL [Kim 2010], and the BNL fast mixed spectrum reactor (FMSR) concept [Fisher 1979]. (3) Thermal systems for resource extensio

  14. Helium Behavior in Oxide Nuclear Fuels: First Principles Modeling

    SciTech Connect (OSTI)

    D. Gryaznov; S. Rashkeev; E. A. Kotomin; E. Heifets; Y. Zhukovskii

    2010-10-01T23:59:59.000Z

    UO2 and (U, Pu)O2 solid solutions (the so-called MOX) nowadays are used as commercial nuclear fuels in many countries. One of the safety issues during the storage of these fuels is related to their self-irradiation that produces and accumulates point defects and helium therein. We present density functional theory (DFT) calculations for UO2, PuO2 and MOX containing He atoms in octahedral interstitial positions. In particular, we calculated basic MOX properties and He incorporation energies as functions of Pu concentration within the spin-polarized, generalized gradient approximation (GGA) DFT calculations. We also included the on-site electron correlation corrections using the Hubbard model (in the framework of the so-called DFT + U approach). We found that PuO2 remains semiconducting with He in the octahedral position while UO2 requires a specific lattice distortion. Both materials reveal a positive energy for He incorporation, which, therefore, is an exothermic process. The He incorporation energy increases with the Pu concentration in the MOX fuel.

  15. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    SciTech Connect (OSTI)

    D.R. Jackson; G.R. Kiebel

    1999-08-24T23:59:59.000Z

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  16. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect (OSTI)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01T23:59:59.000Z

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  17. A tennis ball size quantity of nuclear fuel commonly

    E-Print Network [OSTI]

    Kemner, Ken

    technologies can reduce the cost and duration of storing and managing nuclear waste significantly, whileA tennis ball size quantity of nuclear fuel commonly used in commercial nuclear plants can power, to generate the same 250 MWe of power. #12;Reducing the threat of nuclear weapon proliferation Argonne

  18. Method of preparing nuclear wastes for tansportation and interim storage

    DOE Patents [OSTI]

    Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

    1984-01-01T23:59:59.000Z

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  19. Risk and Responsibility Sharing in Nuclear Spent Fuel Management

    E-Print Network [OSTI]

    De Roo, Guillaume

    With the Nuclear Waste Policy Act of 1982, the responsibility of American utilities in the long-term management of spent nuclear fuel was limited to the payment of a fee. This narrow involvement did not result in faster ...

  20. Method of manufacturing nuclear fuel bundle spacers

    SciTech Connect (OSTI)

    White, D.W.; Muncy, D.G.; Schoenig, F.C. Jr.

    1989-09-26T23:59:59.000Z

    This patent describes a method of manufacturing nuclear fuel bundle spacers on an automated production line basis. It comprises: cutting elongated tubing stock into shorter tubular ferrules; checking the length of each ferrule and rejecting those ferrules of unacceptable lengths; cutting predetermined features in the sidewall of each ferrule; forming the sidewall of each ferrule to impart predetermined surface formations thereto; checking a critical dimension of each sidewall surface formation of each ferrule and rejecting those of unacceptable dimensions; assembling successive pairs of ferrules into subassemblies; assembling successive subassemblies into a spacer assembly fixture; assembling a peripheral band in the spacer assembly fixture; conjoining the ferrules to each other and to the peripheral band to create a structurally rigid, finished spacer; and providing a separate controller for automatically controlling and monitoring the performances of these steps.

  1. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect (OSTI)

    NONE

    2013-07-01T23:59:59.000Z

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  2. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    of the Institute of Nuclear Material Management, Tucson, AZ,Assay, Institute of Nuclear Materials Management 51st Annual

  3. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  4. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage

    E-Print Network [OSTI]

    of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted as an automotive fuel. However, the lack of convenient and cost-effective hydrogen storage, particularly for an on market for cost-effective and efficient high-pressure hydrogen storage systems. The world's premier

  5. Preliminary Evaluation of Removing Used Nuclear Fuel From Nine Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul

    2013-04-30T23:59:59.000Z

    The Blue Ribbon Commission on America’s Nuclear Future identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. In this report, a preliminary evaluation of removing used nuclear fuel from nine shutdown sites was conducted. The shutdown sites included Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion. At these sites a total of 7649 used nuclear fuel assemblies and a total of 2813.2 metric tons heavy metal (MTHM) of used nuclear fuel are contained in 248 storage canisters. In addition, 11 canisters containing greater-than-Class C (GTCC) low-level radioactive waste are stored at these sites. The evaluation was divided in four components: • characterization of the used nuclear fuel and GTCC low-level radioactive waste inventory at the shutdown sites • an evaluation of the onsite transportation conditions at the shutdown sites • an evaluation of the near-site transportation infrastructure and experience relevant to the shipping of transportation casks containing used nuclear fuel from the shutdown sites • an evaluation of the actions necessary to prepare for and remove used nuclear fuel and GTCC low-level radioactive waste from the shutdown sites. Using these evaluations the authors developed time sequences of activities and time durations for removing the used nuclear fuel and GTCC low-level radioactive waste from a single shutdown site, from three shutdown sites located close to each other, and from all nine shutdown sites.

  6. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17T23:59:59.000Z

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  7. Discovery sheds light on nuclear reactor fuel behavior during...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Reports Summer Science Writing Internship Discovery sheds light on nuclear reactor fuel behavior during a severe event By Angela Hardin * November 20, 2014 Tweet...

  8. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

    1991-01-01T23:59:59.000Z

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  9. Thermomechanical analysis of innovative nuclear fuel pin designs

    E-Print Network [OSTI]

    Lerch Andrew (Andrew J.)

    2010-01-01T23:59:59.000Z

    One way to increase the power of a nuclear reactor is to change the solid cylindrical fuel to Internally and Externally Cooled (I&EC) annular fuel, and adjust the flow and the core inlet coolant temperature. The switch to ...

  10. Environmental Aspects of Advanced Nuclear Fuel Cycles: Parametric Modeling and Preliminary Analysis 

    E-Print Network [OSTI]

    Yancey, Kristina D.

    2010-07-14T23:59:59.000Z

    and reprocessing spent fuel must be incorporated into the nuclear fuel cycle to achieve sustainability....

  11. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.; Adkins, Harold E.; Casella, Andrew M.; Qiao, Hong (Amy); Larche, Michael R.; Diaz, Aaron A.; Doctor, Steven R.

    2013-09-01T23:59:59.000Z

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  12. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01T23:59:59.000Z

    This report summarizes the technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. In addition, dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor (PWR) fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved {similar_to}5,000 fuel rods, and {similar_to}600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570{sup 0}C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at {similar_to}70{sup 0}C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the United States. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380{sup 0}C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400{sup 0}C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved.

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  14. International nuclear fuel cycle fact book. Revision 6

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01T23:59:59.000Z

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  15. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    SciTech Connect (OSTI)

    Quiter, Brian; Ludewigt, Bernhard; Ambers, Scott

    2011-06-30T23:59:59.000Z

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of gamma rays with specific energies that are characteristic of the emitting isotope. NRF promises the unique capability of directly quantifying a specific isotope without the need for unfolding the combined responses of several fissile isotopes as is required in other measurement techniques. We have analyzed the potential of NRF as a non-destructive analysis technique for quantitative measurements of Pu isotopes in spent nuclear fuel (SNF). Given the low concentrations of 239Pu in SNF and its small integrated NRF cross sections, the main challenge in achieving precise and accurate measurements lies in accruing sufficient counting statistics in a reasonable measurement time. Using analytical modeling, and simulations with the radiation transport code MCNPX that has been experimentally tested recently, the backscatter and transmission methods were quantitatively studied for differing photon sources and radiation detector types. Resonant photon count rates and measurement times were estimated for a range of photon source and detection parameters, which were used to determine photon source and gamma-ray detector requirements. The results indicate that systems based on a bremsstrahlung source and present detector technology are not practical for high-precision measurements of 239Pu in SNF. Measurements that achieve the desired uncertainties within hour-long measurements will either require stronger resonances, which may be expressed by other Pu isotopes, or require quasi-monoenergetic photon sources with intensities that are approximately two orders of magnitude higher than those currently being designed or proposed.This work is part of a larger effort sponsored by the Next Generation Safeguards Initiative to develop an integrated instrument, comprised of individual NDA techniques with complementary features, that is fully capable of determining Pu mass in spent fuel assemblies.

  16. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    SciTech Connect (OSTI)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01T23:59:59.000Z

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  17. Final Environmental Impact Statement for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    SciTech Connect (OSTI)

    N /A

    2000-08-04T23:59:59.000Z

    DOE is responsible for the safe and efficient management of its sodium-bonded spent nuclear fuel. This fuel contains metallic sodium, a highly reactive material; metallic uranium, which is also reactive; and in some cases, highly enriched uranium. The presence of reactive materials could complicate the process of qualifying and licensing DOE's sodium-bonded spent nuclear fuel inventory for disposal in a geologic repository. Currently, more than 98 percent of this inventory is located at the Idaho National Engineering and Environmental Laboratory (INEEL), near Idaho Falls, Idaho. In addition, in a 1995 agreement with the State of Idaho, DOE committed to remove all spent nuclear fuel from Idaho by 2035. This EIS evaluates the potential environmental impacts associated with the treatment and management of sodium-bonded spent nuclear fuel in one or more facilities located at Argonne National Laboratory-West (ANL-W) at INEEL and either the F-Canyon or Building 105-L at the Savannah River Site (SRS) near Aiken, South Carolina. DOE has identified and assessed six proposed action alternatives in this EIS. These are: (1) electrometallurgical treatment of all fuel at ANL-W, (2) direct disposal of blanket fuel in high-integrity cans with the sodium removed at ANL-W, (3) plutonium-uranium extraction (PUREX) processing of blanket fuel at SRS, (4) melt and dilute processing of blanket fuel at ANL-W, (5) melt and dilute processing of blanket fuel at SRS, and (6) melt and dilute processing of all fuel at ANL-W. In addition, Alternatives 2 through 5 include the electrometallurgical treatment of driver fuel at ANL-W. Under the No Action Alternative, the EIS evaluates both the continued storage of sodium-bonded spent nuclear fuel until the development of a new treatment technology or direct disposal without treatment. Under all of the alternatives, the affected environment is primarily within 80 kilometers (50 miles) of spent nuclear fuel treatment facilities. Analyses indicate little difference in the environmental impacts among alternatives. DOE has identified electrometallurgical treatment as its Preferred Alternative for the treatment and management of all sodium-bonded spent nuclear fuel, except for the Fermi-1 blanket fuel. The No Action Alternative is preferred for the Fermi-1 blanket spent nuclear fuel.

  18. Additional Studies of the Criticality Safety of Failed Used Nuclear Fuel

    SciTech Connect (OSTI)

    Marshall, William BJ J [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for periods potentially greater than 40 years. Extended storage (ES) time and irradiation to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, could result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. Criticality analyses are conducted considering representative UNF designs covering a range of enrichments and burnups in multiple cask systems. Prior work developed a set of failed fuel configuration categories and specific configurations were evaluated to understand trends and quantify the consequences of worst-case potential reconfiguration progressions. These results will be summarized here and indicate that the potential impacts on subcriticality can be rather significant for certain configurations (e.g., >20% keff). It can be concluded that the consequences of credible fuel failure configurations from ES or transportation following ES are manageable (e.g., <5% keff). The current work expands on these efforts and examines some modified scenarios and modified approaches to investigate the effectiveness of some techniques for reducing the calculated increase in keff. The areas included here are more realistic modeling of some assembly types and the effect of reconfiguration of some assemblies in the storage and transportation canister.

  19. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01T23:59:59.000Z

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  20. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  1. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    W. Bertozzi and R.J. Ledoux, “Nuclear resonance ?uorescenceUrakawa, “Compton ring for nuclear waste management,” Nucl.and B.J. Quiter, “Using Nuclear Resonance Fluorscence for

  2. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03T23:59:59.000Z

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  3. World nuclear capacity and fuel cycle requirements, November 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  4. Economics of nuclear fuel cycles : option valuation and neutronics simulation of mixed oxide fuels

    E-Print Network [OSTI]

    De Roo, Guillaume

    2009-01-01T23:59:59.000Z

    In most studies aiming at the economic assessment of nuclear fuel cycles, a primary concern is to keep scenarios economically comparable. For Uranium Oxide (UOX) and Mixed Oxide (MOX) fuels, a traditional way to achieve ...

  5. LWR NUCLEAR FUEL BUNDLE DATA FOR USE IN FUEL BUNDLE HANDLING

    Office of Scientific and Technical Information (OSTI)

    LWR NUCLEAR FUEL BUNDLE DATA FOR USE IN FUEL BUNDLE HANDLING TOPICAL REPORT W. 8. Weihermilfer C. S. Allison Septem bet 1979 Work Performed, Under Contract EY-76-C- M - 1 8 3 0...

  6. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    SciTech Connect (OSTI)

    Elder, H.K.

    1986-05-01T23:59:59.000Z

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m/sup 3/; 89% interim storage, 383 m/sup 3/). The MOX plant lagoon wastes are Class A waste (2930 m/sup 3/). All of the wastes from the U-Fab and UF/sub 6/ plants are designated as Class A waste (U-Fab 1090 m/sup 3/, UF/sub 6/ 1259 m/sup 3/).

  7. Fabrication of high exposure nuclear fuel pellets

    DOE Patents [OSTI]

    Frederickson, James R. (Richland, WA)

    1987-01-01T23:59:59.000Z

    A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

  8. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.; Massaro, Lawrence M.; Jensen, Philip J.

    2014-10-01T23:59:59.000Z

    This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: • characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory • a description of the on-site infrastructure and conditions relevant to transportation of UNF and GTCC waste • an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information • an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site visits. Every site was found to have at least one off-site transportation mode option for removing its UNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: • The 12 shutdown sites use designs from 4 different suppliers involving 9 different (horizontal and vertical) dry storage systems that would require the use of 8 different transportation cask designs to remove the UNF and GTCC waste from the shutdown sites. • Although there are common aspects, each site has some unique features and/or conditions. • Although some regulatory actions will be required, all UNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in licensed systems that can be transported, including a small amount of high-burnup fuel. • Each site indicated that 2-3 years of advance time would be required for its preparations before shipments could begin. • Most sites have more than one transportation option, e.g., rail, barge, or heavy haul truck, as well as constraints and preferences. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.

  9. Cryotank for storage of hydrogen as a vehicle fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    storage Prototypes have passed Department of Transportation and International Organization for Standardization (ISO) tests (fire & bullet) 4 Environmental test -40F 120F...

  10. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01T23:59:59.000Z

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  11. Concrete Shield Performance of the VSC-17 Spent Nuclear Fuel Cask

    SciTech Connect (OSTI)

    Sheryl L. Morton; Philip L. Winston; Toshiari Saegusa; Koji Shirai; Akihiro Sasahara; Takatoshi Hattori

    2006-04-01T23:59:59.000Z

    In 2003, representatives from the Central Research Institute of Electric Power Industry (CRIEPI) requested development of a project with the objective of determining the performance of a concrete spent nuclear fuel storage cask. Radiation and environmental effects may cause chemical alteration of the concrete that could result in excessive cracking, spalling, and loss of compressive strength. The Idaho National Laboratory (INL) project team and CRIEPI representatives identified the Ventilated Storage Cask (VSC-17) spent nuclear fuel storage cask as a candidate to study cask performance, because it had been used to store fuel as part of a dry cask storage demonstration project for more than 15 years. The project involved investigating the properties of the concrete shield. INL performed a survey of the cask in the summers of 2003 and 2004. Preliminary cask evaluations performed in 2003 indicated that the cask has no visual degradation. However, a 4-5 mrem/hr step-change in the radiation levels about halfway up the cask and a localized hot spot beneath an upper air vent indicate that there may be variability in the density of the concrete or localized cracking. In 2005, INL and CRIEPI scientists performed additional surveys on the VSC-17 cask. This document summarizes the methods used on the VSC-17 to evaluate the cask for compressive strength, concrete cracking, concrete thickness, and temperature distribution.

  12. Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites

    SciTech Connect (OSTI)

    Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

    2013-09-30T23:59:59.000Z

    This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

  13. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  14. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect (OSTI)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R. [Savannah River National Laboratory, Aiken, SC 29808 (United States); McGuire, P.W.; Wheeler, V.B. [Department of Energy-Savannah River Operations Office, Aiken SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  15. EIS-0225: Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential environemental impact of a proposal to continue operation of the Pantex Plant and associated storage of nuclear weapon components. Alternatives considered include: ...

  16. Extended-burnup LWR (light-water reactor) fuel: The amount, characteristics, and potential effects on interim storage

    SciTech Connect (OSTI)

    Bailey, W.J.

    1989-03-01T23:59:59.000Z

    The results of a study on extended-burnup, light-water reactor (LWR) spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory for the US Department of Energy (DOE). The purpose of the study was to collect and evaluate information on the status of in-reactor performance and integrity of extended-burnup LWR fuel and initiate the investigation of the effects of extending fuel burnup on the subsequent handling, interim storage, and other operations (e.g., rod consolidation and shipping) associated with the back end of the fuel cycle. The results of this study will aid DOE and the nuclear industry in assessing the effects on waste management of extending the useful in-reactor life of nuclear fuel. The experience base with extended-burnup fuel is now substantial and projections for future use of extended-burnup fuel in domestic LWRs are positive. The basic performance and integrity of the fuel in the reactor has not been compromised by extending the burnup, and the potential limitations for further extending the burnup are not severe. 104 refs., 15 tabs.

  17. Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin

    SciTech Connect (OSTI)

    Mickalonis, J. I.; Murphy, T. R.; Deible, R.

    2012-10-01T23:59:59.000Z

    Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

  18. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31T23:59:59.000Z

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  19. Nuclear fuel post-irradiation examination equipment package

    SciTech Connect (OSTI)

    DeCooman, W.J. [AREVA NP Inc., Lynchburg, VA (United States); Spellman, D.J. [UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01T23:59:59.000Z

    Hot cell capabilities in the U.S. are being reviewed and revived to meet today's demand for fuel reliability, tomorrow's demands for higher burnup fuel and future demand for fuel recycling. Fuel reliability, zero tolerance for failure, is more than an industry buzz. It is becoming a requirement to meet the rapidly escalating demands for the impending renaissance of nuclear power generation, fuel development, and management of new waste forms that will need to be dealt with from programs such as the Global Nuclear Energy Partnership (GNEP). Fuel performance data is required to license fuel for higher burnup; to verify recycled fuel performance, such as MOX, for wide-scale use in commercial reactors; and, possibly, to license fuel for a new generation of fast reactors. Additionally, fuel isotopic analysis and recycling technologies will be critical factors in the goal to eventually close the fuel cycle. This focus on fuel reliability coupled with the renewed interest in recycling puts a major spotlight on existing hot cell capabilities in the U.S. and their ability to provide the baseline analysis to achieve a closed fuel cycle. Hot cell examination equipment is necessary to determine the characteristics and performance of irradiated materials that are subjected to nuclear reactor environments. The equipment within the hot cells is typically operated via master-slave manipulators and is typically manually operated. The Oak Ridge National Laboratory is modernizing their hot cell nuclear fuel examination equipment, installing automated examination equipment and data gathering capabilities. Currently, the equipment has the capability to perform fuel rod visual examinations, length and diametrical measurements, eddy current examination, profilometry, gamma scanning, fission gas collection and void fraction measurement, and fuel rod segmentation. The used fuel postirradiation examination equipment was designed to examine full-length fuel rods for both Boiling Water Reactors and Pressurized Water Reactors. (authors)

  20. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    SciTech Connect (OSTI)

    Schruder, Kristan [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada)] [Atomic Energy of Canada Limited - Chalk River Laboratories, Chalk River, Ontario (Canada); Goodwin, Derek [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)] [Rolls-Royce Civil Nuclear Canada Limited, 678 Neal Dr., Peterborough, Ontario (Canada)

    2013-07-01T23:59:59.000Z

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for the ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)

  1. Methods for making a porous nuclear fuel element

    DOE Patents [OSTI]

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30T23:59:59.000Z

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  2. Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

    2013-08-01T23:59:59.000Z

    The Department of Energy Office of Nuclear Energy’s Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. • land use • water use • CO2 emissions • radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

  3. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect (OSTI)

    Kehle, R.

    1980-08-01T23:59:59.000Z

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  4. The Feasibility of Cask "Fingerprinting" as a Spent-Fuel, Dry-Storage Cask Safeguards Technique

    SciTech Connect (OSTI)

    Ziock, K P; Vanier, P; Forman, L; Caffrey, G; Wharton, J; Lebrun, A

    2005-07-27T23:59:59.000Z

    This report documents a week-long measurement campaign conducted on six, dry-storage, spent-nuclear-fuel storage casks at the Idaho National Laboratory. A gamma-ray imager, a thermal-neutron imager and a germanium spectrometer were used to collect data on the casks. The campaign was conducted to examine the feasibility of using the cask radiation signatures as unique identifiers for individual casks as part of a safeguards regime. The results clearly show different morphologies for the various cask types although the signatures are deemed insufficient to uniquely identify individual casks of the same type. Based on results with the germanium spectrometer and differences between thermal neutron images and neutron-dose meters, this result is thought to be due to the limitations of the extant imagers used, rather than of the basic concept. Results indicate that measurements with improved imagers could contain significantly more information. Follow-on measurements with new imagers either currently available as laboratory prototypes or under development are recommended.

  5. Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann

    2012-10-01T23:59:59.000Z

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

  6. South Carolina Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade Year-0Total ConsumptionDecadetotal

  7. New Hampshire Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand Cubic Feet) Price (Dollarstotal electric

  8. New Jersey Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand Cubic Feet) (Milliontotal electric power

  9. New York Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million CubicYearNonhydrocarbon

  10. North Carolina Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawalsElements)TotalDecadetotal electric

  11. Fuel Cell Technologies Overview: 2012 Flow Cells for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview Fuel CellFuel CellWorkshop |

  12. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01T23:59:59.000Z

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  13. Initial measurements of BN-350 spent fuel in dry storage casks using the dual slab verification detonator

    SciTech Connect (OSTI)

    Santi, Peter Angelo [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Freeman, Corey R [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory; Williams, Richard B [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The Dual Slab Verification Detector (DSVD) has been developed, built, and characterized by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of 3He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. By performing DSVD measurements at several different locations around the outer surface of the DUC, a signature 'fingerprint' can be established for each DUC based on the neutron flux emanating from inside the dry storage cask. The neutron fingerprint for each individual DUC will be dependent upon the spatial distribution of nuclear material within the cask, thus making it sensitive to the removal of a certain amount of material from the cask. An initial set of DSVD measurements have been performed on the first set of dry storage casks that have been loaded with canisters of spent fuel and moved onto the dry storage pad to both establish an initial fingerprint for these casks as well as to quantify systematic uncertainties associated with these measurements. The results from these measurements will be presented and compared with the expected results that were determined based on MCNPX simulations of the dry storage facility. The ability to safeguard spent nuclear fuel is strongly dependent on the technical capabilities of establishing and maintaining continuity of knowledge (COK) of the spent fuel as it is released from the reactor core and either reprocessed or packaged and stored at a storage facility. While the maintenance of COK is often done using continuous containment and surveillance (C/S) on the spent fuel, it is important that the measurement capabilities exist to re-establish the COK in the event of a significant gap in the continuous CIS by performing measurements that independently confirm the presence and content of Plutonium (Pu) in the spent fuel. The types of non-destructive assay (NDA) measurements that can be performed on the spent fuel are strongly dependent on the type of spent fuel that is being safeguarded as well as the location in which the spent fuel is being stored. The BN-350 Spent Fuel Disposition Project was initiated to improve the safeguards and security of the spent nuclear fuel from the BN-350 fast-breeder reactor and was developed cooperatively to meet the requirements of the International Atomic Energy Agency (IAEA) as well as the terms of the 1993 CTR and MPC&A Implementing Agreements. The unique characteristics of fuel from the BN-350 fast-breeder reactor have allowed for the development of an integrated safeguards measurement program to inventory, monitor, and if necessary, re-verify Pu content of the spent fuel throughout the lifetime of the project. This approach includes the development of a safeguards measurement program to establish and maintain the COK on the spent fuel during the repackaging and eventual relocation of the spent-fuel assemblies to a long-term storage site. As part of the safeguards measurement program, the Pu content of every spent-fuel assembly from the BN-350 reactor was directly measured and characterized while the spent-fuel assemblies were being stored in the spent-fuel pond at the BN-350 facility using the Spent Fuel Coincidence Counter (SFCC). Upon completion of the initial inventory of the Pu content of the individual spent-fuel assemblies, the assemblies were repackaged into welded steel canisters that were filled with inert argon gas and held either four or six individual spent-fuel assemblies depending on the type of assembly that was being packaged. This repackaging of the spent-fuel assemblies was performed in order to improve the stability of the spent-fuel assemblies for long-term storage and increase the proliferation resistance of the spent fuel. To maintain the capability of verifying the presence of the spent-fuel assemblies inside the welded steel canisters, measurements were performed on the canis

  14. Dry air oxidation kinetics of K-Basin spent nuclear fuel

    SciTech Connect (OSTI)

    Abrefah, J.; Buchanan, H.C.; Gerry, W.M.; Gray, W.J.; Marschman, S.C.

    1998-06-01T23:59:59.000Z

    The safety and process analyses of the proposed Integrated Process Strategy (IPS) to move the N-Reactor spent nuclear fuel (SNF) stored at K-Basin to an interim storage facility require information about the oxidation behavior of the metallic uranium. Limited experiments have been performed on the oxidation reaction of SNF samples taken from an N-Reactor outer fuel element in various atmospheres. This report discusses studies on the oxidation behavior of SNF using two independent experimental systems: (1) a tube furnace with a flowing gas mixture of 2% oxygen/98% argon; and (2) a thermogravimetric system for dry air oxidation.

  15. Application of advanced composites for efficient on-board storage of fuel in natural gas vehicles

    SciTech Connect (OSTI)

    Sirosh, S.N. [EDO Canada Ltd., Calgary, Alberta (Canada)

    1995-11-01T23:59:59.000Z

    The following outlines the performance requirements for high pressure containers for on-board storage of fuel in Natural Gas Vehicles. The construction of state-of-the-art carbon-fiber reinforced all-composite cylinders is described and the validation testing and key advantages are discussed. Carbon-fiber reinforced advanced composite technology offers a number of key advantages to the NGV industry, by providing: improved range, including up to 30% more fuel storage for a given storage envelope and up to 300% more fuel storage for a given weight allowance; life-cycle cost advantages, including savings in non-recurring costs (installation), savings in recurring costs (fuel and maintenance), and increased revenues from more passengers/payload; and uncompromising safety, namely, superior resistance to degradation from fatigue or stress rupture and inherent resistance to corrosion; proven toughness/impact resistance.

  16. International management of spent fuel storage : technical alternatives and constraints, topical report

    E-Print Network [OSTI]

    Miller, Marvin M.

    1978-01-01T23:59:59.000Z

    Some of the important technical issues involved in the implementation of a spent fuel storage regime under international auspices are discussed. In particular, we consider: the state of the art as far as the different ...

  17. What to Expect When Readying to Move Spent Nuclear Fuel from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power...

  18. Method of increasing the deterrent to proliferation of nuclear fuels

    DOE Patents [OSTI]

    Rampolla, Donald S. (Pittsburgh, PA)

    1982-01-01T23:59:59.000Z

    A process of recycling protactinium-231 to enhance the utilization of radioactively hot uranium-232 in nuclear fuel for the purpose of making both fresh and spent fuel more resistant to proliferation. The uranium-232 may be obtained by the irradiation of protactinium-231 which is normally found in the spent fuel rods of a thorium base nuclear reactor. The production of protactinium-231 and uranium-232 would be made possible by the use of the thorium uranium-233 fuel cycle in power reactors.

  19. Overview of the international R&D recycling activities of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann

    2012-12-01T23:59:59.000Z

    Nuclear power has demonstrated over the last thirty years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence of the price of uranium. However the management of used nuclear fuel (UNF) remains the “Achilles’ heel of this energy source since the storage of UNF is increasing as evidenced by the following number with 2,000 to 2,300 of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 UNF assemblies stored in dry cask storage and 88,000 stored in pools. Alarmingly, more than half of US commercial reactor sites have filled their pools to capacity and have had to add dry cask storage facilities. Two options adopted by several countries will be discussed. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of UNF into a geologic formation. One has to remind that only 30% of the worldwide UNF are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

  20. Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security Overview Tanzanians living near the Udzungwa Mountains National Park have 100,000 villagers without an available fuel source. One possible solution to alleviate this crisis

  1. Environmental Assessment: Relocation and storage of TRIGA{reg_sign} reactor fuel, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    In order to allow the shutdown of the Hanford 308 Building in the 300 Area, it is proposed to relocate fuel assemblies (101 irradiated, three unirradiated) from the Mark I TRIGA Reactor storage pool. The irradiated fuel assemblies would be stored in casks in the Interim Storage Area in the Hanford 400 Area; the three unirradiated ones would be transferred to another TRIGA reactor. The relocation is not expected to change the offsite exposure from all Hanford Site 300 and 400 Area operations.

  2. Inventory of LWR spent nuclear fuel in the 324 Building

    SciTech Connect (OSTI)

    Jenquin, U.P.

    1996-09-01T23:59:59.000Z

    This document contains the results of calculations to estimate the decay heat, neutron source term, photon source term, and radioactive inventory of light-water-reactor spent nuclear fuel in the 324 Building at Pacific Northwest National Laboratory.

  3. MOX fuel arrangement for nuclear core

    DOE Patents [OSTI]

    Kantrowitz, M.L.; Rosenstein, R.G.

    1998-10-13T23:59:59.000Z

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

  4. MOX fuel arrangement for nuclear core

    DOE Patents [OSTI]

    Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

    1998-01-01T23:59:59.000Z

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  5. Mox fuel arrangement for nuclear core

    DOE Patents [OSTI]

    Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

    2001-05-15T23:59:59.000Z

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

  6. MOX fuel arrangement for nuclear core

    DOE Patents [OSTI]

    Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

    2001-07-17T23:59:59.000Z

    In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

  7. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    SciTech Connect (OSTI)

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y. (Decision and Information Sciences); ( EVS); ( NE)

    2012-07-06T23:59:59.000Z

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that could affect the safe storage of the used fuel. The information contained in the license and CoC renewal applications will require NRC review to verify that the aging effects on the SSCs in DCSSs/ ISFSIs are adequately managed for the period of extended operation. To date, all of the ISFSIs located across the United States with more than 1,500 dry casks loaded with used fuel have initial license terms of 20 years; three ISFSIs (Surry, H.B. Robinson and Oconee) have received their renewed licenses for 20 years, and two other ISFSIs (Calvert Cliffs and Prairie Island) have applied for license renewal for 40 years. This report examines issues related to managing aging effects on the SSCs in DCSSs/ISFSIs for extended long-term storage and transportation of used fuels, following an approach similar to that of the Generic Aging Lessons Learned (GALL) report, NUREG-1801, for the aging management and license renewal of nuclear power plants. The report contains five chapters and an appendix on quality assurance for aging management programs for used-fuel dry storage systems. Chapter I of the report provides an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG-1927. Chapter II contains definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms. Chapter III and Chapter IV contain generic TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs described in Chapter V. The summary descriptions and tabulations of evaluations of AMPs and TLAAs for the SSCs that are important to safety in Chapter V include DCSS designs (i.e., NUHOMS{reg_sign}, HI-STORM 100, Transnuclear (TN) metal cask, NAC International S/T storage cask, ventilated storage cask (VSC-24), and the Westinghouse MC-10 metal dry storage cask) that have been and continue to be used by utilities across the country for dry storage of used fuel to date. The goal of this report is to help establish the technical

  8. Spent-fuel dry-storage testing at E-MAD (March 1978-March 1982)

    SciTech Connect (OSTI)

    Unterzuber, R.; Milnes, R.D.; Marinkovich, B.A.; Kubancsek, G.M.

    1982-09-01T23:59:59.000Z

    From March 1978 through March 1982, spent fuel dry storage tests were conducted at the Engine Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site to confirm that commercial reactor spent fuel could be encapsulated and passively stored in one or more interim dry storage cell concepts. These tests were: electrically heated drywell, isolated and adjacent drywell, concrete silo, fuel assembly internal temperature measurement, and air-cooled vault. This document presents the test data and results as well as results from supporting test operations (spent fuel calorimetry and canister gas sampling).

  9. TEPP - Spent Nuclear Fuel | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRouting TEC Working GroupEnergy- Spent

  10. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    the mass of 239 Pu in a 17x17 PWR fuel assembly with 45 GWd/center of 40 GWd/MTU burn-up PWR fuel assembly with coolingrate for the 11 y cooled PWR fuel was used as a source term

  11. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01T23:59:59.000Z

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  12. Laser-based characterization of nuclear fuel plates

    SciTech Connect (OSTI)

    Smith, James A.; Cottle, Dave L.; Rabin, Barry H. [Idaho National Laboratory, Fuel Performance and Design, P.O. Box 1625, Idaho Falls, Idaho, 83415-6188 (United States)

    2014-02-18T23:59:59.000Z

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  13. Pyroprocessing of fast flux test facility nuclear fuel

    SciTech Connect (OSTI)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

    2013-07-01T23:59:59.000Z

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

  14. President Reagan Calls for a National Spent Fuel Storage Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARDenergy use isDiscusses Solar

  15. Damaged Spent Nuclear Fuel at U.S. DOE Facilities Experience and Lessons Learned

    SciTech Connect (OSTI)

    Brett W. Carlsen; Eric Woolstenhulme; Roger McCormack

    2005-11-01T23:59:59.000Z

    From a handling perspective, any spent nuclear fuel (SNF) that has lost its original technical and functional design capabilities with regard to handling and confinement can be considered as damaged. Some SNF was damaged as a result of experimental activities and destructive examinations; incidents during packaging, handling, and transportation; or degradation that has occurred during storage. Some SNF was mechanically destroyed to protect proprietary SNF designs. Examples of damage to the SNF include failed cladding, failed fuel meat, sectioned test specimens, partially reprocessed SNFs, over-heated elements, dismantled assemblies, and assemblies with lifting fixtures removed. In spite of the challenges involved with handling and storage of damaged SNF, the SNF has been safely handled and stored for many years at DOE storage facilities. This report summarizes a variety of challenges encountered at DOE facilities during interim storage and handling operations along with strategies and solutions that are planned or were implemented to ameliorate those challenges. A discussion of proposed paths forward for moving damaged and nondamaged SNF from interim storage to final disposition in the geologic repository is also presented.

  16. A review of nuclear fuel cycle options for developing nations

    SciTech Connect (OSTI)

    Harrison, R.K.; Scopatz, A.M.; Ernesti, M. [The University of Texas at Austin, Pickle Research Campus, Building 159, Austin, TX 78712 (United States)

    2007-07-01T23:59:59.000Z

    A study of several nuclear reactor and fuel cycle options for developing nations was performed. All reactor choices were considered under a GNEP framework. Two advanced alternative reactor types, a nuclear battery-type reactor and a fuel reprocessing fast reactor were examined and compared with a conventional Generation III+ LWR reactor. The burn of nuclear fuel was simulated using ORIGEN 2.2 for each reactor type and the resulting information was used to compare the options in terms of waste produced, waste quality and repository impact. The ORIGEN data was also used to evaluate the economics of the fuel cycles using unit costs, discount rates and present value functions with the material balances. The comparison of the fuel cycles and reactors developed in this work provides a basis for the evaluation of subsidy programs and cost-benefit comparisons for various reactor parameters such as repository impact and proliferation risk versus economic considerations. (authors)

  17. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    E-Print Network [OSTI]

    Djokic, Denia

    2013-01-01T23:59:59.000Z

    Spent  Nuclear   Fuel,”   Integrated   Radioactive   Waste   Management  spent  nuclear  fuel”  [42  USC  10101]   as   high-­?level   waste   potentially   neglects   the   waste   management  

  18. Radiolysis Model Sensitivity Analysis for a Used Fuel Storage Canister

    SciTech Connect (OSTI)

    Wittman, Richard S.

    2013-09-20T23:59:59.000Z

    This report fulfills the M3 milestone (M3FT-13PN0810027) to report on a radiolysis computer model analysis that estimates the generation of radiolytic products for a storage canister. The analysis considers radiolysis outside storage canister walls and within the canister fill gas over a possible 300-year lifetime. Previous work relied on estimates based directly on a water radiolysis G-value. This work also includes that effect with the addition of coupled kinetics for 111 reactions for 40 gas species to account for radiolytic-induced chemistry, which includes water recombination and reactions with air.

  19. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect (OSTI)

    Gray, L.W.

    1986-10-04T23:59:59.000Z

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  20. Small Fuel Cell Systems with Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready, Set, NASCAREnergyProjects

  1. Hydrogen Production and Storage for Fuel Cells: Current Status | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detectorof Energy LeakHydrogenof Energy

  2. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of Energy IRSJulyIncandescent

  3. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to Public

  4. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to PublicHydrogen Energy

  5. Regenerative Fuel Cells for Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S.Department

  6. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D. [Institute for the Environment, University of North Carolina, Chapel Hill (United States); Yim, M.S. [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  7. Status and Path Forward for the Department of Energy Used Fuel Disposition Storage and Transportation Program - 12571

    SciTech Connect (OSTI)

    Sorenson, Ken [Sandia National Laboratories (United States); Williams, Jeffrey [U.S. Department of Energy, Office of Nuclear Energy (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy, Office of Nuclear Energy (DOE/NE) has sponsored a program since Fiscal Year (FY) 09 to develop the technical basis for extended dry storage of used fuel. This program is also working to develop the transportation technical basis for the transport of used fuel after the extended storage period. As this program has progressed, data gaps associated with dry storage systems (e.g., fuel, cask internals, canister, closure, overpack, and pad) have been identified that need to be addressed to develop the technical bases for extended storage and transportation. There has also been an initiation of experimental testing and analyses based on the identified data gaps. The technical aspects of the NE program are being conducted by a multi-lab team made up of the DOE laboratories. As part of this program, a mission objective is to also collaborate closely with industry and the international sector to ensure that all the technical issues are addressed and those programs outside the DOE program can be leveraged, where possible, to maximize the global effort in storage and transportation research. The DOE/NE program is actively pursuing the development of the technical basis to demonstrate the feasibility of storing UNF for extended periods of time with subsequent transportation of the UNF to its final disposition. This program is fully integrated with industry, the U.S. regulator, and the international community to assure that programmatic goals and objectives are consistent with a broad perspective of technical and regulatory opinion. As the work evolves, assessments will be made to ensure that the work continues to focus on the overall goals and objectives of the program. (authors)

  8. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  9. Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Qualls, A L [ORNL] [ORNL; Hancock, Emily F [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    The Department of Energy is working with NASA to examine fuel options for Nuclear Thermal Propulsion applications. Extensive development and testing was performed on graphite-based fuels during the Nuclear Engineer Rocket Vehicle Application (NERVA) and Rover programs through the early 1970s. This paper explores the possibility of recapturing the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing capabilities, analysis techniques and methods, and knowledge to that of previous development programs and presents a plan to recapture the technology for a flight program.

  10. Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage

    SciTech Connect (OSTI)

    Bailey, W.J.

    1987-11-01T23:59:59.000Z

    The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

  11. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01T23:59:59.000Z

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  12. High Pressure Fuel Storage Cylinders Periodic Inspection and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Practical Field Experience with High Pressure Gaseous Fuels Natural Gas Vehicle Cylinder Safety, Training and Inspection Project The Compelling Case for Natural Gas Vehicles...

  13. Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergyCorrectiveHydrodynamicPortal

  14. Cryotank for storage of hydrogen as a vehicle fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site OfficeCourse Clusters CourseNImports - Data

  15. Safeguards Guidance for Independent Spent Fuel Storage Installations (ISFSI)

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2ARequest forMod0/%2A21) May

  16. Energy Return on Investment from Recycling Nuclear Fuel

    SciTech Connect (OSTI)

    None

    2011-08-17T23:59:59.000Z

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  17. Breeding nuclear fuels with accelerators: replacement for breeder reactors

    SciTech Connect (OSTI)

    Grand, P.; Takahashi, H.

    1984-01-01T23:59:59.000Z

    One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables.

  18. Depleted uranium as a backfill for nuclear fuel waste package

    DOE Patents [OSTI]

    Forsberg, C.W.

    1998-11-03T23:59:59.000Z

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  19. Depleted uranium as a backfill for nuclear fuel waste package

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  20. International Nuclear Fuel Cycle Fact Book. Revision 5

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  1. International nuclear fuel cycle fact book. Revision 4

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01T23:59:59.000Z

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  2. Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01T23:59:59.000Z

    1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

  3. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect (OSTI)

    Le Biez, V. [Corps des Mines, 35 bis rue Saint-Sabin, F-75011 Paris (France); Machiels, A.; Sowder, A. [Electric Power Research Institute, Inc. 3420, Hillview Avenue, Palo Alto, CA 94304 (United States)

    2013-07-01T23:59:59.000Z

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  4. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03T23:59:59.000Z

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  5. Risk perception on management of nuclear high-level and transuranic waste storage

    SciTech Connect (OSTI)

    Dees, L.A.

    1994-08-15T23:59:59.000Z

    The Department of Energy`s program for disposing of nuclear High-Level Waste (HLW) and transuranic (TRU) waste has been impeded by overwhelming political opposition fueled by public perceptions of actual risk. Analysis of these perceptions shows them to be deeply rooted in images of fear and dread that have been present since the discovery of radioactivity. The development and use of nuclear weapons linked these images to reality and the mishandling of radioactive waste from the nations military weapons facilities has contributed toward creating a state of distrust that cannot be erased quickly or easily. In addition, the analysis indicates that even the highly educated technical community is not well informed on the latest technology involved with nuclear HLW and TRU waste disposal. It is not surprising then, that the general public feels uncomfortable with DOE`s management plans for with nuclear HLW and TRU waste disposal. Postponing the permanent geologic repository and use of Monitored Retrievable Storage (MRS) would provide the time necessary for difficult social and political issues to be resolved. It would also allow time for the public to become better educated if DOE chooses to become proactive.

  6. Impact of alternative nuclear fuel cycle options on infrastructure and fuel requirements, actinide and waste inventories, and economics

    E-Print Network [OSTI]

    Guérin, Laurent, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The nuclear fuel once-through cycle (OTC) scheme currently practiced in the U.S. leads to accumulation of uranium, transuranic (TRU) and fission product inventories in the spent nuclear fuel. Various separation and recycling ...

  7. Evaluation of potential for MSRE spent fuel and flush salt storage and treatment at the INEL

    SciTech Connect (OSTI)

    Ougouag, A.M.; Ostby, P.A.; Nebeker, R.L.

    1996-09-01T23:59:59.000Z

    The potential for interim storage as well as for treatment of the Molten Salt Reactor Experiment spent fuel at INEL has been evaluated. Provided that some minimal packaging and chemical stabilization prerequisites are satisfied, safe interim storage of the spent fuel at the INEL can be achieved in a number of existing or planned facilities. Treatment by calcination in the New Waste Calcining Facility at the INEL can also be a safe, effective, and economical alternative to treatment that would require the construction of a dedicated facility. If storage at the INEL is chosen for the Molten Salt Reactor Experiment (MSRE) spent fuel salts, their transformation to the more stable calcine solid would still be desirable as it would result in a lowering of risks. Treatment in the proposed INEL Remote-Handled Immobilization Facility (RHIF) would result in a waste form that would probably be acceptable for disposal at one of the proposed national repositories. The cost increment imputable to the treatment of the MSRE salts would be a small fraction of the overall capital and operating costs of the facility or the cost of building and operating a dedicated facility. Institutional and legal issues regarding shipments of fuel and waste to the INEL are summarized. The transfer of MSRE spent fuel for interim storage or treatment at the INEL is allowed under existing agreements between the State of idaho and the Department of energy and other agencies of the Federal Government. In contrast, current agreements preclude the transfer into Idaho of any radioactive wastes for storage or disposal within the State of Idaho. This implies that wastes and residues produced from treating the MSRE spent fuel at locations outside Idaho would not be acceptable for storage in Idaho. Present agreements require that all fuel and high-level wastes stored at the INEL, including MSRE spent fuel if received at the INEL, must be moved to a location outside Idaho by the year 2035.

  8. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  9. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01T23:59:59.000Z

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation – Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined.

  10. The Prospective Role of JAEA Nuclear Fuel Cycle Engineering Laboratories

    SciTech Connect (OSTI)

    Ojima, Hisao; Dojiri, Shigeru; Tanaka, Kazuhiko; Takeda, Seiichiro; Nomura, Shigeo [Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1194 (Japan)

    2007-07-01T23:59:59.000Z

    JAEA Nuclear Fuel Cycle Engineering Laboratories was established in 2005 to take over the activities of the JNC Tokai Works. Many kinds of development activities have been carried out since 1959. Among these, the results on the centrifuge for U enrichment, LWR spent fuel reprocessing and MOX fuel fabrication have already provided the foundation of the fuel cycle industry in Japan. R and D on the treatment and disposal of high-level waste and FBR fuel reprocessing has also been carried out. Through such activities, radioactive material release to the environment has been appropriately controlled and all nuclear materials have been placed under IAEA safeguards. The Laboratories has sufficient experience and ability to establish the next generation closed cycle and strives to become a world-class Center Of Excellence (COE). (authors)

  11. Spent Nuclear Fuel Dry Transfer System Cold Demonstration Project Final Report

    SciTech Connect (OSTI)

    Christensen, Max R; McKinnon, M. A.

    1999-12-01T23:59:59.000Z

    The spent nuclear fuel dry transfer system (DTS) provides an interface between large and small casks and between storage-only and transportation casks. It permits decommissioning of reactor pools after shutdown and allows the use of large storage-only casks for temporary onsite storage of spent nuclear fuel irrespective of reactor or fuel handling limitations at a reactor site. A cold demonstration of the DTS prototype was initiated in August 1996 at the Idaho National Engineering and Environmental Laboratory (INEEL). The major components demonstrated included the fuel assembly handling subsystem, the shield plug/lid handling subsystem, the cask interface subsystem, the demonstration control subsystem, a support frame, and a closed circuit television and lighting system. The demonstration included a complete series of DTS operations from source cask receipt and opening through fuel transfer and closure of the receiving cask. The demonstration included both normal operations and recovery from off-normal events. It was designed to challenge the system to determine whether there were any activities that could be made to jeopardize the activities of another function or its safety. All known interlocks were challenged. The equipment ran smoothly and functioned as designed. A few "bugs" were corrected. Prior to completion of the demonstration testing, a number of DTS prototype systems were modified to apply lessons learned to date. Additional testing was performed to validate the modifications. In general, all the equipment worked exceptionally well. The demonstration also helped confirm cost estimates that had been made at several points in the development of the system.

  12. Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

    SciTech Connect (OSTI)

    M. D. Staiger; Michael Swenson; T. R. Thomas

    2004-05-01T23:59:59.000Z

    This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.

  13. SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities

    E-Print Network [OSTI]

    Stephens, Larry M.

    SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities Ron Fulbright Inspector (SWAMI) is a prototype mobile robot designed to perform autonomous inspection of nuclear waste user interface building tool called UIM/X. Introduction Safe disposal of nuclear waste is a difficult

  14. Testing and analyses of the TN-24P PWR spent-fuel dry storage cask loaded with consolidated fuel

    SciTech Connect (OSTI)

    McKinnon, M A; Michener, T E; Jensen, M F; Rodman, G R

    1989-02-01T23:59:59.000Z

    A performance test of a Transnuclear, Inc. TN-24P storage cask configured for pressurized water reactor (PWR) spent fuel was performed. The work was performed by the Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) for the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) and the Electric Power Research Institute. The performance test consisted of loading the TN-24P cask with 24 canisters of consolidated PWR spent fuel from Virginia Power's Surry and Florida Power and Light's Turkey Point reactors. Cask surface and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Transnuclear, Inc., arranged to have a partially insulated run added to the end of the test to simulate impact limiters. Limited spent fuel integrity data were also obtained. From both heat transfer and shielding perspectives, the TN-24P cask with minor refinements can be effectively implemented at reactor sites and central storage facilities for safe storage of unconsolidated and consolidated spent fuel. 35 refs., 93 figs., 17 tabs.

  15. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect (OSTI)

    E. R. Johnson; R. E. Best

    2009-12-28T23:59:59.000Z

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

  16. PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT

    SciTech Connect (OSTI)

    Low, M; Matthew02 Miller, M; Thomas Reilly, T

    2007-04-30T23:59:59.000Z

    Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

  17. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pacoima, CA); Benander, Robert E. (Pacoima, CA)

    2011-03-01T23:59:59.000Z

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  18. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pocoima, CA); Benander, Robert E. (Pacoima, CA)

    2010-02-23T23:59:59.000Z

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  19. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    DOE Patents [OSTI]

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03T23:59:59.000Z

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  20. CASTOR cask with high loading capacity for transport and storage of VVER 440 spent fuel

    SciTech Connect (OSTI)

    Diersch, R.; Methling, D.; Milde, G. [Gesellschaft fuer Nuklear-Behaelter mbH Essen (Germany)

    1993-12-31T23:59:59.000Z

    GNB has developed a CASTOR transport and storage cask with a capacity of 84 spent fuel assemblies from reactors of the type VVER 440. The safety analyses are performed with the help of modern, benchmarked calculation programs. The results show that the cask design is able to fulfill both the Type B test conditions on basis of IAEA Regulations-1985 edition and the requirements for interim storage sites in Germany.

  1. International nuclear fuel cycle fact book. [Contains glossary

    SciTech Connect (OSTI)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  2. International nuclear fuel cycle fact book: Revision 9

    SciTech Connect (OSTI)

    Leigh, I.W.

    1989-01-01T23:59:59.000Z

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  3. International Nuclear Fuel Cycle Fact Book. Revision 12

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01T23:59:59.000Z

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  4. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for

    E-Print Network [OSTI]

    Berning, Torsten

    Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat oxide fuel cell, Cogeneration, Storage heat Tank 1. Introduction In residential sector, energy

  5. Classification of transportation packaging and dry spent fuel storage system components according to importance to safety

    SciTech Connect (OSTI)

    McConnell, J.W., Jr; Ayers, A.L. Jr; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-02-01T23:59:59.000Z

    This report provides a graded approach for classification of components used in transportation packaging and dry spent fuel storage systems. This approach provides a method for identifying, the classification of components according to importance to safety within transportation packagings and dry spent fuel storage systems. Record retention requirements are discussed to identify the documentation necessary to validate that the individual components were fabricated in accordance with their assigned classification. A review of the existing regulations pertaining to transportation packagings and dry storage systems was performed to identify current requirements The general types of transportation packagings and dry storage systems were identified. Discussions were held with suppliers and fabricators of packagings and storage systems to determine current practices. The methodology used in this report is based on Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material. This report also includes a list of generic components for each of the general types of transportation packagings and spent fuel storage systems. The safety importance of each component is discussed, and a classification category is assigned.

  6. Nuclear Fuel Cycle Reasoner: PNNL FY13 Report

    SciTech Connect (OSTI)

    Hohimer, Ryan E.; Strasburg, Jana D.

    2013-09-30T23:59:59.000Z

    In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

  7. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new : nuclear power plant production (MW) GP : total wind-nuclear power plant production (MW) EP : electrolyzerINTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR

  8. Nuclear reactor vessel fuel thermal insulating barrier

    DOE Patents [OSTI]

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19T23:59:59.000Z

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  9. Quantitative assessment of proposals on assurance of nuclear fuel supply

    SciTech Connect (OSTI)

    Tanaka, T.; Kuno, Y.; Tanaka, S. [University of Tokyo, 7-3-1 Hongou, Bunkyou-ku, Tokyo 112-0005 (Japan)

    2013-07-01T23:59:59.000Z

    The assurance of nuclear fuel supply has the potential to contribute to balancing peaceful use of nuclear power and nuclear nonproliferation. 5 proposals which provide the backup supply of the enrichment service in case of supply disruption, are investigated in this study. We investigated the 20 NPT countries which are non-nuclear-weapon states and possess operable commercial LWRs in October 2012 as potential participants for each proposal. As a result of literature researching, we have extracted factors that can be considered as important for a country to participate or not participate in the assurance of nuclear fuel supply. Then we have computed incentive and disincentive parameters for each country. The results show that the participation expectancy decreases in the order of IAEA Fuel Bank proposal, Russian LEU Reserve proposal, AFS proposal, WNA proposal and 6-Country proposal. The 'IAEA fuel bank proposal' would be triggered in case of the supply disruption which cannot be solved by the market mechanism and bilateral agreements.

  10. Technology status in support of refined technical baseline for the Spent Nuclear Fuel project. Revision 1

    SciTech Connect (OSTI)

    Puigh, R.J.; Toffer, H.; Heard, F.J.; Irvin, J.J.; Cooper, T.D.

    1995-10-20T23:59:59.000Z

    The Spent Nuclear Fuel Project (SNFP) has undertaken technology acquisition activities focused on supporting the technical basis for the removal of the N Reactor fuel from the K Basins to an interim storage facility. The purpose of these technology acquisition activities has been to identify technology issues impacting design or safety approval, to establish the strategy for obtaining the necessary information through either existing project activities, or the assignment of new work. A set of specific path options has been identified for each major action proposed for placing the N Reactor fuel into a ``stabilized`` form for interim storage as part of this refined technical basis. This report summarizes the status of technology information acquisition as it relates to key decisions impacting the selection of specific path options. The following specific categories were chosen to characterize and partition the technology information status: hydride issues and ignition, corrosion, hydrogen generation, drying and conditioning, thermal performance, criticality and materials accountability, canister/fuel particulate behavior, and MCO integrity. This report represents a preliminary assessment of the technology information supporting the SNFP. As our understanding of the N Reactor fuel performance develops the technology information supporting the SNFP will be updated and documented in later revisions to this report. Revision 1 represents the incorporation of peer review comments into the original document. The substantive evolution in our understanding of the technical status for the SNFP (except section 3) since July 1995 have not been incorporated into this revision.

  11. Preparation of nuclear fuel spheres by flotation-internal gelation

    DOE Patents [OSTI]

    Haas, P.A.; Fowler, V.L.; Lloyd, M.H.

    1984-12-21T23:59:59.000Z

    A simplified internal gelation process is claimed for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85/sup 0/C) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column. 3 figs.

  12. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    SciTech Connect (OSTI)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01T23:59:59.000Z

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  13. Synergistic smart fuel for in-pile nuclear reactor measurements

    SciTech Connect (OSTI)

    Smith, J.A.; Kotter, D.K. [Idaho National Laboratories, Idaho Falls (United States); Ali, R.A.; Garrett, S.L. [Penn State University, University Park, State College, PA 16801 (United States)

    2013-07-01T23:59:59.000Z

    The thermo-acoustic fuel rod sensor developed in this research has demonstrated a novel technique for monitoring the temperature within the core of a nuclear reactor or the temperature of the surrounding heat-transfer fluid. It uses the heat from the nuclear fuel to generate sustained acoustic oscillations whose frequency will be indicative of the temperature. Converting a nuclear fuel rod into this type of thermo-acoustic sensor simply requires the insertion of a porous material (stack). This sensor has demonstrated a synergy with the elevated temperatures that exist within the nuclear reactor using materials that have only minimal susceptibility to high-energy particle fluxes. When the sensor is in operation, the sound waves radiated from the fuel rod resonator will propagate through the surrounding cooling fluid. The frequency of these oscillations is directly correlated with an effective temperature within the fuel rod resonator. This device is self-powered and is operational even in case of total loss of power of the reactor.

  14. A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

    SciTech Connect (OSTI)

    Hiroshi Takahashi; Upendra Rohatgi; T.J. Downar

    2000-08-04T23:59:59.000Z

    (OAK/B204) A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

  15. Assessment of the Fingerprinting Method for Spent Fuel Verification in MACSTOR KN-400 CANDU Dry Storage 

    E-Print Network [OSTI]

    Gowthahalli Chandregowda, Nandan

    2012-10-19T23:59:59.000Z

    is necessary in order for the International Atomic Energy Agency (IAEA) to meet with safeguards regulations. The IAEA is interested in having a new effective method of re-verification of the nuclear material in the MACSTOR KN-400 dry storage facility...

  16. Nuclear Fuel Cycle Reasoner: PNNL FY12 Report

    SciTech Connect (OSTI)

    Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

    2013-05-03T23:59:59.000Z

    Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

  17. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01T23:59:59.000Z

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  18. Double-clad nuclear-fuel safety rod

    DOE Patents [OSTI]

    McCarthy, W.H.; Atcheson, D.B.

    1981-12-30T23:59:59.000Z

    A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

  19. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect (OSTI)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24T23:59:59.000Z

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  20. Behavior of Spent Nuclear Fuel in Water Pool Storage

    Office of Scientific and Technical Information (OSTI)

    a p o t e n t i a l regime where t h e m a t r i x i s more passive, b u t t h e chromium-depleted g r a i n boundaries remain a c t i v e , promoting i n t e r g r a n u l a r a t...