Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear fuel fabrication and refabrication cost estimation methodology  

SciTech Connect

The costs for construction and operation of nuclear fuel fabrication facilities for several reactor types and fuels were estimated, and the unit costs (prices) of the fuels were determined from these estimates. The techniques used in estimating the costs of building and operating these nuclear fuel fabrication facilities are described in this report. Basically, the estimation techniques involve detailed comparisons of alternative and reference fuel fabrication plants. Increases or decreases in requirements for fabricating the alternative fuels are identified and assessed for their impact on the capital and operating costs. The impact on costs due to facility size or capacity was also assessed, and scaling factors for the various captial and operating cost categories are presented. The method and rationale by which these scaling factors were obtained are also discussed. By use of the techniques described herein, consistent cost information for a wide variety of fuel types can be obtained in a relatively short period of time. In this study, estimates for 52 fuel fabrication plants were obtained in approximately two months. These cost estimates were extensively reviewed by experts in the fabrication of the various fuels, and, in the opinion of the reviewers, the estimates were very consistent and sufficiently accurate for use in overall cycle assessments.

Judkins, R.R.; Olsen, A.R.

1979-11-01T23:59:59.000Z

2

Fabrication of high exposure nuclear fuel pellets  

DOE Patents (OSTI)

A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

Frederickson, James R. (Richland, WA)

1987-01-01T23:59:59.000Z

3

FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

Loeb, E.; Nicklas, J.H.

1959-02-01T23:59:59.000Z

4

Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?  

SciTech Connect

For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

2011-11-14T23:59:59.000Z

5

Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel  

Science Conference Proceedings (OSTI)

Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

Karen L. Shropshire

2008-04-01T23:59:59.000Z

6

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

7

The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility, IG-0887  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Use of Staff Augmentation The Use of Staff Augmentation Subcontracts at National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility DOE/IG-0887 May 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 15, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility" BACKGROUND Shaw AREVA MOX Services, LLC (MOX Services) is responsible for the design and construction of the National Nuclear Security Administration's (NNSA) nearly $5 billion Mixed

8

Guidelines for Fabrication, Examination, Testing and Oversight of Spent Nuclear Fuel Dry Storage Systems  

Science Conference Proceedings (OSTI)

The Nuclear Waste Policy Act (NWPA) of 1982 and subsequent amendments require the U. S. Department of Energy (DOE) to receive and be responsible for disposal of spent commercial nuclear power plant fuel from U.S. utilities. However, because of delays in the siting of a permanent federal repository, and with no federal interim storage facilities designated, U.S. utilities have been forced to provide additional spent nuclear fuel (SNF) storage capability to accommodate spent fuel discharge requirements. At...

1999-12-10T23:59:59.000Z

9

Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility  

SciTech Connect

The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing.

Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

2002-02-26T23:59:59.000Z

10

Fuel Fabrication Capability Research and Development Plan  

SciTech Connect

The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

Senor, David J.; Burkes, Douglas

2013-06-28T23:59:59.000Z

11

Nuclear Fabrication Consortium  

SciTech Connect

This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

Levesque, Stephen

2013-04-05T23:59:59.000Z

12

Neutronic fuel element fabrication  

SciTech Connect

This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

Korton, George (Cincinnati, OH)

2004-02-24T23:59:59.000Z

13

Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels  

SciTech Connect

The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.

John J. Moore, Marissa M. Reigel, Collin D. Donohoue

2009-04-30T23:59:59.000Z

14

Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels  

Science Conference Proceedings (OSTI)

The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.

John J. Moore, Douglas E. Burkes, Collin D. Donohoue, Marissa M. Reigel, J. Rory Kennedy

2009-05-18T23:59:59.000Z

15

The Fuel Fabrication Capability and Uranium-molybdenum Alloy  

Science Conference Proceedings (OSTI)

Abstract Scope, The Fuel Fabrication Capability (FFC) is part of the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) Global ...

16

Nuclear Fuels - Modeling  

Science Conference Proceedings (OSTI)

Mar 12, 2012... for the Current and Advanced Nuclear Reactors: Nuclear Fuels - Modeling .... Using density functional theory (DFT), we have predicted that ...

17

Vented nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel cell for use in a thermionic nuclear reactor in which a small conduit extends from the outside surface of the emitter to the center of the fuel mass of the emitter body to permit escape of volatile and gaseous fission products collected in the center thereof by virtue of molecular migration of the gases to the hotter region of the fuel.

Grossman, Leonard N. (Livermore, CA); Kaznoff, Alexis I. (Castro Valley, CA)

1979-01-01T23:59:59.000Z

18

Nuclear Fuel Cycle Integrated System Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Integrated System Analysis Fuel Cycle Integrated System Analysis Abdellatif M. Yacout Argonne National Laboratory Nuclear Engineering Division The nuclear fuel cycle is a complex system with multiple components and activities that are combined to provide nuclear energy to a variety of end users. The end uses of nuclear energy are diverse and include electricity, process heat, water desalination, district heating, and possibly future hydrogen production for transportation and energy storage uses. Components of the nuclear fuel cycle include front end components such as uranium mining, conversion and enrichment, fuel fabrication, and the reactor component. Back end of the fuel cycle include used fuel coming out the reactor, used fuel temporary and permanent storage, and fuel reprocessing. Combined with those components there

19

NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY  

DOE Patents (OSTI)

A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

Stengel, F.G.

1963-12-24T23:59:59.000Z

20

6 Nuclear Fuel Designs  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Message from the Director 2 Nuclear Power & Researrh Reactors 3 Discovery of Promethium 4 Nuclear Isotopes 4 Nuclear Medicine 5 Nuclear Fuel Processes & Software 6 Nuclear Fuel Designs 6 Nuclear Safety 7 Nuclear Desalination 7 Nuclear Nonproliferation 8 Neutron Scattering 9 Semiconductors & Superconductors 10 lon-Implanted Joints 10 Environmental Impact Analyses 11 Environmental Quality 12 Space Exploration 12 Graphite & Carbon Products 13 Advanced Materials: Alloys 14 Advanced Materials: Ceramics 15 Biological Systems 16 Biological Systems 17 Computational Biology 18 Biomedical Technologies 19 Intelligent Machines 20 Health Physics & Radiation Dosimetry 21 Radiation Shielding 21 Information Centers 22 Energy Efficiency: Cooling & Heating

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear fuel composition  

DOE Patents (OSTI)

1. A high temperature graphite-uranium base nuclear fuel composition containing from about 1 to about 5 five weight percent rhenium metal.

Feild, Jr., Alexander L. (Pittsburgh, PA)

1980-02-19T23:59:59.000Z

22

Nuclear Fuel Recycling Position Statement  

E-Print Network (OSTI)

The American Nuclear Society believes that if the world is to provide sufficient energy to meet the demands of a growing population and improved standards of living in the 21 st century, nuclear energy will play a substantial role. Nuclear energy is a proven technology that will be part of the mix of technologies used by future generations due to its enormous energy potential with near-zero emissions of greenhouse gases (see related Position Statement 44). Alternative energy sources by themselves will be insufficient to meet these needs during this period of rapidly increasing energy demand. Nuclear fuel recycling, which involves separating the uranium and plutonium from spent nuclear fuel for reuse in the fabrication of new fuel (see Position Statement 47), has the potential to reclaim most of the unused energy in spent fuel. It is a proven alternative to current U.S. policy of direct disposal of spent fuel in a geological repository, which throws away the fuel’s remaining energy content. Recycling of nuclear fuel in other countries with proper safeguards and material controls (see related Position Statement 55) under the auspices of the International Atomic Energy Agency (IAEA) has demonstrated the viability of high level waste volume reduction and energy resource conservation. Transitioning to a recycle policy in an era of expanded nuclear deployment will enhance resource utilization, radioactive waste management, and safeguards. Additional research and development 1 are needed to address the issue of cost and to further enhance the safeguards and safety of the various processes that are required. Such research is also needed to secure the U.S. position as a leader in nuclear technology and global nuclear materials stewardship. Therefore, the American Nuclear Society endorses the following: U.S. policy that allows an orderly transition to nuclear fuel recycling in parallel with the development of the high level waste repository, Yucca Mountain, in a manner that would enhance the repository’s efficiency; further research and development of recycle options to ensure a secure and sustainable energy future with reduced proliferation risks.

unknown authors

2007-01-01T23:59:59.000Z

23

Fuel fabrication acceptance report FSV: initial core  

SciTech Connect

The fabrication of the Fort St. Vrain initial core is described. Detailed summaries of the final fuel element metal loadings and other properties are given. Problems that occurred during fabrication and their resolutions have been given special attention, including the results of analyses made prior to their adoption. A final substantiation for the Fort St. Vrain initial core was provided by a full-core, three-dimensional analysis considering control rod insertion and fuel depletion and with explicit representation of the as-built fuel elements. The calculated power distributions from the three dimensional analysis are well within the limits specified for the reference design. During fabrication of the initial core fuel elements, some difficulties with assayed quantities of uranium and thorium were encountered. These difficulties resulted from changes in the fuel rod standards used in assay equipment calibration and in the techniques employed for assaying fuel particles and fuel rods. As a result the apparent values for the average metal loadings for some fuel rods and fuel elements changed. For certain blends some already-assembled fuel elements were outside the tolerances given in the fuel specification. A study was undertaken to make recommendations on the disposition of already-fabricated fuel and adjustments for the remainder of fuel fabrication. This study focused on utilizing, as much as possible, already-fabricated fuel without compromising the performance of the core. A variety of adjustments were considered and used in some instances, but the most successful method was the imposition of a layer location on fuel elements. By use of this additional core assembly requirement, a distribution of high metal load and low metal load fuel elements was obtained that assured that power perturbations would be small and localized and that temperature perturbations would be small and confined to axial layers where temperatures are nominally low. (auth)

Kapernick, R.J.; Nirschl, R.J.

1973-12-01T23:59:59.000Z

24

Nuclear fuel cycle costs  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1982-02-01T23:59:59.000Z

25

Nuclear Fuel Reprocessing  

SciTech Connect

This is an a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. No formal abstract was required for the article. The full article will be attached.

Michael F. Simpson; Jack D. Law

2010-02-01T23:59:59.000Z

26

Nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

Zocher, Roy W. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

27

Improvements in fabrication of metallic fuels  

Science Conference Proceedings (OSTI)

Argonne National Laboratory is currently developing a new liquid- metal cooled breeder reactor known as the Integral Fast Reactor (IFR). IFR fuels represent the state-of-the-art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, to be discussed below, will support the fully remote fuel cycle facility that as an integral part of the IFR concept will be demonstrated at the EBR-II site. 3 refs.

Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

1989-12-01T23:59:59.000Z

28

Nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

Meadowcroft, Ronald Ross (Deep River, CA); Bain, Alastair Stewart (Deep River, CA)

1977-01-01T23:59:59.000Z

29

Nuclear fuel pin scanner  

DOE Patents (OSTI)

Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

Bramblett, Richard L. (Friendswood, TX); Preskitt, Charles A. (La Jolla, CA)

1987-03-03T23:59:59.000Z

30

Nuclear Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel assembly consists of hundreds of thousands of uranium pellets, stacked and encapsulated within tubes called fuel rods or fuel pins which are then bundled together in various geometric arrangements. There are many design considerations for the material composition and geometric configuration of the various components comprising a nuclear fuel system. Future designs for the fuel and the assembly or packaging of fuel will contribute to cleaner, cheaper and safer nuclear energy. Today's process for developing and testing new fuel systems is resource and time intensive. The process to manufacture the fuel, build an assembly,

31

22.351 Systems Analysis of the Nuclear Fuel Cycle, Spring 2003  

E-Print Network (OSTI)

In-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ...

Kazimi, Mujid S.

32

GUIDE TO NUCLEAR POWER COST EVALUATION. VOLUME 4. FUEL CYCLE COSTS  

SciTech Connect

Information on fuel cycle cost is presented. Topics covered include: nuclear fuel, fuel management, fuel cost, fissionable material cost, use charge, conversion and fabrication costs, processing cost, and shipping cost. (M.C.G.)

1962-03-15T23:59:59.000Z

33

Nuclear fuel particles and method of making nuclear fuel compacts therefrom  

DOE Patents (OSTI)

Methods for making nuclear fuel compacts exhibiting low heavy metal contamination and fewer defective coatings following compact fabrication from a mixture of hardenable binder, such as petroleum pitch, and nuclear fuel particles having multiple layer fission-product-retentive coatings, with the dense outermost layer of the fission-product-retentive coating being surrounded by a protective overcoating, e.g., pyrocarbon having a density between about 1 and 1.3 g/cm.sup.3. Such particles can be pre-compacted in molds under relatively high pressures and then combined with a fluid binder which is ultimately carbonized to produce carbonaceous nuclear fuel compacts having relatively high fuel loadings.

DeVelasco, Rubin I. (Encinitas, CA); Adams, Charles C. (San Diego, CA)

1991-01-01T23:59:59.000Z

34

NUCLEAR FUEL MATERIAL  

DOE Patents (OSTI)

An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)

Goeddel, W.V.

1962-06-26T23:59:59.000Z

35

Nuclear fuel cycle information workshop  

SciTech Connect

This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

1983-01-01T23:59:59.000Z

36

NUCLEAR FUEL COMPOSITION  

DOE Patents (OSTI)

A novel reactor composition for use in a self-sustaining fast nuclear reactor is described. More particularly, a fuel alloy comprising thorium and uranium-235 is de scribed, the uranium-235 existing in approximately the same amount that it is found in natural uranium, i.e., 1.4%.

Spedding, F.H.; Wilhelm, H.A.

1960-05-31T23:59:59.000Z

37

The Phenomenology of Nuclear Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

most widely used nuclear fuel is in the form of Uranium Oxide. It is used in hundreds of nuclear power reactors, naval reactors and research reactors. This ceramic fuel form has...

38

Advances in metallic nuclear fuel  

Science Conference Proceedings (OSTI)

Metallic nuclear fuels have generated renewed interest for advanced liquid metal reactors (LMRs) due to their physical properties, ease of fabrication, irradiation behavior, and simple reprocessing. Irradiation performance for both steady-state and transient operations is excellent. Ongoing irradiation tests in Argonne-West's Idaho-based Experimental Breeder Reactor II (EBR-II) have surpassed 100,000 MWd/T burnup and are on their way to a lifetime burnup of 150,000 MWd/T or greater. Metallic fuel also has a unique neutronic characteristic that enables benign reactor responses to loss-of-flow without scram and loss-of-heat-sink without scram accident conditions. This inherent safety potential of metallic fuel was demonstrated in EBR-II just one year ago. Safety tests performed in the reactor have also demonstrated that there is ample margin to fuel element cladding failure under transient overpower conditions. These metallic fuel attributes are key ingredients of the integral fast reactor (IFR) concept being developed at Argonne National Laboratory.

Seidel, B.R.; Walters, L.C.; Chang, Y.I.

1987-04-01T23:59:59.000Z

39

Nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

Armijo, Joseph S. (Saratoga, CA); Coffin, Jr., Louis F. (Schenectady, NY)

1983-01-01T23:59:59.000Z

40

Nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

Armijo, Joseph S. (Saratoga, CA); Coffin, Jr., Louis F. (Schenectady, NY)

1980-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell ...  

Science Conference Proceedings (OSTI)

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell Miniaturizations · Fabrication of TiN Nanoparticle Dispersed Si3N4 Ceramics by Wet Jet ...

42

Fabrication of thorium bearing carbide fuels  

DOE Patents (OSTI)

Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

Gutierrez, Rueben L. (Los Alamos, NM); Herbst, Richard J. (Los Alamos, NM); Johnson, Karl W. R. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

43

Fabrication of Uranium Oxycarbide Kernels for HTR Fuel  

Science Conference Proceedings (OSTI)

Babcock and Wilcox (B&W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-µm, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B&W produced 425-µm, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B&W also produced 500-µm, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B&W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.

Charles Barnes; CLay Richardson; Scott Nagley; John Hunn; Eric Shaber

2010-10-01T23:59:59.000Z

44

Multilayered nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element is described which is suitable for high temperature applications comprised of a kernel of fissile material overlaid with concentric layers of impervious graphite, vitreous carbon, pyrolytic carbon and metal carbide. The kernel of fissile material is surrounded by a layer of impervious graphite. The layer of impervious graphite is then surrounded by a layer of vitreous carbon. Finally, an outer shell which includes alternating layers of pyrolytic carbon and metal carbide surrounds the layer of vitreous carbon.

Schweitzer, Donald G.; Sastre, Cesar

1996-12-01T23:59:59.000Z

45

NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT  

DOE Patents (OSTI)

A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1962-08-14T23:59:59.000Z

46

Nuclear Fuels Storage & Transportation Planning Project | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown...

47

Parametric Study of Front-End Nuclear Fuel Cycle Costs  

Science Conference Proceedings (OSTI)

This study provides an overview of front-end fuel cost components for nuclear plants, specifically uranium concentrates, uranium conversion services, uranium enrichment services, and nuclear fuel fabrication services. A parametric analysis of light-water reactor (LWR) fuel cycle costs is also included in order to quantify the impacts that result from changes in the cost of one or more front-end components on overall fuel cycle costs.

2009-02-20T23:59:59.000Z

48

Update on US High Density Fuel Fabrication Development  

SciTech Connect

Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

2007-03-01T23:59:59.000Z

49

22.251 / 22.351 Systems Analysis of the Nuclear Fuel Cycle, Fall 2005  

E-Print Network (OSTI)

This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, ...

Kazimi, Mujid S.

50

Radiological environs study at a fuel fabrication facility. [General Electric Fuel Fabrication Plant at Wilmington, NC  

SciTech Connect

Field studies were conducted to detect environmental contamination from fuel fabrication plant effluents. The plant chosen for study was operated by the General Electric Company, Nuclear Fuel Division, at Wilmington, NC. The facility operates continuously using the ammonium diuranate (ADU) process to convert 2.0 to 2.2% enriched UF/sub 6/ to UO/sub 2/ fuel. Continuous air samplers at five sites measured the concentrations of /sup 234/U and /sup 238/U in air for 36 one-week intervals. River water was sampled at nine locations above and below the plant discharge point during each of three field surveys. The atmospheric concentrations of /sup 234/U and /sup 238/U appeared to vary according to a log-normal distribution. The annual facility release of approximately 2 to 3 mCi uranium to the atmosphere would add from 0.01 to 0.2 fCi/m/sup 3/ uranium in the atmospheric environs. An individual residing continuously at the nearest residence is predicted to receive a 50-year dose commitment of 0.9 mrem to the lung. The approximately 1 Ci/y of uranium liquid effluent released would increase the uranium concentration in Northeast Cape Fear estuary about 3 kilometers downstream by 0.3 pCi/liter. Although this water is not potable and is not used for any potable water supply, ingestion of water containing uranium at this concentration for a year would deliver a 3-mrem dose commitment to the bone.

Lyon, R.J.; Shearin, R.L.; Broadway, J.A.

1978-10-01T23:59:59.000Z

51

Fabrication and Irradiation of LWR Hydride Mini-Fuel Rods  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Materials for the Nuclear Renaissance II. Presentation Title, Fabrication and ...

52

WEB RESOURCE: Nuclear Materials and Nuclear Fuel/Waste  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ...

53

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network (OSTI)

Fluorescence for Spent Nuclear Fuel Assay Brian J. Quiter ?of Pu isotopes in spent nuclear fuel (SNF). Given the lowU and 239 Pu in spent nuclear fuel using NRF. II. PERFORMING

Quiter, Brian

2012-01-01T23:59:59.000Z

54

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

55

Nuclear Fuel Assembly and Related Methods for Spent Nuclear ...  

Nuclear Fuel Assembly and Related Methods for Spent Nuclear Fuel Reprocessing and Management Note: The technology described above is an early stage ...

56

Nuclear fuel recycling in 4 minutes | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel recycling in 4 minutes Share Topic Energy Energy sources Nuclear energy Nuclear fuel cycle Reactors...

57

Fabrication of CeO2 by sol-gel process based on microfluidic technology as an analog preparation of ceramic nuclear fuel microspheres  

E-Print Network (OSTI)

Microfluidics integrated with sol-gel processes is introduced in preparing monodispersed MOX nuclear fuel microspheres using nonactive cerium as a surrogate for uranium or plutonium. The detailed information about microfluidic devices and sol-gel processes are provided. The effects of viscosity and flow rate of continuous and dispersed phase on size and size distribution of CeO2 microspheres have been investigated. A comprehensive characterization of the CeO2 microspheres has been conducted, including XRD pattern, SEM, density, size and size distribution. The size of prepared monodisperse particles can be controlled precisely in range of 10{\\mu}m to 1000{\\mu}m and the particle CV is below 3%.

Bin Ye; Jilang Miao; Jiaolong Li; Zichen Zhao; Zhenqi Chang; Christophe A. Serra

2012-12-15T23:59:59.000Z

58

Fabrication of CeO2 by sol-gel process based on microfluidic technology as an analog preparation of ceramic nuclear fuel microspheres  

E-Print Network (OSTI)

Microfluidics integrated with sol-gel processes is introduced in preparing monodispersed MOX nuclear fuel microspheres using nonactive cerium as a surrogate for uranium or plutonium. The detailed information about microfluidic devices and sol-gel processes are provided. The effects of viscosity and flow rate of continuous and dispersed phase on size and size distribution of CeO2 microspheres have been investigated. A comprehensive characterization of the CeO2 microspheres has been conducted, including XRD pattern, SEM, density, size and size distribution. The size of prepared monodisperse particles can be controlled precisely in range of 10{\\mu}m to 1000{\\mu}m and the particle CV is below 3%.

Ye, Bin; Li, Jiaolong; Zhao, Zichen; Chang, Zhenqi; Serra, Christophe A

2012-01-01T23:59:59.000Z

59

Nuclear Fuel Cycle & Vulnerabilities  

Science Conference Proceedings (OSTI)

The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

Boyer, Brian D. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

60

Nondestructive Spent Fuel Assay Using Nuclear Resonance Fluorescence  

E-Print Network (OSTI)

09-01188, ANS Advances in Nuclear Fuel Management IV, Hiltonanalysis of spent nuclear fuel via nuclear resonanceNondestructive Spent Fuel Assay Using Nuclear Resonance

Quiter, Brian

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A fuel element particularly adapted for use in nuclear reactors of high power density is offered. It has fissionable fuel pellet segments mounted in a tubular housing and defining a central passage in the fuel element. A burnable poison element extends through the central passage, which is designed to contain more poison material at the median portion than at the end portions thereby providing a more uniform hurnup and longer reactivity life.

Bassett, C.H.

1961-05-16T23:59:59.000Z

62

Nuclear fuel assembly spacer  

Science Conference Proceedings (OSTI)

In a fuel assembly for a nuclear reactor including a plurality of elongated elements, a spacer is described for retaining the elements in lateral position. The spacer consists of: an array of laterally positioned, cojoined tubular ferrules, each of the ferrules providing a passage for one of the elements, laterally oriented leaf spring members, each of the spring members spanning two adjacent ones of the ferrules and extending therein to engage and laterally support the elements extending through the adjacent ferrules, facing sides of the adjacent ferrules being formed with cutouts to receive and support the spring member. The sides of the ferrules opposite the facing sides are formed with openings to receive and restrain the ends of the spring member, the spring member being formed with a generally V-shaped central portion with an apex extending toward the adjacent sides of the adjacent ferrules whereby in the absence of elements through the adjacent ferrules the central portion contacts the adjacent sides to provide a preload on the spring member and limit the amount of projection of the spring member into the ferrules whereby the insertion of the elements through the ferrules is facilitated. The central portion of the spring member is unrestrained in the presence of the elements through the ferrules, the spring member having left and right arms extending outward from the V-shaped central portion, each of the arms including a relatively long center portion for contacting a respective one of the elements. A shorter end portion is angled toward the ferrules and a tab of reduced height at the end of each arm engaging a respective one of the openings whereby the resulting shoulders at the ends of the spring member engage the inner surface of the ferrules adjacent the openings to laterally locate and retain the spring member.

Johanssen, E.B.; Matzner, B.

1986-02-18T23:59:59.000Z

63

NUCLEAR REACTOR FUEL SYSTEMS  

DOE Patents (OSTI)

Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

1959-09-15T23:59:59.000Z

64

Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors  

SciTech Connect

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pacoima, CA); Benander, Robert E. (Pacoima, CA)

2011-03-01T23:59:59.000Z

65

FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A nuclear reactor fuel element comprising high density ceramic fissionable material enclosed in a tubular cladding of corrosion-resistant material is described. The fissionable material is in the form of segments of a tube which have cooperating tapered interfaces which produce outward radial displacement when the segments are urged axially together. A resilient means is provided within the tubular housing to constantly urge the fuel segments axially. This design maintains the fuel material in tight contacting engagement against the inner surface of the outer cladding tube to eliminate any gap therebetween which may be caused by differential thermal expansion between the fuel material and the material of the tube.

Bassett, C.H.

1961-05-01T23:59:59.000Z

66

THE NUCLEAR FUEL CYCLE: PROSPECTS FOR REDUCING ITS COST  

SciTech Connect

Nuclear fuel cost of 1.25 mills/kwh would make nuclear power competitive with conventional power in lowcost coal areas if capital and operating costs can be brought to within about 10 percent of those of coal-fired plants. Substantial decreases in fuel fabrication cost are anticipated by 1970: other costs in the fuel cycle are expccted to remain about the same as at present. Unit costs and irradiation levels that would be needed to give a fuel cost of 1.25 mills/kwh are believed to be attainable by 1970. (auth)

Albrecht, W.L.

1959-02-20T23:59:59.000Z

67

Nuclear fuels accounting interface: River Bend experience  

SciTech Connect

This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation.

Barry, J.E.

1986-01-01T23:59:59.000Z

68

NUCLEAR REACTOR FUEL ELEMENT  

DOE Patents (OSTI)

A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1963-06-11T23:59:59.000Z

69

Nuclear Fuels: Promise and Limitations  

Science Conference Proceedings (OSTI)

From 1950 through 1980, scientists, engineers and national leaders confidently predicted an early twenty-first century where fast breeder reactors and commercial nuclear fuel reprocessing were commonplace. Such a scenario seemed necessary for a world with the more than 1000 GWe of nuclear energy needed to meet such an ever-increasing thirst for energy. Thirty years later uranium reserves are increasing on pace with consumption, the growth of nuclear power has been slowed, commercial breeder reactors have yet to enter the marketplace, and less than a handful of commercial reprocessing plants operate. As Nobel Laureate Niels Bohr famously said, “Prediction is very difficult, especially if it’s about the future.” The programme for IChemE’s 2012 conference on the nuclear fuel cycle features a graphic of an idealized nuclear fuel cycle that symbolizes the quest for a closed nuclear fuel cycle featuring careful husbanding of precious resources while minimizing the waste footprint. Progress toward achieving this ideal has been disrupted by technology innovations in the mining and petrochemical industries, as well as within the nuclear industry.

Harold F. McFarlane

2012-03-01T23:59:59.000Z

70

Advanced Nuclear Fuels  

Science Conference Proceedings (OSTI)

Oct 19, 2010 ... The United States Department of Energy has defined an approach to energy security that includes sustainable nuclear energy. To achieve ...

71

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

Science Conference Proceedings (OSTI)

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

72

Proliferation Resistant Nuclear Reactor Fuel  

Science Conference Proceedings (OSTI)

Global appetite for fission power is projected to grow dramatically this century, and for good reason. Despite considerable research to identify new sources of energy, fission remains the most plentiful and practical alternative to fossil fuels. The environmental challenges of fossil fuel have made the fission power option increasingly attractive, particularly as we are forced to rely on reserves in ecologically fragile or politically unstable corners of the globe. Caught between a globally eroding fossil fuel reserve as well as the uncertainty and considerable costs in the development of fusion power, most of the world will most likely come to rely on fission power for at least the remainder of the 21st century. Despite inevitable growth, fission power faces enduring challenges in sustainability and security. One of fission power's greatest hurdles to universal acceptance is the risk of potential misuse for nefarious purposes of fissionable byproducts in spent fuel, such as plutonium. With this issue in mind, we have discussed intrinsic concepts in this report that are motivated by the premise that the utility, desirability, and applicability of nuclear materials can be reduced. In a general sense, the intrinsic solutions aim to reduce or eliminate the quantity of existing weapons usable material; avoid production of new weapons-usable material through enrichment, breeding, extraction; or employ engineering solutions to make the fuel cycle less useful or more difficult for producing weapons-usable material. By their nature, these schemes require modifications to existing fuel cycles. As such, the concomitants of these modifications require engagement from the nuclear reactor and fuel-design community to fully assess their effects. Unfortunately, active pursuit of any scheme that could further complicate the spread of domestic nuclear power will probably be understandably unpopular. Nevertheless, the nonproliferation and counterterrorism issues are paramount, and we posit that the exploration, development, and implementation of intrinsic mechanisms such as discussed here are part of a balanced approach aimed at preventing the misuse of nuclear material for nuclear-energy applications.

Gray, L W; Moody, K J; Bradley, K S; Lorenzana, H E

2011-02-18T23:59:59.000Z

73

Nuclear Fuel Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... Various metallic nuclear fuels are bcc alloys of uranium that swell under ... that currently employ fuels containing highly enriched uranium.

74

Categorization of Used Nuclear Fuel Inventory in Support of a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy Categorization of Used Nuclear Fuel Inventory in Support of a...

75

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

experience in the nuclear fuels field. I am also extremelyreactor core components, nuclear fuel-element design hasreactors, commercial nuclear fuel still consists of uranium

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

76

Nuclear reactor composite fuel assembly  

DOE Patents (OSTI)

A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

1980-01-01T23:59:59.000Z

77

FUEL ELEMENT FOR NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear fuel element comprising a large number og wafers of fissionable material and a protective jacket having compartments holding these wafers is described. The compartments of the jacket aid the removal of heat from the wafers, keep the wafers or fragments thereof from migrating in the jacket, and permit the escape of gaseous fission products.

Carney, K.G. Jr.

1959-07-14T23:59:59.000Z

78

Fire resistant nuclear fuel cask  

DOE Patents (OSTI)

The disclosure is directed to a fire resistant nuclear fuel cask employing reversibly thermally expansible bands between adjacent cooling fins such that normal outward flow of heat is not interfered with, but abnormal inward flow of heat is impeded or blocked.

Heckman, Richard C. (Albuquerque, NM); Moss, Marvin (Albuquerque, NM)

1979-01-01T23:59:59.000Z

79

World nuclear fuel cycle requirements 1991  

Science Conference Proceedings (OSTI)

The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

Not Available

1991-10-10T23:59:59.000Z

80

Nuclear Fuels & Zr-alloy Claddings  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Microstructural Processes in Irradiated Materials: Nuclear Fuels & Zr-alloy ... Center for Materials Science of Nuclear Fuels, an Energy Frontier Research ... However, more recently density functional theory calculations have ...

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sustainable Energy Through Recycling Used Nuclear Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Through Recycling Used Nuclear Fuel M.A. Williamson, A.V. Guelis, J.L. Willit, C. Pereira and A.J. Bakel Argonne National Laboratory Recycle of used nuclear fuel is central...

82

Nuclear Weapons Proliferation and the Civilian Nuclear Fuel Cycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Sciences October 12-14, 2011, Northwestern University Evanston, Illinois Nuclear Weapons Proliferation and the Civilian Nuclear Fuel Cycle: Understanding and Reducing...

83

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

Fundamental aspects of nuclear reactor fuel elements.Unlike permanent nuclear reactor core components, nuclearof the first nuclear reactors, commercial nuclear fuel still

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

84

Compositions and methods for treating nuclear fuel  

SciTech Connect

Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

2013-08-13T23:59:59.000Z

85

Reprocessing of nuclear fuels at the Savannah River Plant  

Science Conference Proceedings (OSTI)

For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

Gray, L.W.

1986-10-04T23:59:59.000Z

86

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide: Fuel Handling Equipment Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical task during a nuclear power plant refueling outage. The proper operation of fuel handling equipment (such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators) is important to a successful refueling outage and to preparing fuel for eventual disposal.BackgroundThe fuel handling system contains the components used to move fuel from the time that the new fuel is received until the spent fuel ...

2013-12-13T23:59:59.000Z

87

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

Framework   for   Nuclear   Fuel   Cycle   Concepts,”  Of   Used   Nuclear   Fuel”,   Nuclear  Engineering  and  Radiotoxicity  of  Spent  Nuclear   Fuel,”   Integrated  

Djokic, Denia

2013-01-01T23:59:59.000Z

88

Safety issues in fabricating mixed oxide fuel using surplus weapons plutonium  

SciTech Connect

This paper presents an assessment of the safety issues and implications of fabricating mixed oxide (MOX) fuel using surplus weapons plutonium. The basis for this assessment is the research done at Los Alamos National Laboratory (LANL) in identifying and resolving the technical issues surrounding the production of PuO{sub 2} feed, removal of gallium from the PuO{sub 2} feed, the fabrication of test fuel, and the work done at the LANL plutonium processing facility. The use of plutonium in MOX fuel has been successfully demonstrated in Europe, where the experience has been almost exclusively with plutonium separated from commercial spent nuclear fuel. This experience in safely operating MOX fuel fabrication facilities directly applies to the fabrication and irradiation of MOX fuel made from surplus weapons plutonium. Consequently, this paper focuses on the technical difference between plutonium from surplus weapons, and light-water reactor recycled plutonium. Preliminary assessments and research lead to the conclusion that no new process or product safety concerns will arise from using surplus weapons plutonium in MOX fuel.

Buksa, J.; Badwan, F.; Barr, M.; Motley, F.

1998-07-01T23:59:59.000Z

89

HIGH DENSITY NUCLEAR FUEL COMPOSITION  

DOE Patents (OSTI)

ABS>A nuclear fuel consisting essentially of uranium monocarbide and containing 2.2 to 4.6 wt% carbon, 0.1 to 2.3 wt% oxygen, 0.05 to 2.5 wt% nitrogen, and the balance uranium was developed. The maximum oxygen content was less than one-half the carbon content by weight and the carbon, oxygen, and nitrogen are present as a single phase substituted solid solution of UC, C, O, and N. A method of preparing the fuel composition is described. (AEC)

Litton, F.B.

1962-07-17T23:59:59.000Z

90

Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors  

SciTech Connect

Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pocoima, CA); Benander, Robert E. (Pacoima, CA)

2010-02-23T23:59:59.000Z

91

PLUTONIUM FUEL PROCESSING AND FABRICATION FOR FAST CERAMIC REACTORS  

SciTech Connect

>A study was made of the processes available for fabrication of plutonium-containing fuel from a fast ceramic reacter, and for chemical reprocessing of irradiated fuel. Radiations from recycled plutonium are evaluated. Adaptation of conventional glove-box handling procedures to the fabrication of recycle plutonium appears practical. It is concluded that acceptable costs are obtainable using moderate extensions of conventional glove- box fabrication methods and wet processing techniques, provided a significant volume of production is available. The minimum economic scale for the preferred chemical reprocessing method, anion exchange, is about 500 Mw(e) of reactor capacity. The minimum scale of economic operation for the fuel refabrication facility corresponds to three 500 Mw(e) reactors, if only steady-state refueling provides the fabrication load. The minimum volume required falls to one 500 Mw(e) reactor, if the continued growth of capacity provides fabrication volume equal to that for refueling. The chemical reprocessing costs obtained range from 0.27 mills/kwh for 1500 Mw(e) of reactor capacity, to 0.10 mills/kwh for 3000 Mw(e) of capacity. The estimated fuel fabrication cost is l/kg of uranium and plutonium in the core region (excluding axial and radial blankets) or .06/ g of plutonium content, When axial blankets, fabricated in the same rods, are included; the combined average is 34/kg of uranium and plutonium. Radial blanket fabrication cost is /kg of uranium. The overall average of all fuel and blankets is /kg of uranium and plutonium. The fabrication cost is 0.29 mills/kwh for a production rate corresponding to 3000 Mw(e) of capacity (or 1500 Mw(e) of capacity plus growth equivalent to one additional reactor core per year). For one 525 Mw(e) reactor, (plus equivalent growth volume) the fabrication cost becomes 0.42 mills/ kwh. (All fuel throughputs are based on fuel life of 100,000 MWD/T.) Using the estimates developed, the total fuel cycle cost for a typical fast reactor design using PuO/sub 2/UO/sub 2/ fuel is estimated to be about 0.9 mills/kwh. (auth)

Zebroski, E.L.; Alter, H.W.; Collins, G.D.

1962-02-01T23:59:59.000Z

92

Method for producing nuclear fuel  

DOE Patents (OSTI)

Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.

Haas, P.A.

1981-04-24T23:59:59.000Z

93

Method for producing nuclear fuel  

DOE Patents (OSTI)

Nuclear fuel is made by contacting an aqueous solution containing an actinide salt with an aqueous solution containing ammonium hydroxide, ammonium oxalate, or oxalic acid in an amount that will react with a fraction of the actinide salt to form a precipitate consisting of the hydroxide or oxalate of the actinide. A slurry consisting of the precipitate and solution containing the unreacted actinide salt is formed into drops which are gelled, calcined, and pressed to form pellets.

Haas, Paul A. (Knoxville, TN)

1983-01-01T23:59:59.000Z

94

ELECTRON BEAM WELDING OF NUCLEAR FUEL CLADDING COMPONENTS  

SciTech Connect

The rapid technological development of the nuclear and space industries has placed a great demand on metal joining processes. One of the most promising processes is electron beam welding. Welding with the electron beam ofiers high integrity in addition to the ability to fabricate unusual configurations. Advanced nuclear fuels require both reliability and unusual designs for satisfactory operation under extreme conditions of temperature and stress. To investigate the problems and techniques involved in fabricating large, advanced nuclear fuel components from Zircaloy-2 material, several cladding pieces were designed and built using the electron beam process. These designs included five basic joint types for assembling the cladding. Destructive and nondestructive examinations were employed including corrosion testing and extensive metallographic examination. Weldment size, fit-up'' of the parts to be joined, fixturing and work carriage mechanisms, as they pertain to electron beam welding, are also discussed. The electron beam process has been demonstrated as a very satisfactory method for fabricating unusual fuel cladding. Fuel cladding components with lengths up to 8 ft have been fabricated for in-reactor irradiation. (auth)

Klein, R.F.

1963-10-01T23:59:59.000Z

95

Welding and Fabrication Critical Factors for New Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Welding and fabrication processes employed for manufacture of critical nuclear power plant components may adversely affect material performance and can potentially increase susceptibility to known degradation mechanisms. This report identifies important welding and fabrication processes for specific materials, assesses their effects on potential degradation mechanisms, and identifies process enhancements that can improve long-term asset management of new nuclear plant components.

2009-12-08T23:59:59.000Z

96

Fabrication and Preliminary Evaluation of Metal Matrix Microencapsulated Fuels  

SciTech Connect

The metal matrix microencapsulated (M3) fuel concept for light water reactors (LWRs), consisting of coated fuel particles dispersed in a zirconium metal matrix, is introduced. Fabrication of M3 fuels by hot pressing, hot isostatic pressing, or extrusion methodologies has been demonstrated over the temperature range 800-1050 C. Various types of coated fuel particles with outermost layers of pyrocarbon, SiC, ZrC, and TiN have been incorporated into the zirconium metal matrix. Mechanical particle-particle and chemical particle-matrix interactions have been observed during the preliminary characterization of as-fabricated M3 specimens. Irradiation of three M3 rodlets with surrogate coated fuel particles was carried out at mean rod temperature of 400 C to 4.6 dpa in the zirconium metal matrix. Due to absence of texture in the metal matrix no irradiation growth strain (<0.09%) was detected during the post-irradiation examination.

Terrani, Kurt A [ORNL; Kiggans, Jim [ORNL; Snead, Lance Lewis [ORNL

2012-01-01T23:59:59.000Z

97

Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies  

Science Conference Proceedings (OSTI)

The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

1998-03-01T23:59:59.000Z

98

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

99

BOOK: Safety Related Issues of Spent Nuclear Fuel Storage  

Science Conference Proceedings (OSTI)

Sep 26, 2007... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ... Fifteen papers cover aluminum-clad fuel discharged from research ...

100

Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels  

SciTech Connect

The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O/sub 2/ fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required.

Olsen, A.R.; Judkins, R.R. (comps.)

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility  

Science Conference Proceedings (OSTI)

This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

Washington Division of URS

2008-07-01T23:59:59.000Z

102

Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications  

Science Conference Proceedings (OSTI)

The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

Yang Zhong; Robert C. O'Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

2011-11-01T23:59:59.000Z

103

Nuclear core and fuel assemblies  

DOE Patents (OSTI)

A fast flux nuclear core of a plurality of rodded, open-lattice assemblies having a rod pattern rotated relative to a rod support structure pattern. Elongated fuel rods are oriented on a triangular array and laterally supported by grid structures positioned along the length of the assembly. Initial inter-assembly contact is through strongbacks at the corners of the support pattern and peripheral fuel rods between adjacent assemblies are nested so as to maintain a triangular pitch across a clearance gap between the other portions of adjacent assemblies. The rod pattern is rotated relative to the strongback support pattern by an angle .alpha. equal to sin .sup.-1 (p/2c), where p is the intra-assembly rod pitch and c is the center-to-center spacing among adjacent assemblies.

Downs, Robert E. (Monroeville, PA)

1981-01-01T23:59:59.000Z

104

Nuclear Fuel Cycle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cycle Cycle Nuclear Fuel Cycle This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. The mission of NE-54 is primarily focused on activities related to the front end of the nuclear fuel cycle which includes mining, milling, conversion, and enrichment. Uranium Mining Both "conventional" open pit, underground mining, and in situ techniques are used to recover uranium ore. In general, open pit mining is used where deposits are close to the surface and underground mining is used

105

Improved nuclear fuel assembly grid spacer  

DOE Patents (OSTI)

An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

Marshall, John (San Jose, CA); Kaplan, Samuel (Los Gatos, CA)

1977-01-01T23:59:59.000Z

106

Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks  

E-Print Network (OSTI)

challenges and generate nonproliferation and other benefits? · If such services were to be offered, how would Bush proposed assuring nuclear fuel supply for countries meeting certain nonproliferation criteria

107

Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion  

SciTech Connect

ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

Trammell, Michael P [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Qualls, A L [ORNL; Harrison, Thomas J [ORNL

2013-01-01T23:59:59.000Z

108

SPECIFICATIONS AND FABRICATION PROCEDURES FOR TYPE 3 FUEL ELEMENTS  

SciTech Connect

Process and product requirements to be met in the fabrication of Type 3 fuel elements are presented. The fuel elements specified consist of thin plates of a dispersion of highly enriched UO/sub 2/ and ZrB/sub 2/ in a stainless steel matrix which is clad with stainless steel on all surfaces. Quality assurance provisions are discussed. Process and material specifications and packaging and packing for shipment are described. Sample calculations and drawings are included. (M.C.G.)

Edgar, E.C.; Clayton, H.R.

1962-04-27T23:59:59.000Z

109

Process development and fabrication for sphere-pac fuel rods. [PWR; BWR  

Science Conference Proceedings (OSTI)

Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

Welty, R.K.; Campbell, M.H.

1981-06-01T23:59:59.000Z

110

Nuclear Fuels II - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Materials Science Challenges for Nuclear Applications: Nuclear Fuels II ... reactivity and/or to flatten the radial power profile in a research or test reactor. ... Laboratory; 2Y-12 National Security Complex; 3University of Idaho

111

Summary report on fuel development and miniplate fabrication for the RERTR Program, 1978 to 1990  

Science Conference Proceedings (OSTI)

This report summarizes the efforts of the Fabrication Technology Section at Argonne National Laboratory in the program of Reduced Enrichment Research and Test Reactors (RERTR). The main objective of this program was to reduce the amount of high enriched ({approx}93% {sup 235}U) uranium (HEU) used in nonpower reactors. Conversion from low-density (0.8--1.6 g U/cm{sup 3}) HEU fuel elements to highly loaded (up to 7 g U/cm{sup 3}) low-enrichment (<20% {sup 235}U) uranium (LEU) fuel elements allows the same reactor power levels, core designs and sizes to be retained while greatly reducing the possibility of illicit diversion of HEU nuclear fuel. This document is intended as an overview of the period 1978--1990, during which the Section supported this project by fabricating mainly powder metallurgy uranium-silicide dispersion fuel plates. Most of the subjects covered in detail are fabrication-related studies of uranium silicide fuels and fuel plate properties. Some data are included for out-of-pile experiments such as corrosion and compatibility tests. Also briefly covered are most other aspects of the RERTR program such as irradiation tests, full-core demonstrations, and technology transfer. References included are for further information on most aspects of the entire program. A significant portion of the report is devoted to data that were never published in their entirety. The appendices contain a list of previous RERTR reports, ANL fabrication procedures, calculations for phases present in two-phase fuels, chemical analysis of fuels, miniplate characteristics, and a summary of bonding runs made by hot isostatic pressing.

Wiencek, T.C. [Argonne National Lab., IL (United States). Energy Technology Div.

1995-08-01T23:59:59.000Z

112

Actual Scale MOX Powder Mixing Test for MOX Fuel Fabrication Plant in Japan  

Science Conference Proceedings (OSTI)

Japan Nuclear Fuel Ltd. (hereafter, JNFL) promotes a program of constructing a MOX fuel fabrication plant (hereafter, J-MOX) to fabricate MOX fuels to be loaded in domestic light water reactors. Since Japanese fiscal year (hereafter, JFY) 1999, JNFL, to establish the technology for a smooth start-up and the stable operation of J-MOX, has executed an evaluation test for technology to be adopted at J-MOX. JNFL, based on a consideration that J-MOX fuel fabrication comes commercial scale production, decided an introduction of MIMAS technology into J-MOX main process, from powder mixing through pellet sintering, well recognized as mostly important to achieve good quality product of MOX fuel, since it achieves good results in both fuel production and actual reactor irradiation in Europe, but there is one difference that JNFL is going to use Japanese typical plutonium and uranium mixed oxide powder converted with the micro-wave heating direct de-nitration technology (hereafter, MH-MOX) but normal PuO{sub 2} of European MOX fuel fabricators. Therefore, in order to evaluate the suitability of the MH-MOX powder for the MIMAS process, JNFL manufactured small scale test equipment, and implemented a powder mixing evaluation test up until JFY 2003. As a result, the suitability of the MH-MOX powder for the MIMAS process was positively evaluated and confirmed It was followed by a five-years test named an 'actual test' from JFY 2003 to JFY 2007, which aims at demonstrating good operation and maintenance of process equipment as well as obtaining good quality of MOX fuel pellets. (authors)

Osaka, Shuichi; Kurita, Ichiro; Deguchi, Morimoto [Japan Nuclear Fuel Ltd., 4-108, Aza okitsuke, oaza obuchi rokkasyo-mura, kamikita-gun, Aomori 039-3212 (Japan); Ito, Masanori [Japan Atomic Energy Agency, 4-33 Muramatu, Tokai-mura, Ibaraki 319-1194 (Japan); Goto, Masakazu [Nuclear Fuel Industries, Ltd., 14-10, Mita 3-chome, Minato-ku, Tokyo 108-0073 (Japan)

2007-07-01T23:59:59.000Z

113

Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications  

Science Conference Proceedings (OSTI)

Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

2013-02-01T23:59:59.000Z

114

Effects of fabrication and irradiation on the dissolution of (U,Pu)O$sub 2$ reactor fuels  

SciTech Connect

From American Ceramics Society nuclear division meeting; San Francisco, California, USA (29 Oct 1973). LMFBR-type reactors will be fueled with stainless- steel-clad MFBR fuel cycle are the recovery of uranium and plutonium and the refabrication of the fuel elements in the minimum practicable time at lowest cost. Effect of fabrication method and irradiation conditions on recovery of the fuel is discussed. The Purex process is used to prepare the feed solutions. Test specimens contained fuels derived from sol-gel, coprecipitated, and mechanically blended oxides. Irradiation levels varied from unirradiated to 100,000 MWd/ton. Solubility of the fuels in terms of the fabrication method is coprecipitated> sol- gel > mechanically blended. Irradiation tends to increase the fuel solubility. (LK)

Goode, J.H.; Fitzgerald, C.L.; Vaughen, V.C.A.

1973-01-01T23:59:59.000Z

115

Back-end costs of alternative nuclear fuel cycles  

Science Conference Proceedings (OSTI)

As part of its charter, the Alternate Fuel Cycle Evaluation Program (AFCEP) was directed to evaluate the back-end of the nuclear fuel cycle in support of the Nonproliferation Alternative Systems Assessment Program (NASAP). The principal conclusion from this study is that the costs for recycling a broad range of reactor fuels will not have a large impact on total fuel cycle costs. For the once-through fuel cycle, the costs of fresh fuel fabrication, irradiated fuel storage, and associated transportation is about 1.2 to 1.3 mills/kWh. For the recycle of uranium and plutonium into thermal reactors, the back-cycle costs (i.e., the costs of irradiated fuel storage, transportation, reprocessing, refabrication, and waste disposal) will be from 3 to 3.5 mills/kWh. The costs for the recycle of uranium and plutonium into fast breeder reactors will be from 4.5 to 5 mills/kWh. Using a radioactive spikant or a denatured /sup 233/U-Th cycle will increase power costs for both recycle cases by about 1 mill/kWh. None of these costs substantially influence the total cost of nuclear power, which is in the range of 4 cents/kWh. The fuel cycle costs used in this study do not include costs incurred prior to fuel fabrication; that is, the cost of the uranium or thorium, the costs for enrichment, or credit for fissile materials in the discharged fuel, which is not recycled with the system.

Rainey, R.H.; Burch, W.D.; Haire, M.J.; Unger, W.E.

1980-01-01T23:59:59.000Z

116

Monitoring arrangement for vented nuclear fuel elements  

DOE Patents (OSTI)

In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

Campana, Robert J. (Solana Beach, CA)

1981-01-01T23:59:59.000Z

117

Nuclear fuel: a new market dynamic  

Science Conference Proceedings (OSTI)

After almost 20 years of low nuclear fuel prices, buyers have come to expect that these low and stable nuclear fuel prices will continue. This conventional wisdom may not reflect the significant changes and higher prices that growing demand, and the end of secondary sources of uranium and enrichment, will bring. (author)

Kee, Edward D.

2007-12-15T23:59:59.000Z

118

Spent Nuclear Fuel (SNF) Project Execution Plan  

SciTech Connect

The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

LEROY, P.G.

2000-11-03T23:59:59.000Z

119

TEPP - Spent Nuclear Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Spent Nuclear Fuel - Spent Nuclear Fuel TEPP - Spent Nuclear Fuel This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel. This exercise manual is one in a series of five scenarios developed by the Department of Energy Transportation Emergency Preparedness Program. Responding agencies may include several or more of the following: local municipal and county fire, police, sheriff, and Emergency Medical Services (EMS) personnel; state, local, and federal emergency response teams; emergency response contractors;and other emergency response resources that could potentially be provided by the carrier and the originating facility (shipper). Spent Nuclear Fuel.docx More Documents & Publications

120

Connecticut Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","2,103",25.4,"16,750",50.2 "Coal",564,6.8,"2,604",7.8 "Hydro and Pumped Storage",151,1.8,400,1.2 "Natural Gas","2,292",27.7,"11,716",35.1 "Other1",27,0.3,730,2.2 "Other Renewable1",159,1.9,740,2.2 "Petroleum","2,989",36.1,409,1.2 "Total","8,284",100.0,"33,350",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mississippi Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,251",8.0,"9,643",17.7 "Coal","2,526",16.1,"13,629",25.0 "Natural Gas","11,640",74.2,"29,619",54.4 "Other1",4,"*",10,"*" "Other Renewable1",235,1.5,"1,504",2.8 "Petroleum",35,0.2,81,0.1 "Total","15,691",100.0,"54,487",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

122

Iowa Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear",601,4.1,"4,451",7.7 "Coal","6,956",47.7,"41,283",71.8 "Hydro and Pumped Storage",144,1.0,948,1.6 "Natural Gas","2,299",15.8,"1,312",2.3 "Other Renewable1","3,584",24.6,"9,360",16.3 "Petroleum","1,007",6.9,154,0.3 "Total","14,592",100.0,"57,509",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

123

Vermont Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear",620,55.0,"4,782",72.2 "Hydro and Pumped Storage",324,28.7,"1,347",20.3 "Natural Gas","-","-",4,0.1 "Other Renewable1",84,7.5,482,7.3 "Petroleum",100,8.9,5,0.1 "Total","1,128",100.0,"6,620",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

124

Ohio Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","2,134",6.5,"15,805",11.0 "Coal","21,360",64.6,"117,828",82.1 "Hydro and Pumped Storage",101,0.3,429,0.3 "Natural Gas","8,203",24.8,"7,128",5.0 "Other1",123,0.4,266,0.2 "Other Renewable1",130,0.4,700,0.5 "Petroleum","1,019",3.1,"1,442",1.0 "Total","33,071",100.0,"143,598",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

125

Maryland Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,705",13.6,"13,994",32.1 "Coal","4,886",39.0,"23,668",54.3 "Hydro and Pumped Storage",590,4.7,"1,667",3.8 "Natural Gas","2,041",16.3,"2,897",6.6 "Other1",152,1.2,485,1.1 "Other Renewable1",209,1.7,574,1.3 "Petroleum","2,933",23.4,322,0.7 "Total","12,516",100.0,"43,607",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

126

Kansas Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,160",9.2,"9,556",19.9 "Coal","5,179",41.3,"32,505",67.8 "Hydro and Pumped Storage",3,"*",13,"*" "Natural Gas","4,573",36.5,"2,287",4.8 "Other Renewable1","1,079",8.6,"3,459",7.2 "Petroleum",550,4.4,103,0.2 "Total","12,543",100.0,"47,924",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

127

Nebraska Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,245",15.8,"11,054",30.2 "Coal","3,932",50.0,"23,363",63.8 "Hydro and Pumped Storage",278,3.5,"1,314",3.6 "Natural Gas","1,849",23.5,375,1.0 "Other Renewable1",165,2.1,493,1.3 "Petroleum",387,4.9,31,0.1 "Total","7,857",100.0,"36,630",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

128

PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY  

SciTech Connect

The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

S. T. Khericha

2007-04-01T23:59:59.000Z

129

Air Shipment of Spent Nuclear Fuel from Romania to Russia  

SciTech Connect

Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

2010-10-01T23:59:59.000Z

130

World nuclear fuel cycle requirements 1990  

Science Conference Proceedings (OSTI)

This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

Not Available

1990-10-26T23:59:59.000Z

131

Simulated nuclear reactor fuel assembly  

DOE Patents (OSTI)

An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.

Berta, Victor T. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

132

Actinide partitioning-transmutation program final report. IV. Miscellaneous aspects. [Transport; fuel fabrication; decay; policy; economics  

Science Conference Proceedings (OSTI)

This report discusses seven aspects of actinide partitioning-transmutation (P-T) which are important in any complete evaluation of this waste treatment option but which do not fall within other major topical areas concerning P-T. The so-called miscellaneous aspects considered are (1) the conceptual design of a shipping cask for highly neutron-active fresh and spent P-T fuels, (2) the possible impacts of P-T on mixed-oxide fuel fabrication, (3) alternatives for handling the existing and to-be-produced spent fuel and/or wastes until implementation of P-T, (4) the decay and dose characteristics of P-T and standard reactor fuels, (5) the implications of P-T on currently existing nuclear policy in the United States, (6) the summary costs of P-T, and (7) methods for comparing the risks, costs, and benefits of P-T.

Alexander, C.W.; Croff, A.G.

1980-09-01T23:59:59.000Z

133

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services GNEP would build and strengthen a reliable international fuel services consortium under which "fuel supplier nations" would choose to operate both nuclear power plants and fuel production and handling facilities, providing reliable fuel services to "user nations" that choose to only operate nuclear power plants. This international consortium is a critical component of the GNEP initiative to build an improved, more proliferation-resistant nuclear fuel cycle that recycles used fuel, while Global Nuclear Energy Partnership Fact Sheet - Establish Reliable Fuel Services More Documents & Publications

134

EA-1954: Resumption of Transient Testing of Nuclear Fuels and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing of Nuclear Fuels and Materials at the Idaho National Laboratory, Idaho EA-1954: Resumption of Transient Testing of Nuclear Fuels and Materials at the Idaho National...

135

Introduction to Nuclear Reactors, Fuels, and Materials: Heather ...  

Science Conference Proceedings (OSTI)

Feb 27, 2012 ... What goes on in a nuclear power plant. • Challenges in nuclear fuels and materials. Key lessons: • Fuels and materials change during ...

136

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading...

137

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

138

Nuclear Fuels and Materials: Jon Carmack, Idaho National Laboratory  

Science Conference Proceedings (OSTI)

Feb 28, 2012 ... w w w .in. l.g o v. Nuclear Fuels and Materials. Jon Carmack. Nuclear Fuels and Materials Division. Idaho National Laboratory. February 28 ...

139

Integrated process for reprocessing spent nuclear fuel  

DOE Patents (OSTI)

This invention is comprised of a process for recovering nuclear fuel from spent fuel assemblies that employs a single canister process container. The cladding and fuel are oxidized in the container, the fuel is dissolved and removed from the container for separation from the aqueous phase, the aqueous phase containing radioactive waste is returned to the container. This container is also the disposal vessel. Add solidification agents and compress container for long term storage.

Forsberg, C.W.

1991-03-06T23:59:59.000Z

140

Fuel handling apparatus for a nuclear reactor  

DOE Patents (OSTI)

Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

Hawke, Basil C. (Solana Beach, CA)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Illinois Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA)

1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; ... from fossil fuels, non-biogenic ...

142

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network (OSTI)

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

143

FUEL & TARGET FABRICATION Aiken County, South Carolina  

NLE Websites -- All DOE Office Websites (Extended Search)

& TARGET FABRICATION & TARGET FABRICATION Aiken County, South Carolina 300/M AREA 300/M AREA SAVANNAH RIVER SITE COLD WAR HISTORIC PROPERTY DOCUMENTATION ii ABSTRACT This documentation was prepared in accordance with a Memorandum of Agreement (MOA) signed by the Department of Energy-Savannah River (DOE-SR) and the South Carolina Historic Preservation Office (SHPO) dated February 27, 2003, as well as the Consolidated MOA of August 2004. The MOA stipulated that a thematic study and photographic documentation be produced that told the story of 300/M Area's genesis, its operational history, and its closure. New South Associates prepared the narrative and Westinghouse Savannah River Company (WSRC) completed the photographic documentation. M Area is the site of Savannah River Plant's fuel and target fabrication facilities operated from 1955

144

FEASIBILITY REPORT FOR FABRICATION OF SNAP FUEL ELEMENTS  

SciTech Connect

The general requirements for the SNAP Reactor Cores include the fabrication of fuel elements. These elements consist nominally of 90 wt% zirconium-10 wt% highly enriched uranium (93% U/sup 235/) rods hydrided to an NH of 6.0-6.5 and machined. Alloying will be accomplished by triple arc melting. Forming will be done by extrusion, massive hydriding by techniques developed at Atomics International, and cladding by conventional means. (auth)

Kirsch, T.S.

1963-12-11T23:59:59.000Z

145

Method to fabricate high performance tubular solid oxide fuel cells  

DOE Patents (OSTI)

In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

Chen, Fanglin; Yang, Chenghao; Jin, Chao

2013-06-18T23:59:59.000Z

146

Fabrication of small-orifice fuel injectors for diesel engines.  

DOE Green Energy (OSTI)

Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

Woodford, J. B.; Fenske, G. R.

2005-04-08T23:59:59.000Z

147

A Path Forward to Advanced Nuclear Fuels: Spectroscopic Calorimetry of Nuclear Fuel Materials  

SciTech Connect

The goal is to relieve the shortage of thermodynamic and kinetic information concerning the stability of nuclear fuel alloys. Past studies of the ternary nuclear fuel UPuZr have demonstrated constituent redistribution when irradiated or with thermal treatment. Thermodynamic data is key to predicting the possibilities of effects such as constituent redistribution within the fuel rods and interaction with cladding materials.

Tobin, J G

2009-02-10T23:59:59.000Z

148

Nuclear fuel elements having a composite cladding  

DOE Patents (OSTI)

An improved nuclear fuel element is disclosed for use in the core of nuclear reactors. The improved nuclear fuel element has a composite cladding of an outer portion forming a substrate having on the inside surface a metal layer selected from the group consisting of copper, nickel, iron and alloys of the foregoing with a gap between the composite cladding and the core of nuclear fuel. The nuclear fuel element comprises a container of the elongated composite cladding, a central core of a body of nuclear fuel material disposed in and partially filling the container and forming an internal cavity in the container, an enclosure integrally secured and sealed at each end of said container and a nuclear fuel material retaining means positioned in the cavity. The metal layer of the composite cladding prevents perforations or failures in the cladding substrate from stress corrosion cracking or from fuel pellet-cladding interaction or both. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy.

Gordon, Gerald M. (Fremont, CA); Cowan, II, Robert L. (Fremont, CA); Davies, John H. (San Jose, CA)

1983-09-20T23:59:59.000Z

149

Application of Copper Coatings on Used Nuclear Fuel Containers by ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The long term management of Canada's used nuclear fuel, administered by the Nuclear Waste Management Organization, involves an ...

150

CONSTRUCTION OF NUCLEAR FUEL ELEMENTS  

DOE Patents (OSTI)

>A rib arrangement and an end construction for nuclearfuel elements laid end to end in a coolant tube are described. The rib arrangement is such that each fuel element, when separated from other fuel elements, fits loosely in the coolant tube and so can easily be inserted or withdrawn from the tube. The end construction of the fuel elements is such that the fuel elements when assembled end to end are keyed against relative rotation, and the ribs of each fuel element cooperate with the ribs of the adjacent fuel elements to give the assembled fuel elements a tight fit with the coolant tube. (AEC)

Weems, S.J.

1963-09-24T23:59:59.000Z

151

Annotated Bibliography for Drying Nuclear Fuel  

Science Conference Proceedings (OSTI)

Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

Rebecca E. Smith

2011-09-01T23:59:59.000Z

152

International Nuclear Fuel Cycle Fact Book  

Science Conference Proceedings (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I.W.; Patridge, M.D.

1991-05-01T23:59:59.000Z

153

Method for shearing spent nuclear fuel assemblies  

DOE Patents (OSTI)

A method is disclosed for shearing spent nuclear fuel assemblies of the type wherein a plurality of long metal tubes packed with ceramic fuel are supported in a spaced apart relationship within an outer metal shell or shroud which provides structural support to the assembly. Spent nuclear fuel assemblies are first compacted in a stepwise manner between specially designed gag-compactors and then sheared into short segments amenable to chemical processing by shear blades contoured to mate with the compacted surface of the fuel assembly.

Weil, Bradley S. (Oak Ridge, TN); Watson, Clyde D. (Knoxville, TN)

1977-01-01T23:59:59.000Z

154

Pyrochemical Treatment of Spent Nuclear Fuel  

SciTech Connect

Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

2005-10-01T23:59:59.000Z

155

Spent Nuclear Fuel Transportation: An Overview  

Science Conference Proceedings (OSTI)

Spent nuclear fuel comprises a fraction of the hazardous materials packages shipped annually in the United States. In fact, at the present time, fewer than 100 packages of spent nuclear fuel are shipped annually. At the onset of spent fuel shipments to the proposed Yucca Mountain, Nevada, repository, the U.S. Department of Energy (DOE) expects to ship 400 - 500 spent fuel transport casks per year over the life of the facility. This study summarizes work on transportation cask design and testing, regulato...

2004-02-18T23:59:59.000Z

156

Overview of the nuclear fuel cycle  

SciTech Connect

The use of nuclear reactors to provide electrical energy has shown considerable growth since the first nuclear plant started commercial operation in the mid 1950s. Although the main purpose of this paper is to review the fuel cycle capabilities in the United States, the introduction is a brief review of the types of nuclear reactors in use and the world-wide nuclear capacity.

Leuze, R.E.

1982-01-01T23:59:59.000Z

157

Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview  

SciTech Connect

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

158

Fuel availability in nuclear power.  

E-Print Network (OSTI)

?? Nuclear power is in focus of attention due to several factors these days and the expression “nuclear renaissance” is getting well known. However, concerned… (more)

Söderlund, Karl

2009-01-01T23:59:59.000Z

159

Nuclear Fuel Cycle | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Fuel Cycle Nuclear Fuel Cycle GC-52 provides legal advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. GC-52 also advises DOE on issues involving support for international fuel cycle initiatives aimed at advancing a common vision of the necessity of the expansion of nuclear energy for peaceful purposes worldwide in a safe and secure manner. In addition, GC-52 provides legal advice to DOE regarding the management and disposition of excess uranium in DOE's uranium stockpile. GC-52 attorneys participate in meetings of DOE's Uranium Inventory Management Coordinating Committee and provide advice on compliance with statutory requirements for the sale or transfer of uranium.

160

Apparatus for shearing spent nuclear fuel assemblies  

DOE Patents (OSTI)

A method and apparatus are described for shearing spent nuclear fuel assemblies of the type comprising an array of fuel pins disposed within an outer metal shell or shroud. A spent fuel assembly is first compacted in a known manner and then incrementally sheared using fixed and movable shear blades having matched laterally projecting teeth which slidably intermesh to provide the desired shearing action. Incremental advancement of the fuel assembly after each shear cycle is limited to a distance corresponding to the lateral projection of the teeth to ensure fuel assembly breakup into small uniform segments which are amenable to remote chemical processing.

Weil, Bradley S. (Knoxville, TN); Metz, III, Curtis F. (Knoxville, TN)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

WEB RESOURCES: The Nuclear Fuel Cycle - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... A compilation of links to websites describing the nuclear fuel cycle. A link to a short overview of the entire cycle is included as well as a ...

162

FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A fuel element is designed which is particularly adapted for reactors of high power density used to generate steam for the production of electricity. The fuel element consists of inner and outer concentric tubes forming an annular chamber within which is contained fissionable fuel pellet segments, wedge members interposed between the fuel segments, and a spring which, acting with wedge members, urges said fuel pellets radially into contact against the inner surface of the outer tube. The wedge members may be a fertile material convertible into fissionable fuel material by absorbing neutrons emitted from the fissionable fuel pellet segments. The costly grinding of cylindrical fuel pellets to close tolerances for snug engagement is reduced because the need to finish the exact size is eliminated. (AEC)

Bassett, C.H.

1961-11-21T23:59:59.000Z

163

Wisconsin Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA)

... non-biogenic municipal solid waste, batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, tire-derived fuel, and miscellaneous technologies. ...

164

Composite construction for nuclear fuel containers  

DOE Patents (OSTI)

Disclosed is an improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof. 1 fig.

Cheng, B.C.; Rosenbaum, H.S.; Armijo, J.S.

1987-04-21T23:59:59.000Z

165

Composite construction for nuclear fuel containers  

DOE Patents (OSTI)

An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

Cheng, Bo-Ching (Fremont, CA); Rosenbaum, Herman S. (Fremont, CA); Armijo, Joseph S. (Saratoga, CA)

1987-01-01T23:59:59.000Z

166

Introduction to Nuclear Fuel Cycle and Advanced Nuclear Fuels: Jon ...  

Science Conference Proceedings (OSTI)

Mar 1, 2012 ... Increased use of fossil fuel will result in. • Resource shortfalls and regional conflicts,. • Serious environmental impact. • Worldwide expansion of ...

167

Nuclear Fuel Cycle and Waste Management Technologies - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuel Cycle and Nuclear Fuel Cycle and Waste Management Technologies Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Fuel Cycle and Waste Management Technologies Overview Bookmark and Share Much of the NE Division's research is directed toward developing software and performing analyses, system engineering design, and experiments to support the demonstration and optimization of the electrometallurgical

168

Examining 239Pu and 240Pu Nuclear Resonance Fluorescence Measurements on Spent Fuel for Nuclear Safeguards  

E-Print Network (OSTI)

Fluorescence for Spent Nuclear Fuel Assay,” Inst. of Nucl.239 Pu content in spent nuclear fuel [4, 5]. Development ofin the context of spent nuclear fuel, summarizes the results

Quiter, Brian

2013-01-01T23:59:59.000Z

169

Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel  

E-Print Network (OSTI)

09-01188, ANS Advances in Nuclear Fuel Management IV, HiltonParameter Library Spent Nuclear Fuel Transmission detector (Pu) mass in spent nuclear fuel (SNF) assemblies and to

Ludewigt, Bernhard A

2011-01-01T23:59:59.000Z

170

Pyrolytic carbon-coated nuclear fuel  

DOE Patents (OSTI)

An improved nuclear fuel kernel having at least one pyrolytic carbon coating and a silicon carbon layer is provided in which extensive interaction of fission product lanthanides with the silicon carbon layer is avoided by providing sufficient UO.sub.2 to maintain the lanthanides as oxides during in-reactor use of said fuel.

Lindemer, Terrence B. (Oak Ridge, TN); Long, Jr., Ernest L. (Oak Ridge, TN); Beatty, Ronald L. (Wurlingen, CH)

1978-01-01T23:59:59.000Z

171

Dry Processing of Used Nuclear Fuel  

SciTech Connect

Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

K. M. Goff; M. F. Simpson

2009-09-01T23:59:59.000Z

172

Fuel assembly for nuclear reactors  

DOE Patents (OSTI)

A new and improved fuel assembly is formed to minimize the amount of parasitic structural material wherein a plurality of hollow tubular members are juxtaposed to the fuel elements of the assembly. The tubular members may serve as guide tubes for control elements and are secured to a number of longitudinally spaced grid members along the fuel assembly. The grid members include means thereon engaging each of the fuel elements to laterally position the fuel elements in a predetermined array. Openings in the bottom of each hollow member serve as a shock absorber to cushion shock transmitted to the structure when the control elements are rapidly inserted in their corresponding tubular members.

Creagan, Robert J. (Pitcairn, PA); Frisch, Erling (Pittsburgh, PA)

1977-01-01T23:59:59.000Z

173

Transportation of Commercial Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

The U.S. industrys limited efforts at licensing transportation packages characterized as high-capacity, or containing high-burnup (>45 GWd/MTU) commercial spent nuclear fuel (CSNF), or both, have not been successful considering existing spent-fuel inventories that will have to be eventually transported. A holistic framework is proposed for resolving several CSNF transportation issues. The framework considers transportation risks, spent-fuel and cask-design features, and defense-in-depth in context of pre...

2010-12-10T23:59:59.000Z

174

Rack for storing spent nuclear fuel elements  

DOE Patents (OSTI)

A rack for storing spent nuclear fuel elements in which a plurality of aligned rows of upright enclosures of generally square cross-sectional areas contain vertically disposed fuel elements. The enclosures are fixed at the lower ends thereof to a base. Pockets are formed between confronting walls of adjacent enclosures for receiving high absorption neutron absorbers, such as Boral, cadmium, borated stainless steel and the like for the closer spacing of spent fuel elements.

Rubinstein, Herbert J. (Los Gatos, CA); Clark, Philip M. (San Jose, CA); Gilcrest, James D. (San Jose, CA)

1978-06-20T23:59:59.000Z

175

Fuel Reliability Program: Global Nuclear Fuel Priority 1 Fuel Inspections Results Assessment Report  

Science Conference Proceedings (OSTI)

In an effort to meet the recommendations of the Electric Power Research Institute (EPRI) report 1015032, Fuel Reliability Guidelines: Fuel Surveillance and Inspection, Global Nuclear Fuel (GNF) worked with the Fuel Reliability Program (FRP) and utilities to assign an inspection prioritization ranking to the GNF-fueled U.S. BWR fleet and conducted and completed a series of fuel inspections from 2007 to 2009 at the highest priority plants. Summary presentations of the inspection results were presented at E...

2011-05-12T23:59:59.000Z

176

A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility  

SciTech Connect

The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

S. Khericha

2010-12-01T23:59:59.000Z

177

Interim report spent nuclear fuel retrieval system fuel handling development testing  

Science Conference Proceedings (OSTI)

Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

1997-06-01T23:59:59.000Z

178

FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A method is described whereby fuel tubes or pins are cut, loaded with fuel pellets and a heat transfer medium, sealed at each end with slotted fittings, and assembled into a rectangular tube bundle to form a fuel element. The tubes comprising the fuel element are laterally connected between their ends by clips and tabs to form a linear group of spaced parallel tubes, which receive their vertical support by resting on a grid. The advantages of this method are that it permits elimination of structural material (e.g., fuel-element cans) within the reactor core, and removal of at least one fuel pin from an element and replacement thereof so that a burnable poison may be utilized during the core lifetime. (AEC)

Dickson, J.J.

1963-09-24T23:59:59.000Z

179

Licensing issues associated with the use of mixed-oxide fuel in US commercial nuclear reactors  

Science Conference Proceedings (OSTI)

On January 14, 1997, the Department of Energy, as part of its Record of Decision on the storage and disposition of surplus nuclear weapons materials, committed to pursue the use of excess weapons-usable plutonium in the fabrication of mixed-oxide (MOX) fuel for consumption in existing commercial nuclear power plants. Domestic use of MOX fuel has been deferred since the late 1970s, principally due to nuclear proliferation concerns. This report documents a review of past and present literature (i.e., correspondence, reports, etc.) on the domestic use of MOX fuel and provides discussion on the technical and regulatory issues that must be addressed by DOE (and the utility/consortia selected by DOE to effect the MOX fuel consumption strategy) in obtaining approval from the Nuclear Regulatory Commission to use MOX fuel in one or a group of existing commercial nuclear power plants.

Williams, D.L. Jr.

1997-04-01T23:59:59.000Z

180

Washington Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

"Other: Blast furnace gas, propane gas, other manufactured and waste gases derived from fossil fuels, non-biogenic municipal solid waste, batteries, chemicals, hydrogen, pitch,...

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Minnesota Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

"Other: Blast furnace gas, propane gas, other manufactured and waste gases derived from fossil fuels, non-biogenic municipal solid waste, batteries, chemicals, hydrogen, pitch,...

182

Wisconsin Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

"Other: Blast furnace gas, propane gas, other manufactured and waste gases derived from fossil fuels, non-biogenic municipal solid waste, batteries, chemicals, hydrogen, pitch,...

183

Virginia Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

"Other: Blast furnace gas, propane gas, other manufactured and waste gases derived from fossil fuels, non-biogenic municipal solid waste, batteries, chemicals, hydrogen, pitch,...

184

Michigan Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

"Other: Blast furnace gas, propane gas, other manufactured and waste gases derived from fossil fuels, non-biogenic municipal solid waste, batteries, chemicals, hydrogen, pitch,...

185

FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT  

Science Conference Proceedings (OSTI)

Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

2010-03-01T23:59:59.000Z

186

Nuclear waste package fabricated from concrete  

Science Conference Proceedings (OSTI)

After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400/sup 0/C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs.

Pfeiffer, P.A.; Kennedy, J.M.

1987-03-01T23:59:59.000Z

187

Dry Transfer Systems for Used Nuclear Fuel  

Science Conference Proceedings (OSTI)

The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

Brett W. Carlsen; Michaele BradyRaap

2012-05-01T23:59:59.000Z

188

Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1981-01-01T23:59:59.000Z

189

Fuel Cycle Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Radiochemical Separation & Processing Recycle & Waste Management Uranium Enrichment Used Nuclear Fuel Storage, Transportation, and Disposal Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Fuel Cycle Science & Technology SHARE Fuel Cycle Science and Technology The ORNL expertise and experience across the entire nuclear fuel cycle is underpinned by extensive facilities and a comprehensive modeling and simulation capability ORNL supports the understanding, development, evaluation and deployment of

190

MOLTEN FLUORIDE NUCLEAR REACTOR FUEL  

DOE Patents (OSTI)

Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

Barton, C.J.; Grimes, W.R.

1960-01-01T23:59:59.000Z

191

Nuclear Fuel Facts: Uranium | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Management and Uranium Management and Policy » Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite. Uranium ore can be mined from open pits or underground excavations. The ore can then be crushed and treated at a mill to separate the valuable uranium from the ore. Uranium may also be dissolved directly from the ore deposits

192

International nuclear fuel cycle fact book  

Science Conference Proceedings (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.

1988-01-01T23:59:59.000Z

193

An Investigation of Different Methods of Fabricating Membrane Electrode Assemblies for Methanol Fuel Cells  

E-Print Network (OSTI)

Methanol fuel cells are electrochemical conversion devices that produce electricity from methanol fuel. The current process of fabricating membrane electrode assemblies (MEAs) is tedious and if it is not sufficiently ...

Hall, Kwame (Kwame J.)

2009-01-01T23:59:59.000Z

194

Safeguarding and Protecting the Nuclear Fuel Cycle  

Science Conference Proceedings (OSTI)

International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

Trond Bjornard; Humberto Garcia; William Desmond; Scott Demuth

2010-11-01T23:59:59.000Z

195

Double-clad nuclear fuel safety rod  

DOE Patents (OSTI)

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, William H. (Los Altos, CA); Atcheson, Donald B. (Cupertino, CA); Vaidyanathan, Swaminathan (San Jose, CA)

1984-01-01T23:59:59.000Z

196

Spent nuclear fuel project integrated schedule plan  

SciTech Connect

The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

Squires, K.G.

1995-03-06T23:59:59.000Z

197

Advanced Nuclear Fuel Concepts for Minor Actinide Burning  

Science Conference Proceedings (OSTI)

Abstract Scope, New fuel cycle strategies entail advanced nuclear fuel concepts. This especially applies for the burning of minor actinides in a fast reactor cycle ...

198

Examining 239Pu and 240Pu Nuclear Resonance Fluorescence Measurements on Spent Fuel for Nuclear Safeguards  

E-Print Network (OSTI)

S.D. Ambers, “Assesment of Nuclear Resonance Fluorescencefor Spent Nuclear Fuel Assay,” Inst. of Nucl. Mat. Man. ,clandestine material with nuclear resonance fluorescence,”

Quiter, Brian

2013-01-01T23:59:59.000Z

199

Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants  

SciTech Connect

OAK-B135 Development of Advanced Technologies to Reduce Design, Fabrication and Construction for Future Nuclear Power Plants

O' Connell, J. Michael

2002-01-01T23:59:59.000Z

200

FUEL ELEMENT FOR A NUCLEAR REACTOR  

DOE Patents (OSTI)

A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)

Davidson, J.K.

1963-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nuclear fuel elements made from nanophase materials  

SciTech Connect

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

Heubeck, Norman B. (Schenectady, NY)

1998-01-01T23:59:59.000Z

202

Nuclear fuel elements made from nanophase materials  

DOE Patents (OSTI)

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain-related failure even at high temperatures, in the order of about 3,000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion and mechanical characteristics.

Heubeck, Norman B.

1997-12-01T23:59:59.000Z

203

Nuclear fuel elements made from nanophase materials  

DOE Patents (OSTI)

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

Heubeck, N.B.

1998-09-08T23:59:59.000Z

204

Mitigation of Nuclear Fuel Pool Leaks  

Science Conference Proceedings (OSTI)

The used or spent fuel from nuclear reactors is stored in spent fuel pools, which require canals for fuel transfer activities. These pools--35–40 feet or more in depth--are lined with stainless steel ranging in thickness from ~.19 in–~.38 in (~4.8 mm–~9.5 mm). The liners are anchored to the walls and slab via welds that can leak or crack. Électricité de France (EDF) has developed tools to check suspect areas of the liner seam welds for cracking or leakage. This report ...

2013-08-29T23:59:59.000Z

205

Locking support for nuclear fuel assemblies  

DOE Patents (OSTI)

A locking device for supporting and locking a nuclear fuel assembly within a cylindrical bore formed by a support plate, the locking device including a support and locking sleeve having upwardly extending fingers forming wedge shaped contact portions arranged for interaction between an annular tapered surface on the fuel assembly and the support plate bore as well as downwardly extending fingers having wedge shaped contact portions arranged for interaction between an annularly tapered surface on the support plate bore and the fuel assembly whereby the sleeve tends to support and lock the fuel assembly in place within the bore by its own weight while facilitating removal and/or replacement of the fuel assembly.

Ledin, Eric (San Diego, CA)

1980-01-01T23:59:59.000Z

206

Information Handling Plan For The Mixed Oxide Fuel Fabrication Facility  

E-Print Network (OSTI)

responses to the NRC's Request for Additional Information (RAI), and a revision to the Classified Matter Protection Plan (CMPP) for the Mixed Oxide Fuel Fabrication Facility (MFFF). Enclosure (1) provides the detailed responses to the Reference (A) RAIs, and indicates corresponding changes to the CMPP. Enclosure (2) provides a List of Effective Pages for the revised CMPP. Enclosure (3) is the revised CMPP itself; it is a page revision with respect to the previous revision of Reference (C). Enclosure (4) lists substantive changes in addition to those resulting from the RAIs. Changes resulting from the RAI responses, as well as other changes, are denoted by vertical lines in the right margin and revised pages have a current revision date. The enclosures herein concern protection of classified matter in accordance with 10 CFR 2.390(d), and should be withheld from public disclosure.

Shaw Areva; Mox Services

2008-01-01T23:59:59.000Z

207

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

208

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

209

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

210

Future nuclear fuel cycles: prospects and challenges  

Science Conference Proceedings (OSTI)

Solvent extraction has played, from the early steps, a major role in the development of nuclear fuel cycle technologies, both in the front end and back end. Today's stakes in the field of energy enhance further than before the need for a sustainable management of nuclear materials. Recycling actinides appears as a main guideline, as much for saving resources as for minimizing the final waste impact, and many options can be considered. Strengthened by the important and outstanding performance of recent PUREX processing plants, solvent-extraction processes seem a privileged route to meet the new and challenging requirements of sustainable future nuclear systems. (author)

Boullis, Bernard [Commissariat a l'Energie Atomique, Direction de l'Energie Nucleaire, Centre de Saclay, 91191, Gif-sur-Yvette cedex (France)

2008-07-01T23:59:59.000Z

211

Supervision applied to nuclear fuel reprocessing  

Science Conference Proceedings (OSTI)

Model‐based supervision developed by systems analysts has become an acknowledged supervision aid, ensuring early detection of malfunctions and thereby allowing control of the availability and vulnerability of a process facility. However, it is associated ... Keywords: Supervision, diagnostic reasoning, nuclear fuel reprocessing, technical processes

Jacky Montmain

2000-04-01T23:59:59.000Z

212

Advanced Nuclear Fuel | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-based Technologies Advanced Nuclear Fuel Advanced Nuclear Fuel Y-12 developers co-roll zirconium clad LEU-Mo. The Y-12 National Security Complex has over 60 years of...

213

Summary of nuclear fuel reprocessing activities around the world  

SciTech Connect

This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied.

Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

1984-11-01T23:59:59.000Z

214

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

215

Spent Nuclear Fuel Alternative Technology Decision Analysis  

SciTech Connect

The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

Shedrow, C.B.

1999-11-29T23:59:59.000Z

216

Innovative nuclear fuels: results and strategy  

SciTech Connect

To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on the thermal conductivity, oxygen diffusivity, and thermal expansion of oxide fuels. The multi-scale approach is illustrated using results on ceramic fuels with a focus on predictions of point defect concentrations, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, gas bubble formation and temperature evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the talk is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiative are proposed to accelerate the discovery and design of new materials: (a) Develop an international pool of experts, (b) Create Institutes for Materials Discovery and Design, (c) Create an International Knowledge base for experimental data, models (mathematical expressions), and simulations (codes) and (d) Organize international workshops and conference sessions. The paper ends with a discussion of existing and emerging international collaborations.

Stan, Marius [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

217

Integrated Used Nuclear Fuel Storage, Transportation, and Disposal ...  

dry cask storage of used nuclear fuel at existing plant ... achievement of geologic disposal thermal management ... Senior Technology Commercialization Manager ...

218

Nuclear fuel cycles for mid-century development  

E-Print Network (OSTI)

A comparative analysis of nuclear fuel cycles was carried out. Fuel cycles reviewed include: once-through fuel cycles in LWRs, PHWRs, HTGRs, and fast gas cooled breed and burn reactors; single-pass recycle schemes: plutonium ...

Parent, Etienne, 1977-

2003-01-01T23:59:59.000Z

219

Nuclear reactor core and fuel element therefor  

SciTech Connect

This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces.

Fortescue, P.

1986-02-11T23:59:59.000Z

220

Nuclear Maintenance Applications Center: Nuclear Fuel Handling Equipment Application and Maintenance Guide  

Science Conference Proceedings (OSTI)

Fuel handling is a critical item during a nuclear power plant refueling outage. The proper operation of fuel handling equipment, such as fuel handling machines, fuel upending machines, fuel transfer carriages, and fuel elevators, is important to a successful refueling outage and to preparing fuel for eventual disposal.

2007-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nuclear power generation and fuel cycle report 1996  

SciTech Connect

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

222

Spent Nuclear Fuel Project operational staffing plan  

SciTech Connect

Using the Spent Nuclear Fuel (SNF) Project`s current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M&O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M&O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins.

Debban, B.L.

1996-03-01T23:59:59.000Z

223

Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany  

SciTech Connect

In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basis of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)

Koenig, Werner [TUEV NORD EnSys Hannover GmbH and Co. KG (Germany); Baumann, Roland [Siemens AG, Power Generation (Germany)

2007-07-01T23:59:59.000Z

224

Alabama Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","5,043",15.6,"37,941",24.9 "Coal","11,441",35.3,"63,050",41.4 "Hydro and Pumped Storage","3,272",10.1,"8,704",5.7 "Natural Gas","11,936",36.8,"39,235",25.8 "Other1",100,0.3,643,0.4 "Other Renewable1",583,1.8,"2,377",1.6 "Petroleum",43,0.1,200,0.1 "Total","32,417",100.0,"152,151",100.0

225

Florida Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (nw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","3,924",6.6,"23,936",10.4 "Coal","9,975",16.9,"59,897",26.1 "Hydro and Pumped Storage",55,0.1,177,0.1 "Natural Gas","31,563",53.4,"128,634",56.1 "Other1",544,0.9,"2,842",1.2 "Other Renewable1","1,053",1.8,"4,487",2.0 "Petroleum","12,033",20.3,"9,122",4.0 "Total","59,147",100.0,"229,096",100.0

226

Arkansas Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,835",11.5,"15,023",24.6 "Coal","4,535",28.4,"28,152",46.2 "Hydro and Pumped Storage","1,369",8.6,"3,658",6.0 "Natural Gas","7,894",49.4,"12,469",20.4 "Other1","-","-",28,"*" "Other Renewable1",326,2.0,"1,624",2.7 "Petroleum",22,0.1,45,0.1 "Total","15,981",100.0,"61,000",100.0

227

Texas Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","4,966",4.6,"41,335",10.0 "Coal","22,335",20.6,"150,173",36.5 "Hydro and Pumped Storage",689,0.6,"1,262",0.3 "Natural Gas","69,291",64.0,"186,882",45.4 "Other1",477,0.4,"3,630",0.9 "Other Renewable1","10,295",9.5,"27,705",6.7 "Petroleum",204,0.2,708,0.2 "Total","108,258",100.0,"411,695",100.0

228

Pennsylvania Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","9,540",20.9,"77,828",33.9 "Coal","18,481",40.6,"110,369",48.0 "Hydro and Pumped Storage","2,268",5.0,"1,624",0.7 "Natural Gas","9,415",20.7,"33,718",14.7 "Other1",100,0.2,"1,396",0.6 "Other Renewable1","1,237",2.7,"4,245",1.8 "Petroleum","4,534",9.9,571,0.2 "Total","45,575",100.0,"229,752",100.0

229

California Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","4,390",6.5,"32,201",15.8 "Coal",374,0.6,"2,100",1.0 "Hydro and Pumped Storage","13,954",20.7,"33,260",16.3 "Natural Gas","41,370",61.4,"107,522",52.7 "Other1",220,0.3,"2,534",1.2 "Other Renewable1","6,319",9.4,"25,450",12.5 "Petroleum",701,1.0,"1,059",0.5 "Total","67,328",100.0,"204,126",100.0

230

Arizona Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (nw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear",3937,14.9,"31,200",27.9 "Coal","6,233",23.6,"43,644",39.1 "Hydro and Pumped Storage","2,937",11.1,"6,831",6.1 "Natural Gas","13,012",49.3,"29,676",26.6 "Other1","-","-",15,"*" "Other Renewable1",181,0.7,319,0.3 "Petroleum",93,0.4,66,0.1 "Total","26,392",100.0,"111,751",100.0

231

Louisiana Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","2,142",8.0,"18,639",18.1 "Coal","3,417",12.8,"23,924",23.3 "Hydro and Pumped Storage",192,0.7,"1,109",1.1 "Natural Gas","19,574",73.2,"51,344",49.9 "Other1",213,0.8,"2,120",2.1 "Other Renewable1",325,1.2,"2,468",2.4 "Petroleum",881,3.3,"3,281",3.2 "Total","26,744",100.0,"102,885",100.0

232

Illinois Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","11,441",25.9,"96,190",47.8 "Coal","15,551",35.2,"93,611",46.5 "Hydro and Pumped Storage",34,0.1,119,0.1 "Natural Gas","13,771",31.2,"5,724",2.8 "Other1",145,0.3,461,0.2 "Other Renewable1","2,078",4.7,"5,138",2.6 "Petroleum","1,106",2.5,110,0.1 "Total","44,127",100.0,"201,352",100.0

233

Missouri Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,190",5.5,"8,996",9.7 "Coal","12,070",55.5,"75,047",81.3 "Hydro and Pumped Storage","1,221",5.6,"2,427",2.6 "Natural Gas","5,579",25.7,"4,690",5.1 "Other1","-","-",39,"*" "Other Renewable1",466,2.1,988,1.1 "Petroleum","1,212",5.6,126,0.1 "Total","21,739",100.0,"92,313",100.0

234

Massachusetts Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, smmer capacity and net generation, by energy source, 2010" total electric power industry, smmer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear",685,5.0,"5,918",13.8 "Coal","1,669",12.2,"8,306",19.4 "Hydro and Pumped Storage","1,942",14.2,659,1.5 "Natural Gas","6,063",44.3,"25,582",59.8 "Other1",3,"*",771,1.8 "Other Renewable1",304,2.2,"1,274",3.0 "Petroleum","3,031",22.1,296,0.7 "Total","13,697",100.0,"42,805",100.0

235

Georgia Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","4,061",11.1,"33,512",24.4 "Coal","13,230",36.1,"73,298",53.3 "Hydro and Pumped Storage","3,851",10.5,"3,044",2.2 "Natural Gas","12,668",34.6,"23,884",17.4 "Other1","-","-",18,"*" "Other Renewable1",637,1.7,"3,181",2.3 "Petroleum","2,189",6.0,641,0.5 "Total","36,636",100.0,"137,577",100.0

236

Tennessee Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","3,401",15.9,"27,739",33.7 "Coal","8,805",41.1,"43,670",53.0 "Hydro and Pumped Storage","4,277",20.0,"7,416",9.0 "Natural Gas","4,655",21.7,"2,302",2.8 "Other1","-","-",16,"*" "Other Renewable1",222,1.0,988,1.2 "Petroleum",58,0.3,217,0.3 "Total","21,417",100.0,"82,349",100.0

237

Method and apparatus for close packing of nuclear fuel assemblies  

DOE Patents (OSTI)

The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

Newman, D.F.

1993-03-30T23:59:59.000Z

238

Method and apparatus for close packing of nuclear fuel assemblies  

DOE Patents (OSTI)

The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

Newman, Darrell F. (Richland, WA)

1993-01-01T23:59:59.000Z

239

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

52] J.H. Rust. Nuclear Power Plant Engineering. Buchanan,the economics of nuclear power plants. In addition, the longin commercial nuclear power plants. The fuel designs and

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

240

Holdup measurement for nuclear fuel manufacturing plants  

Science Conference Proceedings (OSTI)

The assay of nuclear material holdup in fuel manufacturing plants is a laborious but often necessary part of completing the material balance. A range of instruments, standards, and a methodology for assaying holdup has been developed. The objectives of holdup measurement are ascertaining the amount, distribution, and how firmly fixed the SNM is. The purposes are reconciliation of material unbalance during or after a manufacturing campaign or plant decommissioning, to decide security requirements, or whether further recovery efforts are justified.

Zucker, M.S.; Degen, M.; Cohen, I.; Gody, A.; Summers, R.; Bisset, P.; Shaub, E.; Holody, D.

1981-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Current Comparison of Advanced Nuclear Fuel Cycles  

SciTech Connect

This paper compares potential nuclear fuel cycle strategies – once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectru

Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

2007-04-01T23:59:59.000Z

242

NUCLEAR REACTOR AND THERMIONIC FUEL ELEMENT THEREFOR  

DOE Patents (OSTI)

The patent relates to the direct conversion of fission heat to electricity by use of thermionic plasma diodes having fissionable material cathodes, said diodes arranged to form a critical mass in a nuclear reactor. The patent describes a fuel element comprising a plurality of diodes each having a fissionable material cathode, an anode around said cathode, and an ionizable gas therebetween. Provision is made for flowing the gas and current serially through the diodes. (AEC)

Rasor, N.S.; Hirsch, R.L.

1963-12-01T23:59:59.000Z

243

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

244

Financing Strategies for Nuclear Fuel Cycle Facility  

SciTech Connect

To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

David Shropshire; Sharon Chandler

2005-12-01T23:59:59.000Z

245

Report on interim storage of spent nuclear fuel  

SciTech Connect

The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

1993-04-01T23:59:59.000Z

246

POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL  

DOE Patents (OSTI)

A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

Dwyer, O.E.

1958-12-23T23:59:59.000Z

247

Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of Removing Used Nuclear Fuel From Shutdown Evaluation of Removing Used Nuclear Fuel From Shutdown Sites Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America's Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. Shutdown sites are defined as those commercial nuclear power reactor sites where the

248

Optimally moderated nuclear fission reactor and fuel source therefor  

DOE Patents (OSTI)

An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

Ougouag, Abderrafi M. (Idaho Falls, ID); Terry, William K. (Shelley, ID); Gougar, Hans D. (Idaho Falls, ID)

2008-07-22T23:59:59.000Z

249

Options for converting excess plutonium to feed for the MOX fuel fabrication facility  

SciTech Connect

The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

250

A Critical Step Toward Sustainable Nuclear Fuel Disposal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal A Critical Step Toward Sustainable Nuclear Fuel Disposal January 26, 2012 - 2:30pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy The Blue Ribbon Commission on America's Nuclear Future was formed at the direction of the President to conduct a comprehensive review of polices for managing the back end of the nuclear fuel cycle. If we are going to ensure that the United States remains at the forefront of nuclear safety and security, non-proliferation, and nuclear energy technology we must develop an effective strategy and workable plan for the safe and secure management and disposal of used nuclear fuel and nuclear waste. That is why I asked General Scowcroft and Representative Hamilton to draw on their

251

Nuclear Fuels Storage & Transportation Planning Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Storage & Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut Yankee (http://www.connyankee.com/html/fuel_storage.html). Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel

252

EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0203: Spent Nuclear Fuel Management and Idaho National EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs SUMMARY This EIS considers programmatic (DOE-wide) alternative approaches to safely, efficiently, and responsibly manage existing and projected quantities of spent nuclear fuel until the year 2035. This amount of time may be required to make and implement a decision on the ultimate disposition of spent nuclear fuel. DOE's spent nuclear fuel responsibilities include fuel generated by DOE production, research, and development reactors; naval reactors; university and foreign research reactors; domestic non-DOE reactors such as those at the National Institute

253

Transportation capabilities study of DOE-owned spent nuclear fuel  

Science Conference Proceedings (OSTI)

This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1994-10-01T23:59:59.000Z

254

Thermal regimes of high burn-up nuclear fuel rod  

E-Print Network (OSTI)

The temperature distribution in the nuclear fuel rods for high burn-up is studied. We use the numerical and analytical approaches. It is shown that the time taken to have the stationary thermal regime of nuclear fuel rod is less than one minute. We can make the inference that the behavior of the nuclear fuel rod can be considered as a stationary task. Exact solutions of the temperature distribution in the fuel rods in the stationary case are found. Thermal regimes of high burn-up the nuclear fuel rods are analyzed.

Kudryashov, Nikolai A; Chmykhov, Mikhail A; 10.1016/j.cnsns.2009.05.063

2012-01-01T23:59:59.000Z

255

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

256

Effect of Highly Enriched/Highly Burnt UO2 Fuels on Fuel Cycle Costs, Radiotoxicity, and Nuclear Design Parameters  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization

Robert Gregg; Andrew Worrall

257

Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel  

E-Print Network (OSTI)

and S.J. Thompson,“Determining Plutonium in Spent Fuel withTobin, “Determination of Plutonium Content in Spent FuelFluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

Ludewigt, Bernhard A

2011-01-01T23:59:59.000Z

258

Fuel Cycle Technologies Program - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

259

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

a   Geologic   Repository”,   Nuclear  Technology,   154,  in  decommissioned  U.S.  nuclear   facilities,  German  Framework   for   Nuclear   Fuel   Cycle   Concepts,”  

Djokic, Denia

2013-01-01T23:59:59.000Z

260

Fabrication of carbon-aerogel electrodes for use in phosphoric acid fuel cells  

E-Print Network (OSTI)

An experiment was done to determine the ability to fabricate carbon aerogel electrodes for use in a phosphoric acid fuel cell (PAFC). It was found that the use of a 25% solution of the surfactant Cetyltrimethylammonium ...

Tharp, Ronald S

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Pyroprocess for processing spent nuclear fuel  

DOE Patents (OSTI)

This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

2002-01-01T23:59:59.000Z

262

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

263

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

264

Pilot Application to Nuclear Fuel Cycle Options | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options Pilot Application to Nuclear Fuel Cycle Options A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options The Department of Energy's Office of Nuclear Energy (DOE-NE) invests in research and development (R&D) to ensure that the United States will maintain its domestic nuclear energy capability and scientific and technical leadership in the international community of nuclear power nations in the years ahead. The 2010 Nuclear Energy Research and Development Roadmap presents a high-level vision and framework for R&D activities that are needed to keep the nuclear energy option viable in the near term and to expand its use in the decades ahead. The roadmap identifies the development

265

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of...

266

Fuel handling system for a nuclear reactor  

DOE Patents (OSTI)

A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

Saiveau, James G. (Hickory Hills, IL); Kann, William J. (Park Ridge, IL); Burelbach, James P. (Glen Ellyn, IL)

1986-01-01T23:59:59.000Z

267

Nuclear reactor fuel rod attachment system  

DOE Patents (OSTI)

A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

Christiansen, David W. (Kennewick, WA)

1982-01-01T23:59:59.000Z

268

Microsoft Word - spent nuclear fuel report.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of Spent Nuclear Fuel Management of Spent Nuclear Fuel at the Savannah River Site DOE/IG-0727 May 2006 REPORT ON MANAGEMENT OF SPENT NUCLEAR FUEL AT THE SAVANNAH RIVER SITE TABLE OF CONTENTS Spent Nuclear Fuel Management Details of Finding 1 Recommendations 2 Comments 3 Appendices 1. Objective, Scope, and Methodology 4 2. Prior Audit Reports 5 3. Management Comments 6 SPENT NUCLEAR FUEL MANGEMENT Page 1 Details of Finding H-Canyon The Department of Energy's (Department) spent nuclear fuel Operations program at the Savannah River Site (Site) will likely require Extended H-Canyon to be maintained at least two years beyond defined operational needs. The Department committed to maintain H-Canyon operational readiness to provide a disposal path for

269

EIS-0279: Spent Nuclear Fuel Management, Aiken, South Carolina | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

79: Spent Nuclear Fuel Management, Aiken, South Carolina 79: Spent Nuclear Fuel Management, Aiken, South Carolina EIS-0279: Spent Nuclear Fuel Management, Aiken, South Carolina SUMMARY The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 5, 2013 EIS-0279: Amended Record of Decision Spent Nuclear Fuel Management at the Savannah River Site April 1, 2013 EIS-0279-SA-01: Supplement Analysis Savannah River Site Spent Nuclear Fuel Management (DOE/EIS-0279-SA-01 and

270

Fuel assembly transfer basket for pool type nuclear reactor vessels  

DOE Patents (OSTI)

A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

1991-01-01T23:59:59.000Z

271

Thermomechanical analysis of innovative nuclear fuel pin designs  

E-Print Network (OSTI)

One way to increase the power of a nuclear reactor is to change the solid cylindrical fuel to Internally and Externally Cooled (I&EC) annular fuel, and adjust the flow and the core inlet coolant temperature. The switch to ...

Lerch Andrew (Andrew J.)

2010-01-01T23:59:59.000Z

272

Energy Fuels Nuclear, Inc. Arizona Strip Operations  

Science Conference Proceedings (OSTI)

Founded in 1975 by uranium pioneer, Robert W. Adams, Energy Fuels Nuclear, Inc. (EFNI) emerged as the largest US uranium mining company by the mid-1980s. Confronting the challenges of declining uranium market prices and the development of high-grade ore bodies in Australia and Canada, EFNI aggressively pursued exploration and development of breccia-pipe ore bodies in Northwestern Arizona. As a result, EFNI's production for the Arizona Strip of 18.9 million pounds U[sub 3]O[sub 8] over the period 1980 through 1991, maintained the company's status as a leading US uranium producer.

Pool, T.C.

1993-05-01T23:59:59.000Z

273

International nuclear fuel cycle fact book. Revision 6  

SciTech Connect

The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1986-01-01T23:59:59.000Z

274

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

275

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

276

Integrated Used Nuclear Fuel Storage, Transportation, and Disposal ...  

ORNL 2011-G00239/jcn UUT-B ID 201102603 09.2011 Integrated Used Nuclear Fuel Storage, Transportation, and Disposal Canister System Technology Summary

277

W-86: Porosity Characterization of Surrogates for Oxide Nuclear Fuels  

Science Conference Proceedings (OSTI)

W-118: Titania Based One-Dimensional Nanomaterials for Lithium Ion Batteries .... W-86: Porosity Characterization of Surrogates for Oxide Nuclear Fuels: A ...

278

Anode Materials for Reprocessing of Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

In order to consume current stockpiles, uranium dioxide spent nuclear fuel will be .... and Synthesis of Intermetallic Clathrates for Energy Storage and Recovery.

279

Spent Nuclear Fuel project integrated safety management plan  

SciTech Connect

This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

Daschke, K.D.

1996-09-17T23:59:59.000Z

280

Apparatus for injection casting metallic nuclear energy fuel ...  

Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is ...

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nano-particles for Spent Nuclear Fuel Separation  

Science Conference Proceedings (OSTI)

Symposium, Materials and Fuels for the Current and Advanced Nuclear Reactors III ... Development and Testing Advanced Ferritic Steels for Fast Reactor ...

282

Fabrication of silicon nanopillar arrays and application on direct methanol fuel cell  

Science Conference Proceedings (OSTI)

We present a simple method that combines self-assembled nanosphere lithography (SANL) and photo-assisted electrochemical etching (PAECE) to fabricate near-perfect and orderly arranged nanopillar arrays for the direct methanol fuel cells electrode (DMFCs) ... Keywords: Direct methanol fuel cell, Nanopillar, Photo-assisted electrochemical etching, Self-assembled nanosphere lithography

Yu-Hsiang Tang; Mao-Jung Huang; Ming-Hua Shiao; Chii-Rong Yang

2011-08-01T23:59:59.000Z

283

Composite Nuclear Fuel Pellet - Oak Ridge National Laboratory  

ORNL 2010-G0613-jcn UT-B ID 200902238 Composite Nuclear Fuel Pellet Technology Summary To improve rates of nuclear power generation, ORNL has patented a way to increase

284

Risk and Responsibility Sharing in Nuclear Spent Fuel Management  

E-Print Network (OSTI)

With the Nuclear Waste Policy Act of 1982, the responsibility of American utilities in the long-term management of spent nuclear fuel was limited to the payment of a fee. This narrow involvement did not result in faster ...

De Roo, Guillaume

285

Method and means of packaging nuclear fuel rods for handling  

DOE Patents (OSTI)

Nuclear fuel rods, especially spent nuclear fuel rods that may show physical distortion, are encased within a metallic enclosing structure by forming a tube about the fuel rod. The tube has previously been rolled to form an overlapping tubular structure and then unrolled and coiled about an axis perpendicular to the tube. The fuel rod is inserted into the tube as the rolled tube is removed from a coiled strip and allowed to reassume its tubular shape about the fuel rod. Rollers support the coiled strip in an open position as the coiled strip is uncoiled and allowed to roll about the fuel rod.

Adam, Milton F. (Idaho Falls, ID)

1979-01-01T23:59:59.000Z

286

CHARACTERIZATION OF HYDROGEN CONTENT IN ZIRCALOY-4 NUCLEAR FUEL CLADDING  

Science Conference Proceedings (OSTI)

Assessment of hydrogen uptake of underwater nuclear fuel clad and component materials will enable improved monitoring of fuel health. Zirconium alloys are used in nuclear reactors as fuel cladding, fuel channels, guide tubes and spacer grids, and are available for inspection in spent fuel pools. With increasing reactor exposure zirconium alloys experience hydrogen ingress due to neutron interactions and water-side corrosion that is not easily quantified without destructive hot cell examination. Contact and non-contact nondestructive techniques, using Seebeck coefficient measurements and low frequency impedance spectroscopy, to assess the hydrogen content and hydride formation within zircaloy 4 material that are submerged to simulate spent fuel pools are presented.

Pfeif, E. A.; Mishra, B.; Olson, D. L. [Colorado School of Mines, Golden, CO 80401 (United States); Lasseigne, A. N. [Generation 2 Materials Technology LLC, Firestone, CO 80504 (United States); Krzywosz, K.; Mader, E. V. [Electric Power Research Institute, Palo Alto, CA 94304 (United States)

2010-02-22T23:59:59.000Z

287

Review of Used Nuclear Fuel Storage and Transportation Technical Gap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analyses Analyses Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analyses The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The Storage and Transportation activities within the UFDC are being developed to address issues regarding the extended storage of UNF and its subsequent

288

Economics of nuclear fuel cycles : option valuation and neutronics simulation of mixed oxide fuels  

E-Print Network (OSTI)

In most studies aiming at the economic assessment of nuclear fuel cycles, a primary concern is to keep scenarios economically comparable. For Uranium Oxide (UOX) and Mixed Oxide (MOX) fuels, a traditional way to achieve ...

De Roo, Guillaume

2009-01-01T23:59:59.000Z

289

Separator assembly for use in spent nuclear fuel shipping cask  

DOE Patents (OSTI)

A separator assembly for use in a spent nuclear fuel shipping cask has a honeycomb-type wall structure defining parallel cavities for holding nuclear fuel assemblies. Tubes formed of an effective neutron-absorbing material are embedded in the wall structure around each of the cavities and provide neutron flux traps when filled with water.

Bucholz, James A. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

290

Preliminary design specification for Department of Energy standardized spent nuclear fuel canisters. Volume 2: Rationale document  

SciTech Connect

This document (Volume 2) is a companion document to a preliminary design specification for the design of canisters to be used during the handling, storage, transportation, and repository disposal of Department of Energy (DOE) spent nuclear fuel (SNF). This document contains no procurement information, such as the number of canisters to be fabricated, explicit timeframes for deliverables, etc. However, this rationale document does provide background information and design philosophy in order to help engineers better understand the established design criteria (contained in Volume 1 respectively) necessary to correctly design and fabricate these DOE SNF canisters.

1998-08-19T23:59:59.000Z

291

Used Nuclear Fuel Loading and Structural Performance Under Normal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuel Loading and Structural Performance Under Normal Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies, and discussion on the long-term goals and objectives of this

292

COUPON SURVEILLANCE FOR CORROSION MONITORING IN NUCLEAR FUEL BASIN  

SciTech Connect

Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

Mickalonis, J.; Murphy, T.; Deible, R.

2012-10-01T23:59:59.000Z

293

Fuel cycle stewardship in a nuclear renaissance 5 Recommendation 1  

E-Print Network (OSTI)

of fuel, thereby decreasing the attractiveness of plutonium in spent fuel for use in nuclear weapons plan for its reuse. This plan should seek to: · Minimise the amount of separated plutonium produced and the time for which it needs to be stored. · Convert separated plutonium into Mixed Oxide (MOX) fuel as soon

Rambaut, Andrew

294

The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life  

SciTech Connect

A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

1996-10-01T23:59:59.000Z

295

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network (OSTI)

Security of the National Nuclear Security Administration, USof Energys National Nuclear Security Administration (NNSA)

Quiter, Brian

2012-01-01T23:59:59.000Z

296

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network (OSTI)

the National Nuclear Security Administration, US Departmentof Energys National Nuclear Security Administration (NNSA)

Quiter, Brian

2012-01-01T23:59:59.000Z

297

New Hampshire Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,247",29.8,"10,910",49.2 "Coal",546,13.1,"3,083",13.9 "Hydro and Pumped Storage",489,11.7,"1,478",6.7 "Natural Gas","1,215",29.1,"5,365",24.2 "Other1","-","-",57,0.3 "Other Renewable1",182,4.4,"1,232",5.6 "Petroleum",501,12.0,72,0.3 "Total","4,180",100.0,"22,196",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

298

New Jersey Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","4,108",22.3,"32,771",49.9 "Coal","2,036",11.1,"6,418",9.8 "Hydro and Pumped Storage",404,2.2,-176,-0.3 "Natural Gas","10,244",55.6,"24,902",37.9 "Other1",56,0.3,682,1.0 "Other Renewable1",226,1.2,850,1.3 "Petroleum","1,351",7.3,235,0.4 "Total","18,424",100.0,"65,682",100.0 "1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable."

299

FUEL ELEMENT FOR A NUCLEAR REACTOR  

DOE Patents (OSTI)

A lattice type fissionable fuel structure for a nuclear reactor is described. The fissionable material is formed into a plurality of rod-llke bodies with each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior and extend radially from each jacket, with a portion of the fins extending radially beyond the remainder of the fins. A collar of short length for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, coilapse of the outer fins is limited by the shorter flns, thereby insuring some coolant flow at all times. (AEC)

Duffy, J.G. Jr.

1961-05-30T23:59:59.000Z

300

FUEL ELEMENT FOR A NUCLEAR REACTOR  

DOE Patents (OSTI)

A lattice-type fissionable fuel structure for a nuclear reactor is offered. The fissionable material is formed into a plurality of rod-like bodies each encased in a fluid-tight jacket. A plurality of spaced longitudinal fins are mounted on the exterior of and extend radially from each jacket, and a portion of the fins extends radially beyond the remainder of the fins. A collar of short lengih for each body is mounted on the extended fins for spacing the bodies, and adjacent bodies abut each other through these collars. Should distortion of the bodies take place, collapse of the outer fins is limited by the shorter fins thereby insuring some coolant flow therethrough at all times.

Duffy, J.G. Jr.

1961-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electric heater for nuclear fuel rod simulators  

DOE Patents (OSTI)

The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

McCulloch, Reginald W. (Knoxville, TN); Morgan, Jr., Chester S. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN)

1982-01-01T23:59:59.000Z

302

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

Dixon, B.W.; Piet, S.J.

2004-10-03T23:59:59.000Z

303

World nuclear capacity and fuel cycle requirements, November 1993  

SciTech Connect

This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

Not Available

1993-11-30T23:59:59.000Z

304

Spent nuclear fuel discharges from U.S. reactors 1994  

Science Conference Proceedings (OSTI)

Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

NONE

1996-02-01T23:59:59.000Z

305

Design, fabrication, and characterization of a micro fuel processor  

E-Print Network (OSTI)

The development of portable-power systems employing hydrogen-driven solid oxide fuel cells continues to garner significant interest among applied science researchers. The technology can be applied in fields ranging from ...

Blackwell, Brandon S. (Brandon Shaw)

2008-01-01T23:59:59.000Z

306

Analysis of Nuclear Proliferation Resistance of DUPIC Fuel Cycle  

E-Print Network (OSTI)

with other fuel cycle cases. The other fuel cycles considered in this study are PWR of once-through mode (PWR-OT), PWR of reprocessing mode (PWR-MOX), in which spent PWR fuel is reprocessed and recovered plutonium is used for making MOX (Mixed Oxide), CANDU with once-through mode (CANDU-OT), PWR fuel and CANDU fuel in a oncethrough mode with reactor grid equivalent to DUPIC fuel cycle (PWR-CANDU-OT). This study is focused on intrinsic barriers, especially, radiation field of the diverted material, which could be a significant accessibility barrier, amount of special nuclear material based on 1 GWe-yr that has to be diverted and the quality of the separated fissile material. It is indicated from plutonium analysis of each fuel cycle that the MOX spent fuel is containing the largest plutonium per MTHM but PWR-MOX option based on 1 GWe-yr has the best benefit in total plutonium consumption aspects. The DUPIC option is containing a little higher total plutonium based on 1 GWe-yr than the PWR-MOX case, but the DUPIC option has the lowest fissile plutonium content which could be another measure for proliferation resistance. On the whole, the CANDU-OT option has the largest fissile plutonium as well as total plutonium per GWe-yr, which means negative points in nuclear proliferation resistance aspects. It is indicated from the radiation field analysis that fresh DUPIC fuel could play an important radiation barrier role, more than even CANDU spent fuels. In conclusion, due to those inherent features, the DUPIC fuel cycle could include technical characteristics that comply naturally with the Spent Fuel Standard, at all steps along the DUPIC linkage between PWR and CANDU. KEYWORDS: DUPIC (direct use of spent PWR fuel in CANDU), (DUPIC) fuel cycle, nuclear fuel cycle analysis, nuclear proliferaion resistance, proliferation resistance barrier, safeguards, plutonium analysis, candu type reactors, spent fuels, fuel cycles I.

Won Il Ko; Ho Dong Kim

2001-01-01T23:59:59.000Z

307

Benefits and concerns of a closed nuclear fuel cycle  

Science Conference Proceedings (OSTI)

Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a “once-through” fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

Widder, Sarah H.

2010-11-17T23:59:59.000Z

308

Decision Framework for Evaluating Advanced Nuclear Fuel Cycle Options  

Science Conference Proceedings (OSTI)

EPRI is working to develop tools to support long-term strategic planning for research, development, and demonstration (RD&D) of advanced nuclear fuel cycle technologies for electricity generation. The development of a decision framework to help guide the eventual deployment of advanced nuclear technologies represents a key component of this effort. This interim report describes the structure of a prototypical EPRI decision framework and illustrates how that framework can be applied to assess nuclear fuel...

2011-12-13T23:59:59.000Z

309

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

SciTech Connect

In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of gamma rays with specific energies that are characteristic of the emitting isotope. NRF promises the unique capability of directly quantifying a specific isotope without the need for unfolding the combined responses of several fissile isotopes as is required in other measurement techniques. We have analyzed the potential of NRF as a non-destructive analysis technique for quantitative measurements of Pu isotopes in spent nuclear fuel (SNF). Given the low concentrations of 239Pu in SNF and its small integrated NRF cross sections, the main challenge in achieving precise and accurate measurements lies in accruing sufficient counting statistics in a reasonable measurement time. Using analytical modeling, and simulations with the radiation transport code MCNPX that has been experimentally tested recently, the backscatter and transmission methods were quantitatively studied for differing photon sources and radiation detector types. Resonant photon count rates and measurement times were estimated for a range of photon source and detection parameters, which were used to determine photon source and gamma-ray detector requirements. The results indicate that systems based on a bremsstrahlung source and present detector technology are not practical for high-precision measurements of 239Pu in SNF. Measurements that achieve the desired uncertainties within hour-long measurements will either require stronger resonances, which may be expressed by other Pu isotopes, or require quasi-monoenergetic photon sources with intensities that are approximately two orders of magnitude higher than those currently being designed or proposed.This work is part of a larger effort sponsored by the Next Generation Safeguards Initiative to develop an integrated instrument, comprised of individual NDA techniques with complementary features, that is fully capable of determining Pu mass in spent fuel assemblies.

Quiter, Brian; Ludewigt, Bernhard; Ambers, Scott

2011-06-30T23:59:59.000Z

310

Nuclear fuel cycle facility accident analysis handbook  

Science Conference Proceedings (OSTI)

The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

NONE

1998-03-01T23:59:59.000Z

311

Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels  

Science Conference Proceedings (OSTI)

The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: ? Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels. ? Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

Morgan, Dane; Yang, Yong

2013-10-28T23:59:59.000Z

312

Fuel rod retention device for a nuclear reactor  

DOE Patents (OSTI)

A device is described for supporting a nuclear fuel rod in a fuel rod assembly which allows the rod to be removed without disturbing other rods in the assembly. A fuel rod cap connects the rod to a bolt which is supported in the assembly end fitting by means of a locking assembly. The device is designed so that the bolt is held securely during normal reactor operation yet may be easily disengaged and the fuel rod removed when desired.

Hylton, Charles L. (Madison Heights, VA)

1984-01-01T23:59:59.000Z

313

South Carolina Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA)

1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; ... from fossil fuels, non-biogenic ...

314

Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle  

Science Conference Proceedings (OSTI)

Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

Brett Carlsen; Emily Tavrides; Erich Schneider

2010-08-01T23:59:59.000Z

315

Preliminary Evaluation of Removing Used Nuclear Fuel from Shutdown Sites  

SciTech Connect

This report fulfills the M2 milestone M2FT-13PN0912022, “Stranded Sites De-Inventorying Report.” In January 2013, the U.S. Department of Energy (DOE) issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013). Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. This focus is consistent with the recommendations of the Blue Ribbon Commission on America’s Nuclear Future, which identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses (BRC 2012). Shutdown sites are defined as those commercial nuclear power reactor sites where the nuclear power reactors have been shut down and the site has been decommissioned or is undergoing decommissioning. In this report, a preliminary evaluation of removing used nuclear fuel from 12 shutdown sites was conducted. The shutdown sites were Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. These sites have no other operating nuclear power reactors at their sites and have also notified the U.S. Nuclear Regulatory Commission that their reactors have permanently ceased power operations and that nuclear fuel has been permanently removed from their reactor vessels. Shutdown reactors at sites having other operating reactors are not included in this evaluation.

Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul E.

2013-09-30T23:59:59.000Z

316

Used Nuclear Fuel Loading and Structural Performance Under Normal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Nuclear Fuel Loading and Structural Performance Under Normal Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and transporting it to treatment or recycling facilities, or to a geologic repository. This RD&D plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. The plan objective is to

317

Materials Modeling and Simulation for Nuclear Fuels (MMSNF) Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerial photo of Argonne National Laboratory Argonne National Laboratory University of Chicago Chicago Photography courtesy Thomas F Ewing Privacy and Security Notice The MMSNF Workshops The goal of the Materials Modeling and Simulation for Nuclear Fuels (MMSNF) workshops is to stimulate research and discussions on modeling and simulations of nuclear fuels, to assist the design of improved fuels and the evaluation of fuel performance. In addition to research focused on existing or improved types of LWR reactors, recent modeling programs, networks, and links have been created to develop innovative nuclear fuels and materials for future generations of nuclear reactors. Examples can be found in Europe (e.g. F-BRIDGE project and ACTINET network and SAMANTHA cooperative network), in the USA (e.g. CASL, NEAMS, CESAR and CMSN network

318

Used Nuclear Fuel Loading and Structural Performance Under Normal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuel Loading and Structural Performance Under Normal Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and transporting it to treatment or recycling facilities, or to a geologic repository. This RD&D plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. The plan objective is to

319

Spent nuclear fuel discharges from US reactors 1993  

SciTech Connect

The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

Not Available

1995-02-01T23:59:59.000Z

320

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance Code  

Science Conference Proceedings (OSTI)

The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code is a new, three-dimensional, multi-physics tool that uses state-of-the-art solution methods and validated nuclear fuel models to simulate the nominal operation and anticipated operational transients of nuclear fuel. The AMP Nuclear Fuel Performance code leverages existing validated material models from traditional fuel performance codes and the Scale/ORIGEN-S spent-fuel characterization code to provide an initial capability that is shown to be sufficiently accurate for a single benchmark problem and anticipated to be accurate for a broad range of problems. The thermomechanics-chemical foundation can be solved in a time-dependent or quasi-static approach with any variation of operator-split or fully-coupled solutions at each time step. The AMP Nuclear Fuel Performance code provides interoperable interfaces to leading computational mathematics tools, which will simplify the integration of the code into existing parallel code suites for reactor simulation or lower-length-scale coupling. A baseline validation of the AMP Nuclear Fuel Performance code has been performed through the modeling of an experiment in the Halden Reactor Project (IFA-432), which is the first validation problem incorporated in the FRAPCON Integral Assessment report.

Clarno, Kevin T [ORNL; Philip, Bobby [ORNL; Cochran, Bill [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Barai, Pallab [ORNL; Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL; Pannala, Sreekanth [ORNL; Dilts, Gary A [ORNL; Mihaila, Bogdan [ORNL; Yesilyurt, Gokhan [ORNL; Lee, Jung Ho [Argonne National Laboratory (ANL); Banfield, James E [ORNL; Berrill, Mark A [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Modeling Nuclear Fuels with a Combined Potts-Phase Field Model  

Science Conference Proceedings (OSTI)

Symposium, Materials Science Challenges for Nuclear Applications. Presentation Title, Modeling Nuclear Fuels with a Combined Potts-Phase Field Model.

322

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network (OSTI)

of the Institute of Nuclear Material Management, Tucson, AZ,Assay, Institute of Nuclear Materials Management 51st Annual

Quiter, Brian

2012-01-01T23:59:59.000Z

323

Method of fabricating a monolithic solid oxide fuel cell  

SciTech Connect

In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

Minh, Nguyen Q. (Fountain Valley, CA); Horne, Craig R. (Redondo Beach, CA)

1994-01-01T23:59:59.000Z

324

Method of fabricating a monolithic solid oxide fuel cell  

DOE Patents (OSTI)

In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

Minh, N.Q.; Horne, C.R.

1994-03-01T23:59:59.000Z

325

AN ANALYTICAL FRAMEWORK FOR ASSESSING RELIABLE NUCLEAR FUEL SERVICE APPROACHES: ECONOMIC AND NON-PROLIFERATION MERITS OF NUCLEAR FUEL LEASING  

Science Conference Proceedings (OSTI)

The goal of international nuclear policy since the dawn of nuclear power has been the peaceful expansion of nuclear energy while controlling the spread of enrichment and reprocessing technology. Numerous initiatives undertaken in the intervening decades to develop international agreements on providing nuclear fuel supply assurances, or reliable nuclear fuel services (RNFS) attempted to control the spread of sensitive nuclear materials and technology. In order to inform the international debate and the development of government policy, PNNL has been developing an analytical framework to holistically evaluate the economics and non-proliferation merits of alternative approaches to managing the nuclear fuel cycle (i.e., cradle-to-grave). This paper provides an overview of the analytical framework and discusses preliminary results of an economic assessment of one RNFS approach: full-service nuclear fuel leasing. The specific focus of this paper is the metrics under development to systematically evaluate the non-proliferation merits of fuel-cycle management alternatives. Also discussed is the utility of an integrated assessment of the economics and non-proliferation merits of nuclear fuel leasing.

Kreyling, Sean J.; Brothers, Alan J.; Short, Steven M.; Phillips, Jon R.; Weimar, Mark R.

2010-08-11T23:59:59.000Z

326

Fabrication of advanced oxide fuels containing minor actinide for use in fast reactors  

Science Conference Proceedings (OSTI)

R and D of advanced fuel containing minor actinide for use in fast reactors is described related to the composite fuel with MgO matrix. Fabrication tests of MgO composite fuels containing Am were done by a practical process that could be adapted to the presently used commercial manufacturing technology. Am-containing MgO composite fuels having good characteristics, i.e., having no defects, a high density, a homogeneous dispersion of host phase, were obtained. As related technology, burn-up characteristics of a fast reactor core loaded with the present MgO composite fuel were also analyzed, mainly in terms of core criticality. Furthermore, phase relations of MA oxide which was assumed to be contained in MgO matrix fuel were experimentally investigated. (authors)

Miwa, Shuhei; Osaka, Masahiko; Tanaka, Kosuke; Ishi, Yohei; Yoshimochi, Hiroshi; Tanaka, Kenya [Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Oarai-machi, Higashi-ibaraki-gun, Ibaraki, 311-1393 (Japan)

2007-07-01T23:59:59.000Z

327

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01T23:59:59.000Z

328

Method of increasing the deterrent to proliferation of nuclear fuels  

DOE Patents (OSTI)

A process of recycling protactinium-231 to enhance the utilization of radioactively hot uranium-232 in nuclear fuel for the purpose of making both fresh and spent fuel more resistant to proliferation. The uranium-232 may be obtained by the irradiation of protactinium-231 which is normally found in the spent fuel rods of a thorium base nuclear reactor. The production of protactinium-231 and uranium-232 would be made possible by the use of the thorium uranium-233 fuel cycle in power reactors.

Rampolla, Donald S. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

329

Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine Nuclear Fuel Qualification Program  

Energy.gov (U.S. Department of Energy (DOE))

fficials from the U.S. Department of Energy’s (DOE) Office of Nuclear Energy today (April 8, 2010) participated in a ceremony in Ukraine to mark the insertion of Westinghouse-produced nuclear fuel into a nuclear power plant in Ukraine.

330

Nuclear fuels technologies fiscal year 1998 research and development test plan  

Science Conference Proceedings (OSTI)

A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO{sub 2} and UO{sub 2} feed materials. Fuel fabrication development efforts include studies with a new UO{sub 2} feed material, alternate sources of PuO{sub 2}, and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities.

Alberstein, D.; Blair, H.T.; Buksa, J.J. [and others

1998-06-01T23:59:59.000Z

331

Reactor Physics and Fuel Cycle Analysis - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Bookmark and Share Reactor physics and fuel cycle analysis is a core competency of the Nuclear Engineering (NE) Division. The Division has played a major role in the design and analysis of advanced reactors, particularly liquid-metal-cooled reactors. NE researchers have concentrated on developing computer codes for

332

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

333

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

334

The Use of Thorium as Nuclear Fuel Position Statement  

E-Print Network (OSTI)

The American Nuclear Society endorses continued research and development of the use of thorium as a fertile a fuel material for nuclear reactors. Thorium is a potentially valuable energy source since it is about three to four times as abundant in the earth’s crust as uranium and is a widely distributed natural resource, which is readily accessible in many countries. 1 Use of thorium as a fertile fuel material leads to the following: • production of an alternative fissile uranium isotope, uranium-233 • coproduction of a highly radioactive isotope, uranium-232, which provides a high radiation barrier to discourage theft and proliferation of spent fuel. The path to sustainability of nuclear energy in several countries, notably India, profits from technology that utilizes their vast thorium resources. Waste produced during reactor operations benefits from the fact that the thorium-uranium fuel cycle does not readily produce long-lived transuranic elements. To date thorium utilization has been demonstrated in light water reactors, 2 as well as in other reactor types 3 including fast spectrum reactors, heavy water reactors, and gas-cooled reactors. In this context, the database and experience with thorium fuel and fuel cycles are very limited and must be augmented significantly before large-scale investment is committed to commercialization. Since thorium is an abundant resource that can potentially be used as a fertile nuclear fuel, it is likely to be an important contributor to the future global nuclear enterprise in several countries. It is, therefore, paramount that the evolving global thorium fuel cycle (including fuel conditioning and recycling operations) incorporate the latest in safeguards and other proliferation-resistant design features so that the thorium fuel cycle complements the uranium fuel cycle and enhances the long-term global sustainability of nuclear energy.

unknown authors

2006-01-01T23:59:59.000Z

335

Energy Return on Investment from Recycling Nuclear Fuel  

SciTech Connect

This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

2011-08-17T23:59:59.000Z

336

Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Ukraine Fuel Removal: Fact Sheet Fact Sheet Ukraine Fuel Removal: Fact Sheet Mar 26, 2012 For nearly two decades, the United States and Ukraine have cooperated on a

337

Nuclear Power Generation and Fuel Cycle Report 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1997 September 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1997 ii The Nuclear Power Generation and Fuel Cycle Report is prepared by the U.S. Department of Energy's Energy Information Administration. Questions and comments concerning the contents of the report may be directed to:

338

Experience in Using Fills for Spent Nuclear Fuel Waste Packages  

NLE Websites -- All DOE Office Websites (Extended Search)

Fills for SNF Waste Packages Experience in Using Fills for Spent Nuclear Fuel Waste Packages The use of other fill materials in waste packages has been investigated by several...

339

Handbook on Neutron Absorber Materials for Spent Nuclear Fuel Applications  

Science Conference Proceedings (OSTI)

This handbook is intended to become a single source of information regarding technical characteristics of neutron absorber materials that have been used for storage and transportation of spent nuclear fuel as well as to provide a summary of users' experience.

2005-12-08T23:59:59.000Z

340

Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Ukraine Fuel Removal: Fact Sheet Fact Sheet Ukraine Fuel Removal: Fact Sheet Mar 26, 2012 For nearly two decades, the United States and Ukraine have cooperated on a

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nuclear Power Generation and Fuel Cycle Report 1996  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1996 October 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1996 ii Contacts This report was prepared in the Office of Coal, Nuclear, report should be addressed to the following staff Electric and Alternate Fuels by the Analysis and Systems

342

Conductivity fuel cell collector plate and method of fabrication  

DOE Patents (OSTI)

An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

Braun, James C. (Juno Beach, FL)

2002-01-01T23:59:59.000Z

343

Fabrication of catalytic electrodes for molten carbonate fuel cells  

DOE Patents (OSTI)

A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

Smith, James L. (Lemont, IL)

1988-01-01T23:59:59.000Z

344

Disposition of ORNL's Spent Nuclear Fuel  

SciTech Connect

This paper describes the process of retrieving, repackaging, and preparing Oak Ridge spent nuclear fuel (SNF) for off-site disposition. The objective of the Oak Ridge SNF Project is to safely, reliably, and efficiently manage SNF that is stored on the Oak Ridge Reservation until it can be shipped off-site. The project required development of several unique processes and the design and fabrication of special equipment to enable the successful retrieval, transfer, and repackaging of Oak Ridge SNF. SNF was retrieved and transferred to a hot cell for repackaging. After retrieval of SNF packages, the storage positions were decontaminated and stainless steel liners were installed to resolve the vulnerability of water infiltration. Each repackaged SNF canister has been transferred from the hot cell back to dry storage until off-site shipments can be made. Three shipments of aluminum-clad SNF were made to the Savannah River Site (SRS), and five shipments of non-aluminum-clad SNF are planned to the Idaho National Engineering and Environmental Laboratory (INEEL). Through the integrated cooperation of several organizations including the U.S. Department of Energy (DOE), Bechtel Jacobs Company LLC (BJC), Oak Ridge National Laboratory (ORNL), and various subcontractors, preparations for the disposition of SNF in Oak Ridge have been performed in a safe and successful manner.

Turner, D. W.; DeMonia, B. C.; Horton, L. L.

2002-02-26T23:59:59.000Z

345

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

Anthony   V.   Guide  Nuclear  Reactors.   University   of  of   fuel   for   nuclear   reactors—create   wastes  Level  Waste   nuclear reactors, and subsequent utilization

Djokic, Denia

2013-01-01T23:59:59.000Z

346

Means for supporting fuel elements in a nuclear reactor  

DOE Patents (OSTI)

A grid structure for a nuclear reactor fuel assembly comprising a plurality of connecting members forming at least one longitudinally extending opening peripheral and inner fuel element openings through each of which openings at least one nuclear fuel element extends, said connecting members forming wall means surrounding said each peripheral and inner fuel element opening, a pair of rigid projections longitudinally spaced from one another extending from a portion of said wall means into said each peripheral and inner opening for rigidly engaging said each fuel element, respectively, yet permit individual longitudinal slippage thereof, and resilient means formed integrally on and from said wall means and positioned in said each peripheral and inner opening in opposed relationship with said projections and located to engage said fuel element to bias the latter into engagement with said rigid projections, respectively

Andrews, Harry N. (Murrysville, PA); Keller, Herbert W. (Monroeville, PA)

1980-01-01T23:59:59.000Z

347

Support grid for fuel elements in a nuclear reactor  

DOE Patents (OSTI)

A support grid is provided for holding nuclear fuel rods in a rectangular array. Intersecting sheet metal strips are interconnected using opposing slots in the strips to form a rectangular cellular grid structure for engaging the sides of a multiplicity of fuel rods. Spring and dimple supports for engaging fuel and guide rods extending through each cell in the support grid are formed in the metal strips with the springs thus formed being characterized by nonlinear spring rates.

Finch, Lester M. (Pasco, WA)

1977-01-01T23:59:59.000Z

348

Cold Demonstration of a Spent Nuclear Fuel Dry Transfer System  

Science Conference Proceedings (OSTI)

The development of a spent nuclear fuel dry transfer system (DTS) has moved from the design phase to demonstration of major components. Use of an on-site DTS allows utilities with limited crane capacities or other plant restrictions to take advantage of large efficient storage systems. This system also permits utilities to transfer spent fuel from loaded storage casks to transport casks without returning to their fuel storage pool, a circumstance that may arise during the decommissioning process.

1999-09-24T23:59:59.000Z

349

Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)  

Energy.gov (U.S. Department of Energy (DOE))

GC-52 provides legal advice to DOE regarding the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). SNF is nuclear fuel that has been used as fuel in a reactor...

350

Impact of alternative nuclear fuel cycle options on infrastructure and fuel requirements, actinide and waste inventories, and economics  

E-Print Network (OSTI)

The nuclear fuel once-through cycle (OTC) scheme currently practiced in the U.S. leads to accumulation of uranium, transuranic (TRU) and fission product inventories in the spent nuclear fuel. Various separation and recycling ...

Guérin, Laurent, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

351

Interim Storage of Used or Spent Nuclear Fuel Position Statement  

E-Print Network (OSTI)

The American Nuclear Society (ANS) supports the safe, controlled, licensed, and regulated interim storage of used nuclear fuel (UNF) (irradiated, spent fuel from a nuclear power reactor) until disposition can be determined and completed. ANS supports the U.S. Nuclear Regulatory Commission’s (NRC’s) determination that “spent fuel generated in any reactor can be stored safely and without significant environmental impacts for at least 30 years beyond the licensed life for operation. ” 1 Current operational and decommissioned nuclear power plants in the United States were licensed with the expectation that the UNF would be stored at the nuclear power plant site until shipment to an interim storage facility, reprocessing plant, or permanent storage. Because of delays in Federal programs and policy issues, utilities have been forced to store UNF. Current means of interim storage of UNF at nuclear power plant sites include storage of discharged fuel in a water-filled pool or in a sealed dry cask, both under safe, controlled, and monitored conditions. This UNF interim storage is designed, managed, and controlled to minimize or preclude potential radiological hazards or material releases. At nuclear power plant sites in the United States and internationally, this interim storage is regulated under site license requirements and technical specifications imposed by the national or state regulator. In the United States, NRC is the licensing and regulatory authority. ANS believes that UNF interim storage

unknown authors

2008-01-01T23:59:59.000Z

352

Overview of the spent nuclear fuel project at Hanford  

SciTech Connect

The Spent Nuclear Fuel Project`s mission at Hanford is to {open_quotes}Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.{close_quotes} The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program.

Daily, J.L. [Dept. of Energy, Richland, WA (United States). Richland Operations Office; Fulton, J.C.; Gerber, E.W.; Culley, G.E. [Westinghouse Hanford Co., Richland, WA (United States)

1995-02-01T23:59:59.000Z

353

Mox fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-05-15T23:59:59.000Z

354

MOX fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

Kantrowitz, M.L.; Rosenstein, R.G.

1998-10-13T23:59:59.000Z

355

MOX fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

1998-01-01T23:59:59.000Z

356

MOX fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-07-17T23:59:59.000Z

357

K Basin spent nuclear fuel characterization  

SciTech Connect

The results of the characterization efforts completed for the N Reactor fuel stored in the Hanford K Basins were Collected and summarized in this single referencable document. This summary provides a ''road map'' for what was done and the results obtained for the fuel characterization program initiated in 1994 and scheduled for completion in 1999 with the fuel oxidation rate measurement under moist inert atmospheres.

LAWRENCE, L.A.

1999-02-10T23:59:59.000Z

358

International Nuclear Fuel Cycle Fact Book. Revision 5  

SciTech Connect

This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

1985-01-01T23:59:59.000Z

359

International nuclear fuel cycle fact book. Revision 4  

SciTech Connect

This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-03-01T23:59:59.000Z

360

Integrated Used Nuclear Fuel Storage, Transportation, and ...  

Researchers at ORNL have developed an integrated system that reduces the total life-cycle cost of used fuel storage while improving overall safety. This multicanister ...

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Subcritical transmutation of spent nuclear fuel.  

E-Print Network (OSTI)

??A series of fuel cycle simulations were performed using CEA's reactor physics code ERANOS 2.0 to analyze the transmutation performance of the Subcritical Advanced Burner… (more)

Sommer, Christopher Michael

2011-01-01T23:59:59.000Z

362

Nuclear Regulatory Commission's Integrated Strategy for Spent Fuel Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NRC's NRC's Integrated Strategy for NRC s Integrated Strategy for Spent Fuel Management Earl Easton 1 U.S. Nuclear Regulatory Commission May 25, 2010 Road to Yucca Mountain * 20+ years of preparation for the licensing i review * DOE application received in June 2008 and accepted for review in September 2008 * President Obama pursues alternatives to Yucca Mountain * DOE motion to withdraw in March 2010 2 * DOE motion to withdraw in March 2010 * Blue Ribbon Commission on America's Nuclear Future 2 Growing Spent Fuel Inventory Cumulative Used Nuclear Fuel Scenarios 50,000 100,000 150,000 200,000 250,000 Metric Tons 3 - 50,000 2010 2015 2020 2025 2030 2035 2040 2045 2050 Year Reference: Crozat, March 2010 Integrated Strategy * In response to the evolving national debate on spent fuel management strategy, NRC initiated a number of actions:

363

Review of Used Nuclear Fuel Storage and Transportation Technical Gap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis Analysis Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis While both wet and dry storage have been shown to be safe options for storing used nuclear fuel (UNF), the focus of the program is on dry storage of commercial UNF at reactor or centralized locations. This report focuses on the knowledge gaps concerning extended storage identified in numerous domestic and international investigations and provides the Used Fuel Disposition Campaign"s (UFDC) gap description, any alternate gap descriptions, the rankings by the various organizations, evaluation of the priority assignment, and UFDC-recommended action based on the comparison. Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis More Documents & Publications

364

LOW COST MULTI-LAYER FABRICATION METHOD FOR SOLID OXIDE FUEL CELLS (SOFC)  

SciTech Connect

Under this program, Technology Management, Inc, is evaluating the economic advantages of a multi-pass printing process on the costs of fabricating planar solid oxide fuel cell stacks. The technique, still unproven technically, uses a ''green-field'' or build-up approach. Other more mature processes were considered to obtain some baseline assumptions. Based on this analysis, TMI has shown that multi-pass printing can offer substantial economic advantages over many existing fabrication processes and can reduce costs. By impacting overall production costs, the time is compressed to penetrate early low volume niche markets and more mature high-volume market applications.

Dr. Christopher E. Milliken; Dr. Robert C. Ruhl

2001-05-16T23:59:59.000Z

365

Spent nuclear fuel discharges from US reactors 1992  

SciTech Connect

This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

Not Available

1994-05-05T23:59:59.000Z

366

Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion  

DOE Green Energy (OSTI)

The Department of Energy is working with NASA to examine fuel options for Nuclear Thermal Propulsion applications. Extensive development and testing was performed on graphite-based fuels during the Nuclear Engineer Rocket Vehicle Application (NERVA) and Rover programs through the early 1970s. This paper explores the possibility of recapturing the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing capabilities, analysis techniques and methods, and knowledge to that of previous development programs and presents a plan to recapture the technology for a flight program.

Qualls, A L [ORNL; Hancock, Emily F [ORNL

2011-01-01T23:59:59.000Z

367

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

368

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotonically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W.

1997-12-01T23:59:59.000Z

369

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents (OSTI)

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

370

Multidimensional Multiphysics Simulation of Nuclear Fuel Behavior  

Science Conference Proceedings (OSTI)

Important aspects of fuel rod behavior, for example pellet-clad mechanical interaction (PCMI), fuel fracture, oxide formation, non- axisymmetric cooling, and response to fuel manufacturing defects, are inherently multidimensional in addition to being complicated multiphysics problems. Many current modeling tools are strictly 2D axisymmetric or even 1.5D. This paper outlines the capabilities of a new fuel modeling tool able to analyze either 2D axisymmetric or fully 3D models. These capabilities include temperature-dependent thermal conductivity of fuel; swelling and densification; fuel creep; pellet fracture; fission gas release; cladding creep; irradiation growth; and gap mechanics (contact and gap heat transfer). The need for multiphysics, multidimensional modeling is then demonstrated through a discussion of results for a set of example problems. The first, a 10-pellet rodlet, demonstrates the viability of the solution method employed. This example highlights the effect of our smeared cracking model and also shows the multidimensional nature of discrete fuel pellet modeling. The second example relies on our multidimensional, multiphysics approach to analyze a missing pellet surface problem. The next example is the analysis of cesium diffusion in a TRISO fuel particle with defects. As a final example, we show a lower-length-scale simulation coupled to a continuum-scale simulation.

R. L. Williamson; J. D. Hales; S. R. Novascone; M. R. Tonks; D. R. Gaston; C. J. Permann; D. Andrs; R. C. Martineau

2012-04-01T23:59:59.000Z

371

Fuel Reliability Program: Assessment of Nuclear Fuel Pellets Using X-Ray Tomography  

Science Conference Proceedings (OSTI)

This EPRI technical report describes a feasibility study involving the application of X-ray tomography as an inspection technique to detect flaws on the surface of uranium pellets in nuclear fuel rods. The objective was to develop and evaluate a system for tomographic imaging of fuel pellets inside fuel rods that uses fast algorithms for analysis of each slice of the reconstructed image for detection of abnormalities in the pellet. The report describes the fundamentals of X-ray tomography and ...

2013-02-22T23:59:59.000Z

372

Demonstration of a transportable storage system for spent nuclear fuel  

Science Conference Proceedings (OSTI)

The purpose of this paper is to discuss the joint demonstration project between the Sacramento Municipal Utility District (SMUD) and the US Department of Energy (DOE) regarding the use of a transportable storage system for the long-term storage and subsequent transport of spent nuclear fuel. SMUD's Rancho Seco nuclear generating station was shut down permanently in June 1989. After the shutdown, SMUD began planning the decommissioning process, including the disposition of the spent nuclear fuel. Concurrently, Congress had directed the Secretary of Energy to develop a plan for the use of dual-purpose casks. Licensing and demonstrating a dual-purpose cask, or transportable storage system, would be a step toward achieving Congress's goal of demonstrating a technology that can be used to minimize the handling of spent nuclear fuel from the time the fuel is permanently removed from the reactor through to its ultimate disposal at a DOE facility. For SMUD, using a transportable storage system at the Rancho Seco Independent Spent-Fuel Storage Installation supports the goal of abandoning Rancho Seco's spent-fuel pool as decommissioning proceeds.

Shetler, J.R.; Miller, K.R.; Jones, R.E. (Sacramento Municipal Utility District, Herald, CA (United States))

1993-01-01T23:59:59.000Z

373

Software: Reactor Physics and Fuel Cycle Analysis - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis > Analysis > Software Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Software Bookmark and Share An extensive powerful suite of computer codes developed and validated by the NE Division and its predecessor divisions at Argonne supports the development of fast reactors; many of these codes are also applicable to other reactor types. A brief description of these codes follows. Contact

374

Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography  

E-Print Network (OSTI)

This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

Jonkmans, G; Jewett, C; Thompson, M

2012-01-01T23:59:59.000Z

375

Nuclear Power Generation and Fuel Cycle Report  

Reports and Publications (EIA)

Final issue. This report provides information and forecasts important to the domestic and world nuclear and uranium industries. 1997 represents the most recent publication year.

Dr. Zdenek D.

1997-09-01T23:59:59.000Z

376

A framework and methodology for nuclear fuel cycle transparency.  

Science Conference Proceedings (OSTI)

A key objective to the global deployment of nuclear technology is maintaining transparency among nation-states and international communities. By providing an environment in which to exchange scientific and technological information regarding nuclear technology, the safe and legitimate use of nuclear material and technology can be assured. Many nations are considering closed or multiple-application nuclear fuel cycles and are subsequently developing advanced reactors in an effort to obtain some degree of energy self-sufficiency. Proliferation resistance features that prevent theft or diversion of nuclear material and reduce the likelihood of diversion from the civilian nuclear power fuel cycle are critical for a global nuclear future. IAEA Safeguards have been effective in minimizing opportunities for diversion; however, recent changes in the global political climate suggest implementation of additional technology and methods to ensure the prompt detection of proliferation. For a variety of reasons, nuclear facilities are becoming increasingly automated and will require minimum manual operation. This trend provides an opportunity to utilize the abundance of process information for monitoring proliferation risk, especially in future facilities. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to resist proliferation associated with these activities. Additionally, a framework designed to monitor processes will ensure the legitimate use of nuclear material. This report describes recent efforts to develop a methodology capable of assessing proliferation risk in support of overall plant transparency. The framework may be tested at the candidate site located in Japan: the Fuel Handling Training Model designed for the Monju Fast Reactor at the International Cooperation and Development Training Center of the Japan Atomic Energy Agency.

McClellan, Yvonne; York, David L.; Inoue, Naoko (Japan Atomic Energy Agency, Ibaraki, Japan); Love, Tracia L.; Rochau, Gary Eugene

2006-02-01T23:59:59.000Z

377

Microsoft Word - nuclear_fuel_yacout.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

in diameter and 1 cm long. Manufacturing of this form of uranium fuel starts with mined uranium that passes through processes of conversion and enrichment before it is made into...

378

Evaluation of methods for seismic analysis of mixed-oxide fuel fabrication plants  

SciTech Connect

Guidelines are needed for selecting appropriate methods of structural analyses to evaluate the seismic hazard of mixed-oxide fuel fabrication plants. This study examines the different available methods and their applicability to fabrication plants. These results should provide a basis for establishing guidelines recommending methods of analysis to ensure safe design against seismic hazards. Using the Westinghouse Recycle Fuels Plant as representative of future mixed-oxide fuel fabrication plants, critical structures and equipment (systems, components, and piping/ducting) were identified. These included the manufacturing building and 11 different pieces of equipment. After examination of the dynamic response characteristics of the building and the different methods available to analyze equipment, appropriate methods of analyses were recommended. Because critical equipment analysis and test methods generally use floor-response spectra as their seismic input loading, several methods used to generate floor spectra were also examined. These include the time-history approach and the Kapur and Biggs approximate methods. The examination included the effect of site characteristics and both horizontal and vertical structural response. (auth)

Tokarz, F.J.; Arthur, D.F.; Murray, R.C.

1975-10-01T23:59:59.000Z

379

NUCLEAR BOMBS FROM LOW- ENRICHED URANIUM OR “SPENT ” FUEL  

E-Print Network (OSTI)

Conventional wisdom says that low-enriched uranium is not suitable for making nuclear weapons. However, an article in USA Today claims that “rogue ” states and terrorists have discovered that this is untrue. Not only that, but terrorists could separate plutonium from irradiated fuel (often called “spent fuel”) more easily than previously thought. (584.5495) WISE Amsterdam – Lowenriched uranium (LEU) is uranium containing up to 20 % uranium-235. Uranium with higher enrichment levels is classified as high-enriched, and is subject to international safeguards because it can be used to make nuclear weapons. However, a USA Today article claims that “rogue countries and terrorists” have discovered that it is possible to make nuclear weapons with uranium of lower enrichment, according to classified nuclear threat reports (1). The information is not entirely new. Back in 1996, a standard book on nuclear weapons material stated, “a self-sustaining chain reaction in a nuclear weapon cannot occur in depleted or natural or low-enriched uranium and is only theoretically IN THIS ISSUE: possible in LEU of roughly 10 percent or greater ” (2). Fuel for nuclear power reactors would not be suitable – this is typically enriched to 3-5 % uranium-235. However, for a “rogue state” wanting to make high-enriched uranium, it would take less work to start with nuclear fuel than with natural uranium. It could be done in a “small and easy to hide ” uranium enrichment plant – perhaps similar to the plant which has recently been discovered in Iran (3). Nevertheless, it would still require a substantial operation, since the fuel would need to be converted to uranium hexafluoride, enriched and then reconverted to uranium metal. More significantly, many research reactors use uranium of just under

unknown authors

2003-01-01T23:59:59.000Z

380

International nuclear fuel cycle fact book. [Contains glossary  

SciTech Connect

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

International nuclear fuel cycle fact book: Revision 9  

Science Conference Proceedings (OSTI)

The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

Leigh, I.W.

1989-01-01T23:59:59.000Z

382

Impact of Fuel Failure on Criticality Safety of Used Nuclear Fuel  

SciTech Connect

Commercial used nuclear fuel (UNF) in the United States is expected to remain in storage for considerably longer periods than originally intended (e.g., <40 years). Extended storage (ES) time and irradiation of nuclear fuel to high-burnup values (>45 GWd/t) may increase the potential for fuel failure during normal and accident conditions involving storage and transportation. Fuel failure, depending on the severity, can result in changes to the geometric configuration of the fuel, which has safety and regulatory implications. The likelihood and extent of fuel reconfiguration and its impact on the safety of the UNF is not well understood. The objective of this work is to assess and quantify the impact of fuel reconfiguration due to fuel failure on criticality safety of UNF in storage and transportation casks. This effort is primarily motivated by concerns related to the potential for fuel degradation during ES periods and transportation following ES. The criticality analyses consider representative UNF designs and cask systems and a range of fuel enrichments, burnups, and cooling times. The various failed-fuel configurations considered are designed to bound the anticipated effects of individual rod and general cladding failure, fuel rod deformation, loss of neutron absorber materials, degradation of canister internals, and gross assembly failure. The results quantify the potential impact on criticality safety associated with fuel reconfiguration and may be used to guide future research, design, and regulatory activities. Although it can be concluded that the criticality safety impacts of fuel reconfiguration during transportation subsequent to ES are manageable, the results indicate that certain configurations can result in a large increase in the effective neutron multiplication factor, k{sub eff}. Future work to inform decision making relative to which configurations are credible, and therefore need to be considered in a safety evaluation, is recommended.

Marshall, William BJ J [ORNL; Wagner, John C [ORNL

2012-01-01T23:59:59.000Z

383

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

refabrication. through which nuclear fuel passes. Fusion.with the experience at the Nuclear Fuel Services Plant (seecommitment from the nuclear fuel cycle; see Section 3.2.3. )

Nero, A.V.

2010-01-01T23:59:59.000Z

384

FUEL ELEMENTS FOR THERMAL-FISSION NUCLEAR REACTORS  

DOE Patents (OSTI)

Fuel elements for thermal-fission nuclear reactors are described. The fuel element is comprised of a core of alumina, a film of a metal of the class consisting of copper, silver, and nickel on the outer face of the core, and a coating of an oxide of a metal isotope of the class consisting of Un/sup 235/, U/ sup 233/, and Pu/sup 239/ on the metal f ilm.

Flint, O.

1961-01-10T23:59:59.000Z

385

Impact of actinide recycle on nuclear fuel cycle health risks  

SciTech Connect

The purpose of this background paper is to summarize what is presently known about potential impacts on the impacts on the health risk of the nuclear fuel cycle form deployment of the Advanced Liquid Metal Reactor (ALMR){sup 1} and Integral Fast Reactor (IF){sup 2} technology as an actinide burning system. In a companion paper the impact on waste repository risk is addressed in some detail. Therefore, this paper focuses on the remainder of the fuel cycle.

Michaels, G.E.

1992-06-01T23:59:59.000Z

386

Double-clad nuclear-fuel safety rod  

DOE Patents (OSTI)

A device for shutting down a nuclear reactor during an undercooling or overpower event, whether or not the reactor's scram system operates properly. This is accomplished by double-clad fuel safety rods positioned at various locations throughout the reactor core, wherein melting of a secondary internal cladding of the rod allows the fuel column therein to shift from the reactor core to place the reactor in a subcritical condition.

McCarthy, W.H.; Atcheson, D.B.

1981-12-30T23:59:59.000Z

387

Apparatus for injection casting metallic nuclear energy fuel rods  

DOE Patents (OSTI)

Molds for making metallic nuclear fuel rods are provided which present reduced risks to the environment by reducing radioactive waste. In one embodiment, the mold is consumable with the fuel rod, and in another embodiment, part of the mold can be re-used. Several molds can be arranged together in a cascaded manner, if desired, or several long cavities can be integrated in a monolithic multiple cavity re-usable mold.

Seidel, Bobby R. (Idaho Falls, ID); Tracy, Donald B. (Firth, ID); Griffiths, Vernon (Butte, MT)

1991-01-01T23:59:59.000Z

388

Spent nuclear fuel Canister Storage Building CDR Review Committee report  

SciTech Connect

The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

Dana, W.P.

1995-12-01T23:59:59.000Z

389

Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes  

SciTech Connect

Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

1995-12-31T23:59:59.000Z

390

Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect

The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

Johnson, D.J.; Brehm, J.R.

1994-01-01T23:59:59.000Z

391

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

392

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

DOE Green Energy (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

393

A Technical Review of Non-Destructive Assay Research for the Characterization of Spent Nuclear Fuel Assemblies Being Conducted Under the US DOE NGSI - 11544  

E-Print Network (OSTI)

the Characterization of Spent Nuclear Fuel Assemblies BeingSociety’s Advances in Nuclear Fuel Management IV, HiltonPlutonium Mass in Spent Nuclear Fuel,” 2010 ANS Annual

Croft, S.

2012-01-01T23:59:59.000Z

394

Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls  

E-Print Network (OSTI)

Metal Coatings for Spent Nuclear Fuel (SNF) Containers: UseCoatings for Spent Nuclear Fuel (SNF) Container to Enhance2006 ABSTRACT Spent nuclear fuel contains fissionable

2006-01-01T23:59:59.000Z

395

Preparation of nuclear fuel spheres by flotation-internal gelation  

DOE Patents (OSTI)

A simplified internal gelation process is claimed for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85/sup 0/C) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column. 3 figs.

Haas, P.A.; Fowler, V.L.; Lloyd, M.H.

1984-12-21T23:59:59.000Z

396

Preparation of nuclear fuel spheres by flotation-internal gelation  

DOE Patents (OSTI)

A simplified internal gelation process for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85.degree. C.) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column.

Haas, Paul A. (Knoxville, TN); Fowler, Victor L. (Oak Ridge, TN); Lloyd, Milton H. (Oak Ridge, TN)

1987-01-01T23:59:59.000Z

397

Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts  

SciTech Connect

The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse, enablement of material accountability, and decreasing material attractiveness.

S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

2010-09-01T23:59:59.000Z

398

Development of Nuclear Energy Systems and Fuels  

Science Conference Proceedings (OSTI)

Mar 2, 2011 ... Session Chair: Meimei Li, Argonne National Lab; Matthew Kerr, US ... The realization of advanced nuclear reactors as a national source of reliable energy .... 2Illinois Institute of Technology; 3Argonne National Laboratory

399

Railroad transportation of spent nuclear fuel  

Science Conference Proceedings (OSTI)

This report documents a detailed analysis of rail operations that are important for assessing the risk of transporting high-level nuclear waste. The major emphasis of the discussion is towards ''general freight'' shipments of radioactive material. The purpose of this document is to provide a basis for selecting models and parameters that are appropriate for assessing the risk of rail transportation of nuclear waste.

Wooden, D.G.

1986-03-01T23:59:59.000Z

400

Manufacture of bonded-particle nuclear fuel composites  

DOE Patents (OSTI)

A preselected volume of nuclear fuel particles are placed in a cylindrical mold cavity followed by a solid pellet of resin--carbon matrix material of preselected volume. The mold is heated to liquefy the pellet and the liquefied matrix forced throughout the interstices of the fuel particles by advancing a piston into the mold cavity. Excess matrix is permitted to escape through a vent hole in the end of the mold opposite to that end where the pellet was originally disposed. After the matrix is resolidified by cooling, the resultant fuel composite is removed from the mold and the resin component of the matrix carbonized. (Official Gazette)

Stradley, J.G.; Sease, J.D.

1973-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear Fuel Cycle Reasoner: PNNL FY13 Report  

SciTech Connect

In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

Hohimer, Ryan E.; Strasburg, Jana D.

2013-09-30T23:59:59.000Z

402

Nuclear fuel elements and method of making same  

DOE Patents (OSTI)

A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

Schweitzer, Donald G. (Bayport, NY)

1992-01-01T23:59:59.000Z

403

Review of monitoring instruments for transuranics in fuel fabrication and reprocessing plants. A progress report to the physical and technological programs, Division of Biomedical and Environmental Research, U. S. Energy Research and Development Administration  

SciTech Connect

A comprehensive review of the monitoring instruments for transuranic elements released from nuclear fuel fabrication and reprocessing plants has been compiled. The extent of routine operational releases has been reviewed for the light water reactor (LWR) fuel cycle (including plutonium recycle), the breeder reactor fuel cycle, and the high-temperature gas cooled reactor (HTGR) fuel cycle. The stack monitoring instrumentation presently in use at the various fabrication and reprocessing plants around the country is discussed. Sampling difficulties and the effectiveness of the entire sampling system are reviewed, as are the measurement problems for alpha-emitting, long-lived, transuranic aerosols, /sup 129/I, /sup 106/Ru, and tritium oxide. The potential problems in the HTGR fuel cycle such as the measurement of releases of alpha-emitting aerosols and of gaseous releases of /sup 220/Rn and /sup 14/C are also considered.

Kordas, J.F.; Phelps, P.L.

1976-11-16T23:59:59.000Z

404

Perils of plutonium [spent nuclear fuel storage  

Science Conference Proceedings (OSTI)

This paper focuses on the security of the ponds at reactor sites where radioactive spent fuel are being stored. A recent report by a panel of the National Academy of Sciences in Washington, DC, said that attacks by knowledgeable terrorists with access ...

P. P. Predd

2005-07-01T23:59:59.000Z

405

Polar studies of the sphericity degree of V/HTR nuclear fuel particles  

SciTech Connect

Advanced nuclear power reactor designs such as (Very) High Temperature Reactors (V/HTR) employ TRISO fuel particles that typically have a sub-millimetre U-based fuel kernel coated with three isotropic ceramic layers-a layer of silicon carbide sandwiched between pyrocarbon layers of different density. Evaluation of the ceramic layer thickness and of the degree of sphericity of these typical nuclear fuel particles is required at each step of the fabrication, in order to estimate future fuel performance under irradiation conditions. This study is based on the image processing of polished cross-sections, realized near the equatorial plane. From these 2D images, some measurements are carried out, giving an estimation of the diameter values for a sample of particles at each step of the coating process. These values are then statistically extended to the third dimension in order to obtain the thickness of each layer and the degree of sphericity of each particle. A representation of diameter and layer thickness in polar coordinates enables one to identify steps for which the coating process is defective or deviating from nominal objectives.

Robert-Inacio, F. [Institut Superieur de l'Electronique et du Numerique de Toulon, L2MP UMR CNRS 6137, place Pompidou, F-83000 Toulon (France)]. E-mail: frederique.robert@isen.fr; Boschet, C. [Institut Superieur de l'Electronique et du Numerique de Toulon, L2MP UMR CNRS 6137, place Pompidou, F-83000 Toulon (France); Charollais, F. [CEA Cadarache, DEN/CAD/DEC/SPUA, Bat. 315, BP1, 13108 Saint Paul lez Durance (France)]. E-mail: francois.charollais@cea.fr; Cellier, F. [Framatome ANP, an AREVA and Siemens Company, Plants Sector, 10, rue Juliette Recamier, 69456 Lyon Cedex 06 (France)

2006-06-15T23:59:59.000Z

406

The Department of Energy's Spent Nuclear Fuel Canisters andTransporta...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nuclear fuel generated from research and development, plutonium production, and the Naval Nuclear Propulsion Program (Naval Reactors). Under current national policy, the Department...

407

Greenhouse Gas Emissions from the Nuclear Fuel Cycle  

Science Conference Proceedings (OSTI)

Since greenhouse gases are a global concern, rather than a local concern as are some kinds of effluents, one must compare the entire lifecycle of nuclear power to alternative technologies for generating electricity. A recent critical analysis by Sovacool (2008) gives a clearer picture. "It should be noted that nuclear power is not directly emitting greenhouse gas emissions, but rather that lifecycle emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning." "[N]uclear energy is in no way 'carbon free' or 'emissions free,' even though it is much better (from purely a carbon-equivalent emissions standpoint) than coal, oil, and natural gas electricity generators, but worse than renewable and small scale distributed generators" (Sovacool 2008). According to Sovacool, at an estimated 66 g CO2 equivalent per kilowatt-hour (gCO2e/kWh), nuclear power emits 15 times less CO2 per unit electricity generated than unscrubbed coal generation (at 1050 gCO2e/kWh), but 7 times more than the best renewable, wind (at 9 gCO2e/kWh). The U.S. Nuclear Regulatory Commission (2009) has long recognized CO2 emissions in its regulations concerning the environmental impact of the nuclear fuel cycle. In Table S-3 of 10 CFR 51.51(b), NRC lists a 1000-MW(electric) nuclear plant as releasing as much CO2 as a 45-MW(e) coal plant. A large share of the carbon emissions from the nuclear fuel cycle is due to the energy consumption to enrich uranium by the gaseous diffusion process. A switch to either gas centrifugation or laser isotope separation would dramatically reduce the carbon emissions from the nuclear fuel cycle.

Strom, Daniel J.

2010-03-01T23:59:59.000Z

408

Microscopic Examination of a Corrosion Front in Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

Spent uranium oxide nuclear fuel hosts a variety of trace chemical constituents, many of which must be sequestered from the biosphere during fuel storage and disposal. In this paper we present synchrotron x-ray absorption spectroscopy and microscopy findings that illuminate the resultant local chemistry of neptunium and plutonium within spent uranium oxide nuclear fuel before and after corrosive alteration in an air-saturated aqueous environment. We find the plutonium and neptunium in unaltered spent fuel to have a +4 oxidation state and an environment consistent with solid-solution in the UO{sub 2} matrix. During corrosion in an air-saturated aqueous environment, the uranium matrix is converted to uranyl U(VI)O{sub 2}{sup 2+} mineral assemblage that is depleted in plutonium and neptunium relative to the parent fuel. At the corrosion front interface between intact fuel and the uranyl-mineral corrosion layer, we find evidence of a thin ({approx}20 micrometer) layer that is enriched in plutonium and neptunium within a predominantly U{sup 4+} environment. Available data for the standard reduction potentials for NpO{sup 2+}/Np{sup 4+} and UO{sub 2}{sup 2+}/U{sup 4+} couples indicate that Np(IV) may not be effectively oxidized to Np(V) at the corrosion potentials of uranium dioxide spent nuclear fuel in air-saturated aqueous solutions. Neptunium is an important radionuclide in dose contribution according to performance assessment models of the proposed U. S. repository at Yucca Mountain, Nevada. A scientific understanding of how the UO{sub 2} matrix of spent nuclear fuel impacts the oxidative dissolution and reductive precipitation of neptunium is needed to predict its behavior at the fuel surface during aqueous corrosion. Neptunium would most likely be transported as aqueous Np(V) species, but for this to occur it must first be oxidized from the Np(IV) state found within the parent spent nuclear fuel [1]. In the immediate vicinity of the spent fuel's surface the redox and nucleation behavior is likely to promote/enhance nucleation of NpO{sub 2} and Np{sub 2}O{sub 5}. Alternatively, Np may be incorporated into uranyl (UO{sub 2}{sup 2+}) alteration phases [2]. In some cases, less-soluble elements such as plutonium will be enriched near the surface of the corroding fuel [3]. We have used focused synchrotron x-rays from the MRCAT beam line at the Advanced Photon Source (APS) at Argonne National Lab to examine a specimen of spent nuclear fuel that had been subject to 10 years of corrosion testing in an environment of humid air and dripping groundwater at 90 C [4]. We find evidence of a region, approximately 20 microns in thickness, enriched in plutonium and neptunium at the corrosion front that exists between the uranyl silicate alteration mineral rind and the unaltered uranium oxide fuel (Figures 1 and 2). The uranyl silicate is itself found to be depleted in these transuranic elements relative to their abundance relative to uranium in the parent fuel. This suggests a low mobility of these components owing to a resistance to oxidize further in the presence of a UO{sub 2}{sup 2+}/U{sup 4+} couple [5].

J.A> Fortner; A.J. Kropf; R.J. Finch; J.C. Cunnane

2006-06-20T23:59:59.000Z

409

Modeling Deep Burn TRISO Particle Nuclear Fuel  

Science Conference Proceedings (OSTI)

Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

410

Nuclear Fuel Cycle Reasoner: PNNL FY12 Report  

SciTech Connect

Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

2013-05-03T23:59:59.000Z

411

Methods and apparatuses for the development of microstructured nuclear fuels  

DOE Patents (OSTI)

Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.

Jarvinen, Gordon D. (Los Alamos, NM); Carroll, David W. (Los Alamos, NM); Devlin, David J. (Santa Fe, NM)

2009-04-21T23:59:59.000Z

412

Method of controlling crystallite size in nuclear-reactor fuels  

DOE Patents (OSTI)

Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

Lloyd, Milton H. (Oak Ridge, TN); Collins, Jack L. (Knoxville, TN); Shell, Sam E. (Oak Ridge, TN)

1985-01-01T23:59:59.000Z

413

Advanced Nuclear Fuel Cycles -- Main Challenges and Strategic Choices  

Science Conference Proceedings (OSTI)

This report presents the results of a critical review of the technological challenges to the growth of nuclear energy, emerging advanced technologies that would have to be deployed, and fuel cycle strategies that could conceivably involve interim storage, plutonium recycling in thermal and fast reactors, reprocessed uranium recycling, and transmutation of minor actinide elements and fission products before eventual disposal of residual wastes.

2010-09-02T23:59:59.000Z

414

Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability  

SciTech Connect

The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

415

Criticality Risks During Transportation of Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

This report presents a best-estimate probabilistic risk assessment (PRA) to quantify the frequency of criticality accidents during railroad transportation of spent nuclear fuel casks. The assessment is of sufficient detail to enable full scrutiny of the model logic and the basis for each quantitative parameter contributing to criticality accident scenario frequencies.

2006-12-14T23:59:59.000Z

416

METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR  

DOE Patents (OSTI)

A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)

Layer, E.H. Jr.; Peet, C.S.

1962-01-23T23:59:59.000Z

417

Effect of residual stress on the life prediction of dry storage canisters for used nuclear fuel  

E-Print Network (OSTI)

Used nuclear fuel dry storage canisters will likely be tasked with holding used nuclear fuel for a period longer than originally intended. Originally designed for 20 years, the storage time will likely approach 100 years. ...

Black, Bradley P. (Bradley Patrick)

2013-01-01T23:59:59.000Z

418

Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository  

SciTech Connect

The U.S.Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, “EM shall design and fabricate … DOE SNF canisters for shipment to RW.” (1) It also states, “EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71.” (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

2001-02-01T23:59:59.000Z

419

Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities  

Science Conference Proceedings (OSTI)

The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

Lee, S.Y.

1999-01-13T23:59:59.000Z

420

Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization

B. T. Rearden; W. J. Anderson; G. A. Harms

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Long-term global nuclear energy and fuel cycle strategies  

SciTech Connect

The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

1997-09-24T23:59:59.000Z

422

Locations of Spent Nuclear Fuel and High-Level Radioactive Waste  

Energy.gov (U.S. Department of Energy (DOE))

Map of the United States of America showing the locations of spent nuclear fuel and high-level radioactive waste.

423

ASSESSING THE PROLIFERATION RESISTANCE OF INNOVATIVE NUCLEAR FUEL CYCLES.  

SciTech Connect

The National Nuclear Security Administration is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. This paper summarizes the key results of that effort. Proliferation resistance is the degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons. A top-level measure of proliferation resistance for a fuel cycle system is developed here from a hierarchy of metrics. At the lowest level, intrinsic and extrinsic barriers to proliferation are defined. These barriers are recommended as a means to characterize the proliferation characteristics of a fuel cycle. Because of the complexity of nonproliferation assessments, the problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The spectrum of potential threats of nuclear proliferation is complex and ranges from small terrorist cells to industrialized countries with advanced nuclear fuel cycles. Two general categories of methods have historically been used for nonproliferation assessments: attribute analysis and scenario analysis. In the former, attributes of the systems being evaluated (often fuel cycle systems) are identified that affect their proliferation potential. For a particular system under consideration, the attributes are weighted subjectively. In scenario analysis, hypothesized scenarios of pathways to proliferation are examined. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and estimates the likelihood of success in achieving a proliferation objective. An attribute analysis approach should be used at the conceptual design level in the selection of fuel cycles that will receive significant investment for development. In the development of a detailed facility design, a scenario approach should be undertaken to reduce the potential for design vulnerabilities. While, there are distinctive elements in each approach, an analysis could be performed that utilizes aspects of each approach.

BARI,R.; ROGLANS,J.; DENNING,R.; MLADINEO,S.

2003-06-23T23:59:59.000Z

424

THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS  

Science Conference Proceedings (OSTI)

We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides a set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.

Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.; Sleaford, Brad W.; Hase, Kevin R.; Robel, Martin; Wallace, R. K.; Bradley, Keith S.; Ireland, J. R.; Jarvinen, G. D.; Johnson, M. W.; Prichard, Andrew W.; Smith, Brian W.

2012-08-29T23:59:59.000Z

425

Retrievable fuel pin end member for a nuclear reactor  

DOE Patents (OSTI)

A bottom end member (17b) on a retrievable fuel pin (13b) secures the pin (13b) within a nuclear reactor (12) by engaging on a transverse attachment rail (18) with a spring clip type of action. Removal and reinstallation if facilitated as only axial movement of the fuel pin (13b) is required for either operation. A pair of resilient axially extending blades (31) are spaced apart to define a slot (24) having a seat region (34) which receives the rail (18) and having a land region (37), closer to the tips (39) of the blades (31) which is normally of less width than the rail (18). Thus an axially directed force sufficient to wedge the resilient blades (31) apart is required to emplace or release the fuel pin (13b) such force being greater than the axial forces on the fuel pins (13b) which occur during operation of the reactor (12).

Rosa, Jerry M. (Los Gatos, CA)

1982-01-01T23:59:59.000Z

426

Transient Testing of Nuclear Fuels and Materials in United States  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

Daniel M. Wachs

2012-12-01T23:59:59.000Z

427

Gap Analysis to Support Extended Storage of Used Nuclear Fuel | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gap Analysis to Support Extended Storage of Used Nuclear Fuel Gap Analysis to Support Extended Storage of Used Nuclear Fuel Gap Analysis to Support Extended Storage of Used Nuclear Fuel The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The Storage and Transportation staff within the UFDC are responsible for addressing issues regarding the

428

Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding  

Science Conference Proceedings (OSTI)

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

Tome, Carlos N [Los Alamos National Laboratory; Caro, J A [Los Alamos National Laboratory; Lebensohn, R A [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Arsenlis, A [LLNL; Marian, J [LLNL; Pasamehmetoglu, K [INL

2010-01-01T23:59:59.000Z

429

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

Science Conference Proceedings (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

A. Alsaed

2005-07-28T23:59:59.000Z

430

Strategy for the Management and Disposal of Used Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High Level Radioactive Waste.pdf More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and

431

Strategy for the Management and Disposal of Used Nuclear Fuel and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy for the Management and Disposal of Used Nuclear Fuel and Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

432

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

prevent serious damage to the nuclear fuel, since it is thetransportation: for nuclear plants, fuel handling is carriedSpecific Fossil Fuel Geothermal Nuclear Solid Waste Disposal

Nero, A.V.

2010-01-01T23:59:59.000Z

433

Waste management plan for Hanford spent nuclear fuel characterization activities  

SciTech Connect

A joint project was initiated between Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) to address critical issues associated with the Spent Nuclear Fuel (SNF) stored at the Hanford Site. Recently, particular attention has been given to remediation of the SNF stored in the K Basins. A waste management plan (WMP) acceptable to both parties is required prior to the movement of selected material to the PNL facilities for examination. N Reactor and Single Pass Reactor (SPR) fuel has been stored for an extended period of time in the N Reactor, PUREX, K-East, and K-West Basins. Characterization plans call for transport of fuel material form the K Basins to the 327 Building Postirradiation Testing Laboratory (PTL) in the 300 Area for examination. However, PNL received a directive stating that no examination work will be started in PNL hot cell laboratories without an approved disposal route for all waste generated related to the activity. Thus, as part of the Characterization Program Management Plan for Hanford Spent Nuclear Fuel, a waste management plan which will ensure that wastes generated as a result of characterization activities conducted at PNL will be accepted by WHC for disposition is required. This document contains the details of the waste handling plan that utilizes, to the greatest extent possible, established waste handling and disposal practices at Hanford between PNL and WHC. Standard practices are sufficient to provides for disposal of most of the waste materials, however, special consideration must be given to the remnants of spent nuclear fuel elements following examination. Fuel element remnants will be repackaged in an acceptable container such as the single element canister and returned to the K Basins for storage.

Chastain, S.A. [Westinghouse Hanford Co., Richland, WA (United States); Spinks, R.L. [Pacific Northwest Lab., Richland, WA (United States)

1994-10-17T23:59:59.000Z

434

Fuel subassembly leak test chamber for a nuclear reactor  

DOE Patents (OSTI)

A container with a valve at one end is inserted into a nuclear reactor coolant pool. Once in the pool, the valve is opened by a mechanical linkage. An individual fuel subassembly is lifted into the container by a gripper; the valve is then closed providing an isolated chamber for the subassembly. A vacuum is drawn on the chamber to encourage gaseous fission product leakage through any defects in the cladding of the fuel rods comprising the subassembly; this leakage may be detected by instrumentation, and the need for replacement of the assembly ascertained.

Divona, Charles J. (Santa Ana, CA)

1978-04-04T23:59:59.000Z

435

Method for reprocessing and separating spent nuclear fuels  

DOE Patents (OSTI)

Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

Krikorian, Oscar H. (Danville, CA); Grens, John Z. (Livermore, CA); Parrish, Sr., William H. (Walnut Creek, CA)

1983-01-01T23:59:59.000Z

436

Method for reprocessing and separating spent nuclear fuels. [Patent application  

DOE Patents (OSTI)

Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

1982-01-19T23:59:59.000Z

437

Portable instrument for inspecting irradiated nuclear fuel assemblies  

DOE Patents (OSTI)

A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

Nicholson, Nicholas (Los Alamos, NM); Dowdy, Edward J. (Los Alamos, NM); Holt, David M. (Los Alamos, NM); Stump, Jr., Charles J. (Santa Fe, NM)

1985-01-01T23:59:59.000Z

438

Tensile Hoop Behavior of Irradiated Zircaloy-4 Nuclear Fuel Cladding  

SciTech Connect

A method for evaluating the room temperature ductility behavior of irradiated Zircaloy-4 nuclear fuel cladding has been developed and applied to evaluate tensile hoop strength of material irradiated to different levels. The test utilizes a polyurethane plug fitted within a tubular cladding specimen. A cylindrical punch is used to compress the plug axially, which generates a radial displacement that acts upon the inner diameter of the specimen. Position sensors track the radial displacement of the specimen outer diameter as the compression proceeds. These measurements coupled with ram force data provide a load-displacement characterization of the cladding response to internal pressurization. The development of this simple, cost-effective, highly reproducible test for evaluating tensile hoop strain as a function of internal pressure for irradiated specimens represents a significant advance in the mechanical characterization of irradiated cladding. In this project, nuclear fuel rod assemblies using Zircaloy-4 cladding and two types of mixed uranium-plutonium oxide (MOX) fuel pellets were irradiated to varying levels of burnup. Fuel pellets were manufactured with and without thermally induced gallium removal (TIGR) processing. Fuel pellets manufactured by both methods were contained in fuel rod assemblies and irradiated to burnup levels of 9, 21, 30, 40, and 50 GWd/MT. These levels of fuel burnup correspond to fast (E > 1 MeV) fluences of 0.27, 0.68, 0.98, 1.4 and 1.7 1021 neutrons/cm2, respectively. Following irradiation, fuel rod assemblies were disassembled; fuel pellets were removed from the cladding; and the inner diameter of cladding was cleaned to remove residue materials. Tensile hoop strength of this cladding material was tested using the newly developed method. Unirradiated Zircaloy-4 cladding was also tested. With the goal of determining the effect of the two fuel types and different neutron fluences on clad ductility, tensile hoop strength tests were performed on cladding for these varying conditions. Experimental data revealed negligible performance differences for cladding containing TIGR vs non-TIGR processed fuel pellets. Irradiation hardening was observed in tensile hoop data as the strength of the cladding increased with increasing neutron dose and appeared to saturate for a fast fluence of 1.7 1021 neutrons/cm2.

Jaramillo, Roger A [ORNL; Hendrich, WILLIAM R [ORNL; Packan, Nicolas H [ORNL

2007-03-01T23:59:59.000Z

439

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14  

Science Conference Proceedings (OSTI)

The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

Schneider, K.J.

1982-09-01T23:59:59.000Z

440

South Carolina Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","6,486",27.0,"51,988",49.9 "Coal","7,230",30.1,"37,671",36.2 "Hydro and Pumped Storage","4,006",16.7,"1,442",1.4 "Natural Gas","5,308",22.1,"10,927",10.5 "Other1","-","-",61,0.1 "Other Renewable1",284,1.2,"1,873",1.8 "Petroleum",670,2.8,191,0.2 "Total","23,982",100.0,"104,153",100.0

Note: This page contains sample records for the topic "nuclear fuel fabrication" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

New York Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","5,271",13.4,"41,870",30.6 "Coal","2,781",7.1,"13,583",9.9 "Hydro and Pumped Storage","5,714",14.5,"24,942",18.2 "Natural Gas","17,407",44.2,"48,916",35.7 "Other1",45,0.1,832,0.6 "Other Renewable1","1,719",4.4,"4,815",3.5 "Petroleum","6,421",16.3,"2,005",1.5 "Total","39,357",100.0,"136,962",100.0

442

Nuclear reactor vessel fuel thermal insulating barrier  

DOE Patents (OSTI)

The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

2013-03-19T23:59:59.000Z

443

North Carolina Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

total electric power industry, summer capacity and net generation, by energy source, 2010" total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","4,958",17.9,"40,740",31.7 "Coal","12,766",46.1,"71,951",55.9 "Hydro and Pumped Storage","2,042",7.4,"4,757",3.7 "Natural Gas","6,742",24.4,"8,447",6.6 "Other1",50,0.2,407,0.3 "Other Renewable1",543,2.0,"2,083",1.6 "Petroleum",573,2.1,293,0.2 "Total","27,674",100.0,"128,678",100.0

444

Development of the fundamental attributes and inputs for proliferation resistance assessments of nuclear fuel cycles  

E-Print Network (OSTI)

Robust and reliable quantitative proliferation resistance assessment tools are critical to a strengthened nonproliferation regime and to the future deployment of nuclear fuel cycle technologies. Efforts to quantify proliferation resistance have thus far met with limited success due to the inherent subjectivity of the problem and interdependencies between attributes that contribute to proliferation resistance. This work focuses on the diversion of nuclear material by a state and defers other threats such as theft or terrorism to future work. A new approach is presented that assesses the problem through four stages of proliferation: the diversion of nuclear material, the transportation of nuclear material from an internationally safeguarded nuclear facility to an undeclared facility, the transformation of material into a weapons-usable metal, and weapon fabrication. A complete and concise set of intrinsic and extrinsic attributes of the nation, facility and material that could impede proliferation are identified. Quantifiable inputs for each of these attributes are defined. For example, the difficulty of handling the diverted material is captured with inputs like mass and bulk, radiation dose, heating rate and others. Aggregating these measurements into an overall value for proliferation resistance can be done in multiple ways based on well-developed decision theory. A preliminary aggregation scheme is provided along with results obtained from analyzing a small spent fuel reprocessing plant to demonstrate quantification of the attributes and inputs. This quantification effort shows that the majority of the inputs presented are relatively straightforward to work with while a few are not. These few difficult inputs will only be useful in special cases where the analyst has access to privileged, detailed or classified information. The stages, attributes and inputs of proliferation presented in this work provide a foundation for proliferation resistance assessments which may use multiple types of aggregation schemes. The overall results of these assessments are useful in comparing nuclear technologies and aiding decisions about development and deployment of that technology.

Giannangeli, Donald D. J., III

2003-05-01T23:59:59.000Z

445

Changing Perspectives on Nonproliferation and Nuclear Fuel Cycles  

SciTech Connect

The concepts of international control over technologies and materials in the proliferation sensitive parts of the nuclear fuel cycle, specifically those related to enrichment and reprocessing, have been the subject of many studies and initiatives over the years. For examples: the International Fissionable Material Storage proposal in President Eisenhower's Speech on Atoms for Peace, and in the Charter of the International Atomic Energy Agency (IAEA) when the organization was formed in 1957; the regional nuclear fuel cycle center centers proposed by INFCE in the 80's; and most recently and notably, proposals by Dr. ElBaradei, the Director General of IAEA to limit production and processing of nuclear weapons usable materials to facilities under multinational control; and by U.S. President George W. Bush, to limit enrichment and reprocessing to States that have already full scale, functioning plants. There are other recent proposals on this subject as well. In this paper, the similarities and differences, as well as the effectiveness and challenges in proliferation prevention of these proposals and concepts will be discussed. The intent is to articulate a ''new nuclear regime'' and to develop concrete steps to implement such regime for future nuclear energy and deployment.

Choi, J; Isaacs, T H

2005-03-29T23:59:59.000Z

446

Fuel cycle analysis of once-through nuclear systems.  

SciTech Connect

Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium (LEU) fuels. Examples of systems in this class include the small modular reactors being considered internationally; e.g. 4S [Tsuboi 2009], Hyperion Power Module [Deal 2010], ARC-100 [Wade 2010], and SSTAR [Smith 2008]. (2) Systems for Resource Utilization - In recent years, interest has developed in the use of advanced nuclear designs for the effective utilization of fuel resources. Systems under this class have generally utilized the breed and burn concept in which fissile material is bred and used in situ in the reactor core. Due to the favorable breeding that is possible with fast neutrons, these systems have tended to be fast spectrum systems. In the once-through concepts (as opposed to the traditional multirecycle approach typically considered for fast reactors), an ignition (or starter) zone contains driver fuel which is fissile material. This zone is designed to last a long time period to allow the breeding of sufficient fissile material in the adjoining blanket zone. The blanket zone is initially made of fertile depleted uranium fuel. This zone could also be made of fertile thorium fuel or recovered uranium from fuel reprocessing or natural uranium. However, given the bulk of depleted uranium and the potentially large inventory of recovered uranium, it is unlikely that the use of thorium is required in the near term in the U.S. Following the breeding of plutonium or fissile U-233 in the blanket, this zone or assembly then carries a larger fraction of the power generation in the reactor. These systems tend to also have a long cycle length (or core life) and they could be with or without fuel shuffling. When fuel is shuffled, the incoming fuel is generally depleted uranium (or thorium) fuel. In any case, fuel is burned once and then discharged. Examples of systems in this class include the CANDLE concept [Sekimoto 2001], the traveling wave reactor (TWR) concept of TerraPower [Ellis 2010], the ultra-long life fast reactor (ULFR) by ANL [Kim 2010], and the BNL fast mixed spectrum reactor (FMSR) concept [Fisher 1979]. (3) Thermal systems for resource extensio

Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

2010-08-10T23:59:59.000Z

447

Impact of nuclear fuel cycle centers on shipping special nuclear materials and wastes  

SciTech Connect

The impact of integrated nuclear fuel cycle facilities on the transportation sector appears from this admittedly rather narrow study to be of only marginal significance. However, there are other factors which must be taken into account such as nuclear safeguards, economics, and radiological, ecological, institutional, and sociological impacts. Unless more clear-cut advantages can be shown by on-going studies for some of these other considerations, the regimentation and control of industry that would result from the imposition of the integrated fuel cycle facility concept probably could not be justified. (auth)

Blomeke, J.O.

1975-01-01T23:59:59.000Z

448

EIS-0306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

306: Treatment and Management of Sodium-Bonded Spent Nuclear 306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel EIS-0306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel Summary This EIS evaluates the potential environmental impacts of the proposed electrometallurgical treatment of DOE-owned sodium bonded spent nuclear fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West (ANL-W). Public Comment Opportunities None available at this time. Documents Available for Download September 19, 2000 EIS-0306: Record of Decision Treatment and Management of Sodium-Bonded Spent Nuclear Fuel July 1, 2000 EIS-0306: Final Environmental Impact Statement Treatment and Management of Sodium-Bonded Spent Nuclear Fuel July 1, 1999 EIS-0306: Draft Environmental Impact Statement Treatment of Sodium-Bonded Spent Nuclear Fuel

449

U.S. Commits $14 million to U.S. - Ukraine Nuclear Fuel Qualification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commits $14 million to U.S. - Ukraine Nuclear Fuel Commits $14 million to U.S. - Ukraine Nuclear Fuel Qualification Project U.S. Commits $14 million to U.S. - Ukraine Nuclear Fuel Qualification Project March 15, 2007 - 10:55am Addthis KYIV, Ukraine - U.S. Department of Energy Deputy Secretary Clay Sell today announced that the United States will invest $14 million to provide 42 nuclear fuel assemblies to the South Ukraine Nuclear Power Plant under the U.S.-Ukraine Nuclear Fuel Qualification Project (UNFQP). In an agreement reached last week, Westinghouse Electric Company will manufacture nuclear fuel assemblies, which account for one-fourth of the fuel that powers a reactor for up to four years of operation. Deputy Secretary Sell is in Kyiv today to meet with top Ukrainia